
Neutron Electric Dipole Moment from Gauge-String Duality

Lorenzo Bartolini,1,2,3,* Francesco Bigazzi,1,2,† Stefano Bolognesi,1,‡ Aldo L. Cotrone,2,3,§ and Andrea Manenti1,4,∥
1Dipartimento di Fisica “E. Fermi,” Universitá di Pisa and INFN,
Sezione di Pisa; Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

2INFN, Sezione di Firenze; Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy
3Dipartimento di Fisica e Astronomia, Università di Firenze; Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy

4Institute of Physics, EPFL Rte de la Sorge, BSP 728, CH-1015 Lausanne, Switzerland
(Received 8 October 2016; published 27 February 2017)

We compute the electric dipole moment of nucleons in the large Nc QCD model by Witten, Sakai, and
Sugimoto with Nf ¼ 2 degenerate massive flavors. Baryons in the model are instantonic solitons of an
effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole
electromagnetic form factor of the nucleons, induced by a finite topological θ angle, exhibits complete
vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result—
a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to
real QCD data, the neutron electric dipole moment is evaluated to be dn ¼ 1.8 × 10−16θ e cm. The electric
dipole moment of the proton is exactly the opposite.
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Permanent electric dipole moments of fundamental or
composite particles with spin are a sensible probe of
CP-violating effects in nature. In particular, measurements
of the neutron electric dipole moment (NEDM) give the
strictest bounds on the magnitude of the CP-violating θ
term in QCD. The current bound, jdnj ≤ 2.9 × 10−26 e cm
[1,2], points towards an extremely small value of
θ ∼Oð10−10Þ, giving rise to the strong CP problem.
As usual in QCD, first principle calculations of the

NEDM are extremely complicated due to the large coupling
regime. Estimates can be given with lattice techniques
(which, in general, suffer from a sign problem at finite θ) or
phenomenological settings, such as the chiral Lagrangian
and the Skyrme model. Writing dn ¼ cnθ × 10−16 e cm,
these estimates give Oð1Þ≲ jcnj≲Oð10Þ with most of the
results pointing towards cn > 0. A detailed review on the
matter can be found in [3].
In this Letter we provide a first principle computation of

the NEDM in the Witten-Sakai-Sugimoto (WSS) model
[4,5], the top-down holographic theory closest to QCD. Its
main advantage over other phenomenological models is
that it automatically incorporates the whole tower of vector
mesons. Actually, as expected in general confining theories
with a gravity dual [6–8], it exhibits complete vector meson
dominance in the hadron electromagnetic form factors.
We will check, for the first time, that this feature is also
exhibited by the CP-breaking dipole term. Thus, we are
able not only to provide a novel estimate of the value of
the NEDM, which turns out to be of the same order of
magnitude of other results, but also to account for the
contribution of each vector meson. As we will show, the
outcome is that considering just the first vector mode is not
sufficient to give an accurate estimate of the full result;

instead, including the first three modes leaves just a
Oð1%Þ error.
Holographic mesons.—The WSS model is based on a

D4–D8-brane setup in type IIA string theory. In the limit
where a simple dual holographic description can be given,
the model reduces to a 3þ 1-dimensional large Nc SUðNcÞ
gauge theory with Nf massless quarks. In addition, it also
contains a tower of massive adjoint matter fields, whose
mass scale is set by a dimensionful parameter denoted as
MKK (which gives the scale of glueballs as well). They
arise as modes of a Kaluza-Klein reduction of the 4þ 1-
dimensional theory on Nc D4-branes on a circle. How
much this spurious sector can be decoupled from the QCD-
like one, depends on a ’t Hooft-like coupling λ, setting the
ratio between the confining SUðNcÞ string tension and
M2

KK. The model has a simple dual holographic description
if λ ≫ 1, when the two sectors are not decoupled. Despite
this feature, at low energies, the model shares with QCD all
of the expected features like confinement, chiral symmetry
breaking, and so on. In addition, since it is embedded in a
well-defined string theory setup, the corrections to the
leading λ ≫ 1, Nc ≫ 1 behavior are, in principle, under
control.
The flavor sector in the model is described by the low

energy modes of Nf D8-branes. The backreaction of these
branes on the background is weighed by a parameter
ϵf ¼ ðλ2=12π3ÞðNf=NcÞ. When ϵf ≪ 1, the D8-branes
can be treated as probes of the background sourced by
the D4-branes: this corresponds to the quenched approxi-
mation for the quarks in the model. In this limit, their
effective action reduces to a UðNfÞ Yang-Mills theory with
Chern-Simons terms on a curved space-time in five
dimensions [5]:
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SWSS ¼ SYM þ SCS;

