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We present results for the (color)magnetic and (color)electric screening masses of the quark-gluon
plasma in the presence of an external magnetic field. The screening masses are extracted from the
correlators of Polyakov loops, determined by lattice QCD simulations at the physical point. We explore
temperatures in the range 200 MeV ≲ T ≲ 330 MeV and magnetic field intensities up to jejB ∼ 1.3 GeV2.
We find that both screening masses are increasing functions of the magnetic field and that the dependence
on B becomes weaker for larger temperatures. In the case of the magnetic screening mass, a slight
anisotropy is also observable.
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I. INTRODUCTION

The fate of heavy quark bound states as a probe of the
deconfining properties of the thermal strongly interacting
medium has a long history. In the seminal paper Ref. [1], a
suppression of the production rate of these states was
predicted, being caused by the shortening of the screening
length for color interactions in the quark-gluon plasma.
In subsequent analyses it was realized that the situation is
in fact more involved: various effects can enhance or
suppress this phenomenon, the final result being the out-
come of a complex dynamical process (see Ref. [2] for a
recent review of the theoretical and experimental aspects).
Here we consider the consequences that the introduction of
a magnetic background field may have on the screening
lengths of the thermal medium.
The presence of strong magnetic backgrounds, with

field strengths comparable to the QCD scale, is a situation
common to many contexts, ranging from cosmology
[3,4] and noncentral heavy ion collisions [5–10], with
magnetic fields going up to 1016 Tesla (eB ∼ 1 GeV2), to
magnetars [11], where magnetic fields of the order of 1011

Tesla are expected on the surface, and possibly higher in the
inner core.

How the properties of strongly interacting matter are
modified by such magnetic fields has been the subject
of many theoretical efforts, see Refs. [12,13] for recent
reviews. As regards the effects more directly related to
color interactions, various studies have considered the
possible influence of an external magnetic field on the
static quark-antiquark potential [14–19], which has been
clarified by recent lattice results [20,21], and might have
consequences relevant to the spectrum of heavy quark
bound states [22–32]. At zero temperature, the potential
becomes anisotropic and the string tension σ is larger
(smaller) in the direction orthogonal (parallel) to the
magnetic field B [20,21]; at finite T, in particular in
the region right below the pseudocritical temperature Tc,
the magnetic field induces a general suppression of σ [21],
leading to an early onset of deconfinement, in agreement
with the observed dependence of Tc on B [33–35]
In this paper, we extend the study to the region of

temperatures above Tc, in order to investigate the effects of
a magnetic background on the interactions between heavy
quarks in the quark-gluon plasma. In this phase, the
effective interaction is no longer confining and can instead
be described by a screened Coulomb form, with two
different screening lengths/masses characterizing the
(color)electric and the (color)magnetic sectors. Studying
the appropriate combinations of Polyakov loop correlators
by means of lattice QCD simulations at the physical
point, we estimated the screening lengths for T ≃
200; 250; 330 MeV and several values of the external
magnetic field (for jejB≲ 1.3 GeV2). From these results,
we conclude that the magnetic field induces a reduction of
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both screening lengths (i.e. an increasing of the screening
masses), which might induce a further suppression of the
formation of heavy quark bound states in the thermal
medium.
The paper is organized as follows. In Sec. II, we discuss

our numerical setup and review the definition of the
screening masses in terms of Polyakov loop correlators.
In Sec. III, we present our numerical results. Finally, in
Sec. IV, we draw our conclusions.

II. SETUP

A. Physical observables

The screening masses of strongly interacting matter have
been historically introduced in perturbation theory by
studying the pole structure of the finite temperature gluon
propagator. While this approach presents no difficulties for
the computation of the leading-order electric screening
mass (see e.g. [36–38]), it was soon realized that perturba-
tion theory gets into trouble at higher orders, or even at the
leading order for the magnetic mass, because of the infrared
sensitivity of the obtained expressions [37–42].
The natural way to overcome these difficulties and obtain

nonperturbative results for the screening masses is to
analyze the large distance behavior of gauge-invariant
correlation functions. For this purpose, correlators of
Polyakov loops have been traditionally used [43,44] and
the two independent correlators that can be studied are

