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Time & Computation

Computing Needs Time

Computation & physical processes [Lee, 2009]

on the one hand, most computational devices nowadays are not just
general-purpose computers

e.g., cars, medical devices, instruments, communication systems,
industrial robots, toys, games, . . .
the explosion of the Internet of things (IoT) asks them to become more
and more intelligent and networked [Atzori et al., 2010, Gubbi et al., 2013]

more and more similar to general-purpose computers
possibly harming their dependability

on the other hand, general-purpose computers are more and more
required to interact with physical processes

they integrate media, such as video and audio
their migration to personal devices and pervasive systems asks them to
sense physical dynamics and control physical devices
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Time & Computation

Cyber-Physical Systems (CPS) I

Time, computation & CPS [Lee, 2009]

the foundations of computing are still rooted in Turing [Turing, 1937],
Church, and von Neumann [Burks et al., 1982]

they are about the transformation of data
they do not deal with the dynamic of physical processes

cyber-physical systems (CPS) emerge from the integration of physical
systems and processes with networked computing

CPS deeply embed computations and communication interacting with
physical processes to add new capabilities to physical systems

! CPS are about merging computing and networking with physical
systems to create new science, techniques, and products
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Time & Computation

Cyber-Physical Systems (CPS) II

Remarkable example of CPS
high-confidence medical devices

assisted living

traffic control and safety

advanced automotive systems

process control

energy conservation

environmental control

avionics, instrumentation

critical infrastructure control—electric power, water resources, communications systems

distributed robotics—telepresence, telemedicine

defence systems

manufacturing

smart structures
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Time & Computation

Cyber-Physical Systems (CPS) III

The passage of time

the technological basis that engineers and computer scientists have
chosen for general-purpose computing and networking does not
support well the applications dealing with physical processes

CPS in particular

the passage of time is essentially absent in computing [Lee, 2009]
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Time & Computation

Misconceptions about Time in Computing [Lee, 2009] I

computing takes time it is not just the fact that efficiency has its limits —
it is the fact that time is aways abstracted away from
computing, so that computing always omits time

time is a resource yes, but a different sort of resource — it is practically
unbounded, and is expended anyway: while it is ok having
generic ways to deal with resources in programming
languages, time needs to be a semantic property

time is a nonfunctional property with Turing Machine, function can be
computed by abstracting from time — however, the function
of a computation in a CPS is defined through actions,
occurring in physical time: no less a function than a
bit-to-bit transformation
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Time & Computation

Misconceptions about Time in Computing [Lee, 2009] II

real time is a quality-of-service (QoS) problem time in CPS is not about
efficiency, rather about predictability and repeatability —
precision and variability in timing are QoS issues, whereas
time itself is much more than that: tie should be part of the
semantics of programs

⇓

core computing abstractions should be re-thought to include time
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Time & Computation

Which Notion of Time?

Time
http://www.britannica.com/science/time

Time, a measured or measurable period, a continuum that lacks
spatial dimensions. Time is of philosophical interest and is also
the subject of mathematical and scientific investigation. . . .

what about our common sense notion of time?
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Time & Computation

Time after Relativity [Einstein, 1920]

No such a thing as one time [Rovelli, 2017]

there is no longer a notion of true time

there is no longer a notion of unique time

physics no longer describes how things evolve over time, rather

how things evolve in their own times
how times evolve one with respect to each other

Moreover [Rovelli, 2017]

there is no longer a direction

there is no longer a present time, a “now”

time is not independent

time is just related to change: events happens, and time can be used
to relate their dynamics
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Time in Distributed Systems

Parallel, Concurrent, Distributed Systems: Recap I

Parallel computing & systems

given a computational system, we talk of parallel computation
whenever the temporal context is the same for all computational
process

a parallel system is a computational system performing parallel
computations
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Time in Distributed Systems

Parallel, Concurrent, Distributed Systems: Recap II

T
Parallel computing: the same temporal context T for all processes
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Time in Distributed Systems

Parallel, Concurrent, Distributed Systems: Recap III

Concurrent computing & systems

given a computational system, we talk of concurrent computation
whenever at least two computational processes have a different
temporal context

a concurrent system is a computational system performing concurrent
computations
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Time in Distributed Systems

Parallel, Concurrent, Distributed Systems: Recap IV

T

T’

