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Schizophrenia-like phenotypes in mice with NMDA receptor
ablation in intralaminar thalamic nucleus cells and gene
therapy-based reversal in adults
K Yasuda1,2, Y Hayashi3, T Yoshida1, M Kashiwagi3, N Nakagawa4, T Michikawa5, M Tanaka6, R Ando1, A Huang7, T Hosoya4, TJ McHugh7,
M Kuwahara2 and S Itohara1

In understanding the mechanism of schizophrenia pathogenesis, a significant finding is that drug abuse of phencyclidine or its
analog ketamine causes symptoms similar to schizophrenia. Such drug effects are triggered even by administration at post-
adolescent stages. Both drugs are N-methyl-D-aspartate receptor (NMDAR) antagonists, leading to a major hypothesis that
glutamate hypofunction underlies schizophrenia pathogenesis. The precise region that depends on NMDAR function, however, is
unclear. Here, we developed a mouse strain in which NMDARs in the intralaminar thalamic nuclei (ILN) were selectively disrupted.
The mutant mice exhibited various schizophrenia-like phenotypes, including deficits in working memory, long-term spatial
memory, and attention, as well as impulsivity, impaired prepulse inhibition, hyperlocomotion and hyperarousal. The
electroencephalography analysis revealed that the mutant mice had a significantly reduced power in a wide range of frequencies
including the alpha, beta and gamma bands, both during wake and rapid eye movement (REM) sleep, and a modest decrease of
gamma power during non-REM sleep. Notably, restoring NMDARs in the adult ILN rescued some of the behavioral abnormalities.
These findings suggest that NMDAR dysfunction in the ILN contributes to the pathophysiology of schizophrenia-related disorders.
Furthermore, the reversal of inherent schizophrenia-like phenotypes in the adult mutant mice supports that ILN is a potential target
site for a therapeutic strategy.

Translational Psychiatry (2017) 7, e1047; doi:10.1038/tp.2017.19; published online 28 February 2017

INTRODUCTION
Schizophrenia is a disabling mental disorder, and core aspects are
resistant to medications.1 Current treatments using dopamine D2
receptor blockers effectively treat psychotic symptoms such as
hallucination and delusion, but have limited effect on negative
symptoms2 and cognitive impairments (working memory, long-
term memory, attention, impulsivity and perception deficits).3,4

Genetic and environmental susceptibility factors linked to the
disorder could influence postnatal brain maturation.5,6 Neurode-
velopmental models of schizophrenia suggest that schizophrenia
is mainly a progressive and irreversible disease.7 Thus, there is an
urgent need to develop animal models based on new insights
gained from human studies to search for alternative therapeutic
strategies.
Administration of N-methyl-D-aspartate receptor (NMDAR)

antagonists such as phencyclidine or ketamine at post-
adolescent stages in humans or rodents,8–11 induces the full
range of psychotic, negative and cognitive symptoms, suggesting
that NMDAR dysfunction in the mature brain contributes to the
pathology of schizophrenia.12 In further support of the NMDAR
theory, a number of genes involved in glutamatergic signaling and
synaptic plasticity were tagged by a large-scale schizophrenia
genome-wide association study.13 Further, postmortem
neurochemical studies of schizophrenia patients reveal reduced

NMDAR expression in the thalamus,14 prefrontal cortex15 and
hippocampus.16 Genetic manipulations that alter NMDAR subunit
proteins also cause schizophrenia-like symptoms in mice.17–20

Why disrupting NMDAR function leads to such symptoms and
whether such effects can be explained by malfunction in a specific
brain area, however, has remained unclear. Deletion of NMDARs in
mature cortical excitatory neurons has little effect on cognitive
symptoms.18 Thus, post-adolescent NMDAR hypofunction in the
cortex does not fully account for all of the cognitive deficits in
schizophrenia or the acute effects of NMDAR antagonists. NMDAR
hypofunction in cortical GABAergic interneurons during early
development, however, causes schizophrenia-like phenotypes,19,20

supporting the developmental theory of schizophrenia.
Dysfunction of the thalamocortical networks may partially

