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pre, tivese eu ganas del ou non. Sen eles, eu xamais teŕıa podido contribuir ao traballo
que se presenta nesta tese co mesmo entusiasmo. Grazas pola vosa alegŕıa, pola voso bo
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Foreword

The career of a young
theoretical physicist consists of
treating black holes in
ever-increasing levels of
abstraction.

Sidney Coleman, updated by
Andrew Strominger

With hindsight, the 20th century can be recalled as a critical time in Mankind’s search for
the underlying description of Nature. In this era, physicists discovered the theory of (nearly)
everything: the combined framework provided by General Relativity and Quantum Field
Theory. Each member of the theory of nearly-everything arises from the reconciliation of
the Special Theory of Relativity and a different physical realm. In the case of General Rel-
ativity, this realm corresponds to nothing but Gravity herself. In the case of the Quantum
Field Theory, it corresponds to Quantum Mechanics. Supplement with the proper experi-
mental data, these two frameworks produce extremely powerful theories, and even in recent
years we witnessed their respective triumphs in the description of real-world phenomena,
with the discoverement of both the Higgs boson and gravitational waves.

However, and speaking only at the basic, theoretical level, their coexistence is far from
peaceful. It turns out that there is a fundamental tension between their underlying physi-
cal principles, which is better appreciated when trying to understand quantum phenomena
in a dynamical spacetime. Black holes have been instrumental in exposing this tension by
their pivotal role in the formulation of the Holographic Principle and the discoverement of
the Information Paradox. This last paradox, specially in its modern Firewall incarnation,
points clearly to the fact that, in a curved spacetime, there might be a fundamental clash
between the principles of locality and quantum-mechanical unitarity. As a consequence, we
can rightfully ask ourselves if the framework of Quantum Field Theory breaks down at the
basic level in the presence of gravity.

On the other hand, a candidate ultraviolet completion of both Quantum Field Theory and
General Relativity has also been found: String Theory. First, as a perturbative frame-
work allowing for a consistent quantum-mechanical description of the graviton. Second, as
five different theories of supersymmetric strings that also contained the building blocks for
assembling Particle Physics. And, finally, as different perturbative limits of the same under-
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lying beast, whose fundamental nature still awaits to reveal herself in full splendor: M-theory.

It is in this context where the former status of Quantum Field Theory received a stun-
ning twist. As discovered by Maldacena twenty years ago, Quantum Field Theory can serve
as a nonperturbative definition of Quantum Gravity. This idea, that goes under the name of
the holographic duality, gauge/gravity duality or the AdS/CFT correspondence, postulates
that certain string theories in asymptotically anti-de Sitter spacetimes are secretly dual to
Conformal Field Theories living in a fixed geometry of lower dimensionality.

The way in which this apparently impossible equivalence is implemented is by the weak/strong
nature of the duality. The Conformal Field Theory standard perturbative regime corresponds
to the highly-quantum, highly-stringy regime of the Quantum Gravity theory. Conversely,
the classical and pointlike limit of the Quantum Gravity theory, which is nothing but Su-
pergravity, corresponds to the large-N and strongly-coupled regime of the Conformal Field
Theory.

It is by means of this last observation that String Theory has come closer to the every-
day experimental world. In recent years, a plethora of strongly-coupled collective media
have been discovered, ranging from Quantum Cromodynamics to Condensed Matter. These
novel phases of matter defy a standard kinetic description based on weakly-coupled quasi-
particles: even in the case where their underlying microscopic Lagrangian is known in closed
form, as it happens for the Quark Gluon Plasma, their strongly-coupled nature rendes stan-
dard perturbative methods useless. In principle, if the microscopic description of the system
is known, Lattice Field Theory allows a first-principles approach. However, the fact that
lattice techniques suffer when dealing with highly-oscillatory, complex exponentials prevents
a straightforward study of real-time processes, even though these are of the uttermost im-
portance when characterizing these novel phases.

The hopeful expectation that arises is that, at strong coupling, Holographic Conformal
Field Theories fall into the same broad universality class -i.e. they display the same kind of
emergent behavior - as the underlying microscopic theories describing these systems. With
this assumption, the AdS/CFT correspondence can deliver extremely valuable and general
lessons about the physics of strongly-coupled quantum matter. Impressively, these devel-
opments take place through a geometrization of quantum-mechanical phenomena, which
reduces answering standard field theory questions to the analysis of dual gravitational con-
structions. In this way, the AdS/CFT correspondence has emerged as the bedrock of an
arena where black holes in particular, and gravity in general, talk to the rest of modern
physics in unexpected and surprising ways.
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About this thesis

In recent years, the problem of how macroscopic, isolated quantum systems driven out of
equilibrium thermalize has been under intense survey. At the theoretical level, the hundreds
of works done in this area employ tools that range from integrability to numerical simulations.
Furthermore, it has also become possible to address this question directly in the laboratory:
by manipulating cold atom systems with optical lattices, different kinds of perturbations can
be introduced, and the system relaxation can be efficiently monitored. A major lesson that
emerges from these studies is that the different routes to final equilibration the system has
at its disposal build up a surprisingly rich landscape, that depends both on the microscopic
interactions and the initial state. These include features like prethermalization stages, partial
memory loss of the initial conditions or revivals, to mention a few of them.

Conversely, by studying gravitational collapse in asymptotically global AdS spacetimes,
we have similarly found a surprisingly rich landscape of possible routes to final black hole
formation, that depend crucially on the particular details of the action considered and the
initial state in question. Given that a process of black hole formation corresponds to the
thermalization of the dual field theory in the light of the AdS/CFT correspondence, it is
natural to wonder if these two landscapes can be related.

The goal of this thesis is finding out which universal lessons the dynamics of gravity in
asymptotically global AdS spacetimes entails about the thermalization of strongly-coupled,
finite-sized systems in isolation.

The manuscript is based on our previous publications [1, 2, 3, 4, 5], and has the follow-
ing structure:

• As a good friend once stated beautifully, “an exiting Ph.D. student feels the moral
duty to be as useful as possible to the doctorate students following him”. In this spirit,
in chapter 1 I provide a general introduction to the topics of quantum thermalization,
the AdS/CFT correspondence (with a focus on real-time physics) and the dynamics of
Einstein-Hilbert gravity in asymptotically global AdS spacetimes. The expert reader
in these areas can of course skip this chapter. I also want to emphasize that the review
only introduces the material needed to understand the work presented in the following
chapters, and many important topics in the rich landscape of ”applied AdS/CFT” are
left untouched.

• Chapter 2 focuses on the holographic interpretation of delayed gravitational collapse
processes that take place in global AdS4. We consider Einstein-Hilbert gravity with a
real, massless scalar field. We discuss in detail the phenomenology displayed by this
system, with emphasis on the dependence of the dynamical geometry on the initial
state. Our major proposal is that these novel black hole formation processes correspond
to quantum revivals on the dual CFT3, i.e., unitary field theory evolutions where the
initial state is reconstructed in a quasiperiodic way several times before an ergodic
regime sets in. We back our proposal by a numerical computation of the propagation
of entanglement. We find out that a simple model where this propagation is causal on
average is sufficient to accomodate their phenomenology in certain cases, and discuss
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in detail the different regimes the entanglement entropy can fall in both before and
after black hole formation takes place, commenting on their dependence on the initial
state considered.

• Chapter 3 discusses the three-dimensional instance of the previous problem. We com-
ment on the salient similarities and differences between quantum revivals in two-
and three-dimensional holographic CFTs. We perform again a numerical entangle-
ment entropy computation and illustrate how, as the energy density increases, its
dynamics transitions progressively from causal propagation to a series of fast rephas-
ing/dephasing phases separated by long plateaux of ergodic behavior. These two
regimes are associated to two well-differentiated time scales, that display qualitatively
similar properties to the ones observed experimentally in other systems.

• The experimental evidence available in the literature shows that the existence of
exactly-periodic geometries in asymptotically global AdS spacetimes is ubiqutuous.
This fact motivates the search of these solutions in simple, effective descriptions of
the gravitational problem. With this goal in mind, in chapter 4 we demonstrate that,
under mild dynamical assumptions, time-periodic geometries exist in an elementary
thin-shell construction in any dimension.

• In chapter 5 we study holographic thermalization in finite-sized systems with the extra
ingredients of electric charge and the possibility of obtaining spontaneous symmetry
breaking. We unravel the phase diagram of our holographic CFT both in the micro-
canonical and the grand-canonical ensembles and discuss how the thermalization time
depends not only on the conserved charges of the system but also on the properties of
the initial state. We verify the previous hypothesis put forward in the literature re-
garding the gravitational dual of the mechanism behind thermalization or its absence.
Finally, we discuss the late-time relaxation of one-point functions of non-conserved
quantities in our model and comment on how our results relate to the planar case. We
provide preliminary evidence of a new relaxation regime where the system supports
long-lived oscillations.

• Chapter 6 is devoted to the first study of holographic, homogeneous quenches in the
global context. We put our emphasis in the adiabatic limit. We identify a universal
attractor that controls the late time dynamics of this kind of quench process. We
uncover the existence of an intrinsic adiabaticity threshold in our system and undertake
an analysis of the salient features of this attractor, focusing on the issue of its linear and
nonlinear stability. Finally, we show that, in the three-dimensional case, the attractor
at the adiabaticity threshold can be related to an extremal charged black hole through
a chain of duality maps.

• Chapter 7 states briefly the conclusions about the work presented in this manuscript
and dicusses future research directions this author finds worth pursuing.

• Finally, I provide a summary of the work contained in this thesis aimed at the curious
but non-expert reader, written both in English (chapter 8) and Galician (chapter 9)
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I would like to inform the reader that, in order to ease the task of going through the material
contained in this work, at the beginning of chapters 2-6 I have included a brief summary of
their content.
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Chapter 1

Introduction

1.1 Thermalization

In this section, we are introducing several notions of entropy in classical and quantum physics,
with the aim of presenting a quantity fundamental to this thesis: the entanglement entropy.
Then, we move on to the study of a paradigmatic example of how to drive a quantum system
out of equilibrium: a quantum quench. We will illustrate that, in this case, the entanglement
entropy is an efficient tool to monitor the equilibration of the system. Finally, we discuss
briefly the Eigenstate Thermalization Hypothesis, making several general remarks about the
thermalization process itself.

1.1.1 Entropy in classical and quantum physics

At the classical level, entropy is defined as the Shannon entropy of the probability distribution
ρ(P,Q; t) in phase space

S(ρ) ≡ −
∫ ∫

dPdQ

(2π~)D
ρ(P,Q; t) log ρ(P,Q; t), (1.1.1)

where 2D is the phase space dimension. The time evolution of ρ is determined by the
Liouville theorem

∂tρ = {H, ρ}, (1.1.2)

which implies, in particular, that S(ρ) is conserved, reflecting the microscopic reversibility
of the dynamics. As we stressed before, any notion of irreversibility necessarily comes from
a coarse-graining procedure. Imagine, for instance, that our system consists of N particles
with positions x1, ...,xN and momenta p1, ...,pN ; assume that, as observers, we are solely
interested in the dynamics of a subset of NA particles. The reduced probability distribution
that describes this subsystem is

ρA(x1, ...,xNA ,p1, ...,pNA ; t) ≡
∫ ∫

dxNA+1...dxNdpNA+1...dpNρ(x1, ...,xN ,p1, ...,pN ; t)

(1.1.3)

11
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where we have averaged over the phase space coordinates of the remaining N − NA parti-
cles. Liouville theorem cannot be employed to constrain the time evolution of the entropy
of ρA. In the thermodynamic limit NA, N →∞, 0 < NA/N � 1, this entropy is expected to
increase in time until saturating to the canonical ensemble value, provided that the system
is ergodic [6].

In the quantum realm, the correspondence principle guarantees a similar development of
events. The state of the system is now encoded by a density matrix ρ, whose time evolution
is controlled by the quantum Liouville theorem1

∂tρ = −i [H, ρ] , (1.1.4)

while the natural entropy to consider is the von Neumann entropy

SvN(ρ) ≡ −Tr(ρ log ρ). (1.1.5)

The von Neumann entropy can also be expressed as

SvN(ρ) = −
∑

pi log pi, (1.1.6)

where pi is the i-th eigenvalue of the density matrix. This last expression shows that the
von Neumann entropy is nothing but the Shannon entropy of the eigenvalue distribution
{pi}, in parallel with the classical case. Furthermore, (1.1.6) it is also usefu to prove several
properties of von Neumann entropy.

First, when the system is in a pure state, there is a basis in which ρpure = |ψ〉 〈ψ|, so
SvN(ρpure) = 0; for a mixed state we always find that SvN(ρmixed) > 0, since pi ∈ [0, 1).
Therefore, SvN can be though of as an order parameter distinguishing pure states from
mixed ones. In particular, if the system is at thermal equilibrium within a given ensemble,
its von Neumann entropy matches the expected thermodynamical entropy. Consider, for
example, the microcanonical density matrix

ρmc =
D∑
n=1

1

D
|n〉 〈n| , (1.1.7)

where the states |n〉 in the microcanonical shell HE are such that their energy En ∈
[E −∆E,E + ∆E], with ∆E � E, and D = dim HE. It is immediate to show that
SvN(ρmc) = logD, as expected. Finally, from (1.1.6) we observe that any unitary trans-
formation leaves SvN(ρ) invariant, since it does not change the eigenvalue distribution of ρ.
Therefore, SvN(ρ) is conserved under time evolution, in parallel with its classical counter-
part. Following a coarse-graining procedure analogous to the one employed in the classical
case would allow us to introduce the notion of entanglement entropy (EE), which need not
be conserved anymore.

Consider a quantum system with Hilbert space H and focus on a subsystem A. The full

1From now on we always work in c = kB = ~ = 1 units
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Hilbert space is bipartitioned as H = HA ⊗HĀ. Observations restricted to A are now fully
encoded in the reduced density matrix ρA,

ρA ≡ TrĀ(ρ), (1.1.8)

where TrĀ represents the partial trace over the complementary subsystem Ā. The encoding
is complete in the sense that, for any operator OA ⊗ I restricted to A, we have that

〈OA〉 = Tr(ρ(OA ⊗ I)) = Tr(ρAOA). (1.1.9)

In fact, this identity alone fixes the reduced density matrix ρA to have the form (1.1.8) [7].
Let us assume that the system is in a pure state, so ρ = |Ψ〉 〈Ψ|, and introduce two complete
orthonormal basis for the subsystems A, {|φn〉}, and Ā, {|ΦN〉}. In these basis, the total
wavefunction can be factored as

|Ψ〉 =
∑
n,N

cn,N |φn〉 |ΦN〉 , (1.1.10)

with
∑

n,N |cn,N |
2 = 1. The partial trace operation corresponds to computing

ρA = TrĀρ =
∑
N

〈ΦN | ρ |ΦN〉 , (1.1.11)

which results in

ρA =
∑
n,m

(∑
N

cn,Nc
∗
m,N

)
|φm〉 〈φn| . (1.1.12)

By Schmidt decomposition, we can always find new basis {|σn〉} and {|ΣN〉} for A and Ā
such that the original wavefunction reduces to

|Ψ〉 =
∑
n

αn |σn〉 |Σn〉 , (1.1.13)

and ρA is diagonalized

ρA =
∑
n

|αn|2 |σn〉 〈σn| . (1.1.14)

The entanglement entropy of A, SA, is nothing but the von Neumann entropy of ρA,

SA ≡ SvN(ρA), (1.1.15)

and can be expressed as SA = −
∑

n |αn|
2 log |αn|2 if we choose to work on the Schmidt

basis. A nonzero SA measures the failure of subsystem A to be in a pure state. This
failure is equivalent to the statement that, with respect to the Hilbert space bipartition, the
complete system is not in a product state, but rather in an entangled one:

SA 6= 0 ⇐⇒ |Ψ〉 6= |ψA〉 |ψĀ〉 . (1.1.16)

Quantitatively, eSA represents the minimum number of auxiliary states we have to entangle
A with in order to recover ρA from a pure state of the enlarged system [8]. For a spatially



14 CHAPTER 1. INTRODUCTION

extended system, it is customary to take A as a compact spatial region and, sometimes, the
term geometric entropy is employed to refer to this particular situation. Let us mention
briefly some of the most relevant properties of the quantity we have just introduced.

First, looking at (1.1.13), one is easily convinced that the eigenvalues of ρA and ρĀ coincide
if the system is in a pure state. Therefore, for pure states the identity

SA = SĀ (1.1.17)

is satisfied. The EE is also constrained to verify several other nontrivial relations when
we consider more general partitions of the Hilbert space of the system. For instance, lets
assume that H = HA⊗HB⊗HC . It can be shown that the entanglement entropy is strongly
subadditive [9, 10, 11],

SABC + SB ≤ SAB + SBC . (1.1.18)

The strong subadditivity of the EE implies also its subadditivity,2

SAB ≤ SA + SB. (1.1.19)

Furthermore, SAB is also bounded from below by the Araki-Lieb inequality [12],

|SA − SB| ≤ SAB. (1.1.20)

A rather obvious remark is that the EE departs from the classical thermodynamical entropy
by being generically nonextensive, as shown by (1.1.17).

This lack of extensivity is manifest in the geometric entanglement entropy. In order to
expose it, consider a QFT defined on a (d + 1)-dimensional globally hyperbolic manifold of
topology R × Σ and choose, as subsystem, a region A belonging to the Cauchy surface Σ.
Typically, the area law

SA ∼
vol(∂A)

εd−1
UV

+ ... (1.1.21)

is satisfied.3 The EE scales with the area of the entangling region, and not with its volume.
The ultraviolet cutoff εUV is needed to obtain a finite answer since in any local QFT there are
correlations of arbitrarily short wavelength across the dividing surface ∂A. If not regulated,
these high-frequency correlations make a divergent contribution to the EE.4 Obtaining more
specific results about the ultraviolet behaviour of SA requires one to make further assump-
tions. For example, from holographic and anomaly considerations, it is possible to argue [8]
that for a CFTd+1 in odd spatial dimensions,

SA = ad−1

(
LA
εUV

)d−1

+ ...+ a2

(
LA
εUV

)2

+ (−1)
d−1

2 S̃ log
LA
εUV

+ a0 +O(εUV ), (1.1.22)

2Take B to be empty in (1.1.18).
3For fermionic QFTs there can be an additional logarithmic correction.
4Worse than that, they actually prevent the Hilbert space splitting, so generically we cannot assume that

H = HA ⊗HĀ unless the ultraviolet regulator is introduced.
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while in even spatial dimensions

SA = ad−1

(
LA
εUV

)d−1

+ ...+ a1
LA
εUV

+ (−1)
d
2 S̃ +O(εUV ). (1.1.23)

In these expressions, LA sets the size of the entangling region. The quantity S̃ is free of
renormalization ambiguities5 and depends on the CFT under consideration, the particular
state we are in, and the choice of entangling region. Since it is determined by the infrared
physics of the system, it allows to distinguish low-energy states from highly-excited ones,
where it shows volume scaling, S̃ ∼ vol(A). In odd spatial dimensions, S̃ also carries non-
trivial information about the conformal anomalies of the theory.

Finally, let us mention that exact results that surpass (1.1.22),(1.1.23) are scarce. Fortu-
nately, it has been possible to take advantage of the infinite-dimensional symmetry algebra
of two-dimensional CFTs to compute entanglement entropies in several situations [18, 19].6

For instance, consider an interval of length l as entangling region. In the vacuum, the EE of
this interval is given by

S(l) =
c

3
log

l

εUV
, (1.1.24)

in accordance with (1.1.22). The parameter c is the central charge of the CFT. If we consider
a thermal state instead, the entanglement entropy is given by

S(l, β) =
c

3
log

(
β

πεUV
sinh

(
πl

β

))
. (1.1.25)

This expression reduces to the vacuum result in the l� β limit, showing that the ultraviolet
structures of the thermal and the vacuum states are identical,

S(l, β) =
c

3
log

l

εUV
+
cπ2l2

18β2
+ ... (1.1.26)

In the opposite l � β limit, the EE becomes extensive at leading order, as expected for a
generic high-energy state,

S(l, β) =
πc

3β
l +

c

3
log

β

2πεUV
− c

3
e−

2πl
β + ... (1.1.27)

Furthermore, the leading order, extensive piece of the result above coincides with the thermal
entropy,

S(l, β) = sth(β)l, (1.1.28)

in such a way that the thermodynamical entropy density and central charge are related as
sth(β) = πc

3β
.

5This fact upholds even in odd spatial dimensions.
6These results are based on expressing the entanglement entropy in terms of analytically continued Rènyi

entropies (the so-called replica trick).



16 CHAPTER 1. INTRODUCTION

There exist other relevant information-threoretical quantities that can be derived from the
EE. A particularly important one is the mutual information. For two nonoverlapping sub-
systems A and B, the mutual information I(A,B) is defined as

I(A,B) = SA + SB − SAB. (1.1.29)

Subadditivity of the EE implies that the mutual information is semipositive definite,

I(A,B) ≥ 0. (1.1.30)

Said otherwise, the mutual information measures the failure of the EE to be strictly additive.
Unlike the EE, the mutual information is manifestly finite. Physically, it is interpreted as
a measure of the degree of correlation between subsystems A and B, taking into account
both classical and quantum contributions. In fact, it is possible to demonstrate that, for
d−dimensional spin lattices, the connected correlation function C(OA,OB) = 〈OA ⊗OB〉 −
〈OA〉 〈OB〉 between any two operators OA,OB satisfies [20]

I(A,B) ≥ C(OA,OB)2

2‖OA‖2‖OB‖2
. (1.1.31)

Note that a zero mutual information between A and B implies that the connected correlator
of any two operators restricted to those subsystems vanishes. Unlike the EE, the mutual
information between two regions in the vacuum state of a two-dimensional CFT is not uni-
versal. It contains exhaustive information about the dimensions of primary operators and
the structure constants of the theory [21].

Another relevant information-threoretical quantity is the relative entropy. Consider two
density matrices ρ and σ. Their relative entropy S(ρ|σ) is defined as

S(ρ|σ) = tr (ρ log ρ)− tr (ρ log σ) . (1.1.32)

In terms of the spectral decompositions ρ =
∑

n pn |n〉 〈n|, σ =
∑

a qa |a〉 〈a|, (1.1.32) can be
alternatively expressed as

S(ρ|σ) =
∑
n

pn log(pn)−
∑
n,a

pn log qa |〈n|a〉|2 . (1.1.33)

In particular, if both ρ and σ admit a spectral decomposition in the same basis, we recover

S(ρ|σ) =
∑
n

pn log

(
pn
qn

)
, (1.1.34)

which is the standard definition of the relative entropy of the two classical probability dis-
tributions {pn} and {qn}.

The relative entropy satisfies two crucial properties:

• Iff ρ = σ, S(ρ|σ) = 0. Iff ρ 6= σ, S(ρ|σ) > 0. The relative entropy between two density
matrices is semipositive definite. Note that it cannot be employed directly to define a
metric in the space of density matrices because it is not symmetric.
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• Under any completely positive trace preserving (CPTP) operation N on both ρ and
σ, the relative entropy is monotonous,

S(N (ρ)|N (σ)) ≤ S(ρ|σ). (1.1.35)

Let us bipartite our Hilbert space as H = HA ⊗ HĀ, and define the partial trace
operator as TrĀ = IHA ⊗ TrHĀ . It follows that

S(ρA|σA) ≤ S(ρ|σ). (1.1.36)

In particular, imagine our quantum system is a QFT, with a Hilbert space bipartition
specified by choosing a region A of a Cauchy surface Σ. Let ρA, σA be reduced density
matrices associated to A. Consider now a subregion B ⊂ A. From the monotonicity
of the relative entropy under the partial trace, we have that

S(ρB|σB) ≤ S(ρA|σA). (1.1.37)

When the volume of B tends to zero, the reduced density matrices ρB, σB should only
be sensitive to the short-distance structure of the original quantum states in question,
ρ and σ. In any local QFT, this ultraviolet structure coincides with the ultraviolet
structure of the vacuum state. Therefore,

lim
|B|→0

S(ρB|σB) = 0, (1.1.38)

where |B| is the volume of B. The relative entropy is ultraviolet finite.

Employing these two properties we can prove several facts that shed light on the physical
interpretation of relative entropy:

• For the bipartition H = HA ⊗HB, let ρ be a joint state of the complete system, and
ρA,ρB the reduced density matrices associated with HA, HB. We have that

S(ρ|ρA ⊗ ρB) = S(ρA) + S(ρB)− S(ρ) = I(A,B). (1.1.39)

In this case, the relative entropy measures the failure of the joint system to be in a
product state. In particular, the fact that the relative entropy is semipositive definite
implies that the mutual information is also semipositive semidefinite and, in conse-
quence, that the entanglement entropy is subadditive.

• Imagine that our Hilbert space H has a finite dimension D = dim H. Take σ = IH/D,
and ρ a generic state. We have that

S(ρ|σ) = logD − S(ρ). (1.1.40)

The positivity of the relative entropy implies that σ is the maximally entangled state in
H. In this case, the relative entropy measures the failure of the state ρ to be maximally
entangled. In particular, if our Hilbert space is the microcanonical shell HE associated
to some Hamiltonian H, the relative entropy measures the failure of the state ρ to
be the thermal equilibrium one. Note that the time-dependence of the state ρ can be
arbitrary.
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• Take σ to be the density matrix associated to the equilibrium state in the canonical
ensemble,

σ =
e−H/T

Z
, Z = tr(e−H/T ) = e−F/T . (1.1.41)

The relative entropy between σ and any other state ρ is given by

S(ρ|σ) =
1

T
[tr(ρH)− TS(ρ)]− 1

T
F ≡ 1

T
(F (ρ)− F ) =

1

T
∆ 〈H〉 −∆S, (1.1.42)

where the free energy F (ρ) is defined in terms of the average energy 〈H〉ρ = tr(ρH)
in the state ρ and its von Neumann entropy S(ρ) by employing the standard thermo-
dynamical relation F = E − TS. The positivity of the relative entropy implies that
the thermal state minimizes this free energy with respect to any other quantum state.
Again, this includes time-dependent states.

Let us consider the reference state specified by σ. Since σ is both hermitean and semipositive
definite, it can be expressed as7

σ = e−Hσ . (1.1.43)

The hermitean operator Hσ is known as the modular Hamiltonian. We can picture (1.1.43)
as the canonical density matrix associated to Hσ at temperature T = 1. Therefore, from
(1.1.42) we have that, for any other density matrix ρ,

S(ρ|σ) = ∆ 〈Hσ〉 −∆S. (1.1.44)

The positivity of the relative entropy implies that the variation of the von Neumann entropy
between the states σ and ρ is bounded by the variation of the expectation value of the
modular Hamiltonian as

∆S ≤ ∆ 〈Hσ〉 . (1.1.45)

For a generic state, the modular Hamiltonian is a nonlocal operator not known in closed
form. This situation only changes in a handful of cases where Hσ is the integral of a local
operator and generates a geometric flow. The trivial example involves the last item of our
previous list, where the reference state was the canonical density matrix associated to the
whole system, and Hσ = βH. In this case, the flow associated to the modular Hamiltonian
is Euclidean time evolution.

1.1.2 Quantum quenches

A quantum quench is one paradigmatic example of how to drive a quantum system away
from equilibrium. Let us consider that, initially, our system is prepared in an energy
eigenstate |ψ0〉 of some Hamiltonian H0, that may depend on several external parameters
{λi, i = 1, 2, 3...}. A sudden change λj → λj+δλj, or quench, leads to a new Hamiltonian H,
for which our original state |ψ0〉 is, typically, a highly excited state. Therefore, the natural
expectation is that the post-quench time evolution, implemented by the modified Hamilto-
nian H, leads to the thermalization of the system. We distinguish between global or local

7Any normalization factor that ensures tr(σ) = 1 has been absorbed into Hσ.
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quenches depending on whether the quench protocol is translational invariant or not; for
example, a global quench could correspond to the sudden change of the external magnetic
field in the one-dimensional transverse Ising Model.

In [22][23], Calabrese and Cardy showed that, under some technical assumptions, the high-
degree of symmetry of 1+1-dimensional CFTs allowed for an analytical understanding of the
post-quench dynamics. These authors considered a global quench in which the initial state
|ψ0〉 was the vacuum of a gapped, local Hamiltonian Hgapped. After the sudden removal of the
mass gap, |ψ0〉 becomes a highly-excited state of the resulting gapless Hamiltonian, HCFT .
This excited then state evolves unitarily with HCFT . Their major results, as summarized in
[24], were:8

• One-point functions of non-conserved, local observables decayed exponentially to their
values in the HCFT groundstate.

• The horizon effect. There exists a characteristic time scale after which nonlocal ob-
servables attain equilibrium. For the EE of a length l interval at time t, S(l, t), or two-
or higher-point functions whose arguments are contained within a length l interval,
equilibration is observed after a horizon time thor = l/2. The EE increases linearly
with time up to this point, S(l, t) = 2sth(β)t for t ≤ thor.

• After the horizon time thor, and up to exponentially-small corrections, the reduced
density matrix of the interval agrees with the reduced canonical density matrix at a
temperature fixed by the total energy.9 In particular, the EE saturates to the thermo-
dynamical entropy at the given temperature, S(l, t) = sth(β)l + ... for t > thor.

These results suggest an effective description of the post-quench dynamics based on quasi-
particles [22]. Calabrese and Cardy imagined that the energy excess injected by the quench
created a uniform distribution of pointlike pairs of entangled quasiparticles, each one con-
sisting of a right- and a left-mover that traveled at unit speed.

Take an interval A of length l. To compute S(l, t), we just have to count the number of
unpaired quasiparticles within A at a given time. It is enough to consider the semi-infinite
line to the right of A, Ā+, since S(l, t) is twice the entanglement entropy of A with this
region. At time t, a point x′ ∈ A = [0, l] is entangled with a point x′′ ∈ Ā+ = [l,∞) iff a
pair of entangled quasiparticles emitted from the point x at t = 0 arrive simultaneously at
x′ and x′′. Therefore, x′ and x′′ have to be related as x′′ = x′ + 2t in order to contribute. In
this way, the entanglement entropy is given by the following integral

S(l, t) = 2ρ0

∫ l

0

dx′
∫ ∞
l

dx′′δ(x′′ − (x′ + 2t)), (1.1.46)

where ρ0 is the quasiparticle density created by the quench -the factor of two was explained
before-. After performing the integral, we get: i) for t < l/2, S(l, t) = 4ρ0t, ii) for t > l/2,

8In the following, when referring to times t and lengths l, we assume that t, l � 1/m, where m is the
mass gap of the original Hamiltonian. Said otherwise, we are quoting the results at leading order in 1/m.

9The temperature is fixed through the relation E = 〈ψ0|HCFT |ψ0〉 = Tr(ρcHCFT ). Here ρc is the
canonical density matrix and E the total energy.
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S(l, t) = 2ρ0l, which agree with the rigorous result if we identify ρ0 = sth(β)/2, in such a
way that the initial quasiparticle density is set the energy injected by the quench.

While the Hamiltonian considered in [22] was integrable10, the horizon effect is believed
to hold generically for any quantum system with a local Hamiltonian. The Lieb-Robinson
bound [25] shows that, even in non-relativistic quantum systems, locality constraints the
maximum speed of information propagation. However, apart from 1 + 1-dimensional CFTs,
there are few field theory examples where explicit quench computations can be performed,
higher dimensional free field and holographic theories standing as manageable cases. In par-
ticular, in the holography realm, it was shown in [26] that the horizon effect is present when
computing entanglement entropies in a simple gravitational collapse background, demon-
strating that this effect exists even in a strongly-coupled theory with no quasiparticles.

Incidentally, the Calabrese and Cardy computation illustrates what it is perhaps the most
important property of the thermalization process. To wit, the thermalization time is not
a well-defined physical quantity. Different observables can attain their final values at ther-
mal equilibrium at different times. For instance, is we decided to monitor solely one-point
functions, we would conclude that the system reaches a thermal state exponentially fast;
however, this is not true, as nonlocal probes clearly show. At most, we can talk only about
the thermalization time for a given observable.

A sufficient condition for a subsystem A to fully thermalize is that, at leading order in
the subsystem size, its reduced density matrix ρA takes the canonical form. In turn, this is
a sufficient condition for any observable OA to take its expectation value at thermal equilib-
rium. Furthermore, it also implies that S(ρA) must reduce to the thermodynamical entropy.
Therefore, monitoring S(ρA) is a useful way of determining when a subsystem attains thermal
equilibrium. Because of this, in this thesis, we employ the EE as a proxy for thermalization.

1.1.3 The Eigenstate Thermalization Hypothesis

The above comment comes with one caveat. Since time evolution is unitary, ρA can never
take exactly its canonical form. For instance, if the total system is in a pure state, the
subleading corrections to ρA we mentioned must enforce the unitarity condition, SA = SĀ.
There must exist observables ÕA able to probe this subleading corrections; these would allow
to distinguish the effective thermal state from the actual one. Therefore, thermalization can
only appear for a given subset of coarse-grained observables.

This last comment also applies when considering an isolated system as a whole. There
must always exist probes that are able to distinguish the effective thermal state reached
at t → ∞ -this time, in the microcanonical ensemble- from the actual pure state of the
system. The Eigenstate Thermalization Hypothesis (ETH) [27][28] provides an answer to
the question of what specific properties these coarse-grained observables must satisfy. We
expect that natural physical observables that can be measured in the laboratory belong to

10The extra conserved charges were zero due to the initial state chosen to simplify the computations.
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this coarse-grained class.

For definiteness, let us consider an isolated quantum mechanical system with a gapped

E0 > 0 (1.1.47)

and nondegenerate

En − Em = Ek − El ⇒ En = Em, Ek = El or En = Ek, Em = El (1.1.48)

energy spectrum, and focus on the microcanonical shell HE of dimension D. Any pure state
|ψ〉 ∈ HE at t = 0 can be expressed as

|ψ(0)〉 =
∑
n

cn(0) |n〉 , (1.1.49)

with
∑

n |cn(0)|2 = 1. Hamiltonian evolution leads then to

|ψ(t)〉 =
∑
n

cn(t) |n〉 =
∑
n

cn(0)e−iEnt |n〉 , (1.1.50)

and implies that the expectation value of any observable O is given by

〈O(t)〉 =
∑
nm

cm(0)∗cn(0)e−i(En−Em)tOmn, (1.1.51)

with
Omn = 〈m| O |n〉 . (1.1.52)

For actual measurements with finite time-resolution we can trade 〈O(t)〉 by its infinite time
average

〈O〉 ≡ lim
t→∞
〈O〉t ≡ lim

t→∞

1

t

∫ t

0

dt′〈O(t′)〉 =
∑
n

|cn(0)|2Onn, (1.1.53)

where we appreciate that the cross-terms average-out. The result obtained is equivalent to
putting the system in the diagonal ensemble

ρdiag =
∑
n

|cn(0)|2 |n〉 〈n| . (1.1.54)

Note that ρdiag depends explicitly on the intial state of the system. In contrast, we expect the
system to thermalize as t→∞, in the sense that the final equilibrium state is solely deter-
mined by its conserved energy through the microcanonical density matrix (1.1.7). Therefore,
as this simple example demonstrates, the Hamiltonian evolution of the system is apparently
in conflict with the expectations drawn from statistical mechanics.

Here is where the ETH comes in. The ETH assumes that, for any coarse-grained opera-
tor, the identity

Onn = 〈n| O |n〉 = fO(En) = fO(E) +O(∆E), (1.1.55)
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holds in any energy eigenstate |n〉 ∈ HE [6]. Here, fO(E) is a smooth function, effectively
constant within the microcanonical shell. This seemingly trivial assumption implies right
away that diagonal and microcanonical averages agree

〈O〉 = Tr(ρdiagO) =
∑
n

|cn(0)|2Onn ≈ fO(E)
∑
n

|cn(0)|2 = fO(E), (1.1.56)

〈O〉mc = Tr(ρmcO) = D−1
∑
n

Onn ≈ fO(E)D−1
∑
n

1 = fO(E), (1.1.57)

and, in consequence, ergodicity holds at the quantum level. The effective memory loss about
the system’s initial state is implement by a dephasing process, that disolves the off-diagonal
correlations of the initial density matrix and reveals the thermal nature of each individiual
energy eigenstate. At the conceptual level, this mechanism is fundamentally different from
the chaos-based classical one.

The ETH also involves further assumptions about the off-diagonal Onm matrix elements
[6]. Specifically,

Onm = e−
1
2
S(Ē)gO(Ē, ω)Rnm, (1.1.58)

where Ē = (En+Em)/2, ω = Em−En, and Rnm is a random real variable with zero mean and
unit variance. S(Ē) is the thermodynamical entropy at energy Ē, ands gO is also a smooth
function of its arguments. With this information, it is possible to compute straightforwardly
the variance of 〈O(t)〉,

σ2
〈O(t)〉 = lim

t→∞

1

t

∫ t

0

dt′
(
〈O(t′)〉2 − 〈O〉

2
)
, (1.1.59)

with the result that
σ2
〈O(t)〉 ≤ ce−S(Ē), (1.1.60)

where c = O(1). Therefore, if the ETH holds, σ2
〈O(t)〉 is suppressed in D−1. Recalling that

D � 1 for a macroscopic system, we find that, at almost any time, the expectation value of
O takes the diagonal ensemble value, 〈O〉. As a consequence, the ETH provides a stronger
statement that standard ergodicity, since it is 〈O(t)〉, and not only its finite time average
〈O〉t, that equilibrates to 〈O〉 as t→∞.11.

A natural question that arises is how long it takes for a given coarse-grained observable
to attain the expectation value predicted by the diagonal ensemble. This time is to be
identified with the thermalization time of the observable. This fundamental question is left
unanswered by the ETH, since it depends on the particular observable, Hamiltonian and
initial state under survey.

It must also be emphasized that the ETH is a dynamical statement: only for certain Hamil-
tonians the energy eigenstates in the microcanonical shell would have the right structure

11It must be emphasized that the actual fluctuations of O measured in an experiment are given by〈
(O − 〈O〉)2

〉
instead.
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needed to satisfy (1.1.55),(1.1.58) for the experimentally relevant observables. In this re-
gard, the ETH is fundamentally different than typicality.

Typicality applies to randomly chosen states within the microcanonical shell,12 and is
essentially a kinematical constraint, arising due to the large dimensionality ofHE. Typicality-
based results are blind to the particular Hamiltonian of the system. In constrat, the ETH
depends essentially on the specific properties of the system Hamiltonian but, since it applies
to individual energy eigenstates, it holds for arbitrary linear combinations of them, and not
just for randomly chosen ones.13

A beautiful result introduced in [30] shows that, for a random state and any observable,
the probability of finding an ε > 0 deviation between 〈O〉 and 〈O〉mc is controlled both by
the dimension D of the microcanonical shell and the norm of O, ‖O‖, as

Prob
(∣∣∣〈O〉 − 〈O〉mc

∣∣∣ ≥ ε
)
≤ 2e

−cD ε2

‖O‖2 , (1.1.61)

where c = O(1) and constant. Therefore, unless the largest eigenvalue of O scales as
√
D,

this operator cannot distinguish the random state from the microcanonical one. Although
illuminating, results of this kind cannot explain why an isolated quantum system driven
out-of-equilibrium thermalizes, since the initial state prepared in any experiment is not typ-
ical by any means, and represents rather a fine-tuned starting point. The question of how,
starting from this fine-tuned state, a typical state is reached would remain.

Nonetheless, typicality provides a necessary condition that any coarse-grained observable
must satisfy. If ‖O‖ ∼

√
D, the operator would be able to probe that we are not in the mi-

crocanonical equilibrium state. Therefore, coarse-grained operators always have ‖O‖ �
√
D.

For instance, in a chain of N spins, any coarse-grained operator must involve k � N spins
in its construction. This is the reason why few-body operators are usually considered in the
condensed matter literature as coarse-grained observables.

1.2 Holography: the AdS/CFT correspondence

1.2.1 Motivating the correspondence

As we have said, the AdS/CFT correspondence is, fundamentally, the statement that certain
non gravitational quantum mechanical systems, defined on a fixed d−dimensional spacetime
B, are equivalent to quantum gravity theories defined on a higher-dimensional spacetime
MB [7]. This higher-dimensional spacetime is a manifold with a boundary ∂MB that can
be identified with the original non-dynamical spacetime where the dual quantum mechanical
system lives, ∂MB = B. Conventionally, B is referred to as the boundary, while MB is
referred to as the bulk. In the examples we are considering, the non-gravitational system is
going to be a quantum field theory with conformal symmetry, or conformal field theory for

12For instance, with respect to the Haar measure.
13Although we can reframe the ETH as stating that, for the Hamiltonians where it holds, energy eigenstates

are “random enough to be typical” [29].
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short (CFT), living on d-dimensional Minkowski space, R1,d−1, or on a d − 1-dimensional
sphere cross time, R × Sd−1. On the other hand, the dual spacetime MB is going to be
asymptotically anti-deSitter (AdS). This is the reason why the correspondence goes usually
under the name AdS/CFT. Let us analyse what this acronyms represent in more detail. We
shall center on the symmetries of the objects they refer to.

By CFT, we mean a QFT whose spacetime symmetry group is the group formed by the
conformal transformations of B, Conf(B) [31]. A conformal transformation is an invertible
mapping x → x′ = f(x) that leaves the metric tensor gab invariant up to a Weyl transfor-
mation

g′ab(x
′) = Ω(x)gab(x). (1.2.62)

For definiteness, lets analyse the the case B = R1,d−1, with d > 2. It can be shown [31] that
the conformal group Conf(1, d− 1) ≡ Conf(R1,d−1) is formed by:

• Translations, x′a = xa + va.

• Lorentz transformations, x′a = Λa
bx

b.

• Dilatations, x′a = λxa.

• Special conformal transformations (SCT), x′a = (1− 2vx+ v2x2)−1(xa − vax2).

They are a composition of an inversion, xa → xa/x2, a translation, xa → xa − va, and
another inversion.

These results follow from considering the infinitesimal transformation xa → xa + εva(x),
under which (1.2.62) reduces to the conformal Killing vector equation in Minkowski space,
Lvηab = ω(x)ηab, and then exponentiating the result. Unsurprisingly, Conf(1, d−1) contains
the Poincaré group as a subgroup. Its Lie algebra, conf(1, d− 1), admits a basis formed by
1/2d(d − 1) generators of Lorentz transformations Mab, d traslation generators Pa, another
d SCT generators Ka, and an additional dilatation generator D. They add up to a total of
1/2(d+1)(d+2) elements. Apart from the standard Poincaré algebra, and the statement that
D and Ka transform respectively as a scalar and a vector under Lorentz transformations,
the nonzero commutation relations of the conformal algebra are [32]

[D,Pa] = −iPa, [D,Ka] = iKa, [Ka, Pb] = 2i(ηabD +Mab). (1.2.63)

Let us introduce the new antisymmetric generators JAB

Jab = Mab, Ja,d =
1

2
(Ka − Pa), Ja,d+1 =

1

2
(Pa +Ka), Jd+1,d = D. (1.2.64)

with A,B = 0...d+ 1. The new generators JAB satisfy

[JAB, JBC ] = −i (ηACJBD + ηBDJAC − ηBCJAD − ηADJBC) . (1.2.65)

These are nothing but the commutation relations of the Lie algebra so(2, d) in a spacetime
R2,d with metric ηAB = diag(−1, 1, . . . , 1,−1). From this observation, we obtain that

conf(1, d− 1) ∼= so(2, d). (1.2.66)
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Note that the dimensions of both algebras match because dim so(d, 2) = 1
2
(d+ 1)(d+ 2) due

to the antisymmetry of JAB.

The special orthogonal group SO(2, d) is the group formed by the linear transformations
Λ : R2,d → R2,d that leave the quadratic form

ηABX
AXB = −(X0)2 + (X1)2 + ...+ (Xd − 1)2 + (Xd)2 − (Xd+1)2 (1.2.67)

invariant. Therefore, SO(2, d) can be thought of as the isometry group of the hyperboloid
defined by ηABX

AXB = −L2, with L ∈ R+. By introducing coordinates14

X0 = L sec(x) sin t,

Xd+1 = L sec(x) cos t, (1.2.68)

X i = L tan(x)Ωi, i = 1 . . . d

we find that the induced metric on this hyperboloid reads

ds2
AdS =

L2

cos(x)2
(−dt2 + dx2 + sin(x)2dΩ2

d−1) (1.2.69)

with t ∈ [0, 2π], x ∈ [0, π/2] and ~Ω2 = 1. Avoiding closed timelike curves requires decompact-
ifying the temporal direction and going to the universal cover, where t ∈ R. The coordinate
chart (1.2.68) covers the resulting manifold entirely. This manifold is anti-deSitter space.
Topologically, it corresponds to a solid cylinder with boundary R × Sd−1. Our construc-
tion shows that its isometry algebra is isomorphic to the conformal algebra in d dimen-
sions. Alternatively, AdSd+1 can be characterized as the maximally symmetric15 solution of
d+1−dimensional Einstein gravity with negative cosmological constant Λ = −d(d−1)/(2L2).

The coordinate system (1.2.68) and the metric (1.2.69) are useful to establish a handul
of properties of AdS. First, a comment is in order: AdS is homogeneous by being maximally
symmetric, so the special status attributed to the line x = 0 in this coordinate system is an
artifact. A crucial fact about the metric (1.2.69) is its behavour in the opposite π/2−x→ 0
limit

ds2
AdS =

L2

(π/2− x)2 (−dt2 + dx2 + dΩ2
d−1) +O(π/2− x) (1.2.70)

This double pole divergence of ds2 implies that the proper distance between the hypersurfaces
x = π/2− ε and x = π/2 diverges logarithmically when ε→ 0: AdSd+1 is not compact. The
hypersurface x = π/2 can be rigorously defined as a boundary, however, if we consider the
conformal compactification of AdSd+1. A suitable compactification is provided by the d+ 1-
dimensional Einstein Static Universe (ESUd+1), a product spacetime with topology R × Sd
and metric

ds2
ESU = −dt2 + dΩ2

d = −dt2 + dx2 + sin(x)2dΩ2
d−1, (1.2.71)

14Ωi parameterize an unit d-sphere.
15That AdSd+1 is maximally symmetric can be easily seen from the fact that the maximum number of

independent Killing vector fields in a d+1-dimensional manifold, 1/2(d+1)(d+2), matches the dimensionality
the AdSd+1 isometry algebra.
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as long as we restrict the range of the angular coordinate x to the interval [0, π/2]. In this
way, we can define the AdSd+1 boundary as the inverse image of the ESUd+1 x = π/2 time-
like hypersurface under the conformal compactification map. More generally, any metric
Ω(x)2ds2

AdS such that Ω(x) has a simple zero at x = π/2 leads to an equivalent construc-
tion. The induced metric at the boundary is thus defined up to Weyl rescaling: the AdS
boundary cannot be associated a metric in an univocal way. Instead, it is endowed with a
well-defined causal structure, defined by an equivalence class of metrics related to each other
by conformal transformations. In this way, if we are going to picture that a QFT is living
on this boundary, it must be a CFT so as to be compatible with this fact. Notice also that
since the AdS boundary has a timelike direction this is a Lorentzian CFT.

Null geodesics can overcome the infinite spatial distance to the boundary in finite time.
In particular, a radial null geodesic departing from x = ε would reach x = π/2 after a
coordinate time ∆t = π/2 − ε. In consequence, AdSd+1 is not globally hyperbolic, since it
does not admit a Cauchy surface: there is no spacelike codimension-one hypersurface able
to intersect every radial null geodesic departing from x = π/2. For instance, imagine speci-
fying initial data for a hyperbolic PDE on the slice t = t0. With no further imput, the null
hypersurfaces Σ± = {(t, x, ~Ω) ∈ AdSd+1 : t = t0 ± π/2 + x} form a Cauchy horizon, and
bound the spacetime region where the solution to the PDE can be determined univocally in
terms of these initial data. Evolution outside this domain is ill-posed unless extra boundary
conditions are provided at x = π/2. This need of extra boundary conditions is of the utter-
most importance for the implementation of the AdS/CFT correspondence, as we are going
to review in the next subsection.

The coordinate change x → arctan(r/L), t → Lt puts the AdS metric (1.2.69) in the more
familiar form

ds2 = −
(

1 +
( r
L

)2
)
dt2 +

dr2

1 +
(
r
L

)2 + r2dΩ2
d−2 (1.2.72)

with r being a standard Schwarzschild coordinate. This coordinate system is particularly
useful, since it allows us to redefine

t→ t/λ, r → λr, θ1 → θ1/λ, θi → θi (i = 1, . . . , d− 2) (1.2.73)

and then take the singular λ→∞ limit. In this limit, the metric becomes

ds2 = − r
2

L2
dt2 +

L2

r2
dr2 + r2dx2. (1.2.74)

The boundary Sd−1 has been flattened to a (d − 1)-dimensional plane. This geometry is
known as the Poincarè patch, or planar AdS. It should be noted that the Poincarè patch
does not cover the whole original hyperboloid (1.2.67), nor its universal cover. The null
hypersurface r = 0 is a Killing horizon, commonly known as the Poincarè horizon, while the
boundary at r →∞ is conformally equivalent to d-dimensional Minkowski space, a fact that
makes planar AdS the standard case of study in practical applications of AdS/CFT. The
r = 0 horizon has zero temperature and a vanishing entropy density, since the determinant
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of the induced metric on a constant time slice is vanishing there. Importantly, the metric
(1.2.74) is manifestly invariant under the action of the scaling transformations t → t/λ,
x→ x/λ on the boundary coordinates iff r → λr. Under this scaling symmetry, the energy
of a boundary excitation should scale as E → λE: zooming into short-distance, high-energy
processes on the boundary theory is equivalent to going to large radial distance in the bulk.
The bulk geometry is organized in such a way that its properties in the IR encode the UV
of the dual CFT. In this way, the extra radial holographic direction can be thought of as
the energy scale of the dual CFT. This fact is known as the UV/IR connection. Discussing
a covariant UV/IR map would have to wait until we introduce the EE in the context of
holography.

Symmetries apart, extra motivation for the existence of AdS/CFT comes from two impor-
tant physical insights that took place years before Maldacena discovered the correspondence
in 1997 [33]. Let us review them. First, from the QFT perspective, AdS/CFT gave, for the
first time, a specific example of an idea that ’t Hooft introduced in the seventies [34]: the
N → ∞ limit of a SU(N) gauge theory is an effective string theory.16 In this limit, any
amplitude A admits the expansion

A =
∞∑
h=0

N2−2h

∞∑
k=0

ch,kλ
k =

∞∑
h=0

Nχ(h)fh(λ), (1.2.75)

where λ = g2
YMN is known as the ’t Hooft coupling. Each Feynman diagram contributing to

A can be pictured as a specific triangulation of a genus h closed two-dimensional manifold.
This expansion is topological, with χ(h) being the Euler characteristic of the manifold. In
the large N , fixed λ limit this topological expansion is dominated by planar diagrams, i.e.,
diagrams that can be drawn on a sphere without self-intersecting. This structure parallels
the one present in perturbative closed string theory, provided we identify the string coupling
constant gs and the rank of the gauge group as gs ∝ N−1.

Let us carry on this analogy further, and assume that there exists a string theory dual
to our original gauge theory. We observe that taking the large N limit in the gauge theory
is equivalent to suppressing loop corrections in the putative string theory dual, reducing it
to tree level. Note that besides the massless modes, this classical string theory would con-
tain an infinite tower of massive states. Although suggestive, this construction has several
apparent drawbacks. First, it is unable to inform us about the precise stringy parameter
that relates to the ’t Hooft coupling λ. Secondly, and most importantly, it is useless from
a practical point of view, since it would be necessary to resum the infinite {c0,k} series of
planar diagrams to reconstruct the theory at tree level.

The other insight explicitly materialized by AdS/CFT was the holographic principle. The
holographic principle is based on the Bekenstein bound [35], and was introduced in the early
nineties by ’t Hooft [36] and Susskind [37], soon before the original Maldacena construction
appeared. Essentially, the holographic principle postulates that given some space region M ,
in a theory of QG the total number of degrees of freedom associated with M does not scale

16A closed string theory when considering pure glue only.
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as its volume V , but as the area A of its boundary ∂M . This observation implies that, in
the quantum regime, gravity cannot be described by a local QFT -since then necessarily
volume scaling hols-, but rather by a holographic quantum-mechanical theory that encodes
the actual degrees of freedom living on ∂M .

Motivating the holographic principle involves an easy gedankenexperiment. Consider
that there exists some matter distribution in M with higher entropy but lower energy than
the smallest black hole able to contain the region. If some extra energy is injected, this black
hole will form, and the Second Law would be violated. In particular, since the final black
hole entropy scales as A, if the initial entropy scaled as V the Second Law would be massively
violated. A contradiction is reached, implying that our original assumption, volume scaling,
fails.

Of course, the holographic principle is at most an elementary kinematical constraint on
any consistent theory of QG. Neither it informs us about the precise nature of the funda-
mental degrees of freedom that live on ∂M , nor about the the quantum theory that describes
them.

When pondered together, the large N limit and the holographic principle suggest that the
putative string theory dual to the gauge theory must live in a higher-dimensional spacetime.
What Maldacena found originally was a pair of theories that are related exactly in the way
we have outlined [33].

On the field theory side, we have four-dimensional N = 4 supersymmetric SU(N) Yang-
Mills theory. This is the maximally supersymmetric Yang-Mills theory in d = 4, and can be
regarded as the simplest interacting QFT in four dimensions. Its matter content consists of
one gauge field, six scalars and four Weyl fermions. Both the scalar and the fermionic sectors
are invariant under a global internal SO(6) ∼= SU(4) R-symmetry. The matter contect of
the theory dictates that the β-function is zero and, as a consequence, N = 4 SUSY YM is
conformal invariant at the quantum level.

Maldacena conjectured that this CFT is dual to type IIB string theory on AdS5 × S5,
with N units of five-form flux through the S5, and a curvature radius L equal in both the
AdS5 and the S5 factors. The CFT can be pictured as living on the boundary of AdS5. As
expected from our discussion so far, the conformal symmetry group of the field theory maps
to the AdS5 isometry group. A novel ingredient now is that its SU(4) ∼= SO(6) symmetry
group is also identified with the five-sphere isometry group.