SYM ¼ −κ
Z

d4xdzTr

�
hðzÞ
2

F μνF μν þ kðzÞF μzF
μ
z

�
;

SCS ¼
Nc

24π2

Z
Tr

�
AF 2 −

i
2
A3F −

1

10
A5

�
; ð1Þ

where (in units MKK ¼ 1) κ ¼ λNc=216π3, hðzÞ ¼
ð1þ z2Þ−1=3, kðzÞ ¼ ð1þ z2Þ, and we have omitted the
wedge product symbol ∧. The effective theory for mesons
emerges by inserting the following expansions for the
gauge field into the action above: Azðxμ; zÞ ¼P∞

n¼0 φ
ðnÞðxμÞϕnðzÞ, Aμðxμ; zÞ ¼

P∞
n¼1 B

ðnÞ
μ ðxμÞψnðzÞ.

The functions ϕnðzÞ, ψnðzÞ form complete sets normalized

in such a way that the fields φðnÞ and BðnÞ
μ get canonical

mass and kinetic terms in four dimensions. In particular
each function ψnðzÞ is an eigenfunction, with an eigenvalue
λn, of the equation

−hðzÞ−1∂z½kðzÞ∂zψnðzÞ� ¼ λnψnðzÞ; ð2Þ

while ϕnðzÞ ¼ λ−1=2n ∂zψnðzÞ for n > 1 and ϕ0ðzÞ ¼
ðκπÞ−1=2kðzÞ−1. The modes BðnÞ

μ correspond to massive
vector (for odd n) and axial vector (for even n) fields with

masses m2
n ¼ λnM2

KK. For example Bð1Þ
μ and Bð2Þ

μ corre-
spond to the ρ and the a1 meson, respectively. The scalar

modes φðnÞ with n ≥ 1 are eaten by the BðnÞ
μ , while φð0Þ

corresponds to the pion. The remarkable feature of theWSS
five-dimensional effective action is thus, the fact that it
automatically includes, into a unifying picture, not only the
low lying modes (with their chiral Lagrangian with Skyrme
and Wess-Zumino-Witten terms) but also the tower of
massive meson fields. Additionally, all of the parameters in
the meson effective action are given in terms of the few bare
parameters of the model, i.e., Nc, Nf, MKK, λ. In the
following, we will focus on the Nf ¼ 2 case.
Adding θ and quark mass terms.—The CP-breaking

topological term in the WSS model is automatically
included as it corresponds to the

R
C1TrF∧F Chern-

Simons term in the D4-branes action. This allows us to
relate the field theory θ parameter with the integral of the
Ramond-Ramond C1 potential along the circle wrapped by
the D4-branes [9]. Adding the θ term to the model
effectively amounts to adding the term [5],

Sθ ¼ −
χg
2

Z
d4x

�
θ þ

Z
dzTrAz

�
2

ð3Þ

to the five-dimensional effective action (1). In the expres-
sion above, χg ¼ λ3=ð364π6Þ is (in units MKK ¼ 1) the
topological susceptibility of the unflavored theory. TheR
dzTrAz term is related to the η0 meson and the action

above provides its mass m2
η0 ¼ ðπNf=2κÞχg ≡ ð2Nf=f2πÞχg

according to the Witten-Veneziano relation (with the pion
decay constant f2π ¼ 4κ=π). Notice that this implies that
ðm2

η0=M
2
KKÞ ∼ ϵf ≪ 1 in the regime we are working with.