underlie the pathology in schizophrenia.21,22 Neuroimaging
studies of patients with schizophrenia suggest differences in the
morphology and metabolism of the thalamic subnuclei, including
the intralaminar thalamic nuclei (ILN).23,24 Although the precise
function of these nuclei in cognitive function is poorly
understood,25,26 some ILN neurons have rich reciprocal connec-
tions with the prefrontal cortex and striatum27—key structures
involved in the control of cognitive function.28,29 Such thalamo-
cortical connectivity from the ILN to the prefrontal cortex is altered
in patients with schizophrenia.30,31 In addition, NMDAR expression
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in the ILN is reduced in patients with schizophrenia.32 These
findings led us to hypothesize that NMDAR hypofunction in the
ILN is causally related to the cognitive impairments observed in
schizophrenia.
To test this hypothesis, we generated ILN-selective conditional

knockout (cKO) mice for NR1, which encodes an essential NMDAR
subunit. Comprehensive behavioral examination of the cKO mice
revealed abnormalities resembling the symptoms of schizophre-
nia. We further tested whether the abnormalities could be rescued
by viral vector-mediated restoration of NR1 in the adult ILN. Our
findings support the notion that NMDAR hypofunction in the
post-adolescent ILN has a crucial role in the pathophysiology of
schizophrenia.

MATERIALS AND METHODS
All the experiments were carried out in accordance with the Guide for the
Care and Use of Laboratory Animals of the National Institute of Health. The
experimental protocol was approved by the RIKEN institutional animal use
committee.

Animal
The mice were housed in individually ventilated cages in groups of two to
five animals. The light cycle was 0800 h ON and 2000 h OFF. Water and
food were provided ad libitum, unless otherwise stated. A total of 127 male
and 60 female mice were used for histological, electrophysiological and
behavior experiments. For Y-maze and Morris water maze tests, and EEG
(electroencephalography) recording, the male mice were tested as
described in each figure legend.

Generation of ILN-specific NMDAR-deficient mice
A bacterial artificial chromosome clone (RP23-116A1) containing the
Lypd6b (LY6/PLAUR domain containing 6B) gene was used to generate an
ILN-specific Cre transgenic mouse line. The ILN-Cre mice were crossed with
mice carrying the loxP-flanked Grin1 allele33 to obtain ILN-specific NMDAR-
deficient mice. All these mice had been maintained before use in C57BL/6J
isogenic or congenic backgrounds.

Viral injection for NMDAR rescue
For virus-mediated rescue of NR1 in the ILN of cKO mice, we used the
AAV-fsNR1 virus,34 which expresses Grin1 after Cre-mediated recombina-
tion (pAAV-fsNR1 provided by Dr Richard D Palmiter at the University of
Washington).

Behavioral analysis
All behavioral tasks were performed, as previously described,19,35 during
the light phase, between ZT2 and ZT12.

Statistical analysis
Data were analyzed with Excel Statistics (Excel Toukei 2012, Social Survey
Research Information), SPSS (SPSS Japan, Tokyo, Japan), MATLAB (Math-
works, Natick, MA, USA) and R (version 3.2.3). Mean differences between
groups were analyzed using an unpaired two-sided t-test; one-way, two-
way, three-way or mixed between–within-subjects analysis of variance,
followed by Tukey’s post hoc tests. Normality was tested using the
Kolmogorov–Smirnov test, and equality of variances was tested using
Levene’s test. For nonparametric statistics, the Wilcoxon rank-sum test or
Kruskal–Wallis test and Steel–Dwass multiple comparison tests were used.
A P-value o0.05 was considered statistically significant.
The experimental details are provided in the Supplementary

Information.

RESULTS
Generation of the ILN-Cre transgenic mouse
To achieve genetic manipulation specifically in the ILN, we
generated transgenic mouse lines Lypd6b-Cre in which the Cre
recombinase expression was selectively induced in the ILN,

including the parafascicular, centrolateral and paracentral
subnuclei (Figures 1a and b). The LacZ-positive cells representing
Cre-mediated recombination comprised 87.3 ± 2.2% of the
NeuN-positive cells in the ILN (Supplementary Figure 1). Smaller
numbers of LacZ-expressing neurons were also detected in
the mediodorsal, central medial and reuniens nuclei of the
thalamus, cortex, hippocampus, superior colliculus and medulla
(Supplementary Figure 2). Cre expression began at embryonic day
18, and reached the adult level by postnatal day 21.

