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Abstract

Objective function-based clustering is here looked at as a maximum-
weight set partitioning combinatorial optimization problem, with the in-
stance given by a pseudo-Boolean (set) function assigning real-valued clus-
ter scores (or costs, in case of minimization) to data subsets, while on
every partition of data the global objective function takes the value given
by the sum over clusters (or blocks) of their individual score. The instance
may thus maximally consist of 2n reals, where n is the number of data, al-
though in most cases the scores of singletons and pairs also fully determine
the scores of larger clusters, in which case the pseudo-Boolean function
is quadratic. This work proposes to quantify the cluster score of fuzzy
data subsets by means of the polynomial MLE (multilinear extension) of
pseudo-Boolean functions, thereby translating the original discrete opti-
mization problem into a continuous framework. After analyzing in these
terms the well-known modularity maximization in complex networks, two
further examples of quadratic cluster score functions for graph clustering
are proposed, while also considering alternative greedy search strategies.

Keywords: fuzzy clustering, pseudo-Boolean function, multilinear
extension, similarity matrix, graph clustering, modularity, local search.

1 Introduction

Clustering methods are essential tools in a wide variety of disciplines and appli-
cations. Conceptually, the purpose of clustering a finite set of objects relies on
some quantification of similarity (or, dually, of dissimalirity) within any cluster
or subset of objects, as well as between any two disjoint clusters. The purpose
of (hard) clustering is indeed to group the objects into disjoint clusters in order
to have high similarity (or low dissimilarity) within each cluster, and high dis-
similarity (or low similarity) between any two clusters. Here these objects shall
be generic data, possibly points X1, . . . , Xn ∈ Rm in a Euclidean space. For
notational convenience, simply consider the set N = {1, . . . , n} of their indices.
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In objective function-based clustering, an explicit measure of (dis)similarity
identifies clusters by means of optimization. Formally, for 2N = {A : A ⊆ N}
denoting the 2n-set of subsets or clusters, the idea is to construct a function
w : 2N → R such that w(A) measures the (dis)similarity within A ∈ 2N .
Hence if A,B ∈ 2N are such that w(A) < w(B), then A is a (better) worst
cluster than B. Combinatorially speaking [2], a hard clustering is a parti-
tion P = {A1, . . . , A|P |} ⊂ 2N of N , i.e. Al ∩ Ak = ∅ for 1 ≤ l < k ≤ |P |
and A1 ∪ · · · ∪ A|P | = N . The global score (cost) of a partition P , to be
maximized (minimized), is the sum over its constituents blocks or clusters
A ∈ P of their own individual score (cost), thereby yielding a partition func-
tion W (P ) =

∑
A∈P w(A) sometimes called “additive” [12, p. 63] or “additively

separable” [13, 14]. In the well-known k-means method [16] for example, ap-
plying to points Xi = (X1

i , . . . , X
m
i ), i ∈ N in a Euclidean space, every par-

tition P has an associated cost C(P ) =
∑
A∈P c(A) to be minimized, where

c(A) =
∑
i∈A d(Xi, X̄A) sums the |A| distances d(Xi, X̄A) of cluster members

i ∈ A from cluster centroid X̄A ∈ Rm, i.e. X̄ l
A =

∑
i∈AX

l
i/|A| for 1 ≤ l ≤ m.

In fuzzy clustering [22], an extension Ŵ of the global objective function W
takes values on collections (q1, . . . , qH) ⊂ [0, 1]n of fuzzy clusters over which
every i ∈ N distributes a unit membership, i.e.

∑
1≤h≤H q

h
i = 1. Formally,

Ŵ (q1, . . . , qH) =
∑

1≤h≤H ŵ(qh), where ŵ : [0, 1]n → R quantifies the cluster
score (cost) of fuzzy data subsets. Considering again the fuzzy k-means method,
a fuzzy cluster q = (q1, . . . , qn) ∈ [0, 1]n has centroid X̄q weighted by member-

ships qi, i ∈ N , i.e. X̄ l
q =

∑
i∈N

[
qi/
(∑

j∈N qj

)]
X l
i for 1 ≤ l ≤ m, and simi-

larly the cost is the weighted sum of distances, hence ĉ(q) =
∑
i∈N qid(Xi, X̄q).

In this work, for given score (cost) set function w, fuzzy clusters q are eval-
uated in a seemingly novel manner, namely by means of the polynomial MLE
(multilinear extension [4]) fw : [0, 1]n → R of w. The first finding, along this
route, might appear somehow discouraging, since the fuzzy model yields no bet-
ter global score (cost) than the hard one. Yet, optimal partitions can be searched
for as collections of pair-wise disjoint vertices (in a sense detailed shortly) of the
n-cube [0, 1]n, thereby providing a useful geometric perspective.

A feature common to most objective function-based clustering methods is
that, without imposing suitable conditions, the optimization problem yields a
trivial solution. This is immediately seen for the k-means method, where the
finest partition P⊥ = {{1}, . . . , {n}} (consisting of n singleton blocks) is always
optimal, as

∑
i∈N c({i}) = 0 (in particular, this is the unique optimum as long

as Xi 6= Xj for all i ∈ N, j ∈ N\i). The focus has thus been placed on deter-
mining an “optimal” number of clusters for the given data [7, 8, 17, 20, 40]. One
approach is to validate fuzzy clusterings (q1, . . . , qH) obtained through optimiza-
tion at different (constrained) values of H by means of an index [38], and select
next the value of H for the output where the index is highest. Alternatively,
an optimal number of clusters is often assessed by applying spectral methods
to graph clustering [6, 33, 36, 37, 39]. Indeed, over the last decades graphs or
networks have been used for modeling and increasing number of complex social,
biological and technogical systems [21], from typical friendship/influence among
humans to protein-to-protein functional relations [3, 35], across the Internet and
financial time series [11]. In these settings, the objects to be clustered are ver-
tices v1, . . . , vn of a simple graph G = (N,E), where the edge set E ⊆ N2 is
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a subset of the
(
n
2

)
-set N2 = {A ∈ 2N : |A| = 2} of unordered pairs {i, j} for

1 ≤ i < j ≤ n. More generally, weights w : N2 → [0, 1] may quantify the
([0, 1]-normalized) similarities within pairs. Such a framework suits best those
many clustering tasks dealing with protein structures, text documents, surveys
or biological signals, where a vector space (such as Rm above) is not available.

The target of graph clustering is to partition the vertices in order to have
blocks spanning each a densely connected subgraph which, when contracted
into a single vertex, remains the endpoint of few (if any) edges. With this
aim, spectral methods rely on the eigenvalues and eigenvectors of the adjacency
A = (aij)1≤i,j≤n and/or Laplacian L = (`ij)1≤i,j≤n matrices, where

aij =

{
1 if {i, j} ∈ E
0 otherwise

as well as `ij =

{
−aij if i 6= j
di if i = j

while di =
∑
j∈N aij denotes the degree of vertex i ∈ N in graph G = (N,E).

Spectral methods have also been applied to the so-called modularity matrix
[26], whose n×n entries (bij)1≤i,j≤n = (aij −didj/(2|E|))1≤i,j≤n determine the
additive partition function Q well-known as modularity, namely

Q(P ) =
1

2|E|
∑

1≤i,j≤n

(
aij −

didj
2|E|

)
δP (i, j),

where δP (i, j) =

{
1 if i, j ∈ A for a block A ∈ P ,

0 otherwise.

Hence in particular δP (i, i) = 1 for all i ∈ N and all partitions P . Therefore,

Q(P ) =
∑
A∈P

∑
i∈A

(
− d2

i

4|E|2

)
+

∑
{i,j}⊆A

(
aij
|E|
− didj

2|E|2

) =
∑
A∈P

w(A).

This is an objective function, to be maximized: good clusterings P will have
high scores Q(P ), because w(A) is precisely a measure of cluster score. In fact,
apart from constant terms, w(A) is essentially determined by the difference
between the fraction

∑
{i,j}⊆A aij/|E| = |E(A)|/|E| of edges whose endpoints

are both in A, and the expectation of such a fraction in the random graph
with same degree sequence di, i ∈ N or configuration model [24, p. 200], i.e.∑
{i,j}⊆A didj/(2|E|2). Note that Q is commonly defined by the former expres-

sion above, namely in terms of a sum over ordered pairs of vertices, while here
in the second expression the sum is over unordered ones [26, Section III].