Maldacena construction is, succinctly, an open/closed string duality. It just assumes that the
interpolation between D-branes and p-branes upon increasing the coupling commutes with
restricting to the low energy description of the system [38]. This construction also provides
the specific relation between gauge/string theory parameters that more generic arguments
miss. We have that

L4

α′2
= λ,

λ

4πN
= gs (1.2.76)

where α′ sets the string length ls as ls =
√
α′. In the large N limit at fixed λ, gs vanishes. As

expected from our previous discussion, quantum gravity effects, associated to string loops,
are suppressed: the type IIB string theory becomes classical. Let us take now the large λ
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limit. The planar gauge theory becomes strongly-coupled. On the other hand, the string
length vanishes with respect to the AdS5, S5 curvature radius, L. The geometry becomes
weakly-curved, and it is unable to resolve the extended nature of the string, i.e., strings
behave as pointlike particles. Since the energy of an excited string state is ∝ l−1

s , the infinite
tower of massive string states decouples from the massless modes, which are now the only
excitations allowed. These modes are described by a classical gravitational field theory, type
IIB supergravity on AdS5 × S5, which encodes completely the dynamics of N = 4 SUSY
YM in the planar and strongly-coupled regime.

From the point of view of the holographic principle, the remarkable feature about the Malda-
cena construction is that the quantum theory describing the elementary degrees of freedom
living on ∂AdS5 is a local QFT. Along this line, weakly-coupled gravity in AdS can be under-
stood as an emergent phenomenon, arising from an infinite number of strongly-interacting
fields in a gauge theory. Let us close this section by making two comments on this point of
view.

First, it must be emphasized that the weak/strong nature of the AdS/CFT duality is
its most compelling aspect, both from a practical and from a theoretical perspective. We
already commented on the former one in our Foreword. Regarding the latter, it should be
noted that the failure of perturbative QFT at strong coupling also signals a more serious con-
ceptual breakdown [39], as our physical intuition cannot rely on the familiar weak-coupling
picture based on quasiparticles interacting through Feynman diagrams. Even though the
field theory Lagrangian is formulated in terms of some degrees of freedom, we don’t know
how these degrees of freedom reorganize themselves at strong coupling.17 What AdS/CFT
offers, at least for certain gauge theories, is a new perturbative framework and, as a con-
sequence, a new way of thinking. It identifies the right degrees of freedom at infinite N,
infinite λ, and then provides a systematic way of computing corrections to the leading order
results in a 1/N, 1/

√
λ expansion. The incredible feature of this expansion is that these new

degrees of freedom are weakly-gravitating objects in a higher-dimensional spacetime, so it
allows employing gravitational intuition to think about otherwise unaddressable field theory
problems.

The second and final comment is that, even if the original Maldacena duality has been
tested successfully in numerous examples -including finite N and λ corrections-, understand-
ing how it works at the fundamental level is an issue far from settled, at least to this author’s
knowledge.18 This understanding would involve finding all the entries in the holographic dic-
tionary relating field-theoretical and gravitational entities. In the remaining part of this
section, we review several well-established entries of this dictionary. It should be noted,
however, that its construction is not yet finished.

17QCD is one paradigmatic example. While being a theory of quarks and gluons microscopically, at finite
coupling, the right degrees of freedom are colorless hadrons.

18For instance, understanding how bulk locality emerges from the underlying microscopical CFT degrees
of freedom is extremely challenging. Since the gravitational theory is diffeomophic invariant, every spatial
direction in the bulk is on an equal footing. However, the CFT origin of the spatial AdS5 directions couldn’t
be more different from the the five-sphere ones [40].
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1.2.2 The holographic dictionary

The precise map between gravitational and field theory entities implemented by the duality
is known as the holographic dictionary. As in any other duality, both the partition functions
as well as the Hilbert spaces of the bulk QG theory and the boundary CFT are identified

ZQG = ZCFT , HQG = HCFT , (1.2.77)

while there is also a way of associating gauge-invariant observables in both theories, which
we will review next. Let us just note first that when classical supergravity is applicable,
we expect that at least some states in HQG reduce to classical geometries. At least some,
because not every state on the field theory admits a dual geometrical description. To see
this, consider two states, |ψ1〉 and |ψ2〉, with dual spacetime geometries G1 and G2, and take
their linear superposition, α |ψ1〉+ β |ψ2〉. It is by no means guaranteed that this superposi-
tion can also be described as some geometry G1+2, i.e., quantum-mechanical linearity has no
generic counterpart when considering solutions of the supergravity equations. Such a linear
superposition should rather be thought of as providing a classical probability distribution
over an ensemble of classical spacetimes [41], if we assume that different geometrical states
are orthogonal at leading order in N . In the supergravity regime, there are also propos-
als that relate QFT information-theoretical quantities, such as entanglement entropies and
complexities, to bulk geometrical constructs. We discuss the holographic prescription for
computing the entanglement entropy in subsection 1.2.4.

Energies are straightforwardly related by the dictionary. The energy density of the CFT
state corresponds directly to the ADM energy density of the dual geometry.19 Therefore,
the geometry corresponding to the CFT ground state is the minimal energy solution of the
supergravity equations of motion, which is nothing but empty AdS itself. Consistently, the
fact that the CFT vacuum is invariant under SO(2, d) has a direct counterpart in the fact
that empty AdS is invariant under the action of this group. An excited state is characterized
by some bulk excitations placed above empty AdS.

Any excited state must reduce to the vacuum state when probed at infinitesimally short
distances. Under the UV/IR connection, the geometry dual to this excited state must reduce
to empty AdS in the infrared: it must be asymptotically AdS. As shown by Fefferman and
Graham [42], any asymptotically AdSd+1 metric admits a near-boundary expansion of the
form

ds2 =
dz2

z2
+
hµν(z, x)

z2
dxµdxν , hµν = ηµν(x) + . . .+ tµν(x)zd + . . . , (1.2.78)

where ηµν is the boundary metric and xµ, µ = 0 . . . d− 1, are boundary coordinates. Planar
asymptotics correspond to selecting R1,d−1 as the boundary manifold, while global asymptotics
correspond to selecting R×Sd−1.20 It must be emphasized that any sufficiently well-behaved

19The asymptotic timelike Killing vector field of the bulk geometry, which we employ to define its associated
ADM energy density, also determines the temporal direction of the boundary theory, which in turn fixes the
CFT Hamiltonian.

20With their standard Minskowkean metrics.
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d−dimensional manifold can be chosen as a boundary: the CFT can be placed on a black
hole spacetime, or even on a cosmological solution. In this way, AdS/CFT provides a window
into the large N, strongly-coupled dynamics of CFTs in general curved spacetimes of physical
relevance [43].

As another important comment, note that in the original Maldacena construction we
have that the ten-dimensional Newton’s constant scales as G ∼ L8N−2. Therefore, for a
field theory state to have a finite backreaction, its energy density E must scale as E ∼ N2.
Generically, deformed geometries represent CFT states in which every elementary degree of
freedom if excited. States with energy densities parametrically smaller than N2 are repre-
sented by nonbackreacting excitations in the bulk.

Having made this clarifications, let us introduce now the most fundamental piece of the
holographic dictionary. This is nothing but the celebrated Gubser-Klebanov-Polyakov-
Witten (GKPW) relation [44, 45] between the CFT and QG vacuum generating functionals21

W = −i lnZ

WQG[φ→ φ0] = WCFT [φ0] = −i ln
〈
ei

∫
ddxφ0(x)O(x)

〉
CFT

(1.2.79)

Here the CFT Lagrangian density LCFT is deformed as

LCFT → LCFT + φ0(x)O(x), (1.2.80)

where x−coordinates label boundary directions and O is a single-trace, primary operator
sourced by φ0. Through the source φ0, a bulk field φ is associated to the operator O. Both φ
and O have to belong to the same representation of the conformal group, so they share the
same quantum numbers. The precise way in which the source φ0 relates to this bulk field φ
is by specifying the contour conditions the latter should satisfy when approaching the AdS
boundary. We are suppressing any possible index structure in (1.2.80), so it is understood
that the Lagrangian deformation is invariant under the appropriate spacetime and internal
symmetries.

While the rhs of the GKPW relation is perfectly defined, we have to remain agnostic about
the precise nature of the lhs: the explicit form of the QG partition function is unknown
in general. However, in the large N , large λ limit it can be evaluated in a saddle-point
approximation

WQG[φ→ φ0] ≈ WSUGRA[φ→ φ0] ≡ ISUGRA[φ→ φ0], (1.2.81)

since the bulk string theory reduces to classical supergravity. In the expression above,
ISUGRA[φ→ φ0] is the on-shell supergravity action, i.e., the action evaluated on a field con-
figuration φ that solves the supergravity equations of motion with the asymptotic boundary
conditions prescribed by φ0. Once that WSUGRA[φ0] is known, QFT connected correlation
functions for the operator O can be computed by standard functional differentiation with
respect to the source φ0(x)

〈O(x1)...O(xn)〉c =
δ

δφ0(x1)
...

δ

δφ0(xn)
WSUGRA[φ0]. (1.2.82)

21For definiteness, we consider the Euclidean version of the theories.
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A caveat is in order. Due to the non-compact nature of any asymptotically AdS geometry,
ISUGRA is infrared divergent. Through the AdS/CFT dictionary, this divergence is directly
related to the ultraviolet divergences of the CFT side, and provides one further example
of the UV/IR connection. Obtaining finite physical answers requires, first, to choose a
bulk infrared cutoff in the form of a timelike codimension-one hypersurface and, second,
to regularize ISUGRA, in such a way that the total action remains finite once the cutoff is
removed. The actual form of the supergravity action one deals with is

ISUGRA = Ibulk + IGH + Ict. (1.2.83)

Ibulk is the original supergravity action, IGH a standard Gibbons-Hawking term, and Ict a
counterterm action. Ict is build from diffeomorphic invariant quantities that depend solely
on the intrinsic geometry of the cutoff hypersurface. This procedure is known as holographic
renormalization [46], and has been extensively studied [47].

For definiteness, let us introduce a free massive scalar field φ into the bulk gravitational
theory, with planar asymptotics. Its action is given by

Sφ = −1

2

∫
dd+1x

√
−g
(
(∂φ)2 +m2φ2

)
. (1.2.84)

The scalar field satisfies the Klein-Gordon equation,(
2−m2

)
φ = 0, 2 ≡ 1√

−g
∂µ
(√
−ggµν∂ν

)
. (1.2.85)

The Klein-Gordon equation defines naturally a scalar product over solutions,

(φ1, φ2) = −i
∫

Σ

√
−γnµ (φ∗1∂µφ2 − φ2∂µφ

∗
1) , (1.2.86)

where Σ is codimension-one spacelike hypersurface with induced metric γµν and normal nµ.
A solution φ to the Klein-Gordon equation is said to be normalizable if (φ, φ) < ∞, and
non-normalizable otherwise. Since the Klein-Gordon equation is a second-order differen-
tial equation, there exist two linearly independent fundamental solutions, φ− and φ+. In
Fefferman-Graham coordinates, they behave as

φ−(x, z) = A(x)zd−∆ + . . . , φ+(x, z) = A(x)z∆ + . . . (1.2.87)

where xµ = (t,x). The exponent ∆ satisfies

∆ =
d

2
+ ν =

d

2
+

√
d2

4
+m2L2. (1.2.88)

The normalizability properties of the fundamental solutions are the following

• The φ+ solution is normalizable for ν ≥ 0.

• The φ− solution is non-normalizable for ν ≥ 1, and normalizable for 0 ≤ ν < 1.
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Note that tachyonic scalar fields are allowed if they respect the Breitenlohner-Freedman
bound [48, 49]

m2 ≥ m2
BF = − d2

4L2
(1.2.89)

and that, in the mass window

m2
BF ≤ m2 < m2

BF + 1, (1.2.90)

both φ+ and φ− are normalizable. Let us comment on the ν ≥ 1 case. We can promote the
classical scalar field to a quantum operator φ̂(z, x) by introducing a basis of orthonormal
solutions {fI} to the Klein-Gordon equation and defining

φ̂(z, x) =
∑
I

(
fIaI + f ∗I a

†
I

)
, (1.2.91)

where aI , a
†
I are annihilation and creation operators. The vacuum state |0〉bulk is identified

with global AdSd+1 in the absence of φ-quanta and it is annihilated by aI , aI |0〉bulk = 0.
Since we are considering a free scalar field, our Hilbert space is the Fock space built out of
|0〉bulk by the action of the creation operators a†I . The identification of the bulk and boundary
Hilbert spaces leads naturally to the requirement that |0〉bulk = |0〉CFT. This entails that we

can construct a CFT operator O(x) out of φ̂(z, x) by defining

O(x) = lim
z→0

z−∆φ̂(z, x). (1.2.92)

Since the background spacetime is asymptotically AdS, we can employ the Fefferman-
Graham construction to show that, in the z → 0 limit, the transformation x → λx,z → λz
results in φ̂(λz, λx) = φ̂(z, x). As a consequence, from (1.2.92) we obtain

O(λx) = λ−∆O(x). (1.2.93)

This identity implies that O transforms as a primary operator under scale transformations,
with ∆ being its conformal weight. Since the Lagrangian deformation (1.2.80) must have
scaling dimension d, the scaling dimension of the source φ0(x) is d−∆,

φ0(λx) = λ−(d−∆)φ0(x). (1.2.94)

Therefore, the source must be identified with

φ0(x) = lim
z→0

z∆−dφ(z, x) (1.2.95)

and corresponds to the non-normalizable mode in the bulk.22 Therefore, a generic solution
of the Klein-Gordon equation has the asymptotic behavior

φ(z, x) = φ0(x)zd−∆ +B(x)z∆ + . . . (1.2.96)

22This is natural, since φ0 is a classical background field on the dual CFT that does not belong to the
CFT Hilbert space. Through the AdS/CFT dictionary, the dual to φ0 cannot belong to the bulk Hilbert
space. As the bulk Hilbert space is build out of the normalizable modes, the dual to the source must be a
non-normalizable mode. This author first learned this argument in [50].
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By applying standard holographic renormalization techniques to the scalar field action
(1.2.84), and the relation (1.2.82) when n = 1, the vacuum expectation value (vev) of O
is

〈O(x)〉 = 2νB(x). (1.2.97)

In this way, the vev of O is fixed by the leading order term of the normalizable part of
φ.23 Let us note that the scalar field φ must also be restricted to satisfy suitable boundary
conditions in the interior of the geometry; for instance, φ needs to be regular at the origin for
global asymptotics. For a given source φ0, this condition can only be met for a specific 〈O〉.
As a consequence, the vev is a functional of the source, 〈O〉 = 〈O〉 [φ0]. This is crucial for
the implementation of linear response theory in holography, as we discuss in subsection 1.2.6.

The identification of the conformal weight of O with ∆, together with the relation (1.2.88)
between ∆ and m2, implies that [44, 45]

• If m2 > 0, ∆ > d and O is an irrelevant operator.

• If m2 = 0, ∆ = d, and O is a marginal operator.

• If m2
BF ≥ m2 < 0, d/2 < ∆ < d and O is a relevant operator.

The relation above implies that the lowest conformal weight of a scalar operator is d/2. In
any unitary CFT, there exist a bound on this quantity. However, this unitarity bound can
be shown to be

∆ ≥ d

2
− 1. (1.2.98)

A puzzle arises. Our construction is apparently unable of representing the dual fields of CFT
scalar operators with ∆ ∈ [d/2 − 1, d/2). To solve this conundrum, we must analyze the
situation when 0 ≤ ν < 1.

In this case, the scalar field mass lies in the window (1.2.90). The crucial point is that now
both φ+ and φ− are normalizable solutions and there exist two possible ways of quantizing φ.
Our previous one, which corresponds to considering a basis of orthonormal eigenfunctions
with A(x) = 0, goes under the name of standard quantization. As we have seen, in the
standard quantization we obtain a scalar operator Os whose conformal weight satisfies

d

2
≤ ∆s. (1.2.99)

The novel choice that arises corresponds to considering a basis of orthonormal eigenfunctions
with B(x) = 0, and goes under the name of alternative quantization. In this case, from our
novel φ̂a we obtain a scalar operator Oa with scaling dimension

d

2
− 1 ≤ ∆a ≤

d

2
(1.2.100)

23We have skipped an important subtlety: in evev d, there are extra logarithmic terms in the near-
boundary expansion, and the vev can depend on the coefficient of the leading order logarithm. In each case,
the relation between 〈O〉 and the coefficients of the near-boundary expansion must be established in terms
of the proper holographic renormalization of the system. In this sectio, for illustrative purposes only, we
obviate this fact.
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The names of standard and alternative quantization are obvious if we realize that each choice
of boundary conditions defines an inequivalent Fock space in the bulk. When renormalizing
holographically the bulk theory, the alternative quantization can be implemeted by adding
a suitable boundary term to the scalar action [51].

What about other operators that are not scalars? In the case of conserved currents, a
background gauge field can be introduced by covariantizing the CFT action. The natural
linearized couplings for a conserved current Jµ, associated to a global internal symmetry, or
the conserved energy-momentum tensor T µν , associated to Poincarè invariance, are

SCFT → SCFT +

∫
ddx (aµJ

µ + hµνT
µν) . (1.2.101)

Note that aµ, hµν must correspond to a gauge field and a metric perturbation because con-
servation of Jµ, Tµν implies that, for any α, χµ falling fast enough at infinity, the redefinitions

aµ → aµ + ∂µα, hµν → hµν + ∂µχν + ∂νχµ, (1.2.102)

correspond to gauge transformations that leave SCFT invariant.

Through the GKPW relation (1.2.79), these CFT background fields must source bulk
fields Aµ, gµν , in such a way that aµ, ηµν +hµν can be read-off from their leading asymptotic
behavior. The boundary gauge symmetry (1.2.102) must descend consistently to the bulk
gauge symmetry of Aµ, gµν . Therefore, a conserved current is dualized into a bulk gauge
field, while the energy-momentor tensor is dualized into the bulk metric. This discussion
exemplifies a trademark of AdS/CFT: global symmetries in the boundary correspond to lo-
cal symmetries in the bulk, as we already saw in the relation between the CFT and AdS
symmetry groups.

At the CFT level, any operator with spin s must have a conformal weight that respects
the unitarity bound

∆ ≥ d− 2 + s. (1.2.103)

If the operator saturates this bound, it obeys free field equations of motion. Said otherwise,
it corresponds to a conserved spin-s current. Therefore, we must have that ∆Jµ = d− 1 and
∆Tµν = d. In the latter case, 〈Tµν〉 is recovered from hµν(z, x) in (1.2.78) as

〈Tµν〉 =
dLd−1

16πG
tµν (1.2.104)

by standard holoraphic renormalization. Owing to the Fefferman-Graham asymptotic ex-
pansion (1.2.78), in principle one could thick that any choice for tµν defines a geometrical
state of the dual CFT. However, this is not true. There are additional physical requirements
that any geometry must satisfy in order to allow for such interpretation. For instance, a
generic choice for tµν would lead to the apperance of naked singularities in the bulk.
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1.2.3 Equilibrium physics in holography

As mentioned after equation (1.2.78), the manifold where the CFT is defined can be specified
at will. In particular, imagine we want to analyse a CFT in the canonical ensemble. The
CFT partition function at finite temperature is given by

ZCFT (β) = Tr exp (−βHCFT ) (1.2.105)

where β = T−1. This expression admits the functional representation

ZCFT (β) =

∫
PBC

[dΦ]
〈
Φ
∣∣e−βHCFT [Φ]

∣∣Φ〉 =

∫
PBC

[dΦ] e−
∫ β
0 dτ

∫
dd−1xLCFT [Φ], (1.2.106)

where Φ denotes the collection of CFT fields and PBC refers to the boundary conditions
that must be imposed to enforce the trace operation (specifically, bosons are periodic and
fermions antiperiodic, both with periodicity β). From this last identity, it is immediately
seen that ZCFT (β) can be computed from the CFT generating functional on an Euclidean
geometry where the Lorentzian time coordinate has been analytically continued, t → iτ ,
and identified, τ ∼ τ + β. Through the GKPW relation, in the large N, large λ limit the
partition function (1.2.105) is going to be dominated by a Euclidean supergravity solution
with a compact direction whose periodicity at the boundary coincides with β. Defining the
CFT free energy FCFT (β) through the relation ZCFT ≡ exp (−βFCFT (β)), we find that the
GKPW prescription implies that

FCFT (β) ' β−1ISUGRA[β] ≡ FSUGRA[β]. (1.2.107)

Therefore, for asymptotically AdS geometries, old-fashioned Euclidean QG is encoding the
thermodynamics of a large N, strongly-coupled CFT in the most straightforward way imag-
inable; for thermodynamical quantities, the holographic dictionary reduces to the identity.24

By employing the definition (1.2.107), standard thermodynamical relations can be applied
to compute the energy

〈E〉 = β
∂F

∂β
+ F, (1.2.108)

and entropy,
S = β(〈E〉 − F ). (1.2.109)

Note in particular that when the thermal cycle is non-contractible, there is no need to im-
pose any regularity condition in the IR of the geometry. Therefore, no metric parameter is
functionally dependent on the temperature, the bulk action is linear in β, 〈E〉 = F and S = 0.

There can exist several saddle-points contributing to ZCFT (β) for a given temperature

ZCFT (β) ' e−βF1(β) + e−βF2(β) + ... (1.2.110)

The saddle-point with the lowest free energy is going to dominate. As the temperature
changes, this dominant saddle-point can switch from one supergravity solution to another.

24When referring to these quantities, we shall omit the subscripts indexing bulk and boundary in the
following.
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Therefore, saddle-point competition models classical phase transitions in the dual CFT.

The most well-known example of this behavior is the Hawking-Page transition in global
AdSd+1 [52]. This is a first-order phase transition that takes place at a temperature

Tc =
(d− 1)

2πL
, (1.2.111)

where the Euclidean AdS spacetime (EAdS) dominating the canonical ensemble for T < Tc
switches places with a Euclidean Schwarzschild black hole solution (ESBH) with horizon
radius r+ = L. The discontinuous jump on the entropy from SEAdS = O(G0) to SESBH =
O(1/G) = O(N2) is interpreted, from the dual field theory point of view, as the result of a
deconfinement transition, where the dominant phase changes from a gas of colorless glueballs
to a gluon plasma [45, 53].25

It is important to realize that we have a nontrivial phase transition because the CFT
is placed on R × Sd−1. Due to conformal invariance, there are only two energy scales into
the game: the inverse sphere radius 1/L and the temperature T . They can be combined
in the dimensionless ratio η = TL. Dimensional analysis implies then that the free energy
density is given by f(T, 1/L) = T df̂(η). When taking the flat space L → ∞ limit at fixed
temperature, η → ∞ and the free energy density becomes f(T, 0) = T df̂(∞): no phase
transition is possible since the T dependence is trivial. At finite temperature, the theory is
always in the deconfined phase in the infinite volume/planar AdS limit.

Phase transitions in planar AdS require the introduction of another energy scale the tem-
perate can be measured against. Let us start by considering the dual CFT at finite charge
density. The introduction of a bulk abelian gauge field Aµ couples the CFT to a conserved
global current Jµ, as discussed after equation (1.2.101). For a translationally-invariant CFT
state, only the t-components At, Jt are relevant after gauge fixing. The near-boundary r →∞
expansion

At(t, r) = µ+ ...− ρ

rd−2
+ ... (1.2.112)

fixes the leading order term µ to be the CFT chemical potential, which coupled to the cur-
rent, leads to the finite charge density 〈Jt〉 ∝ ρ. The gravitational solution dual to a state
with 〈Jt〉 6= 0 at thermal equilibrium is the AdS-Reissner-Nordstrom (AdSRN) black hole,
which is endowed with a nontrivial gauge field profile.

Furthermore, the presence of additional bulk fields can lead to new phases. This enrich-
ment takes place because, for asymptotically AdS geometries, a black hole solution is not
univocally determined by its conserved charges. For example, including additional charged
scalar fields can lead to the appearance of hairy black hole solutions in the corresponding
Einstein-Maxwell-scalar theory [54][55][56]. These are solutions that, at fixed T/µ, display a
nontrivial scalar field profile outside the black hole horizon. On the CFT side, the dual scalar

25In QCD at small baryon density the phase transition smoothes out into a crossover; the large-N limit is
to be held responsible for the sharpness of the transition here. We also employ the terms glueball and gluon
plasma in a broad sense, to highlight that the dual CFT does not contain fundamental matter.
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operator O gets a nonzero expectation value, 〈O〉 6= 0. Therefore, hairy black holes corre-
spond to superfluid states, since an operator with nonzero global charge condenses at thermal
equilibrium.26 The first normal-superfluid transition found in the holographic context in-
volved a massless scalar that condensed below a critical Tc at fixed µ, where a condensate
built up in a mean-field-like fashion, 〈O〉 ∝ (Tc−T )1/2. AdSRN solutions of course still exist
below the critical point but they are subdominant saddles, Fhairy(µ, T )− FAdSRN(T, µ) ≤ 0
for T ≤ Tc. Since then, more exotic phases have been modeled, like p-wave superfluids
[57][58] where a vector condenses. Dropping the requirement of spatial homogeneity en-
riches the situation even further, in a way that allows describing momentum relaxation at
strong-coupling or stripped phases. For reviews of AdS/CFT applications to the Condensed
Matter realm see [59, 60].

In chapter 5, we will discuss normal-superfluid phase transitions in the global AdS4 con-
text. It must be emphasized that in global AdS finite charge states display a nontrivial
phenomenology even in the absence of additional operators, since now the partition function
can depend on two dimensionless quantities, TL and µL. There is no need of considering
hairy black holes to find generalizations of the Hawking-Page transition [61] [62].

Two last conceptual remarks are in order. The first one is that finite temperature phase
transitions are determined by the non-analyticities of the free energy. Therefore, they are
strictly forbidden in systems with a finite number of degrees of freedom N at finite volume,
since the total partition function is a sum of analytic terms, Z =

∑
n gne

−βEn . For them to
be allowed, it is necessary to go to the thermodynamic limit: N, V → ∞ with fixed N/V .
In AdS/CFT, going to the large N regime can be pictured as taking a non-standard thermo-
dynamic limit at finite volume. This, in particular, implies directly that finite N corrections
are going to smooth any global AdS phase transition, like the Hawking-Page transition, to
a crossover.

The second one is that, for global asymptotics, the thermodynamical stability/dominance
of a given static black hole solution can change depending on the ensemble considered. We
discuss this issue in section 2.3. It is also clearly illustrated by the results we present in
section 5.4.

1.2.4 Entanglement entropy in holography

In 2006, Ryu and Takayanagi (RT) introduced one of the most beautiful entries in the holo-
graphic dictionary [63][64]. They put forward a proposal that reduced the entanglement
entropy computation in the CFT to a simple variational problem in the bulk geometry. Ini-
tially, only time-independent states were considered. The construction was further extended
to time-dependent situations by Hubeny, Rangamani and Takayanagi (HRT) [65]. Recently,
the original RT prescription has been proven correct by Lewkowycz and Maldacena [66],
while demonstrating the HRT prescription is underway [67]. Having clarified this, let us
refer to the HRT recipe as the holographic entanglement entropy (HEE) prescription or for-

26Actually, these hairy solutions usually go under the name of holographic superconductors. In this thesis,
we refer to them as superfluids to emphasize that, in principle, the field theory broken symmetry is global,
not gauged. Going from one description to the other involves neglecting the effect of virtual photons.
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mula.

The HEE prescription states the following [7]. Let A ⊂ B = ∂AdSd+1 be our entangling
region. The entanglement entropy of A, SA, is then given by

SA =
1

4G
Area(σA) (1.2.113)

where σA is a bulk codimension-2 surface such that:

• The boundary of σA coincides with the boundary of A, ∂A = ∂σA.

• σA is homologous to A, in the sense that it exists a closed codimension-1 bulk region
RA such that ∂RA = A ∪ σA. This condition is referred to as the homology constraint.

• σA extremizes the area functional. If several saddles exist, the one with the minimal
area is to be chosen.

For a static background geometry, extremization reduces to minimization, and the HEE pre-
scription reduces to the original RT proposal.

Some remarks are in order. First, the HEE prescription only encodes the dominant O(1/G) =
O(N2) contribution to the actual EE for geometrical states [68]. It is possible to compute
subleading corrections in a 1/N expansion that involves considering bulk quantum effects;
for example, determining the O(1) correction requires to take into account the quantum
fluctuations of bulk fields across the entangling surface σA [69].

Second, the HEE prescription is completely consistent with the properties of EE we in-
troduced in section 1.1. First, it is obvious that SA > 0. In the time-independent case,
simple geometric reasoning is sufficient to prove that it satisfies the strong subadditivity
inequalities [70].27 This was one of the first consistency checks the prescription passed.

There are also nontrivial entropy inequalities implied by the RT formula that are not generi-
cally true for a quantum mechanical system. The most well-known example is the monogamy
of mutual information [71],

I3(A : B : C) = I(A,B) + I(A,C)− I(A,BC) ≤ 0, (1.2.114)

where A,B,C are three nonoverlapping boundary regions. I3 is the tripartite information,
which can be thought of as a measure of the extensivity of mutual information. The fact that
I3 < 0 implies the mutual information is never subextensive, since the degree of correlation
between A and the combined system BC is never smaller than the degree of correlation
between A and the individual subsystems B and C. An immediate consequence of (1.2.114)
is that any state for which mutual information is subextensive cannot be described by a
geometric dual. Both strong subadditivity and monogamy can also be proven to hold in
time-dependent geometries, provided that the null energy condition is satisfied in the bulk.

27The beautiful simplicity of the holographic proof of strong subadditivity should be contrasted with the
particularly unenlightening algebraic quantum mechanical original derivation.
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Having analyzed the status of the EE inequalities in holography, let us go back and dis-
cuss how other slightly simpler properties that geometric EE should satisfy are realized in
AdS/CFT. First, the noncompact nature of AdS implies that the area law is automatically
respected: the logarithmic divergence of the radial proper distance when approaching the
boundary is responsible for this. The area law has been explicitly demonstrated for free
bosonic QFTs, and the HEE formula implies that it also holds in holographic QFTs.

For definiteness, let us work out a specific example. Consider a planar d + 1-dimensional
AdS-Schwarzschild black hole as our background geometry, and take a ball of radius R as
entangling region

Ā = {(t,x) ∈ R1,d−1 : t = 0,x2 ≤ R2}. (1.2.115)

By symmetry, the entangling surface σA must be parameterized as28

σA = {(t, z, r,Ωi) ∈ SAdSd+1 : t = 0, z = z(r)}. (1.2.116)

The function z(r) must satisfy the boundary conditions z(R) = 0 by the first requirement of
the HEE prescription, while regularity at the entangling surface tip, z∗ ≡ z(0), implies that
z′(0) = 0. We work in units such that L = 1. The black hole metric is

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2

)
, f(z) = 1−mzd. (1.2.117)

Computing the EE associated to A implies finding the bulk surface that minimizes the area
functional

SA =
1

4G
Vol(Sd−2)

∫ R

0

drL ≡ 1

4G
Vol(Sd−2)

∫ R

0

drrd−2 1

z(r)d−1

√
z′(r)2

f(z(r))
+ 1. (1.2.118)

In the near-boundary limit z � 1, R− r � 1, we can employ the Euler-Lagrange equations
derived from (1.2.118) to show that z(r) ∼ (R − r)1/2 at leading order, as long as d > 2.
Expanding (1.2.118) and performing the integral, we get

SA ∼
Vol(Sd−2)Rd−2

εd−2
, (1.2.119)

where we cut-off the integral at the ultraviolet scale z = ε. The area law is satisfied as
expected. Subleading corrections result in an expansion of the form (1.1.22),(1.1.23).

For d = 2, it is possible to find σA analytically in a straightforward way. Note that,
in this case, L does not depend explicitly on the radial coordinate, so the Hamiltonian
H = z′∂L/∂z′ −L = −z−1

∗ is conserved, and sets the turning point of σA in the bulk. From
H conservation, we obtain the equation

z′(r) +

√
1−mz(r)2

√
z2
∗ − z(r)2

z(r)
= 0, (1.2.120)

28We have described a constant time slice of the boundary in terms of spherical coordinates (r,Ωi).
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which is solved by

z(r) =

√
1− cosh(

√
mr)2sech(

√
mR)2

√
m

, (1.2.121)

an expression that reduces to the vacuum result, z(r) =
√
R2 − r2, when m = 0. Regularity

at the entangling surface tip relates the geodesic turning point z∗ with the entangling interval
size R as

z∗ =
β tanh(2π

β
R)

2π
, (1.2.122)

where we have employed the relation between the black hole mass and its thermal wave-
length, β = 2π/

√
m. As promised, equation (1.2.122) provides a diffeomorphism invariant

and quantitative UV/IR map. At finite temperature, we must distinguish two different
regimes. When R � β, we recover the scaling-based result for the vacuum state, z∗ = R.
This result is consistent with the fact that every CFT state looks like the vacuum when
probed at sufficiently short distances; under the AdS/CFT duality, this is guaranteed by
the asymptotically AdS boundary conditions satisfied by any admissible geometry. In the
opposite R � β limit, (1.2.122) shows that the energy scale associated to the boundary
region reduces to the temperature, z−1

∗ = 2πT . Again, this is consistent with the fact that
thermal fluctuations erase any lower energy excitations of the system, providing a mass gap
that results in an effective infrared cutoff.

This way of employing the HEE prescription to associate bulk and boundary regions is
an example of the so-called subregion-subregion duality [72][73]. To introduce this idea, let us
note that ρA determines completely the CFT state in the causal development of A. We de-
note this spacetime region by D(A). Subregion-subregion duality identifies the holographic
dual of ρA with the reduced density matrix of the bulk state on RA. In this way, the bulk
dual of D(A) is the entanglement wedge, i.e., the bulk domain of dependence of RA, D(RA)
[74]. The full development of this set of ideas promises a coordinate invariant formulation
of the UV/IR map.

Inserting (1.2.121) into (1.2.118), we get the result

SA =
1

2G
log

(
β

πε
sinh

2πR

β

)
, (1.2.123)

where we have introduced the ultraviolet cutoff z = ε and substituted V ol(S0) = 2. This
matches the CFT computation (1.1.25), based on the replica trick, iff we identify

G =
3L

2c
, (1.2.124)

where we have reintroduced the curvature radius. This is a well-known relation first un-
covered by Brown and Henneaux [75]. In 1986, these authors proved that the asymptotic
symmetry algebra of AdS3 is isomorphic to two copies of the Virasoro algebra with the cen-
tral charge (1.2.124). This asymototic symmetry algebra is also to the conformal symmetry
algebra of a 1 + 1-dimensional CFT.
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Knowing the explicit form of the entangling surface, we can obtain a geometrical under-
standing of the asymptotic behavior of the EE of the thermal state in the limits R/β → 0,∞
(recall the discussion after equation (1.1.25)). In particular, when R/β → ∞, the infrared
piece of the entangling surface licks the black hole event horizon, in such a way that the area
of this infrared piece is determined by the event horizon area. The saturation of the EE to
its thermal value follows straightforwardly.

Figure 1.1: Schematic representation of the fact that the thermalization of EE is controlled by

the infrared behavior of the entangling surface. The asymptotic boundary is depicted in black, the

horizon in red.

Figure 1.2: Schematic representation of the entangling surfaces computing SA (left) and SĀ
(right) for the vacuum/thermal state of the CFT1+1. The lower black segment corresponds to
the asymptotic boundary, the upper black one to the Poincaré/black hole horizon.

The HEE prescription also allows for a geometrical diagnose of a state’s purity, due to the
homology constraint. Let us illustrate this with another two-dimensional example. We place
ourselves in the vacuum state of the CFT1+1, which corresponds to a planar AdS3 geometry.
In this case, the entangling surface σĀ, which is associated to the complementary region

A = {(t, z, x) ∈ AdS3 : t = 0, x /∈ [−R,R]} (1.2.125)

corresponds to σA plus a piece that runs along the Poincaré horizon. This piece is needed in
order to satisfy the homology constraint. Therefore,

SĀ = SA + Shor, (1.2.126)

where Shor represents the entropy of the Poincaré horizon, which is zero. As a consequence,
SĀ = SA and the state is pure, as expected. Figure 1.2 represents schematically this geo-
metrical construction.
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On the other hand, for a planar black hole geometry, the horizon is located at z = zh <∞,
and a constant time slice of it has a finite area density. When computing SĀ, the contribution
from the disconnected piece of σĀ that runs along the horizon results in an infrared divergent
answer. As a consequence, SĀ 6= SA. The black hole geometry corresponds to a mixed state,
as expected. In particular, note that if we choose a whole constant time slice of the boundary
as our entangling region, i.e., A = R, we obtain that our entangling surface corresponds just
to the black hole horizon. Therefore, the EE density on the boundary matches trivially the
thermodynamical entropy density.

1.2.5 Bottom-up versus top-down constructions

The original Madacena duality between N = 4 SU(N) SUSY YM and type IIB string theory
on AdS5× S5 is a particular example of a top-down construction. Top-down constructions
are pairs of dual QFTs and gravitational theories identified by taking a suitable decoupling
limit of a full-fledged brane system embedded in String Theory. Since the initial Maldacena
breakthrough, dozens of other examples have been found, and conformal invariance or su-
persymmetry are not essential for their existence [76][77][78][79].

In this thesis, we follow a complementary, bottom-up approach. Let us explain the phli-
losophy behind it. We consider general actions of the form,

Ibulk =
1

16πG

∫
dd+1x(R− 2Λ) + Imatter (1.2.127)

which corresponds to d + 1-dimensional Einstein-Hilbert gravity with negative cosmologi-
cal constant plus matter, and interpret them as the generating functional of some unkown
CFTs through the GKPW relation (1.2.79). Note that the different entries of the holo-
graphic dictionary we have discussed so far apply naturally to a bottom-up construction.
The groundstate of our putative CFT still corresponds to vacuum AdSd+1, and a thermal
equilibrium state still corresponds to a static black hole geometry, as our discussion in sub-
section (1.2.3) illustrates. The relations between boundary operators and bulk fields we
have introduced also uphold, in particular at the level of their quantum numbers, scaling
dimensions and masses, or identification of the source and the expectation value in terms of
non-normalizable and normalizable modes. In the same vein, as shown in [66][67], the HEE
prescription can also be employed, as it follows from a bulk geometrization of the replica
trick at the boundary that relies on the GKPW relation.29

In bottom-up constructions, we assume that the effective number of elementary degrees
of freedom of the dual CFT, ceff , scales as ceff ∼ G−1 with respect to the bulk Newton’s
constant. Therefore, geometries deformed with respecto to the AdS vacuum, and in particu-
lar black hole spacetimes, are endowed with an energy density ∼ ceff . The strongly-coupled
nature of the putative dual CFT is made manifest by realizing that, since we are restricting
ourselves to a few number of bulk fields, there must exist a large gap on the spectrum of
conformal dimensions of the primary operators (see [8] for a detailed explanation of these

29We refer the reader to [80] for a very nice discussion about how perturbative QFT in asymptotically
AdS spacetimes can be employed to build a CFT in the large N regime.
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two statements).

The obvious drawback of a bottom-up construction is that we don’t have access to the
microscopic nature of the dual CFT, if any. For instance, we don’t know how the opera-
tors the bulk fields correspond to are constructed out of the elementary fields of the CFT.
At most, a bottom-up construction should provide an effective field theory description of a
strongly-coupled QFT at a large number of elementary degrees of freedom. The underly-
ing expectation of a bottom-up based research is that the new phenomena that might be
uncovered by it are independent of the specific details of the underlying CFT, at least to
a reasonable extent. Said otherwise, the usefulness of this approach is based on the as-
sumption that it can capture universal properties of a CFT at a large number of elementary
fields and/or strong-coupling. This is particularly true for applications to condensed mat-
ter, where the equivalent of the gauge theory large N regime is not easy to identify, and
we are mostly interested in how the strong coupling regime and the associated absence of
a quasiparticle-like description manifest themselves in different physical properties of the
macroscopic system.

1.2.6 Holography near equilibrium

As subsection 1.2.3 shows, there is a vast landscape of equilibrium states with a dual ge-
ometrical description. In this thesis, we are interested in how perturbations around these
equilibrium states evolve and possibly relax, even in the sense of how large perturbations can
connect different equilibrium points in the landscape. Before we start to discuss this fully
out-of-equilibrium regime, let us briefly review how weak perturbations around equilibrium
are treated in AdS/CFT. Following [81], we distinguish two different regimes. The first one
contains small-amplitude and arbitrary-frequency perturbations, which are the subject of lin-
ear response theory; the second one encompasses arbitrary-amplitude and small-frequency
perturbations, which are the subject of hydrodynamics.

Linear response theory in holography

Lets place ourselves in a translationally-invariant equilibrium state, and perturb the CFT
by introducing a coupling φ0

j to the operator Oj,

SCFT → SCFT +

∫
ddxφ0

jOj. (1.2.128)

We assume that ‖φ0
j‖ � 1. The basic identity of linear response theory is

δφ0 〈Oi(ω,k)〉 = −GR
ij(ω,k)φ0

j(ω,k) (1.2.129)

which defines the retarded correlator GR
ij. This quantity encodes the response of the vacuum

expectation value of the operator Oi to the deformation (1.2.128) introduced by φ0
j . In

position space, we have

δφ0 〈Oi(x)〉 = −
∫
ddyGR

ij(x− y)φ0
j(y) (1.2.130)
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with GR
ij(x − y) = −iΘ(x0 − y0) 〈[Oi(x),Oj(y)]〉. The Heaviside Θ-function enforces the

causal response of the system to the applied external source. From (1.2.129), it is immediate
to compute the retarded correlator in any equilibrium CFT state with a gravity dual: it
suffices to solve the linearized bulk equations of motion for the dual field φi, subjected to
the asymptotic boundary conditions determined by φ0

j , and with the appropriate regularity
conditions at the IR of the geometry.

For instance, in case we were computing GR
ii on a thermal state for a scalar operator Oi,30,

dual to a bulk scalar field φ, we would need to solve the linearized φ equation of motion
on the associate black hole background, with infalling boundary conditions imposed at the
horizon:31

φ(ω,k, r) = A(ω,k)rd−∆ + ...+B(ω,k)r−∆ + ... (1.2.131)

GR(ω,k) ∝ −B(ω,k)

A(ω,k)
(1.2.132)

Sourceless solutions with A(ω,k) = 0 correspond to poles on the retarded correlator and
represent physical excitations of the system. It is expected that, for the given IR boundary
conditions, the requirement that A(ω,k) = 0 can only be met by a discrete set of eigen-
frequencies {ωn(k), n ∈ N}, at fixed k. Imposing the boundary condition that scalar waves
are absorbed at the horizon leads to a non-hermitean problem and, in consequence, to a
complex eigenfrequency spectrum. In this case, the eigenfunctions are the so-called quasi-
normal modes of the black hole. In the absence of a horizon, there is no source of dissipative
behavior,32 and we obtain a hermitean problem with a real eigenfrequency spectrum. The
eigenmodes are known as normal modes in this case.

Causality implies that the quasinormal modes imaginary part is negative, i.e., ωn(k) =
Ωn(k) + iΓn(k) with Γn(k) < 0. In this way, any perturbation of a black hole background
dies-off exponentially, with a relaxation time equal to Γ0(k)−1 at leading order.33 This is to be
contrasted with asymptotically flat black holes where, in addition to exponential relaxation,
late-time polynomial tails may also appear.

For a planar AdS-Schwarzschild black hole, conformality and dimensional analysis imply
that Γn(0) = f(0)T , so any perturbation of the thermal state is effectively suppressed at t =
O(1/T ) [82]. This behavior is not restricted to this simple example, however. The relaxation
time is generically set by T in a strongly-coupled, large N gauge theory. For example, on
supersymmetric mass deformations of N = 2∗ gauge theories, scalar operators also display
relaxation times O(1/T ), with a proportionality factor with just mild T -dependence [83].

Global AdS-Schwarzschild black holes are endowed with a quasinormal frequency spec-
trum that shows more intrincate behavior than their planar counterparts [82][84]. For a
horizon radius rh such that rh � L, it is also found that Γn(0) ∝ T by consistency with
the planar case. However, for rh � L, we have that Γn(0) ∝ r2

h: the absorption rate is

30We forget the indices from now on.
31Outgoing boundary conditions compute the advanced propagator.
32For instance, in global AdS only origin regularity is to be imposed on the solution.
33We assume that the fundamental quasinormal mode has the smallest imaginary part.
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proportional to the black hole area, i.e., to its scattering cross section. This is expected.
In the rh → 0 limit, we must recover the global AdS result, where the quasinormal fre-
quencies reduce to normal frequencies, with zero imaginary part. Therefore, Γ(0) cannot
be proportional to T , since the temperature of a small black hole is divergent in that limit.
Also note that while, naively, one could expect to recover the asymptotically flat behavior in
this L → ∞ limit, this does not happen because the quasinormal mode spectrum depends
crucially on the boundary conditions imposed at infinity.

Quasinormal modes associated to conserved currents are exceptions to the fast relaxation
behavior. In this case, retarded correlators display hydrodynamic poles, i.e., poles with a
dispersion relation such that ω(k) → 0 as ‖k‖ → 0. Consider such a conserved current
and take a space-independent source φ0(t), that we assume to be slowly-varying [50]. It is
satisfied that

δφ0〈O(t)〉 = −χ∂tφ0(t), (1.2.133)

where χ defines the transport coefficient associated to O. Fourier transforming (1.2.133) we
get

δφ0〈O(ω, 0)〉 = iωχφ0(ω). (1.2.134)

This expression should be compared with the k = 0 version of (1.2.129). We observe that the
low-frequency, zero-momentum behaviour of the retarded correlator determines the transport
coefficient through the Kubo formula

χ = − lim
ω→0

lim
‖k‖→0

Im GR(ω,k)

ω
. (1.2.135)

It possible to show [85] that, in a non-extremal black hole geometry with metric

ds2 = gttdt
2 + gzzdz

2 + gxxδijdx
idxj, (1.2.136)

an operator O dual to a massless scalar bulk field ϕ with action

S[ϕ] = −1

2

∫
dd+1x

√
−g∂µϕ∂

µϕ

q(z)
(1.2.137)

has an associated transport coefficient given by

χ

s
=

4G

q(z0)
, (1.2.138)

where z0 is the radius of the black hole and s its entropy density. In particular, by considering
the transverse-transverse energy-momentum tensor correlator GR

TxyTxy
in the state dual to the

geometry (1.2.136), we get that the ratio of shear viscosity η and entropy density s of the
dual field theory plasma is given by

η

s
=

1

4π
, (1.2.139)

since in this case q(z0) = 16πG.34 This is the celebrated Policastro, Son and Starinets
(PSS) result [86][87]. It indicates that, in a QFT whose dual description is provided by

34See the next item for a definition of the shear viscosity.
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Einstein gravity,35 in the large N, strong coupling regime an equilibrated plasma behaves
almost as an ideal fluid. It does not matter that the holographic QFT in question is or is
not conformal, confining, supersymmetric, or has additional chemical potentials. Above/but
close to the QCD deconfinement transition, experimental results on the QGP shear viscosity
show a value compatible with the PSS result, suggesting that the QGP formed is indeed a
strongly-coupled, almost ideal fluid. This piece of experimental evidence is clear regarding
the strongly-coupled nature of the QGP because, at weak-coupling, η/s would behave like
[39]

η

s
=

A

λ2 log B√
λ

, (1.2.140)

and diverges as λ→ 0.36

Hydrodynamics in AdS/CFT: the fluid/gravity correspondence

Fluctuations that fall into the hydrodynamic regime can be described in terms of a nonlinear
effective field theory (EFT): fluid dynamics. This description applies to any QFT state that
achieves local thermal equilibrium, in the sense that, around each spacetime point x, there
exist a mesoscopic region where the energy-momentum tensor Tab agrees with the ideal fluid
one, T ideal

ab , up to derivative corrections. Therefore, fluid dynamics starts from the assumption
that, at each x, we have that

Tab(x) = ε(x)ua(x)ub(x) + P (x)(gab(x) + ua(x)ub(x)) + Πab(x), (1.2.141)

where ε(x) is the local energy density, P (x) is the local pressure, and u(x) is the local
fluid velocity, which we assume to be normalized, u(x)2 = −1. The fluid equation of state
relates P (x) and ε(x), P (x) = P (ε(x)). As a consequence, the fluid energy-momentum
tensor (1.2.141) depends on d independent quantities. The viscosity tensor Πab encodes the
deviation from ideality and can be organized as a gradient expansion in terms of the local
thermodynamical variables

Πab =
∑
k

Π
(k)
ab (ε(x),∇ε(x), . . . , u(x),∇u(x), . . .), (1.2.142)

where the k-th order viscuous correction, Π
(k)
ab , involves term with k derivatives. In the

standard philosophy of EFT, Π
(k)
ab has the form

Π
(k)
ab =

∑
j

cjΠ
(k,j)
ab , (1.2.143)

where, in principle, the only restriction to be imposed on Π
(k,j)
ab is to be compatible with the

underlying symmetries of the physical setup. The coefficient cj is a transport coefficient. In

35In Einstein-Gauss-Bonnet gravity the bound depends on the Gauss-Bonnet coupling and can in fact be
lower.

36At weak coupling, η/s is proportional to the ratio of the plasma quasiparticles mean free path and their
average separation. At λ = 0, the mean free path diverges, so momentum can flow without being dissipated.
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EFT, the precise value of the transport coefficients is left for experimental determination,
since a first-principles computation of these quantities demands access to the underlying
microscopical description of the system. However, as any other EFT, hydrodynamics must
satisfy several consistency requirements. Imposing these allows restricting the form of the
allowed transport coefficients. For instance, there must exist an entropy current Js with
semi-positive divergence

∇aJ
a
s ≥ 0, (1.2.144)

in agreement with the Second Law.
The dynamical constraint that the hydrodynamic expansion must satisfy is just energy-

momentum conservation,
∇aT

ab = 0, (1.2.145)

which provides d equations that determine the d unkown variables in (1.2.141).

For a conformal fluid, the energy-momentum tensor is traceless, and the condition T aa = 0
provides the necessary equation of state. The first-order viscous correction is

Π
(1)
ab = ησab, (1.2.146)

where σ is the transverse, symmetric, traceless part of the velocity gradient ∇u. A suitable
first-order entropy current can be constructed, in such a way that

∇aJ
a
s =

η

2T
σabσ

ab, (1.2.147)

which is positive definite iff η ≥ 0. It is in this precise sense that the viscosity quantifies the
deviation of a fluid from ideality, which corresponds to adiabatic flow.

It is natural to conjecture that, through the holographic dictionary, the counterpart of the
CFT hydrodynamical regime are the of out-of-equilibrium, long wavelength fluctuations of
the black holes representing the thermal equilibrium state. A fluid flow in a CFT can be
described in terms of the local temperature, T (x), and the local velocity, u(x). When the
flow reaches thermal equilibrium, these quantities become spacetime independent, and the
fluid is ideal. The geometry corresponding to these situation is the boosted black brane
metric [88]

ds2 = −2uadx
adr + r2(ηab + (1− f(r/πT ))uaub)dx

adxb. (1.2.148)

A straghtforward computation of the energy-momentum tensor associated to this geometry
indeed reveals that it has the ideal fluid form. In order to address the hydrodynamical
regime, both T and u in (1.2.148) must be promoted to collective fields of the boundary
coordinates, T (x) and u(x). The resulting metric would not be a solution of the Einstein
equation. However, if T (x) and u(x) are slowly-varying,

T (x)−1∂a log T (x) = O(ε), T (x)−1∂aub(x) = O(ε), ε� 1 (1.2.149)

we can introduce the ε-expansion

gAB =
∑

εkg
(k)
AB(r, εx), T =

∑
k

εkT (k)(εx), ua =
∑
k

εku(k)
a (εx), (1.2.150)
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into the Einstein equation, and them solve it recursively order-by-order in ε.37 Note that the
construction assumes nothing about the amplitude of the original black hole perturbation:
the effective linearization comes from the slow variance of the fields. Once the expansion
(1.2.150) is solved to the desired order, the energy-momentum tensor, Tab, can be computed
by employing standard holographic renormalization techniques. The result is that Tab has the
fluid form (1.2.141)-(1.2.142) and can be expressed solely in terms of the original collective
fields, T (x) and u(x). The conservation of Tab is guaranteed by the nondynamical compo-
nents of the Einstein equation, and provides a set of constraint equations that u(x), T (x)
must satisfy. These are the equations of fluid dynamics. As a final benefit, the transport
coefficients cj are automatically determined by this procedure. At first order, it is found
again that η/s = 1/(4π).

As we mention briefly at the end of subsection 1.2.2, the bulk geometry defined by a
generic boundary energy-momentum tensor does not correspond automatically to an al-
lowed state of the CFT. However, it is possible to show that if T (x) and u(x) have the form
determined by the ε-expansion (1.2.150), singularities are shielded by event horizons, so cos-
mic censorship upholds. Remarkably, and despite their teleological character, the location of
these event horizons can also be found locally in an ε-expansion. More importantly, pulling
back the event horizon area density d−1-form to the boundary along infalling null geodesics
results in an entropy current Jas with the right properties [89].

The construction we just described is known as the fluid/gravity correspondence. For re-
views, see [90][91]. As it is clear from our previous discussion, this correspondence establishes
a one-to-one map between admissible fluid flows and deformed planar black holes. At the
theoretical level, it show that, for holographic CFTs, Einstein gravity can be thought of
as the ultraviolet completion of hydrodynamics. This is an important observation, since it
allows to establish the limits of validity of the hydrodynamic expansion. Rather than be-
ing controlled by how large the deviation from local thermal equilibrium is, the holographic
perspective indicates that the approach to the hydrodynamic regime depends on how fast
the dual black hole eats the massive, non-hydrodynamic quasinormal modes [92]. That this
way of thinking describes well the underlying physics has been observed in numerical ex-
periments of black hole formation, where low-order hydrodynamics becomes applicable even
when the difference between longitudinal and transverse pressures is order one (i.e., in the
presence of large gradients [93]) and has lead to a clear conceptual distinction between the
hydronamization time and the thermalization time.38

A natural question is whether this picture is valid outside AdS/CFT or not. Is it a universal
property of low-order hydrodynamics to be applicable in the presence of large gradients?
Recent numerical simulations of weakly-coupled SU(N) gauge theory on a dynamical ge-
ometry39 show that, after a transient period, kinetic theory is well approached by low-order

37This quantity is a bookeeping parameter that counts the number of spacetime derivatives and can be
set to unity at the end of the computation.