Ablation of NMDARs in ILN cells
Lypd6b-Cre (ILN-Cre) mice were crossed with Grin1flox/flox mice,33

which encode NR1, to generate ILN-NR1-cKO mice. Immunohis-
tochemistry for NR1, an essential subunit of the NMDA receptor,
revealed a marked selective decrease in the ILN (Figure 1c). Grin1
mRNA levels determined by quantitative reverse transcription-
polymerase chain reaction (RT-PCR) in tissue samples containing
the ILN were reduced by 54% in cKO mice compared with control
samples (Figure 1d).
We confirmed the functional loss of NMDARs by whole-cell

patch-clamp recording. Cre-positive cells were visualized by
crossing ILN-NR1-cKO or control ILN-Cre mice with a loxP-flanked
enhanced yellow fluorescent protein line. Recordings were per-
formed on enhanced yellow fluorescent protein(+) cells at around
postnatal 4 weeks (Figure 1e). In all 33 cells tested from five
control animals, electrical stimulation-induced excitatory postsy-
naptic currents (EPSCs) recorded at a holding potential of +40 mV
had a longer decay time constant than those recorded at − 70 mV
(Figures 1f and g). EPSCs recorded at +40 mV were partially
blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor blocker NBQX, and completely blocked by
additional application of the NMDA receptor blocker APV
(Figure 1h, top). In contrast, for the cKO mice, in 36 of 56 cells
(64.3%) tested from seven animals, the decay time constants of
EPSCs recorded at +40 and − 70 mV were almost identical, both
less than 8 ms (Figures 1f and g; cKO_n− cells). In these cells,
application of NBQX alone completely blocked EPSCs recorded at
+40 mV (Figure 1h, bottom). These findings confirmed that
NMDARs were functionally eliminated from the majority of Cre-
targeted ILN cells. We also analyzed spontaneous EPSCs (sEPSCs)
recorded from ILN neurons that showed or did not show NMDA
currents by electrical stimulation in cKO mice (cKO_n+ or
cKO_n− , respectively) and sEPSCs recorded from ILN neurons in
control mice (Figure 1i). For the amplitudes of sEPSCs, ILN neurons
of cKO_n− had larger amplitudes compared with other groups
(Figure 1j, left and middle). On the other hand, sEPSC frequencies
were larger in both ILN neurons of cKO_n+ and cKO_n− compared
with those in control mice (Figure 1j, right). These results suggest
that NMDAR signaling dysfunction leads to hyperactivity in the ILN
circuitry by intrinsic and extrinsic mechanisms.

Cognitive impairments in ILN-NR1-cKO mice
Cognitive impairment is a core symptom of schizophrenia among
psychiatric disorders.3 We assessed working memory in ILN-NR1-
cKO mice using the Y-maze spontaneous alternation task. Control
mice exhibited reliable alternation, whereas the cKO mice
displayed reduced alternations (Figure 2a). The cKO mice and
control mice had similar numbers of arm entries, suggesting that
general activity levels were not altered (Figure 2a). These findings
suggest that spatial working memory is impaired in cKO mice.
To assess long-term spatial reference memory, we tested the

cKO mice in the Morris water maze. The cKO mice had longer
latencies to find the hidden platform (Figure 2b). In the probe test,
cKO mice spent less time swimming near the previous platform
location compared with control mice, suggesting impaired
memory (Figure 2b). The cKO mice had normal escape latencies
when tested with a visible platform, indicating intact visual ability
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and motivation to escape (Figure 2b). These findings indicate that
the cKO mice have deficits in spatial learning and memory.
To explore attention deficits in the cKO mice, we used the five-

choice serial reaction time task.35 In this task, the animals are
required to visually monitor five apertures and to identify, by a
nose poke, which one is illuminated to obtain a reward (Figure 2c).
No difference was detected between the control and cKO mice in
learning speed (Figure 2d) or in the latency to make either a
correct response or an incorrect response (Figure 2e). When the

visual stimulus duration was shortened, however, the number of
incorrect responses increased in cKO mice compared with control
siblings (Figure 2f), suggesting that cKO mice had attention
deficits. In addition, cKO mice had more premature responses
(nose pokes made before the presentation of a target stimulus)
and perseverative responses (continued nose pokes after a correct
response and before the collection of the reward), which are
measures of impulsiveness and compulsiveness,35 respectively
(Figures 2g and h). No difference in the number of omissions