CLL†ðr; TÞ ¼ hTrLð0ÞTrL†ðrÞi
CLLðr; TÞ ¼ hTrLð0ÞTrLðrÞi; ð1Þ

where LðxÞ is the Polyakov loop operator, which is defined
in the continuum by

LðxÞ ¼ 1

Nc
P exp

�
−ig

Z
1=T

0

A0ðx; τÞdτ
�
: ð2Þ

In this expression Nc is the number of colors and the
symbol P exp denotes the path-ordered exponential.
The correlator CLL† is often studied because of its

connection with the free energy FQQ̄ðr; TÞ of a static
quark-antiquark pair, that can be computed using the
relation [45]

FQQ̄ðr; TÞ ¼ −T logCLL†ðr; TÞ: ð3Þ

The study of CLL† is thus the finite temperature counterpart
of the study of Wilson loops at zero temperature, from
which the potential energy of a static quark-antiquark pair
can be extracted. Since in any numerical study the temporal
extent of the lattice is always finite, it would also be
possible to extract the static potential as the zero temper-
ature limit of the free energy extracted from Polyakov
loops, however this second procedure is generically not

numerically convenient because of the much larger stat-
istical errors involved.
In the following wewill need also the somehow less used

correlator CLLðr; TÞ; a comparison of the behaviour of
CLL†ðr; TÞ and ReCLLðr; TÞ for T ≃ 200 MeV is shown in
Fig. 1, from which it is clear that the very large distance
behavior of these two correlators is the same. In fact, the
two correlators turn out to be substantially different only in
the confined phase, where the CLLðr; TÞ correlator is
strongly suppressed also at short distances because of
the confining properties of the medium.1

Under Euclidean-time reversal R∶ τ → −τ the color-
magnetic and color-electric gluon components, Aiðx; τÞ and
A4ðx; τÞ, are respectively even and odd. Since the Polyakov
loop transforms under such a transformation asR∶L→L†,
the following combinations

LM ¼ 1

2
ðLþ L†Þ LE ¼ 1

2
ðL − L†Þ ð4Þ

receive contributions only from the magnetic and electric
sectors respectively. These quantities can be further decom-
posed in eigenstates of the charge conjugation operator C:
under this symmetry C∶L → L� and we thus obtain

LM� ¼ 1

2
ðLM � L�

MÞ LE� ¼ 1

2
ðLE � L�

EÞ ð5Þ

where the subscripts � indicates the C eigenvalues. Such a
decomposition has been introduced in Ref. [44] and it has
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FIG. 1. Comparison of the correlator CLL†ðr; TÞ and the real
part of the correlator CLLðr; TÞ for T ≃ 200 MeV (in both cases
we considered the connected correlators). Only the case B ¼ 0 is
reported for clarity but also in the case of nonvanishing external
magnetic field the behaviour of the correlators is qualitatively
similar.

1Actually, in the pure gauge theory, CLLðr; TÞ vanishes exactly
at all distances in the confined phase because of the exact center
symmetry.
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been recently used in some lattice computations (see
e.g. [46,47]).
From the definitions in Eq. (5), it immediately follows

that the magnetic odd and the electric even sectors are
trivial, i.e.

TrLM− ¼ TrLEþ ¼ 0; ð6Þ

and that the following relations hold true:

TrLMþ ¼ ReTrL ð7Þ

TrLE− ¼ iImTrL: ð8Þ

Using the previous relations, the correlators needed to
investigate the magnetic and electric sectors can be written
in the form

CMþðr; TÞ ¼ hTrLMþð0ÞTrLMþðrÞi − jhTrLij2
CE−ðr; TÞ ¼ −hTrLE−ð0ÞTrLE−ðrÞi ð9Þ

where the minus sign in the definition of CE− is conven-
tional and in the electric case no disconnected term is
present because of the symmetry under charge conjugation.
It is convenient to rewrite the previous correlators in terms
of CLL and CLL† , and the final result is