Concurrent computing: different temporal contexts T 6= T ′ for different processes

Andrea Omicini (DISI, Univ. Bologna) C2 – Computing with Time A.Y. 2017/2018 16 / 58



Time in Distributed Systems

Parallel, Concurrent, Distributed Systems: Recap V

Distributed computing & systems

given a computational system, we talk of distributed computation
whenever at least two computational processes have a different spatial
context

a distributed system is a computational system performing distributed
computations

Andrea Omicini (DISI, Univ. Bologna) C2 – Computing with Time A.Y. 2017/2018 17 / 58



Time in Distributed Systems

Parallel, Concurrent, Distributed Systems: Recap VI

S

S’

Distributed computing: different spatial contexts S 6= S ′ for different processes
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Time in Distributed Systems

Spatial vs. Temporal Contexts: Recap I

S

S’

T
Distributed parallel computing: S 6= S ′, same T
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Time in Distributed Systems

Spatial vs. Temporal Contexts: Recap II

S,T

S’,T’

Distributed concurrent computing: S 6= S ′, T 6= T ′
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Time in Distributed Systems

Basic Questions

is there any useful and well-founded notion of time in a distributed
system?

is there any coherent notion of global time in a distributed system?

if not, what can we do about this?

if not, how can we synchronise activities within a distributed system?

Synchronous
http://www.oxforddictionaries.com/definition/english/synchronous

synchronous,

1 Existing or occurring at the same time
. . .
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Time in Distributed Systems

The Issue of Time

Time in distributed systems

in non-distributed systems, time is unambiguous

in a distributed system, there is no natural notion of time

distributed concurrent computing is the most natural and general
computational model for distributed systems

? is it possible to build up a global notion of time in any distributed
system?

? is it useful to build up a global notion of time in any distributed
system?
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Time in Distributed Systems Physical Time
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Time in Distributed Systems Physical Time

Physical Clocks I

Timers

a clock in a computer is actually a timer—typically, an oscillating
quartz with a counter and a holding register

when the counter gets to zero, an interrupt is generated, and the
counter is reloaded from the holding register

each interrupt is a clock tick
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Time in Distributed Systems Physical Time

Physical Clocks II

Multiple CPUs

no way to ensure two different crystals oscillate exactly at the same
frequency

different clocks gradually get out of synch—clock skew is the
difference in time, clock drift the phenomenon observed

need for synchronising algorithms

two approaches

global absolute time
global relative time
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Time in Distributed Systems Physical Time

Global Absolute Time I

Absolute time

absolute time is handled by the BIPM (Bureau International des Poids
et Mesures) in Sèvres, France

BIPM combines, analyses, and averages the official atomic time
standards of member nations around the world to create a single,
official Coordinated Universal Time (UTC)
[ITU Radiocommunication Assembly, 2002]

broadcasted as a short radio pulse (WWV) by NIST (National
Institute of Standard Time) every UTC second, and by satellites
providing UTC service [Nelson et al., 2005]

if one machine in the system has access to an UTC service, an
algorithm can be used that synchronises all machines based on this
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Time in Distributed Systems Physical Time

Global Absolute Time II

Example: NTP

Network Time Protocol (NTP)

RFC 5905 for NTP v. 4

a time server has the global absolute time, and other machines have
to synchronise

! clocks can only run forward – corrections cannot bring clocks
backward
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Time in Distributed Systems Physical Time

Global Relative Time

Relative time

sometimes, the only thing needed is that there is a common time,
regardless of absolute time

so, algorithms based on active servers polling other servers to find out
the average time, and the required estimated corrections as well

no machine is required to have UTC time

Examples

the Berkeley Algorithm: time daemons in all machines poll and
respond to each other, and agree on a common time
[Gusella and Zatti, 1989]

Reference Broadcast Synchronisation (RBS): global relative time in
wireless networks [Elson et al., 2002]
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Time in Distributed Systems Logical Time

Focus on. . .