The target of spectral graph clustering is of course to exploit the informa-
tion given by the eigenvalues and eigenvectors of the chosen matrix. As outlined
above, in optimization methods such an information is primarily used for select-
ing a range for the number of clusters [39]. Perhaps the most immediate example
comes from the simplest conceivable graph clustering problem, where the com-
ponents G(A1), . . . , G(A|P |) of the given graph G = (N,E) are each a clique
or maximal complete subgraph. That is, G(Al) = KAl

for 1 ≤ l ≤ |P |, where
KA is the complete graph on vertex set A ∈ P , hence G = KA1 ∪ · · · ∪KA|P | .

The adjacency matrix of this “partition-like” graph has eigenvalues (−1)|Al|−1

and (|Al| − 1)1, while its Laplacian matrix has eigenvalues 0|P | and |Al||Al|−1

(for 1 ≤ l ≤ |P |), where multiplicities are indicated as exponents. Note that
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r(P ) =
∑
l(|Al| − 1) = n − |P | is the rank function for the geometric lattice

(PN ,∧,∨) of partitions of N [2], while
∑
i di = 2|E| =

∑
l |Al|(|Al| − 1). In

general, the multiplicity of 0 as an eigenvalue of L counts the number of com-
ponents of G (and the associated eigenvectors are linear combinations of the
characteristic functions given by these components’ vertex subsets, see below).

In this work, the key feature of additive partition functions such as mod-
ularity Q is that the 2n values w(A), A ∈ 2N of the underlying cluster score
function w are fully determined by the 1 + n +

(
n
2

)
= 1 +

(
n+1

2

)
values w(∅),

(w({i}))i∈N and (w({i, j})){i,j}∈N2
. For Q these values are w(∅) = 0 for the

empty set (obviously), w({i}) = −[di/(2|E|)]2 for singletons {i}, and

w({i, j}) =
aij
|E|
− didj

2|E|2
− d2

i

4|E|2
−

d2
j

4|E|2

for pairs {i, j}. When considered in their MLE fw, these set functions w provide
a global cluster score taking the form of a polynomial of degree 2. Such an ob-
jective function is defined on n-tuples of membership distributions, each being
a point in a 2n−1 − 1-dimensional unit simplex, as |{A : i ∈ A ∈ 2N}| = 2n−1

(i ∈ N). Partitions are special cases of these n-tuples of membership distribu-
tions. In fact, as already mentioned, the extremizers of the objective function
always include some partitions. But this is actually good news, since it guar-
rantees that by searching for optimality in the continuous setting provided by
generic membership distributions one ends up finding solutions that also fit the
original discrete optimization problem. The framework allows to design ob-
jective function-based clustering in terms of iterative improvements of global
score starting from alternative membership distributions, with different possi-
ble choices for the set function w assigning scores to clusters. Also, the number
of clusters shall be autonomously determined through optimization, rather than
being required as an input. The paper is organized as follows: Section 2 pro-
vides background material on lattices and pseudo-Boolean functions; Section 3
is devoted to fuzzy clustering, by firstly introducing fuzzy covers with associated
n-tuples of membership distributions, and by showing next that partitions are
among the extremizers of the resulting objective function; Section 4 proposes
two cluster score functions with so-called quadratic MLE, focusing respectively
on (i) [0, 1]-valued similarities within pairs of data modeled as weighted net-
works, and (ii) transitivity in simple (i.e. non-weighted) spanned subgraphs
for detecting communities in social networks; Section 5 addresses clustering via
near-Boolean optimization with the input consisting of both: (i) a cluster score
function with quadratic MLE, and (ii) a fuzzy clustering to start from, while also
exemplifying the method through a well-known greedy agglomerative algorithm
which has been tested and theoretically analyzed for clustering via modularity
maximization; Section 6 contains some concluding remarks.

2 Lattices and pseudo-Boolean functions

Clusters A,B ∈ 2N and clusterings P,Q ∈ PN are elements of two fundamental
posets (partially ordered sets), respectively the Boolean lattice (2N ,∩,∪) of
subsets of N ordered by inclusion ⊇ and the geometric lattice (PN ,∧,∨) of
partitions of N ordered by coarsening >, i.e. P > Q if for every B ∈ Q there
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is A ∈ P such that A ⊇ B, where ∧ and ∨ respectively denote the “coarsest-
finer-than” or meet and the “finest-coarser-than” or join operators. Since these
posets are finite, lattice functions w : 2N → R and W : PN → R may be dealt
with as points w ∈ R2n

and W ∈ RBn in vector spaces1. A fundamental basis
of these spaces (apart from the canonical one) is provided by the so-called zeta
function ζ, which works as follows: for every A ∈ 2N and every P ∈ PN , define

ζA : 2N → {0, 1} by ζA(B) =

{
1 if B ⊇ A
0 otherwise

for all B ∈ 2N ,

ζP : PN → {0, 1} by ζP (Q) =

{
1 if Q > P
0 otherwise

for all Q ∈ PN .

Then, {ζA : A ∈ 2N} is a basis of R2n

and {ζP : P ∈ PN} is a basis of RBn

(with axes indexed respectively by subsets A and partitions P ). Set functions
w and partition functions W are linear combinations of the elements of these
bases, with coefficients µw(A), A ∈ 2N and µW (P ), P ∈ PN respectively:

w(·) =
∑
A∈2N

ζA(·)µw(A) and W (·) =
∑
P∈PN

ζP (·)µW (P ),

w(B) =
∑
A⊆B

µw(A) (all B ∈ 2N ) and W (Q) =
∑
P6Q

µW (P ) (all Q ∈ PN ).

Set function µw : 2N → R and partition function µW : PN → R are the Möbius
inversions [2, 32] respectively of w and W , obeying recursion

µw(A) = w(A)−
∑
B⊂A

µw(B) as well as µW (P ) = W (P )−
∑
Q<P

µW (Q),

where Q < P denotes strict coarsening, i.e. there exist at least two blocks
B,B′ ∈ Q and a corresponding block A ∈ P such that A ⊇ (B ∪B′).

If a partition function W is additive or additively separable, meaning that
there is a set function w such that W (P ) =

∑
A∈P w(A) for all P ∈ PN , then of

course the Möbius inversions µw and µW must be related. In fact, in this case
µW takes value 0 on all partitions apart (possibly) from those where the number
of non-singleton blocks is ≤ 1 [13, 14]. Such partitions are the 2n − n modular
elements [2, 34] of geometric lattice (PN ,∧,∨), namely the bottom P⊥ (see
above) and top P> = {N}, together with all those obtained for 1 < |A| < n with
form PA⊥ = {A, {i1}, . . . , {in−|A|}}, where {i1, . . . , in−|A|} = N\A = Ac. The
values taken by Möbius inversion µW on these modular elements2 are determined
through recursion [30] as follows:

(a) µW (P⊥) =
∑
i∈N w({i}),

(b) µW (PA⊥ ) = µw(A) for 1 < |A| < n,

(c) µW (P>) = µw(N).

1Bk =
∑

1≤l≤k Sk,l is the (Bell) number of partitions of a k-set, while Sk,l is the Stirling

number of the second kind, i.e. the number of partitions of k-set into l blocks [2, 15, 31].
2Modularity Q : PN → R in Section 1 is intended to identify the “modular structure”

of complex networks [19], while the modular elements of (PN ,∧,∨) are those partitions P̂

realizing equality r(P̂ ∧Q) + r(P̂ ∨Q) = r(P̂ ) + r(Q) for all Q ∈ PN (where r is the rank).
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This means that if W is additively separable, then the continuum of additively
separating set functions w′ consists of all those satisfying

µw
′
(A) = µw(A) for all A ∈ 2N , |A| > 1 and

∑
i∈N

w′({i}) =
∑
i∈N

w({i}).

Note that w(∅) = µw(∅) and w({i}) = µw(∅) + µw({i}) for all i ∈ N . Since
set functions w are generally conceived here to quantify the cluster score of
data/vertex subsets, attention shall be placed exclusively on the case where the
empty set has no score: w(∅) = 0, entailing w({i}) = µw({i}) for all i ∈ N as
well as µw({i, j}) = w({i, j})− w({i})− w({j}) for all {i, j} ∈ N2.