CMþ ¼ þ 1

2
Re½CLL þ CLL† � − jhTrLij2

CE− ¼ −
1

2
Re½CLL − CLL† �: ð10Þ

Notice that the mixed electric-magnetic correlator,

hTrLMþð0ÞTrLE−ðrÞi ∝ hReTrLð0ÞImTrLðrÞi; ð11Þ

is zero by charge conjugation invariance, meaning that the
real and imaginary parts of the Polyakov loop fluctuate
independently.
The electric and magnetic screening masses can now be

extracted from the large distance behaviour of the corre-
lators in Eqs. (9). In particular, in the very high temperature
regime, one expects [43,44] these quantities to scale as

CE−ðr; TÞjr→∞ ≃ e−mEðTÞr

r

CMþðr; TÞjr→∞ ≃ e−mMðTÞr

r
; ð12Þ

where r ¼ jrj and mEðTÞ and mMðTÞ are the electric and
magnetic screening masses respectively. In the subsequent
analysis, we will use these expressions to extract the
screening masses from the correlators computed on the
lattice. In the presence of an external magnetic field, we
obviously have to take into account the explicit breaking of

the rotational symmetry: correlators taken along directions
parallel or orthogonal to the magnetic field cannot be
averaged, and two a priori different electric screening
masses and magnetic screening masses have to be defined.

B. Numerical setup

In this work, we have adopted a discretization of Nf ¼
2þ 1 QCD based on the Symanzik tree-level improved
gauge action and the stout smeared rooted staggered action
for the fermionic sector. The partition function in the
presence of a magnetic background B is written as

ZðBÞ ¼
Z

DUe−SYM

Y
f¼u;d;s

detðDf
st½B�Þ1=4; ð13Þ

where DU is the functional integration over the SUð3Þ
gauge link variables, SYM stands for the tree-level
improved action [48,49],

SYM ¼ −
β

3

X
i;μ≠ν

�
5

6
W1×1

i;μν −
1

12
W1×2

i;μν

�
; ð14Þ

where W1×1
i;μν and W1×2

i;μν denote, respectively, the real part of
the trace of 1 × 1 and 1 × 2 loops. Finally, the staggered
fermion matrix,

ðDf
stÞi;j ¼ amfδi;j

þ
X4
ν¼1

ηi;ν
2

ðufi;νUð2Þ
i;ν δi;j−ν̂ − uf�i−ν̂;νU

ð2Þ†
i−ν̂;νδi;jþν̂Þ;

is written in terms of two times stout-smeared gauge links

Uð2Þ
i;μ [50], with an isotropic smearing parameter ρ ¼ 0.15,

and the Uð1Þ parallel transporters ufi;μ, which takes the
presence of the external electromagnetic field into account;
in both cases, the latin indices denote the position in the
lattice, and the greek indices denote the direction of
the link.
For a constant and uniform magnetic background

directed along the ẑ direction, a possible choice of the
Uð1Þ phases is (qf is the fermion charge)

ufi;y ¼ eia
2qfBzix ; ufi;xjix¼Lx

¼ e−ia
2qfLxBziy ; ð15Þ

while all the other Uð1Þ link variables are set to 1. For this
choice to actually describe a uniform magnetic field on the
lattice with periodic boundary conditions, it is necessary for
the value of Bz to satisfy the following quantization
condition [51–53]:

eBz ¼ 6πbz=ða2NxNyÞ; bz ∈ Z: ð16Þ

In our numerical simulations, we used for the bare
parameters the values β ¼ 3.85, ms=ml ¼ 28.15 and
ams ¼ 0.0394, which correspond [54–56] to a lattice
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spacing a≃ 0.0989 fm and to physical values of the pion
and strange quark masses (isospin breaking is neglected).
We performed simulations on 483 × Nt lattices, with
Nt ¼ 6, 8, 10, corresponding to a fixed spatial size of
around 5 fm and to temperatures T ≃ 330 MeV;
250 MeV; 200 MeV. Polyakov loop correlators have been
measured on a set of around 5 × 103 configurations for
each temperature (with measures separated by five molecu-
lar dynamics trajectories) and, to reduce the statistical
noise, a single step of HYP smearing [57] has been applied
to the temporal links, with the parameters of the HYP2
action; see Ref. [58]. Correlators have been extracted for
generic orientations (i.e. not just along the lattice axes)
at B ¼ 0, while in the presence of the background field,
we have considered separately correlators along the z axis
(i.e. parallel to B) and in the whole xy plane (i.e. orthogonal
to B), which in the following will be denoted, respectively,
by Z and XY. Note that, since Polyakov loops renormalize
multiplicatively and no further distance-dependent renorm-
alization enters the correlator, the screening masses defined
by Eq. (12) do not need any renormalization.