Figure 1. Generation of ILN neuron-selective NMDAR cKO mice. (a and b) Representative images of the spatial distribution of Cre recombinase
activity in coronal sections from an ILN-Cre::Rosa-NLSLacZ (Lypd6b-Cre::Gt(ROSA)26Sortm1Ito) double-transgenic mouse stained with X-gal (blue)
and hematoxylin (purple). (c) Representative immunohistochemistry images for NR1 in 6-month-old control NR1-flox (Grin1flox/flox) and cKO
(ILN-NR1-cKO) mice. (d) Quantitative RT-PCR for Grin1 mRNA in the ILN of control and cKO mice (six samples (three females) for each group,
2 months old). (e) Representative confocal images of recorded cells (Cy5 labeled) after whole-cell patch-clamp recordings. (f) EPSCs recorded
at the holding potential of − 70 mV (blue), +40 mV (magenta) and 0 mV (green). EPSCs recorded at − 70 mV that were scaled to the peak of
EPSCs recorded at +40 mV are also shown for comparison of the EPSC time course (light blue). cKO_n+ and cKO_n− , cKO neuron with and
without NMDA current, respectively. Scale bars, 10 ms and 100 pA. (g) Decay time constant of EPSCs recorded at − 70 mV and +40 mV in
individual cells. Control, n= 33; cKO, n= 56. Existence of NMDA currents was judged at the time constant of 8 ms (gray broken line). (h)
Blockade of EPSCs recorded at +40 mV by AMPA receptor blocker NBQX and NMDA receptor blocker APV. Scale bars, 10 ms, 20 pA (Control)
and 50 pA (cKO_n− ). (i) Left, sEPSCs recorded at − 70 mV. Scale bars, 0.5 s and 40 pA. (j) Left: cumulative probability of amplitude of sEPSC.
Seventy-five random events were selected from individual cells and events from control, cKO_n+ and cKO_n− cells were respectively pooled.
Center and right: amplitude and frequency of sEPSCs in individual cells (circle) and mean values (horizontal bar, Control, n= 33; cKO_n+,
n= 20; cKO_n− , n= 36). **Po0.01 (Wilcoxon rank-sum test). ***Po0.001; NS, not significant (Kolmogorov–Smirnov test). ††Po0.01 (Kruskal–
Wallis test, post hoc Steel–Dwass multiple comparison test). Scale bars, 1 mm (a), 500 μm (b and c), 100 μm (e). All error bars represent s.e.m.
cKO, conditional knockout; CL, centrolateral thalamic nucleus; EPSC, excitatory postsynaptic current; fr, fasciculus retroflexus; ILN, intralaminar
thalamic nuclei; MD, mediodorsal thalamic nucleus; NMDAR, N-methyl-D-aspartate receptor; PC, paracentral thalamic nucleus; PF,
parafascicular thalamic nucleus.
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(failure to make a response) was detected between the groups
(Figure 2i). These findings suggest that NMDAR deletion in the ILN
impairs attention and inhibitory control.

Positive symptom-like behaviors in ILN-NR1-cKO mice
Patients with schizophrenia exhibit positive and negative
symptoms.3,4 In rodent models, locomotor activity is widely used
to assess positive symptom-like behaviors.10 Horizontal locomotor
activity in cKO mice exposed to a novel open field did not differ
significantly from that in control mice, whereas cKO mice
exhibited less frequent rearing (vertical activity), which may
reflect a reduction in general attention (Figure 3a).36 Home cage
activity monitoring of the cKO mice for 2 days, however, revealed
increased mean locomotor activity during the dark phase

(Figure 3b). Prepulse inhibition is a measure of sensory filtering
and is reduced in both patients with schizophrenia4 and rodent
models of schizophrenia.4,10 The cKO mice displayed impaired
prepulse inhibition, whereas the auditory response itself was
intact (Figure 3c). These findings, together with home cage hyper-
activity, indicate that the cKO mice exhibit positive symptom-like
behaviors. Moreover, as described above, cKO mice did not differ
from control mice in exhibiting motivation to acquire a reward in
the five-choice serial reaction time task.