The Boolean lattice (2N ,∩,∪) whose elements are the 2n subsets of N is
commonly looked at as the set {0, 1}n of extreme points (or vertices) of the
unit n-dimensional hypercube [0, 1]n, in that every A ∈ 2N bijectively corre-
sponds to the extreme point χA = (χA(1), . . . , χA(n)) ∈ {0, 1}n identified by
its characteristic function χA : N → {0, 1}, where χA(i) = 1 for all i ∈ A
and χA(j) = 0 for all j ∈ Ac. In this view [4], set functions w : 2N → R are
pseudo-Boolean functions fw : {0, 1}n → R, and their multilinear extension or
MLE fw : [0, 1]n → R is defined over the whole n-cube by

fw(q) =
∑
A∈2N

(∏
i∈A

qi

)
µw(A) for all q = (q1, . . . , qn) ∈ [0, 1]n,

hence indeed fw(χA) =
∑
B⊆A µ

w(B) = w(A) for all A ∈ 2N . (Conventionally,∏
i∈∅ qi := 1.) As fw(q) is a polynomial (in n variables q1, . . . , qn), its degree

is max{|A| : µw(A) 6= 0} and its coefficients are the non-zero values of Möbius
inversion µw(A) 6= 0. In particular, if µw(A) = 0 for all A ∈ 2N , |A| > 1,
then fw is linear (and w is a valuation [2] of Boolean lattice (2N ,∩,∪), i.e.
w(A∩B)+w(A∪B) = w(A)+w(B) for all A,B ∈ 2N ). Similarly, if µw(A) = 0
for all A ∈ 2N , |A| > 2, then fw is quadratic. Since w(∅) = 0, if fw is linear
then w(A) =

∑
i∈A w({i}), while if fw is quadratic then

w(A) =
∑
i∈A

w({i}) +
∑
{i,j}⊆A

µw({i, j}).

The MLE fw of cluster score function w for modularity Q(P ) =
∑
A∈P w(A)

in Section 1 is quadratic, with µw({i}) = w({i}) = −[di/(2|E|)]2 for singletons
i ∈ N and µw({i, j}) = [aij − didj/(2|E|)] /|E| for pairs {i, j} ∈ N2. As for
conditions (a) − (c) above, let ŵ be an alternative cluster score function with
ŵ({i}) =

∑
j∈N w({j})/n for all i ∈ N . This means that in w every vertex i has

its own score when considered as a singleton cluster, while in ŵ all vertices score
the same when considered as singleton clusters. However, condition (a) is sat-
isfied since

∑
i∈N ŵ({i}) =

∑
i∈N −d2

i /(4|E|2) =
∑
i∈N w({i}) or equivalently

µŴ (P⊥) =
∑
i∈N −d2

i /(4|E|2) = µW (P⊥) (where Ŵ is the partition function

additively separated by ŵ). Now, by setting µŵ({i, j}) = µw({i, j}) for pairs
and µŵ(A) = 0 = µw(A) for larger subsets A ∈ 2N , |A| > 2, conditions (b) and
(c) are satisfied too. In fact, the (signed) net added score of pairs over the two
corresponding singletons is the same, where µŵ({i, j}) = µw({i, j}) means

ŵ({i, j})− ŵ({i})− ŵ({j}) = ŵ({i, j})− 2

n

∑
k∈N

−
(
dk

2|E|

)2

=
aij
|E|
− didj

2|E|2
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or equivalently

ŵ({i, j}) =
aij
|E|
− didj

2|E|2
+

1

2n

∑
k∈N

(
dk
|E|

)2

.

Therefore,
∑
A∈P ŵ(A) = Q(P ) =

∑
A∈P w(A) for all partitions P .

3 Fuzzy clustering

Denote by 2Ni = {A : i ∈ A ∈ 2N} the 2n−1-set consisting of all subsets where
every i ∈ N is included, and by ∆i the associated 2n−1 − 1-dimensional unit
simplex whose extreme points are indexed by these subsets A ∈ 2Ni . With some
abuse of notation, let qi ∈ ∆i be a generic membership distribution, where
qAi ∈ [0, 1] quantifies the membership of i in cluster A ∈ 2Ni . It must be stressed
that qi ∈ [0, 1] in Sections 1 and 2 denoted (as usual) i’s membership in a
generic fuzzy cluster q = (q1, . . . , qn) ∈ [0, 1]n. Throughout the remainder of
this work, qi ∈ ∆i shall denote instead a generic membership distribution, i.e.
qi : 2Ni → [0, 1] with qi(A) = qAi and

∑
A∈2N

i
qAi = 1.

Definition 1 A fuzzy cover is a collection q = {qA : A ∈ 2N} of 2n fuzzy
clusters qA = (qA1 , . . . , q

A
n ) ∈ [0, 1]n, where qAi ∈ [0, 1] if i ∈ A and qAj = 0 if

j ∈ Ac, while
∑
A∈2N

i
qAi = 1 for all i ∈ N .

Apart from zero entries, fuzzy covers q thus essentially correspond to n-tuples
(q1, . . . , qn) ∈ ×

i∈N
∆i of membership distributions [18, 23]. Also, given a cluster

score function w, fuzzy covers q = {qA : A ∈ 2N} attain additive global score
W (q) given by the sum of the 2n values taken by the MLE fw of w, namely

W (q) =
∑
A∈2N

fw(qA) =
∑
A∈2N

∑
B⊇A

(∏
i∈A

qBi

)
µw(A). (1)

In pseudo-Boolean optimization [4], the goal is to minimize or maximize
a pseudo-Boolean function fw : {0, 1}n → R, where w : 2N → R is a set
function, and the MLE fw : [0, 1]n → R thus allows to turn several discrete
optimization problems into a continuous setting. In near-Boolean optimization
[30], the objective function has the form of W (q) defined by expression (1), and
the MLE allows to deal with discrete optimization problems involving additive
partition functions (namely maximum-weight set partitioning/packing) into a
continuous setting.

Definition 2 A fuzzy clustering is a fuzzy cover q = {qA : A ∈ 2N} satisfying
|{i : qAi > 0}| ∈ {0, |A|} for all A ∈ 2N .

In words, in a fuzzy clustering for every subset A the number of those i ∈ A with
strictly positive membership qAi > 0 is either 0 or else |A|. As shown below, the
set of values taken by W on fuzzy covers coincides with the set of values taken
(solely) on fuzzy clusterings.

Proposition 3 For any set function w, the range of W defined by expression
(1) is saturated by the values taken on fuzzy clusterings.
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Proof: In a fuzzy cover q = {qA : A ∈ 2N}, let A+
q = {i : qAi > 0} satisfy

∅ ⊂ A+
q ⊂ A for some (⊇-minimal) A ∈ 2N , i.e. 0 < |A+

q | = α < |A|. Then,

W (q) =
∑

B∈2A
+
q

fw(qB) +
∑

A′∈2N\2A
+
q

fw(qA
′
)

with, in particular,

fw(qA) =
∑

B∈2A
+
q

 ∏
i∈A+

q

qAi

µw(B).

Now consider another fuzzy cover q̂ such that q̂A
′

= qA
′

for all A′ ∈ 2N\2A
+
q ,

while q̂Ai = 0 for all i ∈ A, with group membership qAA =
∑
i∈A q

A
i =

∑
i∈A+

q
qAi

redistributed over subsets B ∈ 2A
+
q according to the following conditions:∑

B∈(2N
i ∩2A

+
q )

q̂Bi = qAi +
∑

B∈(2N
i ∩2A

+
q )

qBi for all i ∈ A+
q ,

∏
i∈B

q̂Bi =
∏
i∈B

qBi +
∏
i∈B

qAi for all B ∈ 2A
+
q , |B| > 1.

These 2α − 1 equations with
∑

1≤k≤α k
(
α
k

)
> 2α variables q̂Bi , ∅ 6= B ∈ 2A

+
q

admit a continuum of solutions, each providing a fuzzy cover q̂ where∑
B∈2A

+
q

fw(q̂B) = fw(qA) +
∑

B∈2A
+
q

fw(qB)⇒W (q) = W (q̂).

When reiterated for all (if any) A′ ∈ 2N\2A
+
q where 0 < |{i : qA

′

i > 0}| < |A′|,
this procedure yields a final fuzzy clustering q̂∗ satisfying W (q) = W (q̂∗).