III. RESULTS

In Fig. 2, we show an example of the electric and
magnetic correlators for T ≃ 200 MeV at ejBj ¼ 0 and
ejBj≃ 1.3 GeV2. At zero magnetic field, all possible
orientations are displayed, while for nonzero field only
orientations perpendicular or parallel to the magnetic field
are considered. For this reason, the three curves in each
panel have different numbers of points.
The points at zero magnetic field approximately lay a

single curve, indicating that the lattice violations of rota-
tional invariance are small. This holds true also for
correlators defined in the plane perpendicular to the
magnetic field, indicating that the residual Oð2Þ subgroup
of Oð3Þ left unbroken by the presence of B is well realized
on the lattice for these correlators and, in short, that lattice
artifacts are small.
The external magnetic field is expected to modify the

correlators both by changing the screening masses and by
inducing anisotropies in the correlators. Figure 2 shows that
both the electric and the magnetic correlators approach zero
faster when an external magnetic field is present, a fact that
implies that the screening masses are increasing functions
of B. The anisotropy of the correlators is in general not easy
to observe in the high temperature regime (see also [21]),
since correlators decay very quickly and it is possible to
estimate them with enough relative accuracy only for a
short distance; nevertheless, for the relatively low T and
high B case shown in Fig. 2, the anisotropy is present and
more pronounced in the magnetic correlator (whose signal
is larger than the electric one).
In order to determine the screening masses from the

correlators, numerical data have been fitted with the func-
tional form in Eq. (12), adopting a bootstrap approach to

propagate the correlations between data. Several fit inter-
vals have been investigated in order to assess the stability
and reliability of the results and to estimate the systematic
uncertainties associated with the fitting procedure. In
Table I, we report the numerical values obtained, and in
Figs. 3–4, we show a graphical representation of their
behavior as a function of jejB and T.
At vanishing magnetic field, we reproduced the known

behavior of mE and mM: the electric screening mass is
larger than the magnetic one and the ratios mM=T and
mE=T are remarkably insensitive to the value of the
temperature, something that a priori would have been
expected to hold only at much higher temperatures. Our
results are in good agreement with the corresponding
temperatures and lattice spacing data presented in
Ref. [47], where the same discretization was used and to
which we refer for an in depth discussion of the B ¼ 0 case.
As previously anticipated from Fig. 2, the effect of the

magnetic field is to increase both the magnetic and the
electric screening mass, as visible in Fig. 3. In both cases,
the growth is roughly linear in the magnetic field and with
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FIG. 2. Magnetic CMþðr; TÞ (upper) and electric CE−ðr; TÞ
(lower) correlators computed at T ≃ 200 MeV and with a
magnetic field jejB≃ 1.3 GeV2. Correlators corresponding to
separations parallel or orthogonal to the external magnetic field
are denoted respectively by Z and XY. For comparison the results
obtained for ejBj ¼ 0 are also displayed.
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similar slopes. Indeed, the ratio mEðT; BÞ=mMðT; BÞ turns
out to be independent of both the magnetic field intensity
and the temperature, as shown in Fig. 5. In particular,
this means that that in the regime studied in this work,
the external magnetic field does not change the usual
mM < mE hierarchy.
In the case of mM, an anisotropy is observed, as could

have been guessed by Fig. 2, with the screening mass
relative to the directions orthogonal to the external field
being larger than the one in the direction parallel to the
field. In the case of the electric screening mass no such an
anisotropy is observed, however this could be due to the
fact that data for mE have larger relative error with respect
to the ones formB. The different accuracy of these estimates
is a consequence of the relation mE > mM: magnetic and
electric correlators have similar statistical (absolute) errors,
but the extraction of mE is made difficult by the rapid
decrease of the electric correlator.
We now try to determine a functional form that well

describes the T and B dependence of the screening masses.
From Fig. 3 and Fig. 4, it follows that the main properties of
the screening masses, at least in the explored range of
temperatures and magnetic field intensities, are (i) at B ¼ 0,
the ratiosmE=T andmM=T are independent of T and (ii) for
large magnetic field, the screening masses grow linearly
with B.
To these properties, it is reasonable to add the require-