Increased arousal and abnormal sleep architecture in ILN-NR1-cKO
mice
Patients with schizophrenia often experience sleep disruption due
to reduced non-rapid eye movement (NREM) sleep, although the

Figure 2. Schizophrenia-like cognitive impairments induced by ILN NMDAR deletion. (a) In the Y-maze spontaneous alternation task, cKO mice
exhibited reduced alternation behavior. Number of arm entries did not significantly differ between genotypes (10 and 11 males, 2.5 months
old). (b) Left: in the Morris water maze test, cKO mice required more time to locate the hidden platform in the acquisition phase of the water
maze than control mice (seven and nine males, 6.5 months old). Center: during the probe test, cKO mice spent less time in the trained zones
with a radius of 30 cm. Right: in the visible platform test, latency to escape did not differ significantly between the and cKO mice. (c) Schematic
representation of the 5-CSRTT for attention and impulsivity. The operant chamber of the 5-CSRTT is equipped with five apertures that can be
illuminated, and a tray to deliver a food reward. (d) The acquisition rate in the initial stage of the 5-CSRTT did not differ significantly between
the mutant and control mice (22 controls (13 females and 9 males) and 18 mutants (9 females and 9 males), 8 months old). (e) No significant
difference in the response speed of correct and incorrect responses was observed between genotypes. (f) Number of errors was increased in
cKO mice. (g) Number of premature responses was increased in cKO mice. (h) Number of perseverative responses was increased in cKO mice.
(i) No significant difference in the number of omission errors was detected between genotypes. *Po0.05 (unpaired t-test). #Po0.05,
###Po0.001 (one-way analysis of variance (ANOVA)). †Po0.05, ††Po0.01 (Mixed between–within-subjects ANOVA). All error bars represent s.e.
m. cKO, conditional knockout; CSRTT, choice serial reaction time task; ILN, intralaminar thalamic nuclei; NMDAR, N-methyl-D-aspartate receptor.
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amount of REM sleep tends to be normal.37 The cKO mice
exhibited decreased NREM sleep, which was replaced by increased
wakefulness, whereas the amount of REM sleep was mostly
unaffected (Figures 3d and e). This trend was most obvious at the
beginning of the dark period, and no obvious sleep rebound was
observed (Figure 3d). The episode duration of wake in the dark
phase was dramatically increased in the cKO mice, suggesting a
hyperarousal state (Figures 3f and g). To further examine the
possibility that cKO mice had abnormally high arousal at the
beginning of the dark period, the sleep/wake patterns were
compared following a cage change, which is a well-established
method for short-term sleep deprivation.38 The cKO mice

exhibited increased wakefulness following a cage change during
the dark period but not during the light period (Supplementary
Figures 3a and b). Furthermore, although the amount of each
sleep/wake state was indistinguishable between the control mice
and cKO mice during the light period, the cKO mice displayed a
shortened REM sleep latency (Supplementary Figure 3c), which is
well recognized in schizophrenic patients.37 These results indicate
that cKO mice exhibited enhanced arousal at the expense of
NREM sleep in the beginning of dark phase, mimicking the
hyperarousal state of schizophrenia, and an altered sleep
architecture during the light phase also mimicking that of
schizophrenia.39