In the WSS model, the pion matrix is given by the path
ordered holonomy matrix U ¼ P exp½−i R dzAz�. Thus, in
the analogy with the chiral Lagrangian approach, the
suitable mass term we have to add to the five-dimensional
effective action in order to describe massive quarks is

SM ¼ c
Z

d4xTrP½Me−i
R

Azdz þ c:c:�; ð4Þ

where c is a constant andM is the mass matrix. This action
has a precise meaning in string theory [10,11]: it is the
deformation due to open string worldsheet instantons
stretching between the D8-branes. The Nambu-Goto part
of the open string action is put on shell, and its exponen-
tiation contributes to the constant c and the mass terms.
What remains is just the boundary interaction of the open
string with the gauge fields on the D8-branes. Notice that,
when SM is added together with Sθ, a gauge shift
δΛ

R
dzTrAz ¼ −θ does not remove the θ dependence.

Instead, this produces a phase shift M → Meiθ=Nf on the
mass matrix, so that the physical topological parameter in
the model turns out to be the combination θ≡ θþ
arg detM, as expected from field theory. In the following,
we will focus on the case of degenerate flavors
Mij ¼ mqδij, choosing mq to be real. Writing the pion
matrix as U ¼ exp ½2iπaðxμÞTa=fπ� where Ta are UðNfÞ
generators normalized as TrðTaTbÞ ¼ δab=2, expanding
SM around the vacuum solutionA ¼ 0 (before adding the θ
term), we can read off the Gell-Mann–Oakes–Renner
relation f2πm2

π ¼ 4cmq, which in turn allows us to relate
c with the vacuum expectation value of the chiral con-
densate. Adding the term SM to the original WSS action is
justified in the limit mq ≪ MKK, or, in terms of the pion
mass, in the limit mπ ≪ MKK.
Our convention for the UðNfÞ gauge field follows [5]:

settingNf ¼ 2,A≡ Aþ ðÂ=2Þ1, where A ¼ Aaτa=2 is the
SU(2) component (τa, a ¼ 1, 2, 3, being the Pauli matrices)
and Â is the Abelian one. The field theory vacuum
following from the total action SWSS þ Sθ þ SM corre-
sponds to the pure gauge configuration

A ¼ 0;
Z

Âzdz ¼ −θ: ð5Þ

A detailed analysis of the vacuum structure, which turns out
to be precisely the same as the one from the QCD chiral
Lagrangian, will be given in [12].
Holographic baryons.—The baryon in the WSS model is

identified with an instantonic soliton [localized in the four
directions xM ¼ ðxi; zÞ] of the five-dimensional action (1)
[13]. The baryon number coincides with the instanton
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number. This description resembles the Skyrme description
of (large Nc) baryons as solitons of the chiral Lagrangian
[14]. The one instanton solution for Nf ¼ 2 in the original
WSS model is analytically known around z ¼ 0; the
general solution is presented in [15]. In the former limit,
the curvature of the five-dimensional ambient space can be
neglected, the (classical) solution is just a BPST instanton
[16] which, due to the presence of the CS terms, also
sources an electric potential

Acl
M ¼ −i½1 − fðξÞ�g−1∂Mg; Acl

0 ¼ ÂM ¼ 0;

Âcl
0 ¼ Nc

8π2κ

1

ξ2

�
1 −

ρ4

ðρ2 þ ξ2Þ2
�
; ð6Þ

where ξ2 ≡ ðz − ZÞ2 þ j~x − ~Xj2 and

fðξÞ ¼ ξ2

ξ2 þ ρ2
; gðxÞ ¼ ðz − ZÞ1 − ið~x − ~XÞ · ~τ

ξ
: ð7Þ

The solution depends on a set of parameters: the instanton
size ρ, the instanton center of mass position XM in the four-
dimensional Euclidean space, and three SU(2) “angles”
related to the fact that the solution can be rotated by means
of a global gauge transformation. Evaluating the action
SWSS on the above solution, one finds that it is minimized
for ρ2 ¼ ρ2cl ¼ ðNc=8π2κÞ

ffiffiffiffiffiffiffiffi
6=5

p
, Z ¼ Zcl ¼ 0. The other

parameters are genuine instanton moduli (in the calculation

below we will set ~X ¼ 0 without a loss of generality). The
instanton quantum mechanics is described by the
Hamiltonian for the instanton parameters, promoted to
time (and space) dependent operators.
The NEDM.—The electric dipole moment of the neutron