ment that the screening masses be analytic functions of the
magnetic field B. From that it follows that, in the limit of
small magnetic field intensity, the behaviors of mE and mM
have to be quadratic in jejB. In the high-temperature phase,

it also seems reasonable to assume the only relevant
dimensional parameters to be the temperature and the
magnetic field intensity.
Before going on, we can explicitly check, in a model-

independent way, that B and T are the only dimensional
quantities that matter to describe the behavior of the screen-
ing masses, by showing that the ratios mE=T and mM=T
depend only on the dimensionless combination B=T2. This
is indeed the case, as can be appreciated from Fig. 6, where
the B2 behavior for small values of the magnetic field is also
somehow more clearly visible than in Figs. 3–4.
A simple ansatz that satisfies all the previous

properties is

md
E

T
¼ adE

�
1þ cd1;E

jejB
T2

atan

�
cd2;E
cd1;E

jejB
T2

��
; ð17Þ

where d denotes the spatial direction (i.e. d ¼ XY or
d ¼ Z) and an analogous expression can be used for
the magnetic screening mass. This functional form is

TABLE I. Screening masses obtained at three different temper-
atures and for several magnetic field intensities. Data at jejB ¼ 0
have been obtained by averaging over all the spatial directions.

T
[MeV]

jejB
[GeV2] mXY

M =T mZ
M=T mXY

E =T mZ
E=T

330 0.00 5.12(18) 5.12(18) 9.07(56) 9.07(56)
” 0.26 5.16(17) 4.92(16) 8.71(61) 9.50(60)
” 0.52 5.20(19) 5.01(17) 9.36(74) 9.71(67)
” 0.78 5.17(19) 5.16(16) 9.15(56) 9.51(66)
” 1.04 5.41(19) 5.16(15) 9.36(49) 8.46(76)
” 1.30 5.77(19) 5.32(17) 10.39(60) 9.69(47)
250 0.00 4.70(17) 4.70(17) 9.54(58) 9.54(58)
” 0.26 5.11(16) 5.11(17) 9.47(67) 9.33(68)
” 0.52 5.12(18) 5.22(21) 9.64(57) 9.66(60)
” 0.78 5.60(16) 5.39(18) 9.85(42) 9.45(49)
” 1.04 5.98(16) 5.60(18) 10.20(64) 9.57(60)
” 1.30 6.67(19) 5.84(19) 10.78(72) 10.59(73)
200 0.00 4.80(22) 4.80(22) 9.65(35) 9.65(35)
” 0.26 5.61(21) 5.59(20) 9.19(54) 9.84(68)
” 0.52 6.14(24) 5.61(26) 10.54(43) 9.71(60)
” 0.78 6.59(18) 6.30(17) 11.55(52) 11.88(61)
” 1.04 7.18(21) 6.55(24) 13.09(76) 12.57(74)
” 1.30 7.70(25) 6.93(23) 12.84(55) 12.52(43)
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m
E
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T = 250 MeV (XY)
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T = 330 MeV (Z)

FIG. 3. Behavior of the ratios mM=T (upper) and mE=T (lower)
as a function of the external field directed along ẑ. Data points
(slightly shifted on the horizontal axis to improve readability) are
shown together with the best fit curves obtained by using the
model in Eq. (17).
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analogous to the one used in Ref. [59] for the case of the
dependence of the chiral condensate on the magnetic field.
The three parameters that enter the ansatz in Eq. (17)

have simple interpretations: aE is the B ¼ 0 value of the

ratio mE=T (that is known to be T-independent), c1;E is
related to the slope of mE as a function of B at fixed
temperature for large magnetic field intensities, while c2;E
is associated with the quadratic small-B behavior of mE.
The best-fit values for the parameters entering Eq. (17)

for both mE and mM are reported in Table II. While for the
magnetic screening masses, reasonable values of the χ2 test
are obtained. For the case of the electric masses, the values
of χ2=d:o:f: are somehow small, indicating that we are
using more parameters than needed to fit the data at the
current level of statistical accuracy. Indeed, a simple linear
dependence on jejB is sufficient to describe the data for the
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2
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2
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FIG. 4. Behavior of the ratios mM=T (upper) and mE=T (lower)
as a function of the temperature. Data points (slightly shifted on
the horizontal axis to improve readability) are shown together
with the best fit curves obtained by using the model in Eq. (17).
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FIG. 5. Determinations of the ratio mE=mM for different
temperatures and external field intensity.
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FIG. 6. Behavior of the ratios mM=T (upper) and mE=T (lower)
as a function of B=T2. Data points are shown together with the
best-fit curves obtained by using the model in Eq. (17).