Figure 3. ILN NMDAR deletion leads to various other schizophrenia-like phenotypes. (a) Distance traveled following exposure to the novel
open field did not differ significantly between genotypes. The number of rearings was decreased in cKO mice versus controls (16 controls (8
females and 8 males) and 17 cKO mice (8 females and 9 males), 3 months old). (b) Left: animals were placed in a home cage and locomotor
activity was compared between control and cKO mice. Right: cumulative distance traveled during the night and day (eight and nine females,
3.5 months old). (c) Left: the percentage prepulse inhibition of cKO mice was significantly smaller than that of controls. Right: the startle
amplitude did not differ significantly between genotypes. Data from females and males were pooled, as neither main effects of sex nor
interaction effects between sex and genotype were detected (14 controls (6 females and 8 males) and 13 cKO mice (6 females and 7 males),
12 months old). (d) cKO mice exhibited increased wakefulness and reduced NREM sleep (eight control and eight mutant males, 4–6 months
old). (e) Mean amount of sleep and wakefulness during the light or dark period and the whole day. (f and g) The number (f) and duration (g) of
episodes of each sleep/wake stage in the control and cKO mice. During the dark phase, the duration of wake episodes was largely increased in
cKO mice. (h) Time course of MK-801 induced hyperlocomotion in control and cKO mice. (i) Cumulative distance traveled after MK-801
treatment (30–210 min) was altered in cKO mice. The values are means± s.e.m. for 10 controls treated with saline (6 females and 4 males), nine
controls treated with MK-801 (five females and four males), eight cKO mice treated with saline (five females and three males) and nine cKO
treated with saline (five females and four males) at the age of 12 months. *Po0.05, **Po0.01 (unpaired t-test). #Po0.05, ##Po0.01,
###Po0.001 (one-way analysis of variance (ANOVA)). ††Po0.01 (Mixed between–within-subjects ANOVA). All error bars represent s.e.m. cKO,
conditional knockout; ILN, intralaminar thalamic nuclei; NMDAR, N-methyl-D-aspartate receptor; NREM, non-rapid eye movement.
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Altered sensitivity to the psychostimulant effects of MK-801 in
ILN-NR1-cKO mice
Administration of an NMDA antagonist acutely and temporarily
induces psychosis-like symptoms and hyperactivity in normal
rodents.10 To examine whether the ILN is the primary site of action
of the NMDA antagonists, we investigated the effects of the
NMDAR antagonist MK-801 in the cKO mice. Subcutaneous
administration of MK-801 induced locomotor hyperactivity that
was sustained for over 3 h after injection in control animals. The
MK-801-induced hyperactivity, however, was largely diminished in
cKO mice (Figures 3h and i), suggesting that the ILN is a site of
action of MK-801.

Altered cortical oscillations in ILN-NR1-cKO mice
Abnormal cortical oscillations in schizophrenic patients are well
documented.39 Multiple studies report consistent abnormalities in
theta (4–8 Hz), alpha (8–12 Hz), beta (13–30 Hz) and gamma (30–
80 Hz) frequency oscillatory activity in patients with schizophrenia
and such abnormal oscillations are proposed to underlie the
cognitive symptoms and hallucinations.40 We analyzed the EEG data
obtained from non-anesthetized mice. The cKO mice showed a
significantly reduced power in a wide range of frequencies including
the delta, theta, alpha, beta and gamma bands, both during wake
and REM sleep and a modest decrease of gamma power during
NREM sleep, regardless of the light or dark phase (Figures 4a and b).

Figure 4. Altered neural oscillations in ILN-NR1-cKO mice. (a) Normalized power spectrum of cortical EEG recordings from control and cKO
mice during the dark period ((six control and six mutant males) × 2 days, 4–6 months old). Top: decreased power in cKO mice of the 0.5–3 Hz
delta, 4–8 Hz theta, 8–12 Hz alpha, 13–30 Hz beta and 30–45 Hz gamma frequency during wakefulness under the dark period. Middle:
decreased power in cKO mice of the 30–45 Hz and 55–80 Hz gamma frequency during NREM sleep under the dark period. Bottom: decreased
power in cKO mice of the 0.5–3 Hz delta, 13–30 Hz beta and 30–45 Hz gamma frequency during REM sleep under the dark period. (b)
Normalized power spectrum for EEG recordings from control and cKO mice during the light period ((six control and six mutant males) × 2 days,
4–6 months old). Top: decreased power in cKO mice of the 0.5–3 Hz delta, 4–8 Hz theta, 8–12 Hz alpha, 13–30 Hz beta and 30–45 Hz gamma
frequency during wakefulness under the light period. Middle: decreased power in cKO mice of the 30–45 Hz gamma frequency during NREM
sleep under the light period. Bottom: decreased power in cKO mice of the 0.5–3 Hz delta, 13–30 Hz beta and 30–45 Hz gamma frequency
during REM sleep under the light period. Vigilance states classified in a and b were the same as in Figure 3d. The data recorded at 2000 Hz
sampling frequency (six mice each for genotype) were used for the EEG spectrum analysis. *Po0.05, **Po0.01, ***Po0.001 (unpaired t-test).
Light-colored lines and error bars represent s.e.m. cKO, conditional knockout; EEG, electroencephalography; ILN, intralaminar thalamic nuclei;
NREM, non-REM; REM, rapid eye movement.
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Consistently, diffuse projections from ILN-Cre-positive cells to
cortical areas were observed (Supplementary Figure 4).

