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Abstract

For a truncated exponential family of distributions with a truncation parameter γ and a nat-
ural parameter θ as a nuisance parameter, the stochastic expansions of bias-adjusted maximum
likelihood estimators (MLEs) γ̂θ

ML∗ and γ̂ML∗ of γ when θ is known and when θ is unknown,
respectively, are derived. The second order asymptotic loss of γ̂ML∗ relative to γ̂θ

ML∗ is also
obtained through their asymptotic variances. Further, some examples are given.
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1 Introduction

In multiparameter cases, the estimation of an interest parameter has been discussed under suitable

regularity conditions. It is important to grasp the effect on the presence of nuisance parameters in

the estimation. In order to discriminate asymptotically efficient estimators, the concept of loss of

information is useful (see Fisher (1925) and Rao (1961)). It is also known to be closely connected

with the asymptotic deficiency discussed by Hodges and Lehmann (1970) (see Akahira (1981, 1986)).

On the other hand the conditional likelihood method is well known as a way of eliminating nuisance

parameters (see, e.g. Basu (1977)). However, in the case when the regularity conditions are not

necessarily satisfied, the asymptotic comparison of asymptotically efficient estimators has not been

sufficiently discussed in the presence of nuisance parameters in higher order asymptotics yet.

For a truncated exponential family of distributions with a natural parameter θ and a truncation

parameter γ which is regarded as a typical non-regular case, Bar-Lev (1984) and Akahira (2013)
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considered a problem of estimating θ in the presence of γ as a nuisance parameter. Let θ̂γ
ML and θ̂ML

be the MLEs of θ based on a sample of size n when γ is known and when γ is unknown, respectively.

Let θ̂MCL be the maximum conditional likelihood estimator (MCLE). Then it was shown by Bar-

Lev (1984) that the MLEs θ̂γ
ML, θ̂ML and the MCLE θ̂MCL have the same asymptotic normal

distribution, hence they are shown to be asymptotically equivalent in the sense of having the same

asymptotic variance. Further, Akahira (2013) compared them asymptotically up to the second

order, i.e. the order n−1, in the asymptotic variance, and showed that a bias-adjusted MLE θ̂∗ML

and θ̂MCL were second order asymptotically equivalent, but they were asymptotically worse than

θ̂γ
ML in the second order. The second order asymptotic losses on the asymptotic variance among

them were also obtained.

In this paper we consider a problem of estimating γ in the presence of θ as a nuisance parameter

in exchanging an interest parameter for a nuisance parameter. Let γ̂θ
ML and γ̂ML be the MLEs of γ

based on a sample of size n when θ is known and when θ is unknown, respectively. The stochastic

expansions of the bias-adjusted MLEs γ̂θ
ML∗ and γ̂ML∗ are given, and the second order asymptotic

loss of γ̂ML∗ relative to γ̂θ
ML∗ is also obtained. Further some examples on the Pareto, truncated

exponential and truncated normal cases are given.

2 Truncated exponential family of distributions

In a similar way to Bar-Lev (1984) and Akahira (2013), we consider the formulation as follows.

Suppose that X1, X2, · · · , Xn, · · · is a sequence of independent and identically distributed (i.i.d.)

random variables according to Pθ,γ , having a density

f(x; θ, γ) =


a(x)eθu(x)

b(θ,γ) for c < γ ≤ x < d,

0 otherwise
(2.1)

with respect to the Lebesgue measure, where −∞ ≤ c < d ≤ ∞, a(·) is a nonnegative and continuous

almost surely, and u(·) is absolutely continuous with du(x)/dx ̸≡ 0 over the interval (γ, d). Let

Θ(γ) :=
{

θ
∣∣∣ 0 < b(θ, γ) :=

∫ d

γ
a(x)eθu(x)dx < ∞

}
(2.2)

for γ ∈ (c, d). Then it is shown that for any γ1, γ2 ∈ (c, d) with γ1 < γ2, Θ(γ1) ⊂ Θ(γ2). Assume

that for any γ ∈ (c, d), Θ ≡ Θ(γ) is a nonempty open interval. A family P := {Pθ,γ | θ ∈ Θ, γ ∈

(c, d)} of distributions Pθ,γ having a density (2.1) with a truncation parameter γ and a natural
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parameter θ is called a truncated exponential family of distributions. Let

k(θ, γ) := a(γ)eθu(γ)/b(θ, γ), (2.3)

