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RELATIVE MOTION EQUATIONS IN THE LOCAL-VERTICAL
LOCAL-HORIZON FRAME FOR RENDEZVOUS IN LUNAR ORBITS

Giovanni Franzini∗, and Mario Innocenti†

In this paper, a set of equations for relative motion description in lunar orbits is
presented. The local-vertical local-horizon frame is selected to describe the rela-
tive dynamics of a chaser approaching a target in lunar orbit, allowing the deve-
lopment of relative guidance and navigation systems for rendezvous and docking.
The model considers the Earth and Moon gravitational influence on the two spa-
cecraft, which are assumed to have negligible masses. The proposed equations are
intended for the study of rendezvous missions with a future cis-lunar space station,
whose development is currently investigated by several space agencies as the next
step for space exploration.

INTRODUCTION

The development of a new space outpost in the vicinity of the Moon is one of the objectives of
the major national space agencies as a potential gateway for future exploration missions towards the
asteroids and Mars, as well as a staging post to access the lunar surface.1, 2 Several studies aimed
at the development of the cis-lunar station are currently ongoing, focused on the selection of the
most favorable lunar orbits in terms of maintenance cost, and on the station access by the incoming
vehicles performing logistic flights, crew transportation missions, or samples return from the Moon
surface.3, 4 Station access is particularly challenging, since the relative dynamics in lunar orbits
are considerably different from those in lower Earth orbits (LEO), where rendezvous operation
technology is well established.5 As a matter of fact, a vehicle approaching the cis-lunar station
will experience the influence of the Moon, as well as the gravitational pull of the Earth. Hence,
the classical relative motion models, such as the Tschauner – Hempel6 or the Clohessy – Wiltshire
equations,7 that assume the presence of a single primary body, are no longer valid in the cis-lunar
scenario.

In this paper, we derive a set of equations for the description of the relative motion of a chaser
vehicle with respect to a target spacecraft orbiting around the Moon. The equations set is developed
considering the two spacecraft in a three-body scenario, i.e. under the influence of both Moon and
Earth gravitational potentials.

Relative motion in three-body setups is usually described by differencing the equations that re-
gulate the motion of the two spacecraft, i.e. the solutions of the circular (or elliptic) restricted
three-body problem relative to the target and the chaser. These sets are developed in frame rota-
ting with the primaries, generally referred to as synodic or pulsating reference frame, and centered
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on one of them, or on their common center of mass, or even in a collinear libration point. The
resulting equations describe the relative dynamics in the same frame, and have been adopted for
designing formation flying guidance systems, see for example References 8–11. Differently from
these equations sets, the model proposed in this paper presents three main differences:

• The use of a local-vertical local-horizon frame centered on the target center of mass. This
type of frame, widely adopted for relative motion analysis in LEO, is particularly appealing
for relative guidance and navigation systems design, since it eases the integration of mea-
surements acquired by target and chaser relative positioning sensors, and allows to better
understand and to characterize the chaser trajectories as seen from the target.

• The dynamics are described in terms of spacecraft position and velocity vectors with respect
to the Moon. This feature is particularly useful in case one of the spacecraft loses the line of
sight with the ground stations on Earth.

• The proposed set is based only on the restricted three body assumption, i.e. the spacecraft
have negligible masses with respect to the primaries. Thus, the equations have general vali-
dity, and are not restricted to the elliptic or circular three body problem, as in the aforementi-
oned references.

Possible simplifications of the developed equations set are discussed in the paper, and a prelimi-
nary analysis of their validity is proposed.

RESTRICTED THREE-BODY DYNAMICS

Consider the three-body system composed by the Earth and the Moon primary bodies and a
spacecraft i, with masses Me, Mm, and mi respectively. Their positions with respect to an inertial
frame I is denoted withRe,Rm, andRi respectively..