38By low-order hydrodynamics, we refer to keeping only the first or second gradient correction in the
viscosity tensor (1.2.142).

39The initial state of the system is chosen to be a thermal state; the dynamical geometry interpolates
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hydrodynamics, even while gradients remain large [94].

In AdS/CFT, the transient modes that determine the onset for the validity of the hydrody-
namic gradient expansion are well identified: they correspond to the dual black hole massive
quasinormal modes. Quite remarkably, the existence of these modes can be inferred from the
hydrodynamic gradient expansion herself, as originally shown in [95] for conformal, boost-
invariant holographic fluid flows. Just as it happens in perturbative QFT, this expansion is
an asymptotic series with zero radius of convergence. It is possible to prove that the large-k
divergence of the series coefficients is controlled by the first non-hydrodynamic quasinor-
mal mode: its frequency can even be computed from these coefficients by using resurgence
and transseries techniques. Applying a similar analysis to weakly-coupled hydrodynamics
leads to the same structure [96]: the hydrodynamic series is still asymptotic, and its di-
vergence still indicates the presence of extra, exponentially-damped modes. The decay of
these transient modes is to be held responsible for reaching the hydrodynamic regime; the
size of the gradients plays no role in the discussion again. In this way, the validity of the
low-order hydrodynamic expansion outside its naive domain of application matches a similar
phenomenon familiar from the work with asymptotic series in quantum theory.

This digression is a wonderful example of how AdS/CFT can be a fruitful source of physical
insight about open problems in other disciplines. At a more practical level, it is worth men-
tioning that the fluid/gravity construction can be employed to build the hydrodynamics of
charged fluids, or even superfluids. The starting point is replacing the boosted black brane
(1.2.148) by the corresponding AdS-Reissner-Nordstrom or hairy solution. This procedure
has allowed obtaining, even in first-order hydrodynamics, new terms that were missed in
standard pre-fluid/gravity studies.

Having discussed briefly what holography has to teach us about near-equilibrium physics
at strong coupling, let’s move on to the analysis of the fully out-of-equilibrium regime.

1.2.7 Far-from-equilibrium physics in holography: the flat case

Studying how generic perturbations of a given equilibrium state in a holographic CFT
evolve requires mastering Einstein gravity in its fully nonlinear regime. Analytical tools
are doomed: our understanding can only be upheld by new approximation schemes. Two
major approaches can be distinguished:

• Thin shell spacetimes

• Numerical holography

The specific kind of problems that have been undertaken by employing these techniques
includes, but is not restricted to:

between Minkowski space at t = 0, and a spacetime with an expanding xi direction (gii(t) ∼ t2) at late
times.
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• Holographic quenches

In a holographic CFT, a quantum quench admits a relatively simple bulk descrip-
tion. A fast variation in the field theory Hamiltonian can be traded for a Lagrangian
deformation of the form (1.2.80), which we recall now

LCFT → LCFT + φ0O.

A local quench is implemented by a boundary source φ0 sharply located in space and
time, lim|xa|→∞ φ0(x) = 0, lim|t|→∞ φ0(x) = 0, while a global quench corresponds to
a translationally-invariant φ0 profile sharply located in time. Typically,40 φ0 sources
an infalling pulse of its corresponding bulk field, which propagates inward from the
boundary, until it crosses its Schwarzschild radius and a black hole forms. This highly
excited black hole then relaxes, in such a way that its equilibration process models
the field theory entering into the hydrodynamic, linear response and static regimes.
The whole thermalization process can be monitored with the help of the AdS/CFT
dictionary, which prescribes how different observables such as one-point functions or
entanglement entropies are to be computed.

Different quenching processes of physical interest can be assembled by choosing both
the initial CFT state and the deformation (1.2.80) judiciously. Over the vacuum, cou-
plings to various operators have been considered: the energy-momentum tensor [97]
and marginal or relevant scalar operators [98][99]. Scalar quenches over a thermal
state have been addressed in [100][101][102] at the perturbative level. Quenches across
finite-temperature critical points have also been extensively studied [103].

• Holographic boost-invariant flow and shockwave collisions

The quick approach to the hydrodynamic regime observed experimentally in the QGP
calls for a holographic understanding. The gravitational quench studied in the pioneer-
ing work of Chesler and Yaffe [97] paved the way for more involved models of far-from-
equilibrium plasma formation and relaxation. These include studies of boost-invariant
plasma flows [93, 104] or shockwave collisions [105, 106], and have been historically fo-
cused on the question of how fast the hydrodynamization process at strong-coupling is.
These studies have already inspired highly nontrivial results in formal hydrodynamics,
as we commented in the previous item of this section.

• Holographic turbulence

The existence of the fluid/gravity correspondence suggests that the turbulence phe-
nomenon, familiar from standard fluid dynamics, should have a counterpart in the
holographic context. It has indeed been found [107], and brings surprising features
such as fractal-like horizons.

40For instance, in planar holographic CFTs.
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In this subsection, we focus on the results that have been obtained regarding HEE propaga-
tion in holographic quenches with planar asymptotics. Gravitational collapse in global AdS,
being the main subject of this thesis, would be separately introduced in the next section.

Time-dependent horizons and thermodynamical entropy

As a previous overall comment, it is worth noting that there exist several horizon notions
in black hole physics which, despite agreeing at thermal equilibrium, need not do so gener-
ically. The event horizon, defined in our case as the boundary of the causal past of future
timelike infinity, cannot be determined locally in a generic time-dependent metric by any
means. Diagnosing black hole formation in a numerical experiment requires considering the
apparent horizon instead. The apparent horizon, on a given spacelike slice, is the outermost
trapped surface present in the spacetime, and it is defined as the codimension-two hypersur-
face for which the expansion of an orthogonal, outgoing and future-directed congruence of
null geodesics vanishes. Given a congruence l(x), finding the apparent horizon amounts to
determining which x solve the equation ∇µl

µ(x) = 0, which is a local statement. Once this
hypersurface is found, a classic theorem in black hole mechanics guarantees that it is inside
the true event horizon, as long as suitable energy conditions hold [108].

Before the discovery of the HEE formula, there could be some room for doubting which
is the correct notion of entropy that applies in a far-from-equilibrium holographic CFT. It
is worth remembering now that the laws of black hole thermodynamics are meant to work
solely in near-equilibrium situations and that while, by the Area Theorem, the event hori-
zon cross-sectional area density is non-decreasing along its null generators, identifying it
directly with the actual CFT entropy density through the Bekenstein-Hawking formula is
problematic. Consider a translationally invariant state. First, at a given boundary time t,
and within the Wheeler-DeWitt patch associated with this boundary slice, different bulk
spacelike slices would have different entropy densities at the event horizon, so there is no
univocally defined way of selecting the correct one. Even if we made the natural choice of
picking up the maximum one, there is also no univocally defined way of pullbacking it to
the boundary. Moreover, even if we also made the natural choice of pullbacking it along the
associated infalling null geodesic, we still face two problems. First, as the conformal soliton
example shows [109], the entropy density defined in this way can even be diverging. Second,
and at a conceptual level, due to the nonlocal nature of the event horizon, the CFT entropy
density as we have defined it does not only depend on the CFT state at time t but also
on its entire future evolution. As a slogan, we can say that the entropy density of our sys-
tem today would depend on whether, for instance, we decide to quench the system tomorrow.

This situation is completely changed with the advent of the HEE formula, since it pro-
vides a coordinate independent way of computing a particular notion of entropy in quantum
physics that is well defined in time-dependent situations and, more importantly, just depends
on the Wheeler-DeWitt patch associated with the boundary slice at time t.
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Holographic propagation of entanglement entropy from thin shell spacetimes

In order to study HEE in time dependent situations, thin shell spacetimes have been widely
employed as simplified models of gravitational collapse. This is because they provide semi-
analytically known backgrounds that alleviate the task of computing nonlocal observables.
Although useful, thin shell spacetimes rely on drastic simplifications of the physical setup.
Results obtained within this framework must be compared with the ones coming from real-
istic constructions.

The simplest known model of a spacetime undergoing gravitational collapse is the Vaidya
metric41

ds2 = −f(v, r)dv2 + 2dvdr + r2d~x2, f(v, r) =

(
r2 − m(v)

rd−2

)
(1.2.151)

that describes an infalling pulse of pressureless radiation -null dust-, with energy-momentum
tensor

Tab = 2(d− 1)
ṁ(v)

rd−1
δavδbv. (1.2.152)

The null energy condition demands that ṁ(v) ≥ 0, otherwise, this function is completely
free. For instance, by taking

m(v) = mΘ(v), (1.2.153)

we are modelling an instantaneous energy injection on the AdS vacuum at v = 0, that results
in an infalling shockwave in the bulk. Inside the shockwave, spacetime is still planar AdS;
outside, it reduces to the AdS-Schwarzshild solution, due to Birkhoff’s theorem. Eventually,
the shockwave crosses its Schwarzschild radius and a black hole forms.

This collapsing background is dual to an instantaneous global quench over the CFT vac-
uum. In particular, the CFT energy-momentum tensor reaches its final equilibrium value
just after the quench, so the fact that the post-quench state is still not thermal can only be
distinguished by nonlocal probes.

The study of these nonlocal probes was started in [26][111][112]. Remarkably, in the three-
dimensional case, it was shown that the HEE evolution reproduces the post-quench EE
evolution originally computed by Calabrese and Cardy for a single interval. The horizon
effect they observe is still present, and in this example entanglement propagates as if it were
carried by free-streaming quasiparticle pairs, even if we are in a strongly-coupled field the-
ory.42. It has also been possible to employ the three-dimensional Vaidya model to analyse the
propagation of the mutual and tripartite information [113][114]. While the mutual informa-
tion displays a characteristic peak expected from the quasiparticle picture, the holographic
tripartite information results do not agree with this free-streaming model. This is because

41For scalar field collapse in planar AdS, the Vaidya metric is the leading order contribution to the total
spacetime metric in a low-energy expansion [110].

42Note that the Vaidya model represents a global quench over the vacuum state of a CFT which, contrary
to the Calabrese and Cardy initial state, has long-range entanglement. The quasiparticle model of [22] can
be modified to take this fact into account [26]
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it is imposible to entangle three regions with only EPR pairs.

Higher-dimensional thin shell Vaidya models were also considered in [115][116], where the
different regimes of entanglement propagation were thoroughly discussed in any dimension.
Take our entangling surface A to be of arbitrary shape -unless said otherwise-, define R to be
the height of its future domain of dependence, and focus on the EE difference between the
quenched state and the initial state at time t, ∆SA(t) = SA(t)−SA(t = 0). The system also
has an intrinsic local equlibration scale leq, after which the production of thermodynamical

entropy is stopped, leq ∼ s
1/(d−1)
th ∼ β. For entangling regions such that R� leq, the different

regimes found are the following:

• Pre-local-equilibration growth. For t� leq,

∆SA(t) =
π

d− 1
εVol(∂A)t2 + ..., (1.2.154)

where ε is the local energy density.

• Post-local-equilibration linear growth. For R� t� leq,

∆SA(t) = vEsthVol(∂A)t+ ..., (1.2.155)

where vE is a dimensionless constant independent on the shape of A, but dependent
on the final equilibrium state,

vE =
(η − 1)

1
2

(η−1)

η
1
2
η

, η =
2(d− 1)

d
. (1.2.156)

In particular, vE = 1 for d = 2, as expected.

• Saturation. Eventually, ∆SA(t) saturates to its value at thermal equilibrium,

∆SA(t > ts) = sthVol(A). (1.2.157)

For a strip, linear growth persists up to the saturation time ts = R/vE + O(R0),
where ∆SA(t) has a discontinuous first derivative. For a sphere, the saturation time is

ts = R/cE − (d− 2)/4πβ logR+O(R0), with cE = η−
1
2 . At times ts − t� leq, ∆SA(t)

approaches its thermal value like in a continuous phase transition, with a characteristic
exponent γ = (d+ 1)/2, ∆SA(t)−sthVol(A) ∝ −(ts− t)γ. The only exception happens
in d = 3, where an additional log(ts − t) modulation appears.

• Late-time memory loss. For a sphere, between post-local equilibration growth and
saturation, and additional regime appears for times ts � ts − t� leq. In this regime,
∆SA(t)− sthVol(A) = −sthλ(ts − t) for some function λ that depends both on leq and
on the difference R− t, but not on t and R separately.
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Figure 1.3: Cartoon of the entanglement tsunami for an entangling region of arbitrary shape.

Left: post-equilibraton linear growth. Right: late time saturation.

As a physical interpretation of these results, the authors of [115][116] proposed the so-called
tsunami picture. The crucial observation is that, after local equilibration, the three regimes
of entanglement propagation just described can be subsumed into the expression

∆SA(t) = sth(Vol(A)− Vol(Ω(t))). (1.2.158)

Therefore, we can imagine that entanglement propagates inwards from ∂A as a sharp wave-
front Σ(t), in such a way that the region already covered by this wavefront, A − Ω(t), is
entangled with Ā, while the region to-be-covered, Ω(t), is yet to-be-entangled. Just after
the quench, the tsunami builds up, until the moment when local equilibration is attained;
afterwards, it propagates freely with speed vE. For a strip, this continues to be the case
up to saturation. For a sphere, note that the tsunami speed cannot be equal to vE up to
saturation, since that would imply that ts = R/vE, which is greater than the actual satu-
ration time ts = R/cE + ..., as cE ≥ vE. This difference can be understood as an effect of
the nontrivial selfinteraction of the entanglement wavefront, that now propagates non-freely.
The late-time memory loss expression reduces to a particular case of (1.2.158) if we identify
λ(ts − t) with the volume of Ω(t). In particular, the fact that this volume does not depend
explicitly on R suggests that, given an arbitrary entangling surface, the information about
its size and shape is going to be forgotten at sufficiently late times, but well before satura-
tion.43 Finally, sufficiently close to saturation we must have that λ(ts− t) ∼ (ts− t)γ(d 6= 3),
(ts − t)2 log(ts − t)(d = 3). A natural question to ask is if an effective model of how the
tsunami propagates can be devised.

The tsunami speed vE was also computed in more general Vaidya-like geometries; for ex-
ample, with finite charge.44 After the local equilibration time, it was always found that the
entanglement propagation rate, which can be quantified by the dimensionless ratio

RA(t) =
1

sthArea(∂A)

dSA(t)

dt
, (1.2.159)

43Geometrical data defining ∂A of course determine ts; the point is that, in the late-time memory loss
regime, we cannot distinguish the tsunamis associated with two surfaces with different shapes but the same
ts.

44We discuss the four-dimensional charged Vaidya geometry in chapter 5.
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was less or equal than (1.2.156), which is the value in a final Schwarzschild black hole
geometry,

RA(t) ≤ v
(S)
E ≡ (η − 1)

1
2

(η−1)

η
1
2
η

. (1.2.160)

This observation lead the authors of [115][116] to speculate that perhaps (1.2.160) is an up-
per bound for RA(t) in QFT, at least for entangling regions such that R/leq � 1.

Within the thin shell approximation, the bound (1.2.160) was shown to be robust in [117][118]
for d = 4. In these works, homogeneous planar shells with timelike trajectories were con-
sidered. These shells were made of a perfect fluid with a linear equation of state, p = cσ
-p and σ are the shell’s pressure and energy density, respectively-. As we are going to
review in chapter 4, the shell trajectory, r = rs(v), is obtained from the Israel junction
conditions, which guarantee that Einstein’s equations are well defined in a distributional
sense. Birkhoff’s theorem demands then just to perform the change Θ(v) → Θ(r − rs(v))
in (1.2.153) to obtain a solution to Einstein’s equations. The shell must be released from
an initial radial position rs(0), and the authors of [117][118] choose to do it with zero initial
speed. Therefore, at early times and in terms of the shell comoving time τ , the shell trajec-
tory is rs(τ) = rs(0)− 1/2aτ 2 + .... Its acceleration a determines the pre-local-equilibration
growth of the EE through a relation of the form

∆SA(t) = F (rs(0), f(rs(0)), a)εVol(∂A)t2 + ..., (1.2.161)

so the Vaidya result gets modified in a complicated way, but the pre-local equilibration
quadratic growth stands. For a strip, and in the rs(0) → ∞ limit, it is found that F =
3π(1 + c) + ..., so there is a well-defined way in which the shell equation of state is dual
to the initial acceleration of the entanglement wavefront. At sufficiently late times, the
shell trajectory, independently of its equation of state and initial position, approaches a null
geodesic. In consequence, the Vaidya result RA(t) = v

(S)
E is reproduced.

Further evidence in favor of the tsunami picture can be found in [119]. For the three-
dimensional Vaidya metric, and in the case where the entangling interval is disconnected,
the actual holographic computations of entanglement propagation are in conflict with the pre-
dictions of free-streaming quasiparticle models but, however, agree with the tsunami picture.

The bound (1.2.160) has not yet been proven from first principles in the context of QFT.
At most, it has been possible to show that, after local equilibration, the tsunami speed vE
is constrained by causality

vE ≤ 1. (1.2.162)

This has been achieved by employing information-theoretical arguments based on the pos-
itivity of mutual information [120] or the monotonicity of relative entropy [121].45 Notice
that the result is remarkable, in the sense that, in principle, vE does not correspond to a
physical speed, so there is no apparent reason for it to satisfy the bound (1.2.162), other

45We discussed the definition and physical meaning of these quantities in section 1.1.
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than that entanglement should be carryed around by physical excitations. More robustly,
it has been proven that, in d > 2 dimensions, the bound (1.2.160) cannot be accounted for
quasiparticle-based models à la Calabrese and Cardy [120]. Assuming that the quench at
t = 0 generates a sea of entangled quasiparticle pairs, which then propagate freely with unit
speed, the velocity of the entanglement wavefront is bounded by

RA(t) ≤ vfree
E =

Γ(d−1
2

)
√
πΓ(d

2
)
, (1.2.163)

so for d > 2, vfree
E < v

(S)
E . At d = 2, both speeds coincide and saturate the bound provided

by causality, vfree
E = v

(S)
E = 1. Including quasiparticle interactions in these free-streaming

models is mandatory in order to see how RA(t) changes with respect to the conjectured
holographic bound.

Holographic propagation of entanglement entropy from realistic quenches

The results obtained from thin shell descriptions of gravitational collapse must be checked
against less restricted models of black hole formation. In contrast to the Vaidya case, realistic
holographic quenches correspond to the injection of some bulk matter distribution with
nontrivial selfinteraction. Pressure is now naturally incorporated into the problem and the
quench, although fast, is not instantaneous. The question of how entanglement propagates
in these novel backgrounds must be addressed, so as to determine in which degree the
description provided by the tsunami picture is universal.

We are discussing two selected examples in detail. They correspond to two different
quench processes, originally analyzed in [103] and [97]. The HEE propagation in these dy-
namical backgrounds was studied in [122] and [123] respectively. The motivation behind
discussing in depth ref. [103] stems from the fact that we are making contact with it in
chapter 5. On the other hand, the motivation behind discussing ref. [97] is the historical
importance of this work, as it can be regarded as one of the founding papers of Numerical
Holography.

Our first example is the thermal quench studied in [103]. Here, a four-dimensional planar
hairy black hole was perturbed by the action of a Gaussian boundary source, φ0, conjugate
to a condensed tachyonic scalar, φ. At fixed quench duration τ , and depending on the source
amplitude δ, three different regimes were found in the late-time dynamics of the scalar vev
|〈O〉|:

• For δc < δ, the system underwent overdamped relaxation to the normal phase, i.e. the
final equilibrium state was a Reissner-Nordstrom black hole (regime a).

• For δ∗ < δ ≤ δc, the system underwent overdamped relaxation to a new superfluid
phase,i.e. the final equilibrium state was a hairy black hole (regime b).

• For δ ≤ δ∗, the system underwent underdamped relaxation to a new superfluid phase
(regime c).
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The scale δc corresponds to final states such that their temperature is above the critical
temperature for the normal-superfluid transition, T > Tc. The new scale δ∗ is related to a
new temperature scale T∗, that would provide a finite-temperature and collision-dominated
analog of the collisionless Landau damping transition observed in BCS superconductors.
Note that the three relaxation regimes can be subsumed into a relation of the form

‖〈O(t)〉‖ ∼ ‖〈O〉f + Ae−iω0t‖, (1.2.164)

where ‖〈O〉f‖ is the vev in the final equilibrum state reached, and ω0 the lowest quasinormal
mode frequency, which should be the only surviving contribution at sufficiently late time.

By virtue of the relation above, the existence of the new scale T∗ can be inferred by
analyzing the final black hole quasinormal modes. Time-reversal invariance implies that
quasinormal frequencies appear in pairs, symmetric with respect to the imaginary axis

ω ↔ −ω∗. (1.2.165)

As we mentioned in the previous section, the system’s response being causal implies that
Im(ω) ≤ 0. Thus, the late-time dynamics is governed by the quasinormal frequency pair
with the smallest imaginary part. What happens to this pair?

Since at T = Tc the global U(1) symmetry of the dual field theory is spontaneously broken,
this pair coalesces at ω = 0, signaling the appearance of a Goldstone mode associated to this
breaking.

Into the superfluid phase, one member of the pair must stay at ω = 0. This is the
so-called phase mode, associated to the spontaneous breaking of the U(1) symmetry. It
corresponds to a hydrodynamic mode. As this new superfluid phase is a stable quantum
state, the only possibility compatible with causality and the symmetry (1.2.165) is that the
other member of the pair becomes purely imaginary. This is the so-called amplitude mode.
It turns out that, upon progressively lowering the temperature below Tc, this quasinormal
frequency travels down the imaginary axis. Eventually, this purely imaginary quasinormal
frequency has the same imaginary part as the next excited quasinormal mode pair, signaling
the transition in ‖〈O〉‖ from overdamped to underdamped relaxation. This sets the new
scale T ∗.

The existence of the new scale T∗ is thus universal, since it could appear in any transla-
tionally invariant system with a spontaneously broken continuous symmetry. In chapter 5,
we will provide evidence in favor of the existence of this universal phenomenon in holographic
superfluids at finite volume.

The behavior of the EE in the system just described was considered in [122], where the
entangling region A was taken to be a strip of lenght 2L. The major results were:

• In the pre-local equilibration regime, and independently of the quench amplitude δ
and the strip width, ∆SA(t) was found to violate the quadratic growth observed in
the Vaidya case. Instead, a dip appeared. ∆SA(t) first decreased until it reached a
negative minimum, after which quadratic growth followed. Therefore, at sufficiently
short times, and rather counterintuitively, entanglement seemed to be expelled from
A.
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• The post-local equilibration regime still exists. For sufficiently large strips, and as δ
augmented, the tsunami speed raised from zero, at δ = 0, and increased monotonically
up to a L-dependent saturation value vs

E(L), reached in the δ →∞ limit. This bound

on the tsunami speed decreases with L and always respects the relation vs
E(L) < v

(S)
E .

• The linear growth regime is abandoned at a time tp at which ∆SA(t) is continuous
but non-differentiable in the relaxation regimes a and b we discussed before, i.e., if
δ > δ∗. After this time, ∆SA(t) increases monotonically to its final thermal equilibrium
value for δ ≥ δ∗, while for δ < δ∗ this approach is non-monotonic and displays weak
oscillations. This behavior is not surprising if we take into account that the late-
time dynamics of the system, and in particular of its metric tensor, is controlled by
the fundamental quasinormal frequency of the final state. Therefore, the EE should
behave in the same way as the scalar vev.

Taken together, these results validate both the tsunami picture, at least in the post-local
equilibration linear growth regime, as well as the bound (1.2.160). The subsequent evolution
of ∆SA(t) is indeed more involved than its simple Vaidya counterpart. For example, and
within the tsunami picture, any damped oscillation of ∆SA(t) before reaching its final equi-
librium value must be originated by a Ω(t) that pulsates as it shrinks exponentially: due to
its selfinteraction, the entanglement wavefront must show some resistance to contracting.

A drawback of this holographic quench is that it relies on the existence of a specific scalar
sector in the bulk theory. Universal results pertaining any holographic CFT can be obtained,
however, by restricting ourselves to the gravitational sector alone.

Gravitational quenches were first addressed by Chesler and Yaffe in their seminal work
[97]. These authors considered that the background metric hab where the CFT is placed
undergoes a time-dependent shear deformation

dh2 = −dt2 + eB0(t)(dx2 + dy2) + e−2B0(t)dz2, (1.2.166)

B0(t) =
1

2
c (1− tanh(t/τ)) , (1.2.167)

while keeping translational invariance and rotational symmetry in the transverse (x, y) plane.
These symmetries imply that the bulk metric can be written as

ds2 = −A(v, r)dv2 + Σ(v, r)
(
eB(v,r)(dx2 + dy2) + e−2B(v,r)dz2

)
+ 2drdv, (1.2.168)

and is subjected to the boundary condition r−2gABδ
A
a δ

B
b → hab as r →∞. In the Eddington-

Finklestein coordinate system chosen, the Einstein equation decomposes into a nested system
of nonlinear ODEs.46 The initial state at t → −∞ is taken to be the Poincarè patch and,
as usual, the final state at t → ∞ corresponds to a Schwarzschild black brane of temper-
ature T , formed by the collapse of the gravitational wave sourced by the time-dependent
boundary metric. The original focus of [97] was to determine how fast the pressure gradient

46Solving numerically the Einstein equation in this way has become the standard method to study gravi-
tational collapse in planar AdS [124] and was, in particular, how the thermal quench we previously discussed
was addressed.
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Px(t) = Py(t) 6= Pz(t) induced by the quench isotropized. The answer was that fast relax-
ation upholds, in the sense that the isotropization time is of the form tiso = O(1)/T . This
fast relaxation is consistent with the behavior found experimentally for the QGP.

The behavior of the HEE in this quench was addressed in [123], for strips as entangling
surfaces. Due to the symmetries of the geometry, there exist two different cases: i) strips
where the finite interval of length 2L lies along the transverse (x,y) plane and ii) strips where
the finite interval of length 2L lies along the longitudinal z direction. Technical reasons limit
computing HEE in this gravitational collapse background: the interior of the apparent hori-
zon must be excised from the numerical solution, and entangling surfaces tend to penetrate
it. Therefore, the L � leq limit where the tsunami picture should uphold could not be
directly accessed. Nevertheless, for sufficiently large strips, evidence of both a linear growth
regime and a saturation time increasing with L was found. In every case analyzed in [123],
it was observed that the HEE approached non-monotonically its thermal equilibrium value,
with damped oscillations set by the lowest quasinormal mode of the final black hole. The
main difference between longitudinal and transverse strips is that their HEE is in phase-
opposition in this ringdown regime.

A question that remains is if the quasinormal ringdown of the HEE would persist in the
L� leq limit or, on the other hand, is a genuine finite size effect. This observation is a par-
ticular instance of a drawback common to the two examples we have analyzed: at present,
we don’t know if the deviations from the tsunami picture discovered in these examples are
genuine, or rather correspond to finite size effects. Further numerical experiments are called
for, so as to disentangle the finite size effects associated to strips with L & leq and potential
deviations from the tsunami picture when L� leq.

1.3 Gravitational collapse in global AdS

Studying gravitational collapse in asymptotically global AdSd+1 spacetimes is the major
subject of this thesis. Before reviewing the state-of-the-art of this corner of the AdS/CFT
landscape, let us remark some facts briefly.

Firstly, as the existence of the Hawking-Page transition vividly exemplifies, new physical
phenomena may arise when considering a CFTd at finite volume. As we are discussing in
this section, this is a general fact not restricted to the equilibrium regime.

Secondly, to draw universal lessons about the dynamics of an out-of-equilibrium CFTd at
finite volume, we must restrict ourselves to the study of gravitational perturbations of global
AdSd+1. In the nonlinear regime, addressing this problem in full generality requires mas-
tering pure Einstein gravity in a highly non-symmetric situation, that is currently beyond
computational reach. Simplifying assumptions are called for; commonly, we are considering
only rotationally-invariant states. As gravitational waves carry no monopolar mode, assum-
ing rotational invariance erases any nontrivial bulk dynamics unless a consistent supergravity
truncation that carries additional scalar fields is considered. Universality is lost. In principle,
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the results obtained within this approach pertain exclusively to a particular CFTd.

Thirdly, and as a consequence of the second point, if we are interested in obtaining gen-
eral results, any new phenomenon we might identify must be critically examined. It must be
checked whether the physical mechanism responsible for it is also present in the gravitational
sector or, at least, does not depend on the particular form of the scalar action. In particular,
any physical process that depends fundamentally on the assumed spherical symmetry of the
problem would hold only in a zero-measure set of the gravitational theory phase space. The
slightest deviation from spatial homogeneity would eliminate it.

A fact related to this last observation makes up the final point we should emphasize. In
top-down AdS/CFT constructions, the bulk spacetime takes the form AdSd+1 × X, where
X is an internal compact manifold, such that its isometry group encodes a global symmetry
group of the dual CFTd. We have already encountered an example of this: in the original
Maldacena duality, X = S5 encodes the SU(4) R-symmetry group of the N = 4 SUSY YM
theory. In the planar constructions we reviewed in the previous section, we were secretly
considering states with zero R-charge and, as a consequence, gravitational backgrounds ho-
mogeneous in X. This assumption, although harmless in the planar case, is non-trivial in
the global one.

In global AdSd+1 × X, assuming homogeneity in X could imply that, at a given energy,
the black hole state reached after a process of gravitational collapse might not be the pre-
ferred state in the corresponding microcanonical ensemble. Take the AdS5 × S5 case as an
example. It is possible to show that, below a horizon radius r+,c = 0.4402L, five-dimensional
Schwarzschild black holes, smeared over the S5, are unstable to localizing on the S5, form-
ing eventually a ten-dimensional Schwarzschild black holes [125][126]. This linear instability,
known as the Gregory-Laflamme instability [127], is present for r ≤ r+,c: the five-dimensional
smeared black hole background has an unstable gravitational mode on the S5, with positive
imaginary part.47 The caveats we expressed regarding our previous assumption of spherical
symmetry apply in this case even in a more painful way. Even if we were able to master
the nonlinear evolution of gravitational waves in global AdSd+1, overlooking the slightest
perturbation of the internal manifold might render the whole process we are interested in
(and have struggled to simulate) irrealistic. Perhaps, when departing from the particular
submanifold of the phase space we are artificially putting ourselves in, the evolution of the
system proceeds in an entirely different fashion.

As in any unstable system, the relevance of the Gregory-Laflamme instability is a matter
of the time scales involved in the gravitational collapse process. Let Mc be the mass below
which the five-dimensional Schwarzschild black hole becomes Gregory-Laflamme unstable.
Take initial data with M ≤ Mc, homogeneous in X, and add a nontrivial perturbation of
X of norm O(ε), with ε � 1. Now, let tc be the time needed to form a five-dimensional
Schwarzschild black hole when ε = 0 and tGL the time necessary for the Gregory-Laflamme

47The particular value of r+,c implies that large, five-dimensional, Schwarzschild black holes are immune
to this instability, a conclusion that extrapolates directly to planar black holes upon scaling.
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instability to fully develop (in the sense that the X perturbation grows from being O(ε) to
being O(1)). There are two limiting situations:

• tGL � tc. The collapse process would produce a ten-dimensional Schwarzschild black
hole on the time-scale tGL; the breaking of the CFTd internal symmetry group happens
right away.

• tc � tGL. The collapse process would result in an intermediate metastable state,
which barely breaks the CFTd internal symmetry group. Full breaking and final ther-
malization of the theory happen on the longer time-scale tGL. In this regime, the
formation of a five-dimensional smeared Schwarzschild black hole corresponds to a
pre-thermalization of the theory.

With these four caveats in mind, let us address now the current state of gravitational col-
lapse in global AdSd+1. The vast majority of the recent research on the subject focuses
on spherically symmetric spacetimes and employs scalar fields as sources for the dynamics.
We shall review non-exhaustively notable works in this area, commenting finally on what is
known about the purely gravitational case.

1.3.1 The AdS instability problem

Among the three different maximally symmetric spacetimes, both Minkowski and de Sitter
were shown to be nonlinearly stable in the past decades [128][129]. Nonlinear stability here
means that small perturbations -again, in some appropriate norm, with a certain degree of
analicity- remain forever small under time evolution. The issue of the nonlinear stability of
global AdS remained open until the year 2011, when it was first addressed by Bizon and
Rostworowski in their seminal work [130].

These authors considered a masless scalar field φ in an asymptotically AdS4 geometry. For
future reference, let us quote the action, ansatz and equations of motion for any d. The
Einstein-scalar action is48

S =
1

2

∫
dd+1x

√
−g
(
R + d(d− 1)− (∂φ)2

)
. (1.3.169)

The scalar field energy-momentum tensor is given by

T φµν = ∂µφ∂νφ−
1

2
gµν(∂φ)2, (1.3.170)

and the equations of motion the system must satisfy are

Gµν −
d(d− 1)

2
gµν = (d− 1)T φµν , (1.3.171)

2φ = 0. (1.3.172)

48Unless stated otherwise, in this section we work with units such that L = 1, 8πG = d− 1.
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When restricting to spherically symmetric spacetimes, a suitable metric ansatz is provided
by

ds2 =
1

cos2(x)

(
−f(t, x)e−2δ(t,x)dt2 + f(t, x)−1dx2 + dΩ2

d+1

)
, (1.3.173)

in such a way that global AdSd+1 corresponds to f(t, x) = 1, δ(t, x) = 0, while an AdSd+1

Schwarzschild black hole to f(t, x) = 1 − M cos(x)d sin(x)2−d, δ(t, x) = 0. The ansatz
(1.3.173) does not fix completely the gauge freedom of the system: there exists a resid-
ual one-parameter family of diffeomorphisms that leave the ansatz (1.3.173) invariant, but
change the physical meaning of the coordinate t. This residual freedom is fixed by specifying
at which spatial point δ(t, x) vanishes. The two common choices are the origin time gauge,
where δ(t, 0) = 0, and the boundary time gauge, where δ(t, π/2) = 0. In the former case, t
corresponds to the proper time of a static observer placed at the origin. In the latter, t is
the proper time of a static observer placed at the conformal boundary (if we identify this
boundary with the x = π/2 hypersurface in ESUd+1).

The existence of an apparent horizon in the system corresponds to a zero of the blackening
factor, f(t, x) = 0. It is convenient to define the new fields

Φ(t, x) = ∂xφ(t, x), Π(t, x) =
eδ(t,x)

f(t, x)
∂tφ(t, x), (1.3.174)

in such a way that the scalar equation of motion 2φ = 0 can be casted in first-order form as

∂tΦ(t, x) = ∂x(f(t, x)e−δ(t,x)Π(t, x)), (1.3.175)

∂tΠ(t, x) = cotd−1(x)∂x(tand−1(x)f(t, x)e−δ(t,x)Φ(t, x)). (1.3.176)

Due to our symmetry assumptions, the Einstein equation for the background spacetime
reduces to two nonlinear, elliptic ODEs, that determine the metric tensor in terms of the
scalar degrees of freedom,

∂xf(t, x) =
d− 2 + 2 sin2(x)

sin(x) cos(x)
(1− f(t, x)) + f(t, x)∂xδ(t, x), (1.3.177)

∂xδ(t, x) = − sin(x) cos(x)(Φ(t, x)2 + Π(t, x)2). (1.3.178)

There is also an additional equation, which corresponds to the momentum constraint, and
that is automatically satisfied if the background solves the remaining equations,

∂tf(t, x) + 2 sin(x) cos(x)f(t, x)2e−δ(t,x)Φ(t, x)Π(t, x) = 0. (1.3.179)

Let us come back now to the four-dimensional problem discussed in [130]. Rather than
quenching the system by turning on a particular boundary source φ0(t) for the scalar field,
Bizon and Rostworowski considered Gaussian initial data on the t = 0 hypersurface,

Π(0, x) ≡ Π0(x) =
2

π
εe−

4
π2σ2 tan(x)2

, Φ(0, x) ≡ Φ0(x) = 0, (1.3.180)

with σ = 1/16, and analyzed their subsequent time evolution. Remarkably, they found that
there exists a sequence of critical amplitudes {εn, n = 1, 2, 3...}, with εn+1 < εn, such that,
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if the amplitude ε of the initial data (1.3.180) satisfies εn+1 < ε < εn, a black hole is formed
after n AdS ligth-crossing times, tlc = π.49 Let tc(ε) be the collapse time, i.e., the time
needed for form an apparent horizon. This quantity, when plotted against the amplitude,
has two salient features: i) a series of plateaux with tc ≈ nπ, corresponding to ε ∈ [εn+1, εn]
and ii) an ε2-scaling, tc(ε

2) ∼ ε−2, when ε� 1.
Due to the finite resolution unavoidable in any numerical experiment, the critical se-

quence could not be continued past some finite εN > 0. A question that arises naturally at
this point is if the critical sequence is actually infinite and accumulates at ε = 0. A positive
answer would imply that AdS4 is nonlinearly unstable with respect to scalar perturbations
of the form (1.3.180).

In [130], both numerical and analytical evidence was provided in favor of the existence
of this instability. Firstly, it was shown that, as ε → 0, the rescaled function ε−2Π(ε2t, 0)2

approached an universal form in the slow-time τ = ε2t

ε−2Π(ε2t, 0)2 → π(τ)2. (1.3.181)

There exists a critical τc such that, for τ = τc, an apparent horizon forms. This is signaled
by a seeminly divergent π(τ)2 as τ → τ−c , which implies a divergent Ricci scalar curvature
at x = 0, since

R(t, 0) = −12− 2Π(t, 0)2. (1.3.182)

If the scaling symmetry (1.3.181) actually holds in the ε → 0 limit, any initial data of the
form (1.3.180) would form a black hole in a time tc = τcε

−2, as it happens for the numerical
simulations with ε > 0.

Secondly, a perturbative expansion in ε was constructed, in order to address the nonlin-
ear evolution of the scalar field analytically. The ansatz

φ =
∞∑
n=0

φ2n+1ε
2n+1, f = 1 +

∞∑
n=1

f2nε
2n, δ =

∞∑
n=1

δ2nε
2n (1.3.183)

was employed. At O(ε), this ansatz reduces to the scalar equation of motion on a fixed AdS4

background
∂2
t φ(t, x)− cot(x)2∂x(tan2(x)∂xφ(t, x)) = 0, (1.3.184)

which can be explicitly solved by separation of variables, φ(t, x) = eiωnten(x), with the
boundary conditions provided by origin regularity and normalizability. The resulting normal
modes, {en(x), n ∈ N}, are

en(x) =

√
16(n+ 1)(n+ 2)

π
cos3(x)2F1

(
−n, 3 + n,

3

2
, sin2(x)

)
, (1.3.185)

and form an orthonormal basis for any square-integrable function in L2([0, π/2], tan(x)2),

(en, em) =

∫ π
2

0

tan(x)2en(x)em(x) = δn,m. (1.3.186)

49The light-crossing time tlc is defined as the time needed for a radial null geodesic to travel between two
antipodal points on the boundary sphere.
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In consequence, a generic solution of (1.3.184) has the form

φ(t, x) =
∞∑
n=0

an cos(ωnt+ bn)en(x), (1.3.187)

with {(an, bn), n ∈ N} set by the initial data. The eigenfrequency spectrum, {ωn, n ∈ N}, is
given by

ωn = 3 + 2n, (1.3.188)

and is resonant, or non-dispersive, since the group velocity vg = ∂nωn = 2 is independent of
n. Note that (1.3.187) together with (1.3.188) imply that, in the absence of backreaction,
any scalar perturbation of global AdS4 is exactly periodic, with period 2π: AdS4 is linearly
stable. The apparent AdS4 instability observed numerically must be necessarily of nonlinear
nature.

In [130], one-mode φ1(0, x) = e0(x), ∂tφ1(0, x) = 0 and two-mode φ1(0, x) = e0(x) + e1(x),
∂tφ1(0, x) = 0 initial data were fed into the ansatz (1.3.183). After solving explicitly δ2,f2

by direct integration, at O(ε3) it is found that

φ3 =
∞∑
n=0

cn(t)en(x) (1.3.189)

satisfies and equation of the form

c̈n + ω2
ncn = Sn ≡ (S3, en) , (1.3.190)

where S3 is a functional of φ1, δ2, f2. Let I = {n : an 6= 0} be the set of indices of the non-
zero eigemodes of the linearized solution φ1. It can be shown that, for each resonant triplet
(n1, n2, n3) ∈ I3 such that ωn = ωn1 +ωn2 −ωn3 , a secular term proportional to t cos(ωnt) or
t sin(ωnt) appears in Sn. Certain secular terms can be reabsorbed into a frequency redefini-
tion à la Poincarè-Lindstedt; however, avoiding completely the appearance of secular terms
in φ3 is not generically possible. For instance, while the ε-expansion seeded by one-mode ini-
tial data can be continued to arbitrary high order, for two-mode initial data non-removable
secular terms appear at O(ε3). These secular terms are O(ε3t) and, in consequence, become
O(ε) at time tbreakdown = O(ε−2), rendering the ε-expansion invalid.

Taken alone, the existence of the new time scale tbeakdown does not imply that the scalar field
must undergo gravitational collapse.: a failure of the perturbative expansion can be a math-
ematical artifact with no physical relevance. Nonetheless, the fact that tc = O(tbreakdown) =
O(ε−2) suggests that the non-removable secular terms that appear in the ε-expansion are the
precursors of the nonlinear instability that is observed numerically. From this perspective,
the nonlinear instability seems to be directly tied to the resonant character of the eigenfre-
quency spectrum (1.3.188), since the resonant triplets only exist because the eigenfrequencies
are equally spaced.
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In [131], further steps were taken in order to characterize the AdS instability in frequency
space. The ADM energy of our system

M =
1

2
Vol(S2)

∫ π
2

0

tan(x)2f(t, x)
(
Φ(t, x)2 + Π(t, x)2

)
(1.3.191)

can be decomposed as

M =
∞∑
n=0

En =
∞∑
n=0

Π2
n + ω−2

n Φ2
n (1.3.192)

by defining the projections Φn =
(
f 1/2Φ, e′n

)
, Πn =

(
f 1/2Π, en

)
onto the eigenmode basis.

By examining the time evolution of the energy spectrum {En, n ∈ N}, it was found that
the progressive sharpening of the scalar pulse in position space has a direct counterpart
in an energy cascade from low-n to high-n eigenmodes. In this way, an energy spectrum
exponentially suppressed at high-n at t = 0, such as the one corresponding to initial data of
the form (1.3.180), becomes polynomial right before a black hole is formed at t = tc,

En ∼ n−α, n� 1 (1.3.193)

where α ' 1.2 is an universal exponent independent of the particular family of initial data
considered. This energy cascade is refered to as turbulent, in analogy with the Kolmogorov
energy cascade familiar from fluid mechanics.

To sum up, the initial studies provided evidence that arbitrarily small scalar perturbations of
global AdS4 are nonlinear unstable to black hole formation. The instability manifests herself
as a turbulent energy cascade, that is apparently seeded by the growth of the non-removable
secular terms that appear in perturbation theory due to the resonant eigenfrequency spec-
trum. Based on these observations, the authors of [130] proposed that global AdS is non-
linearly unstable under arbitrarily weak, generic scalar perturbations. Let us explain this
statement in more detail [132].

Figure 1.4: Cartoon of the three different possibilities for r(0). The orange shaded region repre-

sents Vc, while the white region corresponds to Vnc. The radial direction can be thought of as the

total energy, and the angular one as the energy radial distribution. The origin is global AdS. Left:

r(0) =∞. Middle: r(0) finite. Right: r(0) = 0.

Consider initial data (Φ0(x),Π0(x)), with norms ‖Φ0(x)‖, ‖Π0(x)‖ ≤ ε. Let Vc(ε) be
volume of the phase space region occupied by initial data that lead to collapse at times
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t . ε−2, and Vnc(ε) the volume of the phase space region occupied by initial data that never
result in black hole formation during this time scale.50 Bizon and Rostworowski conjectured
that the ratio

r(ε) =
Vc(ε)

Vnc(ε)
(1.3.194)

diverges when ε → 0. The AdS instablity problem consists in finding out which one of the
three options

lim
ε→0

r(ε) =∞, 0 < lim
ε→0

r(ε) <∞, lim
ε→0

r(ε) = 0 (1.3.195)

is actually realized. A schematic representation of the three possibilities can be found in
figure 1.4.

Note that the proposed physical mechanism behind the turbulent instability observed in
[130] holds for any scalar field with any m2 and in any dimension since, in these cases, the
eigenfrequency spectrum is given by ωn = ∆+2n and thus the criterium ∂nωn = 2 is still sat-
isfied. Furthermore, O(φ3) corrections to the scalar potential are not generically expected to
remove every secular term present at O(ε3) in perturbation theory and, in consequence, AdS
should also be nonlinearly unstable in arbitrary supergravity truncations involving scalar
fields.

When an O(ε) scalar perturbation has a nontrivial angular dependence, the spherical
symmetry of the metric is ony broken at O(ε2). As a consequence, any infinitesimal scalar
field fluctuation can be decomposed into normal modes of the form

en,l,m(t, x, θ, φ) = exp(iωn,lt)en,l(x)Yl,m(θ, φ), (1.3.196)

where Yl,m(θ, φ) is a spherical harmonic on the two-sphere, and l and m are the standard
angular momentum quantum numbers. The radial part and the eigenfrequency are inde-
pendent of m, while l only enters the eigenfrequency spectrum through the combination
2n+ l,

ωn,l = ∆ + 2n+ l. (1.3.197)

Since the spectrum is still resonant, the arguments put forward in [130] also apply. We expect
the turbulent instability to be present even for non spherically symmetric scalar fields. In
subsection 1.3.6 we discuss the status of the turbulent instability in the purely gravitational
case.

Let us close this subsection by noticing that, from the AdS/CFT viewpoint, the existence of
the turbulent instability looks natural. Naively, one would made the educated guess that any
excited state in the dual CFTd with macroscopic energy density must eventually thermalize.
Let us reintroduce the radius of curvature L, and recall that the radius R of the boundary
sphere is given by R = L. We note that the collapse time tc satisfies

tc(MR) ∼MR, MR� 1 (1.3.198)

tc(MR) ∼ (MR)−1, MR� 1 (1.3.199)

50We assume that there exist some regularization that allows one to define these quantities.
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As in the Hawking-Page transition, tc is nontrivial due to the fact that R provides a length
scale against which the energy can be measured. In the planar R → ∞ limit, the fine
subbranch structure present at ε ≤ ε1 is erased, and only prompt collapse is observed [98].

1.3.2 Kinematics versus dynamics in the AdS instability problem

The turbulent instability found in [130] is essentially dynamical since it depends on the
resonant character of the normal mode eigenfrequency spectrum. As we are considering a
classical system, we might expect that AdS is unstable due to more general reasons. If the
dynamics were sufficiently ergodic, and since the background spacetime where the scalar
field propagates is effectively compact, the gravitational system would explore randomly its
microcanonical shell Ω(E), until the scalar field configuration finds itself trapped behind
an apparent horizon. Collapse follows. If this line of reasoning were correct, also four-
dimensional Minkowski spacetime enclosed in a cavity would be nonlinearly unstable.

This last setup is particularly handy because, in this case, the normal mode eigenfrequency
spectrum varies depending on the boundary conditions chosen. Let the cavity be a two-
sphere of radius R. There are two possibilities:

• Dirichlet boundary conditions, φ(t, R) = 0, ωn = π
R
n.

• Neumann boundary conditions, ∂rφ(t, R) = 0, ωn = π
R

(
n+ 1

2

)
+O(n−1).

Therefore, while for Dirichlet boundary conditions the spectrum is still resonant, for Neu-
mann boundary conditions it is only asymptotically resonant. The numerical experiments
performed in [133][134] indicate that, in the latter case, sufficiently small scalar perturba-
tions do not collapse, at least for initial data of the form (1.3.180). In particular, the scaling
(1.3.181) is absent. However, for Dirichlet boundary conditions, the Ricci scalar at x = 0
shows the correct ε-scaling again. Furthermore, when considering the energy spectrum, a
turbulent cascade is also found; in particular, the exponent α takes the AdS4 value.

Another confirmation that kinematical confinement is not enough to trigger a nonlinear
turbulent instability was provided in [135]. These authors considered a complex massless
scalar field in AdS4 with an artificial, reflecting wall placed at xmax < π/2, where Dirichlet
boundary conditions were imposed. Again, this renders the spectrum of scalar fluctuations
on the restricted geometry dispersive. Consistently, when evaluating the collapse time tc(ε)
for Gaussian initial data of amplitude ε at σ = 1/16, an apparent divergence appears at
ε = εc(xmax) > 0, signalling the stability of small-amplitude initial data.

It is important to acknowledge that this research was highly motivated by [136], where
the authors put forward formal perturbation theory arguments in favor of the necessity of
having an exactly resonant spectrum for a turbulent cascade to be present. The two works
we have discussed in this subsection indeed provide solid evidence in favor of a dynamical
turbulent instability linked to the resonant character of the eigenfrequency spectrum. It
remains to be seen if this resonant character is a sufficient condition for the instability and
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not just a necessary one. For instance, [137] summarized the results pertaining several 1+1-
dimensional nonlinear PDEs that, although being defined on a compact domain and having
a resonant spectrum, are immune to the turbulent instability. Other toy models, such as a
scalar field with a λφ4 potential over a fixed AdS4 background, also share this phenomenol-
ogy [138].

It should be emphasized that the absence of a turbulent instability does not necessarily
imply the nonlinear stability of the system. An ergodic instability could still be present,
but be only relevant at a time scale tergodic parametrically larger than ε−2, making it inac-
cessible by the currently doable numerical experiments. From now on, we will forget the
possible existence of an ergodic instability and focus solely on time scales O(ε−2). A pro-
cess of gravitational collapse that takes place during this time scale is thus associated to
fast thermalization, in the sense that the system attains thermal equilibrium in the shortest
timescale allowed by the dynamics [132][139].

1.3.3 Stability islands

In [135], it was noticed that the turbulent instability disappeared for Gaussian initial data
of the form (1.3.180) when σ > σc.

51 As ε decreases, the function tc(ε) departs from its
behavior at σ < σc. Monotonicity is lost, and a critical εc emerges: for ε < εc, no black
hole is found within the times computationally accessible. As ε → ε+c , tc(ε) looks diver-
gent.52 The nonlinear stability of these one-parameter families of initial data when ε < εc
implies the existence of highly excited states in the dual CFTd that avoid fast thermalization.

The picture that has gradually emerged is that there exist stability islands in the phase
space of the system: within these regions, the turbulent instability is absent. What is the
reason behind their existance? As we already mentioned, one-mode initial data are nonlin-
early stable at level of the ε-expansion. At finite amplitude, these initial data branch off to
exactly periodic solutions that never undergo gravitational collapse [140]. We will refer to
these time-periodic solutions as oscillons. It is natural to postulate that each oscillon creates
a stability island: initial data sufficiently close to it could be regarded as a perturbed oscillon
and would avoid the turbulent instability if the eigenfrequency spectrum of scalar fluctuations
around this oscillon is nonresonant. As argued in [141], this line of reasoning can explain the
nonlinear stability of wide Gaussian initial data that we discussed in the previous paragraph.

The relation between nonlinear stability and a nonresonant spectrum of scalar fluctuations
has been explicitly confirmed for a complex scalar field in [134]. Due to the particular form
of its energy-momentum tensor, a complex scalar field admits boson star solutions [135][142].
These are exactly periodic solutions with a time-independent metric and a harmonic scalar

51For a scalar field with zero mass in AdS4, σc ≈ 0.3.
52Of course, it is impossible to determine whether a function is divergent or not in a numerical experiment.

Notice that even a simple streched exponential like exp(1/ε) can look divergent when probed with finite
resolution.
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field profile,
φ(t, x) = eiωtϕ(x), (1.3.200)

endoved with finite energy and charge. In [134], a perturbative computation demonstrated
that linearized scalar fluctuations over the boson star have an asymptotically resonant eigen-
frequency spectrum. Consistently, when perturbed with Gaussian initial data of the form
(1.3.180) with σ = 1/16, numerical simulations show nonlinear stability below a critical ε.
While a scalar pulse can propagate coherently through AdS4, over a boson star the pulse
eventually disperses. The energy spectrum is found to stabilize around an exponential dis-
tribution,

En ∼ e−ρ(t)n, n� 1 (1.3.201)

with ρ(t) oscillating around a positive mean.

Let us close this subsection with a last remark. The numerical experiments we have described
so far clearly establish that, at finite amplitude, there exist both nonlinearly unstable and
stable families of initial data. The latter ones lie in the stability islands and are stabilized
by the time-periodic solutions sitting at their center. The natural question to wonder about
these stability islands is how their measure shrinks as the amplitude of the time-periodic
solution sourcing them vanishes. As shown in [143], the improved perturbative framework
we describe in the next subsection allows answering this question.

1.3.4 The resonant approximation

Imagine we had no access to the evidence provided by numerical experiments. How would
we interpret the time scale tbreakdown that signals the limit of applicability of the ε-expansion?
Rather than adscribing any physical meaning to it, we would blame ourselves for our inhab-
ility to devise a better perturbative framework to address the problem.

It turns out that several such improved perturbative frameworks have been already found.
They can be pictured as resummed ε-expansions, free of secular terms and, in consequence,
uniformly valid up to times scales O(1/ε2). The different methods that have been proposed
include multiscale (the so called Two Time Formalism [144]), renormalization group [145]
and Hamiltonian averging [146] techniques, and are equivalent up to O(ε5) corrections [146].
Thus, at O(ε3), we would refer to them as the resonant approximation, with no loss of gen-
erality [147].

