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Abstract

Option pricing under the Lévy process has been considered an important research
direction in the field of financial engineering, where a closed-form expression for the
standard European option is available due to the existence of analytically tractable
characteristic function according to the Lévy-Khinchin representation. However this
approach cannot be applied to exotic derivatives (such as barrier options) directly,
although a large volume of exotic derivatives are actively traded in the current op-
tions market. An alternative approach is to solve the corresponding partial integro-
differential equation (PIDE) numerically, which is, in fact, time-consuming and is not
computationally tractable in general.

In this paper, we apply the so-called homotopy analysis method (HAM) to solve the
corresponding PIDE in a semi analytic form, being obtained from the following three
steps: (1) Apply the Fourier transform to convert the PIDE to an ordinal differential
equitation (ODE), and construct a differential system of ODEs. (2) Solve the system
of ODEs, where each differential equation is shown to have an analytical solution.
(3) Express the option price using the sum of infinite series, where each term may
be expressed analytically and derived by applying Steps (1) and (2) recursively. To
illustrate our technique more precisely, we take the variance gamma model as an
example and provide the semi-analytic form. Numerical examples demonstrate a fast
convergence of our proposed method to the prices of European and down-and-out call
options with a few number of terms. Note that this method is easy to implement and
can be applied to other types of options under general Lévy processes.

Keywords: Barrier options, Homotopy analysis method, Lévy processes, Variance
gamma model.
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1 Introduction

One of the main objectives in financial engineering is to build fast yet accurate method-
ology for pricing financial derivatives. Although the Black-Scholes model [2] has been
popular among many financial industries, such a standard pricing model may not de-
scribe some important behaviors of skew and smile effects in empirical options market.
To incorporate these behaviors, option pricing under Lévy process has been considered
an important research direction in financial engineering. For computing European type
options under Lévy processes, the Fast Fourier Transform (FFT) method introduced by
Carr and Madan [4] may be used, where analytic expression is available according to the
Lévy-Khinchin representation [14]. However, the application to exotic derivatives with
general Lévy processes may still be difficult, in spite of the fact that a large volume of
exotic derivatives (such as barrier options) are actively traded in current options mar-
ket. A typical approach under the Lévy case involves to solve partial integro-differential
equations (PIDEs) or the Monte-Carlo simulations, although those methods are generally
time-consuming.

In this paper, we apply a new approach by applying the so-called homotopy analysis
method to option pricing under Lévy processes. The HAM is a general framework initially
proposed by Ortega and Rheinboldt [13], and has widely been applied to solving non-linear
differential equations (e.g., [1] and [11]). In the field of financial engineering, it was first
applied in [16] for American options under the standard Black-Scholes assumptions. Then,
Zhao andWong [15] extended to the case where the volatility of the underlying is a function
of time and showed a faster convergence of option prices by using the Padé approximation.

But to best of our knowledge, no one has applied for general Lévy processes yet, where
our approach may involve an extension to Barrier options. Moreover, we demonstrate that
a convenient series expansion formula may be derived under the Variance Gamma (VG)
model [12] and that the individual terms of the expansion are represented analytically.

This paper is organized as follows. In section 2 we introduce the underlying stock
model as a one dimensional Lévy processes. In section 3, we demosntrate the HAM. In
section 4, we apply the HAM to European option under VG model. In section 5, we
extend our method to barrier options. Section 6 provides numerical examples. Section 7
offers some concluding remark.

2 Underlying stock price dynamics

We assume that the underlying stock price process as St = S0e
X(t) under the risk-neutral

measure, whereX(t) is a one-dimensional Lévy process expressed by the following Lévy-Ito
decomposition [14]:

X(t) = µt+ σW (t) +

∫ t

0

∫
|y|≥1

y h(dy × ds) + lim
ϵ→0

∫ t

0

∫
ϵ≤|y|<1

y [h(dy × ds)− ν(dy × ds)],

where W (t) is the standard Brownian motion, h(dyds) is the Poisson random measure
and ν(dyds) is its compensator. Denoting the value of an option at time t as vt =
EQ

t [e
−r(T−t)φ], where φ is pay-off at maturity one can show that er(T−t)vt satisfies PIDE

[5]:

∂τv + Lv = 0, Lv := µ
∂v

∂x
+

1

2
σ2
∂2v

∂x2
+

∫
R
[v(x+ y)− v(x)− y

∂v

∂x
1|y|<1] ν(dy). (1)

Let F be the Fourier transform operator s.t.