Each body exerts its gravitational influence on the others, resulting in the following equations of
motion for the three bodies,

mi

[
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]
I = −GMemi
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where rei = Ri −Re and rmi = Ri −Rm denote the position of the spacecraft i with respect to
the Earth and to the Moon, rem = Rm −Re is the position of the Moon with respect to the Earth,
and G is the universal gravitational constant. Relative positions norms are indicated with rei, rmi,
and rem. The notation

[
R̈
]
I denotes the acceleration of the body as seen from the inertial frame.

Spacecraft i equations of motion with respect to the Earth and to the Moon are then given by[
r̈ei
]
I =

[
R̈i

]
I −

[
R̈e

]
I = −G(Me +mi)

r3ei
rei −GMm

(
rmi

r3mi

+
rem
r3em

)
(1)

[
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]
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[
R̈i

]
I −
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]
I = −G(Mm +mi)

r3mi

rmi −GMe

(
rei
r3ei
− rem
r3em

)
(2)
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Figure 1: Moon (synodic) reference frame.

We now assume that the mass of the spacecraft i is negligible with respect to the primaries masses,
i.e. mi � Me and mi � Mm, i.e. we consider the restricted three-body problem. Under this
assumption the orbital motion of the two primaries is not affected by the spacecraft, and Eqs. (1)
and (2) simplify to, [

r̈ei
]
I = −µe

rei
r3ei
− µm

(
rmi

r3mi

+
rem
r3em

)
[
r̈mi

]
I = −µm

rmi

r3mi

− µe
(
rei
r3ei
− rem
r3em

)
(3)

where µe = GMe and µm = GMm are the primaries’ gravitational parameters.

Assume now that the primaries revolve around their common barycenter in elliptic orbits (elliptic
restricted three-body problem). The motion of the two primaries can then be obtained from the
solution of the classical two-body problem. In particular, for the problem at hand, we consider
the Moon revolving around the Earth on an elliptic orbit. Moon orbital motion is described by the
following parameters:12

• Earth-Moon mass ratio, Me/Mm = 81.300587;

• semi-major axis, a = 384 400 km;

• eccentricity e = 0.05490;

• mean motion n = 2.661 699 5× 10−6 rad s−1.

The equations of motion for the spacecraft i are generally developed in a frame that rotates with
the primaries. A Moon or synodic reference frameM : {Rm; îm, ĵm, k̂m} is introduced, with origin
in the Moon center of mass, and unit vectors defined as follows,

îm = −rem
rem

, ĵm = k̂m × îm, k̂m =
hm/e

hm/e

where hm/e = rem ×
[
ṙem

]
I is the specific angular momentum of the Moon with respect to the

Earth, and hm/e =
∥∥hm/e

∥∥, see Fig. 1. The unit vectors îm - ĵm lie in the Moon orbital plane. The
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frame M, i.e. the Earth-Moon system, rotates with respect to an inertial frame of reference with
angular velocity equal to ωm/i = ωm/ik̂m.

The acceleration of the spacecraft i in the frameM can be written as follows,[
r̈mi

]
I =

[
r̈mi

]
M + 2ωm/i ×

[
ṙmi

]
M +

[
ω̇m/i

]
M × rmi + ωm/i ×

(
ωm/i × rmi

)
(4)

where 2ωm/i ×
[
ṙmi

]
M is the Coriolis acceleration and ωm/i ×

(
ωm/i × rmi

)
is the centripetal

acceleration term.

In the Moon frame we have that rem = −remîm, and the spacecraft position vectors with respect
to the Moon and to the Earth are defined as follows,

rmi = xiîm + yiĵm + zik̂m, rei = (xi − rem)îm + yiĵm + zik̂m

Introducing Eq. (3) in Eq. (4), and expressing all the vectors in the Moon reference frame, we obtain
the equations of motion for the spacecraft i in the Moon reference frame

ẍi − 2ωm/iẏi − ω̇m/iyi − ω2
m/ixi = −µm

xi
r3mi

− µe
(
xi − rem
r3ei

+
1

r2em

)
ÿi + 2ωm/iẋi + ω̇m/ixi − ω2

m/iyi = −µm
yi
r3mi

− µe
yi
r3ei

z̈i = −µm
zi
r3mi

− µe
zi
r3ei

(5a)