Selective restoration of NMDARs in ILN cells in adult cKO mice
rescued the behavioral abnormalities
In cKO mice, NMDAR signaling was likely disrupted from the
juvenile stage, suggesting that NMDAR dysfunction during early
development is critical for the observed behavioral abnormalities.
To evaluate whether restoration of NMDAR function in the adult
ILN could effectively ameliorate the behavioral abnormalities, we
used a viral rescue strategy. We conditionally re-expressed the
NR1 subunit in adult cKO mice using a Cre-dependent AAV vector
(Figure 5a). Histologic analysis revealed the restricted expression
of hemagglutinin-tagged NR1 or control turboRFP (tRFP) in the ILN
(Figure 5b). In the Y-maze spontaneous alternation task, the virally
rescued mutant (cKO;AAV-fsNR1 or cKO-rescue) mice exhibited
improved performance compared with mutants with control
vectors (cKO;AAV-tRFP or cKO-tRFP; Figure 5c). The findings
suggest that restoration of NMDAR signaling in the ILN of adult
cKO mice was sufficient to rescue the working-memory deficit. We
then assessed the home cage locomotor activity (Figure 5d).
Although the cKO-tRFP mice exhibited increased activity com-
pared with AAV-transfected Grin1flox/flox (control-AAV) mice, the
increased activity was suppressed in the cKO-rescue mice
(Figure 5d). We then tested the virally rescued mutants in the
MK-801-induced hyperactivity test (Figure 5e). Although MK-801-
induced hyperactivity was largely diminished in the cKO-tRFP

mice, the hyperactivity was reversed in the cKO-rescue mice
(Figure 5e). The findings suggest that restoration of NMDAR
signaling in the adult ILN circuit also reverses various other
behavioral deficits and restores MK-801-induced hyperactivity.
Importantly, these results confirm that, although some Cre-
recombination was detected in other brain areas, the behavioral
deficits were primarily due to NMDAR dysfunction in ILN cells.

DISCUSSION
In the present study, selective disruption of NMDAR signaling in
the ILN circuit of mice during developmental stages induced
characteristic schizophrenia-like symptoms, some of which were
normalized by restoration of NMDAR function in adult mice. These
findings contrast with studies showing that NMDAR hypofunction
in cortical GABAergic interneurons during early development, but
not in adulthood, causes schizophrenia-like phenotypes.19 It is
likely that NMDAR function in the ILN neurons is required in a
post-maturation manner for proper integration of sensory
information, while NMDAR function in inhibitory neurons is
required for establishing appropriate cortical inhibitory–excitatory
neuronal networks during development. Thus, our ILN-NR1-cKO
mice provide a valuable platform for future studies of potential
post-adolescent treatment of schizophrenia, at least for a subset of
schizophrenia.
The inattention and abnormal arousal regulation observed in

our model animal support the role of the ILN as a major
component of the arousal system.41 Previous studies reveal that

Figure 5. Adult reversal of schizophrenia-related phenotypes by restoration of ILN NMDARs. (a) Injection of AAV carrying Cre-dependent NR1
(AAV-fs (floxed-stop) NR1) or control fluorophore (AAV-DIO (double-floxed inversed open reading frame) turboRFP (tRFP)) into the ILN of cKO
mice. (b) Representative images of immunohistochemistry for tRFP and HA-tag. Expression of tRFP and HA-tagged NR1 was restricted to ILN
cells 4 weeks after viral injections in ILN-NR1-cKO; AAV-DIO-tRFP (cKO-tRFP) and ILN-NR1-cKO; AAV-fsNR1 (cKO-rescue) mice. No expression of
HA-tagged NR1 was detected in Grin1flox/flox; AAV-fsNR1, because of the lack of Cre. Scale bars, 500 μm. (c) Left: in the Y-maze spontaneous
alternation test, cKO-rescue mice exhibited a greater percentage of alternations (12 cKO-tRFP and 12 cKO-rescue males, 3 months old). Right:
number of arm entries did not significantly differ between genotypes. (d) Home cage activity was measured in Grin1flox/flox; AAV-DIO-tRFP or
AAV-fsNR1 (control-AAV), cKO-tRFP and cKO-rescue mice. The cKO-rescue mice exhibited moderate locomotor activity (eight cKO-tRFP and
nine cKO-rescue males). (e) Left: time course of MK-801 induced locomotor activity in control-AAV, cKO-tRFP and cKO-rescue mice. Right:
cumulative distance traveled after MK-801 treatment (30–210 min). The cKO-rescue mice exhibited greater responses to MK-801 treatment
than cKO-tRFP mice (15 control-AAV (8 females and 7 males), 13 cKO-tRFP (5 females and 8 males) and 14 cKO-rescue (8 females and 6 males),
4 months old). *Po0.01 (unpaired t-test). #Po0.05, ##Po0.01, ###Po0.001 (Tukey’s post hoc test). All error bars represent s.e.m. cKO,
conditional knockout; HA, hemagglutinin; ILN, intralaminar thalamic nuclei; NMDAR, N-methyl-D-aspartate receptor; NREM, non-rapid eye
movement.
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ILN neurons transfer excitatory inputs from the midbrain reticular
formation to cortical areas,42 and these ILN circuits might control
the transition from relaxed wakefulness to an alert state.43