is defined as

~Dn;s ¼
Z

d3x~xhn; sjJ0emjn; si: ð8Þ

Here Jem is the electromagnetic current and jn; si is the
neutron state with spin s. Holographically, the state jn; si
has been derived in [13] in the zero mass, θ ¼ 0
case. Omitting the spin-dependent part, jni ∝ PðρÞψZðZÞ,
with PðρÞ ¼ ρ−1þ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þN2

c=5
p

e−ð8π2κρ2Þ=
ffiffi
6

p
and ψZðZÞ ¼

e−ð8π2κZ2Þ= ffiffi
6

p
. The NEDM is computed at leading order

inmq; θ. In this regime, the neutron state is unchanged with
respect to the one in [13]. The electromagnetic current is
extracted holographically from the five-dimensional gauge
field F as [15]

Jμ em ¼ −κ
�
kðzÞTrðFμzτ

3Þ þ kðzÞ
Nc

F̂μz

�
z→∞

z→−∞
: ð9Þ

The NEDM is computed by solving the equations of
motion for F from the actions (1), (3), and (4) and
performing the integral in (8) using the neutron state above.

The NEDM is extracted from the linear-in-θ term in the
electromagnetic current. We also work in the phenomeno-
logically relevant case of small quark masses with respect
to the dynamically generated scale of QCD. Thus, the
equations of motion are expanded at first order in θ andmq,
using the vacuum plus baryon solutions as a background
(5), (6). We also exploit the fact that close to z ∼ 0, the time
component of the gauge fieldA scales as λ0 while the other
components as λ1=2 [15]; at large λ this selects a few terms
in the equations. Additionally, at large z all the background
fields are powerlike suppressed in z, and the equations are
essentially linearized.
The only components of the bulk gauge field A relevant

for the computation are Âz and A0. In particular, the F̂0z
term from (9) does not contribute to the dipole to leading
order in θ. The equations are then (in the conventions
ε0123z ¼ −ε0123z ¼ 1)

− κfhðzÞDνF0ν þDz½kðzÞF0z�gajmass

−
Nc

64π2
εijkð2Fa

ijF̂
mass
kz þ 2Fa

izF̂
mass
jk Þ ¼ 0; ð10Þ

−κkðzÞ∂νF̂
zν
mass ¼ −χg

�
θ þ

Z
∞

−∞
Âzdz

�

− icTr

�
M
2
ðPe−i

R
∞
−∞

Azdz − c:c:Þ
�
: ð11Þ

With “mass” we denote the linear term in mq. We use the
static gauge and consider time independent gauge fields
(time dependence gives subleading contributions [13,15]).
Evaluating the various contributions, the equation of

motion (11) for Âmass
z reads

κkðzÞ∂i∂iÂmass
z ¼ cmqθ

�
cos

�
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρ2=r2
p

�
þ 1

�
; ð12Þ

where r2 ¼ ~x · ~x. Defining Âmass
z ≡ ½uðrÞ=ð1þ z2Þ� gives

the ODE

1

r2
∂r½r2∂ruðrÞ� ¼

cmq

κ
θ

�
cos

�
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρ2=r2
p

�
þ 1

�
: ð13Þ

The function uðrÞ enters as a source in Eq. (10) for Amass
0 .

The ansatz Amass
0 ¼ Wðr; zÞð~x − ~XÞ · ~τ gives the equation

hðzÞ
�
∂2
rWðr;zÞþ4

r
∂rWðr;zÞþ 8ρ2

ðξ2þρ2Þ2Wðr;zÞ
�

þ∂z½kðzÞ∂zWðr;zÞ�¼27π

λ

ρ2

ðξ2þρ2Þ2
1

r
u0ðrÞ
1þz2

≡Gðr;zÞ:

ð14Þ

The role of the vector modes is extracted with the expansion
Wðr; zÞ ¼ P∞

n¼1 RnðrÞψnðzÞ where the ρ, Z dependence is
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implicit. Since the complete set of eigenfunctions ψnðzÞ
satisfies Eq. (2) and κ

R
dzhðzÞψnðzÞψmðzÞ ¼ δmn, we can

project Eq. (14) on the ψnðzÞ, obtaining an infinite set of
coupled equations of the form