(5b)

(5c)

where the distances of the spacecraft from the Moon and the Earth are given by

rei =
√

(xi − rem)2 + y2i + z2i , rmi =
√
x2i + y2i + z2i

Eqs. (5) can be normalized expressing the distances in units of the Moon orbit semi-major axis a,
time in units of the inverse of the mean angular motion n, i.e. introducing the new time variable
τ = nt, and the masses such that Me + Mm = 1. The generic distance x and the associated
derivatives are related to the non-dimensional variables x̃ as follows

x = ax̃, ẋ = a
dx̃

dt
= a

dx̃

dτ

dτ

dt
= an˚̃x, ẍ = an

d˚̃x

dt
= an2 ˚̊̃x

where the upper empty circle denotes derivation with respect to the normalized time variable τ .
Note that the angular velocity is now expressed in units of n, thus

ω = nω̃, ω̇ =
dω

dt
=

dω

dτ

dτ

dt
= n2

dω̃

dτ
= n2˚̃ω

The normalized gravitational parameter µ̃ for the Earth-Moon system is defined as

µ̃ =
µm

µe + µm
=

(
1 +

Me

Mm

)−1
= 0.012151

Since Me + Mm = 1, Moon and Earth gravitational parameters are µm = µ̃ and µe = 1 − µ̃
respectively.
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Eqs. (5) can now be written in non-dimensional form as follows,

˚̊̃xi − 2ω̃m/i
˚̃yi − ˚̃ωm/iỹi − ω̃2

m/ix̃i = −µ̃ x̃i
r̃3mi

− (1− µ̃)

(
x̃i − r̃em
r̃3ei

+
1

r̃2em

)
˚̊̃yi + 2ω̃m/i

˚̃xi + ˚̃ωm/ix̃i − ω̃2
m/iỹi = −µ̃ ỹi

r̃3mi

− (1− µ̃)
ỹi
r̃3ei

˚̊̃zi = −µ̃ z̃i
r̃3mi

− (1− µ̃)
z̃i
r̃3ei

(6a)

(6b)

(6c)

and the normalized distances of the spacecraft from the Earth and the Moon are given by

r̃ei =
√

(x̃i − r̃em)2 + ỹ2i + z̃2i , r̃mi =
√
x̃2i + ỹ2i + z̃2i

respectively.

Eqs. (6) can be further simplified if we assume the Moon and the Earth rotating around the Earth-
Moon barycenter in circular orbits, i.e. we consider the circular restricted three-body problem
(CR3BP). In this case r̃em = 1, ω̃m/i = 1, and ˚̃ωm/i = 0, and Eqs. (6) simplify as follows,

˚̊̃xi − 2˚̃yi − x̃i = −µ̃ x̃i
r̃3mi

− (1− µ̃)

(
x̃i − 1

r̃3ei
+ 1

)
˚̊̃yi + 2˚̃xi − ỹi = −µ̃ ỹi

r̃3mi

− (1− µ̃)
ỹi
r̃3ei

˚̊̃zi = −µ̃ z̃i
r̃3mi

− (1− µ̃)
z̃i
r̃3ei

(7a)

(7b)

(7c)

with
r̃ei =

√
(x̃i − 1)2 + ỹ2i + z̃2i , r̃mi =

√
x̃2i + ỹ2i + z̃2i

RELATIVE MOTION IN THE LOCAL-VERTICAL LOCAL-HORIZON FRAME

Equations Development

Consider a target and a chaser spacecraft, orbiting around the Moon, and subject to both Earth
and Moon gravitational influence. The aim of this section is to describe the motion of the chaser
relative to the target, in a frame of reference centered on the latter. To this end, the local-vertical
local-horizon (LVLH) frame L : {Rt; î, ĵ, k̂} is introduced, with unit vectors defined as follows,

î = ĵ × k̂, ĵ = −
ht/m

ht/m
, k̂ = −rmt

rmt

where rmt denotes the target position with respect to the Moon, rmt = ‖rmt‖, ht/m = rmt ×[
ṙmt

]
M is the target specific angular momentum with respect to the Moon, and ht/m =

∥∥ht/m

∥∥.
The unit vectors î, ĵ, and k̂ in the rendezvous literature are generally referred to as V-bar, H-bar,
and R-bar, respectively.5

With reference to Fig. 2, chaser position with respect to the Moon is given by

rmc = rmt + ρ (8)
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Figure 2: Target and chaser spacecraft in the three-body system.

where ρ is the relative position of the chaser with respect to the target.