A(θ, γ) := − 1
k2(θ, γ)

{
cθ(γ)
a(γ)

+ k(θ, γ)
}

(2.4)

with

cθ(γ) := a′(γ) + θa(γ)u′(γ). (2.5)

Then

1
k(θ, γ)

(
∂

∂γ
log k(θ, γ)

)
=

cθ(γ)
a(γ)k(θ, γ)

+ 1 = −k(θ, γ)A(θ, γ). (2.6)

Indeed, since, by (2.2)

∂b(θ, γ)
∂γ

= −a(γ)eθu(γ), (2.7)

it follows from (2.3), (2.4), (2.5) and (2.7) that

∂

∂γ
log k(θ, γ) =

a′(γ)
a(γ)

+ θu′(γ) − 1
b(θ, γ)

{
∂

∂γ
b(θ, γ)

}

=
a′(γ)
a(γ)

+ θu′(γ) +
a(γ)eθu(γ)

b(θ, γ)

=
cθ(γ)
a(γ)

+ k(θ, γ)

= −k2(θ, γ)A(θ, γ),

hence (2.6) holds. In the subsequent sections we obtain the bias-adjusted MLE γ̂θ
ML∗ and γ̂ML∗ of

γ for known and unknown θ, respectively. Calculating their asymptotic variances based on their

stochastic expansions, we get the second order asymptotic loss of γ̂ML∗ relative to γ̂θ
ML∗ . Some

examples are given, and the proofs of theorems are located in appendix.
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3 The bias-adjusted MLE γ̂θ
ML∗ of γ when θ is known

For given x := (x1, · · · , xn) satisfying γ < x(1) := min1≤i≤n xi and x(n) := max1≤i≤n xi < d, the

likelihood function of γ is given by

Lθ(γ; x) =
1

bn(θ, γ)

{
n∏

i=1

a(xi)

}
exp

{
θ

n∑
i=1

u(xi)

}
(3.1)

when θ is known. From (2.2) and (3.1) it follows that the MLE γ̂θ
ML of γ is given by X(1) :=

min1≤i≤n Xi. Let T(1) := n(X(1) − γ). Then we have the following.

Theorem 3.1. For the truncated exponential family P of distributions having a density (2.1) with

a truncation parameter γ and a natural parameter θ, let γ̂θ
ML∗ = X∗

(1) be a bias-adjusted MLE of γ

such that

X∗
(1) := X(1) −

1

k̂θn
, (3.2)

where k̂θ = k(θ, X(1)). Then the stochastic expansion of T ∗
(1) := n(X∗

(1) − γ) is given by

T ∗
(1) = T(1) −

1
k

+
1
kn

(
∂

∂γ
log k

)
T(1) + Op

(
1
n2

)
, (3.3)

where k = k(θ, γ), and the second order asymptotic mean and variance are given by

Eγ

[
T ∗

(1)

]
= O

(
1
n2

)
, (3.4)

Vγ

(
kT ∗

(1)

)
= 1 − 2

kn

(
∂

∂γ
log k

)
+ O

(
1
n2

)
, (3.5)

respectively.

4 The bias-adjusted MLE γ̂ML∗ of γ when θ is unknown

For any γ ∈ (c, d), log b(θ, γ) is strictly convex and infinitely differentiable in θ ∈ Θ and

λj(θ, γ) :=
∂j

∂θj
log b(θ, γ) (4.1)
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is the j-th cumulant corresponding to (2.1) for j = 1, 2, · · · . For given x satisfying γ < x(1) and

x(n) < d, the likelihood function of γ and θ is given by

L(γ, θ; x) =
1

bn(θ, γ)

{
n∏

i=1

a(xi)

}
exp

{
θ

n∑
i=1

u(xi)

}
. (4.2)

Let γ̂ML and θ̂ML be the MLEs of γ and θ, respectively. From (4.2) it is seen that γ̂ML = X(1) and

L(X(1), θ̂ML; X) = supθ∈Θ L(X(1), θ; X), hence θ̂ML satisfies the likelihood equation

1
n

n∑
i=1

u(Xi) − λ1(θ̂ML, X(1)) = 0, (4.3)

where X = (X1, · · · , Xn). Let λ2 = λ2(θ, γ) and Û =
√

λ2n(θ̂ML − θ). Then we have the following.