Fv =

∫ +∞

−∞
e−iωxv(x) dx.
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Then by applying the Fourier transform for (1) we have the following ordinal differential
equitation (ODE)

∂tv̂ +Φ(ω) · v̂ = 0, (2)

where
v̂(ω, t) := Fv, φ̂(ω) := Fφ,

and Φ(ω) is the characteristic exponent of the Lévy process. Note that an analytical
expression of Φ(ω) is available for most Lévy processes.

In this paper, we apply the homotopy analysis method (HAM) based on the Fourier
transform formulations of PIDE (1). To explain our approach, we next introduce the HAM
in the following section.

3 Homotopy Analysis Method

The HAM is a general framework initially proposed by Ortega and Rheinboldt [13], and
has widely been applied to solving non-linear differential equations (e.g., [1] and [11]). The
basic idea comes from the Topology, and the objective is to built a deformation process
such that a simple initial function chosen at parameter p = 0 gradually approaches to an
unknown solution (that we want to obtain) at p = 1. The final solution derived at p = 1
is given as an infinite series of functions which can be calculated analytically.

Suppose that we would like to find a function V such that

A(V (x, t)) = 0 (3)

with a given differential operator A. To solve this equation, let A0 be another differential
operator and V̄0(x, t) be a function. Then consider a function V̄ (x, t, p) satisfying the
following differential systems,

(1− p)[A0(V̄ (x, t, p))−A0(V̄0(x, t))] = −p ·A(V̄ (x, t, p)). (4)

Plugging p = 0 gives
A0(V̄ (x, t, 0))−A0(V̄0(x, t)) = 0

and it is obvious that
V̄ (x, t, 0) = V̄0(x, t)

holds. On the other hand, plugging p = 1 gives

A(V̄ (x, t, 1)) = 0

which provides the solution to the original differential equation (3) of , i.e., V (x, t) =
V̄ (x, t, 1). Next we consider the following Taylor’s expansion of V (x, t) = V̄ (x, t, 1) with
respect to p as

V̄ (x, t, p) = V0(x, t) + V1(x, t)p+
1

2
V2(x, t)p

2 + · · · =
∞∑
n=0

Vn(x, t)

n!
pn,

where Vn(x, t) = ∂n

∂pn V̄ (x, t, p)|p=0. We want to compute each term of the expansion.
Differentiation of both sides of equation (4) with respect to p yields

−[A0(V̄ (x, t, p))−A0(V̄0(x, t))]+(1−p) ∂
∂p
A0(V̄ (x, t, p))+A(V̄ (x, t, p))+p· ∂

∂p
A(V̄ (x, t, p)) = 0.

Plugging p = 0 gives

A0(V1(x, t)) + [A(V0(x, t))−A0(V0(x, t))] = 0. (5)
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In (5), we typically choose initial conditions such that A0(V̄0(x, t)) = 0 is satisfied. Simi-
larly, it can be confirmed that

A0(Vn(x, t)) + n · [A(Vn−1(x, t))−A0(Vn−1(x, t))] = 0

holds for the general case of n ≥ 1. We see that each Taylor coefficient, Vn(x, t), n ≥ 1,
is a solution of a differential equation that may be solved recursively for given Vn−1(x, t).
Notice that we can choose any initial operator A0 and initial function V0, although a poor
choice may lead to a slower convergence of the Taylor expansion.