The time-derivative of Eq. (8) in the inertial frame is[
ṙmc

]
I =

[
ṙmt

]
I +

[
ρ̇
]
I

=
[
ṙmt

]
I +

[
ρ̇
]
L + ωl/i × ρ (9)

where ωl/i is the angular velocity of L (i.e. of the target) with respect to I. Further derivation of
Eq. (9) in I yields[

r̈mc

]
I =

[
r̈mt

]
I +

[
ρ̈
]
L + 2ωl/i ×

[
ρ̇
]
L +

[
ω̇l/i

]
I × ρ+ ωl/i ×

(
ωl/i × ρ

)
(10)

Bearing in mind that
[
ω̇l/i

]
I =

[
ω̇l/i

]
L, and introducing Eq. (3) in Eq. (10), we obtain the nonli-

near equations of relative motion in the LVLH frame:[
ρ̈
]
L+2ωl/i ×

[
ρ̇
]
L +

[
ω̇l/i

]
L × ρ+ ωl/i ×

(
ωl/i × ρ

)
= µm

(
rmt

r3mt

− rmc

r3mc

)
+ µe

(
ret
r3et
− rec
r3ec

)
(11)

where
rmc = rmt + ρ, ret = rem + rmt, rec = rem + rmt + ρ

and rij = ‖rij‖.
The angular velocity of the LVLH frame with respect to the inertial frame can be computed as

follows,
ωl/i = ωl/m + ωm/i (12)

where ωl/m and ωm/i are the angular velocities of L with respect toM, and ofM with respect to
I, respectively. Consequently,[

ω̇l/i

]
L =

[
ω̇l/m

]
L +

[
ω̇m/i

]
L (13)

=
[
ω̇l/m

]
L +

[
ω̇m/i

]
M − ωl/m × ωm/i
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Eq. (11), along with Eqs. (12) and (13) is a nonlinear equations set with time-varying parameters:

• rmt, ωl/m, and
[
ω̇l/m

]
L, , that depend on the target motion around the Moon;

• rem, ωm/i, and
[
ω̇m/i

]
M, characteristics of the Moon orbital motion.

In the following section, the expression of ωl/m, and
[
ω̇l/m

]
L are derived, in order to complete the

description of the relative dynamics in the LVLH frame.

Target Angular Velocity and Acceleration with Respect to the Moon

In this section, we look for an analytical expression of the LVLH frame angular velocity and
acceleration vectors with respect to the Moon frame, that exploits only kinematics relationships. To
this end, the same consideration adopted by Casotto in Reference 13 are here used to express ωl/m

and
[
ω̇l/m

]
L in terms of the position, the velocity, the acceleration, and the jerk of the target with

respect to the Moon, hence using measurements taken during its motion in the vicinity of Moon.

Consider the time-derivatives of the LVLH frame unit vectors as seen from the Moon frame:[ ˙̂
i
]
M = ωl/m × î,

[ ˙̂
j
]
M = ωl/m × ĵ,

[ ˙̂
k
]
M = ωl/m × k̂

Left vectorial multiplication of the previous expressions by the relative unit vector gives the follo-
wing expressions,