Theorem 4.1. For the truncated exponential family P of distributions having a density (2.1) with

a truncation parameter γ and a natural parameter θ, let γ̂ML∗ = X∗∗
(1) be a bias-adjusted MLE of γ

such that

X∗∗
(1) := X(1) −

1

k̂n
+

1

k̂2λ̂2n2

(
∂k̂

∂θ

){
1

k̂

(
∂λ̂1

∂γ

)
+

λ̂3

2λ̂2

}

− 1

2k̂2λ̂2n2

∂2k̂

∂θ2
− 2

k̂

(
∂k̂

∂θ

)2
 , (4.4)

where k̂ = k(θ̂ML, X(1)), ∂j k̂/∂θj = (∂jk/∂θj)(θ̂ML, X(1)) (j = 1, 2), λ̂j = λj(θ̂ML, X(1)) (j = 2, 3)

and ∂λ̂1/∂γ = (∂λ1/∂γ)(θ̂ML, X(1)). Then the stochastic expansion of T ∗∗
(1) := n(X∗∗

(1) − γ) is given

by

T ∗∗
(1) = T(1) −

1
k

+
1

k2
√

λ2n

(
∂k

∂θ

){
Û +

1√
λ2n

(
1
k

(
∂λ1

∂γ

)
+

λ3

2λ2

)}

+
1
kn

(
∂

∂γ
log k

)
T(1) +

1
2k2λ2n

{
∂2k

∂θ2
− 2

k

(
∂k

∂θ

)2
}(

Û2 − 1
)

+ Op

(
1

n
√

n

)
, (4.5)

where k = k(θ, γ), λj = λj(θ, γ) (j = 1, 2, 3), and the second order asymptotic mean and variance

are given by

Eθ,γ

[
T ∗∗

(1)

]
= O

(
1

n
√

n

)
, (4.6)
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Vθ,γ

(
kT ∗∗

(1)

)
= 1 − 2

kn

(
∂

∂γ
log k

)
+

1
λ2n

(u(γ) − λ1)2 + O

(
1

n
√

n

)
. (4.7)

5 The second order asymptotic loss of γ̂ML∗ relative to γ̂θ
ML∗

From the results in previous sections, we can asymptotically compare the bias-adjusted MLEs γ̂θ
ML∗

and γ̂ML∗ of γ using their second order asymptotic variances as follows.

Theorem 5.1. For the truncated exponential family P of distributions having a density (2.1) with

a truncation parameter γ and a natural parameter θ, let γ̂θ
ML∗ and γ̂ML∗ be the bias-adjusted MLEs

of γ when θ is known and when θ is unknown, respectively. Then the second order asymptotic loss

of γ̂ML∗ = X∗∗
(1) relative to γ̂θ

ML∗ = X∗
(1) is given by

dn

(
γ̂ML∗ , γ̂θ

ML∗

)
:= n

{
Vθ,γ

(
kT ∗∗

(1)

)
− Vγ

(
kT ∗

(1)

)}
=

{u(γ) − λ1}2

λ2
+ o(1) (5.1)

as n → ∞.

The proof is straightforward from Theorems 3.1 and 4.1.

Remark 5.1. The second order asymptotic loss of γ̂ML∗ relative to γ̂θ
ML∗ coincides with that of the

bias-adjusted MLE θ̂∗ML of θ when γ is unknown relative to the MLE θ̂γ
ML of θ when γ is known,

which seems to show a dual relation on the second order asymptotic loss (see Akahira (2013)). It

is noted that the standardization is necessary in the comparison.

Remark 5.2. Suppose that X1, X2, · · · , Xn, · · · is a sequence of i.i.d. random variables according

to an upper-truncated exponential family P ′ of distributions with a density

f(x; θ, ν) =


a(x)eθu(x)

b(θ, ν)
for c < x ≤ ν < d,

0 otherwise

with respect to the Lebesgue measure, where b(θ, ν) is a normalizing factor. Letting Yi = −Xi

(i = 1, 2, · · · ), and returning to the case of the lower-truncated exponential family with (2.1), we

may obtain similar results to the above in a problem of estimating an upper truncation parameter

ν in the presence of θ as a nuisance parameter.
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6 Examples

Some examples on the second order asymptotic loss of the estimators are given for the Pareto

distribution, a truncated exponential distribution and a truncated normal distribution. Note that

the examples are treated in Akahira (2013).