The physical reason behind the existence of the resonant approximation is that the AdS
instability problem is naturally endowed with a hierarchy of time scales in the ε → 0 limit.
Imagine we decompose our scalar field as

φ(t, x) =
∞∑
n=0

cn(t)en(x). (1.3.202)

When considering the evolution of the cn(t) coefficients, phase oscillations take place at a
time scale O(1); during each oscillation, the energy-per-mode, En(t), is effectively constant.
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Energy transfer between different eigenmodes takes place on a parametrically longer time
scale O(1/ε2). As a consequence, an effective description of the system that focuses on this
energy transfer can be obtained by integrating out the fast oscillations in cn(t).

In order to perform this integration, we assume that cn(t) = O(ε) and introduce the
eigenmode decomposition (1.3.202) into the Einstein-scalar equations of motion, keeping
only terms up to O(ε3). This result in a time evolution equation for cn(t) of the form

c̈n + ω2
ncn =

∑
ijk

Ωijkncicjck. (1.3.203)

Going to the interaction picture varables

cn =
(
βne

iωnt + β∗ne
−iωnt

)
, (1.3.204)

ċn = iωn
(
βne

iωnt − β∗ne−iωnt
)
. (1.3.205)

equation (1.3.203) becomes

2iωnβ̇n =
∑
ijk

Ωijkncicjcke
−iωnt. (1.3.206)

Each ci coefficient in the sum of the rhs of the equation above has the form (1.3.204).
Therefore, each coefficient of the sum is weighted by a e−iΛt phase factor, with Λ = ωn ±
ωi ± ωj ± ωk. Performing a change of variables to the slow-time τ = ε2t and rescaling
βn(t) = εαn(τ), this phase factor becomes a highly-oscillatory exponential, e−iΛτ/ε

2
, that can

be neglected unless the (i, j, k, n) quartet is resonant and Λ = 0. Finally, after neglecting the
non-resonant terms, the effective equations governing the remaining resonant interactions of
the system are given by

2iωn
dαn
dτ

=
∑
ijk

Ωijknαiαjα
∗
k. (1.3.207)

where the sum runs over the resonant quartets the n-th eigenmode belongs to. Out of the
different resonant channels in principle possible, the only one that appears is

ωn = ωi + ωj − ωk. (1.3.208)

We shall refer to these equations as the flow equations. A crucial property of the flow
equations is the existence of a new scaling symmetry,

αn(τ) −→ ε−1αn(τ/ε2). (1.3.209)

Another important observation is that the flow equations can be derived from a Lagrangian
[146]

L =
∑
n

iωn

(
α∗n
dαn
dτ
− αn

dα∗n
dτ

)
+ 2W, (1.3.210)

which has new continuous symmetries. These symmetries give rise to extra conservation
laws valid on the time scale O(1/ε2) [146][148]. To wit,
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• Global phase shifts, αn → eiθαn, lead to conservation of the free motion energy E =∑
n ω

2
n |αn|

2.

• Mode-dependent phase shifts, αn → eiωnθαn, lead to conservation of the particle num-
ber N =

∑
n ωn |αn|

2.

• Time translations, τ → τ + τ0, lead to conservation of the interaction energy W .

E is not the total energy of the system, since it neglects the interaction energy. Interestingly,
N conservation is related to the fact that, as we have mentioned, ωk = ωl + ωm − ωn is the
only resonant channel that appears. The resonant channels

ωk = ωl − ωm − ωn, (1.3.211)

ωk = ωl + ωm + ωn, (1.3.212)

are not present beacuse their associated Ω-coefficients vanish, even if in principle they are
kinematically allowed. This phenomenon was first uncovered in [146] by an explicit compu-
tation; more recently, it has been linked to hidden symmetries of the flow equations, that
give rise to selection rules enforcing this vanishing [149][150].

The existence of additional conservation laws, appart from energy conservation, has non-
trivial consequences regarding collapse. This fact is familiar from two-dimensional incom-
prensible fluid mechanics with zero viscosity, where the conservation of the enstrophy gives
rise to dual cascades: when one conserved quantity flows to high wavenumbers, the other
must flow in the opposite direction. In the resonant approximation, we face a similar situ-
ation. Since high eigenmodes have more energy per particle that lower eigenmodes, a fixed
amount of energy cannot flow directly to high eigenmodes by a turbulent cascade, since that
would reduce the particle number, violating N conservation. The must exists a simulata-
neous inverse cascade to low eigenmodes.

One major outcome of the resonant approximation has been the discoverement of new
quasiperiodic solutions that avoid collapse [144]. By taking the ansatz

αn(t) = Ane
−iBnt, (1.3.213)

and imposing the coherent phase condition

Bn = B0 + n(B1 −B0), (1.3.214)

(1.3.207) reduces to an infinite-dimensional system of algebraic equations. Truncating to
n = nmax, we obtain a finite-dimensional system of nmax + 1 equations for the nmax + 3
unknowns {B0, B1, An, n = 0, ..., nmax}, where we assume, with no loss of generality, that
An ∈ R. Two free parameters remain, and they can be identified with the conserved free-
motion-energy E and particle number N of the quasiperiodic solution.

The stability of these novel quasiperiodic solutions was addressed in [151], both at the linear
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and at the nonlinear level. It was shown that, at fixed E and N , the quasiperiodic solutions
minimize the interaction energy W . This minimization property is correlated with the linear
stability of these solutions. It turns out that the spectrum of scalar fluctuations associated
to the quasiperiodic solutions is asymptotically resonant and, furthermore, that from the
leading order term of its dispersion relation, ∂nωn = c+ ..., it is possible to predict the recur-
rence times observed numerically in several examples, that involve initial data characterized
by the same E and N as the quasiperiodic solution. These include perturbed quasiperiodic
solutions, but also two-mode initial data with equal energy-per-mode and σ = 4/10 gaussian
initial data of the form (1.3.180). Within the resonant approximation, these results validade
the picture that non-collapsing configurations should be interpreted as perturbed quasiperi-
odic equilibria: each quasiperidic solutions seeds a new stability island.

The resonant approximation is not only helpful to study noncollapsing solutions: it can
also be employed to analyse the turbulent instability herself. In [147], the authors consid-
ered two-mode initial data of the form

φ(0, x) = ε

(
1

4
e0(x) +

1

6
e1(x)

)
, Π(0, x) = 0, (1.3.215)

placed over AdS5, and followed their time evolution in the resonant approximation and at
the fully nonlinear level. In the latter regime, black hole formation was observed at times
tc = τc/ε

2. In the former, the flow equations were truncated at a finite N and solved
numerically. It was found that the time derivatives of the phases Bn diverged at a finite
τ = τ ∗, signaling the appearance of a oscillatory singularity. Apart from this observation, a
fit of the eigenmode spectrum around τ ∗ to the ansatz

An(τ) = C(τ)n−γ(τ)e−ρ(τ)n (n� 1) (1.3.216)

showed ρ(τ) hit zero at τ ∗. Therefore, at τ = τ ∗, the amplitude spectrum becomes purely
polynomial, with a characteristic exponent γ(τ ∗) = 2. This is also the exponent that appears
in the fully nonlinear numerical simulations.

Once this value is known, the ansatz (1.3.216) can be employed to determine how Bn

must behave asymptotically in n when the system is about to hit the oscillatory singularity.
The result obtained relies crucially on the asymptotic behavior of the Ω-coefficients. The
phases were predicted to be coherent for every resonant quartet

Bn = Bi +Bj −Bk, (1.3.217)

and logarithmically divergent individually,

Bn = an log(τ ∗ − τ) + bn. (1.3.218)

An explicit fit of the numerical results shows indeed that, in the asymptotic regime, an, bn
are linear in n, while τ ∗ is n-independent and agrees nicely with the time τc found in the
fully nonlinear evolution: τ ∗ ≈ 0.509 while τc ≈ 0.514. These results, when pondered to-
gether with the ε-scaling symmetry of the flow equations, imply that, for the initial data
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(1.3.215), the turbulent instability is present in the ε → 0 limit, and constitutes the first
semianalytical confirmation of this fact.53 As further evidence in favor of this conclusion,
the authors of [147] compared the rescaled Ricci scalar at the origin (cf. equation (1.3.181))
for fully nonlinear simulations of progressively lower energy with simulations of the resonant
system at progressively higher truncation order N . This quantity, in both schemes, seemed
to approach the same limiting curve either when E → 0 or N →∞.

A similar method was employed in [153] to show that, in four dimensions, Gaussian initial
data of the form (1.3.180) collapse in finite slow-time. Therefore, the initial data originally
studied by Bizon and Rostworowski in [130] display an infinite critical sequence that accu-
mulates at ε = 0. Interestingly, at the collapse time τ ∗, the critical exponent γ(τ ∗) was
shown to be compatible with 3/2, rather than the 8/5 value originally reported in [130].
Two-mode, equal energy initial data of the form (1.3.215) were also considered in [153]. In
striking contrast with the five-dimensional case, these initial data collapse in infinite slow
time: the function ρ(t) decreases exponentially to zero and never vanishes.

The phase coherent ansatz (1.3.217) was brought to the center of the stage in [154], where it
was proposed that phase coherence is a necessary ingredient to have an ultraviolet cascade
leading to collapse: a power-law amplitude spectrum must necessary be accompanied by a
coherent phase spectrum.54 In particular, since both conditions are only satisfied simultane-
ously due to the particular asymptotic form of the Ω-coefficients, it might be that not only
a resonant spectrum, but also a specific asymptotic behavior of Ωijkl, is needed in order to
have a turbulent instability.

In this regard, the absence of the turbulent instability reported in [138][155] is partic-
ularly intriguing. There, a nonbackreacting massless scalar field with a λφ4 potential was
placed over a fixed AdS4 background. The eigenfrequency spectrum is resonant. However,
in contrast to the fully backreacting case, the absence of scalar selfinteraction mediated by
metric implies that spacetime derivatives do not appear in the O(ε3) correction to the free
Lagrangian. This fact modifies the asymptotic behavior of Ωijkl completely. For instance,
while in the backreacting case we find that, for γ � 1,

Ωγi,γj,γk,γl ∼ γdΩi,j,k,l, (1.3.219)

in the λφ4 scalar theory the result is

Ωγi,γj,γk,γl ∼ γ−1Ωi,j,k,l, (1.3.220)

making the phase coherent ansatz, and the power law amplitude spectrum, impossible to be
obtained.

53While there could be some room for doubting whether the oscillatory singularity reported in [147] is
just implying the breakdown of the resonant approximation, [152] showed that this oscillatory singularity
is associated to a divergent redshift emerging between x = 0 and x = π/2. Therefore, at present, there is
strong evidence that, rather than being an artifact of the resonant approximation, the oscillatory singularity
represents a genuine physical effect associated with black hole formation.

54This statement refers to the n� 1 regime.
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Note that the results discussed on the preceding paragraphs only identify sufficient con-
ditions for the existence of the turbulent instability, or vindicate its persistence in the zero
amplitude limit. They do not address the question of how the measure of the phase space
region Vc shrinks in this limit. Can the resonant approximation, and in particular the scaling
symmetry (1.3.209), be employed to determine what the value of r(0) is? As demonstrated
in [143], it turns out that a careful analysis of how perturbative and fully nonlinear results
relate to each other, when combined with the scaling symmetry (1.3.209), allows discarding
the option r(0) =∞.

Recall that, at finite energy, there is solid numerical evidence favoring the existence of
stability islands of finite measure. The authors of [143] were able to demonstrate rigorously
that this measure does not vanish faster than the energy when the energy of the quasiperiodic
solution sourcing the stability island goes to zero. Therefore, global AdS is not nonlinearly
unstable under generic perturbations, and the original conjecture put forward in [130] can be
discarded. The possible resolutions of the AdS instability problem, as currently understood,
correspond to a finite r(0) or to r(0) = 0.55 These options are represented schematically in
the middle and right plots of figure 1.4.

1.3.5 The AdS3 case

Our discussion up to this point applies iff d > 2. As we are going to exemplify in detail
in chapter 3, three-dimensional AdS spacetime is fundamentally different from its higher-
dimensional counterparts. Already at the kinematical level, there is mass gap on the spec-
trum of static black hole solutions. The lightest black hole has energy56 M = 1 [156][157].
Static solutions with 0 < M < 1 correspond to naked singularities placed at x = 0. They
posses a conical deficit angle of 2πM and can be regarded as point particles. Therefore,
by energy conservation alone, initial data with M < 1 cannot form a black hole. At most,
they can form a naked singularity, if they are going to equilibrate in finite time to a static
configuration.

However, the eigenfrequency spectrum of a massless scalar field is still resonant and, in
consequence, the turbulent instability must still be present. A natural question arises: can
the turbulent instability lead to the formation of a naked singularity in finite time? If so, this
would represent a strong violation of cosmic censorship. Unlike the case for the Choptuik
critical solution [158], this time the region of the phase space of the gravitational theory
leading to a naked singularity would not be of zero measure.

In [159], this problem was addressed by fully nonlinear numerical simulations. Starting
from Gaussian initial data

φ(0, x) = εe− tan(x)2/σ2

, φ̇(0, x) = 0, (1.3.221)

55The arguments put forward in [143] only uphold if the maximum local energy density of the solution
remains bounded by ε for times . ε−2 and, as a consequence, cannot be directly applied to collapsing families
of initial data.

56In appropriate units, of course.
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with σ = 1/32, a turbulent cascade was found. By fitting the asymptotic form of the energy
spectrum to the ansatz

En(t) = C(t)n−γ(t)e−ρ(t)n, (1.3.222)

it is found that, after a transient period,

ρ(t) = ρ0e
−t/T , (1.3.223)

with the relaxation time scaling as T = Tc/ε
2. Therefore, since ρ(t) only vanishes in the

t→∞ limit, at any finite time the scalar field configuration remains smooth, and no naked
singularity forms. Cosmic censorship upholds. The presence of the turbulent cascade can be
faithfully demonstrated by the exponential growth of higher Sobolev norms. For instance,

Ḣ2 ≡ ‖φ′′(t, x)‖2 ∝ et/T . (1.3.224)

A natural question that emerges is what happens at the other end of the naked singularity
spectrum. According to [159], smoothness is conserved for any initial data with M < 1.
Black hole formation, i.e., the evolution of initial data with M ≥ 1, was addressed in the
pioneering57 work of Pretorius and Choptuik [160], albeit in a different coordinate system.
For thin scalar pulses, centered around x = 0, only prompt black hole formation was consid-
ered, with the aim of uncovering any critical behavior present in the collapse process. Time
evolutions longer than one light-crossing time were only studied for widely distributed initial
data. The collapse time tc was found to scale nonmonotonically with M as M → 1; more
remarkably, no collapse whatsoever could be found below a critical mass Mc > 1, within the
simulation times computationally accessible. Therefore, [160] was the first paper pointing to
the existence of a stability band above the mass gap, where the kinematically allowed collapse
is dynamically forbidden.

The existence of a stability band has also been identified in planar geometries with a gapped
black hole spectrum, such as the hard wall model [161] of the AdS soliton [162]. To date, it
is unclear what is the precise physical mechanism behind the existence of the stability band.
Perturbative methods are of no help since the scalar field distributions massive enough to
result in black hole formation cannot be regarded as small by any means.

Nevertheless, the numerical experiments performed so far support the following heuristic
picture. Consider a scalar pulse with mass M > 1,M − 1 � 1 located in the asymptotic
region. When the pulse infalls, its gravitational selfinteraction leads to its breaking into
one or more subpulses that, individually, do not have enough energy to collapse and form
a black hole. The appearance of an apparent horizon requires a sizable energy transfer
between subpulses and is disfavored. In this way, the existence of the stability band is sort
of a diffractive effect. We are going to analyze in detail one example of such behavior in
chapter 3.

1.3.6 The AdS instability problem in the purely gravitational case

In contrast to the Einstein-scalar case, the study of the stability of global AdS to purely grav-
itational perturbations is in a very preliminary stage. So far, only one example of numerical

57To this author’s knowledge, this is the first paper that studies numerically gravitational collapse in AdS.



1.3. GRAVITATIONAL COLLAPSE IN GLOBAL ADS 77

evolution of gravitational waves in global AdS has ever been performed [163], and relied
on restrictive symmetry assumptions. Addressing this problem in full generality remains a
pending task of the community. Fortunately, it had been possible to translate the perturba-
tive ε-expansion of [130] directly to the gravitational sector [164][165] in AdS4, gaining some
enlightenment about what to expect in future numerical experiments. Spoiler: nonremovable
secular terms appear again, suggesting that the turbulent instability is still present.

The spacetime metric is assumed to acquire the form

g = ḡ +
∑
n

εnh(n), (1.3.225)

with ḡ being the global AdS4 metric. At each order in perturbation theory, Einstein’s
equations result in

∆Lh
(n)
µν = T (n)

µν , (1.3.226)

where ∆L depends solely on the background metric ḡ, and T (n) is a functional of {h(j), j =
1...n − 1}, and their derivatives. The rotational invariance of ḡ can be taken advantage
of to decompose both h(n), T (n) into scalar and vector type modes. These are symmetric
two-tensors build from scalar and vector real spherical harmonics on S2, respectively. For a
given tensor, say A, we have

A =
∑
ls,ms

A
(s)
ls,ms

+
∑
lv ,mv

A
(v)
lv ,mv

+ cosϕ↔ sinϕ. (1.3.227)

It turns out that any solution to (1.3.226) separates into two decoupled PDEs at the given
l and m, one associated with the scalar modes, and another with the vector ones. At O(ε),
since the background is time independent, both equations can be Fourier transformed in
time. Regularity at x = 0 and the demand that the metric is asymptotically AdS4 fix the
eigenfrequency spectra to be:

ωls,ms = 1 + ls + 2ns, ns ∈ N (scalar) (1.3.228)

ωlv ,mv = 2 + lv + 2nv, nv ∈ N (vector) (1.3.229)

In contrast to the scalar field case, now we have two different normal mode sectors. Each
normal mode, being it scalar or vector, is completely characterized by its {l,m, n} triplet,
with l ≥ 2, l ≥ |m|; n is still an overtone number. Since (1.3.228),(1.3.229) are still resonant,
it is expected that higher orders in the ε-expansion are populated by nonremovable secular
terms. It turns out that, while h(2) is always bounded in time, nonremovable secular terms
appear in h(3), like in the scalar field case. Importantly, now the ε-expansion mixes the two
different normal mode sectors: an initial h(1) seed with only scalar eigenmodes can source
vector eigenmodes at higher orders, and vice versa.

In contrast with the scalar field case, not every seed that consists of one-mode initial data
can be backreacted up to O(ε3) to yield a time-periodic solution.58 The only cases where

58But note that, as found out latter in axis-symmetry, each linearized eigenfrequecy can indeed be back-
reacted [166].
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this is possible, as identified in [165], are: i) for scalar modes, {ls,±ls, 0}, {2, 0, 0}, {2, 1, 0}
and ii) for vector modes, {2, 0, 0}. Even though nonremovable secular terms do appear in
the other cases, their frequency always coincides with the frequency of the seed, so no tur-
bulent energy cascade is generated in perturbation theory. Creating new secular resonances
demands to consider two-mode initial data.

For two-mode initial data, if both modes admit a time-periodic extension, only two non-
removable secular terms are generated at third-order, as in the scalar field case. However, if
one mode does not admit this extension, additional nonremovable secular terms are created.
They come not only from the original eigenmode with no nonlinear extension but also from
the interaction between the two.

Thus, the final lesson coming out of the analysis of [164][165] is that, within pertubartion
theory, the turbulent cascade is present also in the gravitational sector and, furthermore and
more impressively, is harder than her scalar field counterpart.

As a final comment, it must be mentioned that the nonlinear gravitational solutions that
branch of the scalar {ls,±ls, 0} mode have been explicitly constructed numerically [167]. Fol-
lowing Wheeler, they were named geons. Geons are time-periodic, smooth horizonless geome-
tries with a helical Killing vector field, that at asymptotic infinity reduces to K = ∂t + Ω∂ϕ.
Ω is identified with the geon angular velocity. It appears in the First Law for the geon as
dE = ΩdJ .

The fully nonlinear regime of the AdS gravitational turbulent instability awaits the im-
provements in our numerical computation abilities. As a first step ahead, we could try to
check if an improved perturbative expansion still exists in this setup, even though we have
two different normal mode sectors that mix. If we are fortunate enough, this resummed
expansion, if available, might be addressable with current simulation techniques.



Chapter 2

Holographic quantum revivals in AdS4

2.1 Summary

Despite its fundamental importance, the relaxation of isolated quantum systems is still a
subject of debate both from the theoretical and the experimental perspective. The recent
availability of highly controllable quantum simulators, together with the awareness of their
conceptual importance, has stimulated the interest on quantum thermalization (for reviews
see [6] [168]).

To place this subject in a historical perspective, already in the classical realm interest in
a similar question was behind the seminal work of Fermi, Pasta, Ulam and Tsingou (FPUT)
on the dynamics of a one-dimensional discrete, nonlinear string [169]. Contrary to Fermi’s
expectation, the presence of nonlinearities was not enough to trigger the ergodicity required
for energy equipartition. Fermi suspected this was something deep and new and, indeed,
this problem marks the starting point for two branches of classical dynamics that developed
rapidly: integrability and chaos.

For quantum systems, the situation is much less clear even at the theoretical level. From
the experimental data, mounting evidence points towards a rich variety of possible evolu-
tions, depending both on the microscopic dynamics and the initial conditions. In some cases,
like for hard-core atomic interactions, integrability inhibits thermalization by freezing the
momentum distribution, in such a way that memory of the initial state is not lost [170]. In
others, the system thermalizes after passing through a quasi-stationary plateau at interme-
diate times, which has received the name of prethermalization [171][172]. Theoretical efforts
have been put into trying to derive a statistical description for these quasi-stationary states
by means of a Generalised Gibbs Ensemble [173][174][175][176][177]. Further work is still
necessary to clarify the different routes from integrability to quantum chaos and quantum
ergodicity.

On the other hand, the study of how quantum entanglement is generated, propagates and
relaxes in out-of-equilibrium processes is a topic receiving increasing attention. In chapter 1,
we already discussed the pioneering Calabrese and Cardy computation in 1 + 1-dimensional
gapped-to-critical global quenches (section 1.1) and the recent work in the AdS/CFT context
that resorts to the HEE prescription (section 1.2.4) to address this question, both by sim-
plified setups like the Vaidya model or full-fledged numerical computations (section 1.2.7).

79
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These different examples involved field theories living on non-compact spacetimes. As a
consequence, the entanglement entropy evolves right away towards saturating at its value
at thermal equilibrium. The overall lesson of these studies is that this saturation is always
attained after a horizon time depending on the size of the entangling region.

In this chapter, we want to push this venue further, and construct holographic models
whose out-of-equilibrium dynamics departs from a fast approach to ergodic behavior. We
will focus on isolated quantum systems of finite size.

A simple example where neither equilibration nor thermalization take place involves free
fields with a linear dispersion relation on a circle. For such system, any initial state will
reconstruct periodically in time, and the entanglement entropy would likewise oscillate. In
[178], a dual counterpart of this behavior was proposed to be the periodic formation and
evaporation of a quantum black hole in an asymptotically global AdS3 spacetime. Finding a
similar phenomenon in a strongly-coupled, holographic CFT just ammounts to finding out
if bouncing geometries exist in classical General Relativity with global asymptotics.

However, owing to our discussion about the AdS instability problem in chapter 1 (sec-
tion 1.3), we know that this is indeed the case. With global asymptotics, there exists the
possibility of obtaining geometries in which black hole formation does not happen promptly,
as in the Vaidya model, but rather after a time long enough for the turbulent instability to
act efficiently on the scalar pulse. In this chapter, we are relating these gravitational col-
lapse processes to delayed thermalization patterns, in which the holographic CFT exhibits a
series of quantum revivals, i.e., partial reconstructions of the initial state, before an ergodic
regime sets in. We back our proposal with a numerical entanglement entropy computation,
performed by means of the HEE prescription.

This chapter is structured as follows. In section 2.2 we review our gravitational theory. To be
concrete, we are employing the same Einstein-scalar theory as Bizon in Rostworowski in [130].
Since its action, ansatz, equations of motion and boundary conditions have been throughly
discussed in section 1.3, we urge the reader familiar with that part of this manuscript to
skip it. In section 2.3, we discuss how the phenomenology of gravitational collapse in our
model depends on the initial data considered, focusing on a position-space analysis. We
also comment both on the pre- and the post-collapse dynamics of the scalar field, i.e., its
evolution before and after an apparent horizon first forms.1 Then, in section 2.4 we discuss
the dual interpreation of the bounces. We illustrate how, for narrow scalar field profiles, a
simple model of causal propagation of entanglement based on previous field-theoretic and
holographic studies suffices to predict their main features, owing to the compact nature of
the boundary sphere. Based on this, we put forward a heuristic interpretation that relates
the position of the scalar field to the typical separation of entangled excitations, and its am-
plitude to their density. We illustrate how this heuristic model allows for an understanding
of characteristic features of the gravitational collapse process in terms of general field theory
expectations.

Finally, in section 2.5 we introduce the major results of this chapter: the entanglement

1Actually, in the coordinate system we are employing, apparent horizon formation cannot be detected in
finite time. We discuss this fact in this section, and refer the reader to chapter 5 (section 5.7) for an explicit
illustration of this fact in the Vaidya model.
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entropy computation in the bouncing background in terms of the HEE prescription. Our
entangling regions consist of spherical caps. We find out that the entanglement entropy
evolution is sensitive to the structure of the initial state, as it displays very different features
depending on whether the bouncing geometry is sourced by a narrow or a broad scalar pulse.
These differences are manifest both in the characteristic periodicity of its oscillations and
the temporal evolution of their amplitude.

2.2 The model

We are considering Einstein-Hilbert gravity with negative cosmological constant and a mass-
less real scalar field, i.e., the same setup analyzed by Bizon and Rostworowski in [130]. Our
Einstein-scalar action is2

S =
1

2

∫
dd+1x

√
−g
(
R + d(d− 1)− (∂φ)2

)
.

We restrict ourselves to spherically symmetric geometries and employ the metric ansatz

ds2 =
1

cos2(x)

(
−f(t, x)e−2δ(t,x)dt2 + f(t, x)−1dx2 + dΩ2

d+1

)
.

In it convenient to define the following quantities in terms of the scalar field φ,

Φ(t, x) = ∂xφ(t, x), Π(t, x) =
eδ(t,x)

f(t, x)
∂tφ(t, x),

since in this way the scalar field equation of motion can be casted in a first-order form
suitable for numerical integration

∂tΦ(t, x) = ∂x(f(t, x)e−δ(t,x)Π(t, x)),

∂tΠ(t, x) = cotd−1(x)∂x(tand−1(x)f(t, x)e−δ(t,x)Φ(t, x)).

A virtue of our metric ansatz is that the equations of motion for f and δ take also a first-order,
elliptic form

∂xf(t, x) =
d− 2 + 2 sin2(x)

sin(x) cos(x)
(1− f(t, x)) + f(t, x)∂xδ(t, x),

∂xδ(t, x) = − sin(x) cos(x)(Φ(t, x)2 + Π(t, x)2),

and can be integrated straighforwardly. The system closes with the momentum constraint

∂tf(t, x) + 2 sin(x) cos(x)f(t, x)2e−δ(t,x)Φ(t, x)Π(t, x) = 0,

which is not an independent equation, since it is satisfied if the remaining ones hold. The
momentum constraint guarantees that the energy density, to be introduced in the following,
is a conserved quantity.

2 Even though we discuss the action, ansatz and equations of motion of this system in chapter 1 (section
1.3) we decide to reproduce them here again for the convenience of the reader.
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We have set l = 1 and normalized the scalar field as

φ =

√
8πG

d− 1
. (2.2.1)

As initial data on the t = 0 hypersurface, we will either employ origin-centered

Φ(0, x) = 0 , Π(0, x) = Πo(x) = ε exp

(
−4 tan2 x

π2σ2

)
. (2.2.2)

or boundary-centered Gaussian profiles

Φ(0, x) = 0 , Π(0, x) = Πb(x) = ε exp

(
−4 tan2(π/2− x)

π2σ2

)
cosd−1 x . (2.2.3)

The choice of boundary-centered Gaussian profiles is inspired by the physics of a holographic
quench.3 Our initial-value problem is supplemented with the boundary conditions we de-
scribe next.

First, we work in the boundary time gauge, δ(t, π/2) = 0. With this choice, our time
coordinate t corresponds to the proper time of a boundary observer. Regarding the other
boundary conditions at x = π/2, we demand a normalizable scalar field profile: the source
φ0(t) vanishes and the CFT Hamiltonian is time-independent. Since here is no energy ex-
change between the CFT and its environment, we are considering an isolated system. Stan-
dard holographic renormalization [46] leads to the following formula for the conserved energy
M of the dual CFT

M =
(d− 1)

16πG
vol(Sd−1)M , (2.2.4)

where vol(Sd−1) is the volume of a unit (d−1)-sphere and

M =

∫ π/2

0

dx tand−1 xf(Φ2 + Π2) . (2.2.5)

the energy density per species of the dual CFT, since the effective number of elementary
degrees of freedom, ceff , and Newton’s constant, G, are related as ceff ∼ 1/G. As usual,
obtaining a finite backreaction in the ceff → ∞, G → 0 limit implies that the CFT energy
density is macroscopic, 〈Ttt〉 ∼ 1/G. We define the mass density function ρ of our system
by the relation

ρ(t, x) ≡ tand−1 xf(Φ2 + Π2), (2.2.6)

in such a way that

M =

∫ π/2

0

ρ(t, x). (2.2.7)

Focusing now on the x = 0 boundary conditions, we observe that regularity enforces that
f(t, 0) = 1 and Φ(t, 0) = 0. This conditions imply that δ, f,Π are even functions of x, while

3We discuss full-fledged holographic quenches in this system in chapter 6.
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Φ is odd. It must be emphasized that the absence of a naked singularity at x = 0 implies
that the dynamical geometries we are considering correpond to CFT pure states evolving
unitarily, even if at t→∞ the system relaxes to a black hole [178].

In the remaning part of this chapter, we will discuss solely the d = 3 case, leaving the
analysis of the d = 2 one for the next. As the simulation code we have employed both in this
chapter, chapter 3 and chapter 5 uses the same algorithms, we refer the reader to appendix
5.A.2 for explanations and checks.

2.3 Bouncing geometries: phenomenology

After the discussion presented in section 1.3 of chapter 1, we know that the gravitational
dynamics of asymptotically global AdS geometries is fundamentally different from its planar
counterpart. While in the latter case any scalar field pulse located in the near-boundary
region at t = 0 collapses gravitationally to a Schwarzschild black hole during its first infall
[98][110], with asymptotically global boundary conditions, there is the possibility of obtain-
ing bouncing geometries.

At the thermodynamical level, the black hole reached by a bouncing geometry after it under-
goes gravitational collapse always corresponds to a small AdS4-Schwarzschild black hole with
negative specific heat. It is worth emphasizing that this fact is non-problematic. Since we are
considering a CFT3 at fixed energy, the thermodynamical stability of the final equilibrium
state reached by our CFT3 has to be analyzed within the microcanonical ensemble, ant not
the canonical one. In this setup, the relevant thermodynamical potential to be minimized
corresponds to the entropy, and not the free energy. It can be shown that small black holes
are thermodynamically dominant over a thermal gas if their horizon radius is parametrically
larger than the Planck scale [179]. For future reference, we mention that, with our conven-
tions, the threshold mass Mth separating small and large AdS4-Schwarzschild black holes
is

Mth =
2

3
√

3
= 0.385 . . . (2.3.8)

Regardless of the specific form of initial data under consideration, for M ≥ Mth prompt
black hole formation is observed. The time th at which an apparent horizon forms satisfies
th < tlc = π, and the scalar pulse is completely trapped behind the apparent horizon lo-
cation, xh. In our coordinate system, xh is defined by the condition f(t, xh) = 0. At the
physical level, f(t, x) never actually vanishes at any finite value of t: the sudden decrease
of f(t, x) at x = xh is accompained by a diverging origin-boundary redshift, signaled by a
divergent δ(t, 0), in such a way that the gravitational dynamics at x ≤ xh frozens. Therefore,
at the practical level, th must be defined as the time where the minimum value of f(t, x),
fm(t), drops below an observer-defined cutoff.

Progressinly decreasing the energy density below Mth, the initial apparent horizon is gen-
erated only by a fraction of the scalar pulse, while the remaining part scatters towards the
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asymptotic boundary. Eventually, a critical energy density Mc,1 is reached, where the ap-
parent horizon forms at xh = 0, and a naked singularity is created. This naked singularity
corresponds to the Choptuik critical solution [158] in the region x� 1 [130].

Figure 2.1: Evolution of a narrow pulse (2.2.2) with σ= 1/16 and M= 0.015. Left: the dashed
line shows the initial mass distribution function. The colored curves denote the mass density profile
at the times when the pulse bounces against the origin producing a minimum of f(t, x) (see inset).
Right: scalar profiles from the first (blue), second (red) and third (brown) bouncing cycles; the
arrows indicate the direction of movement.

As discussed in chapter 1 (section 1.3), forM <Mc,1 the gravitational dynamics of asymp-
totically global AdS spacetimes departs from the asymptotically flat case. In the latter, the
scalar pulse is reflected at x = 0, and then disperses towards future null infinity while, in
the former, the presence of the asymptotic boundary leads to a futher reflection at x = π/2
and a subsequent infall. An apparent horizon forms afterwards. The AdS turbulent in-
stability implies that, for sufficiently narrow pulses, progressively decreasing the initial en-
ergy density leads to the appearance of a critical sequence Mc,2,Mc,3, . . . such that, for
Mc,n+1 < M < Mc,n, an apparent horizon forms after n reflections at the asymptotic
boundary [130]. In real space, the turbulent instability manifests herself in the progressive
sharpening of at least one scalar field subpulse after each bounce against the origin, where
the effect of nonlinear selfinteraction is stronger due to the energy density concentration.
Eventually, this sharp subpulse triggers a sudden decrease of fm(t), which freezes out the
gravitational dynamics for x ≤ xh. A generic example can be observed in the inset of figure
2.1a.

We would like to point out a generic effect accompanying the turbulent cascade: each time
the scalar pulse scatters at x = 0 and part of it sharpens, the rest tends to increase is radial
dispersion. This behavior, which will prove to bear important consequences for the dual
CFT3, is illustrated in figure 2.1a by employing a narrow initial profile which requires three
bounces for collapse. We have plotted ρ(t, x) at the times of closest approach to the origin.
Figure 2.1b is meant to illustrate the fact that, while ρ(t, x) gets modified after scattering at
x = 0, it remains unaffected after reflecting at x = π/2 (see inset). The blue, red and brown
profiles correspond respectively to configurations after the first, second and third bouncing
cycles. The apparent horizon is generated from the spiky front in the brown profile.
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Figure 2.2: Evolution of the initial data (2.2.2) (blue), (2.2.3) (red) and the combined profile
(2.3.9) (green) for the following subpulse data. Left: σ = 1/4 and M = 0.012. Right: σ = 1/16
and M= 0.029. In the inset, the initial mass density function. The left initial data have a larger
overlap than the right ones. The horizon formation time for the fast collapsing pulse (red curve)
gets affected and delayed (green curve), whereas it remains unaltered in the nonoverlapping case
on the right.

Besides the energy density, the scalar pulse broadness (set by σ in (2.2.2)-(2.2.3)) has a strong
influence on the gravitational dynamics [135]. Sufficiently broad pulses quickly develop a sub-
pulse structure with infalling and outgoing components that scatter among themselves. In
order to understand better the interaction between subpulses, let us consider a different
initial profile, formed by a linear combination of (2.2.2) and (2.2.3)

Φ(0, x) = 0 , Π(0, x) = Πo(x) + Πb(x) . (2.3.9)

We choose them to have the same M -when considered individually- and equal σ. As we
can observe in figure 2.2a, for a nonzero overlap the formation of an apparent horizon is
delayed with respect to the independent evolution of the subpulse that would collapse first.4

Hence, subpulse scattering tends to work against the turbulent instability, which is however
not evaded in this example. Interestingly, subpulses with negligible initial overlap are prac-
tically transparent to each other, as illustrated in figure 2.2b. We inform the reader that the
relation between collapse time and subpulse scattering has also been discussed in [180].

Collapse processes induced by broad initial profiles present distinguished characteristics.
They are radially delocalized for the major part of their time evolution. The oscillation
periodicities of these solutions are determined, besides radial displacement, by their internal
subpulse structure. As a result, the bouncing cycles are not neatly defined (see figure 2.3a).
Furthermore, the horizon emerges supported by a finite fraction of the pulse energy, in con-
trast to the case of narrow pulses, where this fraction can be vanishingly small. Delocalized
pulses require M ≈ 0.4Mth to generate an apparent horizon. When the total mass is de-
creased, a point is reached where the time elapsed until horizon formation abruptly increases
[135][141]. For masses below this threshold our results join previous analysis supporting the

4For the initial data considered in 2.2a, this subpulse corresponds to Πb
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establishment of a regular quasi-standing wave [141].

Figure 2.3: Left: Broad initial profiles of the form (2.2.2) with σ=0.6. Right: Influence of σ on
the initial mass density function ρ(0, x).

Figure 2.4: Initial data Πc(x) with σ = 0.6 and Πj=0(0, x) as given in (2.3.10), chosen to have the
same height. The overlap is substantial, supporting the argument that their time developments,
for small amplitude, are in the same island of stability around the time-periodic nonlinear solution
constructed in [140].

For initial data of the form (2.2.2), the threshold broadness for the existence of regular
solutions, σc, appears to be σc ≈ 0.35 [135]. In [141], the numerical analysis at σ = 0.6 con-
firmed the regularity of the evolution. However, for large values of σ, gravitational collapse
is observed again. The interpretation thereafter is that, for intermediate values of σ, the
evolution lies within the domain of attraction of the exactly periodic solution that bifurcates
from the fundamental mode of the linearized scalar wave equation in AdS4.5 This mode is
given by

φj=0(t, x) = ε cos(3t+ α) cos3 x , (2.3.10)

with ε, α ∈ R. For α=π/2, the initial conditions

Πj=0(0, x) = 3ε cos3 x , Φj=0 = 0 , (2.3.11)

5For extra information, we invite the reader to the discussion in section 1.3 about stability islands.
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are actually very similar to those coming from (2.2.2) with σ = 0.6, as illustrated in figure
2.4.

On the other hand, the sharpness of the initial scalar field profile should be established
based on the energy density function, ρ(0, x), rather than on the profile itself. We observe
from figure 2.3b that, indeed, sharply localized profiles exist both at σ � 1 and σ � 1.
Similar reasoning can be applied to initial conditions of the form (2.2.3). When σ & 2,
the exponential factor in the profile can be neglected, and Πb(0, x) ≈ Πj=0(0, x). We have
checked that for sufficiently low amplitudes the evolution of these initial data is regular up
to the reach of our computational capabilities.

2.3.1 Post-collapse evolution

It is standard to stop numerical simulations at t = th. However, to provide a dual inter-
pretation for the gravitational collapse processes we are considering, we need to pursue the
time evolution as closest to the final thermal state as possible. Even though the dynamics
for x ≤ xh gets frozen for t ≥ th, the remaining scalar field profile at x > xh continues trav-
elling back and forth between the apparent horizon location and the asymptotic boundary.
Its post-collapse evolution can be accessed in our original coordinate system, provided we
increase sufficiently the discretization grid resolution.6

Figure 2.5: Evolution of a narrow pulse (2.2.3) with σ= 0.1 and M= 0.021. Left: leftover
scalar pulse after horizon formation and two post-collapse bounces. Right: horizon growth.

In figure 2.5 we plot the post-horizon evolution of a narrow profile for which f(t, x) abruptly
drops after one bounce (see inset). The horizon radius at that moment is approximately
half the one of a Schwarzschild black hole of the total mass. When the apparent horizon
emerges, the leftover scalar profile has already started its way to the AdS boundary. The
mass distribution function at this moment is shown in figure 2.5a (light blue). Subsequently,
this outgoing fraction of the pulse bounces at the boundary and falls in again, being partially

6Commonly, this procedure demands grids of N = 216−217 points. We have checked that the momentum
constraint remains under control, the relative mass loss of the simulated solution does not exceed the percent
level, and that the results converge smoothly upon resolution variation.



88 CHAPTER 2. HOLOGRAPHIC QUANTUM REVIVALS IN ADS4

absorbed and partially reflected. As a result, a new minimum of f(t, x) drops to zero at a
larger value of x, in accordance with the expected growth of the horizon. This is shown in
figure 2.5b. We managed to follow this process past the completion of a second bounce with
an acceptable precision.7

The horizon radius after two bounces is still far from that of a Schwarzschild black hole of
the total mass (dashed black line in figure 2.5b). Several further bouncing cycles appear to
be necessary to complete the collapse process. This is likely a generic feature. As discussed
in chapter 1, at a linearized level one can calculate the absorption of scalar field to be consis-
tent with an outside amplitude that decreases exponentially with time, |φ|out ∼ exp (−ωlt)
with ωl ∼ r2

h, [82].

As for pre-collapse dynamics, the post-collapse evolution is also σ-dependent. Scalar pulses
of intermediate broadness show some degree of radial localization along the pre-collapse evo-
lution. However, once an apparent horizon first emerges, the fraction of the scalar pulse left
outside loses radial localization and a quasi-standing wave sets in. This fact is indeed con-
sistent with a result presented in the previous subsection: the turbulent instability implies,
together with the progressive sharpening of a subpulse, the radial dispersion of the rest.

Figure 2.6: Left: cycle of the post-collapse damped standing wave for a profile (2.2.2) with σ=1/4
andM=0.085. In the inset we have plotted f(t, x) when the collapse process is nearly completed.
The dashed black line shows f(x) for a Schwarzschild black hole of the total mass. Right: Same
plot as in the inset for a profile (2.2.2) with σ=3/5 and M=0.1538.

This behavior is illustrated in figure 2.6a for initial data (2.2.2) with σ=0.25. After two well
defined bouncing cycles, fm(t) suddenly drops. As the evolution continues new minima of f
appear at growing values of the radial coordinate, until the final value given by the radius
of a Schwarzschild black hole of the total mass is reached. We have plotted a complete cycle
of the left-out quasi-standing wave (blue, red and magenta curves), which perfectly matches
the generation of a new f minimum.8

7The total mass of the scalar pulse, obtained by integrating ρ(t, x), should keep constant along the
evolution. In this example, it suffers a 2% loss in each post-collapse cycle for a grid of N = 5 × 104 points
(see inset). The numerical noise around the minima of f in figure 2.5b is linked to this fact.

8At the numerical level, following the post-collapse evolution for broad initial data is less demanding than
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In the case of radially delocalized pulses, the function f(t, x) does not drop abruptly to
zero. This can be observed in figure 2.3b for several pulses with σ = 0.6. Similar dynamics
to the quasi-standing wave of figure 2.6a, but with stronger damping, is established when
the minimal radial value of f stops oscillating and starts decreasing. However, the minimum
of f only becomes vanishingly small at a radial position very close to the final event horizon
radius. This can be appreciated in figure 2.6b for the scalar pulse with M= 0.1538 from
figure 2.3a.

The periodicity of the bouncing cycles provides valuable information for the dual inter-
pretation of the collapse processes. The bouncing period of narrow pulses always satisfies
T & π, increasing with the energy density and broadness of the scalar field profile.9 Instead,
for broad pulses with radially delocalized dynamics, a shorter periodicity emerges, T & π/3.
This periodicity governs the metric oscillations of the broad initial profiles shown in figure
2.3a, as well as the damped quasi-standing wave of figure 2.6. The presence of a faster oscil-
lation should be traced back to the internal dynamics of the delocalized scalar pulse, rather
than to radial propagation. The fact that T & π/3 suggests that the origin of this faster
oscillation is related to the substantial overlap between broad initial data and the exactly
time-periodic oscillons found in [140].10

2.4 Dual interpretation of the bounces

In order to propose a field theory interpretation for the bouncing geometries treated in the
previous section, let us first recall the holographic model of thermalization based on a Vaidya
metric. Vaidya metrics describe the collapse of a shell composed of null dust. We consider
now Poincaré instead of global coordinates, such that the dual field theory lives on Minkowski
space. For simplicity, we focus on the AdS3/CFT2 instance of the duality, and the limit in
which the infalling shell is infinitely thin. The resulting geometry is that of a BTZ black hole
outside the shell and empty AdS3 inside. This model describes a sudden action on the dual
CFT vacuum which creates a homogeneous plasma with non-trivial quantum correlations
and its subsequent unitary evolution [26].11 It has been used as a holographic analog of a
quantum quench.
In 2005 Calabrese & Cardy studied quantum quenches from gapped to critical systems in
1+1 dimensions [22].12 They showed that the entanglement entropy of a single interval of
length l increases with time until it saturates around

t = l/2 . (2.4.12)

for narrow pulses. In our example, we are able to reach a horizon radius up to within 3% of the final value,
while keeping the relative mass loss ≤ 0.1% by employing a N = 2× 104 resolution.

9It is satisfied that T is practically π when measured with respect to the origin proper time[130]. However,
for a boundary observer higher mass pulses take a longer time to climb their own gravitational potential.

10The oscillon periodicity is actually T = 2π/3. This results in a periodicity T = π/3 for the metric
oscillations, since they are sourced by the squares of scalar field derivatives.

11See section 1.2.7 for a discussion of entanglement entropy propagation in planar AdS/CFT.
12See section 1.1.2 for an extended discussion of their results.
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Figure 2.7: Assuming that the excitations behave as free quasiparticles, the entanglement
entropy of an interval, S(t, l), is proportional to the number of entangled pairs (shaded region)
such that one component lies on the chosen interval and the other on its complementary [22].
For simplicity it is considered that only excitations created at the same point are entangled.

The limiting value attained at later times scales extensively precisely as it would do if the
system inside the interval were in contact with a thermal bath given by the complementary
system outside. Remarkably, this behavior can be explained kinematically, as a mere result of
entangled excitations flying apart at unit speed (see figure 2.7). Consistently, the holographic
model based on the collapse of a null dust shell leads to the same saturation time (2.4.12)
for the entanglement entropy as found in the CFT computation. According to the HEE
prescription (1.2.113), the entanglement entropy of an interval is given by the length of the
bulk geodesic that anchors at the AdS boundary on the interval endpoints. For sufficiently
small intervals or sufficiently late times, geodesics will lie outside the infalling shell. Since this
part of the geometry is that of a BTZ black hole, the entanglement entropy for such intervals
will be the same as that of a thermal state. The bound (2.4.12) corresponds to geodesics
whose central point just reaches the infalling shell (either because l is large enough, or because
t is small enough) [26][111]. Similar results apply to the extremal surfaces computing the
entanglement entropy of spherical regions in 2+1 and 3+1 dimensions. They reach the
infalling shell at

t = R, (2.4.13)

where R is the radius of the sphere [111][112][181]. We are thus led to propose a meaning
for the position of the pulse in the radial direction as capturing the typical separation of
entangled components of the QFT wavefunction. When the pulse is close to the boundary,
entanglement is to be stronger between nearest neighbors, whereas the pulse falling towards
the origin of AdS should represent entangled excitations flying apart. Analogous arguments
were used in [182] to construct a holographic model for a local quench.

There is an important difference between the gapped-to-critical quenches studied in [22]
and the holographic Vaidya model. In the former case, quantum correlations in the initial
out-of-equilibrium state are short-ranged, of the order of the inverse mass gap before the
quench. The Vaidya model represents a homogeneous action on the CFT vacuum which
creates a plasma with long-ranged correlations. Actually, the entanglement entropy and
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two-point functions just after a sudden perturbation practically coincide with those of the
CFT vacuum [26][111]. This fact implies that correlations are strongest among excitations
sourced at neighboring points and decay with their distance as a power law. Hence, the min-
imum separation of entangled components coincides with the distance across which quantum
correlations are stronger. It is this distance that we relate to the radial position of the shell.
The long-ranged correlations are instead encoded in the AdS geometry interior to the shell.

2.4.1 Dephasing and self-reconstruction

An important notion in out-of-equilibrium physics is that of dephasing time. This quantity
is the time that a system takes to lose quantum coherence. Since we are dealing with isolated
systems, this notion will refer to the moment at which microscopic entanglement becomes
inaccessible to macroscopic observables. After dephasing, the system is expected to relax to
a stationary state, generically a thermal one.

The horizon effect (2.4.12) implies that, independently on how long we wait after a global
quench in an infinite system, there will always exist sufficiently large regions where quantum-
coherent correlations can be detected [22][26]. Namely, dephasing is never achieved at the
global level. With the aim of providing a dual interpretation for the bouncing geometries
studied in the previous section, we review now the different scenarios that can arise on a
compact space. We assume that the initial state that triggers the field theory evolution
presents stronger entanglement among neighboring degrees of freedom. The typical separa-
tion of entangled components will start growing as it does in the non-compact case. However,
what happens after the maximal separation is achieved depends, crucially, on interactions.

The simplest case to consider is that of a noninteracting theory with linear dispersion
relation living on a circle. Any initial state reconstructs itself periodically, preventing the
system to equilibrate. When this state is homogeneous, this periodicity is

t0 =
L

2v
(2.4.14)

with L the length of the circle and v the propagation velocity of the excitations [178] [183].
We will refer to t0 as propagation time, since it is the time that two particles moving apart
with speed v on the circle take to meet again.

The pattern in an interacting field theory is expected to differ substantially. Let us con-
sider a global quench of a field theory placed on a circle. Generically, as entangled excitations
created at nearby points reach maximal separation on the circle and start approaching again,
interactions will have randomized their relative phases preventing the initial state from re-
constructing [178]. A strongly-interacting holographic version of this behavior is provided
by the three-dimensional Vaidya model with global asymptotics. The absence of pressure
induces the formation of a black hole by direct collapse, and the entanglement entropy of
the semicircle achieves its final value at

t =
L

4
. (2.4.15)

This time consistently equals the one needed by two particles that separate at the speed of
light to reach opposite points on the circle.
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The evolution of dephasing not only hinges upon the microscopic dynamics but also de-
pends upon the structure of the initial state. Let us illustrate this statement with an easy
example, by looking at the behavior of free systems with a nonlinear dispersion relation.
Consider a periodic chain of coupled harmonic oscillators

H =
1

2

N∑
i=1

[
π2
i + ν2(φi+1 − φi)2

]
. (2.4.16)

Its spectrum is given by non-interacting modes of momentum p=2πn/N with n=0, . . . , N−1
and frequency

ωp = 2ν sin
p

2
. (2.4.17)

For p�π the dispersion relation becomes linear, ωp'νp. An initial wave packet constructed
out of low momenta will reconstruct itself with period t0 =N/2ν, as in (2.4.14). No sign of
relaxation will appear until enough time has passed to render important the nonlinearity of
the dispersion relation. If the wave packet is centered around frequency ω̄, this time is [168]

t ' N2

ω̄
. (2.4.18)

Afterward, the system dephases and tends to a stationary state.13 The dephasing time can
be much larger than the propagation time t0 if ω̄ is chosen sufficiently small. It is important
to emphasize here that this dependence of the relaxation process on the initial state is indeed
seen in experimental setups [170] [171][172][175].

We can now put forward our major proposal: collapses which require bouncing on the AdS
boundary before forming a horizon are holographically dual to field theory evolutions where
the initial state is partially reconstructed several times before achieving equilibration.

In other words, their dephasing time is larger than the typical propagation time, in anal-
ogy with the case of the harmonic chain above. The periodic nature of the bouncing geometry
is tantamount to the reconstruction, or revival, of the initial dual quantum state. Evidence
for revivals has been observed experimentally in cold atoms systems [184]. At a theoretical
level, it has been seen in quantum spin chains [185][186] and also in 1+1-dimensional CFTs
[187]. We have argued that in an interacting field theory the presence of revivals should not
be generic.However, that reasoning can fail for states with sufficiently small energy density.
The finite size of the system introduces an intrinsic scale and, hence, the dynamical process
can also depend on the energy density of the initial state. This is precisely what is found
in the holographic models based on the collapse of a massless scalar profile [130]. When the
mass of the scalar shell is above the threshold (2.3.8) for the formation of a large black hole,
the shell is completely trapped behind a horizon by direct collapse. Bouncing with the AdS

13The stationary state generically differs from the canonical thermal equilibrium one since the occupation
numbers of noninteracting modes are conserved along the evolution, and should rather be described by a
Generalized Gibbs Ensemble that takes this new infinite set of conserved charges constraining the dynamics
of the system into account.



2.4. DUAL INTERPRETATION OF THE BOUNCES 93

boundary is only required when the final black hole to be formed is small.

In the same way that an infalling scalar pulse is to be holographically interpreted as a
growing separation between entangled excitations, the stages of the evolution when it moves
towards the AdS boundary should represent entangled excitations joining again. This can
be neatly seen using a thin shell of null dust that travels outwards and reaches the boundary
at t=0. The same reasoning that for an infalling shell sets the bound tth = l/2 leads now to

0 ≤ l ≤ −2t , (2.4.19)

for the size of intervals producing a thermal result for the entanglement entropy. Hence their
size decreases as the system evolves towards t= 0, as can be predicted from the qualitative
quasiparticle picture of Calabrese & Cardy.

A very nontrivial support for this picture comes from the periodicity of the scalar pulse
in the bulk. From the numerical simulations, one can see that its evolution from the bound-
ary to the center and back completes a full roundtrip with a period of approximately π (see
for example the inset in figure 2.1a). Now, recalling that in the gravitational system we have
fixed the radius of the boundary sphere to unity, the expected reconstruction time (2.4.14)
is

t0 =
L

2
= π (2.4.20)

where L = 2π is the length of an equator. As we have mentioned in section 2.3, the exact
periodicity is slightly bigger than π and this delay increases with the amplitude of the pulse.
We will relate this fact to the presence of interactions in section 2.5.1.

2.4.2 Broadness versus time span

In our setup, no reference is made as to how the initial state that triggers the evolution
is generated. In order to understand the implications of broad scalar profiles, it is however
useful to discuss several characteristics of field theory perturbations that can holographically
relate to them.