î×
[ ˙̂
i
]
M = î×

(
ωl/m × î

)
= ωl/m −

(
ωl/m · î

)
î

ĵ ×
[ ˙̂
j
]
M = ĵ ×

(
ωl/m × ĵ

)
= ωl/m −

(
ωl/m · ĵ

)
ĵ

k̂ ×
[ ˙̂
k
]
M = k̂ ×

(
ωl/m × k̂

)
= ωl/m −

(
ωl/m · k̂

)
k̂

that can be summed up obtaining

î×
[ ˙̂
i
]
M + ĵ ×

[ ˙̂
j
]
M + k̂ ×

[ ˙̂
k
]
M = 2ωl/m (14)

The time-derivative of the unit vector k̂ is[ ˙̂
k
]
M = − 1

rmt

([
ṙmt

]
M + ṙmtk̂

)
(15)

Noting that rmt = −rmtk̂ and
[
ṙmt

]
L = −ṙmtk̂, we can write

ṙmt = −
[
ṙmt

]
L · k̂

= −
[
ṙmt

]
M · k̂ +

(
ωl/m × rmt

)
· k̂

= −
[
ṙmt

]
M · k̂ + ωl/m ·

(
rmt × k̂

)
= −

[
ṙmt

]
M · k̂ (16)

Substitution of Eq. (16) into Eq. (15) gives,[ ˙̂
k
]
M = − 1

rmt

(([
ṙmt

]
M · î

)
î+

([
ṙmt

]
M · ĵ

)
ĵ
)

= − 1

rmt

([
ṙmt

]
M · î

)
î (17)
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Note that
[
ṙmt

]
M · ĵ = 0 since the target velocity as seen from the frameM is perpendicular to

the specific angular momentum ht/m.

For the unit vector ĵ we have that

[ ˙̂
j
]
M = − 1

ht/m

([
ḣt/m

]
M + ḣt/mk̂

)
= − 1

ht/m

(([
ḣt/m

]
M · î

)
î+

([
ḣt/m

]
M · k̂

)
k̂
)

= − 1

ht/m

((
rmt ×

[
r̈mt

]
M
)
· î
)
î

= − 1

ht/m

([
r̈mt

]
M ·

(
î× rmt

))
î

= − rmt

ht/m

([
r̈mt

]
M · ĵ

)
î (18)

where we exploited the following results,

[
ḣt/m

]
L = −ḣt/mĵ = −

([
ḣt/m

]
M · ĵ

)
ĵ[

ḣt/m

]
M · k̂ =

(
rmt ×

[
r̈mt

]
M
)
· k̂ = 0

the latter justified by the fact that rmt ×
[
r̈mt

]
M is perpendicular to rmt, i.e. to k̂.

Eventually, the time-derivative of î is given by

[ ˙̂
i
]
M =

[ ˙̂
j
]
M × k̂ + ĵ ×

[ ˙̂
k
]
M

=
rmt

ht/m

([
r̈mt

]
M · ĵ

)
ĵ +

1

rmt

([
ṙmt

]
M · î

)
k̂ (19)

Substitution of Eqs. (17), (18), and (19) into Eq. (14), yields

ωl/m = ωy
l/mĵ + ωz

l/mk̂ =

(
− 1

rmt

[
ṙmt

]
M · î

)
ĵ +

(
rmt

ht/m

[
r̈mt

]
M · ĵ

)
k̂ (20)

Note that in Eq. (20) the component of the angular velocity along the V-bar direction is zero due to
the definition of the LVLH frame.

The components of the angular acceleration in the LVLH frame can be obtained by direct deriva-
tion of Eq. (20).

The angular acceleration along the H-bar is given by,

ω̇y
l/m = − 1

rmt

([
r̈mt

]
M · î+

[
ṙmt

]
M ·

[ ˙̂
i
]
M −

ṙmt

rmt

[
ṙmt

]
M · î

)
= − 1

rmt

([
r̈mt

]
M · î+

[
ṙmt

]
M ·

[ ˙̂
i
]
M + ṙmtω

y
l/m

)
(21)
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The term
[
ṙmt

]
M ·

[ ˙̂
i
]
M can be simplified as follows

[
ṙmt

]
M ·
[ ˙̂
i
]
M =

([
ṙmt

]
L+ ωl/m × rmt

)
·
(
rmt

ht/m

([
r̈mt

]
M · ĵ

)
ĵ +

1

rmt

([
ṙmt

]
M · î

)
k̂

)
=
(
−ṙmtk̂ − rmtω

y
l/mî

)
·
(
ωz
l/mĵ − ω

y
l/mk̂

)
= ṙmtω

y
l/m

and substituted into Eq. (21), obtaining

ω̇y
l/m = − 1

rmt

([
r̈mt

]
M · î+ 2ṙmtω

y
l/m

)
(22)