Example 6.1 (Pareto distribution). Let c = 0, d = ∞, a(x) = 1/x and u(x) = − log x for

0 < γ ≤ x < ∞ in the density (2.1). Then b(θ, γ) = 1/(θγθ) for θ ∈ Θ = (0,∞), and it follows from

(2.2) and (2.3) that k(θ, γ) = θ/γ, ∂k/∂θ = 1/γ and ∂k/∂γ = −θ/γ2. When θ is known, it follows

from (3.2) that the bias-adjusted MLE γ̂θ
ML∗ of γ is given by

X∗
(1) =

(
1 − 1

θn

)
X(1),

hence by (3.4) and (3.5)

Eγ

[
T ∗

(1)

]
= O

(
1
n2

)
,

Vγ

(
θ

γ
T ∗

(1)

)
= 1 +

2
nθ

+ O

(
1
n2

)
, (6.1)

as n → ∞, where T ∗
(1) = n(X∗

(1) − γ). On the other hand, in the Pareto case, it is known that the

uniformly minimum variance unbiased (UMVU) estimator of γ is given by

γ̂θ
UMV U :=

(
1 − 1

nθ

)
X(1) = X∗

(1)

and its variance is

Vγ

(
γ̂θ

UMV U

)
=

γ2

nθ(nθ − 2)

(see, e.g. Voinov and Nikulin (1993)), hence

Vγ

(
nθ

γ
γ̂θ

UMV U

)
=

nθ

nθ − 2
= 1 +

2
nθ

+ O

(
1
n2

)
, (6.2)

which is equal to (6.1) up to the order 1/n as n → ∞.

Next we consider the case when θ is unknown. Since ∂2k/∂θ2 = 0, λ1 = −(1/θ) − log γ,

λ2 = 1/θ2, λ3 = −2/θ3 and ∂λ1/∂γ = −1/γ, it follows from (4.4) that the bias-adjusted MLE γ̂ML∗
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of γ is given by

X∗∗
(1) =

{
1 −

(
1
n

+
1
n2

)
1

θ̂ML

}
X(1),

where θ̂ML = n/
∑n

i=1 log(X(i)/X(1)) from (4.3). Since (∂/∂γ) log k = −1/γ, we have from (4.6)

and (4.7)

Eθ,γ

[
T ∗∗

(1)

]
= O

(
1

n
√

n

)
,

Vθ,γ

(
θ

γ
T ∗∗

(1)

)
= 1 +

1
n

(
1 +

2
θ

)
+ O

(
1
n2

)
(6.3)

as n → ∞, where T ∗∗
(1) = n(X∗∗

(1) − γ). On the other hand, in the Pareto case, it is known that the

UMVU estimator of γ is given by

γ̂UMV U = X(1) −
X(1)

(n − 1)θ̂ML

and its variance is

Vθ,γ (γ̂UMV U ) =
γ2

(n − 1)θ(nθ − 2)

(see, e.g. Voinov and Nikulin (1993)), hence

Vθ,γ

(
nθ

γ
γ̂UMV U

)
=

n2θ

(n − 1)(nθ − 2)
= 1 +

1
n

(
1 +

2
θ

)
+ O

(
1
n2

)
, (6.4)

which is equal to (6.3) up to the order 1/n as n → ∞. It also follows from (5.1), (6.1) and (6.3)

that the second order asymptotic loss of γ̂ML∗ = X∗∗
(1) relative to γ̂θ

ML∗ = X∗
(1) is given by

dn

(
γ̂ML∗ , γ̂θ

ML∗

)
= 1 + o(1) (6.5)

as n → ∞. From (6.2) and (6.4) it follows that the second order asymptotic loss of γ̂UMV U relative

to γ̂θ
UMV U is

d
(
γ̂UMV U , γ̂θ

UMV U

)
: = n

{
Vθ,γ

(
nθ

γ
γ̂UMV U

)
− Vγ

(
nθ

γ
γ̂θ

UMV U

)}

=
n2θ

(n − 1)(nθ − 2)
= 1 + O

(
1
n

)
,

which coincides with (6.5) as n → ∞.
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Example 6.2 (Truncated exponential distribution). Let c = −∞, d = ∞, a(x) ≡ 1 and u(x) = −x

for −∞ < γ ≤ x < ∞ in the density (2.1). Since b(θ, γ) = e−θγ/θ for θ ∈ Θ = (0,∞), it follows from

(4.1) that λ1(θ, γ) = −γ − (1/θ), λ2(θ, γ) = 1/θ2, λ3(θ, γ) = −2/θ3. Since, by (2.3), k(θ, γ) = θ,

it is seen that (∂/∂θ)k(θ, γ) = 1, (∂2/∂θ2)k(θ, γ) = 0. When θ is known, it follows from (3.2) that

the bias-adjusted MLE γ̂θ
ML∗ of γ is given by

X∗
(1) = X(1) −

1
nθ

.