Example 4 Let A = {1, 2, . . .} ⊃ A+
q = {1, 2}, hence

fw(qA) = qA1 µ
w({1}) + qA2 µ

w({2}) + qA1 q
A
2 µ

w({1, 2}),

with the three conditions for q̂ as follows

• q̂{1,2}1 + q̂
{1}
1 = q

{1,2}
1 + q

{1}
1 + qA1 ,

• q̂{1,2}2 + q̂
{2}
2 = q

{1,2}
2 + q

{2}
2 + qA2 ,

• q̂{1,2}1 q̂
{1,2}
2 = q

{1,2}
1 q

{1,2}
2 + qA1 q

A
2 ,

while the four variables are q̂
{1}
1 , q̂

{1,2}
1 , q̂

{2}
2 and q̂

{1,2}
2 . One solution thus is

• q̂{1,2}1 = q̂
{1,2}
2 =

√
q
{1,2}
1 q

{1,2}
2 + qA1 q

A
2 > 0,

• q̂{1}1 = q
{1,2}
1 + q

{1}
1 + qA1 −

√
q
{1,2}
1 q

{1,2}
2 + qA1 q

A
2 > 0,

• q̂{2}2 = q
{1,2}
2 + q

{2}
2 + qA2 −

√
q
{1,2}
1 q

{1,2}
2 + qA1 q

A
2 > 0.
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A main advantage of fuzzy clusters over hard ones is that they may display
non-empty pair-wise intesections while also maintaining a unit (cumulative)
membership that every i ∈ N distributes over 2Ni [28, 41, 42]. In this view, if
fuzzy clusterings are evaluated via MLE as in expression (1), then they cannot
yield a better global score than hard ones or partitions P = {A1, . . . , A|P |},
where these latter correspond to 2n-collections p = {pA : A ∈ 2N} defined

by pA =

{
χA if A ∈ P

0 if A ∈ 2N\P , with 0 ∈ {0, 1}n denoting the all-zero n-vector.

Hence, apart from zero entries, p coincides with the collection (χA1
, . . . , χA|P |)

of the characteristic functions of P ’s blocks, which are pair-wise disjoint extreme
points of the n-cube, i.e. 〈χAl

, χAk
〉 = 0 for all 1 ≤ l < k ≤ |P |, satisfying

χ1 + · · ·+χA|P | = χN = 1, where 〈·, ·〉 denotes scalar product and 1 ∈ {0, 1}n is

the all-one n-vector. In terms of expression (1), interpreting partitions P ∈ PN
as these collections p ⊂ {0, 1}n of disjoint extreme points of the n-cube means

W (p) =
∑
A∈2N

fw(pA) =
∑
A∈P

fw(χA) =
∑
A∈P

∑
B∈2A

µw(B) =
∑
A∈P

w(A).

Proposition 5 For any fuzzy clustering q and set function w, there are parti-
tions P, P ′ ∈ PN such that expression (1) satisfies W (p) ≥W (q) ≥W (p′).

Proof: Consider isolating the contribution of membership qi, i ∈ N to objective
functionW (q) = W (qi|q−i) when all other n−1 memberships qj , j 6= i are given:

W (q) = Wi(qi|q−i) +W−i(q−i), (2)

where W (q) =
∑
A∈2N

i
fw(qA) +

∑
A′∈2N\2N

i
fw(qA

′
) and

Wi(qi|q−i) =
∑
A∈2N

i

qAi

 ∑
B⊆A\i

∏
j∈B

qAj

µw(B ∪ i)

 as well as W−i(q−i) =

=
∑
A∈2N

i

 ∑
B⊆A\i

∏
j∈B

qAj

µw(B)

+
∑

A′∈2N\2N
i

 ∑
B′⊆A′

 ∏
j′∈B′

qA
′

j′

µw(B′)

 .

Define wq−i
: 2Ni → R by

wq−i
(A) =

∑
B⊆A\i

∏
j∈B

qAj

µw(B ∪ i). (3)

Let A+
q−i

= arg maxwq−i
and A−q−i

= arg minwq−i
, with ∅ ⊂ A+

q−i
,A−q−i

⊆ 2Ni .

Most importantly,

Wi(qi|q−i) =
∑
A∈2N

i

(
qAi · wq−i

(A)
)

= 〈qi, wq−i
〉. (4)

In words, for given membership distributions qj , j 6= i, global score is affected
by i’s membership distribution qi through a scalar product. In order to max-
imize (or minimize) W by suitably choosing qi for given q−i, the whole of i’s
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membership mass has to be placed over A+
q−i

(or A−q−i
), anyhow. Hence there

are precisely |A+
q−i
| > 0 (or |A−q−i

| > 0) available extreme points of ∆i. After

reiteration for all i ∈ N , the outcome shall generally consist of two fuzzy covers
q and q such that W (q) ≥ W (q) ≥ W (q) as well as qi, qi ∈ ex(∆i), where

ex(∆i) is the 2n−1-set of extreme points of simplex ∆i. When this is combined
with Proposition 3, the desired conclusion follows.

These findings suggest to search for optimal partitions through reiterated
improvements W (q(t + 1)) > W (q(t)), t = 0, 1, . . . of the objective function,
while only requiring the cluster score function w and an initial fuzzy clustering
q(0) as inputs. Before considering such a possibility, attention now turns on
(further) cluster score functions w with quadratic MLE fw.

4 Quadratic cluster score functions

As outlined in sections 1 and 2, a main example of cluster score function w with
quadratic MLE fw is given by modularity Q. This section proposes two further
examples of these cluster score functions, based respectively on the notions of
similarity and transitivity that can be associated with networks. More precisely,
the former is concerned with n× n (symmetric) similarity matrices quantifying
the

(
n
2

)
similarities within data pairs. Such matrices basically are the adjacency

matrices of weighted graphs, when weights on edges are [0, 1]-normalized, and
thus comprehend Boolean adjacency matrices as those special cases where each
pair {i, j} has weight aij ∈ {0, 1}. On the other hand, the latter is concerned
with the density of triangles (or complete graphs K3 on 3 vertices) in spanned
subgraphs G(A), A ∈ 2N , when G = (N,E) is a simple (non-weighted) graph.

Quadratic cluster scores and similarity matrices

Pair-wise similarities may be quantified by a weighted graph GW = (N,W),
where weights wij = wji for 1 ≤ i < j ≤ n are the entries of a symmetric
similarity matrix W = (wij)1≤i,j≤n ∈ [0, 1]n×n. The issue addressed hereafter
is how to construct a quadratic cluster score function w (thus µw(A) = 0 if
|A| = 0 or |A| > 2) relying exclusively on these

(
n
2

)
entries wij , 1 ≤ i < j ≤ n.

A preliminary observation is that none of the following two choices works:

(i) w({i}) = 1 for all i ∈ N and w({i, j}) = wij for all {i, j} ∈ N2,

(ii) w({i}) = 0 for all i ∈ N and w({i, j}) = wij for all {i, j} ∈ N2.

The former simply applies the idea that every i ∈ N has full (i.e. equal to 1)
similarity with itself, while the latter associates zero cluster score to singletons,
independently from the network GW . The reason why these values do not work
is that choice (i) yields a set function w such that for any A ∈ 2N , |A| > 1
strict inequality w(A) < w(B) + w(A\B) holds for all ∅ ⊂ B ⊂ A. Therefore,
as already observed for the k-means method, global score attains its maximum
W (p⊥) = n solely on the finest partition P⊥. In terms of Möbius inversion,
µw({i}) = 1 for all i ∈ N and µw({i, j}) < 0 for all {i, j} ∈ N2. Conversely,
choice (ii) yields a set function w such that for all A,B ∈ 2N with A ∩ B = ∅
inequality w(A∪B) ≥ w(A) +w(B) holds, entailing that the coarsest partition
P> satisfies W (p>) ≥ w(p) for all partitions P (i.e. p). In terms of Möbius
inversion, µw({i}) = 0 for all i ∈ N and µw({i, j}) ≥ 0 for all {i, j} ∈ N2.
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In fact, for any quadratic cluster score function w, if matrix W is used to set
w({i, j}) = wij for all {i, j} ∈ N2, then of course there only remains to be defined
the cluster score w({i}) of singletons i ∈ N , for this univocally determines the(
n+1

2

)
non-zero values of Möbius inversion, namely µw({i}) = w({i}), i ∈ N and

µw({i, j}) = wij − w({i})− w({j}), {i, j} ∈ N2.
Assuming w({i}) ≥ 0 for all i ∈ N , the cluster score of singletons has to take

greater values on those i ∈ N such that
∑
j∈N\i wij is small (namely outliers),

and smaller values on those i ∈ N where conversely
∑
j∈N\i wij is great. One

way to achieve this is by setting

w({i}) =
∑
j∈N\i

1− wij
2(n− 1)

. (5)

The idea is that (1−wij) ∈ [0, 1] measures dissimilarity between i and j, which
has to be equally distributed over the two of them [29]. Accordingly, w({i}) is
the arithmetic mean of these n− 1 half dissimilarities, entailing w({i}) ∈ [0, 1

2 ],
where the upper bound attains on isolated vertices i such that

∑
j∈N\i wij = 0,

while the lower bound attains on those i such that wij = 1 for all j ∈ N\i. The(
n
2

)
values taken by Möbius inversion on pairs thus are

µw({i, j}) = wij − 2
1− wij
2(n− 1)

−
∑

k∈N\{i,j}

2− wik − wjk
2(n− 1)

=

=
n · wij − 1

n− 1
− n− 2

n− 1
+

∑
k∈N\{i,j}

wik + wjk
2(n− 1)

. (6)

The seemingly simplest way to check the functioning of this w defined by ex-
pressions (5) and (6) is by focusing on simple graphs G = (N,E) or equivalently
on weighted ones GW = (N,W) with Boolean similarity matrixW ∈ {0, 1}n×n.
Then, w({i}) = (n− 1− di)/[2(n− 1)], where di =

∑
j∈N\i aij and aij ∈ {0, 1}

is the ij-th entry of the adjacency matrix A (=W), while for pairs

µw({i, j}) =
n · aij − 1

n− 1
− n− 2

n− 1
+

∑
k∈N\{i,j}

aik + ajk
2(n− 1)

=

=
n

n− 1
aij − 1 +

di + dj − 2aij
2(n− 1)

= aij − 1 +
di + dj

2(n− 1)
.