The angular acceleration along k̂ is

ω̇z
l/m=

rmt

ht/m

(
ṙmt

rmt

[
r̈mt

]
M · ĵ +

[ ...
rmt

]
M · ĵ +

[
r̈mt

]
M ·

[ ˙̂
j
]
M −

ḣt/m

ht/m

[
r̈mt

]
M · ĵ

)
(23)

Noting that,[
r̈mt

]
M ·

[ ˙̂
j
]
M=

(([
r̈mt

]
M ·î

)
î+

([
r̈mt

]
M ·ĵ

)
ĵ +

([
r̈mt

]
M ·k̂

)
k̂
)

·
(
− rmt

ht/m

([
r̈mt

]
M · ĵ

)
î

)
=− rmt

ht/m

([
r̈mt

]
M · î

)([
r̈mt

]
M · ĵ

)
Eq. (23) can be written as

ω̇z
l/m=

rmt

ht/m

(
ṙmt

rmt

[
r̈mt

]
M ·ĵ +

[ ...
rmt

]
M ·ĵ −

rmt

ht/m

([
r̈mt

]
M ·î+

ḣt/m

rmt

)[
r̈mt

]
M ·ĵ

)
(24)

Considering that ht/m = −ht/mĵ, and that

ht/m = rmt ×
[
ṙmt

]
M

= −rmtk̂ ×
([
ṙmt

]
L + ωl/m × rmt

)
= −rmtk̂ ×

(
−ṙmtk̂ − ωy

l/mrmtî
)

= r2mtω
y
l/mĵ (25)

by differentiation of Eq. (25), and recalling Eq. (22), the derivative of the specific angular momen-
tum norm can be obtained:

ḣt/m = −2rmtṙmtω
y
l/m − r

2
mtω̇

y
l/m = rmt

[
r̈mt

]
M · î (26)

Introduction of Eq. (26) in Eq. (24) yields the expression of the angular acceleration along k̂:

ω̇z
l/m=

rmt

ht/m

(
ṙmt

rmt

[
r̈mt

]
M ·ĵ +

[ ...
rmt

]
M ·ĵ − 2

rmt

ht/m

([
r̈mt

]
M ·î

)([
r̈mt

]
M ·ĵ

))
(27)

9



To compute the target jerk, consider the following relationship between
[ ...
rmt

]
M and

[ ...
rmt

]
I :[ ...

rmt

]
M =

[ ...
rmt

]
I − 3

[
ω̇m/i

]
I ×

[
ṙmt

]
M − 3ωm/i ×

[
r̈mt

]
M −

[
ω̈m/i

]
I × rmt

− 3ωm/i ×
(
ωm/i ×

[
ṙmt

]
M
)
− 2
[
ω̇m/i

]
I ×

(
ωm/i × rmt

)
− ωm/i ×

([
ω̇m/i

]
I × rmt

)
− ωm/i ×

(
ωm/i ×

(
ωm/i × rmt

))
The jerk in I can be obtained using the chain rule, i.e.[ ...
rmt

]
I =

∂
[
r̈mt

]
I

∂rmt

[
ṙmt

]
I+

∂
[
r̈mt

]
I

∂
[
ṙmt

]
I

[
r̈mt

]
I+

∂
[
r̈mt

]
I

∂rem

[
ṙem

]
I+

∂
[
r̈mt

]
I

∂
[
ṙem

]
I

[
r̈em

]
I (28)