4 Applying the HAM for European options

Now, we apply the HAM to derive semi-analytical formula of a European call, where the
underlying stock is assumed to follow a VG model [12]. Note that our methodology may
be easily applied to other Lévy models, although we omit to explain the detail for brevity.

Let

ΦV G(ω) := γiω − 1

κ
ln

(
1− iµκω +

σ2κω2

2

)
and Â := ∂t +ΦV G(ω). We will solve the following differential equation

Â(ω) · v̂(ω, t) = 0 (6)

under the VG model with the terminal condition v̂(ω, t = T ) = φ̂(ω), where

φ̂(ω) =

∫ +∞

−∞
e−iωx[S0e

x −K]+ dx.

Because the payoff function [S0e
x−K]+ is not L1-integrable, we use the idea explained

in [4], where we first specify α such that the Fourier transform of eαxv(x, t) exists and
modify e−αx afterward so that

v(x, t) = e−αxF−1[F[eαxv(x, t)]]

holds. Noting that, in the Fourier-domain, the operation of v(x, t) → eαxv(x, t) corre-
sponds to v̂(ω, t) → v̂(ω + αi, t), (6) can be rewritten as

Â(ω + αi) · v̂S(ω, t) = 0, v̂S(ω, T ) = φ̂(ω + αi),

where v̂Sn(ω, t) = v̂n(ω + αi, t) and φ̂(ω + αi) = K
(

K
S0

)α
e
−iω ln K

S0

(−iω+α+1)(−iω+α) with α < −1.

Notice that the solution is just

v̂S(ω, t) = e−Φ(ω+αi)(T−t)φ̂(ω + αi)

and

v(x, t) =
e−r(T−t)e−αx

2π

∫ +∞

−∞
eiωxeΦV G(ω+αi)(T−t)φ̂(ω + αi) dω. (7)

We use the HAM to derive the approximation formula of (7). Let Â0 and v̂S0(ω, t) be
a given linear operator and a initial function satisfying

Â0(ω + αi) · v̂S0(ω, t) = 0, v̂S0(ω, T ) = φ̂(ω + αi).

Then we construct the following differential system for a parameter p ∈ [0, 1]:

(1− p)[Â0(ω + αi) · V̄S(ω, t, p)− Â0(ω + αi) · V̄S0(ω, t)] = −p · Â0(ω + αi) · V̄S(ω, t, p)
V̄S(ω, T, p) = φ̂(ω + αi)

5



where V̄S(ω, t, p) is a function satisfying

V̄S(ω, t, 0) = v̂S0(ω, t), V̄S(ω, t, 1) = v̂S(ω, t)

and
v̄S(x, t, p) := F−1V̄S(ω, t, p).

By applying the HAM, we get the following recursive formula for n ≥ 1:

Â0(ω + αi) · v̂Sn(ω, t) = n · [Â(ω + αi)− Â0(ω + αi)] · v̂Sn−1(ω, t) (8)

v̂Sn(ω, T ) = 0

where

v̂n(ω, t) :=
∂nV̄

∂pn

∣∣∣∣
p=0

, vn(x, t) :=
∂nv̄

∂pn

∣∣∣∣
p=0

.

To solve the above system of equations, we need to choose Â0(ω + αi) so that we can
derive analytical solutions for each n. Since the Taylor expansion of

ln

(
1− iµκ(ω + αi) +

σ2κ(ω + αi)2

2

)
= ln

[(
1 + µκα− σ2κα2

2

)
+ [σ2κα− µκ]ωi+

σ2κω2

2

]
:= ln(z0 + z1ωi+ z2ω

2)

at ω = 0 is given by ln z0 +
z1
z0
ωi+ 1

2

(
2z0z2+z21

z20

)
ω2 + · · · , ΦV G may be rewritten as

ΦV G(ω + αi) = γ (ω + αi) i− 1

κ

[
ln z0 +

z1
z0
ωi+

1

2

(
2z0z2 + z21

z20

)
ω2 + · · ·

]
= −γα− 1

κ
ln z0 +

(
γ − z1

κz0

)
ωi− 1

2κ

(
2z0z2 + z1

2

z02

)
ω2 + · · ·

:= Z0 + Z1ωi+ Z2ω
2 + · · · .