When θ is unknown, it is seen from (4.3) that the MLE θ̂ML of θ is given by θ̂ML = 1/(X̄ − X(1)),

hence by (4.4) the bias-adjusted MLE γ̂ML∗ of γ is given by

X∗∗
(1) = X(1) −

(
1
n

+
1
n2

)(
X̄ − X(1)

)
.

From Theorem 5.1 it follows that the second order asymptotic loss of γ̂ML∗ = X∗∗
(1) for unknown θ

relative to γ̂θ
ML∗ = X∗

(1) for known θ is given by

dn

(
γ̂ML∗ , γ̂θ

ML∗

)
= 1 + o(1)

as n → ∞.

Example 6.3 (Truncated normal distribution). Let c = −∞, d = ∞, a(x) = e−x2/2 and u(x) = x

for −∞ < γ ≤ x < ∞ in the density (2.1). Since b(θ, γ) = Φ(θ − γ)/ϕ(θ) for θ ∈ Θ = (−∞,∞), it

follows from (4.1) that

λ1(θ, γ) = θ + ρ(θ − γ),
∂λ1(θ, γ)

∂γ
= (θ − γ)ρ(θ − γ) + ρ2(θ − γ),

λ2(θ, γ) = 1 − (θ − γ)ρ(θ − γ) − ρ2(θ − γ),

λ3(θ, γ) = ρ(θ − γ)
{
2ρ2(θ − γ) + 3(θ − γ)ρ(θ − γ) + (θ − γ)2 − 1

}
,

where ρ(t) := ϕ(t)/Φ(t) with

Φ(x) =
∫ x

−∞
ϕ(t)dt, ϕ(t) =

1√
2π

e−t2/2 for −∞ < t < ∞.

We also have from (2.3)

k(θ, γ) = ρ(θ − γ),
∂k(θ, γ)

∂θ
= −(θ − γ)ρ(θ − γ) − ρ2(θ − γ),
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∂2k(θ, γ)
∂θ2

= ρ(θ − γ)
{
2ρ2(θ − γ) + 3(θ − γ)ρ(θ − γ) + (θ − γ)2 − 1

}
,

∂k(θ, γ)
∂γ

= (θ − γ)ρ(θ − γ) + ρ2(θ − γ).

When θ is known, it follows from (3.2) that the bias-adjusted MLE γ̂θ
ML∗ of γ is

X∗
(1) = X(1) −

1
ρ(θ − X(1))n

.

When θ is unknown, it is seen from (4.3) that the MLE θ̂ML of θ satisfies the equation

ρ(θ̂ML − X(1)) = X̄ − θ̂ML,

hence the bias-adjusted MLE γ̂ML∗ of γ is

X∗∗
(1) = X(1) −

1

n(X̄ − θ̂ML)
+

1 − (X̄ − X(1))(X̄ − X(1) + X̄ − θ̂ML)

2n2(X̄ − θ̂ML){1 − (X̄ − θ̂ML)(X̄ − X(1))}
.

From Theorem 5.1 it follows that the second order asymptotic loss of X∗∗
(1) for unknown θ relative

to X∗
(1) for known θ is given by

dn

(
X∗∗

(1), X∗
(1)

)
=

{θ − γ + ρ(θ − γ)}2

1 − (θ − γ)ρ(θ − γ) − ρ2(θ − γ)
+ o(1)

as n → ∞.