Since the target moves in a conservative field, the gradient of
[
r̈mt

]
I with respect to

[
ṙmt

]
I and[

ṙem
]
I is zero, and Eq. (28) reduces to

[ ...
rmt

]
I =

∂
[
r̈mt

]
I

∂rmt

[
ṙmt

]
I +

∂
[
r̈mt

]
I

∂rem

[
ṙem

]
I

=− µm
∂

∂rmt

[
rmt

r3mt

] [
ṙmt

]
I

− µe

(
∂

∂rmt

[
rmt + rem

‖rmt + rem‖3

] ([
ṙmt

]
I +

[
ṙem

]
I
)
− ∂

∂rem

[
rem
r3em

] [
ṙem

]
I

)
where

[
ṙmt

]
I =

[
ṙmt

]
M + ωm/i × rmt, and

∂

∂r

[ r
r3

]
=

1

r3

(
I − 3

rrT

r2

)
with I denoting the identity matrix.

SIMPLIFICATION OF THE EQUATIONS OF RELATIVE MOTION

Due to the nonlinearity of the gravitational acceleration and the presence of several time-varying
parameters, the equations of relative motions derived in the previous section, namely Eqs. (11) along
with angular velocity and acceleration vectors given by Eqs. (20), (22), and (27), may be difficult
to use for the development of guidance and navigation systems. Two possible simplifications are
here discussed, aimed at linearizing the equations set and at reducing the number of time-varying
parameters.

Circular Restricted Three-Body Problem Assumption

Under the assumption of primaries revolving in circular orbits, the number of time-varying para-
meters in Eqs. (11) reduces. As a matter of fact, in the CR3BP setup rem is constant, ωm/i = nkm,
and

[
ω̇m/i

]
M = 0. Therefore, the angular velocity and acceleration of the LVLH frame with

respect to the inertial frame simplify as follows,

ωl/i = ωl/m + nkm,
[
ω̇l/i

]
L =

[
ω̇l/m

]
L − ωl/m × nkm

Furthermore, since
[
ω̈m/i

]
M = 0, the computation of the jerk

[ ...
rmt

]
M in Eq. (27) simplifies as

follows, [ ...
rmt

]
M =

[ ...
rmt

]
I − 3ωm/i ×

[
r̈mt

]
M − 3ωm/i ×

(
ωm/i ×

[
ṙmt

]
M
)

− ωm/i ×
(
ωm/i ×

(
ωm/i × rmt

))
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Linearization of the Earth and Moon Gravitational Acceleration

Consider the gravitational acceleration on the chaser, due to the i-th primary,

gi(ric) = −µi
ric
r3ic
, ric = rit + ρ

This can be linearized by means of a Taylor expansion to first order around the target position with
respect to the primary i:

gi(ric) ≈ gi(rit) +
∂gi(r)

∂r

∣∣∣∣
r=rit

(ric − rit) ,
∂gi(r)

∂r
= −µi

r3

(
I − 3

rrT

r2

)
Hence, the right-hand side of Eq. (11) can be approximated as follows,

µm

(
rmt

r3mt

− rmc

r3mc

)
+ µe

(
ret
r3et
− rec
r3ec

)
≈ µm
r3mt

(
I − 3

rmtr
T
mt

r2mt

)
ρ+

µm
r3et

(
I − 3

retr
T
et

r2et

)
ρ

The linear time-varying equations of relative motion are then

[
ρ̈
]
L+2Ωl/i

[
ρ̇
]
L+

([
Ω̇l/i

]
L+ Ω2

l/i−
µm
r3mt

(
I−3

rmtr
T
mt

r2mt

)
−µm
r3et

(
I−3

retr
T
et

r2et

))
ρ = 0 (29)

where Ωl/i denotes the skew-symmetric matrix associated to ωl/i.