To gain insight, we can resort again to the familiar case of the Vaidya metric

ds2 =
1

cos2 x

[
−
(

1−m(v)
cos3 x

sinx

)
d2v + 2dvdx+ sin2 x dΩ2

2

]
(2.4.21)

with v an Eddington-Finkelstein infalling coordinate. We choose a mass function satisfying

m(v) =

{
0 v < −∆t ,

M v > 0 .
(2.4.22)

It represents the build up of an energy density M in a finite time span ∆t starting from
the CFT vacuum. The null dust shell sourcing the metric (2.4.21) has support in the region
v∈ [−∆t, 0]. Upon transforming to the Schwarzschild coordinates (t, x), the shell exhibits a
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finite broadness in the radial direction.14 This is shown in figure 2.8a, where the intersection
of a succession of constant t slices with the location of the shell, highlighted in yellow,
determines its radial localization. Its profile at several t slices is plotted in figure 2.8b.

Figure 2.8: Left: intersection a null dust shell with ∆ = 1/2, signaled in yellow, with the lines
of constant t=−0.5, 0, . . . , 2 in the (v, x) plane. Right: mass distribution function at the same t
slices.

The mass distribution function in figure 2.8b corresponding to t=0 provides the analogue of
the initial data we are dealing with in this chapter. Its value at a given x reflects the density
of excitations created at a prior time

t ≈ x− π/2 ≤ 0 . (2.4.23)

The earlier some excitations have been created, the further entangled components are able
to fly apart and the deeper their holographic representation reaches in the x direction. We
will adopt this point of view in order to interpret the scalar profiles, as sketched in figure 2.9.
Hence, the dual field theory state associated to a broad pulse should describe a configuration
with entanglement over many length scales.

The field theory dual to the collapse processes we are considering is in a pure state along
the complete evolution (see below) [26][178]. One pertinent question is: how much correlation
exists between the components x1 and x2 that build up the profile in figure 2.9a? Let us
recall the evolution of the initial profile (2.3.9), which is composed of two sharply localized
subpulses. When the overlap between subpulses is negligible, the gravitational dynamics
renders them transparent to each other (see figure 2.2b). This is however not the case for
the profile in figure 2.2a, where the pulses have a small overlap. Both effects point to the
existence of entanglement among the adjacent components of the profile in a way that grows
with their proximity.

On general grounds, the time that a quantum system takes to dephase should depend on
the amount of strongly correlated components it contains, rather than on the total energy
density. According to our interpretation, the height in ρ(0, x) provides a qualitative measure
of the number of initially strongly correlated excitations. Hence the time for horizon forma-
tion, to be related with the dephasing time in the dual field theory, must be influenced by

14We refer the reader to section 5.7 for a throughout discussion of this coordinate change in the case of
the four-dimensional charged Vaidya metric.



2.5. ENTANGLEMENT ENTROPY 95

this value. This is indeed what we find in figure 2.9b, where we plot the evolution of three
different pulses whose initial mass distributions can be seen in the inset. The blue one has
half the broadness of the other two. It coincides with the black one in the value of the initial
amplitude and with the red one in the total mass. The time of horizon formation is very
similar for the pulses with the same amplitude (blue and black). However, when we compare
pulses of the same mass, it is much longer for the broader one (red).

Figure 2.9: Left: Excitations sourced during small time intervals around t1 ∼ x1−π/2 and
t2∼x2−π/2. Right: Evolution of fm(t, x) for several pulses: σ=0.1 and M=0.035 (blue), σ=0.2
and M = 0.066 (black) and σ = 0.2 and M = 0.035 (red). In the inset we plot the initial mass
density distribution for each pulse.

2.5 Entanglement entropy

Saturation of a subsystem’s entanglement entropy to its thermal equilibrium value provides
a necessary condition for the subsystem to have thermalized.15 With this motivation, we will
employ the HEE prescription to characterize the CFT3 state dual to the bouncing geometry.16

As entangling region, we will choose a two-dimensional spherical cap

C = {x ∈ R× S2 : t = t0, θ ≤ θ0, ϕ ∈ [0, 2π]}, (2.5.24)

where θ0 denotes the cap opening angle. The spherical symmetry of the gravitational back-
ground dictates that the entangling surface σC is parametrized as

σC = {(t(θ), x(θ), θ, ϕ) ∈ AdS4 : θ ∈ [0, θ0], ϕ ∈ [0, 2π]} (2.5.25)

where we have allowed for a nontrivial embedding of σC in the timelike direction, being
the geometry time-dependent. The embedding functions t(θ), x(θ) will be subjected to the
boundary conditions

x′(0) = 0, x(θ0) = π/2 (2.5.26)

t′(0) = 0, t(π/2) = t0, (2.5.27)

15See section 1.1.
16See section 1.1 for and introduction to entanglement entropy and section 1.2.4 for an introduction to

entanglement entropy in holography.



96 CHAPTER 2. HOLOGRAPHIC QUANTUM REVIVALS IN ADS4

where , with no loss of generality, we assume θ = 0 to correspond to the entangling surface
tip. Since the entanglement entropy is ultraviolet divergent, we must choose a suitable
regularization. The entanglement entropy of a cap in the AdS4 vacuum has been computed
in [188], with the result

Area(σC) = 4GSC = 2π

(
sin θ0

ε
− 1

)
, (2.5.28)

where the ultraviolet cutoff x ≤ xm, ε = cotxm has been introduced. Threfore, a suitably
regularized entanglement entropy in a generic time-dependent setup is provided by

S(t, θ0) =
2π

4G

(
Area(σA)

2π
− sin θ0

ε

)
. (2.5.29)

Smoothness of the gravitational background at x = 0 implies that σC is both homologous
to C and C̄. As a consequence, SC = SC̄ , and we are modelling holographically the unitary
evolution of a pure state, even if at t → ∞ the geometry relaxes to a static Schwarzschild
black hole [26][178]. Furthermore, this equality also implies that it suffices to consider caps
with θ0 ≤ π/2 as entangling regions.

An important remark is in order. The spacetime region covered by the (t, x) coordinate
system does not reach behind the apparent horizon. However, it has been shown that the
extremal surfaces computing entanglement entropy in Vaidya models can cross both the
event and the apparent horizons [26]. They do so for boundary times and entangling regions

with sizes larger than the scale set by the collapsing shell, which is proportional to M− 1
3 .

Since we are focusing on scalar field configurations for which this scale is larger than the size
of the boundary sphere -as these are the only ones giving rise to a bouncing geometry-, we
find natural to assume that our extremal surfaces will not reach the apparent horizon and,
as a consequence, that our coordinate system suffices to describe them.17

Having clarified our strategy, let us show some results. In figure 2.10 we plot the entan-
glement entropy evolution for a bouncing geometry that avoids gravitational collapse. The
scalar field dynamics have both a pulsating and a radially localized component. Consistently,
two distinct periodicities, π/3 and π, are clearly distinguished in the entanglement entropy
oscillation.

In the next subsections, we will analyze the most relevant features of the holographic
entanglement entropy evolution. Our aim is twofold: we want to learn about the non-
equilibrium dynamics of finite-sized isolated systems at strong coupling and, at the same
time, explore the holographic dictionary in dynamical situations.

2.5.1 Early time dynamics

We shall start our analysis by focusing on the growth of the entanglement entropy as the
scalar pulse first falls towards the interior. To that purpose we consider narrow initial profiles
localized close to the boundary, as described by (2.2.3).

17While the existence of entangling surfaces probing inside the apparent horizon is a common feature of
Vaidya models, there exist realistic collapse scenarios where this property seems to be absent [189].
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Figure 2.10: Entanglement entropy oscillation for an initial profile (2.2.2) with σ = 0.4 and
M=0.09. Different colors correspond to caps with opening angle θ0 =0.9, 1.2, 1.5.

In figure 2.11a we compare two well-localized pulses of the same broadness but different
amplitudes. One of them gives rise to a black hole of the total mass by direct collapse
(M=0.3), while the other requires three bounces for the emergence of an apparent horizon
(M= 0.012). For the sake of comparison, we have rescaled the entanglement entropies of
the latter case such that they coincide with the former ones at their maxima. We find no
significant difference between the entanglement entropy growth to its first maxima for the
small mass pulse and to its final values for the direct collapse one. Pursuing this line, in
figure 2.11b we compare a one-bounce (M=0.014) with a many-bounce pulse (M=0.008)
using the same rescaling of entropies as before. In this case, there is a perfect match in
the growth of the entanglement entropy for both pulses. The decrease to the subsequent
minimum also agrees. The only significant difference is the time that S(t, θ) spends at its
maximum, which grows with the mass.18

These results allow us to sharpen the dual interpretation. The early time dynamics proceeds
as in non-compact space. Namely, the evolution of the entanglement entropy is quantita-
tively well described by the free-streaming model, where the entangled components of the
dual state separate at the speed of light. The red curve in figure 2.11a illustrates this. This
curve gives the value of the entanglement entropy at t=θ0, and very approximately signals
the moment at which S(t, θ0) saturates to its maximum. Moreover, we have compared the
entanglement entropy growth for narrow shells which form a black hole by direct collapse
and Vaidya configurations of approximately the same broadness and mass, observing no im-
portant difference again.

The effective propagation of entanglement at the speed of light implies that the pairs of
entangled excitations have reached their maximal separation on the two-sphere at t≈ π/2.

18A detailed analysis of the dependence of this delay time with the energy density can be found in section
3.2.
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Figure 2.11: Entanglement entropy evolution for several pulses with σ = 1/16. Different colors
correspond to caps with θ0 =0.5, 0.6, .., 1.4. In each graph, the entanglement entropy values for the
lower mass pulse have been rescaled to coincide with those of the larger mass one at their maxima
for the sake of comparison. The red line on the left figure gives, for the pulse with larger mass, the
entanglement entropy at t = θ0.

However, the period needed by the scalar shell to complete a bouncing cycle is always above,
although close to π. It is practically π for pulses of small mass and increases for more massive
ones, as can be seen in figure 2.11b.

A dual heuristic picture for this effect could be as follows. Strong interactions might
have generated a phase shift on the field theory wavefunction that effectively induces a
larger radius for the two-sphere. Since the entanglement entropy depends on the actual size
of the region considered, the only natural imprint of the phase shift on the entanglement
entropy would be to prolong the time interval that it keeps at its maximum values. Being
an effect due to interaction, it should increase with the energy density of the state. This
precise pattern is what we observe in figure 2.11b.

2.5.2 Holographic evolution

In this subsection, we study the evolution of the entanglement entropy based on radially
localized pulses. The collapse of narrow pulses is led by an energy transfer towards high mo-
mentum modes, such that a fraction of the pulse develops a peak sharp enough to become
trapped by an emerging horizon. The remaining pulse is swallowed in a stepwise fashion by
the growing horizon until a final black hole of the total scalar shell mass sets in.

Let us analyze first the evolution of the entanglement entropy before a horizon emerges.
Remarkably, we find that the entanglement entropy of large regions not only oscillates but
its maxima in each bouncing cycle slightly decrease. We illustrate this effect in figure 2.12a
with a narrow pulse which starts close to the origin and requires three bounces to generate
a horizon. We showed in section 2.3 that when the pulse reaches the origin, two opposite
effects take place. Namely, together with the sharpening of a fraction of the pulse, the rest
tends to increase its radial dispersion (see figure 2.1a). As a result, the extremal surfaces
associated to the entanglement entropy maxima of large boundary regions intersect, at each
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successive bounce, a growing and more spread fraction of the scalar pulse. This fact causes
the decrease in area and, hence, on S(t, θ), as it is visible in figure 2.12a.

Although this is a small effect, we find it relevant. It has been suggested that the
entanglement entropy of half the space could provide a definition of coarse-grained entropy
[178]. Despite the oscillations, we might have expected that the maxima of the entanglement
entropy monotonically increase along the evolution, and their value still serves as a notion
of coarse-grained entropy. We have seen that not even this is true in general.

The radial minimum of the metric function f(t, x) is a useful indicator of how far from
horizon formation the gravitational system is at a given time slice. The example plotted
in figure 2.12a suggests that the maxima of the entanglement entropy do not necessarily
relate to the minima of f(t, x). Since extremal surfaces do not lie in a constant t slice in
our dynamical geometries, we have to analyze what region they explore deep in the bulk
before reaching the previous conclusion. Figure 2.12b shows a projection on the (t, x) plane
of the surfaces whose areas give the entanglement entropy maxima of large caps in the last
pre-horizon cycle. They stay indeed well before the time slice where the minimum value of
f drops to zero. The area of an extremal surface seems to be maximized by a competition
between reaching deep in the bulk and keeping outside the traveling shell. After the turbulent
mechanism has acted on the scalar pulse, the area maximizing configuration arises slightly
before fm(t) drops to its local minimum. Indeed, the minima along the time evolution of
fm(t) describe a different situation: the moments at which a well-localized peak of the scalar
profile is at its closest approach to the origin. Hence the entanglement entropy turns out
not to be precisely correlated with the moment at which a horizon emerges. In particular,
it decreases the instants before an apparent horizon first forms.

Figure 2.12: Scalar profile (2.2.2) with σ=0.1 andM=0.012. Left: Evolution of the entanglement
for caps with θ=0.5, . . . , 1.5. We have superposed fm(t) in orange. Right: Projection on the (t, x)
plane of the entangling surfaces responsible for the entanglement entropy maxima of large caps in
the last bouncing cycle before the horizon forms.

It is interesting to describe the behavior of the extremal surfaces with respect to the t slicing.
As long as they do not reach the scalar shell, they live on slices of constant t. If an extremal
surface intersects a fraction of the falling pulse, the involved part deviates from constant t
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towards smaller values of the time coordinate. On the contrary, it deviates towards bigger
values when it intersects a fraction of the pulse traveling towards the AdS boundary. This
is the case in figure 2.12b, where the projections in the (t, x) plane show that the extremal
surfaces tilt towards larger values of t at their inner portion. Indeed, they reach the part of
the scalar profile not trapped by the emerging horizon, and which has started to move away
from the origin before the horizon neatly forms.

In figure 2.13, we have plotted the post-collapse evolution of the entanglement entropy.
Using a grid of N = 7 × 104 points we could complete five oscillations beyond horizon for-
mation with a relative mass loss below 3%. The oscillations of entanglement entropy neatly
reflect the impact of the horizon, decreasing their amplitude at a pace correlated with the
approach of the horizon to its final location. The maxima of S(t, θ), whose value dropped
along the pre-collapse phase, should rise to the result prescribed by a black hole of the total
mass. Indeed, we observe that the maxima slowly but monotonically increase along the post-
collapse cycles. The green dashed line in figure 2.13 signals the value that the entanglement
entropy of a θ= 1.5 cap should reach. Its slight decrease just reflects that we did have into
account the effective mass loss of the numerically simulated solution.

Figure 2.13: Post-collapse evolution of the entanglement entropy for the same case plotted in
figure 2.12. The time for the first collapse is th ≈ 11, and at around t = 28 the horizon radius
is 83% of its final value. The green line gives S(θ= 1.5) for a static black hole of the total mass,
where we did have into account the numerical mass loss along the evolution.

The traveling pulse keeps radial localization along the first five post-collapse cycles. Radial
localization is manifest in the time span of the oscillations, which is close to π before and
after a horizon first forms. Despite this, the radial spread of the profile progressively in-
creases (see figure 2.5a for a similar example). This spread can be detected in the emergence
of an additional modulation in S(t, θ) with a shorter period, consistent with π/3. Following
the argumentation in section 2.4, this suggests that while part of the system dephases in
correspondence with the appearance of an apparent horizon, part of it still retains quantum
coherence. Moreover, a typical separation linked to the radial position of the pulse can be
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associated with the remaining entangled degrees of freedom. The pattern that emerges is
that the system undergoes a stepwise loss of quantum coherence, triggered by the dephasing
of a subset of the degrees of freedom.

Before closing this section, we would like to draw attention to the striking similarity be-
tween the entanglement entropy oscillations shown in figure 2.13, and those of a different,
albeit also nonlocal, operator of the XY quantum spin chain studied in [185] (see figure 1).

2.5.3 Behavior across critical points

A very relevant characteristic in the collapse of narrow pulses is that the fraction of energy
in the sharp front which generates the horizon can become arbitrarily small. The transition
between processes with n and n+1 bounces happens indeed as the energy of the trapped front
vanishes. Therefore, it becomes relevant to investigate the behavior of the entanglement
entropy across these critical collapses. The question we want to answer is whether the
appearance of a horizon, no matter how small, leaves an imprint in the subsequent evolution
of the entanglement entropy. On line with the results in the previous subsection, the answer
we find is negative.

Figure 2.14: Two pulses with σ=0.1 and masses slightly above (blue) and below (orange) critical
collapse. Left: minimal radial value of f(t, x). Right: Entanglement entropy evolution for caps
with θ = 0.9, 1.2, 1.4, 1.56. The green line marks horizon formation time for the above-critical pulse.

In figure 2.14a we plot the evolution of fm(t) for two initial profiles (2.2.2) with σ = 0.1
and masses M= 0.17324, M= 0.1732. The first one generates a horizon after two bounces
with radius xh= 0.0025, which is 4.4% of the Schwarzschild radius associated with its total
mass. A trapped horizon emerges for the latter after three bounces with a radius one order
of magnitude larger, xh = 0.02, which is 35% of its corresponding Schwarzschild radius.
Hence the masses of the two profiles are close to the critical value for the transition between
two and three bouncing pre-horizon cycles, being the former slightly above and the latter
slightly below. Pursuing the evolution of the profile above critical past the time when fm(t)
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abruptly drops, at th≈7.5, is numerically very demanding.19 As seen in figure 2.14b, there
is no difference between the oscillations of the entanglement entropy in the two cases, both
before th and shortly afterward, even for spherical caps very close to a hemisphere.

2.5.4 Dependence on the initial state

We analyze now how the evolution of the entanglement entropy is influenced by the shape of
the scalar profile, which according to our arguments mainly relates to the entanglement con-
figuration of the initial state. We have focussed above on sharply localized pulses. We will
consider now the effect of an increasing broadness by taking as example the two σ = 0.25,
σ = 0.6 pulses studied in figure.2.6.

Figure 2.15: Entanglement entropy equilibration for caps θ = 0.5, .., 1.5 derived from an initial
scalar profile (2.2.2) with σ= 0.25 and M= 0.036. The time at which fm(t)< 6 × 10−3 has been
signaled in green.

The σ = 0.25 pulse exhibits some degree of radial localization prior to the emergence of
an apparent horizon, while its post-collapse dynamics is that of a quasi-standing wave (see
figure.2.6a). These two regimes are clearly distinguished by the entanglement entropy, which
we show in figure 2.15. For t < th (signalled in green), S(t, θ) oscillates with a period T > π
and, furthermore, its value at the local maxima does not increase with time. A faster mod-
ulation is clearly appreaciated on top of these characteristic features of narrow pulses. For
t ≥ th, only oscillations with periodicity T ≈ π/3, characteristic of radially delocalized dy-
namics, are present. They are in one-to-one correspondence with the minima of f shown in
the inset of figure 2.6a. The damped nature of the post-collapse evolution is reflected in the
decrease of the entanglement entropy oscillation amplitude. Its maxima monotonically ap-
proach the equilibrium value corresponding to a Schwarzschild black hole of the total mass.
The approach is more efficient in this case than in the narrow pulse of figure 2.13, which
retains some radial localization along the post-collapse evolution.

19With a grid of N = 105 points we could only prolong one further time unit while keeping an acceptable
precision.
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The σ=0.6 scalar pulse in figure 2.6b is radially delocalized along its complete evolution. Its
mass is M = 0.4Mth. Hence it develops quite massive subpulses that experience a signifi-
cant time-delay in climbing their own gravitational potential. This favors the recombination
of subpulses into a single very broad peak, as can be observed in the first two snapshots
of figure 2.16a. At some point, this dynamics gives way to the establishment of a strongly
damped oscillation (this time corresponds to the orange vertical line in figure 2.16b). The
third snapshot of the mass distribution profile corresponds to this regime. At t = th≈11,20

(signalled in green in figure 2.16b) the whole scalar pulse has been almost completely trapped
by the emergent apparent horizon.

The evolution of the entanglement entropy for this initial data is shown in figure 2.16b.
In striking contrast with the examples we analyzed before, the S(t, θ) maxima do not de-
crease with time. The amplitude of the entanglement entropy oscillations starts decreasing
once the damped quasi-stationary regime sets in. At th, the entanglement entropy has prac-
tically reached its final equilibrium value. Throughout the entire evolution, the oscillations
have a period T &π/3.

Figure 2.16: Initial profile (2.2.2) with σ = 0.6 and M = 0.1538. Left: three snapshots in the
evolution of the scalar pulse. Right: entanglement entropy for caps θ = 0.5, .., 1.5. The time at
which the quasi-stationary regime sets in has been signaled in orange and th in green.

Finding a qualitative field theory explanation for this period seems difficult. Its gravitational
origin is in the internal dynamics of the scalar profile rather than on the radial propagation.
From the field theory point of view, this hints towards having its root in the strong coupling
dynamics of the out-of-equilibrium state.

We have argued that the collapse of narrow pulses describes a stepwise relaxation process,
triggered by the dephasing of a subsystem. The evolution of broad pulses suggests a quite
different mechanism. The dynamics leading to the strongly damped oscillations involves,
in this case, the whole system. We proposed in section 2.4 that broad pulses correspond

20We define th as the time such that fm(t ≥ th) ≤ 6× 10−3.
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configurations with entangled excitations over many length scales. Hence we conclude that,
in such situation, dephasing triggered by a subsystem is disfavored. Moreover, when the
mass of a broad pulse drops below a certain threshold, no horizon appears to be formed
[135]. This fact would indicate that reaching a stationary state is harder for states of small
energy when this involves the complete system, than when it affects only a subsystem. For
the former case, and under the assumption of a spherically symmetric collapse, the dual field
theory seems never to lose quantum coherence below a certain energy density.



Chapter 3

Holographic quantum revivals in AdS3

3.1 Summary

In this chapter, we undertake the analysis of three-dimensional bouncing geometries, which
we put into correspondence with quantum revivals in two-dimensional CFTs. We perform a
detailed analysis of the salient similarities and differences between the asymptotically global
AdS3 and AdS4 bouncing geometries that were discussed in chapter 2. See section 2.2 for a
discussion of the Einstein-scalar model we are using.

In section 3.2, we comment on the dependence of the revival time tr on the spacetime
dimension, the energy density of the initial state and the scalar pulse shape. As discussed
in chapter 1 (section 1.3), AdS3 Einstein-Hilbert has stricking differences with respect to its
higher-dimensional counterparts, and this bears crucial consequences for the dynamics of the
bouncing geometries. We illustrate how in the three-dimensional instance it is perhaps even
possible to obtain revival processes with an arbitrary tr. We comment on the phenomenology
of initial states with energies above-but-close to the mass gap, explaining that they show a
non-monotonic thermalization time that displays a possibly chaotic structure. We comment
on the existence of the stability band: a region above the mass gap where thermalization
is halted, up to our accessible simulation times. We illustrate the gravitational mechanism
behind this phenomenon by discussing in detail one example.

In section 3.3, we compute the entanglement entropy in the CFT2 states dual to these
new bouncing geometries, discussing the interpretation in of our results 3.4. We illustrate
that, unlike the three-dimensional delayed thermalization processes analyzed in chapter 2,
in the two-dimensional case the revival time tr and the dephasing time tc emerge as two
well-distinguished time scales as the initial energy density is increased. Therefore, while at
low energy density the entanglement entropy evolution is well described in terms of the free
streaming of entangled excitations [22], as the energy density increases interaction effects
change the pattern into a series of collapses and revivals with similar properties to those
observed experimentally in a variety of systems [190, 191, 184, 192].

We demonstrate that, for narrow Gaussian initial data, the precise value of tc always fol-
lows from assuming that entanglement propagates causally, and also address the dependence

105
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of the dephasing time tc with the scalar field shell thickness, showing that broad Gaussian
initial data provide a faithfull representantion of field theory actions with a finite time span.
On the other hand, we establish clearly that the elongated revival time tr we found is related
to the strong gravitational redshift that sufficiently massive shells experience at the point of
maximal implosion.

Finally, in section 3.5 we introduce two simple quantum-mechanical systems supporting
coherent states that, just like the holographic CFTs under consideration, display a revival
time that increases with the energy density.

3.2 Revival time

As in chapter 2, we are interested in gravitational collapse processes where a mater shell does
not generate a trapped surface by direct collapse, but needs at least one bounce off the AdS
boundary to do so. We will focus here on how the time invested on the first bounce depends
on the mass and thickness of the initial shell, interpreting this time as that at which the
initial out-of-equilibrium state of the dual CFT undergoes the first revival. We will consider
either origin-centered (2.2.2) or boundary-centered (2.2.3) Gaussians as initial data.

An interesting question is how symmetry constraints influence the evolution of a system
towards relaxation. With this motivation in mind, we will compare the phenomenology of
scalar collapse in AdS3 and AdS4, dual respectively to a CFT on a circle and a sphere.

There exist important differences between three- and four-dimensional gravity with asymp-
totically global AdS boundary conditions, already at the level of static solutions: in AdS3

there is a mass threshold for the existence of black holes [156]. For a unit length boundary
S1, curvature singularities are hidden behind a horizon only for masses above

M = 1 . (3.2.1)

Static geometries with mass below threshold contain an unshielded conical singularity at
their center. On the contrary, AdS4 admits black holes of any positive mass.

This has important consequences for scalar collapse. In AdS4 any thin shell appears to
induce the formation of a black hole after a sufficient number of bounces off the boundary
[130]. The number of bounces required for the emergence of trapped surfaces decreases with
increasing mass1 until, above some threshold value, this happens at the first implosion. The
limiting line among these two situations is depicted in figure 3.1a. We observe that bouncing
geometries are only obtained for quite small M [130, 135, 1]. Correspondingly, revivals in
the dual CFT3 happen for initial out-of-equilibrium states with an energy density per species
clearly small compared to the system size.

1When a trapped surface emerges, it generically does not capture the complete shell. A fraction of it can
yet escape to the boundary and require several further bouncing cycles to be completely absorbed.
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In contrast to AdS4, the eventual collapse of shells below the threshold (3.2.1) in AdS3

could only end up forming a naked singularity. As far as we could push our numerical sim-
ulations, we have not found this to be the case. For low masses, the analysis of [159] points
towards excluding the formation of such singularity in finite time. In these cases equilibration
is never achieved and instead the dual field theory undergoes an infinite series of revivals.
Even above the threshold (3.2.1), there is a small window where at least one bounce off the
AdS3 boundary is required before collapse [160]. Figure 3.2a shows the curve separating
bouncing geometries in AdS3 from trapped surface formation at the first implosion. Hence,
holographic models of CFT2 dynamics admit revivals for ratios of the energy density to the
system size substantially larger than in higher dimensions.

Figure 3.1: Left: Phase diagram for scalar collapse with initial data (2.2.3) in AdS4. The shaded
region signals processes requiring at least one bounce for collapse. Right: Dependence of the
bouncing period with the mass for fixed σ=0.05, 0.1, 0.2. The blue dots signal the threshold value
for direct collapse. The dashed line is τ=π.

For concreteness, we characterize the revival time as the time invested in completing the cor-
responding oscillation cycle of the function fm(t) = minxf(t, x). Generically, the shell motion
is quasiperiodic and the revival time stays almost constant along the evolution. However,
for AdS3 shells close or above the black hole threshold, M& 1, the time span of successive
bounces might vary. Therefore, to avoid ambiguities, we will denote with tr the time elapsed
in the first revival. Both in AdS3 and AdS4, the value of tr tends to π for scalar pulses of low
mass, M→0. This is expected since a null ray originating at the boundary and traversing
diametrically AdS returns to the boundary after a time t=π. The value of tr monotonically
increases with the shell mass, see figures 3.1b and 3.2b.

The mass window for the existence of bouncing geometries in AdS4 closes down to zero
as σ→0, see figure 3.1a. For this reason the revival time associated to thin pulses in AdS4

is always approximately π. Pulses of intermediate broadness need small but finite masses
for direct collapse. They can reach revival times that, although close, are appreciably larger
than π. This phenomenology is illustrated in figure 3.1b.

The comparatively higher masses compatible with revivals in AdS3 have a drastic impact
on the allowed values of tr. The revival time strongly increases for shells whose mass ap-
proachesM=1, see figure 3.2b. The increase is entirely due to the shell being kept by its own
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gravitational potential at the point of maximal implosion for a long time before expanding
again. Pulses leading to revivals with M higher than one take extremely long to complete
the first bounce. Our results suggest that tr possibly diverges at the upper end of the mass
window compatible with bounces. This is shown in the inset of figure 3.2b. The relevance
of the mass window above the black hole threshold relies on providing transition processes
between infinite revivals and fast thermalization in holographic CFT2 models. Consistently
with the AdS4 results, it closes down in the σ → 0 limit (see figure 3.2a).

Figure 3.2: Left: Phase diagram for scalar collapse with initial data (2.2.3) in AdS3. Right: Mass
dependence of tr for initial pulses (2.2.3) with σ= 0.25 in AdS3. In the inset, detail of the plot in
the small window above threshold compatible with bounces. The apparent change of slope is due
to the rescaling of the vertical axes.

Figure 3.3: Left: Variation of tr with σ for AdS4 pulses of fixed mass M= 0.02, 0.05. The blue
dots signal the threshold value for direct collapse. Right: Variation of tr with σ for AdS3 pulses of
fixed mass M=0.98, 0.99.

When AdS3 pulses with M> 1 implode without collapsing, they develop several extremely
narrow spikes. Small differences in the initial pulse get amplified in this process and have
an strong influence in the subsequent evolution. As a result, the periodicity of successive
bounces shows a random behavior, a feature not observed in low mass pulses. While the
time required to complete the first bounce exhibits a regular monotonic growth with M,
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that of subsequent bounces can both increase or decrease with the shell mass. Also the
number of bounces for collapse does not decrease smoothly with the mass: for the σ= 0.25
profiles reported in figure 3.2a, M = 1.004 appears to need only one bounce for collapse,
while M = 1.0045 requires several. The described features point towards a role of chaos in
the evolution of these AdS3 pulses, a fact that was already noticed in [160].

Finally, it is interesting to notice that the time span of the first revival not only behaves
smoothly as a function of the shell mass, but also of its thickness. Indeed, tr decreases
monotonically with σ, as shown in figure 3.3a and figure 3.3b for AdS4 and AdS3 pulses
respectively.

3.2.1 Zooming into the 0 <M− 1� 1 region

In this subsection, we want to elaborate further on the long-time dynamics of scalar pulses
with masses right above the gap. With this aim in mind, we consider origin-centered Gaussian
initial data (2.2.2) with σ = 1/16 and M = 1.00825. Although being sharply located
in position space, these initial data result in a bouncing geometry that do not collapse
gravitationally during our simulation times. We employed a discretization grid with an
initial resolution of N = 214 + 1 points.
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Figure 3.4: fm(t) (right) and xcm(t) (left) for the initial data described in the main text.

Since
∫ π

2

0
dxρ(t, x) =M, we can take the relation∫ π

2

0

dyρ(t, y)y = xcm(t)M (3.2.2)

as the definition of the center-of-mass of the energy distribution at time t [193]. We plot
this quantity, together with fm, in figure 3.4. Then, we sample the energy distribtution
function ρ(t, x) at times t such that xcm(t) = π/4 and ẋcm(t) > 0, i.e., the center-of-mass
of the energy distribution is located at the midpoint between the origin and the asymptotic
boundary, and its travelling from the former to the latter. The resulting ρ(t, x) profiles are
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depicted in figure 3.5.

Several comments are in order. First, the initial scalar pulse takes a substantial time in
climbing its own gravitational potential. In doing so, its shape is modified: note that, at
t = 26.0752, the original Gaussian pulse has developed a fine substructure, and if fact looks
like the superposition of two sharp Gaussian pulses with displaced centers. After the sub-
sequent bouncing cycle, these two subpulses separate from each other and become clearly
distinguishable, as the t = 56.0774 plot illustrates. Afterward, the sharpest pulse undergoes
a process of energy focusing, becoming more localized in position space. At the same time,
the other subpulse starts bouncing in opposition with respect to the sharp subpulse. This is
clearly seen in the plot corresponding to t = 94.8761 in figure 3.5. Finally, at t = 158.808, we
observe that a process of energy transfer has taken place between both subpulses, sharpen-
ing the former more dispersed subpulse. At this later time, the total mass of each subpulse
is M1 = 0.546375 for the left one, and M2 = 0.461875 for the right one.2 Individually,
they don’t have enough mass to collapse gravitationally. To form a black hole, a substantial
energy transfer between both pulses would be needed. This energy transfer process seems
to be disfavored by the dynamics in our example. In fact, the opposite scenario takes place:
the more massive subpulse is losing energy as time passes. In this regard, we roughly have
that M1 ≈ 0.87 at t = 94.8761 and M1 ≈ 0.77 at t = 127.863.
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Figure 3.5: ρ(t, x) at different snapshots of time for the initial data described in the main text.
The propagation direction of each supulse has been signalled with a black arrow.

As we discussed in section 1.3, the effect of a sharp pulse breaking into two subpulses due

2We habe definedM1 =M(t, x = π/4), andM2 = M −M1. Here,M(t, x) is the mass aspect function.
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to its gravitational self-interaction has also been observed in other theories with a mass gap
in their black hole spectrum; in particular, in has been discussed to some extend in five-
dimensional Einstein-Gauss-Bonnet gravity [229, 194]. The evidence available so far points
to the fact that this effect is responsible for the existence of the stability band above the
mass gap. Furthermore, as we have metioned, the non-monotonic nature of the collapse time
upon lowering the mass for initial data above the gap must come from the fact the dynamics
of this energy transfer shows some chaotic-like features.

3.3 Entanglement entropy

The construction of a detailed holographic dictionary between the gravitational dynamics
and the field theory evolution is far from straightforward. In the collapse backgrounds there
is no timelike Killing vector that could extend field theory constant time slices into the
higher-dimensional dual geometry. The description of the field theory time evolution should
be based on the evaluation of holographic observables. To this aim we choose the entangle-
ment entropy.

As in chapter 2, our choice of boundary entangling regions consists of caps, both for the
three- and the four-dimensonal case. Since our geometries are asymptotically AdS, the
entanglement entropy is ultraviolet divergent, and must be regularized. Let Area(γC) be
the area of the bulk entangling surface γC associated with a given cap. We introduce the
regularized area

LC = Area(γC)− Area(γAdSC ) , (3.3.3)

where γAdSA is the extremal surface in pure AdS ending on the same cap C. This is equiva-
lent to eliminating the intrinsic cutoff dependence of the entanglement entropy by defining
it with respect to a reference value, which we take as that in the CFT vacuum. Accord-
ing to the HEE prescription, the regularized entanglement entropy of region C is given by
SC = LC/(4G).

Processes in the CFT3 dual to AdS4 evolve on the unit two-sphere. Thin shells located
initially close to the AdS boundary gave rise to the following evolution pattern in entangle-
ment entropy of spherical caps. The backreaction on the geometry of a shell placed closed
to the boundary is small, and the resulting geometry is approximately pure AdS4. With our
regularization, the value of the entanglement entropy at t= 0 is almost vanishing. As the
shell falls, the entanglement entropy grows. It achieves a maximum at t≈ θ/2, after which
the extremal surface γC keeps outside the imploding shell. The value at the maximum coin-
cides with that of the entanglement entropy of a cap in a AdS4 black hole of the same total
mass. If the shell does not form a trapped surface by direct collapse, it will start expanding.
At t≈ tr−θ/2 it intersects the entangling surface again. From then on, the entanglement
entropy decreases until it approximately vanishes at t= tr. This behavior repeats in subse-
quent bounces. An example of the behavior we just described is provided in figure 3.6a. We
have marked with dotted lines t=θ/2 and t= tr−θ/2 in the first bounce, and t= tr+θ/2 and
t=2tr−θ/2 in the second, showing the accuracy of the described pattern.
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In AdS4 only thin shells of low mass avoid direct collapse, and for them tr≈π. In order
to have processes with tr appreciably larger than π, it is necessary to consider broader shells.
But for them the simple oscillation pattern of the entanglement entropy described above
does not hold. The transition at t≈θ/2 and t≈ tr−θ/2 is not sharp, neither the value of the
entanglement entropy exhibits a well defined plateau at its maximum (see figure 3.6b). As
we argued in chapter 2, broad shells are holographically related to excited states created by
a field theory action with a finite time span, rendering natural a more involved evolution of
entanglement.

Figure 3.6: Entanglement entropy evolution of spherical caps with θ = 1.4, .., 3 in two AdS4

processes which bounce twice before collapse. Left: Scalar profile with σ = 0.05 and M= 0.017.
The dotted lines signal t=θ/2, tr−θ/2, tr+θ/2, 2tr−θ/2. Rigth: σ=0.3 and M=0.09.

AdS3 offers the possibility to explore processes generated by thin shells covering a wide range
of values for tr. We have analyzed the entanglement entropy of an interval on the unit circle
where the dual CFT2 lives. The length of the interval is θ∈ [0, π], with θ=π corresponding
to the semicircle. The holographic dictionary reduces this problem to evaluating the length
of certain bulk geodesics. The results are plotted in figure 3.7a. We observe the same pattern
as in figure 3.6a, but now sustained over long cycles. Processes with masses close or above
the black hole threshold (3.2.1) lead to very large tr and still analogous results, see figure3.7b.
This has the important consequence that even the entanglement entropy of the semicircle
remains a long time at its maximum. Contrary to AdS4 processes, two independent time
scales emerge. The first one corresponds to the revival time tr, which increases monotonically
with the energy density of the initial state until the threshold for fast thermalization is
reached. The second one is the time at which the entanglement entropy of the semicircle
reaches its maximum, which turns out to be independent of the initial conditions to a very
good approximation,

tc ≈
π

2
. (3.3.4)

This is the time after which some coarse-grained observables, such as the entanglement
entropy, achieve values characteristic of an ergodic state. In this sense, the subscript in the
previous definition stands for collapse. The pattern just described persists along successive
revival cycles, in spite that their duration might vary, as shown in figure 3.8.
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Figure 3.7: Left: Same as in figure 3.6a,b for an AdS3 shell with σ= 0.05 and M= 0.68. Right:
Entanglement entropy of an interval with θ=3.14 along the first bouncing cycle of AdS3 shells with
σ=0.25 and M=0.88, 0.98, 1, 1.003.
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Figure 3.8: Entanglement entropy evolution for θ=3, in a AdS3 process with σ=0.25 and
M= 1. The vertical lines mark equal intervals whose extent is ∆t= θ, except for the first
line that is located at t=θ/2.

3.4 Field theory interpretation

In the bouncing geometries we have analyzed in the previous section, the early time evo-
lution of the entanglement entropy follows the free-streaming model introduced by Cardy
and Calabrese in [22]. Let us asume that the narrow boundary-centered Gaussian initial
data (2.2.3) we are considering provide an accurate representation of the initial state the
dual CFT reaches after a sufficiently fast global quench. In this vein, imagine that this state
contains a homogeneous distribution of entangled quasiparticle excitations that have been
produced at coincident points and travel at unit speed in opposite directions. At t = θ/2,
excitations inside a spherical cap of size θ could only be entangled with those outside, leading
to a maximal value for the entanglement entropy of this region and a shrap horizon effect.
This behavior is holographically reproduced by the implosion of the scalar field shell, as the
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dotted lines in figure 3.6a and figure 3.7a clearly show.

It is important to recall that the free-streeming model of [22] was originally ment to provide
a physical picture of the horizon effect present in the time-evolution of the entanglement
entropy of 1 + 1-dimensional CFTs on a line after a global quench. A priori, in a compact
system this picture should apply only to the early time evolution, when the additional length
scale introduced by the finite size of the system should not play a role. Therefore, its use-
fulness to address finite size effects must be analysed on a case-by-case basis.

The entanglement entropy evolution after a global quench of a rational CFT on a circle
was studied in [187]. Partial revivals of the initial state were found at integer multiples of

tr = π , (3.4.5)

for a circle of unit radius. This coincides with the time needed for free quasiparticles emitted
together in opposite directions and moving at unit speed to rejoin again, in agreement with
the free-streaming model of [22]. However, AdS3 bouncing geometries are only associated
with quantum revivals satisfying (3.4.5) for sufficiently low energy densities. Notice that
this fact does not need to contradict [187]: a CFT2 only allows for a classical gravitational
description in the strict c = ∞ limit. Hence, a holographic CFT2 is not rational by any
means.3 Revivals, however, are not only expected in integrable models or rational CFTs,
since they might be a feature tight to the finite size of the system. A consistent picture for
the departure of the holographic revival times from (3.4.5) calls for an interpretation as an ef-
fect of interactions in the field theory. We will give support for it in the following paragraphs.

On generic interacting systems, it is natural to expect that as the energy density created by
a global quench increases, a fast evolution towards equilibration sets in frustrating the pos-
sibility of revivals. The holographic representation of a fast approach to ergodic behavior is
the formation of a black hole trapping the complete shell by direct collapse. The AdS4/CFT3

models clearly follow this expectation. The number of bounces necessary for gravitational
collapse decreases with increasing mass of the scalar profile. Moreover thin AdS4 shells only
require bounces before collapse for quite small values of M, a quantity holographically re-
lated to the field theory energy density per species, and for them tr≈π. This implies that
only field theory processes reasonably described by the simple propagation model exhibit
revivals. Soon after the effect of interactions starts to play a significant role, a fast approach
to ergodicity sets in.

This is not the case in AdS3/CFT2 models, a fact which from the dual point of view should
be related to the strong symmetry properties of two-dimensional CFTs. For them, consider-
ably larger ratios of energy density per species to system size are compatible with revivals.
As result, values of tr � π can be obtained. The evolution of entanglement entropy in figure
3.7 leads to the following interpretation. At tc ≈ π/2 after the quench the isolated system

3It is reasonable to assume that at large-but-finite central charge the previous conclusion also applies,
since otherwise a priori subleading bulk quantum effects would radically change the classical picture of
gravitational collapse.
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appears, at the macroscopic level, to have dephased and thermalized. Then, the microscopic
dynamics leads to a rephasing that starts at a later time

t ≈ tr −
π

2
. (3.4.6)

Finally, the initial state undergoes a revival at tr, at least in the sense that entanglement
returns to be peaked on neighboring degrees of freedom. The evolution during the dephasing
and rephasing phases appears to be well described by the free-streaming model of [22]. The
fact that tr increases with the energy density of the initial state supports linking its value
with interaction effects (recall figures 3.2b and 3.7b).

Regarding the holographic dictionary, we obtain the following consistent pattern. The free
propagation model provides a good account of the evolution at times corresponding to the
implosion and expansion of the matter shell. The interaction effects map to the strong gravi-
tational dynamics generated when the shell reaches minimum size, and scatters against itself
before starting to expand again. It is then that the profile of the shell changes, tending
to radially focus a fraction of the pulse. This facilitates the formation of a horizon at a
subsequent implosion, representing irreversible dephasing on the dual field theory. The large
values of tr for AdS3 shells close or above threshold are explained by the difficulty that these
shells find in climbing their own gravitational potential, which retains them for a long time
at the point of maximal implosion. Hence, we are relating the dynamics which determines
the formation or not of a horizon with the dynamics of dephasing-rephasing which leads in
the field theory to revivals or to equilibration.

Figure 3.9: Entanglement entropy growth for θ = 2.6 along the implosion of AdS3 shells
withM=0.68 and σ=0.01, 0.05, 0.1, 0.15, 0.2 from bottom up. We have displaced vertically
the lines for the sake of comparison. In the inset, σ=0.01, 0.2 lines without displacement.

In order to close this section, we will address an issue left open above. Namely, the relation
of the shell thickness with the time span of the field theory perturbation generating the
initial out-of-equilibrium state. Let us start by noticing that, when the perturbation that
brings a system out-of-equilibrium has a finite time span, there will be entangled excitations
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produced at different instants of time. This will cause the entanglement entropy not to reach
its maximum until those entangled components emitted last have reached a separation larger
that the region considered. If the shell thickness relates to the time span of the perturbation,
the mentioned effect should explain the difference between the entanglement entropy plots
in figure 3.6, holographically derived from AdS4 collapses. Indeed it roughly does. While
the entanglement entropy associated to the thin shell clearly saturates at t≈ θ/2, that de-
rived from the broad shell does not and instead keeps on growing with a smaller slope to its
maximum. A cleaner effect can be observed in figure 3.9a, where we plot the entanglement
entropy evolution along the first implosion of several AdS3 shells of the same mass and dif-
ferent thickness σ. The approach of the entanglement entropy to its maximum is sharper
for the thinner shell, while it smoothness out and requires a longer time for the broader ones.

If the radial thickness of the initial pulse indicates the time span of the perturbation bringing
the field theory out-of-equilibrium, its mass distribution profile ρ(0, x) should qualitatively
measure the density of entangled excitations generated at each instant of time, as we argued
in chapter 2. Hence, according to this qualitative interpretation, the mass window for bounc-
ing geometries closes down when σ → 0 because narrow shells require a smaller mass for
reaching the same maximal value of ρ(0, x). Namely, the larger ρ̄ ≡ maxxρ(0, x), the bigger
the initial density of entangled excitations, and the less stable the system becomes against
dephasing. The analysis in AdS3 is less straightforward that its four-dimensional counterpart
because the threshold mass (3.2.1) dominates over any other criterium for collapse. In any
case, the fact that the mass window above threshold before direct collapse closes down for
thin shells remains (see figure 3.2a).

3.5 Collapse time

Remarkably holography allows to model a system which, depending on the initial conditions,
exhibits revivals of a quite different nature. For small energy density they are well described
by the free streaming of entangled quasiparticle pairs which rejoin again on a finite space.
For larger energy density, the evolution turns out to bear a stronger resemblance with a series
of collapses and revivals of the system wavefunction. We will compare the phenomenology
we have found in the latter case with that of well-known quantum systems which undergo
collapse and revivals in their evolution. Namely, a Bose-Einstein condensate of atoms in an
optical trap and a two-level atom coupled to quantized radiation in a cavity.

The behavior of a condensate of atoms with repulsive interactions trapped in a three-
dimensional confining potential has been studied both theoretically [191] and experimentally
[184]. The repulsive interactions in the setup of [184] were reasonably described by the simple
hamiltonian H= 1

2
Un̂(n̂− 1), where n̂ is the operator counting the number of atoms. When

the system is prepared in a coherent superposition of states with different particle number,
it undergoes perfect revivals at integer multiples of tr=2π/U . Indeed

|α(t)〉 = e−
|α|2

2

∑
n

αn√
n!
e−

1
2
Un(n−1)t|n〉 , (3.5.7)
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with α a complex number characterizing the coherent state.

An important observable is the matter wavefield of the condensate, defined by Ψ(t) ≡
〈α(t)|a|α(t)〉, which represents the fraction of individual atoms that are coherent over the
total number of atoms in the trap. Collapse/revival of this wavefield signals decoher-
ence/recoherence of these atoms, again in a coarse-grained sense. The evolution of this
observable is straightforwardly obtained in the simple case above

Ψ(t) = α e−|α|
2(1−cosUt) ei|α|

2 sinUt . (3.5.8)

The matter wavefield becomes exponentially suppressed at tc≈π/U |α| due to the different
phases in (3.5.7)(see figure 3.10a). Since |α| determines the average particle number, n̄= |α|2,
the quotient between the revival and the collapse time grows with n̄,

tr
tc

= 2
√
n̄ . (3.5.9)

As we have demonstrated, a qualitatively analogous relation holds in the holographic models.

Figure 3.10: Left: Evolution of the matter wavefield along a revival cycle for several values of α.
Right: Evolution of W (t) for α=30. The vertical line signals the collapse time λtc=π.

Let us review now the behavior of a two-level atom in a cavity coupled to quantized radiation.
This system is described by the Jaynes-Cummings model [190]. Its Hamiltonian is H =
ω(σ3/2+a†a)+λ(σ+a+a†σ−), where a†, a are the photon creation and annihilation operators
and σ3,± the Pauli matrices referring to the two-level atom. The previous hamiltonian refers
to the resonant case, where the photon frequency coincides with the energy splitting among
the atomic levels. When the radiation field starts in a coherent superposition of states of
different photon number and the atom in the excited state |+〉, we have

|Ψ(t)〉 = e−
|α|2

2

∑
n

αn√
n!

[
cos(λ

√
n+ 1 t) |+〉 |n〉 − i sin(λ

√
n+ 1 t) |−〉 |n+ 1〉

]
. (3.5.10)

The probability to find the atom in the excited state minus that of finding it in the ground
level, W (t) = |〈+|Ψ(t)〉|2 − |〈−|Ψ(t)〉|2, shows a series of collapses and revivals along its
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evolution. It starts being one but becomes exponentially suppressed at tc ≈ π
λ
, as can be

observed in figure 3.10b, loosing the imprint of the initial state. At tr ≈ 2π|α|
λ

the function
W (t) returns to have finite values, and the initial dominance of the excited state is partially
reconstructed. Since the average photon number is again n̄= |α|2, collapse and revival times
also satisfy (3.5.9) in this case. However, now tc is determined by the intrinsic properties of
the system Hamiltonian, while tr grows with the total energy of the coherent state, in closer
analogy with the holographic models.

The qualitative agreement between such different systems can be understood as follows.
It is natural that an increase in the quasiparticle pair density created by a global quench,
or the average occupation numbers in the initial coherent states considered above, results in
strengthening the tendency of a system to dephase. This is so even if, after dephasing, the
system rephases and undergoes a revival. When the dynamics is so constrained that some
observables exhibit a series of collapses and revivals with separate time scales, the previous
expectation can be fulfilled both by shorter collapse times or longer revival ones. Unless en-
ergy levels have a commensurate splitting the stretching of the revival time can be expected
to be generic. The holographic counterpart of this fact is found in the gravitational redshift
generated by the shell at the point of maximal implosion, where the curvature builds up very
sharply.



Chapter 4

Thin shell construction of
time-periodic geometries

4.1 Summary

As discussed in section 1.3 of chapter 1, there exists strong evidence in favor of the hypothesis
that exactly periodic geometries in AdSd+2 act as anchors of stability islands. We have
already encountered several examples of these exacty periodic solutions [135][140]. Further
cases include real massive scalar fields [195] as well as purely gravitational solutions within
a cohomogeneity-two biaxial Bianchi IX ansatz in d = 3 [196]. In general, as discussed
extensively in [196], the existence of time-periodic solutions is a common feature of nonlinear
PDE systems on bounded domains.

In chapter 1 (subsection 1.2.7), we have also illustrated that thin shell spacetimes are
extremely useful constructions to address trademark processes in gravitational physics in
a tractable way. Therefore, we can ask ourselves if oscillatory geometries are also present
wihin the thin shell formalism in global AdSd+2. In this chapter, we are going to answer this
question in the affirmative showing that, under mind dynamical assumptions, the existence
of oscillating thin shell spacetimes is a generic property of asymptotically AdSd+2 geometries.

This chapter is structured as follows. In section 4.2, we introduce our setup and obtain
the shell equation of motion from the Israel juction conditions. We demonstrate that the
shell trajectory follows from the motion of a point particle in a one-dimensional potential.
This potential depends on the spacetime dimensionality, the shell equation of state, the
asymptotic mass and the shell internal energy. Since it is known in closed form, in section
4.3 we provide semi-analytical expressions for the phase space region where oscillating thin
shell solutions exist, and analyze their behavior in certain limits. The conclusions match in
a natural way with similar results obtained in numerical simulations of realistic geometries
supported by a masless scalar field. The three-dimensional case is separately analyzed due
to the presence of the mass gap. Finally, in section 4.4 we discuss briefly the interpretation
of our results in the light of the AdS/CFT correspondence and comment on possible future
extensions.
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4.2 Shell dynamics

We are considering a spherically symmetric thin shell of matter. The shell worldvolume Σ
is a codimension-1 hypersurface that divides the (d+ 2)-dimensional background spacetime
M in two distinct regions: outside, M+, and inside, M−. Due to the spherical symme-
try of the problem, we know, by Birkhoff’s theorem, that the spacetime metric takes the
Schwarzschild-AdS form on both M+, M−. Choosing standard Schwarzschild coordinates
x± = (t±, r±, θ1, ..., θd) to cover M±, we find that, in this particular coordinate system

ds2
± = −f±(r±)dt2± + f±(r±)−1dr2

± + r2
±dΩ2

d (4.2.1)

where

f±(r±) = 1 +
r2
±

l±
− m±

rd−1
±

. (4.2.2)

As usual, dΩ2
d is the metric of a unit round d-dimensional sphere, and the AdS radius l is

related to the cosmological constant Λ = −d(d+1)
2l2

. In what follows, we will restrict ourselves
to the case where the shell has no influence on the cosmological constant, so we are going
to set l+ = l− = l = 1 by an appropriate choice of units. Furthermore, we assume that the
spacetime inside the shell is empty AdSd+2 and hence fix m− = 0. In such case, m+ ≡ m
sets the total ADM mass of the system.

Let the shell worldvolume Σ be parameterized with coordinates y = (τ, θ1, ..., θd), where
τ is the proper time of an comoving observer. The shell embedding in the ambient space-
time is given parametrically by the function

xs(y) = (t±,s(τ), r±,s(τ), θ1, ..., θd) . (4.2.3)

The tangent space TpM of any point p ∈ Σ admits a basis formed by d+1 vectors ea = eαa∂xα ,
tangent to Σ, and one vector n = nα∂xα , orthogonal to Σ. Explicitly,

eτ,± = ṫ±,s∂t± + ṙ±,s∂r± (4.2.4)

eθi,± = ∂θi (4.2.5)

n± = +
(
f−1
±,sṙ±,s∂t± + f±,sṫ±,s∂r±

)
(4.2.6)

The overall positive sign of n± is fixed by requiring that n± is always directed from M− to
M+[197].