7 Concluding Remarks

In a truncated exponential family of distributions with a two-dimensional parameter (θ, γ), we con-

sidered the estimation problem of a truncation parameter γ in the presence of a natural parameter

θ as a nuisance parameter. Using the stochastic expansions of the bias-adjusted MLEs γ̂θ
ML∗ and

γ̂ML∗ of γ when θ is known and when θ is unknown, respectively, we obtained their second order

asymptotic variances, from which the second order asymptotic loss of γ̂ML∗ relative to γ̂θ
ML∗ was

derived. As is stated in Remark 5.1, the second order asymptotic loss coincides with that of the

bias-adjusted MLE θ̂∗ of θ when γ is unknown relative to the MLE θ̂γ
ML of θ when γ is known,

which means that the invariance on the second order asymptotic loss holds even if the exchange of

an interest parameter for a nuisance parameter is done.

The results of Theorems 3.1, 4.1 and 5.1 can be extended to the case of a two-sided truncated
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exponential family of distributions with two truncation parameters γ and ν and a natural parameter

θ as a nuisance parameter, including an upper-truncated Pareto distribution which is important in

applications (see Akahira and Ohyauchi (2015)). For such a family of distributions, Akahira et.al

(2014) compared a bias-adjusted MLE θ̂∗ML and MCLE θ̂MCL of θ for unknown γ and ν as nuisance

parameters with the MLE θ̂γ,ν
ML of θ for known γ and ν, and obtained the second order asymptotic

losses of θ̂∗ML and θ̂MCL relative to θ̂γ,ν
ML.

Appendix

Before proving Theorems 3.1 and 4.1, we prepare two lemmas.

Lemma A.1. The second order asymptotic density of T(1) is given by

fT(1)
(t) = k(θ, γ)e−k(θ,γ)t+

k(θ, γ)
a(γ)b(θ, γ)n

{
cθ(γ)b(θ, γ) + a2(γ)eθu(γ)

}
·
{

t − 1
2
k(θ, γ)t2

}
e−k(θ,γ)t + O

(
1
n2

)
(A.1)

for t > 0, and

Eθ,γ(T(1)) =
1

k(θ, γ)
+

1
n

A(θ, γ) + O

(
1
n2

)
, (A.2)

Eθ,γ(T 2
(1)) =

2
k2(θ, γ)

− 6{cθ(γ)b(θ, γ) + a2(γ)eθu(γ)}
a(γ)b(θ, γ)k3(θ, γ)n

+ O

(
1
n2

)
, (A.3)

where k(θ, γ), A(θ, γ) and cθ(γ) are given as (2.3), (2.4) and (2.5), respectively.

The proof of (A.1) is omitted, since it is given in Akahira (2013), and (A.2) and (A.3) are

straightforwardly obtained.

Lemma A.2. Let Û :=
√

λ2(θ, γ)n(θ̂ML−θ). Then the asymptotic expectation of Û , Û2 and ÛT(1)

are given by

Eθ,γ(Û) = − 1√
λ2n

{
1
k

(
∂λ1

∂γ

)
+

λ3

2λ2

}
+ O

(
1

n
√

n

)
, (A.4)

Eθ,γ(Û2) = 1 + O

(
1
n

)
, (A.5)

Eθ,γ(ÛT(1)) =
1

k
√

λ2n

{
u(γ) − λ1 −

λ3

2λ2

}
+ O

(
1

n
√

n

)
, (A.6)

where λj = λj(θ, γ) (j = 1, 2, 3) and k = k(θ, γ).

11



Proof The formulae (A.4) and (A.5) are given in Akahira (2013). Letting

Z1 :=
1√
λ2n

n∑
i=1

{u(Xi) − λ1},

we have

Û = Z1 −
λ3

2λ
3/2
2

√
n

Z2
1 − 1√

λ2n

(
∂λ1

∂γ

)
T(1) + Op

(
1
n

)
(see Theorem 2 in Akahira (2013)). Since

Eθ,γ(Z1T(1)) =
1

k
√

λ2n

{
u(γ) − λ1 +

2
k

(
∂λ1

∂γ

)}
+ O

(
1

n
√

n

)
,

Eθ,γ(Z2
1T(1)) =

1
k

+ O

(
1
n

)
, (A.7)

(see Lemmas 2 and 3 in Akahira (2013)), it follows from (A.3) that

Eθ,γ(ÛT(1)) =
1

k
√

λ2n

{
u(γ) − λ1 −

λ3

2λ2

}
+ O

(
1

n
√

n

)
,

hence (A.6) is obtained. Thus we complete the proof.