Therefore, if aij = 1 then µw({i, j}) = (di + dj)/[2(n− 1)] ≥ 0, while if aij = 0
then µw({i, j}) = −1+(di+dj)/[2(n−1)] ≤ 0. By letting dA =

∑
i∈A di denote

the group degree for all A ∈ 2N , cluster score thus is

w(A) =
∑
i∈A

(
1

2
− di

2(n− 1)

)
+

∑
{i,j}⊆A

(
aij − 1 +

di + dj
2(n− 1)

)
=

=
|A|
2
− dA

2(n− 1)
+
dA(|A| − 1)

2(n− 1)
−
((
|A|
2

)
− |E(A)|

)
=

=
|A|
2

+
dA(|A| − 2)

2(n− 1)
−
((
|A|
2

)
− |E(A)|

)
, (7)

where E(A) = {{i, j} : E 3 {i, j} ⊆ A}. Hence the score of a cluster A obtains
by summing half its cardinality |A| and (|A| − 2)/[2(n − 1)] times its group
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degree dA, and next subtracting the number
(|A|

2

)
− |E(A)| of edges that the

spanned subgraph G(A) lacks with respect to the complete one KA (see above).
Accordingly, if A is such that G(A) = (A,E(A)) = KA is both complete and

a component of G, then |E(A)| =
(|A|

2

)
and dA = |A|(|A| − 1) = 2|E(A)|.

Substituting into expression (7) yields w(A) = |A|
2 + |A|(|A|−1)(|A|−2)

2(n−1) or

w(A) =
|A|
2

+

(
|A|
2

)
|A| − 2

n− 1
.

If G = (N,E) = KN is the complete graph, then w(N) =
(
n
2

)
. More generally,

for any partition P = {A1, . . . , A|P |} of N and corresponding partition-like
graph G = KA1

∪ · · · ∪ KA|P | introduced above, global score W attains its

unique mamximum W (p) =
∑
A∈P

(
|A|
2 +

(|A|
2

) |A|−2
n−1

)
on p = (χA1 , . . . , χA|P |)

(since
(

1
2

)
= 0, for the finest partition P⊥ or p⊥ and associated empty graph

G = (N, ∅) such a maximum is indeed W (p⊥) = n
2 ).

Quadratic cluster scores and transitivity in spanned subgraphs

A further way to take into account a given network’s topology when assigning
a score w(A) to every vertex subset A obtains by focusing on the density of
triangles (or complete subgraphs on three vertices) included in the spanned
subgraph G(A). In fact, if cluster scores are specifically intended to detect the
community structure of (simple) social networks G = (N,E), then such scores
may incorporate the empirical evidence that transitivity is an essential property
of such networks with respect to non-social ones. In fact, social networks display
a “higher-than-expected” value for the clustering coefficient cc(G), where

cc(G) =
3× number of triples of vertices spanning a complete subgraph

number of connected triples of vertices
.

Quoting [27], “a “connected triple” means a vertex connected directly to an un-
ordered pair of others” (hence every {i, j, k} ∈ 2N spanning a complete subgraph
G({i, j, k}) = K{i,j,k} = K3 counts for three such triples). In other terms, cc(G)
is the expectation that by randomly picking a vertex and two of its neighbors,
these latter are also adajcent. Now consider the aim to assign scores w(A) to
clusters A in a way such that higher values of the clustering coefficient cc(G(A))
for spanned subgraphs provide greater scores. From a combinatorial perspec-
tive, the most natural way to achieve this is certainly by means of a cubic fw,
i.e. such that µw(A) = 0 if |A| > 3 (or |A| = 0). For instance, the

(
n+1

2

)
values

of the sought w on singletons and pairs can remain those defined respectively
by expressions (5) and (6) above (with Boolean weights wij ∈ {0, 1}), while on
the

(
n
3

)
triples {i, j, k} Möbius inversion may be defined by µw({i, j, k}) =

=

 1 if G({i, j, k}) = K{i,j,k} is complete (i.e. G({i, j, k}) = K3),
0 if G({i, j, k}) is connected but non-complete (i.e. G({i, j, k}) 6= K3),

−1 if G({i, j, k}) is disconnected.

The resulting cluster scores w(A) clearly provide additional reward/penalty for
proximity/distance to/from completeness of the spanned subgraph G(A), as

w(A) =
|A|
2

+
dA(|A| − 2)

2(n− 1)
−
((
|A|
2

)
− |E(A)|

)
+

∑
{i,j,k}⊆A

µw({i, j, k})
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replaces expression (7) above, and again a spanned subgraph G(A) = KA which
is both complete and a component of G yields a cluster score

w(A) =
|A|
2

+

(
|A|
2

)
|A| − 2

n− 1
+

(
|A|
3

)
.

However, a similar result also obtains with a quadratic fw where the count of
both common and non-common neighbors (of cluster members) enters explicitly
in the values taken by Möbius inversion µw on pairs. Formally, following [1, 41],
let Ni = {i} ∪ {j : {i, j} ∈ E} be the set of vertices at distance ≤ 1 from vertex
i in the given network G, i.e. Ni contains i and all its neighbors j, entailing
{i, j} ⊆ (Ni ∩Nj) for all edges {i, j} ∈ E, with |Ni ∩Nj | counting the number
of common neighbors, while symmetric difference Ni∆Nj = (Ni\Nj)∪ (Nj\Ni)
contains non-common neighbors. A simple quadratic cluster score function w
taking into account transitivity in spanned subgraphs can thus be defined by

µw({i}) =
1

|Ni|
= w({i}) on singletons and

µw({i, j}) = aij +
|Ni ∩Nj | − |Ni∆Nj |

|Ni ∪Nj |
on pairs.

The resulting cluster score takes form

w(A) =
∑
i∈A

1

1 + di
+ |E(A)|+

∑
{i,j}⊆A

|Ni ∩Nj | − |Ni∆Nj |
|Ni ∪Nj |

, (8)

hence again a spanned subgraph G(A) = KA which is both complete and a

component of G yields score w(A) = 1 + 2
(|A|

2

)
= 1 + |A|(|A| − 1).

The next section is focused on searching for partitions p that locally maxi-
mize objective function W in expression (1), when the input consists of

(
n+1

2

)
non-zero values of Möbius inversion µw and an initial fuzzy clustering q(0).

5 Greedy clustering

A seemingly interesting way to see how near-Boolean optimization may be em-
ployed in the present setting is through comparison with the so-called greedy
agglomerative approach [5, 25], which starts from the finest partition and it-
eratively selects one union of two blocks that results in a maximal increase of
global score, thereby yielding a sequence P (t + 1) m P (t) of partitions as the
search path, where P (0) = P⊥ and m denotes the covering relation between
partitions, i.e. both |P (t+1)| = |P (t)|−1 and strict coarsening P (t+1) > P (t)
hold. If there are tails, meaning that different unions of two blocks of P (t) yield
the same maximal increase of global score, then the two blocks to be merged
are randomly selected. The stopping criterion is the absence of any further
improvement. The iterative procedure thus is as follows.

GreedyMerging(w,P )

Initialize: Set t = 0 and P (0) = P⊥.

Loop: While w(A ∪B)− w(A)− w(B) > 0 for some A,B ∈ P (t),

set t = t+ 1 and
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[1] randomly select A,B ∈ P (t− 1) satisfying, for all A′, B′ ∈ P (t− 1),

w(A ∪B)− w(A)− w(B) ≥ w(A′ ∪B′)− w(A′)− w(B′),

[2] define P (t) = {A ∪B} ∪ (P (t− 1)\{A,B})
(hence P (t) obtains from P (t− 1) by merging blocks A and B).

Output: Set P ∗ = P (t).