1 Time & Computation

2 Time in Distributed Systems
Physical Time
Logical Time

3 Toward Coordination

Andrea Omicini (DISI, Univ. Bologna) C2 – Computing with Time A.Y. 2017/2018 29 / 58



Time in Distributed Systems Logical Time

Physical vs. Logical Time

Physical time not always needed

till now, we have implicitly assumed that synchronisation is related to
physical time

however, we have also seen the case where the only actual
requirement is a shared notion of time among the processes of a
distributed system, with no need for it to be exactly the “real” time

as a step further, we may observe that often the only need for a
distributed system is a shared clock, even unrelated to real time

a notion of logical time is both possible and useful
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Time in Distributed Systems Logical Time

Example I

Problem

a replicate database exists of the accounts of a bank in LA and NY

a customer adds $100 to his account, while at the same time a bank
employee applies a 1% increment to the account

given that the original account contained $1000, it may easily
happens that, say, the LA replica records $1110, the NY one $1111

→ inconsistency due to concurrent updates over a distributed replicated
database
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Time in Distributed Systems Logical Time

Example II

Inconsistency in a replicated database after two concurrent updates
[Tanenbaum and van Steen, 2007]
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Time in Distributed Systems Logical Time

Logical Clocks [Lamport, 1978]

Synchronisation is possible with no need to be absolute

if two processes do not interact, there is no need of
synchronisation—lack of synchronisation would not be observable

often, what really matters is not the exact time when events occur,
but the order in which events occur

example: UNIX make

Logical clocks

synchronisation of non-physical, logical clocks is then both admissible
and useful
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Time in Distributed Systems Logical Time

Notation

Relation happens-before

a→ b represents the relation happens before, “a happens before b”

it means that all processes agree that a occurs first, then b occurs

a→ b can be directly observed in two situations
1 if a and b are events of the same process, and a comes before b, then

a→ b — local events are ordered by local time
2 if a message is sent by process with an event a, and received by another

process with an event b, then a→ b — a message takes a finite,
positive, non-zero amount of time to propagate from sender to receiver

a→ b is a transitive relation: a→ b, b → c imply a→ c

happens-before defines a partial ordering over the events in a
distributed system: when neither a→ b nor b → a can be observed,
then nothing can be said on their ordering — a and b are said to be
concurrent
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Time in Distributed Systems Logical Time

Logical Time

Measuring time with logical clocks: time values

a shared notion of time for an event a: time value C (a) is such that
every process agrees upon it

time value should be thought as the value of a logical clock upon
which processes agree

time values are such that a→ b implies C (a) < C (b) — that is, time
values should be assigned so that C (a) < C (b)

1 if a and b are events of the same process, and a comes before b, then
C (a) < C (b)

2 if a message is sent by process with an event a, and received by
another process with an event b, then C (a) < C (b)

since neither physical nor logical clocks can run backward, any
correction to clock time should go forward (increasing), never
backward (decreasing)
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Time in Distributed Systems Logical Time

Lamport’s Algorithm I

Concurrent message transmission using logical clocks
[Tanenbaum and van Steen, 2007]
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Time in Distributed Systems Logical Time

Lamport’s Algorithm II

Lamport’s algorithm corrects the clocks
[Tanenbaum and van Steen, 2007]
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Time in Distributed Systems Logical Time

Lamport’s Algorithm III

Middleware support for Lamport’s logical clocks
[Tanenbaum and van Steen, 2007]
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Time in Distributed Systems Logical Time

Lamport’s Algorithm IV

Implementation of Lamport’s logical clocks

each process Pi maintains a local counter Ci

local counters are updated following three steps
1 before executing an event, Pi executes Ci ← Ci + 1
2 when sending a message m to Pj , process Pi sets m’s timestamp ts(m)

to Ci after updating its counter (see step above)
3 upon reception of a message m, process Pj adjusts its local counter

such that Cj ← max(Cj , ts(m)), then goes back to step (1) and
delivers the message to the application

! sometimes, it is required that no two events occur exactly at the same
time – process label can be added as a decimal number to the
timestamp
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Time in Distributed Systems Logical Time

Lamport’s Algorithm V

Distributed implementation of global time

Ci is local time at process Pi

a is an event in a distributed system

∀a ∈ Pi ,C ← Ci (a)

→ C is the global time for the distributed system
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Time in Distributed Systems Logical Time

Example: Solution I

Assumptions

a group of processes multicasting each other

each messaged is timestamped by the sender with its local logical time

also the sender conceptually receives the multicasted message

messages from the same sender are received in the same order they
are sent, and no message is lost
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Time in Distributed Systems Logical Time