The embedding (4.2.3) is not arbitrary: in order for the whole spacetime M to solve Ein-
stein equations, the so called Israel junction conditions must be satisfied (see [197]). The
first junction condition states that the induced metric hab on Σ must be continuous across Σ

[hab] = 0 (4.2.7)

where the brackets stand for the jump. The second junction condition relates the jump of
the extrinsic curvature Kab with the matter composition of the shell,

[Kab − habK] = −8πGSab = −Sab (4.2.8)
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where K ≡ habKab, Sab is the shell energy-momentum tensor and we have chosen units such
that 8πG = 1. Projecting g onto Σ to find the induced metric hab = gαβe

α
ae

β
b we get

dh2
± = h±abdy

adyb =
(
−f±,sṫ2±,s + f−1

±,sṙ
2
±,s
)
dτ 2 + r2

±,sdΩ2
d . (4.2.9)

The choice of τ as comoving time fixes hττ = −1, whence it follows that

ṫ±,s =
β±
f±,s

(4.2.10)

with

β± =
√
f±,s + ṙ2

±,s . (4.2.11)

We have taken the positive root of ṫ±,s, as we want the shell trajectory to be future oriented.
Equation (4.2.10) together (4.2.11) accomplishes two tasks. It ensures that the ττ compo-
nent of the first junction condition (4.2.7) is satisfied, and gives the correct normalisation
to the vector n in (4.2.6), n2 = 1. It also implies that it is imposible to cover the entire
space-timeM with a globally defined time-like Schwarzschild coordinate, as the embedding
functions t±,s(τ) will differ at the shell. On the other hand, the radial coordinate r± has to
be continuous since r+,s(τ) = r−,s(τ) ≡ rs(τ) must hold to signal unambiguously the shell’s
radial position. This condition, together with (4.2.10), ensures that all components of (4.2.7)
are satisfied. From now on, we take these facts into account and change correspondingly our
M± coordinate system to x± = (t±, r, θi).

The extrisic curvature is the pullback of the Lie derivative of the ambient metric g along n.
Several equivalent expressions can be found in the literature [197]:

Kab =
1

2
eαae

β
b (£ng)αβ = eαae

β
b∇αnβ = −nµ

(
∂xµs
∂ya∂yb

+ Γµαβe
α
ae

β
b

)
(4.2.12)

where the orthogonality condition eαanα = 0 is used. In our particular setup (4.2.9), its
non-zero components and trace are

Kτ
±,τ =

β̇±
ṙs

Kθi
±,θi =

β±
rs

K =
β̇±
ṙs

+ d
β±
rs

(4.2.13)

The diagonal nature of Ka
b , together with the second Israel junction condition (4.2.8), leave

little room for the form of the shell stress-energy tensor Sab , which must be of the perfect
fluid form

Sab = diag(−σ, p, ..., p) (4.2.14)

where σ will be the shell energy density and p the shell pressure. Due to spherical symmetry,
p is independent of the particular angular direction considered. In components, (4.2.8) reads
now [

Kθi
θi

]
=

[β]

rs
= −1

d
σ (4.2.15)

[Kτ
τ ] =

[
β̇
]

ṙs
= p+

d− 1

d
σ (4.2.16)
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With our choices for f±, we always have β+ ≤ β− and, therefore, σ ≥ 0. As usual, equations
(4.2.15), (4.2.16) need to be supplemented with an equation of state which relates the shell
energy density and pressure. At this point, we introduce a simplification by restricting our
analysis to the case where this equation of state is linear. In AdSd+2 we shall write

p =
α

d
σ . (4.2.17)

The parameter α determines the kind of matter the shell is made of. Taking α ∈ [0, 1] it
interpolates between dust (α = 0) and conformal matter (α = 1). This choice of equation
of state, together with the positivity of σ, implies that σ + p ≥ 0, so that the weak energy
condition is respected. With the choice (4.2.17), equations (4.2.15), (4.2.16) can be solved
explicitly. The final result is that the shell dynamics is fully equivalent to the one-dimensional
motion of a particle in an effective potential Veff

ṙ2
s + Veff = 0 (4.2.18)

where

Veff = 1 + r2
s −

1

2
mr1−d

s − m2

4M2
r2α
s −

1

4
M2r−2(d−1+α)

s . (4.2.19)

M is an integration constant that sets the shell’s proper energy E, defined as E ≡ vol(Sd)r
d
sσ =

vol(Sd)d r
−α
s M , where vol(Sd) is the volume of the d-dimensional unit sphere.

Notice that the potential Veff is invariant under m → m, M → m
M

and α → −(d − 1 + α)
so any result we may obtain is also going to hold in the range α ∈ [−d,−d+ 1], modulo the
appropriate M redefinition. The weak energy condition will be still satisfied.

4.3 Oscillating solutions

From (4.2.18), we know that the region where the shell is allowed to move is the -possibly
disconnected- set of radial intervals for which Veff ≤ 0. The asymptotic behaviour of Veff
is as follows:

• Veff → −∞ as r → 0, with Veff ∼ −1/4M2r−2(d−1+α) for r � 1

• Veff →∞ as r →∞, with Veff ∼ r2 for r � 1

Oscillating shell trajectories, if they exist, are confined to an intermediate radial region
where the potential Veff develops a well. The turning points are given by two radii r± where
Veff (r±) = 0 (subindices here do not refer to the inner or outer regions to the shell). The
goal now is, fixing d, α and the space-time ADM mass m, find in what range of M oscillating
solutions appear. It turns out that this M region is bounded by two shell rest energies Ml,u,
with Ml ≤Mu, such that

• For M = Mu there is a local minimum of Veff touching the Veff = 0 axis. This
corresponds to a shell in equilibrium.
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Figure 4.1: Typical form of the potential Veff in the limiting cases that bound the oscillating

shell existence region. In orange, the potential at M = Mu. In brown, the potential at M = Ml.

Dashed black lines correspond to rl and ru. The parameter values are d = 3, α = 0.5, m = 0.1,

Mu = 0.0359, Ml = 0.0346, rl = 0.426, ru = 0.901.

• For M = Ml there is a local maximum of Veff touching the Veff = 0 axis. This
corresponds to the transition between oscillatory and collapsing behaviour.

Figure 4.1 depicts both limiting situations on AdS5. To find the values of Ml,u, we have to
solve the system of equations given by Veff = ∂rVeff = 0. The solution is easily obtained in
implicit form by taking m = m(d, α, r), M = M(d, α, r), which will be called the existence
curves

m(d, α, r) =
4rd−1(α− (1− α)r2)(d− 1 + α + (d+ α)r2)

(d− 1 + 2α)2 (1 + r2)
(4.3.20)

M(d, α, r) =
2rd−1+α(α− (1− α)r2)

(d− 1 + 2α)
√

1 + r2
(4.3.21)

As the d = 1 existence curves display peculiar properties we will discuss this case separately.

4.3.1 Oscillating shells in d > 1

The existence curves allow a straightforward computation of Ml and Mu. The procedure
is illustrated in figure 4.2a. First, we choose some m and solve numerically the equation
m = m(d, α, r) for r at fixed d and α. The output are two radii, rl and ru, such that rl < ru:
ru signals the position of the axis-touching minimum of Veff (d, α,m,Mu), while rl signals
the position of the axis-touching maximum of Veff (d, α,m,Ml) -see figure 4.1-. Inserting rl,u
into equation (4.3.21) gives back the numerical values of Ml,u and fixes completely the form
the potential Veff . For any M ∈ (Ml,Mu), it is guaranteed that Veff possesses an oscillating
solution.
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Looking at figure 4.2a, it is neatly seen that, at fixed d and α, there is a maximum mass,
mmax(d, α), above which the construction just described cannot be performed. Therefore,
oscillating shell trajectories only exist for sufficiently light shells; above mmax(d, α) there are
only collapsing solutions. The fact that there are no oscillating geometries when the mass
of the system surpasses a certain threshold is a feature that this simple model shares with
more realistic setups, for instance, the massless scalar field studied in [130][142].

Figure 4.2: Left: existence curves for oscillating solutions in d = 3 and α = 0.99. In solid orange,

m(d, α, r). In dashed orange, M(d, α, r). The black dashed curves illustrate the construction

described in the text. Notice that the range of M is so tiny that the two lines depicting Ml

and Mu look coincident. Right: M(3, α,m) for α = 0.2, 0.5, 0.9 -black, brown and orange curves

respectively-. Any point within the region bounded by each curve corresponds to a particular

oscillating solution. All quantities are measured in units of mmax(d, α).

Concerning M , it is important to stress that its value sets an energy scale that is independent
of m. Tuning M deforms Veff and, in particular, shifts the upper turning point r+. Hence,
one can think of this parameter in terms of the initial radius where the shell is released from
rest and starts falling and, in consequence, M would be related to its potential energy.

In figure 4.2b we offer several parametric plots of M(d, α, r) as function of m(d, α, r). In
each curve, the upper branch corresponds to Mu, while the lower branch corresponds to Ml.
In the m→ 0 limit, the upper Mu branch asymptotes to a line,

Mu(α,m) ∼ 1

2
(1− α)

1−α
2 αα/2m . (4.3.22)

Oscillating solutions exist for M in a narrow window around this upper branch of static
shells. This window closes at mmax(d, α). If the two scales set by m and M were not inde-
pendent, this finite-size region where oscillating solutions reside would degenerate into a line
and they would cease to exist.

To start scanning the behavior of the existence region with respect to α, let us note that
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both m(d, α, r) and M(d, α, r) attain their maxima at the same radius

rmax(d, α) =
1√
2

√
2α(d− 1 + α)− (d+ 1) +

√
(d+ 1)2 − 4(d− 1)α− 4α2)√

(1− α)(d+ α)
. (4.3.23)

which also controls mmax(d, α),

mmax(d, α) = 4rmax(d, α)d+1

√
(d+ 1)2 − 4(d− 1)α− 4α2 − (d− 1)

(d− 1 + 2α)2
. (4.3.24)

In the conformal fluid limit α → 1, rmax(d, α) diverges as rmax(d, α) ∼
√

d−1
d+1

1√
1−α , so we

expect mmax(d, α) to be also divergent. In fact

mmax(d, α) ∼ 8

d2 − 1

(
d− 1

d+ 1

) 1+d
2

(1− α)
1−d

2 . (4.3.25)

This result shows that the maximum mass for which oscillating solutions exist grows un-
bounded as α→ 1; for d > 1, there are oscillating solutions with arbitrary high ADM energy
as long as the shell matter is sufficiently near conformality. In the opposite limit (pressureless
dust) α→ 0

mmax(d, α) ∼ 8

(d− 1)2

(
d− 1

d+ 1

) 1+d
2

α
1+d

2 , (4.3.26)

and the allowed region for oscillating trajectories shrinks down to zero. Physically, this
means that there are no pressureless oscillating solutions, i.e. in order to be stable against
gravitational collapse, the shell matter must have some self-interaction. As an aside, note
that the limiting behaviour of M(d, α, r) as α→ 0, 1 just follows the behaviour of m(d, α, r),
since

M(d, α, r) = rα
(d− 1 + 2α)

√
1 + r2

2(d− 1 + α + (d+ α)r2)
m(d, α, r) . (4.3.27)

An important consistency check is to verify that r− lies outside the position of the event
horizon, rh. Otherwise, instead of having an oscillating solution, the shell trajectory would
represent direct gravitational collapse starting from r+. As r− ≥ rl, it is sufficient to show
that rl ≥ rh. The static event horizon location, rh(d,m), is the solution of the equation
1 + r2

h − mr1−d
h = 0. Since we don’t know explicitly rl = rl(d, α,m), but instead m =

m(d, α, rl), we are going to define correspondingly mh(d, r) ≡ rd−1(1 + r2). It is easy to see
that, if mh(d, r)−m(d, α, r) ≥ 0 for all d, α, r, the consistency condition rl ≥ rh always holds
-see figure 4.3-. We find that

mh(d, r)−m(d, α, r) = rd−1 (d− 1 + (d+ 1)r2)
2

(1 + r2) (d− 1 + 2α)2 (4.3.28)

which is positive definite. Thus, every oscillating shell trajectory found lies entirely outside
the event horizon of the would-be black hole.
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Figure 4.3: mh -brown- versus mass existence curve -orange- in d = 3 for α = 0.9. The line

m = 1.5 is drawn -black dashed-, as well as its lowest intersection with the mass existence curve,

rl, and its intersection with mh, rh -both black dashed-.

4.3.2 Oscillating shells in d = 1

The case d = 1 is special because, as mentioned before, some general properties seen in d > 1
do not hold anymore. Representative existence curves are plotted in figure 4.4. The analytic
form of m(d, α, r),M(d, α, r) for d = 1 is

m(1, α, r) ≡ m(α, r) = 1 + r2 − r4

(1 + r2)α2
(4.3.29)

M(1, α, r) ≡M(α, r) = rα
α− (1− α)r2

α
√

1 + r2
(4.3.30)

Figure 4.4: Left: existence curves for oscillating solutions in d = 1 and α = 0.99. In solid orange,

m as a function of r. In dashed orange, M . Right: M(1, α,m) for α = 0.2, 0.5, 0.9 -black, brown

and orange curves respectively-.
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It is easy to prove that rl ≥ rh, as equation (4.3.28) still holds. The major difference with
respect to the d > 1 case comes when we evaluating the allowed mass range for oscillating
shell trajectories. At d = 1

rmax(α) =

(
1 +
√

1− α2

α2
− 1

)− 1
2

(4.3.31)

is still divergent as α → 1, although in a milder way, rmax(α) ∼ (1 − α)−
1
4 instead of the

(1− α)−
1
2 divergence in (4.3.23). However,

mmax(α) =
2

1 +
√

1− α2
(4.3.32)

so, unlike the d > 1 case, for d = 1 the maximum allowed mass of an oscillating solution
does not grow without bound as α → 1. Instead, it goes to a finite value, m = 2 (in our
conventions). Note also that, in the α→ 0 limit, the m-range does not close down. Instead,
mmax(α)→ 1 as α→ 0. In AdS3 there are oscillating shell solutions for any m ≤ 1, even for
dust made shells.

Looking at figure 4.4, we observe that there is a qualitative difference between shells of mass
above and below the threshold m = 1. Each mass m belonging to the interval [1,mmax(α)]
has two associated radii, rl and ru, such that, like in higher dimensions, rl signals the position
of the Veff = 0 axis-touching maximum, while ru signals the position of the axis-touching
minimum. However, for m < 1 the axis-touching maximum disappears. This does not mean
that shells with m < 1 are allowed to reach the point r = 0, because the potential barrier
does not vanish at any finite M for α 6= 0: as M → 0, the maximum of the barrier gets
radially displaced towards the origin and tends to a constant value. At the same time, r+

grows unbounded. In the same way that oscillating shells cannot cross their Schwarzschild
radius, in AdS3 there is also a mechanism forbidding the possibility of reaching r = 0: the
shells cannot form naked singularities. Again this is in parallel with the phenomenology
shown by a massless scalar pulse in AdS3 [159][198]. The behaviour of the barrier is depicted
in figure 4.5.

It is easy to explain the behaviour of Veff as M → 0 in analytic terms. Let rbarrier be the

position of the maximum of the potential barrier. If r � 1, ∂rVeff ∼ α
(
M2r−2α − m2

M2 r
2α
)

,
so

rbarrier ∼
(
M√
m

) 1
α

. (4.3.33)

Therefore, rbarrier → 0 as M → 0. At r = rbarrier, the potential is finite

Vbarrier ≡ Veff (rbarrier) ∼ 1−m . (4.3.34)

Regarding the large r turning point, r+, note that if V has a root r+ such that r+ � 1, we
have that V (r+) ∼ r2

+ − m2

4M2 r
2α
+ = 0, which is solved by

r+ =
( m

2M

) 1
1−α

. (4.3.35)

This proves that r+ →∞ as M → 0.
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Figure 4.5: Left: for α = 0.99 and m = 0.8, potential Veff at M = 0.3900, which corresponds

to a static shell located at ru = 7.699. Right: evolution of the potential barrier for the oscillating

shell at different M . The orange curve corresponds to Veff on the left picture. From left to right,

brown curves represent potentials with M = 0.3, M = 0.2, M = 0.1 and M = 0.05. Note that

rbarrier gets smaller as M does, while Vbarrier → 1−m = 0.2 in this case -black dashed-

4.4 Final remarks

The homology constraint implies that the dual state to the oscillating thin shell geometries
we are considering is pure. Furthermore, since at times τ± such that rs(τ±) = r± the effective
potential Veff (r±) vanishes, we have that ṙs(τ±) = 0 and the geometry is time-symmetric,
i.e., ∂τgµν |τ=τ± = 0. Therefore, given a boundary cap C(τ±), the bulk entangling surface
σC(τ±) is constraint to lie entirely on a constant time hypersuface and the time-independent
RT prescription suffices to compute it. This readily implies that SC(τ) is periodic, with a
periodicity set by the shell oscillatory motion. If we made the natural assumption that the
entanglement entropy is monotonous for τ ∈ [τ−, τ+], the amplitude of the entanglement
entropy oscillations would be

∣∣SC(τ+) − SC(τ−)

∣∣.
Therefore, oscillating thin shell spacetimes provide extremely simple examples of CFT states
that never thermalize. Strictly speaking, their existence is of dynamical origin: they are only
allowed for specific equations of state and, in particular, they are forbidden if the shell is
composed of pressureless matter. On the other hand, the fact that time-periodic thin shell
solutions appear for any α ∈ (0, 1) points to the fact that the existence of exactly periodic
solutions to the Einstein equation is a generic property of asymptotically global AdS space-
times. Said otherwise, under mild dynamical assumptions (namely, the presence of pressure)
the kinematical properties of Einstein gravity with global AdS asymptotics should guarantee
the appearance of time-periodic spacetimes. In this regard it is intriguing to note that, had
we performed our construction in flat AdS, the effective potential (4.2.19) would not had al-
lowed for oscillating shells, irrespectively of the particular equation of state considered [199].
In the light of the AdS/CFT correspondence, the results of this chapter suggest that, under
generic conditions, quantum revivals are to to be expected in holographic CFTs placed on
spheres.
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As we have stressed, the simple nature of the solutions found would allow a relatively
easy calculation of holographic proxies of field theory quantities, that would help to charac-
terize the non-thermalizing state. In this regard, the entanglement entropy computation in
the three-dimensional case seems particularly easy to carry out. In this case, bulk geodesics
are known in closed form, both in the interior and the exterior patch of the thin shell solu-
tion [200]. Furthermore, the matching conditions that determine how interior and exterior
geodesics join have also been explicitly worked out in [117, 118].

Apart from exploiting the desirable features of our construction at the level of comput-
ing holographic probes, it is also mandatory to check the robustness of the results obtained.
As several simplifying assumptions have been made, each one can be relaxed independently.
For instance, more general equations of state, i.e. polytropes, can be considered. The re-
quirement that the interior spacetimeM− is an empty AdS space with the same cosmological
constant as the exterior one can also be lifted. Finally, going beyond spherical symmetry is
a natural extension to consider, even though the addition of arbitrary angular deformations
appears as a formidable challenge.

The fundamental question to answer is how the behavior of the thin shell is going to
transition from periodic to either quasiperiodic or collapsing. Said otherwise, after these
different deformations of our setup are taken into account, are quasiperiodic solutions going
to occupy a nonzero measure of the phase space of the system?

It must also be mentioned that, after our original work [3] first appeared, [201] studied
the dynamics of two spherically symmetric thin shells in global AdS4 and found surprising
agreement with the behavior of broad Gaussian initial data reported in [142]. At present,
it is unknown if there exists a thin shell construction which shows a tc(m) that matches
the behavior of the turbulently unstable families of initial data of [130]. This question is
worth pursuing. To answer it, the protocol determining the shell interaction in [201] would
probably need to be generalized.
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Chapter 5

Stability of charged global AdS4
geometries

5.1 Summary

In this chapter, we undertake the stability analysis of Einstein-Maxwell-scalar theory with
global AdS4 asymptotics, both at the linear and nonlinear level. For definiteness, we will
consider a massless, complex scalar field that couples covariantly to the electromagnetic
field. From the AdS/CFT perspective, this gravitational system describes a CFT3 placed on
a two-sphere where, besides the energy-momentum tensor Tab and a marginal scalar operator
O, dual respectively to gµν and φ, there exists also a conserved global U(1) current, Jµ, dual
to the electromagnetic field Aµ. We present the model in section 5.2, discussing in detail its
action, equations of motion, boundary conditions and computation of the conserved charges.

As we have discussed in 1, the fact that the scalar operator O is charged under the global
internal U(1) symmetry gives rise to a rich landscape of equilibrium solutions. At finite en-
tropy and charge density, these include both normal phases, represented by AdS4-Reissner-
Nordström black hole, as well as superfluid phases, represented by hairy black holes. There
also exists a new kind of statics solutions: the solitons. These are static, horizonless ge-
ometries supported by a nontrivial, normalizable scalar field profile. From the dual point
of view, they correspond to pure states that should be identified with macroscopic Bose-
Einstein condensates. The existence of this plethora of equilibrium states gives rise to a rich
landscape of possible phase transitions, which we unravel both in the microcanonical and
the grand-canonical ensembles.

In section 5.3, we construct the microcanonical phase diagram. Here, the thermodynam-
ical potential to be extremized corresponds to the entropy. We demonstrate that, depending
on the value of the electromagnetic coupling e, there exist three possible different structures
for this diagram. Our findings build up in parallel with the achievements of [202] [203] where
the landscape of static solutions was unraveled for five-dimensional case. We comment on
the salient similarities and differences between our results and theirs. We analyze in de-
tail the possible behaviors of the soliton solutions, and illustrate how they can be put into
correspondence with planar geometries after a suitable blow up limit.

131
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Section 5.4 focuses on the grand-canonical phase diagram. The structure is enriched by
the fact that the free energy now can depend on two dimensionless parameters, µL and TL.
We compute the grand-potential and perform a scan to elucidate how the structure of the
phase diagram changes depending on their values. We uncover hairy black hole branches of
negative specific heat and establish on firm grounds that they are always thermodynamically
subdominant.

Then, in section 5.5, we discuss in detail the stability of our theory at the nonlinear level. We
reviewed the recent research in the AdS instability problem in chapter 1, section 1.3. Let us
remind the reader the major lessons obtained from this body of work that are of interest for
the present chapter. The original numerical experiment of Bizon and Rostworowski in [130]
showed that the nonlinear evolution of some family of arbitrarily small scalar field perturba-
tions inevitably ended up in the collapse and formation of a black hole. Perturbatively, the
problem was also examined [136] in the context of purely gravitational perturbations, and
the importance of two ingredients was signalled: the presence of a fully resonant spectrum
for the linearized perturbations, and the existence of time-periodic solutions that act as cen-
ters of stability islands in phase space. Back to the scalar field case, this suggestion received
further backup from other contributions [135][134]. In this case, the periodic solutions were
named oscillons, and indeed, the two previous observations became consistent in that the
spectrum of linearized perturbations around an oscillon turns out not to be fully resonant.
After some years of analytic and numerical work, it has become clear that there is a wealth
of situations that one can encounter. One may choose to change either the dynamics (the
action) or the kinematics (the boundary conditions). Generically, when departing from the
easiest case of perturbations on pure AdS, the resonant property is lost [133].

In our case, to investigate the nonlinear stability of our Einstein-Mawell-scalar theory
we must carry out a numerical analysis, searching for endpoints of the evolution in one of
the possible static forms we discussed above. Performing these simulations with Dirichlet
boundary conditions at the boundary is tantamount to studying the thermalization of the
dual quantum system in the microcanonical ensemble.

The central question in this section is whether similar conclusions as those obtained in
[130] can be extrapolated to the present situation. We consider Gaussian initial data families
with different charges, generalizing the uncharged ones discussed in [130]. These initial con-
ditions have an amplitude ε and a width σ. We find that for narrow initial pulses, a collapse
protocol that shows a turbulent instability to black hole formation can be constructed. This
fact confirms the expectation that places the origin of the turbulent cascade in the fully
resonant character of the normal mode eigenfrequency spectrum, a fact that also upholds
in the presence of a finite electromagnetic coupling. On the other hand, by analyzing the
behavior of constant charge initial data, we have conclude that the turbulent instability is
absent when the mass is sufficiently low. In the same way as pure AdS4 controls the insta-
bility corner found in the previous case, we expect that soliton solutions are responsible for
the nonlinear stability observed here, in the same vein as it happens at zero coupling for
boson stars.

In order to confirm this picture, in section 5.6 we examine the linear and nonlinear sta-
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bility of fluctuations placed on top of the soliton solutions. By a numerical computation,
we show that their normal eigenfrequency spectrum is nonresonant. As expected, the lin-
ear instability, signaled by an imaginary eigenfrequency, is seen to appear as a result of a
Chandrasekhar instability. For higher amplitude perturbations we resort to a full-fledged
numerical simulation of the evolution of the system. In general, linear stability extends to
nonlinear stability up to some threshold for the amplitude of the perturbation. Beyond that,
the soliton is destroyed and collapses to a hairy black hole. We discover that the protection
region where oscillations do not decay does not scale properly in the limit of large mass and
charge to survive after blow up. This fact seems to point to the necessity of having a mass
gap, and not just a mass scale, to find such oscillatory behaviors.

Finally, in section 5.7 we discuss the post-collapse relaxation of several one-point functions
in our model, focusing on the vacuum expectation value of the marginal scalar operator. By
employing the four-dimensional charged Vaidya model as a test example, we provide reliable
evidence favoring the suitability of our coordinate system to address this issue. For initial
data showing prompt collapse, we identified three different relaxation regimes that match
perfectly the ones previously found in [103] for the four-dimensional, planar case (see chapter
1 for the statement of these results). We demonstrate that, for a given set of conserved
charges, these relaxation regimes are independent on the particular form of the initial data
considered, pointing towards their origin being in the structure of the quasinormal mode
spectrum of the final black hole. To conclude, we comment on the late-time relaxation of
the scalar operator for initial data that do show prompt collapse. We identify a new regime
where long-lived oscillations seem to be present.

5.2 The model

5.2.1 Action and equations of motion

We are considering four-dimensional Einstein gravity with a negative cosmological constant
in the presence of Maxwell electrodynamics and a charged complex scalar field with zero
mass. For the sake of generality, let us treat the d−dimensional case with a nontrivial scalar
potential. Our action is

S =
1

2κ2

∫
dd+1x

√
−g (R− 2Λ)−

∫
dd+1x

√
−g
(
DµφD̄

µφ∗ + V (|φ|)
)
−1

4

∫
dd+1x

√
−gFµνF µν ,

(5.2.1)
where κ2 = 8πG, Λ = −d(d − 1)/2l2. We are working in length units such that l = 1. The
covariant derivative is given by

Dµφ ≡ (∂µ − ieAµ)φ. (5.2.2)

Note that the backreaction of the scalar field on the geometry is controlled by the elec-
tromagnetic coupling e, in such a way that e → ∞ corresponds to the probe limit. The
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equations of motion that follow from (5.2.1) are

Rµν −
1

2
gµνR + Λgµν = κ2

(
T (φ)
µν + T (A)

µν

)
, (5.2.3)

1√
−g

Dµ

(√
−ggµνDνφ

)
=

∂V (|φ|)
∂φ∗

, (5.2.4)

1√
−g

∂µ(
√
−gF µν) = Jν , (5.2.5)

with the following energy-momentum tensor and charge currents

T (φ)
µν =

(
D̄µφ

∗Dνφ+ µ↔ ν
)
− gµν

(
|Dφ|2 + V (|φ|)

)
, (5.2.6)

T (A)
µν = FµαFν

α − 1

4
gµνF

2, (5.2.7)

Jν = ie
(
φ∗Dµφ− φ(D̄µφ

∗)
)
gµν . (5.2.8)

As usual, we restrict ourselves to spherically symmetric solutions and employ the ansatz

ds2 =
1

cos2 x

(
−f(t, x)e−2δ(t,x)dt2 + f(t, x)−1dx2 + sin2 x dΩ2

d−1

)
, (5.2.9)

A = At(t, x)dt, (5.2.10)

φ = φ(t, x). (5.2.11)

This ansatz leaves as residual gauge transformations

φ→ eiΛ(t)φ, (5.2.12)

At → At − ie∂tΛ(t), (5.2.13)

under which the equations of motion must be covariant. This motivates defining the following
U(1)−covariant fields

Φ(t, x) ≡ φ′(t, x), (5.2.14)

Π(t, x) ≡ eδ

f
Dtφ. (5.2.15)

The first-order form of the Klein-Gordon equation is finally found to be

Φ̇ =
(
fe−δΠ + ieAtφ

)′
, (5.2.16)

Π̇ =
1

tand−1 x

(
tand−1 xfe−δΦ

)′
+ ieAtΠ−

1

cos2 x
e−δ∂φcV (φ), (5.2.17)

while the tt, xx−components of the Einstein equation reduce to the two elliptic equations

f ′ =
d− 2 + 2 sin2 x

sinx cosx
(1− f)− 2κ2

d− 1
sinx cosx f

(
|Φ|2 + |Π|2

)
(5.2.18)

− κ2

(d− 1)
e2δ cos3 x sinxA′t(t, x)2 − 2κ2

d− 1
tanxV (|φ|),

δ′ = − 2κ2

d− 1
sinx cosx

(
|Φ|2 + |Π|2

)
. (5.2.19)
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There is one additional equation coming from the tx−component of Einstein equation that
yields the momentum constraint

ḟ = − 4κ2

d− 1
sinx cosxf 2e−δ Re(ΦΠc). (5.2.20)

Concerning Maxwell’s equations, let us define C ≡ A′t, in such a way that from (5.2.5) we
arrive to the following two equations(

eδC
)′

= 2e
1

cos2 x
Im(φΠc)− eδC((d− 3) tanx+ (d− 1) cotx), (5.2.21)

˙(eδC) = 2e
e−δf

cos2 x
Im(φΦc) (5.2.22)

which can be easily shown to be compatible. The latter equation is the Gauss law constraint,
while the former provides an elliptic equation that determines At. Indeed, assuming that A′t
is bounded at x = x0, we can integrate (5.2.21) to find

A′t = 2e e−δ sin1−d x cosd−3 x

∫ x

x0

tand−1 x Im(φΠc). (5.2.23)

5.2.2 Boundary conditions

Solving equations (5.2.16)-(5.2.19),(5.2.21) in the domain x ∈ [x0, π/2] requires specifying
appropriate boundary conditions. Let us define ρ ≡ π/2 − x. Focusing from now on the
V (|φ|) = 0 case, the following ultraviolet series expansions follow directly from the equations
of motion

φ(t, x) = φ0(t) + . . .+ φd(t)ρ
d + . . . , (5.2.24)

At(t, x) = µ+Qρd−2 + . . . , (5.2.25)

f(t, x) = 1 + . . .−Mρd + . . . , (5.2.26)

δ(t, x) = δ0(t) + . . .+ δ4(t)ρd+1 + . . . . (5.2.27)

We work boundary time gauge δ0(t) = 0; standard holographic renormalization then dictates
that φ0(t), φd(t) determine the source and vacuum expectation value of scalar operator O,
while µ sets the dual CFT3 chemical potential and Q the charge density of the state in
question. M determines the state’s energy density. In this chapter, we are solely considering
out-of-equilibrium states set by the specification of initial data at t = 0 and, in consequence,
for t ≥ 0 we demand normalizability of the scalar field profile, φ0(t) = 0.

When the infrared end of the geometry corresponds to x0 = 0, origin regularity enforces
that f(t, 0) = 1,Φ(t, 0) = 0 and, as usual, it follows that φ, f, δ and At are even functions of
x. This condition upholds when considering a time-dependent situation or a static solitonic
solution. For static black hole geometries, the condition that x0 = xh corresponds to a hori-
zon requires that f(xh) = 0, while for A to be well-defined as a one-form when continuing
analytically to Euclidean signature, we must demand that At(xh) = 0. In this case, neither
φ, f, δ nor At have a definite parity around xh.
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5.2.3 Conserved charges

As metioned, Q and M determine respectively the charge and energy densities of the dual
field theory state. Owing to the form of equations (5.2.18)(5.2.21), it is possible to find an
explicit integral expression for these quantities. Let us consider Q first. Notice that, with
the ansatz we are considering, the electromagnetic current reads

Jµ(t, x) = 2e cos2 x(−eδ Im(φΠc), f Im(φΦc), 0, 0) (5.2.28)

and, therefore, the total charge of the spacetime is given by

Q =

∫
Sd−1

dΩSd−1

∫ π/2

0

dx
√
−gJ0(x) (5.2.29)

= −2eVSd−1

∫ π/2

0

dy tand−1 y Im(φΠc). (5.2.30)

Now, take (5.2.21) and notice that the following expression holds

(−1)d−3

(d− 3)!
A

(d−2)
t (π/2) = 2e

∫ π/2

0

tand−1 y Im(φΠc) =
−Q
VSd−1

. (5.2.31)

In consequence, we find that

Q ≡ (−1)d−2

(d− 2)!
A

(d−2)
t (π/2) =

Q
(d− 2)VSd−1

, (5.2.32)

and finally

Q = − 2e

d− 2

∫ π/2

0

tand−1 y Im(φΠc). (5.2.33)

Regarding M , from (5.2.18) and the boundary condition (5.2.26) it follows directly that

M = sin x0 sec3 x0e
−δ(x0) + (5.2.34)

+κ2

∫ π/2

x0

(
tand y

(
Φ2 + Π2

)
e−δ +

1

2
sin2 yA′2t e

δ

)
, (5.2.35)

where we have allowed for the possibility that x0 = xh.

5.3 The microcanonical phase diagram

From the AdS/CFT perspective, our holographic CFT3 contains an energy-momentum ten-
sor operator Tab, dual to the bulk metric gµν , a conserved global U(1) current Ja, dual to the
electromagnetic field Aµ, and a marginal scalar operator O, charged under the global U(1)
symmetry and dual to φ. As discussed in chapter 1, charged geometries correspond to CFT3

states with finite charge density, 〈Jt〉 6= 0, that might or might not break spontaneously the
global U(1) symmetry, depending on whether 〈O〉 6= 0 or 〈O〉 = 0. Restricting to normaliz-
able and spherically symmetric configurations, the space of equilibrium states of the CFT3

is composed of1

1See appendix 5.A.1 for a technical discussion of the numerical construction of these static solutions.
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• The M = Q = 〈O〉 = 0 vacuum, holographically dual to AdS4.

• M 6= 0, Q = 〈O〉 = 0 thermal states with finite entropy, holographically dual to
AdS4−Schwarzschild black holes.

• M 6= 0, Q 6= 0, 〈O〉 = 0 thermal states with finite entropy, holographically dual to
AdS4−Reissner-Nordström black holes, that do not break spontaneously the boundary
global U(1) symmetry.

• M 6= 0, Q 6= 0, 〈O〉 6= 0 thermal states with finite entropy, holographically dual
to AdS4−hairy black holes, that do break spontaneously the boundary global U(1)
symmetry. They correspond to superfluid states in the dual CFT3.

• M 6= 0, Q 6= 0, 〈O〉 6= 0 Bose-Einstein condesates with zero entropy, holographically
dual to soliton solutions.2

Therefore, at a given electromagnetic coupling e, the microcanonical phase diagram is pa-
rameterized by Q and M . If, for a given set of conserved quantities, several of the afore-
mentioned static solutions coexist, the thermodynamically dominant solution corresponds
to the one with higher entropy. Depending on e, there exist three different regimes for
the micrcocanonical phase diagram. These regimes are separated by two threshold values,
et and esr, that signal the appearance of two distinct linear instabilities affecting extremal
Reissner-Nordström black holes:

• For e ≥ et, extremal Reissner-Nordström black holes are subjected to a tachyonic
instability. This instability is triggered by the fact that the nontrivial gauge field profile
makes a negative contribution to the effective scalar field mass, lowering it below the
Breitenlohner-Freedman bound of the AdS2 factor of the near-horizon geometry. This
tachyonic instability is the physical mechanism that allows for hair formation in the
planar holographic superconductors introduced in [54][56]. In our setup, it is possible
to show explicitly that3

e2
t =

4 + d(d− 4 + r2
h(d− 1))

4r2
h(d− 1)(d(r2

h + 1)− 2)
, (5.3.36)

where rh is the event horizon radius of the extremal Reissner-Nordström black hole.
Therefore, rh → ∞ black holes become unstable first, while the threshold (5.3.36)
diverges as rh → 0, showing that small extremal Reissner-Nordström black holes are
immune to the tachyonic instability.

• For e ≥ esr, a new superradiant instability appears. This superradiant instability
is triggered by the fact that, for eµ > ∆ = d,4 the imaginary part of the lowest
quasinormal mode of a small Reissner-Nordström black hole becomes positive: scalar

2The fact that the soliton solution is regular at x = 0 implies that, in the light of the HEE prescription
and due to the homology constraint, SA = SĀ, and the dual CFT3 state they represent is pure.

3We work in units where κ2 = L = 1.
4Here ∆ is the conformal dimension of the dual operator O.
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waves scatter off the black hole with a reflection coefficient |R| > 1. The instability
follows then from the reflecting boundary conditions imposed at infinity. Since the
chemical potential is always bounded by its value at extremality, the minimum charge
esr at which the superrandiant instability can appear is

e2
sr =

d2(d− 2)

d− 1

(
1− d

2(d− 2)
r2
h +O(r

3/2
h ) + ...

)
, (5.3.37)

where we assume that rh � 1. Note that the condition (5.3.37) cannot be directly
applied to large Reissner-Nordström black holes.

The values of these thresholds for AdSd+1 with d = 3, 4 for κ2 = 1 are:

e2
t e2

sr

AdS4 3/2 9/2

AdS5 3 32/3

In the remaining part of this section we summarize the phase diagram for the static solutions
of our Einstein-Maxwell-scalar theory for values of the coupling lying on each interval, and
discuss the associated soliton solutions. Our analysis follows [203], where the perturbative
phase diagram originally uncovered in [202] for the five-dimensional case was extended into
the nonlinear regime.

Figure 5.1: Left: microcanonical phase diagram for e < et. Right plot: microcanonical phase

diagram for et ≤ e < esr.

• e < et

The only static solutions present are Reissner-Nordström black holes and solitons,
which exist only below a Chandrasekhar limit Q ≤ Qc(e), M ≤ Mc(e). In figure
5.1a, the green curve corresponds to the soliton family, the blue curve to extremal
Reissner-Nordström black holes, and the blue shaded region to non-extremal Reissner-
Nordström black holes.
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• et ≤ e < esr

In this regime, in addition to Reissner-Nordström black holes and solitons, there exist
hairy black holes in a band around extremality for Q > Q0(e) -red shaded region
in figure 5.1b-. The red curve denotes extremal hairy black hole solutions and the
black line marks the instability curve for the Reissner-Nordström solution. Solitons,
depicted in green on figure 5.1, appear in two branches. One is vacuum connected
and has bounded conserved charges, Q ≤ Qc,1(e),M ≤ Mc,1(e); the other one has
unbounded conserved charges and is vacuum disconnected, since it only exists for
Q ≥ Qc,2(e),M ≥Mc,2(e). Both soliton branches merge, Qc,2(e)→ Qc,1(e), as e→ esr.
For Q ≥ Qc,2(e), the lightest hairy black hole is no longer extremal. Numerical evidence
suggests that its temperature is in fact divergent.

• esr ≤ e

Now hairy black holes exist for Q > 0 in a band around extremal Reissner-Nordström
black holes. Concerning the solitonic solutions, the two branches observed for et ≤ e <
esr merge into a single vacuum connected soliton branch with unbounded conserved
charges. To our best numerical accuracy, the soliton line is the limit of rh → 0 hairy
black holes with divergent temperature. The situation is similar to the five-dimensional
setup [203]. However, in that case, a second critical charge was found, beyond which
hairy black holes existed below the soliton line. We have found no trace of this particular
behaviour in our numerical scan. This being said, it cannot be discarded that such a
fine structure is present, but beyond the reach of our numerical accuracy. To settle
this question, a perturbative analysis along the lines of [203] would be needed.

Figure 5.2: Microcanonical phase diagram for e ≥ esr
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5.3.1 The soliton branches

Let us describe the soliton solutions in more detail. They are fully-backreacted, horizonless
solutions sourced by a normalizable scalar field profile φs(x). Equilibrium is attained by an
exact compensation of gravitational and electrostatic forces. They come in one-parameter
families that can be indexed by the central value φ0 ≡ φs(x = 0).

Figure 5.3: Left: charge of vacuum connected and disconnected soliton branches against φ0 for

e = 2. Right: soliton charge against φ0 for e = 5.

Depending on the value of the coupling e, soliton families display different aspects:5

• For e < et, there exists a single soliton branch. It is continuously connected to the
AdS4 vacuum, in the sense that, for φ0 → 0, it reduces to global AdS4. Therefore, for
φ0 � 1, this soliton family admits a perturbative construction, and can be described
as a ω = 0 scalar normal mode dressed nonlinearly. Besides this fact, the trademark
property of this branch is the existence of a critical value φ0 = φc,1 at which both the
soliton mass M(φ0) and the soliton charge Q(φ0) attain a maximum. When φ0 > φc,1,
M and Q spiral around a limiting value that is reached at φ0 →∞.

• For et ≤ e < esr, there exist two different soliton branches. The first one, connected
with the vacuum, was already present in the e < et case. The second one, disconnected
from the vacuum, is not amenable to a perturbative construction. In this branch,
solitons exist for φ0 larger than some critical value φc,2a, at which the conserved charges
M,Q diverge. They decrease for φ0 > φc,2a until they reach a minimum value at some
φ0 = φc,2b > φc,2a. In parallel with the first soliton branch, for φ0 > φc,2b, M and Q
show damped oscillations around a limiting value that is attained in the φ0 →∞ limit.
Representative plots of the behavior just described are provided in figure 5.3a.

• For e ≥ esr, the two soliton branches described in the previous item fuse into a single
soliton family that is vacuum connected (see figure 5.3b). Again, there exists a critical
φc,3 such that M and Q seem to diverge in the φ0 → φc,3 limit.

5Our results agree essentially with the ones presented in [204] for the m2 = −2 case.
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Figure 5.4: Fields for the vacuum disconnected soliton branch at e = 2 from φ0 = 1.4 (red) to

φ0 = 0.98 (purple) in steps of δφ0 = −0.01.

5.3.2 The blow up limit

In figure 5.4 we plot fs and φs for representative soliton solutions in the vacuum disconnected
branch at e = 2. We start at φ0 = 1.4 (reddest curve), and decrease φ0 in steps of δφ0 = −0.01
up to φ0 = 0.98 (bluest cuve). By inserting these values into the Q− φ0 plot of figure 5.3a,
it is clearly appreciated that the field gradients become more localized in the near-boundary
region as the conserved charges of the soliton become larger.

As emphasized in [204], the fact that solitons come in one-parameter families with un-
bounded conserved charges allows taking a blow up limit that maps onto a solution with
planar geometry. The procedure starts by looking at the near-boundary expansion

φ(t, r) =
φ3

r3
+O(r−4) (5.3.38)

A = At(t, r)dt =

(
µ− Q

r

)
dt+O(r−2) (5.3.39)

ds2 = −
(
r2 + 1− m

r

)
dt2 +

dr2

r2 + 1− m

r

+ r2dΩ2
2 +O(r−2) . (5.3.40)

Introducing new coordinates

r = λr̂ t =
t̂

λ
θ =

θ̂

λ
ϕ = ϕ̂ (5.3.41)

and redefinitions

M = λ3m̂(λ) Q = λ2q̂(λ) µ = λµ̂(λ) φ3 = λ3φ̂3(λ) , (5.3.42)

(5.3.38)-(5.3.40) become
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φ =
φ̂3

r̂3
+O(r̂−4) (5.3.43)

A = Atdt̂ =

(
µ̂− q̂

r̂

)
dt̂+O(r̂−2) (5.3.44)

ds2 = −
(
r̂2 +

1

λ2
− m̂

r̂

)
dt̂2 +

(
r̂2 +

1

λ2
− m̂

r̂

)−1

dr̂2

+ r̂2

dθ̂2 + λ2 sin

(
θ̂

λ

)2

dϕ̂2

+O(r̂−2) .

(5.3.45)

Figure 5.5: Scaling ratios (5.3.46) for the e = 5 soliton branch. Blue, green and pink colors

correspond to the scaling ratios of the mass, charge and vev, respectively. Dashed lines correspond

to the same ratios computed in the asymptotic planar geometry reached upon blow up.

So far, this is only a reparametrization of our initial solution. However, if we now take the
singular limit λ→∞ and, simultaneously, move along the soliton branch in such a way that
the vector of rescaled quantities ~χ(λ) ≡ (m̂(λ), q̂(λ), µ̂(λ), φ̂3(λ)) remains finite, we obtain
a planar geometry6 characterized by the hatted quantities. For example, identifying the
parameter λ with µ, the dimensionless ratios

M

µ3
,

Q

µ2
,

φ3

µ3
(5.3.46)

must tend to constant quantities when µ→∞ for the planar limiting geometry to have finite
energy, charge and vev densities, respectively. In figure 5.5 the ratios (5.3.46) are plotted
for the soliton branch at e = 5. The planar geometry obtained after the blow up limit is
taken clearly matches the extremal hairy black brane geometry studied in [205], at the given

6Note that the boundary sphere maps onto a two-dimensional plane in the λ→∞ limit, with its metric
written in polar coordinates.
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e.7 Incidentally, this observation explains why there does not exist a second soliton branch
when e < et. In that case, in planar AdS, there is no near-horizon tachyonic instability that
can trigger hair condensation, so there is no limiting extremal hairy black hole to which this
hypothetical branch could map on.

5.4 Grand-canonical phase diagram

Section 5.3 provides a classification of static solutions in the microcanonical ensemble. Since
we are considering a holographic CFT at finite volume, the thermodynamically dominant
phase can change depending on the particular ensemble we are in. Recall that, for global
asymptotics, Schwarzschild black hole solutions split into two different kinds, small and large,
with negative and positive specific heat respectively. In our setup, large Reissner-Nordström
or hairy black holes are to be put into correspondence with stable quantum states in the
canonical or grand-canonical ensembles. In addition to these finite-entropy thermal states,
we must also consider the thermal gas represented by Euclidean AdS4 and the Bose-Einstein
condensates dual to the the soliton solitons. These different geometries are the building
blocks of a rich landscape of first- and second-order phase transitions.

In this section, we analyze the grand-canonical phase diagram of the Einstein-Maxwell-
scalar system for a coupling e = 3. For any e > et, the results are qualitatively identical.
Instead, below et the situation changes, since the only building blocks for obtaining a phase
transition are Reissner-Nordström black holes and soliton solitons. In this regard, our setup
differs from the one analysed in [204][206], where the scalar field is tachyonic.

5.4.1 Small and large hairy black holes

The thermodynamics of Reissner-Nordström black holes, both in the canonical and grand-
canonical ensembles, has been examined with great care in [61][62]. Here, we focus on the
thermodynamical behavior of hairy solutions. The Hawking temperature is given by

T =
1

8π

(
(6− A′t(xh)2 cos4 xh) tanxh + 2 cotxh

)
(5.4.47)

and the entropy is

S = 2πAh = 8π2 tan(xh)
2, (5.4.48)

where Ah is the area of the event horizon horizon.

In figure 5.6a, we plot |〈O〉| for fixed chemical potential µ = 1.5 as a function of T . The
observed behaviour is typical when the gravitational solution corresponds to a small hairy
black hole: condensation appears for T > Tc. This phenomenon, dubbed retrograde con-
densation in the literature, has appeared in different contexts [207][208]. We will show that

7We have indeed verified that, in the time-independent case, our equations of motion reduce to those on
[205] after the blow up limit if we set κ2 = 1/2 so field normalizations agree.
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this condensed phase is not physically relevant because it is thermodynamically subdomi-
nant with respect to the Reissner-Nordström and soliton solutions. Note that the negative
specific heat of this branch can be readily infered from figure 5.6b.

Figure 5.6: Condensate (left) and temperature (right) for hairy black holes with µ = 1.5.

In order to exemplify small/large hairy black hole coexistence, we rise the value of the chem-
ical potential up to µ = 3. Figure 5.7a shows the behavior of |〈O〉| as a function of T . The
lower/upper curve corresponds to large/small hairy black hole solutions, as can be read from
figure 5.7b. We will show that, upon lowering T , the system will undergo a second-order
normal-superfluid phase transition involving the large hairy black hole branch, with the small
one staying subdominant. In this regard, notice that for T → T−c , |〈O〉| shows the standard

mean field theory scaling |〈O〉| ∝ (Tc − T )
1
2 .

Figure 5.7: As figure 5.6, but for µ = 3.

Further increasing the chemical potential, we observe the behaviour shown in figure 5.8 for
µ = 15. The same second-order normal-superfluid phase transition will happen here, but
the small black hole branch has now disappeared.
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Figure 5.8: As figure 5.6, but for µ = 15.

5.4.2 Grand-potential

Linear stability of the previous solutions amounts to the minimization of certain ensemble-
dependent thermodynamical potential. In the grand-canonical ensemble this is the grand-
potential Ω(T, µ), which the AdS/CFT correspondence identifies with the on-shell renormal-
ized Euclidean action Ω = TSon−shell.

In figure 5.9, we plot Ω and the entropy S as functions of T for µ = 1.5. As mentioned, the
hairy black hole curve, having negative specific heat, is thermodynamically subdominant.
At T = Tc we have a first-order phase transition with a net entropy reduction between the
normal phase, which is represented by the Reissner-Nordström black hole and dominates
for T > Tc, and a Bose-Einstein condensate, which corresponds to the soliton solution and
dominates for T < Tc.

Figure 5.9: For µ = 1.5, free energy (left) and entropy (right) against temperature for the different
saddles involved in the determination of the grand-canonical phase diagram: Reissner-Nordström
black holes (blue), hairy black holes (orange) and solitons (brown dashed).

At µ = 3 (figure 5.10), there exist two different hairy black hole branches. Small hairy black
holes continue to be thermodynamically subdominant at any T . For T > Tc1 , the system is
in the normal phase. At T = Tc1 , there is a second-order phase transition with no entropy
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production from the normal phase to the superfluid one, holographically dual to the large
hairy black hole. This superfluid phase continues to dominate the grand-canonical ensemble
up to T = Tc2 , where there is a first-order phase transition with a net entropy reduction to
the Bose-Einstein condensate.

Figure 5.10: As figure 5.9, but for µ = 3.

Finally, at µ = 15 (figure 5.11), we observe that the grand-canonical phase diagram has the
same structure as for the µ = 3 case, the only difference being the disappearance of the small
hairy black hole branch.

Figure 5.11: As figure 5.9, but for µ = 15.

5.5 AdS nonlinear stability

The above sections have relied on a combination of analytical and numerical arguments.
The construction of static solutions is performed by solving a nonlinear ODE system and
setting up a shooting procedure. It involves fixing, for example, the event horizon radius
of the desired solution and the value of the scalar field φo at such radius. Then the value
of A′t(xo) is also varied until one obtains a solution with vanishing source φb = 0 and non
vanishing vev φb,3 6= 0. The end result is scrutinized to find the actual value of the mass M
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and the charge Q of the obtained stationary solution. If more than one solution is available,
a thermodynamical potential is to be invoked in order to select the correct groundstate in
the ensemble under consideration. In a sense, this strategy relies on a certain amount of
guesswork. Prior to the construction of hairy black holes in [54], the space of known static
vacua consisted of either pure AdS or Reissner-Nordström black holes. Later on, solitons
where first inferred, and then constructed [202] from a limit whereby the hairy black hole’s
horizon is shrunk to zero size.

In this section we will use a complementary approach. A numerical code for simulating
the time evolution of a given non-equilibrium geometry is the closest one can get to a real
experiment.8 In this spirit, the approach starts from the other end: one devises a certain
initial radial profile for the bulk fields, with a given total mass M and charge Q, and lets
it evolve under a scheme that preserves these values. If the evolution settles down to a
certain stationary state, it must necessarily be one in the list above. And if two of them
are available with the same values of M and Q, the evolution will select the ground state
in the microcanonical ensemble.9 By evolving an initial condition below the blue curve in
figure 5.2 this would have shown that black holes with abelian hair exist in global AdS, had
this work been done prior to 2008. Furthermore, imagine there were another exotic type of
black hole that nobody has constructed yet using static methods and suppose it had larger
entropy than the known phases. The collapse simulation would smell its existence and the
fields decay to that solution after exploring large portions of phase space. We must admit
we have not found any new such solution using this, admittedly expensive, method.

In figure 5.12 we have plotted some snapshots of a typical collapse process to a hairy black
hole. For the values of Q, M , and coupling e used in this simulation there is no Reissner-
Nordström black hole available. Nevertheless at t = 14.8 the scalar develops a spike at a
point where the metric approaches an apparent horizon, signalled by a zero of the function
f (blue curve). Even if the zero value is never reached, the dynamics close to this point
becomes extremely slowed down in terms of the boundary time. At later times, the outer
oscillations of the scalar field start piling up on top of the first spike, and the metric function
f tries to reach zero at higher values of the coordinate x (see inset). A very high precision
and up to 217 grid points are needed to push this numerical evolution safely, and resolve the
region close to the collapse with enough accuracy, in particular monitoring the constancy of
M and Q values throughout the process. The exponentially decaying ringdown ends up in a
static solution where the outside hair profile resembles the ones in figure 5.4 for the soliton
solutions.

We move now onto showing and commenting the results of uniparametric families of collapses
that scan across the (Q,M) plane. The first protocol will involve a set of initial conditions,
parameterized with some amplitude ε. Consider the following family of gaussian initial data

8See appendix 5.A.2 for a technical discussion of our simulation code and some convergence tests.
9This could proceed in a direct way or through a number of different steps. There are situations where pre-

thermalization to some excited intermediate state followed by further relaxation to the true final equilibrium
state can be observed [209]. It would be interesting to study in detail the possible existence of such metastable
attractors in the present context.
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Figure 5.12: For coupling e = 20, we plot three snapshots of a collapse with mass M = 2 and
charge Q = 2.9 at times t = 14.8, 17.3 and 28.1 (blue, magenta and yellow). At this time, the
solution has become an almost static hairy black hole. The evolution exhibits the typical ring
down whereby apparent horizon builds up while capturing successive oscillations of the scalar field.
They fold behind the accumulation point of the vanishing locus of f(t, x), hence the position of the
event horizon

that initially fall from the boundary:

Φ = ε cos β
2

π
cos2 x exp

(
−4 cot2(x)

π2σ2

)
, (5.5.49)

Π = iε sin β
2

π
cos3 x exp

(
−4 cot2(x)

π2σ2

)
. (5.5.50)

Here, the angle β is fixed, and ε will decrease monotonically towards zero. The cases
β = 0, π/2 corresponds to the uncharged initial conditions studied in [130], albeit with
an initial pulse that starts infalling from the boundary [1], a fact that is inspired from the
physics of a quench. For β 6= 0, π/2 we are dealing with a shell of charged scalar and gauge
field collapsing together.