This algorithm has been tested [25] for maximizing modularityQ, hence with
w and quadratic MLE fw as specified above. For notational convenience, also let
W be the corresponding objective function defined by expression (1). Therefore,
W (p) = Q(P ) for all partitions p or P . However (and most importantly), W
is defined on fuzzy clusterings, while Q is defined solely on hard clusterings or
partitions. If employed for modularity clustering, then GreedyMerging admits
no finite approximation. In fact, for the class of n

2 -regular graphs considered in

[5, Theorem 5.1, p. 8], GreedyMerging provides a worst-case solution P̂ with
zero global cluster score W (p̂) = 0, while the optimal solution P ∗ provides
a strictly positive global score W (p∗) > 0. In these graphs G = (N,E), the
number n > 4 of vertices is even and N = N1 ∪N2 includes two vertex subsets
of equal size, i.e. N1 = {i1, . . . , in2 } as well as N2 = {j1, . . . , jn

2
}. The edge set

is E = {{i, i′} : {i, i′} ⊂ N1} ∪ {{j, j′} : {j, j′} ⊂ N2} ∪ {{ik, jk} : 1 ≤ k ≤ n
2 }.

In words, G ⊃ KN1 ,KN2 includes the two complete graphs on vertex sets N1

and N2, together with all the n
2 edges with endpoints ik ∈ N1 and jk ∈ N2 for

1 ≤ k ≤ n
2 . At t = 0, for each of the

(
n
2

)
possible unions of two blocks of P⊥,

the corresponding variation of global score is w({i, j})− w({i} − w({j} =

= µw({i, j}) =
aij
|E|
− didj

2|E|2
=

{
2/n2 if {i, j} ∈ E,

−2/n2 if {i, j} ∈ N2\E,

where |E| = 2
(n

2
2

)
+ n

2 = (n2 )2 and di = n
2 = dj for all i, j ∈ N . Hence the worst-

case output of GreedyMerging is the partition P̂ = {{i1, j1}, . . . , {in2 , jn
2
}} ob-

tained in n
2 iterations through unions {ik} ∪ {jk} for 1 ≤ k ≤ n

2 , where

W (p̂) =
∑
i∈N

w({i}) +
∑

1≤k≤n
2

µw({ik, jk}) = −
∑
i∈N

d2
i

4|E|2
+
n

2

2

n2
= − 1

n
+

1

n
= 0

is the resulting global score, while n > 4 entails that the unique maximum
attains at P ∗ = {N1, N2} where

W (p∗) =
∑
i∈N

w({i}) + 2
∑

{i,i′}⊂N1

µw({i, i′}) = − 1

n
+ 2

(n
2

2

)
2

n2
=
n− 4

2n
> 0.

One immediate observation is that GreedyMerging may well fall in the same
worst-case trap even when the input cluster score function w is that defined by
expression (7), in which case the

(
n
2

)
possible unions of two blocks of P⊥ result

in a variation of global score w({i, j})− w({i} − w({j} = µw({i, j}) =

= aij − 1 +
di + dj

2(n− 1)
=

{
n/[2(n− 1)] if {i, j} ∈ E,

−(n− 2)/[2(n− 1)] if {i, j} ∈ N2\E.
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Conversely, if the input cluster score function w is defined by expression (8), then
GreedyMerging surely finds the optimum P ∗, as the

(
n
2

)
unions of two blocks of

P⊥ result in a variation of global score w({i, j})−w({i}−w({j} = µw({i, j}) =

= aij +
|Ni ∩Nj | − |Ni∆Nj |

|Ni ∪Nj |
=

 2n/(n+ 4) if {i, j} ⊂ N1 or {i, j} ⊂ N2,
4/n if {i, j} ∈ E, i ∈ N1, j ∈ N2,
−(n− 2)/n if {i, j} ∈ N2\E.

Coming to near-Boolean optimization, firstly note that a quadratic fw, what-
ever its chosen form, reduces expression (1) to

W (q) =
∑
i∈N

w({i}) +
∑

{i,j}∈N2

 ∑
A⊇{i,j}

qAi q
A
j

µw({i, j}). (9)

In terms of this objective function, GreedyMerging develops from the initial

n-tuple of membership distributions p⊥ = (p1⊥, . . . , pn⊥) where p
{i}
i⊥ = 1 for

all i ∈ N , and at any partition P (t + 1) or p(t + 1) obtained through the
union of two blocks A,B ∈ P (t), the corresponding membership distributions
are pA

′

i′ (t+ 1) = 1 = pA
′

i′ (t) for all i′ ∈ A′ and all A′ ∈ P (t), A 6= A′ 6= B, while
pAi (t) = 1 = pA∪Bi (t+1) for all i ∈ A and pBj (t) = 1 = pA∪Bj (t+1) for all j ∈ B.

Equivalently, apart from zero entries, p(t) =
(
χA, χB , χA′1 , . . . , χA′|P (t)|−2

)
and

p(t+ 1) =
(
χA + χB , χA′1 , . . . , χA′|P (t)|−2

)
. The corresponding change

W (p(t+ 1))−W (p(t)) =
∑

{i,j}⊆(A∪B)

A 6⊇{i,j}6⊆B

µw({i, j})

of global score is a maximal one among the
(|P (t)|

2

)
available. The main advan-

tage of expression (9) is that W takes values on fuzzy clusterings, hence search
paths may take the form of sequences q(t) such that W (q(t)) > W (q(t − 1)).
This requires to first formalize: (I) how q(t+ 1) obtains from the reached q(t),
(II) the stopping criterion, and (III) the initial q(0). Before addressing these
issues, it may be outlined that the search proposed below may be regarded as a
local one, since it develops from an input q(0). However, the more these initial
n membership distributions qi(0), i ∈ N are each spread over 2Ni , the more the
search tends to be global. As for local optimality, which essentially determines
the stopping criterion, the neighborhood of q is N (q) = ∪

i∈N
{q̂i|q−i : q̂i ∈ ∆i},

hence q∗ is a local optimum if W (q∗) ≥ W (q̂) for all q̂ ∈ N (q∗). In words,
the neighborhood of q consists of all n-tuples of membership distributions
where n − 1 distributions are as in q while only one may vary, and q∗ is a
local optimum if W (q∗) is the greatest value taken by W when restricted to
N (q∗). It is shown below that for any partition P or p a necessary and suf-
ficient condition for local optimality, i.e. W (p) ≥ W (q) for all q ∈ N (p), is
w(A) ≥ w(A\i) + w({i}) for all i ∈ A and all A ∈ P . A typical greedy local
search would thus progress through a sequence q(t) such that q(t+1) ∈ N (q(t))
and W (q(t+ 1))−W (q(t)) is maximal, but none of these two conditions is here
maintained. In fact, q(t+ 1) /∈ N (q(t)) as more than one of the n membership
distributions (q1(t), . . . , qn(t)) = q(t) vary within the same t-th iteration (and
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the same clearly charaterizes GreedyMerging too, apart from fuzziness). Also,
rather than being applied directly to the increase W (q(t+1))−W (q(t)) of global
score, greediness is applied to the “average derivative”, formalized hereafter.

Concerning (I), recall that the (first order) i-th derivative [4, p. 157] of the

MLE fw at x = (x1, . . . , xn) ∈ [0, 1]n is fwi (x) = ∂fw

∂xi
(x) =

= fw(x1, . . . , xi−1, 1, xi+1, . . . , xn)− fw(x1, . . . , xi−1, 0, xi+1, . . . , xn) =

=
∑
A∈2N

i

 ∏
j∈A\i

xj

µw(A).

At vertices χB , B ∈ 2N of the n-cube it takes values fwi (χB) = w(B)− w(B\i)
if B ∈ 2Ni and fwi (χB) = w(B ∪ i) − w(B) if B /∈ 2Ni . This derivative may be
reproduced for objective function W as follows. For all i ∈ N and all A ∈ 2Ni ,

define membership qiA by qBiA =

{
1 if B = A
0 otherwise

for all B ∈ 2Ni . Also let qBi∅ = 0

for all B ∈ 2Ni , noting that qi∅ is not a membership distribution, as it places
no membership over 2Ni at all. Now define

WiA(q) =
∂W

∂qAi
(q) = W (qiA |q−i)−W (qi∅ |q−i) = Wi(qiA |q−i) = wq−i

(A)

to be the (first order) iA-derivative of W at q, where the last two equalities ob-
tain from expressions (2-3) in Section 3. If the |A|−1 membership distributions
qj , j ∈ A\i are qAj = 1, then WiA(q) = w(A) − w(A\i), and Wi{i}(q) = w({i})
independently from q. These n2n−1 derivatives (WiA(q(t)))i∈N,A∈2N

i
inform

about how to obtain q(t + 1) from the reached q(t) in order to maximize the
objective function. In particular, any greedy strategy requires first to make
clear what “maximum distance” may separate q(t + 1) from q(t). As already
mentioned, q(t + 1) ∈ N (q(t)) does not suit. The rule maintained here is the
same as for GreedyMerging, namely that precisely one block is formed when
transforming q(t) into q(t+ 1). In other terms, there is exactly one A such that∑
i∈A q

A
i (t) < |A| =

∑
i∈A q

A
i (t + 1) or equivalently qA(t) 6= χA = qA(t + 1).