Example: Solution II

Algorithm

each process maintains a local queue of all messages received, ordered
according to its timestamp

every message received is acknowledge with a multicasted message,
timestamped according to Lamport’s algorithm

→ timestamp of a received message is lower than the timestamp of the
acks

→ every process has essentially the same queue

only when all acknowledgements have been received, the middleware
can deliver a queued message to the application

since all queues are equal, all messages are delivered to the application
level at the same time on all the machines in the distributed system
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Time in Distributed Systems Logical Time

Example: Solution III

Result

a totally-ordered multicasting is perceived at the application level —
as provided by the middleware layer

in the example above, either the client or the employee command is
issued first on all replicas

→ all replicas will be consistently updated

→ no idea, however, on whether the final record will be $1110 or
$1111. . .
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Time in Distributed Systems Logical Time

Vector Clocks I

The problem

in essence, a→ b implies C (a) < C (b), whereas C (a) < C (b) does
not imply a→ b

so that, for instance, time values could be totally ordered when events
are not
when events are unrelated, comparison of time values is meaningless

Lamport’s logical clocks say nothing about that

something more is needed

to say in particular whether a and b are (un)related

Andrea Omicini (DISI, Univ. Bologna) C2 – Computing with Time A.Y. 2017/2018 44 / 58



Time in Distributed Systems Logical Time

Vector Clocks II

Definition

a vector clock of a system of N processes is an array/vector of N
logical clocks, one clock for each process

each process Pi maintains the minimal version of a vector VCi such
that

VCi [i ] is the number of events occurred so far at Pi — basically, the
logical clock of Pi

← every new event occurring in Pi increments VCi [i ]
VCi [j ] = k means that Pi knows that k events have occurred at Pj —
basically, the logical clock of Pj according to Pi ’s best knowledge

← every message from Pi is timestamped with vector VCi
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Time in Distributed Systems Logical Time

Vector Clocks III

Algorithm

before any event is executed at Pi , VCi [i ]← VCi [i ] + 1

a message m from Pi to Pj timestamped with vector VC —
ts(m) = VC

a message m received by Pj makes it adjust VCj such that
∀k ,VCj [k]← max(VCj [k], ts(m)[k] — then m is delivered up to the
application level
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Time in Distributed Systems Logical Time

Vector Clocks IV

Result

every process knows how many events have preceded the sending of
the received message at the sender process—information about the
“chain of events” is preserved and shared among processes

each ts(m)[i ] refers to the events causally preceding m within each
process Pi

ts(m) tells how many events may causally precede the sending of m,
on which m may causally depend

Andrea Omicini (DISI, Univ. Bologna) C2 – Computing with Time A.Y. 2017/2018 47 / 58



Time in Distributed Systems Logical Time

Vector Clocks V

Causality via vector clocks http://wikipedia.org/wiki/Vector_clock
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Toward Coordination

Communication & Interaction in Distributed System

Communication is just half of the story

interaction is a more general issue

governing (inter)action is a fundamental issue in (distributed) systems

doing the right thing at the right time is essential

“at the right time” is the critical problem
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Toward Coordination

Beyond Synchronisation I

Ordering events is not enough

sometimes, more articulated policies are required

for instance, to ensure that concurrent accesses to a shared resource
could harm its consistency, or corrupt it

Mutual exclusion

a number of algorithms — centralised, decentralised, distributed —
for instance, Token Ring

we do not review them here

the main point: some of them are based on a coordinator, all of them
are coordination algorithms
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Toward Coordination

Beyond Synchronisation II

Election algorithms

many distributed algorithms requires a coordinator to be elected

again, we do not review them: election algorithms are (used by)
coordination algorithms

It is not merely a matter of time

synchronisation is about when things happen

actions are more than sending messages

interaction does not merely translate into suitably-ordered distributed
actions — undifferentiated actions

actions have a nature, and meaningful interaction within a distributed
system typically depends on such a nature
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Toward Coordination

Beyond Synchronisation III

The problem of coordination

governing interaction based both on time, and on the nature of
actions, and aimed at the achievement of some global objective for
the distributed system

this is the problem of coordination
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Conclusions

Summing Up

Time & computation

what is time?

what is time in computational systems?

Time in distributed systems

the issue of time

physical time / clock

logical time / clock

causality and vector clocks

Toward coordination

events have a nature: synchronisation is not enough
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