∂2
rRmðrÞ þ

4

r
∂rRmðrÞ − λmRmðrÞ

þ
X∞
n¼1

hmj 8ρ2

ðξ2 þ ρ2Þ2 jniRnðrÞ ¼ hmjh−1Gi; ð15Þ

where

hmj 8ρ2

ðξ2 þ ρ2Þ2 jni≡ κ

Z
dzhðzÞψnðzÞψmðzÞ

8ρ2

ðξ2 þ ρ2Þ2 ;

hmjh−1Gi≡ κ

Z
dzψmðzÞGðr; zÞ: ð16Þ

The system can be solved by truncating it at the desired value
of m, once (2) and (13) have been solved (we do it
numerically).
The electromagnetic current is now computed by switch-

ing on the gauge group orientation moduli ~a. For the
NEDM, it is sufficient to rotate A0↦A0

0 ¼ VA0V−1 with V
a group valued function such that V → ~a as z → �∞ [15].
The AM components are also transformed accordingly. The
rotated fields still satisfy the equations of motion. The
current (9) is thus,

J0em ¼ κfkðzÞV½∂zTrðA0
massτ

3Þ�V−1gz→∞
z→−∞; ð17Þ

since the direct contribution of Âz vanishes. Using the
identity for the generic baryonic state B

hB0; s0jTrð~aτi~a−1τaÞjB; si ¼ −
2

3
ðσiÞs0sðτ3ÞI0

3
I3
; ð18Þ

with σ and τ being the Pauli matrices for spin and isospin,
respectively (see, e.g., [14]), the “semiclassical” part of the
NEDM (i.e., the result before including the ρ, Z-dependent
part of the neutron wave function) is given by
~Dsc
n;s ¼ dscn hsj~σjsi, with

dscn ¼ −
8π

9

X∞
n¼1

gvn
Z

∞

0

drr4R2n−1ðrÞ ¼ −dscp ; ð19Þ

with gvn ¼ −κ½kðzÞ∂zψ2n−1ðzÞ�z→∞
z→−∞ accounting for the

vector meson contributions to the dipole. The known
proportionality of the electric dipole moment to the dipole
electromagnetic form factor at zero momentum, implies
that the latter exhibits complete vector meson dominance.
The same feature shows up for hadronic electromagnetic
form factors in the CP-preserving sector of the WSS
model [15,17].

The final result for the NEDM is obtained by taking into
account the full neutron wave function

dn ¼
R
ρ3PðρÞ2ψ2

ZðZÞdscn dρdZR
ρ3PðρÞ2ψ2

ZðZÞdρdZ
: ð20Þ

Results.—As a first result, note that the electric dipole
moment of the proton, dp, is the opposite of the neutron
one. Numerically solving Eq. (14) we get

dscn ¼ Ncρ
4
cmqπ

κM3
KK

θDðρ; ZÞ ¼ Ncρ
4
m2

π

M3
KK

θDðρ; ZÞ; ð21Þ

with Dðρcl; ZclÞ ≈ 9.5 × 10−3 at λ ≫ 1. Notice the scaling
with Ncm2

π , which was also obtained in the Skyrme model
approach [18]. Then, we numerically compute (20),
extrapolating the model parameters to the real QCD data,
setting Nc ¼ 3 and fixing, as customary, λ ¼ 16.63,
MKK ¼ 949 MeV and cmq ¼ 3.86 × 107 MeV4 from the
matching of fπ , the ρ meson mass and the Gell-Mann–
Oakes–Renner relation. The final result is

dn ¼ 1.8 × 10−16θ e cm: ð22Þ

It is interesting to estimate how much each vector meson
mode contributes to the NEDM. Comparison of (21) with
the numerical results obtained truncating the infinite sum in
(19) to the first few modes, shows that retaining just the
first vector mode overestimates the result by about 40%.
The contribution of higher modes is oscillating in sign. The
inclusion of the first three modes is sufficient to obtain the
complete result with Oð1%Þ accuracy.
The (calculable) holographic model of (planar) QCD

allows us to properly take into account all of the modes
[19]. It is straightforward to show numerically that an
increase of the coupling λ enhances the importance of
higher modes. The result we have obtained for the NEDM
takes into account “quantum” 1=Nc corrections included in
the neutron wave function. Other 1=Nc and 1=λ corrections
are expected to arise from terms which have been neglected
in the model, but which could be consistently accounted for
by its full string theory embedding.
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