TABLE II. Best fit values for the parameters entering the
functional form in Eq. (17); in all cases, d:o:f: ¼ 16.

a c1 c2 χ2=d:o:f:

mXY
M 4.964(82) 0.137ð19Þ×10−1 0.141ð55Þ×10−2 1.06

mZ
M 4.935(79) 0.099ð20Þ×10−1 0.094ð49Þ×10−2 1.10

mXY
E 9.24(21) 0.120ð47Þ×10−1 0.069ð38Þ×10−2 0.63

mZ
E 9.34(20) 0.17ð28Þ×10−1 0.039ð21Þ×10−2 0.85
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electric masses; however, this is just a consequence of the
large error bars on the electric correlator.

IV. CONCLUSIONS

In this study, we have investigated the effects of a
magnetic background on color-screening phenomena
taking place in the quark-gluon plasma. To that purpose,
we have measured Polyakov loop correlators for various
temperatures, up to T ≃ 330 MeV, and uniform magnetic
fields going up to jejB≃ 1.3 GeV2. Our results have
been obtained at a single value of the lattice spacing,
a ∼ 0.0989 fm, and a refinement of the analysis, aimed at a
continuum limit extrapolation, should be performed in
the future.
We have shown that the magnetic field induces an

increase of both the magnetic and the electric screening
masses and, to some extent, also the appearance of an
anisotropy in Polyakov loop correlators. The masses
increase linearly with the magnetic field for moderate or
large B values (i.e. for jejB≳ 0.2 GeV2) and a reasonable
ansatz can be given to describe the connection of this
regime with the expected quadratic behaviour for small
values of B, in which both screening masses are propor-
tional to T and to a function of B=T2. Indeed, the influence
of the magnetic field is stronger at lower temperatures and
asymptotically vanishes in the large T limit. On the other
hand, the ratio of the magnetic to electric screening masses
turns to be independent of B, within errors, with the
magnetic screening mass always being smaller than the
electric one.
The observed increase of the screening masses as a

function of B is in qualitative agreement with perturbative
computations [60–62] and with the behavior already
observed below Tc: the magnetic background tends to
suppress the confining properties of the thermal medium
below Tc, and to enhance the screening of color interactions
above Tc. In both cases, one can interpret the effect in terms
of the decrease of the pseudocritical temperature Tc as a
function of B [33], so that in the low-temperature phase,

one approaches deconfinement as B increases, while at
high temperature one gets farther from the transition and
color screening gets stronger by increasing B. Following
this line of reasoning, no particular critical behavior is
expected in the high-temperature phase when approaching
the large magnetic field limit, since the system will just
become more deconfined (i.e. color interactions will be
more and more screened); this is in contrast to what
happens below Tc or to what might happen even at
T ¼ 0 [21,63].
The increasing of the screening masses induced by the

presence of an external magnetic field could, in principle,
lead to a stronger suppression of heavy quark bound states
in peripheral heavy-ion collisions and, more specifically,
to a direct relation between suppression and centrality.
However, following the original argument presented in
Ref. [1], an in-depth discussion should consider also the
modifications of the radius of the heavy quarks bound
states as a function of B, since it is the reduction of the
screening length with respect to such radius which brings
us to the actual suppression; a direct computation of
quarkonia spectral functions in the presence of magnetic
background is surely something that should be addressed
by future lattice studies. Moreover, in order to assess the
relevance of our results to heavy ion phenomenology, one
should first of all know to which extent the magnetic field
produced in noncentral heavy ion collisions survives the
thermalization process, not to mention all the other
dynamical processes that make it difficult to safely predict
the fate of heavy quark bound states even in the absence of
external magnetic field.
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