Simplified Equations Set Comparison

A preliminary analysis of the error introduced by the simplifications previously discussed is here
proposed. In particular, by means of numerical simulations we compared the linear time-varying
equations, Eq. (29), and the same equations with the assumption of the CR3BP, for simplifying
the angular velocity and acceleration vectors ωl/i and

[
ω̇l/i

]
L. The equations were implemented

in Simulink, and integrated using ode4 Runge-Kutta algorithm, with step size equal to 30 s, over a
time span of 6 hours.

Four initial target position and velocity conditions were chosen, named C1 through C4, see Ta-
ble 1. The initial conditions belong to the Earth-Moon L2 near rectilinear halo orbit shown in
Fig. 3, obtained by means of the state transition matrix for the CR3BP provided in Reference 14,
Chapter 6.7. Such orbits are of particular interest, since they are characterized by close passages
over a lunar pole, and maintain constant line of sight with the Earth. In particular, the orbit chosen
for this comparison provides access to the lunar south pole, that is of particular scientific interest.15

For each initial target condition, we compared the solution of the simplified equations sets, de-
noted with (ρ̃(t),

[
˙̃ρ
]
M(t)), against the one of the exact set, i.e. Eqs. (11) with angular velocity

and acceleration terms given by Eqs. (20), (22), and (27), denoted with (ρ(t),
[
ρ̇
]
M(t)). As error

indexes, the norm of the position and velocity error is considered,

eρ(t) = ‖ρ̃(t)− ρ(t)‖ , eρ̇(t) =
∥∥∥[ ˙̃ρ

]
M(t)−

[
ρ̇
]
M(t)

∥∥∥
Relative motion is simulated starting from two different initial relative position for every target
initial condition. More specifically, a +V-bar and a +R-bar point were chosen, 1 km away from the
target, with zero relative velocity in both cases.
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Figure 3: Target halo orbit.

Table 1: Initial target position and velocity expressed inM (normalized units).

rmt ·îm rmt ·ĵm rmt ·k̂m
[
ṙmt

]
M ·îm

[
ṙmt

]
M ·ĵm

[
ṙmt

]
M ·k̂m

C1 0.0182 0 0.1821 0 −1.1015 0
C2 −0.0129 −0.0543 0.0258 −0.6272 1.8163 −4.4384
C3 −0.0160 −0.0021 −0.0218 0.8374 8.8544 −0.5448
C4 0.0030 0.0591 0.0470 0.8013 0.7355 3.8722

Simulation results are shown in Fig. 4 and 5. The linearized equations set show the best perfor-
mance in almost all the simulations. However, for the initial condition C3 the linearized set with
the CR3BP simplification produced less error. Nevertheless, the difference between the two sim-
plified sets of equations is minimal, especially during the first 3 hours, approximately the interval
of interest for the terminal phase of a rendezvous mission. With reference to this type of scenario,
we can conclude that the both the simplified sets can be used for the preliminary design of relative
guidance and navigation systems, provided that the mission lasts less than 1-2 hours, since within
this period the error remains reasonably bounded. In addition, it must be noted that in a real sce-
nario the navigation filters will prevent the error growth introduced by the linearized equations, by
proper integration of the measurements coming from the chaser sensor suite, and from the target if
a cooperative scenario is considered.

CONCLUSIONS

A set of nonlinear time-varying equations for the description of relative motion in the LVLH
frame in the restricted three-body problem scenario was derived. The set presents several time-
varying parameters, depending on the Earth-Moon motion and on the target motion around the
Moon. The latter require the computation of the target angular velocity and acceleration vectors
during its motion around the Moon. An analytical expression for these quantities was provided, ba-
sed on the position, velocity, acceleration, and jerk of the target with respect to the Moon. Possible
simplifications for the derived equations of relative motion were discussed. These involve the relax-
ation of hypothesis on the Earth-Moon motion, or the linearization of the nonlinear terms appearing

12
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Figure 4: Simplified equations set comparison, +V-bar point: ρ = (1 km)î,
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in the equations, more specifically of the gravitational accelerations. A preliminary comparison
showed that these simplifications may be used in order to ease the development of relative guidance
systems, provided that proper navigation filter are designed in order to prevent the error growth due
to the linearization error.
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