As extensively argued in [136], a resonant eigenfrequency spectrum for the scalar fluctu-
ations around a reference solution is a necessary condition for the existence of the turbulent
instability at the nonlinear level. This requirement is met for scalar fluctuations around
AdS4 at e = 0. A natural question is if this condition is preserved when a finite electro-
magnetic coupling is introduced. The answer turns out to be positive. In order to see
this note that, over AdS4, O(ε) scalar field perturbations source electromagnetic field ones
only at order O(ε2) and, in consequence, at O(ε) there exists a gauge where At = O(ε2)
and the covariant derivative (5.2.2) reduces to an ordinary derivative, leaving the original
e = 0 eigenfrequency spectrum invariant. In consequence, we expect that, in the ε → 0
limit, initial data (5.5.49)-(5.5.50) with sufficiently small σ are still subjected to the turbu-
lent instability, even if their charge density does not vanish. The only effect that a finite e
bears is that the scalar eigenfrequency spectrum is not a gauge invariant object: the action
of the residual gauge symmetry φ → e−iµetφ, At → At + µ over the original e = 0 scalar
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fluctuations, φn(t, x) = eiω
(e=0)
n ten(x), ω

(e=0)
n = 3 + 2n, A

(e=0)
t = 0 is implementing the change

ω
(e=0)
n → ω

(e)
n = 3 − µe + 2n, A

(e=0)
t → A

(e)
t = µ. Therefore, the condition ∂nω

(e)
n = 2 is

gauge-independent, while the absolute value of ω
(e)
n is not.

Figure 5.13: Collapses with σ = 0.1 and e = 20. In the left plot, the phase space and color coding
is the same as in figure 5.2. The dotted purple lines represent three series of initial conditions with
β = 0◦, 45◦ and 82◦ from left (vertical) to right (most bended). For each line we have taken 3
points deep in the low ε limit with ε = 6, 4 and 2, and performed very long time simulations in
order to test the scaling hypothesis (see figure 5.15). Right plot: time for collapse for each of the
three lines in the left plot, in the same order from left to right, as a function of the mass M . The
time for collapse increases with the closeness to the soliton line, i.e. for fixed mass M , at higher
charge Q.

In figures 5.13 and 5.16 we exhibit series of simulations for initial conditions of the form
(5.5.49)(5.5.50) for σ = 0.1 and 0.2, and several values of β. The cases examined in [130]
would lie on the vertical axis Q = 0 (uncharged case). Notice that we have searched for
peculiar behaviours in different domains of the phase space in this microcanonical ensemble.
Above the instability line where only Reissner-Nordström solutions exist, we find little or no
difference with the case of zero charge. Below this line, the final state of the evolution is a
hairy black hole. We have included two lines of collapse that bend towards the soliton line
(the green line), in the region where hairy black holes exist, both above and below the line
of extremal Reissner-Nordström (in blue).

We want to stress that it is by no means easy to engineer initial conditions that come
close to the line of soliton solutions. In particular, within the family of gaussians spelled
out in (5.5.49) and (5.5.50), by letting β sweep from 0 to π/2, the lines incline up to some
point, for some β0, where the initial conditions approaches maximally the soliton line, and
then turn back towards the vertical. These values are, for example, β0 = 82◦ for σ = 0.1 and
β0 = 75◦ for σ = 0.2. In principle one can engineer initial conditions that come closer to the
soliton line by starting from the other end: namely, by perturbing a soliton, and this will be
the subject of the next section. Most remarkable is the fact that is seems impossible to even
write initial data whose charge, Q, and mass, M , give a point below the soliton line (white
region). This seems to point out that soliton solutions extremize certain positive definite
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functional that can be derived from the action, even though they are not BPS solutions
since, along the soliton line, dM(Q)/dQ is a nontrivial function of Q.

Collapse time is one of the important observables in the game. We can see in figure 5.13 the
case of sharp pulses with σ = 0.1 and β = 0◦, 48◦ and 82◦. The horizontal axis represents
the initial mass, M , which, for fixed σ, grows with ε2. On the right, the times for collapse
for each family are plotted. When moving along an individual series from right to left, the
plateaux reflect the number of oscillations that the system undergoes before the final collapse
is reached. We see that the behaviour points towards the existence of a corner of instability
at the origin of the (Q,M) plane even in the charged situation, i.e., no sign of a threshold
for stability is appreciated. This seems to confirm the expectation coming from the resonant
character of the linearized approximation. From the figure 5.13b we also draw the important
conclusion that, at fixed mass, charged configurations take longer time to collapse. This is
in sharp contrast with the case without gauge field where charged initial conditions were
collapsing sooner than neutral ones of the same mass (see figure 6 in [142]). Note that this
behavior is to be expected, since it implies that electric repulsion counteracts gravitational
attraction.

Figure 5.14: Plot of the minimum of f(t, x) as a function of time for two simulations with similar
histories in the lines β = 45◦ (blue) and β = 82◦ (magenta) in figure 5.13 (left). The roughness of
the profile in the second case reveals that the scalar pulse is not smooth but fractures into ripples.
This, presumably, is an effect of the electrostatic repulsion in action.

Like in [142], in the present situation the charge of the scalar pulse also adds to the de-
focusing. Still, what figure 5.13 says is that, for σ = 0.1, this is not enough to erase the
instability corner, even for the most charged gaussians that one can device (the right most
blue magenta diagonal). Both plots for collapse time scale with 1/M ∼ 1/ε2 in the ε → 0
limit. However, a closer look at the evolution of the scalar field reveals that, for β = 89◦, the
initial gaussian develops subpulses. A reflection of this can be observed in figure 5.14 which
plots the minimum of the blackening factor f(t, x), minxf(t, x), as a function of time. The
evolution still exhibits a quasiperiodic structure where the action of the turbulent cascade is
apparent in that the minima become sharper and deeper until finally collapse takes over.
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Figure 5.15: Evolution of the maxima of the Ricci scalar at the origin upon rescaling of the time
and the initial amplitude. The six simulations correspond to the six dots in figure 5.13 with σ = 0.1
and β = 45◦ (brown) and 82◦ (orange).

The existence of a instability corner centered on the AdS4 vacuum is also manifest in the
1/ε2 scaling of the maxima of the Ricci scalar at the origin when ε → 0, as depicted in
figure 5.15, which should be compared with figure 2 in reference [130]. The orange curves
correspond to the orange dots in figure 5.13 and the same is true for the brown curves and
dots.
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Figure 5.16: Collapses with σ = 0.2 and e = 20. The dotted purple lines represent three series
with β = 0◦, 45◦ and 63◦. Vertical magenta lines represent collapse series at constant Q = 0.3 and
0.9. On the right plot the associated time curves are in direct correspondence from left to right.

After the works in [139, 146, 148], it has become clear that both focusing and defocusing
dynamics (i.e. direct and inverse cascade) seem to be in action and in a delicate equilib-
rium. For very sharp initial data, small σ, focusing wins. In figure 5.16, collapse times for
initial width σ = 0.2 are plotted. For vanishing charge β = 0, π/2 ⇒ Q = 0, they show
the expected 1/ε2 scaling as ε decreases, as for sharper pulses. However, as soon as some
charge is added, we start seeing a seemeling divergent tcollapse at finite values of ε. This is
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exactly the same effect encountered in [135], but here it appears for smaller values of σ than
in that case. Note that for constant Q initial data, represented by the vertical magenta lines
in figure 5.16a, the collapse time diverges at a critical M above the soliton line, and the
instability corner present for Q = 0 disappears. In the next section, we will show that lin-
earized fluctuations around a soliton solution have a nonresonant eigenfrequency spectrum.
This fact, when combined with the divergent collapse time, provides a nontrivial check of
the hypothesis put forward in [136].

5.6 Soliton stability

If the existence of a resonant eigenfrequency spectrum for the linearized fluctuations around
a given solution is a necessary condition for the presence of an instability corner, the results
presented in figure 5.16 strongly suggest that this condition is not satisfied for the soliton
solutions. In this section, we address this issue by an explicit numerical computation. A
parallel analysis has been put forward in [134], where it was shown at the perturbative
level that the eigenfrequency spectrum of linearized fluctuations around boson stars is just
asymptotically resonant, a fact that the authors found to be in direct correlation with the
erasure of the instability corner they observed numerically.

5.6.1 Linear stability properties

Besides finding out the if the soliton eigenfrequency spectrum is resonant or not, another
of the the aims of this subsection is to demonstrate that, whenever the soliton mass M(φ0)
attains an extremum, the solutions become linearly unstable, signaling the appearance of a
Chandrasekhar instability we discussed in section 5.3.

We are considering linearized radial perturbations of the solitonic solutions with an har-
monic time dependence of the form cosωt. Before delving into the details it is useful to
notice that, as we are considering a nondissipative problem, ω2 is going to be purely real.
In this way, an exponentially growing mode that signals an instability appears whenever
ω2 < 0. We start by fixing our perturbations to be of the form10

δ(t, x) = δs(x) + εδ1(t, x), (5.6.51)

f(t, x) = fs(x)(1 + εf1(t, x)), (5.6.52)

A(t, x) = As(x) + εA1(t, x), (5.6.53)

φ(t, x) = φs(x) + ε(φ1(t, x) + iφs(x)∂tφ2(t, x)), (5.6.54)

with real φ1, φ2. Since, due to spherical symmetry, the metric carries no degrees of freedom
in our setup, the perturbations defined by (5.6.51)-(5.6.54) are not independent. In fact,
the reason for having chosen this particular form for the scalar field perturbation is that it

10The strategy adopted here is an adaptation of the method employed in [135][210] to study boson star
stability.
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allows to solve for δ1 and f1 in terms of φ1, φ2 and A1, by making use of the momentum and
Maxwell constraints (5.2.20),(5.2.22) linearized in ε. Specifically, we get that

δ1(t, x) = −∂xA1(t, x)

A′s(x)
− 2efs(x)e−2δs(x)φs(x)∂xφ2(t, x)

cos(x)2A′s(x)
+ Cδ(x), (5.6.55)

f1(t, x) = − sin(2x)
(
φ′s(x)φ1(t, x)− eAs(x)φs(x)2∂xφ2(t, x)

)
+ Cf (x), (5.6.56)

where Cδ, Cf are integrating functions that must be fixed by the correct choice of boundary
conditions. For harmonic perturbations, set

(δ1(t, x), f1(t, x), A1(t, x), φ1(t, x), φ2(t, x)) = (δ̂1(x), f̂1(x), Â1(x), φ̂1(x), φ̂2(x)) cosωt
(5.6.57)

which forces Cδ, Cf to be zero. Then, we can obtain the equations of motion for φ̂2 and Â1

by linearizing in ε the equations for δ and A, (5.2.19) and (5.2.21) (the linearized equation
for f is not independent). The remaining equation for φ̂1 comes from equation (5.2.17) for
φ, linearized in ε, after making use of both the φ̂2 and Â1 equations. The final expression of
the equations of motion for the perturbations is not particularly illuminating. Defining

~Z =
(
φ̂1, φ̂2, Â1

)T
, (5.6.58)

the perturbation equations are of the form

~Z ′′(x) +M1(x)~Z ′(x) +
(
M0

a (x) + ω2M0
b (x)

)
~Z(x) = 0, (5.6.59)

where M1,M0
a,b are matrix-valued functions that depend exclusively on the background so-

lution. In order to solve (5.6.59), we have to choose appropriate boundary conditions for ~Z.

At x = 0 we demand regularity. As for the background soliton, this forces ~Z to be even at
x = 0. At x = π/2, boundary conditions are

φ̂1(x) = O(ρ3), (5.6.60)

φ̂2 = φ̂2,0 +O(ρ2), (5.6.61)

Â1 = O(ρ2). (5.6.62)

The first two conditions come from imposing normalizability on the scalar field perturbation
(5.6.54). The last condition demands a more thoughtful explanation. Let us consider the
most general near boundary expansion for Â1,

Â1(x) = Â1,0 + Â1,1ρ+O(ρ2). (5.6.63)

In this case, it can be shown that we have δ̂1(π/2) ∝ Â1,1 and, in consequence, if we want to

maintain our gauge choice for the time coordinate, we must set Â1,1 = 0. This is tantamount
to demanding that the frequency ω is the one measured by a boundary observer.11 On the
other hand, nothing prevents us from allowing that Â1,0 6= 0 i.e., perturbations that don’t

11Under a shift δ(x)→ δ(x)+c, ω changes as ω → ωe−c so as to maintain the ωt phase of the perturbation
invariant.
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keep fixed the soliton chemical potential. However, examining the explicit form of equation
(5.6.59) we discover that any solution is invariant under the change φ̂1 → φ̂1, φ̂2 → φ̂2 + α
and Â1 → Â1 + β, provided that αω2 + eβ = 0. Therefore, we can employ this residual
symmetry12 to set Â1,0 = 0 with no loss of generality, fixing it completely along the way.13

Before discussing how equation (5.6.59) was solved numerically, let us make a last gen-
eral comment. The boundary conditions (5.6.60)-(5.6.62) and the relations (5.6.55)-(5.6.56)
imply that the perturbations here considered don’t change the charge and the mass of the
soliton at linear order. This observation allows for a better understanding of the relation
between the soliton linear stability properties and the fact that the mass curve, M(φ0), en-
counters an extremum at φ0 = φ0,c.

14 First, let us mention that, whenever M ′(φ0,c) = 0, we
also find that Q′(φ0,c) = 0. Therefore, around φ0,c, two infinitesimally close solitons, param-
eterized respectively by φ0,c and φ0,c + ∆φ, have the same mass and charge, up to O(∆φ2)
corrections. This implies that there must be a time-independent linear radial perturbation
that connects these static configurations and, in consequence, equation (5.6.59) admits a
solution with ω2

1(φ0,c) = 0, i.e. a zero mode in the soliton spectrum. For ω2
1(φ0) at least a

C2 function around φ0,c, we find

ω2
1(φ0) = ω2

1(φ0,c) + ∂φ0ω
2
1(φ0,c)(φ0 − φ0,c) + ... = ∂φ0ω

2
1(φ0,c)(φ0 − φ0,c) + ... (5.6.64)

which becomes negative on one side of the mass curve extremum, signalling an instability.
On the remaining part of this section we are going to proceed by solving (5.6.59) numer-
ically, confirming this expectation. For this task we employed Tchebychev pseudospectral
collocation method. Inserting expansions

φ̂1(x) = cos(x)3

N−1∑
k=0

c1,kTk(1− 4/πx), (5.6.65)

φ̂2(x) =
N−1∑
k=0

c2,kTk(1− 4/πx), (5.6.66)

Â(x) = cos(x)2

N−1∑
k=0

c3,kTk(1− 4/πx), (5.6.67)

into equation (5.6.59) and evaluating on a collocation grid {xk, k = 1...N}

xk =
π

4

(
1− cos

((
k − 1

2

)
π

N

))
, (5.6.68)

12This residual symmetry stems from the fact that equation (5.6.59) is a linear ODE that admits an

algebraic solution of the form ~Z = (0, α, β)
T

with the aforementioned coefficient choice. This algebraic
solution, on the other hand, is nothing but the action of a linearized gauge transformation on the trivial
~Z = 0 solution.

13We have checked explicitly that the numerical results presented further on are independent of the par-
ticular way this symmetry is fixed. They are also equivalent to the ones obtained when this symmetry is left
unbroken.

14See also the related discussion in [211].
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an algebraic generalized eigenvalue problem is to be solved which gives the numerical values
of the first soliton normal modes.15

As for the results, first, the spectrum thus found is not resonant. In the spirit of [136],
this should entail the absence of a turbulent cascade in the fully nonlinear regime. In figure
5.17, we plot the first eight normal frequencies for the soliton branch at coupling e = 5. As
φ0 → 0, they consistently reduce to their vacuum values in the presence of the chemical po-
tential µ = 3/e, which is nothing but the first contribution to the soliton chemical potential
in a φ0-expansion. A remarkable feature is the mode splitting that occurs for k ≥ 3.16 This
is common to every vacuum connected soliton branch we have analyzed. If the spectrum
were exactly resonant, we would have that, for k ≥ 2,

|ωk+1| = |ω1|+ k(|ω2| − |ω1|). (5.6.69)

We plot the right hand side of (5.6.69) for each k in figure 5.17 (blue-dashed). It is clearly
seen that the equality is not satisfied away from φ0 = 0. A similar exercise can be performed
only between the lower or upper splitted eigenfrequencies, choosing as reference the differ-
ence between any two consecutive ones, with identical conclusion.

Figure 5.17: Soliton scalar eigenfrequencies for e = 5.

Let us consider the intermediate region 3/2 ≤ e2 ≤ 9/2. In figure 5.18a, we plot ω2
1(φ0), ω2

2(φ0)

15We discard the values that don’t converge when N is increased. See appendix 5.A.3 for a convergence
test.

16We remind the reader that a mode splitting was previously found in the perturbative computation of
[134].
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for the vacuum connected soliton branch at e = 2, together with the rescaled Q(φ0) curve.
We clearly see that a zero mode develops precisely at the point where Q(φ0) reaches its first
maximum and that, past this point, the solutions become linearly unstable.17 The same
phenomenon can be clearly appreciated on the vacuum disconnected soliton branch after
Q(φ0) attains its first minimum (figure 5.18b). The general pattern we find is that, when
Q(φ0) hits a new extremum, a new normal mode crosses zero.18

Figure 5.18: Left: ω2
1 (blue) and ω2

2 (red) versus φ0 for the vacuum connected soliton branch at

e = 2. In grey we show the rescaled charge curve Q(φ0). Right: ω2
1 (blue) and ω2

2 (red) versus φ0

for the vacuum disconnected soliton branch at e = 2. In grey we show the rescaled charge curve

Q(φ0). Green vertical lines correspond to the position of the charge curve extrema.

As an additional comment, note that, regarding the vacuum disconnected branch, and in
the Q� 1 regime, ω2

1(Q) is a decreasing function of Q that stays finite in the Q→∞ limit
(figure 5.19a). Instead, in order for the phase of the harmonic perturbation ωt to remain

finite in the blow up limit (5.3.41), the frequency should scale as ω ∼ µ ∼ Q
1
2 . We conclude

that harmonic linear perturbations die off when the blow up limit is taken. This is consistent
with the fact that the soliton branch maps onto a T = 0 hairy black brane, for which lin-
earized perturbations correspond to quasinormal rather than normal modes. The discussion
goes through in parallel to the regime e > esr (see figure 5.19b for ω2

1(Q) at e = 5).

After having discussed the linear stability properties of the solitons, in the next section we
move on to the study of their nonlinear stability.

17With a resolution of δφ0 = 10−3, we have determined that the maximum lies at φ0,c = 0.904. Our
pseudospectral code produces the values ω2

1(φ0 = 0.903) = 0.0031 and ω2
1(φ0 = 0.905) = −0.0037, in perfect

agreement with expectations.
18This is a nontrivial result obtained from the computation, since apparently nothing prevents the other

option, where some normal mode oscillates up and down, crossing zero at every extremum of the charge
curve.
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Figure 5.19: Left: ω2
1 (blue) versus Q for the vacuum connected soliton branch at e = 2. Right:

ω2
1 (blue) versus Q for the vacuum disconnected soliton branch at e = 5.

5.6.2 Nonlinear stability properties

We consider now the effect that a localized scalar field perturbation has on the soliton. We
will stick to the same family of initial conditions that were used to perturb the AdS4 vacuum
(5.5.49)(5.5.50) but in a purely real setup. Concretely, our initial condition will be φs + φ
with φ(0, x) = 0 and

Π(0, x) = ε
2

π
exp

(
−4 cot2(x)

πσ2

)
cos3(x). (5.6.70)

As this configuration has zero charge (see (5.2.33)), the family of perturbed solitons that we
use to start with spans a vertical line in the (Q,M) plane above the unperturbed soliton
solution φs, like the magenta vertical sets in figure 5.16a. The difference now is that this set
of initial conditions explores down to the bottom green line as ε→ 0.

Despite the fact that placing a perturbation like (5.6.70) on top of the AdS vacuum or
on top of a soliton leads to very different initial conditions, the phenomenology we discover
is remarkably similar. Namely, the magenta lines found in figure 5.16b are qualitatively re-
produced here. Indeed, for high enough ε prompt collapse is observed. Below some threshold
mass Mc we have a delayed collapse and a number of oscillations are completed before the
system finally undergoes gravitational collapse. This number, and with it the final time for
collapse, diverges rapidly at some value of the mass above the soliton curve. Hence we don’t
see any trace of a nonlinear instability corner centered at the soliton solution (instead of
the AdS vacuum). This is presumably again a symptom of the nonresonant character of the
spectrum of soliton perturbations.

The possible survival of this oscillating region in the blow up limit is a relevant question.
More precisely, we are interested in establishing whether its width Mc−Ms has a finite size
relative to Ms

Mc −Ms ∼Ms ∼ Q2/3
s . (5.6.71)
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Figure 5.20: Left: limit of the prompt collapse region for the vacuum connected e = 2 soliton

branch for σ = 0.05 (purple). Right: limit of the prompt collapse region for the e = 5 soliton

branch for σ = 0.1 (magenta) and σ = 0.05 (purple).

In figure 5.20b we plot the location of the mass threshold Mc −Ms for prompt collapse for
the e = 5 family of solitons of mass Ms. We consider perturbations of the form (5.6.70)
with σ = 0.1 and σ = 0.05. We see that, despite having finite width for large mass, the
region of oscillations does not have the appropriate scaling to survive in the blow up limit.
In this case, for Ms � 1, entering the oscillating regime requires to fine-tune the initial
perturbation (5.6.70) in such a way that its relative contribution to the system energy goes
to zero. The behaviour just described is fairly natural given that, in the blow up limit, the
soliton branch we are perturbing reduces to an extremal hairy black brane with an AdS4

near-horizon geometry. It is not unreasonable that, above this background, any perturbation
localized in the near-boundary region, regardless of its amplitude, leads to direct collapse to
a T 6= 0 black brane, in the same vein as it happens for zero charge [98].

It remains to be seen if this is also the pattern in other matter models. Our educated
guess is that, for any theory that displays an unbounded soliton branch, the blown up exten-
sion of the oscillatory regime is finite whenever the theory can support a gapped spectrum of
scalar fluctuations in the planar limit. Theories of this kind are not unknown. Consider, for
instance, the model recently analysed in[212][213], or related Improved Holographic QCD
models [214, 215]. There, the planar geometry dual to the field theory groundstate is sourced
by a nontrivial, infrared-divergent scalar field profile, and contains a naked singularity at
r = 0.19 When considered in the fully nonlinear regime, weak perturbations localized near
the boundary may be noncollapsing and forever oscillating, since the singularity would repel
them from the infrared, so as they never reach their Schwarzschild radius. This behavior has
been explicitly seen in more crude models of gapped field theories in planar AdS, such as a
scalar field in a hard wall geometry [161] or the AdS-soliton [162]. It would be interesting to
classify, in generic terms, which Einstein-Maxwell-scalar theories support a soliton branch
with a gapped planar limit and check if this is correlated with a nonvanishing width for the

19This, and what follows in the main text, is true at least for some specific classes of scalar potentials.
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oscillatory regime upon blow up. As a final remark, note that obtaining these nakedly singu-
lar backgrounds as the blow up limit of a regular soliton family could provide an alternative
and useful way of dealing with their infrared behavior at the practical level.20

We have also determined the boundary of the prompt collapse region for the vacuum con-
nected soliton branch at coupling e = 2, upon scalar fluctuations of the form (5.6.70) with
σ = 0.05 (figure 5.20, left). In accordance with the fact that soliton solutions become lin-
early unstable when the mass curve reaches its maximum, here we find that the width of the
oscillation region shrinks to zero in a linear fashion.

5.7 Post-collapse dynamics

So far, and apart from the numerical simulation presented in figure 5.12, we have focused
on the time evolution of our Einstein-Maxwell-scalar theory before a horizon first forms. In
this section, we want to comment on the post-collapse dynamics exhibited by our system.
This section is divided in two parts. In the first one, we illustrate how our Schwarzshchild
coordinate system sufficies to describe the part of the dynamical geometry located outside
the apparent horizon that is generated, taking the four-dimensional charged Vaidya model
as a test example. In the second, we comment on the post-collapse relaxation of µ(t) and
〈O(t)〉 in a collapse protocol at fixed Q. We shall focus on initial data exhibiting prompt
collapse, discussing briefly our numerical findings for initial data collapsing to small radius
hairy black holes at the end.

5.7.1 Post-collapse dynamics in the charged Vaidya model

In the uncharged case, the Vaidya model has been extremely useful as a simple toy model of
a holographic quench. As mentioned in chapter 1, the planar Vaidya geometry describes the
realistic process of massless scalar field collapse at leading order in a perturbative expansion
[110]. With our unit conventions, the four-dimensional charged Vaidya geometry is described
by the line element

ds2 = sec2 x
(
−F (v, x)dv2 + 2dvdx+ sin2 xdΩ2

2

)
, (5.7.72)

F (v, x) = 1−M(v) cos3 x cscx+
1

2
Q(v)2 cos4 x csc2 x, (5.7.73)

where the mass M(v) and charge Q(v) injection functions are in principle arbitrary.21

Going from the Eddington-Finkelstein coordinate system (v, x, θ, ϕ) to the Schwarzschild
coordinate system (t, x, θ, ϕ) we are employing involves finding the location of the spacelike

20For instance, in order to deal numerically with the infared divergences of the vacuum geometry, a black
hole was introduced as a regulator in [212][213], and this put the system into a regime where the confinement
scale had little impact on the thermalization process of the dual theory.

21See [216] for a very interesting discussion of the relation between the null energy condition and the strong
subadditivity of HEE in this model.
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hypersurfaces of constant t = t0 in the (v, x) plane. Let t = t(v, x). After this coordinate
change, the line element 5.2.9 takes the form (5.7.72) if the following conditions hold

∂vt = − exp(δ), (5.7.74)

∂xt = exp(δ)f−1, (5.7.75)

F = f. (5.7.76)

Note that, in particular, the condition ∂vt + F−1∂xt = 0 is satisfied. Let the constant time
t(v, x) = t0 hypersurface be parametrized by vt0(λ), xt0(λ). From dt(vt0(λ), xt0(λ))/dλ = 0,
we get that vt0(λ) and xt0(λ) are related as v′t0(λ) = F−1x′t0(λ). If we assume that xt0(λ)
increases monotonically with λ, we can trade one parameter for the other. Thus, we get the
following equation for the location of the constant t slices on the (v, x) plane

v′t0(x) =

(
1−M(vt0(x)) cos3 x cscx+

1

2
Q(vt0(x))2 cos4 x csc2 x

)−1

. (5.7.77)

This equation is solved numerically by a shooting procedure starting from the asymptotic
boundary. A representative example is plotted in figure 5.21.

Figure 5.21: Constant t slices of the charged Vaidya geometry described in the main text (rainbow

colors, with t increasing with the color wavelength from bottom up). The dashed orange, blue and

black lines mark the location of the critical surface for the violation of the null energy condition,

the apparent and the event horizon.

In this example, we have considered the mass and charge functions given by

M(v) = Θ(v)
[
Θ(α− v)M sin2

( π
2α
v
)

+ Θ(v − α)M
]
, (5.7.78)

Q(v) = Θ(v)
[
Θ(α− v)Q sin2

( π
2α
v
)

+ Θ(v − α)Q
]
, (5.7.79)
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that represent a process of energy and charge injection on the dual field theory during the
time t ∈ [0, α]. Figure 5.21 has α = 1. We also have fixed M = 1.85664, Q = 1 as the mass
and charge of the Reissner-Nordström black hole formed by this collapse process. In figure
5.21, rainbow-colored curves correspond to constant t slices, with t increasing with the color
wavelength. The black dashed curve marks the location of the event horizon, while the blue
dashed one represents the position of the apparent horizon. Finally, the orange dashed line
corresponds to the critical xc below which, at constant v, the null energy condition is violated.

We can draw several relevant observations from figure 5.21. First, the apparent horizon
is always located inside the event horizon, and only coincides with it in the t → ∞ limit.
Second, the region where the null energy condition is violated is always contained inside the
apparent horizon. Finally, and most importantly, constant t hypersurfaces never cross the
apparent horizon but, however, always cross the event horizon after a critical value of t.22

This implies that the t = 0 hypersurface is actually a Cauchy surface for the exterior of the
event horizon and, as a consequence, specifying initial data at t = 0 determines completely
this part of the time-dependent geometry.23 Note also that in Schwarzschild coordinates
one would only detect strict apparent horizon formation, signalled by a vanishing f , in the
t→∞ limit.

Figure 5.22: Left: the function f(t, x) for the constant t hypersurfaces shown in figure 5.21. The

black dots mark the f value at the location of the event horizon. Right: fm(t) for the injection

process (5.7.78)-(5.7.79) with M = 1.85664 and Q = 1. The purple, red, blue and brown dots

correspond respectively to α = 0.25, 0.5, 1 and 2.

In order to illustrate this last point explicitly, in figure 5.22b we plot fm(t), as defined by the
projection of F (v, x) on the constant t hypersurfaces, fm(t) = minxF (vt(x), x), for different
injection processes of duration α = 0.25, 0.5, 1, 2 with the same final mass, M = 1.85664,
and charge, Q = 1. After a transient early-time regime that increases with α, an exponential

22The reason for this is that, as t→∞, constant t surfaces accumulate at a value of v that is greater than
the v at which the event horizon appears.

23Of course, we mean that this surface can be pictured as a Cauchy surface after suitable boundary
conditions have been prescribed at x = π/2 .
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decay to zero sets in. This shows faithfully that fm(t) cannot vanish in finite time. The
f(t, x) = F (vt(x), x) projections associated with the constant t hypersufaces depicted in
figure 5.21 are presented in figure 5.22a. For each projection, we have signaled with a black
dot the value of the x coordinate where the constant t surface intersects the event horizon.

It is interesting to note that in figure 5.22b the relaxation rate

Γ ≡ −∂t log fm(t) (5.7.80)

of fm(t) to zero looks independent of α. This entails that Γ depends solely on the properties
of the final Reissner-Nordström black hole created by the injection process, and not on the
specific injection protocol driving the dual CFT out-of-equilibrium. Therefore, we must have
Γ = Γ(M,Q) or, alternatively, Γ = Γ(xh, T ), where xh is the event horizon radius of the final
black hole and T its temperature. This fact strongly suggests that the exponential decay
of fm(t) could be explained by some universal properties of the map between Eddington-
Finklestein and Schwarzschild coordinates when the apparent horizon is sufficiently close to
its final location. In this sense, it is a kinematical effect.

Figure 5.23: Left: fm(t) for different injection processes with M(v), Q(v) as given in (5.7.78)-

(5.7.79) with α = 0.5. The temperature is T = 0.19545, and rh increases in steps of δrh = 0.1 from

rh = 0.2 to rh = 1.1 from top down. The wavelength of the curves reflects this last fact. Left: same

as right plot, but for δ(t, x = 0).

It turns out that the observation on the last paragraph can be sharpened even further. In
figure 5.23a, we plot fm(t) for different injection processes with varying values of M and Q,
that we constrain to give the same final T . We choose this temperature to be the same as
in the example provided in figures 5.215.22. Note that, even if T does not change, xh does.
Again, our injection profiles M(v), Q(v) are the ones given in (5.7.78)-(5.7.79), and we fix
α = 0.5. It is clearly seen that, irrespectively of the xh considered, Γ remains the same.
Therefore, for this family of injection processes, we have that

Γ(xh, T ) ≈ Γ(T ). (5.7.81)
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This readily implies that Γ must be determined by a perturbative expansion around the
apparent horizon location at late times. Actually, the numerical evidence we have collected
is compatible with the relation Γ(T ) = 4πT = f ′(rh). It would be interesting to investigate
this analytically.

To conclude our analysis, let us point out that the origin-to-boundary redshift in Schwarzschild
slices, exp δ(t, x = 0), can be computed from

δ(t, 0) = − log (∂tvt(x = 0)) , (5.7.82)

and also shows an exponential divergence with t; equivalently, δ(t, 0) diverges linearly. This
is due to the exponential approach of the constant t hypersurfaces to their accumulation
point on the x = 0 axis, as can be clearly appreciated in figure 5.21. In figure 5.23b, we
plot δ(t, 0) for the the family of injection procecess we have employed to build figure 5.23a.
At late times, the slope of δ(t, 0) is found to be weakly dependent on xh, and is mostly
controlled by T .

Based on the observations of the last paragraphs, we expect that the different properties
we have uncovered in this subsection are universal and, as a consequence, hold in realistic
models of gravitational collapse when described in Schwarzschild coordinates.24 In fact, for
the time-dependent geometries we have simulated, we also observe the exponential decrease
of fm(t) to zero, as well as the linear divergence of δ(t, 0). Not only that, but we also find
that the dynamics inside the radial position of the minimum of f , xm(t), progressively freezes
out as fm(t) decreases. In consequence, we find likely that in our setup the initial t = 0
hypersurface is a Cauchy surface for the exterior of the event horizon. This entails that an-
alyzing the gravitational collapse process in Schwarzschild coordinates suffices to study the
relaxation of one-point functions in holography, as they are determined by the asymptotic
fall-off of bulk fields. In principle, we don’t need to make further assumptions about the
behavior of our probes, as we were forced to in chapter 2.

Having made these clarifications, in the next subsection we discuss the post-collapse re-
laxation of 〈O(t)〉 and µ(t) in our Einstein-Maxwell-scalar theory.

5.7.2 Post-collapse dynamics in Einstein-Maxwell-scalar theory

In this subsection, we consider initial data configurations Π0,Φ0 that share the same electric
charge Q. The algorithm employed to build a given one-parameter family of profiles with
the same Q is the following. First, we fix the functional form of our profiles to be:

Π0 = −i 2
π
ε1 exp

(
− 4

πσ2
tan(x)2

)
cos(x)3 (5.7.83)

Φ0 =
2

π
ε2 exp

(
− 4

πσ2
tan(x)2

)
cos(x)2 (5.7.84)

24But note that have not established a direct correspondence neither numerically nor from a first-principles
computation.
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The parameters (ε1, ε2) are fixed by the condition ε1ε2Q0 = Q, where Q0 is the electric charge
associated to the profiles (5.7.83)-(5.7.84) when ε1 = ε2 = 1. After solving this condition
for ε2, we perform a scan in ε1, so as to get a one-parameter family of solutions that span
a vertical line, (Q,M(ε1)), in the (Q,M) phase diagram. Typically, the inverse function
ε1(M) is double-valued and, therefore, for each mass we are able to obtain two different
initial profiles (Π0,Φ0) wih the same charge.

We are going to focus on the dynamical evolution of a family of the form (5.7.83)-(5.7.84)
with σ = 0.5 and Q = 1 at coupling e = 3. These initial data show prompt collapse and,
as a consequence, after a short transitionary regime, one-point functions such as 〈O(t)〉,
µ(t) start to relax to their final equilibrium values. The final equilibrium values25 of 〈O〉, µ
are shown in figure 5.24. We observe that there is a critical mass Mc where the final state
changes from a Reissner-Nordström black hole to a hairy solution. When M → M−

c , the
vacuum expectation value of O in the final state vanishes, and we expect a standard mean

field theory exponent, 〈O(M)〉f ∼ |M −Mc|
1
2 . Note that, since we are in the microcanoni-

cal ensemble, this phase transition is entropy-driven an does not correspond to the standard
grand-canonical one we discussed in section 5.4.

Figure 5.24: Right: equilibrium value of 〈O〉. Left: equilibrium value of µ.

The full nonlinear time evolution of 〈O(t)〉, µ(t) is shown in figure 5.25.We clearly distinguish
three different regimes of post-collapse evolution. For M > Mc (regime a), the final state
is a Reissner-Nordström black hole and the vev relaxes exponentially to zero. As has been
mentioned before, below Mc the final state is a hairy black hole with 〈O〉f 6= 0. A new mass
scale M∗ appears, in such a way that, for Mc ≥M > M∗, relaxation is overdamped (regime
b), while it becomes underdamped for M∗ ≥M (regime c). The vev late-time evolution can
thus be subsumed into an equation of the form

|〈O(t)〉| ∼
∣∣∣〈O〉f + A exp(−iωt)

∣∣∣ , (5.7.85)

25These are the values associated to the entropy-maximizing static black hole solution with the same
conserved charges as the initial data.
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Figure 5.25: Left: Time evolution of 〈O(t)〉. Curves belonging to regimes a, b and c have been

respectively marked blue, brown and green. The mass decreases from bottom up. Right: Time

evolution of µ(t)−µf for a representative solution in each one of the three regimes discussed in the

main text. The color coding is as in the left figure.

where ω must correspond to the frequency of the lowest quasinormal mode of the final black
hole. The existence of three different kinds of late-time relaxation must be related to the
facts that i) in regime a any ω with Im ω 6= 0 leads to overdamped relaxation since 〈O〉f = 0,
ii) ω is purely imaginary in regime b and iii) ω has a non-zero real part in regime c. Before
going on, let us refer to figure 5.26, where we plot δ(t, 0) for the one-parameter family of
initial data we are considering. The linear divergence found in the charged Vaidya model
is also present in the realistic collapse processes we are analyzing here, and we expect the
physical origin of both to be the same.

Figure 5.26: δ(t, x = 0), for the one-parameter family of initial data discussed in the main text.

The color coding is as in figure 5.25a.

In reference [103], a m2 = −2 scalar field was employed to quench a four-dimensional hairy
black brane at fixed charge density. As we discussed in chapter 1, it was found that, de-
pending on the quench amplitude, three different relaxation regimes analogous to the ones
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described here appeared. Despite this observed matching, our setup and the one studied
in [103] couldn’t be more distinct: we are considering a field theory that is placed on a
manifold with different topology, and we don’t even start from a thermal superfluid state,
but rather from a pure out-of-equilibrium state that evolves unitarily. The reason for the
coincidence stems from the fact that, as previously mentioned, the late time relaxation of
one-point functions is solely controlled by the qualitative behavior of the quasinormal modes
of the final state. This behavior must agree between our system and the setup studied in
[103], providing strong evidence in favor of the universality conjectured there.

Since we are in the microcanonical ensemble, the observations of the last paragraph imply
that different initial data with the same conserved charges should display identical patterns
of late-time relaxation. In order to check if this expectation is correct, we take advantage
of the fact that our procedure for building initial data automatically provides two different
(Π0,Φ0) profiles with the same M at fixed Q. In figure 5.27, we show the evolution of |〈O(t)〉|
for the two inequivalent families of initial data obtained with this method. We clearly ob-
serve that, even if the early-time transitionary regime differs between them, post-collapse
relaxation proceeds in an identical fashion.

Figure 5.27: Time evolution of 〈O(t)〉1, 〈O(t)〉2 for the two initial data families described in the

main text (new one in blue, old one in red)

We want to close this chapter by reporting on some preliminary results. We have also ana-
lyzed the post-collapse relaxation of one-point functions in bouncing geometries. These are
geometries that do not collapse directly into a black hole, but rather exhibit an extended
pre-collapse phase. The example we provide in figure 5.28 corresponds to a coupling e = 20
and initial data of the form (5.7.83)-(5.7.84) with σ = 0.1, Q = −0.2015 and M = 0.1213.
The simulations we report on have been performed with discretization grids of N = 216 + 1,
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N = 217 + 1 points.26
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Figure 5.28: Time evolution of 〈O(t)〉 for initial data (5.7.83)-(5.7.84) with σ = 0.1, charge

Q = −0.2015 and mass M = 0.1213 at e = 20. Blue curves corresponds to the N = 216 + 1

simulation, while red curves correspond to the N = 217 + 1 one. The inset shows the relative mass

loss of (%) with respect to the initial mass.

〈O(t)〉 relaxes in an underdamped way to its final equilibrium value, as prompt-collapse ini-
tial data belonging to regime c do. The novelty here arises from the fact that its oscillations
around this value are hardly suppressed. Said otherwise, the final hairy black hole formed
by the gravitational collapse process supports long-lived excitations.

As we are discussing in chapter 7, a pressing direction for future research is elucidating
the nature of these long-lived oscillations. Several comments are in order now.

By looking just at the N = 216 + 1 simulation (blue curves in figure 5.28), we could think
that these long-lived oscillations are a numerical artifact, due to the poor grid resolution.
This expectation is also motivated by taking into account that they seem to be correlated
with a substantial relative mass loss. In order to confirm or discard their existence, we
performed the additional, higher resolution simulation with N = 217 + 1 grid points (red
curves in figure 5.28). By comparing both, we observe clearly that the relative mass loss is
subtantially reduced in the latter one, as expected.27 However, and more remarkably, the
long-lived oscillation pattern agrees between them.

This fact could seem to vindicate that these oscillations are not a numerical artifact;
however, this is a rather premature conclusion. It could be that both N = 216+1, N = 217+1
grids are insufficient to resolve the actual post-collapse dynamics of the system, regarding

26They have been extremely demanding at the resources level. The one with higher resolution took O(1)
months, running in parallel on 24 cores.

27Even though it must be said that it still stays at the one percent level.
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in particular the absortion of the scalar field by the emerging horizon at sufficiently late
times. The long-lived oscillations could still be a finite-size effect linked to the finiteness of
the discretization grid, and not to the fact that our holographic CFT is at finite volume. In
this regard, the purpose of mentioning this result is pointing out that long-lived excitations
could exist in holographic superfluids at finite volume, not claiming that they actually exist,
although the evidence reported here seems compelling, to say the least.

In order to establish faithfully the existence of this kind of relaxation, we need further
technical improvements and independent consistency checks. These are discussed in chapter
7. Let us just mention now what could be a natural physical mechanism behind these long-
lived oscillations. As demonstrated in [84] for AdS-Schwarzschild black holes in global AdS4,
the quasinormal mode spectrum reduces continuously to the normal mode one as the black
hole radius tends to zero. In our case, when the radius of the final hairy black hole vanishes,
we recover a soliton solution. In parallel with [84], we can argue that the hairy lowest
quasinormal mode, which controls the post-collapse dynamics, also reduces continuously to
the fundamental normal mode of this soliton in the zero radius limit. In this way, when a
hairy black hole of charge Qh is sufficiently close to its corresponding Qs = Qh soliton, we
can expect that the imaginary part of this quasinormal mode is correspondingly small. This
would provide a natural mechanism to account for these long-lived oscillations.

If this hypothesis turns out to be correct, by taking into account our discussion in sub-
section 5.6.2 we can conjecture the structure of the different late-time relaxation regimes of
our system. Take initial data at fixed Q, and assume that M is sufficiently large. Our initial
data would collapse prompty to a Reissner-Nordström black hole, and the vev relaxation
would fall into regime a. Upon lowering the initial mass, the final state would eventually
correspond to a hairy black hole: the system would enter first into regime b, and then tran-
sition to regime c. In our setup, the novelty with respect to the planar case seems to be that
the imaginary part of the quasinormal frequency ω controlling the late-time underdamped
relaxation of the vev must become progressively smaller as the mass is lowered. However,
the existence of the stability band shows that, at some critical mass, black hole formation
would be halted and the system would not thermalize. As a consequence, the vev would
exhibit persistent oscillations. It would be interesting to elucidate the late-time dynamics of
the vev at the critical mass separating these two last regimes.

5.A Appendix

In this appendix, we provide a technical discussion of the different numerical methods that
have been employed in the main part of the chapter.

5.A.1 The static solutions

In order to build both the hairy and the soliton solutions, we resort either to a shooting or to
a pseudospectral algorithm. Both methods give identical results. We take the gauge choice
Im φ = 0, and set to zero the time-derivatives of f , δ, At and φ. We obtain the following
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equations

φ′′(x) +

(
(d− 1) csc(x) sec(x) +

f ′(x)

f(x)
− δ′(x)

)
φ′(x) + e2 e

2δ(x)A(x)2φ(x)

f(x)2
= 0,

A′′(x) + ((d− 1) cot(x) + (d− 3) tan(x) + δ′(x))A′(x)− e2 2 sec(x)2A(x)φ(x)2

f(x)
= 0,

f ′(x)− d− 2 + 2 sin(x)2

sin(x) cos(x)
(1− f(x))− f(x)δ′(x) +

1

2
cos(x)3 sin(x)e2δ(x)A′(x)2 = 0,

δ′(x) + cos(x) sin(x)

(
φ′(x)2 + e2 e

2δ(x)A(x)2φ(x)2

f(x)2

)
= 0. (5.A.1)

As we mentioned in section 5.2, we refer to the infrared end of the radial coordinate as xo,
with either xo = 0 for solitonic solutions, or xo = xh > 0 for the horizon of a black hole. The
infrared series expansions read

φ(x) = φo + φo,1(x− xo) + . . . , (5.A.2)

At(x) = Ao + Ao,1(x− xo) + . . . , (5.A.3)

δ(x) = δo + δo,1(x− xo) + . . . , (5.A.4)

f(x) = fo + fo,1(x− xo) + . . . . (5.A.5)

where it should be noted that regularity of solutions at the origin demands fo = 1 and forces
every odd term of (5.A.2)-(5.A.5) to be zero. In the black hole case, the existence of a
horizon and regularity of the gauge field one-form implies

fh = Ah = 0 . (5.A.6)

Each static solution of the equations of motion is completely characterized by its infrared
series expansion which, in turn, is totally fixed in terms of a finite number of parameters. In
the absence of a horizon, these parameters are the values of the scalar and gauge fields at
xo = 0, (φ0, A0). A soliton geometry is dual to a field theory state with spontaneously, and
not explicitly, broken symmetry. This further demands that the source φb vanishes, which
provides a nonlinear relation between (φ0, A0) that determines completely A0 in terms of φ0.
A family of soliton solutions is therefore one-parametric. The same reasoning goes through
to the black hole case. Now, each black hole solution is totally determined by the triplet
(xh, φh, Ah,1) and, again, the condition φb = 0 links φh and Ah,1 at the given xh. In this way,
a family of black hole solutions is two-parametric.

The shooting algorithm starts from a choice of xh, φh and Ah,1 in the hairy black hole case,
or φ0 and A0 in the soliton case. We introduce infrared and ultraviolet cutoffs xIR = xo + ε,
xUV = π/2 − ε, with ε � 1. Initial conditions for f , δ, A and φ are specificied at xIR by
means of the series expansions (5.A.2)-(5.A.5). Then, equations (5.A.1) are solved by Math-
ematica’s NDSolve routine. The value of φ(π/2) is computed by a interpolation from xUV
with the help of the asymptotic series expansions (5.2.24)-(5.2.27). It is generically different
from zero. Its vanishing is enforced by performing a binary search in A0 or Ah,1, that lasts
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until φ(π/2) drops below an user-defined cutoff.

The pseudospectral code involves a choice of the spatial eigenfunction basis and the dis-
cretization grid. We choose to work with the ones employed to find the soliton eigenfrequency
spectrum, i.e., we decompose our fields in a basis of Tchebyshev polynomials of the first kind
as in (5.6.65), and take the collocation grid defined by equation (5.6.68). This procedure
results in a system of coupled, nonlinear algebraic equations that we solve by means of a
Newton-Raphson algorithm implemented in Mathematica.

It is mandatory to have a consistency check on the static solutions found numerically. Our
standard approach is verifying if they satisfy the First Law,

dM − TdS − µdQ = 0. (5.A.7)

Figure 5.29: Left: M ′(φ0) (blue) and µ(φ0)Q′(φ0) (red) for the vacuum connected soliton branch

at e = 2. The red curve has been displaced to the left for the sake of comparison. Right: same as

left plot, for the vacuum disconnected soliton branch at e = 2.

For instance, for a one-parameter family of soliton solutions (S = 0), we must have that

dM(φ0)

dφ0

= µ(φ0)
dQ(φ0)

dφ0

. (5.A.8)

In figure 5.29 we plot the left and right hand sides of the identity above for the soliton
branches at e = 2. Figure 5.29a corresponds to the vacuum connected branch, and figure
5.29b to the vacuum disconnected one. The blue curve corresponds to M ′(φ0), while the red
one to µ(φ0)Q′(φ0). The red curve has been artificially displaced to the left for the sake of
comparison. Excellent agreement is found between both curves, implying that the soliton
solutions we have constructed numerically do satisfy the First Law.

5.A.2 The time evolution code

It is a virtue of the coordinate system (5.2.9) that the Einstein and Maxwell equations appear
as constraints (5.2.18), (5.2.19) and (5.2.21) that can be solved at each instant of time. The
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evolution of the system is then driven by the scalar field equations (5.2.16) and (5.2.17).
Starting from given nonequilibrium initial data, such as (5.5.49) and (5.5.50), we have solved
these equations numerically by resorting to a fourth-order accurate finite-difference evolution
code.

Time evolution is performed by an explicit Runge-Kutta method. In order to deal with
the high-frequency noise generated due to the finiteness of the discretization grid, we imple-
ment standard Kreiss-Oliger dissipation. By setting δ(π/2) = 0 we obtain stable evolutions
with a constant Courant factor λ with no need of local mesh refinement in time. The simu-
lations presented in the main part of the chapter have λ = 0.1. On the other hand, spatial
derivatives are discretized by employing a centered, fourth-order finite-difference stencil,
while integrations are handled by a specifically designed routine, based on local polynomial
interpolation. Dealing with the boundary conditions at x = 0, π/2 requires some detailed
procedures that can be found in [131]. These procedures are essential for obtaing both
numerical stability and convergence.

The major difficulty in the present setup stems from the fact that, upon evolution, the
scalar profile develops very spiky features that demand a high resolution. To resolve these
sharp features, which are apparent in figure 5.12, we used global mesh refinement in space,
eventually reaching 217 + 1 grid points to discretize the interval x ∈ [0, π/2]. This has
required a parallel implementation that employs the MPI infrastructure to run the code on
a computer cluster. Optimal results have been obtained for ∼ 30 nodes running in parallel.
Smarter solutions involving local space mesh refinement are left for the future.

The quality control parameters employed to activate the refinement process are both the
norm of the momentum contraint (5.2.20), as well as the relative mass loss at each time step.
As a matter of fact, only at late times in the simulation are such mentioned fine resolutions
required. The code stops at a time tf when the minimum value of f(t, x) reaches below an
user-defined cutoff fc.

28 This is the time that is meant in the right figures 5.13 and 5.16.
Of course, as discussed in 5.7, the apparent horizon will only form in the infinite future
limtf→∞min[f(tf , x)] = 0 in the our coordinate gauge.

To illustrate the convergence properties of our time evolution code, we consider the
functional

∆n[g](t) ≡ ‖gn(t, x)− gn+1(t, x)‖ =

(∫ π/2

0

tan(x)2(gn(t, x)− gn+1(t, x))2

)1/2

, (5.A.9)

where gn refers to any function computed on a discretization grid of spatial resolution h =
π/2n+1. Fourth-order convergence then implies that

∆n+1[g](t) = 2−4∆n[g](t). (5.A.10)

In figure 5.30a, we plot ∆n[Φ1](t),∆n[Φ2](t) at n = 11, 12, 13 for simulations with initial data

Φ = ε1
2

π
sinx exp

(
−4 tan2(x)

π2σ2

)
, (5.A.11)

Π = iε2
2

π
exp

(
−4 tan2(x)

π2σ2

)
, (5.A.12)

28For the simulations shown in sections 5.5 and 5.6, we have set fc = 0.02.
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where ε1 = ε2 = 12, σ = 0.1 and e = 5. The scalar field completes seven bounces before
collapse is achieved at tf = 23.47. From figure 5.30b, we see that relation (5.A.10) is precisely
fulfiled.29

Figure 5.30: Left: ∆n[Φ] for n = 11 (blue), n = 12 (red) and n = 13 (purple). Solid lines

correspond to Φ1, while dashed ones to Φ2. The error norm decreases with increasing grid resolution.

Right: Absolute value deviation of the quotient ∆n[Φ1]
24∆n+1[Φ1]

from 1 for n = 11 (blue) and n = 12

(red). The error norm converges to zero at the right order.

5.A.3 Soliton eigenfrequencies pseudospectral code

Figure 5.31: Left: At e = 5, and for a soliton with 〈O〉 = 0.57, we plot the errors ∆ω2
1 (blue),

∆ω2
10 (red), ∆ω2

20 (purple) on a collocation grid ranging from N = 10 to N = 50. It is seen that

the error tends exponentially to zero as the resolution N is increased. Right: The same quantities

for the e = 5, 〈O〉 = 28.2 soliton, on a collocation grid ranging from N = 10 to N = 70.

29We have deactivated the global mesh refinement algorithm, and thus we observe deviations from exact
fourth-order convergence right before collapse.
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For the computation of the normal modes on top of a soliton background, we have resorted
to the pseudospectral method described in the section 5.6. As mentioned, the output of this
procedure are the first N soliton normal modes. For pseudospectral methods, we expect
exponential convergence, since the scalar field eigenmodes are analytic functions.