The proof of Theorem 3.1 By Taylor’s expansion we have

k̂θ = k(θ, X(1)) = k

(
θ, γ +

T(1)

n

)
= k(θ, γ) +

∂k(θ, γ)
∂γ

·
T(1)

n
+ Op

(
1
n2

)
, (A.8)

∂k̂θ

∂γ
=

∂k

∂γ
(θ, X(1)) =

∂k

∂γ

(
θ, γ +

T(1)

n

)
=

∂k(θ, γ)
∂γ

+ Op

(
1
n

)
, (A.9)

Âθ = A(θ, X(1)) = A

(
θ, γ +

T(1)

n

)
= A(θ, γ) + Op

(
1
n

)
. (A.10)

Since by (A.8)

1

k̂θ

=
1
k

{
1 − 1

k

(
∂k

∂γ

)
T(1)

n
+ Op

(
1
n2

)}
,

substituting (A.8), (A.9) and (A.10) for (3.2), we obtain from (2.6)

T ∗
(1) = n(X∗

(1) − γ) = n(X(1) − γ) − 1

k̂θ

− 1

k̂3
θn

(
∂k̂θ

∂γ

)
− 1

n
Âθ

= T(1) −
1
k

+
1

k2n

(
∂k

∂γ

)(
T(1) −

1
k

)
− 1

n
A + Op

(
1
n2

)

12



= T(1) −
1
k
− 1

n
A +

1
kn

(
∂

∂γ
log k

)(
T(1) −

1
k

)
+ Op

(
1
n2

)

= T(1) −
1
k

+
1
kn

(
∂

∂γ
log k

)
T(1) + Op

(
1
n2

)
,

where k = k(θ, γ) and A = A(θ, γ). Hence we get (3.3). From (2.6), (3.3) and (A.2) it is easily seen

that (3.4) holds, i.e. Eγ(T ∗
(1)) = O(1/n2). From (3.3), (A.2) and (A.3) we have

Eγ

[
T ∗

(1)
2
]

=
{

1 +
2

k2n

(
∂k

∂γ

)}
Eγ

[(
T(1) −

1
k

)2
]

+ O

(
1
n2

)

=
{

1 +
2

k2n

(
∂k

∂γ

)}{
1
k2

− 6(cθb + a2eθu)
abk3n

− 2A

kn

}
+ O

(
1
n2

)

=
1
k2

− 6(cθb + a2eθu)
abk3n

− 2A

kn
+

2
k3n

(
∂

∂γ
log k

)
+ O

(
1
n2

)
, (A.11)

where k = k(θ, γ), a = a(γ), b = b(θ, γ), cθ = cθ(γ), u = u(γ) and A = A(θ, γ). Since k(θ, γ) =

a(γ)eθu(γ)/b(θ, γ), it follows that

a(γ)eθu(γ)

b(θ, γ)k3(θ, γ)
=

1
k2(θ, γ)

, (A.12)

hence by (A.11), (2.3) and (2.6)

Eγ

[
T ∗

(1)
2
]

=
1
k2

− 6
k2n

(
1 +

cθ

ak

)
− 2

k2n

{
kA − 1

k

(
∂

∂γ
log k

)}
+ O

(
1
n2

)

=
1
k2

− 2
k3n

(
∂

∂γ
log k

)
+ O

(
1
n2

)
. (A.13)

From (3.4) and (A.13) we get (3.5). Thus we complete the proof.

The proof of Theorem 4.1 By Taylor’s expansion we have

k̂ = k
(
θ̂ML, X(1)

)
= k

(
θ̂ML, γ +

T(1)

n

)

= k(θ, γ) +
{

∂k(θ, γ)
∂θ

}(
θ̂ML − θ

)
+
{

∂k(θ, γ)
∂γ

}(
X(1) − γ

)
+

1
2

{
∂2k(θ, γ)

∂θ2

}(
θ̂ML − θ

)2

+ Op

(
1

n
√

n

)

= k +
1√
λ2n

(
∂k

∂θ

)
Û +

1
n

(
∂k

∂γ

)
T(1) +

1
2λ2n

(
∂2k

∂θ2

)
Û2 + Op

(
1

n
√

n

)
.