Noting that the analytical formula for the price of European call under the Black-
Scholes model is available by solving the corresponding diffusion equation, we choose a
diffusion approximation of ΦV G(ω + αi) as

Â0(ω + αi) = ∂t + (Z0 + Z1ωi+ Z2ω
2).

Furthermore because

Z0 + Z1ωi+ Z2ω
2 = Z2

(
ω +

Z1

2Z2
i

)2

+
Z1

2

4Z2
+ Z0 := A1(ω +A2i)

2 +A3,

we solve the following differential system by defining v̂cSn(ω, t
′) := eA3t′ v̂Sn(ω−A2i, t

′) and
t′ = T − t,

[∂t′ −A1ω
2] · v̂cS0(ω, t′) = 0, v̂cS0(ω, 0) = φ̂(ω + αi−A2i).

The solution is obtained as

v̂S0(ω, t) = eA1ω2t′φ̂(ω + αi−A2i),

where the inverse Fourier transform provides

v0(x, t) = eA2xeA3t e
−αx

2π

∫ +∞

−∞
eA1ω2·t′φ̂(ω + αi−A2i) dω. (9)
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Similarly for n ≥ 1,

[∂t′ −A1ω
2] · v̂cSn(ω, t′) = n · [Gc(ω −A2i)] · v̂cSn−1(ω, t

′), v̂cSn(ω, 0) = 0,

with Gc(ω −A2i) := ΦV G(ω + αi−A2i)−A1ω
2. The solution is obtained as

v̂cSn(ω, t
′) = n ·

∫ t′

0
eA1ω2(t′−τ)Gc(ω −A2i)v̂

c
Sn−1(ω, τ)dτ. (10)

By solving the above equation recursively, we have

v̂cSn(ω, t
′) = n · t′neA1ω2(t′−τ)[Gc(ω −A2i)]

nφ̂(ω + αi−A2i)

for n ≥ 2. Finally the value of European call with maturity T at t = 0 is attained as by∑∞
n=0 e

−rT vn(x,0)
n! , where

vn(x, 0) = n · e
A2x+A3T−αx

2π

∫ +∞

−∞
eA1ω2T · TnGc(ω −A2i)

nφ̂(ω + αi−A2i) dω (11)

and x = ln(S/S0).

5 Applying the HAM for Barrier Options

In this section we apply the HAM for barrier option under VG model. For simplicity we
only consider the down-and-out call whose barrier price B is less than the strike price K;
this method can be easily extended to other type of barrier options.
Adding the corresponding boundary condition to European case in the previous section,
the differential system to solve is

[∂t′ −A1ω
2] · v̂cS0(ω, t′) = 0, v̂cS0(ω, 0) = φ̂(ω + αi−A2i), vS0(x ≤ b, t′) = 0,

where b := ln( B
S0
) and for n ≥ 1,

[∂t′ −A1ω
2] · v̂cSn(ω, t′) = n ·Gc(ω −A2i) · v̂cSn−1(ω, t

′), v̂cSn(ω, 0) = 0, vcSn(x ≤ b, t′) = 0.

Now we solve the system of equations for each n. For the case n = 0, with the reflection
principle the solution is given by vcS0(x, t

′) = vcE0(x, t
′)− vcE0(2b− x, t′) for x ≥ b, where

vcE0(x, t
′) =

1

2π

∫ ∞

−∞
eiωxeA1ω2t′φ̂(ω + αi−A2i) dω, (12)

vcE0(2b− x, t′) =
1

2π

∫ ∞

−∞
eiω(−x)e2iωbeA1ω2t′φ̂(ω + αi−A2i) dω. (13)

vcE0(x, t
′) is the solution of the same equation with no boundary condition. Then we get

v0(x, t
′) = eA2xeA3t e

−αx

2π

∫ ∞

−∞
eiωxeA1ω2t′φ̂(ω + αi−A2i) dω

− eA2xeA3t e
−α(−x)

2π

∫ ∞

−∞
eiω(−x)e2iωbeA1ω2t′φ̂(ω + αi−A2i) dω.