Notably, our model animal shares the physiologic features of
human schizophrenia, namely sleep/wake disturbances, including
enhanced arousal and decreased NREM sleep. In addition,
although the total amount of REM sleep was normal, we observed
a shortened REM sleep latency during the light phase. This
suggests that the cKO mice indeed have abnormal sleep
architecture and the feature resembles that of schizophrenia
patients. Thus, dysfunction of the ILN circuit may explain the close
relationship between attention deficits and hyperarousal among
patients with schizophrenia.44 Several studies suggested that
memory consolidation occurs during NREM sleep.45,46 It is thus
possible that some of the cognitive anomalies resulted from the
reduced NREM sleep in the dark phase or from the reduced REM
sleep latency during the light phase. In addition to the direct
projections from the ILN to the cerebral cortex, indirect regulation
of cortical activity via the basal ganglia might also be involved.27

Previous studies suggest that ILN-basal ganglia circuits are
associated with visual discrimination26 and attention,29 and that
the basal ganglia regulate cortical oscillations47 and arousal.48 The
ILN may act as a hub in the ILN-basal ganglia-cortical circuits.
Besides the ILN, the mediodorsal thalamus coordinates thalamo-
prefrontal beta-range synchrony, which might also be important
for working memory.22 Although the ILN and mediodorsal
thalamus share a number of anatomic features, individual nuclei
preferentially connect with different cortical and subcortical
areas,27 suggesting differential roles among these thalamic nuclei
in regulating cognitive subdomains.
The aberrant cortical oscillations recorded in awake cKO mice

may at least in part account for their behavioral defects. Neural
oscillations are tightly linked to sensory processing and cognitive
function, and alterations of these oscillations is considered a core
symptom of schizophrenia.40 Theta, alpha, beta and gamma
oscillations are associated with a wide range of cognitive
functions, including visuospatial attention49 and working
memory,50 and are abnormal in patients with schizophrenia.51

Successful cognitive performance in mice is associated with
enhanced cortical oscillations.52 The abnormal cortical activity in
our model animal may interfere with modulation of cortical
synchrony according to behavioral demands, similar to the
mediodorsal thalamus.22 Inhibition of neural activity in the
mediodorsal thalamus disrupts thalamo-prefrontal beta-range
synchrony, which correlates with impaired working memory.22

Similarly, activation of neural activity in thalamic subnuclei,
including the ILN, also modulates brain state in behaving
animals.53,54 The present findings and those of previous studies
suggest that disruption of such thalamic-mediated synchroniza-
tion mechanisms are responsible for the cognitive deficits
observed in our model animal and account for the etiology of
schizophrenia.

CONCLUSION
The present results support a critical role of the ILN in a broad
range of schizophrenia-associated phenotypes, including cogni-
tive-, positive- and hyperarousal-like physiologic symptom
domains. The characteristic symptoms of schizophrenia that
manifest during adolescence could potentially be ameliorated to
some extent by restoring NMDARs or by alternative means in
adults. Greater attention should be paid to the ILN when
developing therapeutic strategies for treatment-resistant patients
with psychiatric disorders.
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