13



Since

1

k̂
=

1
k
− 1

k2
√

λ2n

(
∂k

∂θ

)
Û − 1

k2n

(
∂k

∂γ

)
T(1) −

1
2k2λ2n

(
∂2k

∂θ2

)
Û2 +

1
k3λ2n

(
∂k

∂θ

)2

Û2

+ Op

(
1

n
√

n

)
,

λ̂j = λj

(
θ̂ML, X(1)

)
= λj(θ, γ) + Op

(
1√
n

)
(j = 2, 3),

∂j k̂

∂θj
=

∂jk

∂θj

(
θ̂ML, X(1)

)
=

∂jk

∂θj
(θ, γ) + Op

(
1√
n

)
(j = 1, 2),

∂k̂

∂γ
=

∂k

∂γ

(
θ̂ML, X(1)

)
=

∂k

∂γ
(θ, γ) + Op

(
1√
n

)
,

Â = A
(
θ̂ML, X(1)

)
= A(θ, γ) + Op

(
1√
n

)
,

it follows from (4.4) that

T ∗∗
(1) =n(X∗∗

(1) − γ)

=n(X(1) − γ) − 1

k̂
+

1

k̂2λ̂2n

(
∂k̂

∂θ

){
1

k̂

(
∂λ̂1

∂γ

)
+

λ̂3

2λ̂2

}
− 1

k̂3n

(
∂k̂

∂γ

)

− 1

2k̂2λ̂2n

(
∂2k̂

∂θ2

)
+

1

k̂3λ̂2n

(
∂k̂

∂θ

)2

− 1
n

Â

=T(1) −
1
k
− 1

n
A +

1
k2
√

λ2n

(
∂k

∂θ

){
Û +

1√
λ2n

(
1
k

(
∂λ1

∂γ

)
+

λ3

2λ2

)}

+
1

k2n

(
∂k

∂γ

)(
T(1) −

1
k

)
+

1
2k2λ2n

{
∂2k

∂θ2
− 2

k

(
∂k

∂θ

)2
}(

Û2 − 1
)

+ Op

(
1

n
√

n

)
,

(A.14)

where k = k(θ, γ), A = A(θ, γ) and λj = λj(θ, γ) (j = 1, 2, 3), which derives (4.5) from (2.6). From

(A.7), (A.14) and Lemmas A.1 and A.2 we obtain (4.6) and

Vθ,γ

(
T ∗∗

(1)

)
=Eθ,γ

[
T ∗∗

(1)
2
]

+ O

(
1

n
√

n

)

=Eθ,γ

[(
T(1) −

1
k

)2
]
− 2A

n
Eθ,γ

[
T(1) −

1
k

]
+

1
k4λ2n

(
∂k

∂θ

)2

Eθ,γ

(
Û2
)
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+
2

k2
√

λ2n

(
∂k

∂θ

)
Eθ,γ

[
T(1)Û − 1

k
Û +

1√
λ2n

{
1
k

(
∂λ1

∂γ

)
+

λ3

2λ2

}(
T(1) −

1
k

)]

+
2

k2n

(
∂k

∂γ

)
Eθ,γ

[(
T(1) −

1
k

)2
]

+
1

k2λ2n

(
∂2k

∂θ2

)
Eθ,γ

[(
T(1) −

1
k

)(
Û2 − 1

)]

− 2
k3λ2n

(
∂k

∂θ

)2

Eθ,γ

[(
T(1) −

1
k

)(
Û2 − 1

)]
+ O

(
1

n
√

n

)

=
1
k2

− 6(cθb + a2eθu)
abk3n

− 2A

kn
+

1
k4λ2n

(
∂k

∂θ

)2

+
2

k4n

(
∂k

∂γ

)
+ O

(
1

n
√

n

)
. (A.15)

Since

∂

∂θ
log k(θ, γ) = u(γ) − λ1(θ, γ),

it follows from (2.6), (A.12) and (A.15) that

Vθ,γ

(
T ∗∗

(1)

)
=

1
k2

− 6
k2n

(
1 +

cθ

ak

)
− 2

k2n

{
kA − 1

k

(
∂

∂γ
log k

)}

+
1

k2λ2n
(u(γ) − λ1)

2 + O

(
1

n
√

n

)

=
1
k2

− 2
k3n

(
∂

∂γ
log k

)
+

1
k2λ2n

(u(γ) − λ1)
2 + O

(
1

n
√

n

)
,

where a = a(γ) and cθ = cθ(γ) = a′(γ) + θa(γ)u′(γ), which shows that (4.7) holds. Thus we

complete the proof.
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