Next for the case n = 1, we solve the following

[∂t′ −A1ω
2]v̂cS1(ω, t

′) = Gc(ω −A2i) · F[1(b,∞) · vcS0(x, t′)], (14)

v̂cS1(ω, 0) = 0, vcS1(x ≤ b, t′) = 0.
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The equation (14) has a form of

[∂t′ −A1ω
2]f̂(ω, t′) = ĥ(ω, t′), f̂(ω, 0) = 0, f(x ≤ b, t′) = 0 (15)

and the solution is given by the Duhamel Principle (see [8] for example) as follows

f̂(ω, t′) =

∫ t′

0
ψ̂(ω, t′; τ) dτ, (16)

where ψ̂(ω, t′; τ) satisfies

[∂t′ −A1ω
2]ψ̂(ω, t′; τ) = 0, (17)

ψ̂(ω, τ ; τ) = ĥ(ω, τ), ψ(x ≤ b, t′, τ) = 0

for t′ ≥ τ . Therefore

v̂cS1(ω, t
′) = Gc(ω −A2i)

∫ t′

0
eA1ω2(t′−τ)F[1(b,∞) · vcS0(x, τ)] dτ

− e−2iωbGc(−ω −A2i)

∫ t′

0
eA1ω2(t′−τ)F[1(b,∞) · vcS0(x, τ)] dτ

and finally we get

v1(x, t
′) = eA2xeA3t e

−αx

2π

∫ ∞

−∞
eiωxGc(ω −A2i)e

A1ω2t′ [

∫ t′

0
e−A1ω2τF[1(b,∞) · vcS0(x, τ)] dτ ] dω

− eA2xeA3t e
−α(−x)

2π

∫ ∞

−∞
eiω(−x)Gc(ω −A2i)e

A1ω2t′ [

∫ t′

0
e−A1ω2τF[1(b,∞) · vcS0(x, τ)] dτ ] dω.

Repeating the same argument, the value of down-and-out call with maturity T at t = 0 is
approximated as

∑∞
n=0 e

−rT vn(x,0)
n! , where

v0(x, 0) = eA2x+A3T [
e−αx

2π

∫ ∞

−∞
eiωxeA1ω2T φ̂(ω + αi−A2i) dω

− eαx

2π

∫ ∞

−∞
eiω(−x)e2iωbeA1ω2T φ̂(ω + αi−A2i) dω], (18)

vn(x, 0) = n·eA2x+A3T [
e−αx

2π

∫ ∞

−∞
eiωxGc(ω −A2i)e

A1ω2T

∫ T

0
e−A1ω2τF[1(b,∞) · vcSn−1(x, τ)] dτ dω

− eαx

2π

∫ ∞

−∞
eiω(−x)Gc(ω −A2i)e

A1ω2T

∫ T

0
e−A1ω2τF[1(b,∞) · vcSn−1(x, τ)] dτ dω]. (19)

In addition, the following formula (see [9] for derivation) can be applied to express F[1(b,∞)·
vcSn−1(x, τ)] analytically; for example given f(x),

F[1(b,∞) · f(x)] =
1

2
f̂(ω)− i

2
e−iωbH(eiηbf̂(η))(ω) (20)

where the Hilbert transform H(f̂(η))(ω) is defined as

H(f̂(η))(ω) :=
1

π
P.V.

∫ ∞

−∞

f̂(η)

ω − η
dη.