Given this constraint, greediness is applied to average derivative

W̄A(q) =
1

|A|
∑
i∈A

wq−i
(A) =

1

|A|
∑
i∈A

 ∑
B⊆A\i

∏
j∈B

qAj

µw(B)

 =

=
1

|A|
∑
B⊆A

∑
i∈B

 ∏
j∈B\i

qAj

µw(B).

Hence for a quadratic w

W̄A(q) =
1

|A|

∑
i∈A

w({i}) +
∑
{i,j}⊆A

(
qAi + qAj

)
µw({i, j})

 .

That is to say, the chosen A (at iteration t, to be a block of the output partition
p∗ being constructed) is one where qA(t) 6= χA and W̄A(q(t)) is maximal (the
case of tails can be dealt with arbitrarily). Then, it remains to specify, for all
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j ∈ Ac, how to reallocate membership
∑
B∈2N

j :B∩A 6=∅ q
B
j (t). Basically, this shall

be redistributed over those B ∈ 2Nj such that A ∩B = ∅.
Coming to (II), the greedy procedure stops when for all A ∈ 2N either

qA(t) = 0 or qA(t) = χA, i.e. when
∑
i∈A q

A
i (t) ∈ {0, |A|}. That is, apart from

zero entries, q(t) = p∗ = (χA1
, . . . , χA|P∗|) for a partition P ∗ = {A1, . . . , A|P∗|}.

Next, this is checked to be a local optimum, i.e. w(A) ≥ w(A\i) + w({i}) for
all i ∈ A and all A ∈ P ∗. If this inequality is not satisfied, then the partition
updates by splitting block A in the two (new) blocks A\i and {i}.

Finally, as for (III), there surely exist many reasonable alternatives for the
choice of input q(0), including the simplest one given by the n-tuple of uniform
distributions qAi (0) = 21−n for all A ∈ 2Ni and all i ∈ N . In general, the initial
fuzzy clustering establishes the terms of trade between computational burden
and search width. Specifically, the more the n distributions qi(0), i ∈ N are
each spread over 2Ni , the more computational demanding and wider becomes
the search. In fact, if a family F = {A1, . . . , Ak} ⊂ 2N satisfies qBi (0) = 0 for all
B ∈ 2N\(2A1 ∪ · · · ∪ 2Ak) and all i ∈ N as well as qA1(0), . . . , qAk(0) 6= 0, then
the algorithm proposed hereafter only searches for optimal clusters (or blocks)
among those B ∈ (2A1 ∪ · · · ∪ 2Ak), and thus cannot output any partition P
such that B ∈ P for some B ∈ 2N\(2A1 ∪ · · · ∪ 2Ak). In particular, if the input
q(0) = p is a partition P = {A1, . . . , A|P |}, then the algorithm only checks if
local optimality (i.e. w(A) ≥ w(A\i) + w({i}) for all A ∈ P, i ∈ A) holds, and
for the limit case q(0) = p⊥ the output p∗ = p⊥ coincides with the input. Now

let ŵ(A) = w(A)
|A| and consider choosing q(0) through an arbitrary threshold

θ ≥ 0 as follows: if ŵ(A) ≤ θ then qA(0) = 0, while if ŵ(A) > θ then

qAi (0) = ŵ(A)
/ ∑
B∈2N

i :ŵ(B)>θ

ŵ(B) for all i ∈ A, (10)

entailing
qAi (0)

qBi (0)
= ŵ(A)

ŵ(B) for all i ∈ N and A,B ∈ 2Ni such that ŵ(A) > θ < ŵ(B).

The following greedy (local) search strategy can now be formalized.

GreedyClustering(w,q)

Initialize: Set t = 0 and q(0) as in expression (10).

GreedyLoop: While 0 <
∑
i∈A q

A
i (t) < |A| for some A ∈ 2N , set t = t+ 1 and

(a) select arbitrarily one such A∗(t) ∈ 2N where, in addition, the average
derivative is maximal, i.e. for all B such that 0 <

∑
i∈B q

B
j (t) < |B|

WĀ(q(t− 1)) ≥WB̄(q(t− 1));

(b) for i ∈ A∗(t) and A ∈ 2Ni , define qAi (t) =

{
1 if A = A∗(t),
0 if A 6= A∗(t);

(c) for j ∈ N\A∗(t) and A ∈ 2Nj with A ∩A∗(t) = ∅, define

qAj (t) = qAj (t− 1) +

ŵ(A)
∑
B∈2N

j
B∩A∗(t)6=∅

qBj (t− 1)


 ∑

B′∈2N
j

B′∩A∗(t)=∅

ŵ(B′)


−1

;
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(d) for j ∈ N\A∗(t) and A ∈ 2Nj with A ∩A∗(t) 6= ∅, define qAj (t) = 0.

CheckLoop: While qA(t) = χA, |A| > 1 and w(A) < w({i}) + w(A\i) for some
A ∈ 2N , i ∈ A, set t = t+ 1 and define:

qÂi (t) =

{
1 if |Â| = 1
0 otherwise

for all Â ∈ 2Ni ,

qBj (t) =

{
1 if B = A\i
0 otherwise

for all j ∈ A\i, B ∈ 2Nj ,

qB̂j′ (t) = qB̂j′ (t− 1) for all j′ ∈ Ac, B̂ ∈ 2Nj′ .

Output: Set p∗ = q(t).

Proposition 6 The output p∗ of GreedyClustering is a local optimum, i.e.
W (p∗) ≥W (q) for all q ∈ N (p∗).

Proof: For the partition P ∗ corresponding to output p∗, the case of singleton
blocks (if any) is trivial, in that if {i} ∈ P ∗ then W (qi|p∗−i) = W (p∗) for all
membership distributions qi ∈ ∆i. Hence let i ∈ A ∈ P ∗ with |A| > 1. By
switching from p∗i to any different qi ∈ ∆i, the change in global score is

W (qi|p∗−i)−W (p∗) = w({i})− w(A) +

+

qAi ∑
B∈2A\2A\i:|B|>1

µw(B) +
∑

B′∈2A\i

µw(B′)

 =

= (qAi − 1)
∑

B∈2A\2A\i:|B|>1

µw(B),

where the last equality is due to w(A) − w(A\i) =
∑
B∈2A\2A\i µw(B). Now

assume that p∗ is not a local optimum, i.e. W (qi|p∗−i) −W (p∗) > 0. Since
qAi − 1 < 0, it must also be∑

B∈2A\2A\i:|B|>1

µw(B) = w(A)− w(A\i)− w({i}) < 0,

but this is not possible in view of CheckLoop.
For the class of graphs detailed above where GreedyMerging provides a

worst-case modularity score equal to zero, it is easy to check that for reasonable
input q(0) GreedyClustering does not fall into the same trap and surely finds
the unique optimum. In particular, consider for simplicity the initial n-tuple of
uniform distributions qAi (0) = 21−n for all A ∈ 2Ni , i ∈ N . Then for every edge
{ik, jk} ∈ E where ik ∈ N1 and jk ∈ N2 the average derivative takes value

W̄{ik,jk}(q(0)) =
1

2

[
− 2

n2
+

2

2n−1

2

n2

]
= − 1

n2

(
1− 1

2n−2

)
< 0,

while for every subset A ⊆ N1 (or A ⊆ N2) its value is

W̄A(q(0)) =
1

|A|

[
−|A|
n2

+

(
|A|
2

)
4

n22n−1

]
= − 1

n2

(
1− |A| − 1

2n−2

)
< 0.
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Hence for |A| = 2 there is no difference, but W̄A(q(0)) increases with |A| and

W̄N1(q(0)) = − 1

n2

(
1−

n
2 − 1

2n−2

)
= W̄N2(q(0)),

where 1
2n−2 <

n−2
2n−1 as long as n > 4 indeed.

Apart from the obvious case of a partition p = q(0) as input, CheckLoop is
also strictly necessary in general. In fact, if at some iteration t with q(t) = q
the greedily formed block was some A, |A| > 1 rather than A\i for any i ∈ A,
then W̄A(q)− W̄A\i(q) ≥ 0 or

1

|A|

∑
j∈A

w({j}) +
∑

{j,j′}⊆A

(
qAj + qAj′

)
µw({j, j′})

 +

− 1

|A| − 1

 ∑
j∈A\i

w({j}) +
∑

{j,j′}⊆A\i

(
q
A\i
j + q

A\i
j′

)
µw({j, j′})

 ≥ 0.

However, the sought condition w(A) ≥ w(A\i) + w({i}) cannot be cast for

generic qA, qA\i, even when these latter are maintained at a certain ratio qAj /q
A\i
j

for all j ∈ A\i according to both: (i) expression (10) definining input q(0), and
(ii) the updating rule (c) in GreedyLoop.

Although analyzing GreedyMerging in terms of near-Boolean optimization
offers a useful perspective, still its comparison with GreedyClustering has a
purely illustrative purpose. Indeed, together with the general similarities ob-
served thus far, the two also share an autonomous (i.e. optimization-driven)
determination of the number of clusters (rather than requiring it as an input).
However, they differ crucially in terms of computational burden: at each iter-
ation t the former only explores

(|P (t)|
2

)
possible unions of two blocks (of the

current partition P (t)), while the latter has to quantify (ideally) the average
derivatives W̄A(q(t)) for all clusters A where 0 6= qA(t) 6= χA. Of course, the
same general arguments towards a restricted search for GreedyMerging also ap-
ply to GreedyClustering. More precisely, if two blocks A,B ∈ P (t) are such that
in the given graph G their union A∪B spans a disconnected subgraph G(A∪B),

then A ∪ B can be excluded from the
(|P (t)|

2

)
possible unions of two blocks of

P (t). Similarly, although 0 6= qA(t) 6= χA, if G(A) is disconnected, then average
derivative W̄A(q(t) can be ignored. But even in view of these restrictions, the
two greedy procedures remain far too diverse. In fact, apart from the computa-
tional demand, another difference is that GreedyMerging starts from the finest
partition independently from the input cluster score function w, and thus is not
local in any manner. Conversely, although not progressing from neighborhood
to neighborhood, still the search conducted by GreedyClustering may well be
regarded as a local one, since it develops from an arbitrary initial q(0), which
in particular can be determined depending on w as in expression (10).

One common way to employ local search methods is by means of several
runs, for different initial candidate solutions, with the associated outputs thus
providing a range for locally optimal values taken by the objective function.
In such settings, meeting the computational demand of a single run is usually
fast, and hence diversified initial candidate solutions enable to figure globally
optimal values. The same approach may be applied to GreedyClustering, while
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also nesting the sequence q(01), . . . ,q(0T ) of different initial candidate solutions
in the following manner. Define the very first input fuzzy clustering q(01) by

qAi (01) =

{ 2
(n−1)(n−2) if |A| = 2 (i.e. if A = {i, j}, j ∈ N\i)

0 if |A| 6= 2

for all A ∈ 2Ni , i ∈ N . The associated output p∗1 clearly is a partition P ∗1 each
of whose blocks is either a singleton or a pair. At this point, the procedure
may be reiterated by transforming the original n-set N = N0 = {1, . . . , n}
of indices into the updated N1 = {1, . . . , |P ∗1 |}, and with input q(02) placing

the uniform distribution over all
(|P∗1 |

2

)
clusters obtained as the union of two

blocks of P ∗1 . In other terms, the original set 2N containing all 2n clusters is
replaced with the novel (restricted) set 2P

∗
1 , namely with the field of subsets (of

N) generated by partition P ∗1 . Hence, just like in the first iteration, the novel
input q(02) distributes memberships uniformly over all and only those clusters
obtained as the union of exactly two blocks of P ∗1 . The stopping condition
is reached at T , relying on criterion P ∗T = P ∗T−1. Embedded within such a
larger loop, GreedyClustering appears quite more similar to GreedyMerging, in
that: (i) it no longer relies on a local search but is conversely conceived to start
exclusively from the finest partition, (ii) at each iteration t (of the outer loop) it

only explores the average derivative W̄A(q(t)) for a limited (by
(|P∗t |

2

)
) number

of clusters, and (iii) the two stopping criteria are evidently equivalent.

6 Conclusions

Developing from the evaluation of fuzzy clusters via MLE of pseudo-Boolean
functions, this work proposes a general framework where to design and ana-
lyze objective function-based clustering. With respect to other optimization
approaches based on fuzzy modeling, the main difference is that here fuzzy
clusterings constitute the mean for exploring a larger (i.e. continuous rather
than discrete) search space, and are not intended to also achieve better global
values than hard ones, as they cannot. The general setting applies to any
clustering problem, as it only requires to formalize a cluster score (set) func-
tion. In the simplest case (such as modularity maximization), this latter has a
quadratic MLE. Indeed, the input of many clustering problems is a similarity
matrix, which finds a seemingly natural translation into a cluster score function
with quadratic MLE. A further example obtains by quantifying (through suit-
able values of Möbius inversion) the empirical evidence that in social networks
“good clusters” or communities have members who, apart from being “densely
adjacent”, also display a greater-than-expected number of neighbors. It can be
mentioned that these quadratic cluster score functions need not be mutually
exclusive, as all of the above applies invariate to their linear combinations.

From a general perspective, local search methods such as the proposed
GreedyClustering may also lead to a final observation focused on overlapping
community detection in complex networks via objective function-based graph
clustering. The fundamental issue is that, independently from the chosen formal
definition of community [9, 10], in many environments vertices must be allowed
to be members of different such communities (thus making these latter over-
lapping or with non-empty intersection). In this view, objective function-based
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graph clustering methods such as modularity maximization are sometimes ques-
tioned on the basis that they provide optimal partitions, namely collections of
disjoint (i.e. non-overlapping) clusters, and thus cannot suitably address the
issue of finding “optimal” set systems of overlapping clusters. However, from
such an overall perspective local search optimization methods may be useful
for overlapping community detection, while also providing a formal definition
of community. In fact, consider again modularity Q as the fundamental exam-
ple and assume to have computational resources sufficient for many runs of a
(fast) local search algorithm maximizing Q. Accordingly, following a sequence
of T (non-nested) inputs, partitions P ∗1 , . . . , P

∗
T are the corresponding outputs.

These latter shall be local optima with respect to the notion of neighborhood
underlying the algorithm itself, but in any case there is a (non-empty) subset
T ⊆ {1, . . . , T} such that for all t ∈ T inequality Q(P ∗t ) ≥ Q(P ∗t′) holds for
1 ≤ t′ ≤ T . Now let C = ∪

t∈T
P ∗t = {A : A ∈ P ∗t for some t ∈ T}. In words, C is

the set system consisting of all clusters that are blocks of at least one optimal
output P ∗t , t ∈ T, and thus such clusters may well be overlapping. The resulting
definition of community clearly is: A is a community ⇔ A ∈ C.
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functions. Z. Wahrscheinlichkeitsrechnung u. verw. Geb., 2:340–368, 1964.

[33] S. E. Schaeffer. Graph clustering. Computer Science Review, 1:27–64, 2007.

[34] R. Stanley. Modular elements of geometric lattices. Algebra Universalis,
1:214–217, 1971.

[35] J. Vlasblom and S. J. Wodak. Markov clustering versus affinity propagation
for the partitioning of protein interaction graphs. BMC Bioinformatics,
10:99, 2009.

[36] U. von Luxburg. A tutorial on spectral clustering. Statistics and Comput-
ing, 17:395–416, 2007.

[37] U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral
clustering. The Annals of Statistics, 36(2):555–586, 2008.

[38] W. Wang and Y. Zhang. On fuzzy cluster validity indices. Fuzzy Sets and
Systems, 158:2095–2117, 2007.

[39] S. White and P. Smyth. A spectral clustering approach to finding communi-
ties in graphs. In H. Kargupta, J. Srivastava, C. Kamath, and A. Goodman,
editors, Proceedings of the 2005 SIAM Conference on Data Mining, pages
274–285, 2005.

[40] S. Wu and T. W. S. Chow. Clustering of the self-organizing map using
a cluster validity index based on inter-cluster and intra-cluster density.
Pattern Recognition, 37:175–188, 2004.

[41] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community detection
in networks: the state of the art and a comparative study. ACM Computing
Surveys, 45(43):1–35, 2012.

[42] S. Zhang, R.-S. Wang, and X.-S. Zhang. Identification of overlapping
community structure in complex networks using fuzzy c-means clustering.
Phisica A, 374:483–490, 2007.

23