But in this case we need to compute the Hilbert transform numerically. Therefore for
simplicity, we compute the Fourier transform F[1(b,∞) ·vcSn−1(x, τ)] directly in the following
numerical experiments.
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Remark 1 Furthermore we can apply the approximated expansion in case of the down-
and-out call to compute the credit default swaps (CDS) under the Lévy model. If we assume
St as a firm’s value, the fair spread C of Credit Default Swaps (CDS) under structural
model is given in [3] as

C = (1−R)

(
BDOB(B, T )∫ T

0 BDOB(B, t) dt
− r

)
, (21)

where BDOB(B, T ) is price of binary down-and-out option with maturity T , r is the risk-
free rate, R is the recovery rate and B is the barrier (the default is assumed to occur if
St ≤ B). Cariboni and Schoutens [3] applied a finite-difference method to to compute
each term in (21). On the other hand, the analytical approximation is directly available
by integrating our analytical approximation with respect to T .

Remark 2 Theoretically barrier and lookback options can be expressed in terms of Wiener-
Hopf factors under Lévy models. However, as pointed out in [5], the factors themselves are
not available explicitly in most case and the pricing algorithm may require the inversions
of the Laplace and the Fourier transforms, which may not be so tractable. Jeannin and
Pistorius [9] derived an analytical formula of barrier option prices in terms of the Laplace
transform as an example of this method, although the densities must be approximated by
hyper-exponential Lévy densities and the parameters have to be computed via root mean
squares minimizations.

6 Numerical Examples

This section gives numerical examples to examine the efficiency of pricing options by the
HAM. We compare our formula (11) with a reference price computed by analytical ex-
pressions of Carr and Madan [4] for a European call. We use the following parameter set
given in [10] : σ = 0.19071, κ = 0.49083, µ = −0.28113 and other parameters are set as
S = 100, K = 100, r = 0.0549, q = 0.011, T = 0.1, α = −12.8. Figure 1 is the numerical
result. The horizontal axis in the top figure represents the number of terms to approximate
the infinite Taylor expansion in HAM and the vertical line represents option prices. The
horizontal axis in the bottom figure represents the number of terms to approximate the
infinite Taylor expansion in HAM and the vertical axis represents the difference between
option price computed by HAM and the reference price. Both figures indicate that only
the first five terms seem to give sufficient approximation.

The second case is down-and-out call price and we compare our formula with a refer-
ence price computed by the finite difference method [7] where the price at a grid point

S = 100.01116 is chosen for comparison. For simplicity, the integral
∫ T
0 e−A1ω2τF[1(b,∞) ·

vcSn−1(x, τ)] dτ is approximated by the following simple trapezoid rule:

T

2
[F[1(b,∞) · vcSn−1(x, 0)] + e−A1ω2TF[1(b,∞) · vcSn−1(x, T )]].

We use the same parameter set as that for the above example except α = −12.87 and
B = 85 for the barrier. Figure 2 shows an numerical result. The horizontal axis in the
top figure represents the number of terms to approximate the infinite Taylor expansion in
HAM and the vertical axis represents option prices. The horizontal axis in the bottom
figure represents the number of terms to approximate the infinite Taylor expansion in HAM
and the vertical axis represents the difference between option price computed by HAM
and the reference price. Similar to the case of European call option, both figures indicate
that only the first five terms seem to provide a sufficient approximation. Therefore we
conclude that Figure 1 and 2 demonstrate the efficiency of HAM in pricing these options.
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7 Conclusion

In this paper, we present general methodology of applying the homotopy analysis method
to European and barrier options under Lévy processes, and derive the sum of infinite series
whose individual term may be calculated analytically. As an example of Lévy processes
whose characteristic functions are available analytically, we used the Variance Gamma
model. Our numerical examples demonstrates that HAM gives a sufficient approximation
of original option price with the low orders of Taylor coefficients. Therefore HAM is
efficient and applicable in practice. Moreover each term in the infinite series is expressed in
terms of Fourier transform so the method of Fast Fourier transform can be used to achieve
faster computation of each term. Once the price is computed, we can calculate option
sensitivities such as delta and gamma easily as well. The method is easy to understand
and can be applied to other type of options.
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Figure 1: European call under VG.
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Figure 2: Down-and-out call under VG.
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