In order to determine the convergence properties of the method, in figure 5.31 we show
the quantity ∆ω2

k(N),
∆ω2

k(N) =
∣∣ω2

k(N + 1)− ω2
k(N)

∣∣ . (5.A.13)

Here, ωk(N) is the frequency of the k-th eigenmode, computed on a grid of N collocation
points. The fact that ∆ω2

k(N) → 0 exponentially as N → ∞ implies that the sequence
{ω2

k(N), N = N0, N0 + 1, ...} converges as anticipated.
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Chapter 6

Holographic quenches in global AdS

6.1 Summary

Quenching an isolated quantum system reveals valuable information about its nature. In this
chapter, we are studying holographic quenches with global asymptotics. We will consider
the Einstein-scalar model of [130], where now we allow for a nontrival source, φ0(t) 6= 0. Al-
though simple, extracting nontrivial results from this system generically demands resorting
to numerical simulations. This technical complication can be avoided in two opposite limits.
The first one corresponds to the fast-but-smooth quenches extensively studied in recent years
(see [217] and references therein). The second one corresponds to adiabatic quenches. We
will demonstrate that, for a sufficiently small pumping φ0(t) = αt, the system dynamics is
controlled by the pumping solution.1 This is a solution endowed with a static metric, and
its only time dependence comes from the nontrivial, non-normalizable mode excited by the
source. Therefore, although being non-normalizable, these pumping solutions are remark-
ably similar to the solitons we studied in chapter 5.

This chapter is structured as follows. In section 6.2, we introduce the ultraviolet series
expansion in the presence of a nontrivial source and discuss the holographic renormalization
of our model. Then, in section 6.3, we present the four-dimensional pumping solution. First,
we show that there exists a critical αmax above which no pumping solution can be found.
As a consequence, we identify this value with an intrinsic adiabaticity threshold for our sys-
tem. Second, we demonstrate that, for a given α < αmax, there exist two different pumping
solutions, i.e., pumping solutions come in two branches, which meet at α = αmax. The first
branch is vacuum connected, in the sense that it reduces to empty AdS4 when α → 0, and
it always has negative mass. The second branch is vacuum disconnected, and the mass has
a not well-defined sign within it.

The fact that the mass of the pumping solution can be negative raises an obvious concern
regarding its stability. With this motivation, in section 6.4 we study the linear and nonlinear
stability properties of the two branches. By a numerical normal mode computation, we
establish that the first branch is linearly stable, while the second one is linearly unstable.

1We inform the reader that a cousing of the pumping solution had been previously identified in the
hard-wall model [161].

175
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In this sense, the αmax theshold controls the apperance of a Chandrasekhar instability in
the system. We also analyze how the linear stability properties we have uncovered uplift
to the nonlinear level. First, we demonstrate that pumping solutions in the first branch
are nonlinearly stable. This follow from the fast that this branch contain the pumping
solutions that appear as an intermediate attractor in an adiabatic quench protocol. We
confirm their nonlinear stability by studying also normalizable perturbations over them. For
the second branch, we could expect that, owing to its linearly unstable nature, infinitesimal
perturbations would lead directly to black hole formation. However, we identify a regime in
which this phenomenon does not take place. The pumping solution, once perturbed, decays
to a limiting cycle instead of collapsing gravitationally. We provide compelling evidence in
favor of the hypothesis that these limiting cycle solutions are not a numerical artifact.

Motivated by the existence of the limiting cycle solutions, in section 6.5 we show that
the pumping φ0(t) = αt can support exactly periodic solutions. They can be thought of as
finite-α deformations of the oscillon solutions introduced in [140] that we discussed in section
1.3. We construct these novel time-periodic solutions both by means of a double perturbative
expansion and a full-fledged numerical computation. We find agreement between the results
we have obtained when the applicability regimes of both methods overlap.

In section 6.6, we revisit the status of the stable pumping solution as an intermediate
attractor of an adiabatic quench protocol. We establish that no boundary observer would
measure a negative energy density when the source becomes time-independent, focusing on
the process of quenching off the pumping solution. We uncover universal scaling properties
of the mass when this process is sufficiently fast, and discuss their relation with related
previous observations in the vacuum case [217].

Finally, in section 6.7 we analyze the three-dimensional pumping solution. Our findings
vindicate that this solution is remarkable, since it is possible to show that, under a series
of duality maps, it can be put into correspondence with other known solutions of three-
dimensional gravity, including charged black branes. This allows us to obtain an analytical
expression for the three-dimensional pumping solution in closed form.

6.2 Holographic quench basics

As mentioned, we are considering a Einstein-scalar system with action (1.3.169). Focusing
on spherically symmetric solutions, we employ our standard metric ansatz (1.3.173), which
results in the hyperbolic scalar field equations (1.3.175),(1.3.176) and the elliptic constraint
equations (1.3.177),(1.3.178) we reviewed in section 1.3 of chapter 1. Regarding the bound-
ary conditions, we find that origin regularity still enforces a definite parity on φ, δ and f .
However, due to the nontrivial source φ0(t), the asymptotic series expansions get modified
as

δ(t, π/2− x) =
κ2

4
φ̇2

0ρ
2 +

κ2

48
(−4φ̇2

0 + 9κ2φ̇4
0 + 6φ̈2

0 − 6φ̇0φ̈0)ρ4 + . . . , (6.2.1)

f(t, π/2− x) = 1− κ2

2
φ̇2

0ρ
2 − a3(t)ρ3 +

κ2

6

(
−2φ̇2

0 + 3κ2φ̇4
0 + 3φ̈2

0 − 3φ̇0φ̈0

)
ρ4 + . . . ,(6.2.2)

φ(t, π/2− x) = φ0 +
1

2
φ̈0ρ

2 + φ3(t)ρ3 +
1

24
(8φ̇0 − 9κ2φ̇2

0φ̈0 + 3
...
φ 0)ρ4 + . . . (6.2.3)
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We are working in the boundary time gauge δ(t, π/2) = 0, and we remind the reader that
κ2 = 8πG and that our units choice is such that l = 1. In contrast with the normalizable
case, the parameter a3 is no longer time-independent. The momentum constraint provides
a nontrivial link between this parameter, φ0 and φ3:

ȧ3(t) + 3κ2φ̇0(t)φ3(t) = 0. (6.2.4)

With this choice, the asymptotic series expansion of the momentum constraint vanishes at
every order. How are these parameters to be interpreted in the light of the AdS/CFT corre-
spondence? As usual, the bulk massless scalar field corresponds to a marginal scalar operator
O: the GKPW relation implies that φ0 implements the lagragian deformation (1.2.80). It
remains to obtain the dual role of a3, φ3.

The holographic renormalization of a massless scalar field with finite backreaction has been
discussed in [46], and recently reviewed in [218]. The results of [46] readily apply to our case.
Going to Fefferman-Graham coordinates and expanding around z = 0,

ds2 =
dz2

z2
+
habdy

adyb

z2
, (6.2.5)

hab = ηab + h
(3)
ab z

3 + . . . , (6.2.6)

φ = φ0 + . . .+ φ3z
3 + . . . (6.2.7)

the holographic renormalization procedure instructs us to identify 〈Tab〉 = 3/(2κ2)h
(3)
ab and

〈O〉 = 3φ3.2 This results in the following expectation value for the dual QFT energy-
momentum tensor

〈Tab〉 =
1

κ2
diag

(
a3(t),

1

2
a3(t),

1

2
a3(t) sin2 θ

)
. (6.2.8)

and scalar operator vev
〈O〉 = 3φ3(t). (6.2.9)

We observe that 〈T aa 〉 = 0, implying that the dual QFT is conformal invariant. This is
expected, since i) the scalar operator O dual to φ is marginal and ii) in odd boundary
dimensions there are no gravitational conformal anomalies. The energy density of the dual
CFT state is then given by 〈Ttt(t)〉 = κ−2a3(t), and the relation (6.2.4) reduces to

∂t 〈Ttt(t)〉+ φ̇0(t) 〈O〉 = 0, (6.2.10)

which is nothing but the CFT differomorphism Ward identity, ∇a 〈Tab〉 = 〈O〉 ∂aφ0. We de-
fine m = 〈Ttt〉 as the energy density of the dual field theory. From now on, we set κ2 = d−1.

Finally, let us perform one last observation. We are interested in the following scenario:
at t = 0, we place ourselves in the vacuum AdS4 geometry, driving the system away from
its initial groundstate by specifying a particular φ0 function. In principle, the functional
form of φ0 looks arbitrary. However, expasions (6.2.1)-(6.2.3) imply that this is not the case;

2At leading order, z = ρ, so this coefficient is the one appearing in (6.2.3).
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for instance, if φ
(n)
0 (0) 6= 0 for some n, a nonzero term would appear in the f expansion at

O(ρ2n), violating the assumption that the initial geometry is AdS4. Said otherwise, consis-
tency of our initial data with the asymptotic expansions demands that every derivative of
φ0 is vanishing at t = 0: the function φ0 is necessarily non-analytic.

6.3 The four-dimensional pumping solution

The expansions (6.2.1)-(6.2.3) suggest that, for the pumping source φ0(t) = αt, the metric
is time-independent. In fact, if we introduce the pumping ansatz Φ(t, x) = 0,Π(t, x) =
Πα(x) = αeδα(x)fα(x)−1 into the equations of motion for the metric, we arrive at

δ′α(x) + sin x cosxα2e2δα(x)fα(x)−2 = 0, (6.3.11)

f ′α(x) +
1 + 2 sin2 x

sinx cosx
(1− fα(x)) + sin x cosxα2e2δα(x)fα(x)−1 = 0, (6.3.12)

while the scalar field equations of motion are trivially satisfied. This coupled system of non-
linear ODEs determines the pumping solution metric. As we will show in section 6.6, the
d = 2 counterpart of these equations admits an analytic solution; for d ≥ 3, they must be
solved numerically. If we work in the boundary time gauge δ(t, π/2) = 0, we find that there
is a maximum value of α, αmax, such that, for α > αmax, no solution exists. Therefore, αmax

corresponds to an intrinsic adiabaticity threshold present in our system.

Actually, it turns out that equations (6.3.11)(6.3.12) cannot be univocally solved: there
exist two different pumping solutions with the same α. This non-uniqueness can be exposed
by going momentarily to the origin time gauge, δ(t, 0) = 0. The origin time is given by3

to = e−δb(0)tb, (6.3.13)

where δb corresponds to our original pumping solution in the boundary time gauge. Under
this transformation, αb transforms contravariantly,

αo = eδb(0)αb, (6.3.14)

in such a way that φ0 is invariant, φ0 = αbtb = αoto. It is obvious that the relation
αo = Πb(x = 0) provides a diffeomorphic invariant definition of αo. When expressed in this
gauge, equations (6.3.11)(6.3.12) allow for a single pumping solution for a given αo ∈ R+.
We plot representative examples in figure 6.1. We denote with αo,thr the value of αo that
corresponds to αmax.

Let us pause here an discuss why the existence of the pumping solutions is remarkable.
On general grounds, the pumping source φ0(t) = αt is expected to be associated with a
process of energy injection that leads to a time-dependent geometry that eventually may
collapse gravitationally. However, the Ward identity (6.2.10) readily implies that, if the

3In the following, we will denote boundary time quantities with a b subindex, while the subindex o will
refer to quantities in origin time
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pumping source is accompanied by a vanishing vev, 〈O(t)〉 = 0, the energy density remains
constant, ṁ(t) = 0. This is precisely the situation in the pumping solution, since Φ(t, x) = 0.
Notice that the physical mechanism behind the existence of the pumping solutions could also
be the reason of its physical irrelevance: the question of whether the pumping solution is
infinitely fine-tuned needs to be explicitly addressed. Said otherwise, we must determine if
any infinitesimal perturbation with Φ(t, x) 6= 0 leads to a process of energy exchange that
destroys the pumping solution.

Figure 6.1: Pumping solutions for αo ∈ [0, 20], the color wavelength grows with growing αo.

Figure 6.2: Left: αb (blue) and energy density (red) of the pumping solution in terms of α0. The
left dashed vertical line signals the first αb maximum, while the right one marks the maximum of
the energy density. The shaded region corresponds to the linearly unstable pumping solutions of
negative energy density. Right: frequency of the fundamental mode of a linear radial fluctuation
of the pumping solution. The linear instability threshold is signaled by the dashed vertical line.

We can compute the energy density of the pumping solutions, and perform two important
observations (see figure 6.2a). The first one is that there exist a threshold value αo,1 such
that, for αo < αo,1, m is negative. As with other gravitational background with negative
mass this raises a concern regarding stability [219]. The second one is that there exists
yet another threshold value αo,2 > αo,1 where the energy density curve m(αo) reaches an
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extremum. According to the discussion in chapter 5, we may naively think that αo,2 signals
a Chandrasekhar instability. Both issues will be addressed in the next section.

6.4 Linear and nonlinear stability of the pumping so-

lution

Let us start by pointing out that, at αo = αo,2, a linearized radial fluctuation cannot connect
two infinitesimally-close pumping solutions if its normalizable, since α′b(αo)|αo=αo,2 6= 0. In
order for this to happen, we would need a vanishing α′b(αo): we must place ourselves at
αb = αmax. For linearized fluctuations around the pumping solution contained in our original
ansatz, an explicit computation show that, indeed, at αo = αo,thr, a zero mode appears in
the eigenfrequency spectrum (see figure 6.2b). Therefore, pumping solutions with αo > αo,thr

are linearly unstable. This entails that, in principle, only pumping solutions with αo ≤ αo,thr

can be prepared by a quasistatic quench starting from the AdS4 vacuum.

Two questions naturally arise at this point. The first one is if the linear stability of the
αo ≤ αo,thr pumping solutions translates into nonlinear stability. The second one concerns
the final state reached by the αo > αo,thr pumping solutions once perturbed.

Figure 6.3: Generation of a pumping solution by means of a quasistatic quench. After the initial
transient regime, the energy density stabilizes to a time-independent negative value corresponding
to the pumping solution associated with the slope of φ0(t). At late times, the pumping source is
turned off and the system enters into a dynamical regime. φ0, m and 〈O〉 have been rescaled to fit
into the same figure.
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Let us address the first question. Notice first that, by virtue of the Ward identity (6.2.10),
even if a linear eigenmode has a nonzero 〈O(t)〉, since its time dependence is harmonic,
the energy density it generates would also oscillate periodically with a π/2 phase shift with
respect to 〈O(t)〉. Nonlinear perturbations, being generically nonharmonic, might trigger
a nonlinear instability due to the existence of a finite Φ(t, x) with arbitrary time depen-
dence, which results in a net energy exchange that eventually leads to gravitational collapse.
There exist two complementary ways of establishing the absence of this potential nonlinear
instability. The first one is realizing that pumping solutions below αo,thr can be explicitly
accessed by a quasistatic quench. Indeed, we have simulated the time-dependent geometry

generated by a source φ0(t) such that φ0(t < 0) = 0, φ̈0/φ̇0
2 � 1 and limt→∞ φ0/t = αb, and

have checked that, at sufficiently late times, it settles down into the linearly stable pumping
solution corresponding to αb. In consequence, these solutions play a nontrivial role at the
nonlinear level. If they were nonlinearly unstable, the system would never relax to them.
We provide one example of this process in figure 6.3.

Figure 6.4: Energy density (left, blue) and vev (right, blue) for the a ε = 1, σ = 0.1 gaussian
perturbation of a pumping solution with α0 = 1. Red curves denote the initial values of each
plotted quantity. In this simulation, the absolute error in the Ward identity is bounded by 10−4

for a grid resolution N = 211.

The second approach we followed in order to determine whether linearly stable pumping
solutions are also nonlinearly stable was to take, as initial data at t = 0,

Φ(0, x) = 0, (6.4.15)

Π(0, x) = Πb(x) +
2ε

π
exp

(
−4 tan2 x

π2σ2

)
, (6.4.16)

and simulate their subsequent time evolution. An example is depicted in figure 6.4, for
α0 = 1, ε = 1 and σ = 0.1. Due to the gaussian perturbation, the initially negative m(0) does
not remain constant: its time derivative perfectly satisfies the Ward indentity in the presence
of the nontrivial 〈O(t)〉 that is generated. Both quantities, m(t) and 〈O(t)〉, are found
to oscillate around their respective initial values. In fact, we find that the time-averaged
energy density, 〈m〉t = t−1

∫ t
0
m(t′)dt′, rapidly reaches a constant value and the system

absorbes/loses no net energy density. Therefore, no sign of the new potential nonlinear
instability is found.
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6.4.1 The linearly unstable branch

This situation changes dramatically for the linearly unstable branch of pumping solutions.
In fact, repeating the procedure just described for finite ε, a black hole promptly forms.
Initializing the simulation code with ε = 0 puts us exactly on top of an αo > αo,thr pumping
solution, up to numerical error. Being linearly unstable, this unavoidable numerical error
drives the system away from the original geometry. However, for αo,thr < αo ≤ αo,c, despite
entering a time-dependent regime, the system does not undergo gravitational collapse, but
rather decays into a limiting cyle that, for αo − αo,thr � 1, seems to be time-periodic.4

Let us perform two different checks that help establishing that this limiting cycle solution
is not a numerical artifact. First, since the departure from the original unstable pumping
solution is noise-driven, the transient time needed to reach the limit cycle solution should
be proportional to the grid resolution. We find that this is precisely what happens (figure
6.5).

Figure 6.5: Time evolution of the mass (left) and vev (right) for the oscillatory solution with α0 =
2.71. The colouring encodes the three spatial resolutions N = 210, 211, 212 employed to build the
initial data and perform the simulation. Consistently, the transition to a time-dependent solution
happens at later times for increasing N . On the contrary, the periodicity is resolution-independent.
This means that the system reaches the same limiting cycle at different times depending on the
initial conditions.

As a second check, we wait until the system has decayed into the limiting cycle solution,
and take the Φ(tref , x),Π(tref , x) profiles at the reference time tref as initial data of another
numerical simulation where the deformation

Φ(tref , x)→ Φ(tref , x) + ε cos2 x sinx (6.4.17)

is implemented. Then, we perform a scan in ε, with the aim of seeing if the perturbed
limiting cycle solution collapses gravitationally. The results of this analysis for the unstable
pumping solution with αb = 0.78497 can be found in figure 6.6. The collapse time tc(ε) looks

4The quantity αo,c is close to, but distinct from the value αo,1 that marked the sign change of the energy
density of the pumping solution.
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divergent at a critical εc and, for ε ≤ εc, no black hole forms within the times computationally
accessed. This phenomenology agrees with the one previously found for σ > σc Gaussian
initial data in [135], and provides strong evidence favoring the hypothesis that the limiting
cycle solution is nonlinearly stable.

Figure 6.6: Left: minxf(t, x) for the perturbed limit cycle solution for three deformations of the
form (6.4.17) close to εc, two above (red and purple) and one below (brown). Right: tc(ε) for the
perturbed limit cycle solution (blue). The purple and red dots correspond to the purple and red
simulations depicted on the left figure. The brown dashed line represents the brown simulation on
the left, for which no collapse is found.

6.5 Time-periodic pumping solutions

As said before, for αo,thr ≤ αo < α0,c the endpoint of the unstable branch is limiting cycle.
For αo− αo,thr � 1 this limiting cycle is apparently time-periodic. This fact came as totally
unexpected, and prompted us to look for exactly periodic solutions with a pumping source.
Time-periodic solutions in global AdS supported by a real massless scalar field with zero
source were originally presented in [140]. We now show that, for αb 6= 0, each such solution
branches into a family of exactly periodic solutions with a linear source. The existence of
this new kind of solutions can be first proven at the perturbative level and later corroborated
with a numerical approach.

6.5.1 Peturbative construction

Let Ω be the frequency of the periodic solution we aim at. Rescale the time coordinate as
τ ≡ Ω t and introduce the following ansatz

φ(τ, x) = αb
τ

Ω(αb, ε)
+ ε cos3x sin τ +

∞∑
n=1

2n+1∑
k=0

ϕ2n+1−k,k(τ, x)α2n+1−k
b εk, (6.5.18)

δ(τ, x) =
∞∑
n=1

2n∑
k=0

d2n−k,k(τ, x)α2n−k
b εk, (6.5.19)
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f(τ, x) = 1 +
∞∑
n=1

2n∑
k=0

a2n−k,k(τ, x)α2n−k
b εk, (6.5.20)

Ω(αb, ε) = 3 +
∞∑
n=1

2n∑
k=0

ω2n−kα
2n−k
b εk. (6.5.21)

At first order in αb and ε we are just considering the linear superposition of the pumping solu-
tion φα(t, x) = αbt and the fundamental eigenmode of the scalar field5 φε = ε sin τ cos3x over
global AdS4. Higher order corrections determine how the seed φα+φε is dressed nonlinearly.
We are solving the ansatz (6.5.18)-(6.5.21) with the following boundary conditions:

• Normalizability of the scalar field, ϕ2n+1−k,k(τ, π/2) = 0.

• Regularity of the scalar field at x = 0, limx→0 xϕ2n+1−k,k(τ, x) = 0.

• Regularity of the blackening factor at at x = 0, limx→0 x a2n−k,k(τ, x) = 0.

• Preservation of the boundary time gauge, d2n−k,k(τ, π/2) = 0.

Furthermore, we also demand that φ(0, x) = 0. Note that, when ε = 0, the ansatz (6.5.18)-
(6.5.21) must reduce to the pumping solution. Therefore, we must have ϕ2n+1,0 = ∂ta2n,0 =
∂td2n,0 = 0. On the other hand, for αb = 0, we must recover the perturbative expansion
of the exactly periodic solution branching from the fundamental eigenmode of global AdS4

[196].6

Substituting (6.5.18)-(6.5.21) into the equations of motion and expanding to order n = 1,
we get the following equations for the metric

a′2,0 + (3 tanx+ cotx) a2,0 + cosx sinx = 0, (6.5.22)

a′1,1 + (3 tanx+ cotx) a1,1 + 6 sinx cos4x cos t = 0, (6.5.23)

a′0,2 + (3 tanx+ cotx) a0,2 +
9

5
sinx cos5x (1 + cos 2x cos 2τ) = 0, (6.5.24)

d′2,0 + cosx sinx = 0, (6.5.25)

d′1,1 + 6 sinx cos4x cos τ = 0, (6.5.26)

d′0,2 +
9

5
sinx cos5x (1 + cos 2x cos 2τ) = 0, (6.5.27)

5Recall that scalar eigenmodes in global AdS have a frequency spectrum given by ωn = ∆ + 2n, where ∆
is the conformal dimension of the dual scalar operator. For a massless scalar field in AdS4, ∆ = 3.

6The comparison of our results with [196] is not immediate, since there the origin time gauge was employed.
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which are solved by

a2,0(x) =
1

2
cot2x sin 2x(x− tanx), (6.5.28)

a1,1(τ, x) = − sinx sin 2x cos2x cos τ, (6.5.29)

a0,2(τ, x) = −3

2
sin2x cos6x cos 2τ +

9

64
cotx cos2x(sin 4x− 4x), (6.5.30)

d2,0(x) =
1

2
cos2x, (6.5.31)

d1,1(τ, x) =
6

5
cos2x cos τ, (6.5.32)

d0,2(τ, x) =
3

16
cos6x (4 + (3 cos 2x− 1) cos 2τ) , (6.5.33)

where the aforementioned boundary conditions have been imposed. Regarding the scalar
field, the equation for ϕ3−k,k takes the form

ϕ′′3−k,k + 2 csc(x) sec(x)ϕ′3−k,k − 9ϕ̈3−k,k − S3−k,k = 0 . (6.5.34)

The differential operator acting on ϕ3−k,k is nothing but the AdS4 Laplacian, expressed in
τ = 3t and x coordinates, and the non-homogeneous source S3−k,k depends on lower-order
corrections. Explicitly,

S3,0 = 0, (6.5.35)

S2,1 =3 cos2x(2 cosx(ω2,0 + 3(d′2,0 − a′2,0))+

sinx(d′2,0 − a′2,0)) sin τ + 9 cos3x(ȧ2,0 − ḋ2,0) cos τ + ȧ1,1 − ḋ1,1,
(6.5.36)

S1,2 =3 cos2x(2 cosx(ω1,1 + 3(d′1,1 − a′1,1))+

sinx(d′1,1 − a′1,1)) sin τ + 9 cos3x(ȧ1,1 − ḋ1,1) cos τ + ȧ0,2 − ḋ0,2,
(6.5.37)

S0,3 =3 cos2x(2 cosx(ω0,2 + 3(d′0,2 − a′0,2))+

sinx(d′0,2 − a′0,2)) sin τ + 9 cos3x(ȧ0,2 − ḋ0,2) cos τ.
(6.5.38)

When solving any one of the nontrivial equations above, the requirement that ϕ3−k,k is both
regular at x = 0 and unsourced can only be satisfied if the frequency correction appearing
in S3−k,k takes a particular value. We have that ω2,0 = −7/4, ω1,1 = 0 and ω0,2 = −135/128.
The most general solutions compatible with the boundary conditions that we find are:

ϕ2,1(τ, x) =
3

20
cos3x(19 cos2x+ 5x(2(x+ cotx) + sin 2x)) sin τ+

C2,1 cos3x sin τ,
(6.5.39)

ϕ1,2(τ, x) =− 1

17920
cos2x cotx(−3240x+ 5760x cos 2x− 3600x cos 4x+

1345 sin 2x+ 4394 sin 4x+ 381 sin 6x) sin 2τ

+ C1,2 cos3x sin τ,

(6.5.40)
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ϕ0,3(τ, x) =
3

896
cos3x(108 cos4x− 88 cos6x+ 12 cos8x−

252x(x+ 2 cotx) + 63 cos2x(4x cotx− 1)) sin τ−
1

64
cos9x(1 + 9 cos 2x) sin(3τ) + C0,3 cos3x sin τ+

D0,3

64
cos3x(−2 + 6 cos 2x− 3 cos 4x+ 4 cos 6x) sin(3τ).

(6.5.41)

We observe that regularity and normalizability by themselves are not enough to fix the
undetermined constants C1,2, C2,1, C0,3, D0,3. Notice also that, up to this point, ε remains as
a formal expansion parameter. By adscribing a physical meaning to it we can reduce the
four undetermined integration constants to one. Let us identify

λ ≡ 〈O(τ = π/2)〉 = 3ε. (6.5.42)

Higher order corrections would modify this relation unless C1,2 = 0, C2,1 = −3/8π2 and
C0,3 = 3/128(9π2 − 10D0,3). The integration constant D0,3 cannot be fixed at this order
of the perturbative expansion.7 It turns out that, when computing the ϕ0,5 correction,
regularity and normalizability enforce that D0,3 = 305/808. With the definition (6.5.42), the
seed frequency Ω0 = 3 is modified to

Ω = Ω0 −
15

128
λ2 − 7

4
α2
b , (6.5.43)

The introduction of a finite pumping has nontrivial consequences regarding the Fourier
decomposition of the exactly periodic solution in time. To wit, while in the αb = 0 case
only odd multiples of the oscillation frequency Ω appear, for αb 6= 0 even multiples are also
present, as exemplified by the ϕ1,2 correction. It is mandatory to take this fact into account
when designing a pseudospectral code able to find these solutions numerically.

6.5.2 Numerical construction

To close the gap between the perturbative and the fully nonlinear regime, one needs to re-
sort to numerical methods. In particular, since the eigenmodes of the AdS4 Laplacian do
not satisfy the boundary conditions (6.2.3)8, we have adapted the pseudospectral method
described in [196] to our present setup.

We start by decomposing our dynamical fields as

Π(τ, x) = αb +
3

2
α3
b cos2x+ cos2xΠ̂(τ, x), (6.5.44)

Φ(τ, x) = cos xΦ̂(τ, x), (6.5.45)

7This phenomenon is solely due to the αb = 0 sector of the perturbative expansion and has been previously
pointed out in [196].

8A finite mass breaks the parity that the scalar field near-boundary expansion exhibits at the normal
mode level.
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in such a way that Π̂, Φ̂ satisfy the boundary conditions Π̂(τ, π/2) = Φ̂(τ, π/2) = 0 with non-
zero first-order spatial derivatives. The equations of motion are correspondingly modified.
Taking into account the appearance of both odd and even multiples of the fundamental
frequency at the perturbative level, we Fourier decompose our rescaled fields in time as

Π̂(τ, x) =

Nk∑
k=0

cos(kτ)Pk(x), Φ̂(τ, x) =

Nk∑
k=0

sin((k + 1)τ)Qk(x), (6.5.46)

where we have allowed for a nontrivial zero-mode P0(x) in Π̂, that would take care of the
fact that, when ε = 0, Π must reduce to the field corresponding to the pumping solu-
tion at the given αb. Nk is a numerical cutoff in the total mode number. The functions
{Pk, Qk, k = 0...Nk} must be further decomposed into a convenient spatial basis. A suitable
choice was provided in [220] and exploited in-depth in [196] in the spherically symmetric and
sourceless case. For completeness, let us elaborate a bit on this choice. We largely follow
[196], and we refer the reader to that useful reference for further information.

First, let us take y = 2
π
x, in such a way that y ∈ [0, 1]; then notice that, since origin

regularity imposes a definite parity on the fields of our problem, we might extend them
to the domain y ∈ [−1, 0] in a univocal way. Define ȳ ∈ [−1, 1], and focus on the ex-
tended functions {P̄k(ȳ), Q̄k(ȳ), k = 0...Nk}. We introduce Lagrange interpolating poly-
nomials {lj(ȳ), j = 0...2Nj + 1} that satisfy lj(ȳk) = δj,k for some extended collocation
grid {ȳj, j = 0...2Nj + 1}. We can write a polynomial approximation to any function
f : [−1, 1]→ R as

I2Nj+1f(ȳ) =

2Nj+1∑
j=0

f(ȳj)lj(ȳ) ≡
2Nj+1∑
j=0

f̄jlj(ȳ). (6.5.47)

Explicitly, the interpolating polynomials are given by

lj(ȳ) =
wj

ȳ − ȳj

2Nj+1∑
l=0

wl
ȳ − ȳl

−1

, (6.5.48)

where the weights {wj, j = 0...2Nj + 1} are defined as wj =
(∏2Nj+1

j=0,j 6=l(ȳj − ȳl)
)−1

in terms

of the extended collocation grid. So far, the extended collocation grid we are referring to
remains arbitrary. A convenient choice is provided by the Chebyshev collocation grid of the
second kind

ȳj = cos

(
πj

2Nj + 1

)
, j = 0...2Nj + 1. (6.5.49)

Notice that the boundary x = π/2 (i.e. ȳ = 1) is included in the collocation grid, while
the origin is avoided. This last feature is convenient in two regards. First, it allows to
impose the boundary conditions at ȳ = ±1 on the functions {P̄k(ȳ), Q̄k(ȳ), k = 0...Nk} in
a straighforward way. Second, it implies that the singular behavior of some terms present
in the equations of motion at x = 0 (i.e. ȳ = 0) is no longer a concern in the discretized
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version of the problem. Furthermore, with this choice, the approximant (6.5.47) satisfies

I2Nj+1f(ȳ) =

2Nj+1∑
j=0

f̂jTj(ȳ), (6.5.50)

where {Tj(ȳ), j = 0...2Nj + 1} are Chebyshev polynomials of the first kind. Standard opti-
mization theorems in polynomial approximation then apply immediately to our case. As a
final benefit, it turns out that the grid choice (6.5.49) allows for a simple analytic expression
of the wj weights [220]. The n-th derivative of the function f can be approximated by the
n-th derivative of (6.5.47). We have that

dn

dȳn
I2Nj+1(ȳj) =

2Nj+1∑
l=0

D
(n)
j,l f̄l , (6.5.51)

where the explicit form of the 2(Nj + 1)×2(Nj + 1) differentiation matrix D(n) can be found
in [196]. Now the crucial point comes into play. Since we are working with functions of
definite parity around x = 0, Pk(−x) = Pk(x), Qk(−x) = −Qk(x), we have that, being f
any one of these functions and p its parity under x→ −x,

f̄2Nj+1−j = (−1)pf̄j ≡ (−1)pfj, j = 0...Nj , (6.5.52)

in such a way that the differentiation matrix D(n) splits into four (Nj + 1)× (Nj + 1) blocks.
Defining f = (f0, ..., fNj), f̄ = (f0, . . . , fNj , (−1)pfNj , . . . , (−1)pf0) we have that

f̄ =

(
1 0

(−1)pR 0

)(
f
0

)
, (6.5.53)

where R is a (Nj + 1)× (Nj + 1) exchange matrix. In consequence

D(n)f̄ =

(
D

(n)
++ D

(n)
+−

D
(n)
−+ D

(n)
−−

)(
1 0

(−1)pR 0

)(
f
0

)
=

(
(D

(n)
++ + (−1)pD

(n)
+−R)f

(D
(n)
−+ + (−1)pD

(n)
−−R)f

)
, (6.5.54)

and we find that the parity-adapted n-th derivative operator acting on the physical y > 0
part of the extended grid is

D(n)
p ≡ D

(n)
++ + (−1)pD

(n)
+−R . (6.5.55)

Therefore, for functions of well-defined parity around x = 0, if we restrict ourselves to the
original spatial domain x ∈ [0, π/2] but employ the rescaled collocation grid

xj =
π

2
cos

(
πj

2Nj + 1

)
, j = 0...Nj , (6.5.56)

and discretize derivatives with the just defined operator D
(n)
p , the desirable features of

working with a Chebyshev spectral decomposition are kept while the boundary conditions
at x = 0 are also automatically incorporated into the discretized problem.
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Having clarified our strategy, we take the final ansatz

Π̂(τ, xj) =

Nk∑
k=0

Nj∑
j=0

cos(kτ)pk,j , (6.5.57)

Φ̂(τ, xj) =

Nk∑
k=0

Nj∑
j=0

sin((k + 1)τ)qk,j , (6.5.58)

so we work in mode space in τ , but real space in x. As a collocation grid in the time domain,
we choose

τk =
2π(k − 1/2)

2Nk + 3
, k = 1...Nk + 1 , (6.5.59)

At each τk, it is convenient to define the variables {δk,j, ck,j}, where δk,j = δ(τk, xj) and
ck,j = f(τk, xj) exp(−δ(τk, xj)), which are then expressed in terms of {pk,j, qk,j} by discretiz-
ing the corresponding constraint equations and inverting the resulting discretized differential
operators. Imposing the boundary conditions δk,0 = 0 and ck,0 = 1 ensures that we are work-
ing in the boundary time gauge and renders the above mentioned discretized differential op-
erators invertible. Once this expressions are known, the first-order dynamical equations for
the scalar field can be solved by means of a Newton-Raphson algorithm that we implement in
Mathematica. We impose the boundary conditions pk,0 = qk,0 = 0, that follow from the linear

independence of the Fourier modes of the time decomposition and Π̂(τ, π/2) = Φ̂(τ, π/2) = 0.

As a last comment, notice that we have 2(Nk+1)×(Nj+1)+1 dynamical variables, that cor-
respond to {pk,j, qk,j} and the oscillation frequency Ω, but the discretization of the equations

of motion for Π̂, Φ̂ on the two-dimensional collocation grid provides just 2(Nk +1)× (Nj +1)
equations. The remaining equation comes from normalizing some relevant physical quantity
to a prescribed numerical value. We choose to set

〈O(π/2)〉 = λ , (6.5.60)

where λ is an user-defined value for the vev. Since we have defined 〈O(τ)〉 = −1/2φ′′′(τ, π/2) =
Φ̂′′(τ, π/2), this extra boundary condition is discretized as

Nk∑
k=0

sin((k + 1)π/2)

Nj∑
l=0

D
(2)
0,l qk,l = λ . (6.5.61)

Finally, a given family of time-periodic pumping solutions is found iteratively: we place
ourselves at λ, αb � 1 and employ the perturbative solution as an initial seed to start the
relaxation algorithm. Then, we move in discrete steps along the (αb(η), λ(η)) curve in the
two-dimensional phase space of time-periodic solutions, taking the one found in the previous
step as the initial guess for the next step. The results shown in the following have been
obtained for a Nk = Nj = 20 grid; the time it took to find each solution along the curve was
O(5) min.
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6.5.3 Results

Let us perform two different checks on the time-periodic pumping solutions found numer-
ically. In figure 6.7, we plot Ω(αb, λ) for two orthogonal directions in the phase space of
exactly periodic solutions, and compare it with (6.5.43). In each case, excellent agreement
is found between the perturbative and the numerical result in the αb, λ� 1 regime.

Figure 6.7: Left: Ω(0.0005, λ) as determined numerically (red dots) and perturbatively (blue line).
Right: Ω(αb, 0.001) as determined numerically (red dots) and perturbatively (blue line).

As a further consistency check, we perform a simulation starting from the initial data
Π(t = 0, x) = Π0(x) and Φ(t = 0, x) = 0 as determined by the pseudospectral algorithm
and study their subsequent time evolution. We provide one example in figure 6.8. It is
observed that the time development of the initial data perfectly agrees with the output of
the pseudospectral code, providing a highly nontrivial check of our numerical procedures.

Figure 6.8: Energy density and vev for an exactly periodic pumping solution with αb = 0.45,
λ = −0.45 as obtained from the pseudospectral generating code (blue) and the simulated time
evolution of the initial data (red).
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6.6 Quenching off the pumping solution

In this section, we will demonstrate that no boundary observer will measure a negative
energy density when the scalar source φ0(t) is time-independent. Let us perform the following
numerical experiment. At t = 0, we start with a stable pumping solution and, suddenly, turn
off the scalar source. Naively, one could think that a regular solution with negative energy
density has been generated. However, this is not the case. We turn off the scalar source by
means of a smooth interpolation of time span δ between the pumping boundary condition
φ̇0(t = 0) = αb and a time-independent φ̇0(t ≥ δ) = 0. One example can be found in figure
6.3. The remarkable result is that, for any interpolating function and any δ employed, the
final geometry always displays a positive energy density at times t ≥ δ. In fact, in the
δ → ∞ limit, the end result recovers the original AdS4 vacuum with m = 0. More abrupt
interpolations result in a time-dependent geometry with positive mass. Finally, in the δ → 0
limit, the energy density peaks so violently that a black hole forms right away.

Figure 6.9: Left: log-log plot of m(δ) (red dots) and the fitting curve m(δ) ∝ δ−1 (blue dashed)
for a quench off the α0 = 1 pumping solution with interpolating function (6.6.62). Right: log-log
plot of maxt∈[0,δ] 〈O(t)〉 (red dots) and the fitting curve maxt∈[0,δ] 〈O(t)〉 ∝ δ−2 (blue dashed) for
the same quench process as in the left figure.

Let us discus this last behavior in more detail. In figure 6.9, we plotm(δ) and maxt∈[0,δ] 〈O(t)〉
for a quench off the α0 = 1 pumping solution with the interpolating function

φ̇0(t) =
1

2
αb

(
1 + tanh

(
δ

t
+

δ

t− δ

))
, t ∈ [0, δ]. (6.6.62)

For δ . 1, both m(δ) and maxt∈[0,δ] 〈O(t)〉 display a well defined scaling with respect to δ,
m(δ) ∝ δ−1 and maxt∈[0,δ] 〈O(t)〉 ∝ δ−2, confirming that both diverge in the δ → 0 limit.
A natural question is if the observed scaling is related to the fact that we are quenching off
the pumping solution, or is rather determined by the particular form of the interpolating
function (6.6.62). To answer this question, in figure 6.10 we plot m(δ) and maxt∈[0,δ] 〈O(t)〉
for a quench with φ0(t) given by the time-reversed version of (6.6.62) acting over the AdS4

vacuum,

φ̇0(t) =
1

2
αb

(
1− tanh

(
δ

t
+

δ

t− δ

))
, t ∈ [0, δ]. (6.6.63)
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Figure 6.10: Left: log-log plot of m(δ) (red dots) and the fitting curve m(δ) ∝ δ−1 (blue dashed)
for the quench profile (6.6.63) with αb as in (6.6.62). Right: log-log plot of maxt∈[0,δ] 〈O(t)〉 (red
dots) and the fitting curve maxt∈[0,δ] 〈O(t)〉 ∝ δ−2 (blue dashed) for the same quench process as in
the left figure.

We observe that the former scaling relations m(δ) ∝ δ−1, maxt∈[0,δ] 〈O(t)〉 ∝ δ−2 uphold,
showing that the scaling is solely determined by the precise non-analytic behavior of the
source in the δ → 0 limit; in this limit, both (6.6.62) and (6.6.63) correspond to quench
profiles φ0(t) that are continuous but non-differentiable. In particular, the scaling displayed
by m(δ) and maxt∈[0,δ] 〈O(t)〉 under (6.6.63) differs from the one that would be present if the

rhs of (6.6.63) were applied directly to φ0(t), rather than to φ̇0(t). In this case, in the δ → 0
limit the source shows a jump discontinuity, resulting in a m(δ) ∝ δ−3, maxt∈[0,δ] 〈O(t)〉 ∝ δ−3

behavior, as expected on purely dimensional grounds [221]. We plot representative results
of this behavior in figure 6.11.

Figure 6.11: Left: log-log plot of m(δ) (red dots) and the fitting curve m(δ) ∝ δ−3 (blue dashed) for
a quench profile given by the rhs of (6.6.63) applied to φ0(t). Right: log-log plot of maxt∈[0,δ] 〈O(t)〉
(red dots) and the fitting curve maxt∈[0,δ] 〈O(t)〉 ∝ δ−3 (blue dashed) for the same quench process
as in the left figure.

As a final observation, we would like to point out that the process of quenching on/quenching
off a pumping solution we discussed embodies an irreversible character: the system displays
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an intrinsic hysteresis. Imagine slowly building up the value of φ̇0(t) from zero to a constant
final value in a time span δ, staying there for a long time, and finally switching back φ̇0(t)→ 0
using the same δ-smeared step function, but time-reversed. Even if both the equations of
motion and the boundary conditions are time reversal invariant, the end result will always
have m(t =∞) ≥ m(t = 0) = 0, and only m(t =∞) = 0 in the quasistatic limit δ →∞ for
both steps.

6.7 Pumping solution over AdS3

In this section we shall investigate the three dimensional case. It turns out that the pumping
solution over AdS3 is related to a number of other solutions known in the literature via a
series of mappings that includes double Wick rotations and/or Hodge dualities. This obser-
vation allows us to give an analytic expression for the pumping solution.

Let us consider a three-dimensional charged black brane with negative cosmological con-
stant [156, 157]. The metric and the electromagnetic potential are given by

ds2 = −h(r)dt2 +
dr2

h(r)
+ r2dx2, (6.7.64)

h(r) = r2 −M −Q2
e log(r), (6.7.65)

A(r) = [µ+Qe log(r)] dt. (6.7.66)

In the expressions above, r ∈ [0,∞) and t, x ∈ R. M and Qe determine respectively the
mass and the electric charge of the black brane geometry. From now on, we focus on the
one-parameter family of charged black branes with M = 1 and µ = 0. Note that the outer
horizon is located at r = rh = 1 for Qe <

√
2. The temperature is

T =
1

2π

(
1− 1

2
Q2
e

)
. (6.7.67)

At Qe =
√

2 the black brane is extremal. For Qe >
√

2, the hypersurface r = 1 actually
corresponds to the inner horizon, and (6.7.67) does not represent the real temperature of
the back brane. By performing the coordinate change r2 = 1 +R2, the exterior region of the
charged black brane can be parametrized as

ds2 = −h(R)dt2 +
R2

(1 +R2)h(R)
dr2 + (1 +R2)dx2, (6.7.68)

h(R) = R2 − 1

2
Q2
e log(1 +R2), (6.7.69)

A =
1

2
Qe log(1 +R2)dt. (6.7.70)

with R ∈ [0,∞). Now, let us perform the double Wick rotation defined by

t→ iϕ, x→ it, Qe → −iQm, (6.7.71)
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in a such a way that the geometry and electromagnetic potential of the exterior region
are mapped to the following solution of three-dimensional Einstein-Maxwell theory with a
negative cosmological constant

ds2 = −(1 +R2)dt2 +
R2

(1 +R2)h(R)
dR2 + h(R)dϕ2, (6.7.72)

h(R) = R2 +
1

2
Q2
m log(1 +R2), (6.7.73)

A =
1

2
Qm log(1 +R2)dϕ. (6.7.74)

This is a horizonless geometry. It can be explicitly shown that the coordinate ϕ must
be identified with period β = 2π/(1 + Q2

m/2) in order to avoid a conical singularity at
R = 0. On the other hand, this period is nothing but the analytic continuation of the
inverse temperature of the original charged black brane under the double Wick rotation. The
geometry (6.7.72), (6.7.73) is supported by the radial magnetic field associated to (6.7.74),
and we will refer to it as the magnetic AdS3 solution.9

We want to map the magnetic solution to the pumping solution. To this purpose we
will rely on Hodge duality. However we have still to massage the magnetic solution: let us
rescale our coordinates as t = β/(2π)t̃, R = 2π/βR̃ and ϕ = β/(2π)ϕ̃, in such a way that
ϕ̃ ∼ ϕ̃+ 2π.10 In this new coordinate system,11 we have that

ds2 = −

[(
β

2π

)2

+R2

]
dt2 +

R2[(
β
2π

)2
+R2

]
h(R)

dR2 + h(R)dϕ2, (6.7.75)

h(R) = R2 +
1

2
Q̃2
m log

[(
β

2π

)2

+R2

]
+ µ̃Q̃m, (6.7.76)

A =

{
µ̃+

1

2
Q̃m log

[(
β

2π

)2

+R2

]}
dϕ, (6.7.77)

where we have defined

Q̃m ≡
β

2π
Qm =

Qm

1 + 1
2
Q2
m

, µ̃ ≡ Q̃m log
2π

β
. (6.7.78)

The field strength corresponding to the magnetic solution is

F = Q̃m
R(

β
2π

)2
+R2

dR ∧ dϕ. (6.7.79)

9This background was originally found in references [222, 223, 224]. In [224], the authors introduced the
double Wick rotation we discussed here. See [225, 226] for the construction of the general magnetic solution
with angular momentum, the computation of its conserved charges and a proposed physical interpretation.
The physical nature of the magnetic solution was further elucidated in [227].

10The rescaling of the t and R coordinates follows from the requirement that limR̃→∞ R̃−2ds2 = −dt̃2+dϕ̃2.
This corresponds to the standard flat space metric as the representative of the conformal structure of the
boundary where we have chosen Ω(R̃) = R̃−2 as conformal factor. Note also that this is the same procedure
we would have employed were we on the vacuum state.

11We drop the tildes from now on.
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Under Hodge duality, the magnetic AdS3 solution can be put into correspondence with
the three-dimensional pumping solution. Recall that the vacuum Maxwell equations are
dF = d(?F ) = 0, where ? is the Hodge operator. In three dimensions, the Hodge dual of a
two-form corresponds to a one-form. Hence F can be alternatively expressed as F = ?dφ,
where φ is a massless scalar field. The Bianchi identity dF = 0 transforms into the scalar
field equation of motion, − ? d(?dφ) = ∇2φ = 0, while the dynamical Maxwell equation
reduces to the trivial statement d2φ = 0. The map leaves the metric invariant and, as a
consequence, a metric supported by a given electromagnetic field can be thought of as being
sourced by the dual scalar field defined by this procedure.

Let us consider explicitly how the Hodge duality works at the level of the solution. Take
the three-dimensional pumping solution with φ(t, r) = αt. Under Hodge duality, we find
that the scalar field profile maps to

F = α
reδ(r)

f(r)
dr ∧ dϕ, (6.7.80)

where we have parametrized the pumping solution geometry in standard Schwarzschild co-
ordinates,

ds2 = −f(r)e−2δ(r)dt2 +
dr2

f(r)
+ r2dϕ2. (6.7.81)

Note that the radial coordinates of the magnetic AdS3 solution and the pumping solution
are related by

r2 = h(R), (6.7.82)

as it emerges from comparing the ϕϕ-component of the metric (6.7.72) and (6.7.81). From
a comparison of the radial components of (6.7.72) and (6.7.81), we have that r and R must
also satisfy

dr2

f(r)
=

R2dR2[(
β
2π

)2
+R2

]
h(R)

. (6.7.83)

Deriving (6.7.82) and substituting into the expression above, we obtain the relation

f(r(R)) =

[(
β

2π

)2

+R2

](
1 +

1

2

Q̃2
m(

β
2π

)2
+R2

)2

, (6.7.84)

where the explicit form of h(R) provided by equation (6.7.76) has been employed. Note that,
when R = 0, (6.7.76) implies that r = h(0) = 0. As a consequence, from (6.7.84) and the
definitions of β and Q̃m, it follows that f(0) = 1, a fact that shows the absence of a conical
singularity at the origin in a manifest way. By identifying now the tt-components of the
metrics (6.7.72) and (6.7.81), we get that(

β

2π

)2

+R2 = f(r)e−2δ(r). (6.7.85)

Employing equation (6.7.84), we finally obtain

δ(r(R)) = log

(
1 +

1

2

Q̃2
m(

β
2π

)2
+R2

)
. (6.7.86)
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Notice that δ(∞) = 0, which means that the parametrization of the magnetic solution cor-
responds to the boundary time gauge (see section 6.3).

With the help of equations (6.7.82), (6.7.84) and (6.7.86) we can express the field strength
dual (in the Hodge sense) to the pumping solution in R coordinates, namely

F = α
R(

β
2π

)2
+R2

dR ∧ dϕ. (6.7.87)

Comparing (6.7.87) with (6.7.79) we find that the pumping solution corresponds to a mag-
netic solution such that

α = Q̃m =
Qm

1 + 1
2
Q2
m

, (6.7.88)

or, alternatively,

Qm =
1±
√

1− 2α2

α
. (6.7.89)

From (6.7.89), we have that the reality of Qm implies that α is restricted to the domain

α ∈
[
0, 1√

2

]
. Furthermore, a given α has two associated Qm parameters, Q±, in a self-

explaining notation. The Q+ branch is restricted to the domain Q+ ∈ [
√

2,∞), with limits
respectively attained at α = 1/

√
2, α = 0. The Q− branch satisfies Q− ∈ [0,

√
2], and its

limits correspond to α = 0, α = 1/
√

2. We observe that both branches merge at the critical
value α∗ ≡ 1/

√
2.

The two-branch structure of (6.7.89) is particularly interesting. Indeed, as we will show in the
next subsection through an explicit computation, the Q− branch of magnetic solutions cor-
responds to the branch of linearly stable pumping solutions, while the Q+ branch maps onto
the linearly unstable branch (see section 6.4). Remembering how the magnetic solution has
been obtained performing the double Wick rotation (6.7.71) on the three-dimensional charged
black brane solution (6.7.64), (6.7.65), (6.7.66), we bring into attention that |Qe| = |Qm|.
Therefore, for Qm = Q+ ≥

√
2, the linear instability of this branch of pumping solutions

seems to be related to the fact that our original r2 = 1 + R2 expansion is performed with
respect to the wrong horizon (see comments below (6.7.67)). In the next subsection we also
show that α∗, i.e. the critical value where the two branches of (6.7.89) merge, corresponds to
αmax.12 This is an important and exact result emerging directly from the chain of mappings
illustrated above.13

The different maps we have uncovered so far are not the end of the story. Another in-
teresting geometry can be brought into the game. In [228], Andrade and Withers (AW)
introduced a beautifully simple holographic model of momentum relaxation. It involved
charged black branes with nontrivial axion profiles along the spacelike boundary directions,

12We remind the reader that αmax is the maximum value of αb for which pumping solutions exist, see
section 6.3.

13It would be interesting to repeat the argument in higher dimensionality and get an exact value for the
adiabatic threshold αmax starting from an extremal charged AdS black hole in 3+1 dimensions.
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that broke translational invariance at the level of the solution as a whole, but keeping the
metric and the electromagnetic field translationally invariant. In three dimensions, the cor-
responding AW solution would involve a neutral massless scalar field φ(x) = γx. Focusing
on the uncharged case, the metric of the AW solution would be given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dx2, (6.7.90)

f(r) = r2 −M − γ2 log(r), (6.7.91)

φ(x) = γx . (6.7.92)

By Hodge duality, the scalar field is associated with the field strength

F = ?dφ = γ ? dx =
γ

r
dt ∧ dr, (6.7.93)

that comes from the potential A = −γ log(r)dt. If we identify |γ| = |Qe|, we find that the
charged black brane and the neutral three-dimensional AW solution are dual to each other.
Of course, we must take M = 1 after the duality map to land on the one-parameter family
of charged black branes (6.7.64), (6.7.65) and (6.7.66). It is also possible to show that, by
performing again the coordinate change r2 = 1+R2, double Wick rotating as x→ it, t→ iϕ,
γ → −iγ and rescaling our coordinates, the pumping solution is obtained.

Let us summarize the structure of duality mappings through the following diagram,14

charged black brane
DW

−−−−→ magnetic AdS3

?
y y?

Andrade-Withers
DW

−−−−→ pumping solution

where DW stands for the double Wick rotation.

6.7.1 Analytic pumping solution in AdS3

As promised, we can employ the relation (6.7.82) to obtain an analytic expression for the
three-dimensional pumping solution. Let us set R = R(r), identify Q̃m = α and recall that
β(α) = 2π/(1+Q2

±/2) = π(1∓
√

1− 2α2). It turns out that (6.7.82) can be explicitly solved,
yielding

R(r)2 = −β(α)2

4π2
+

1

2
α2W

(
β(α)2

2π2α2
e

2r2

α2 +
β(α2)

2π2α2

)
, (6.7.94)

where W is the Lambert W -function, which solves the transcendental equation W (x)eW (x) =
x. We consistently find that R(r)2 ≥ 0, with equality only at r = 0, a fact that is guaranteed
by W (xex) = x. By taking (6.7.94) and substituting it in (6.7.84),(6.7.86), we obtain the
three-dimensional pumping solution in a closed form. It can be straightforwardly checked
that the resulting expressions for f(r) and δ(r) solve the equations of motion of the pumping
solution in Schwarzschild coordinates. Alternatively, if we take the relations (6.7.84),(6.7.86)

14We emphasize that the duality map between the electrically charged black hole and the magnetic solution
has already been discussed in [224].
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and introduce them into the equations of motion for the pumping solution with R = R(r)
unknown, we arrive to the equation

R′(r)− r(β(α)2 + 4π2R(r)2)

R(r)(2πα2 + β(α)2 + 4π2R(r)2)
= 0, (6.7.95)

for which (6.7.94) is the only solution such that R(r = 0) = 0.

As a final consistency check, let us note that equation (6.7.86) implies that

δ(0) = log

(
1 +

1

2
Q2
±

)
= log

(
1±
√

1− 2α2

α2

)
. (6.7.96)

In figure 6.12, we plot δ(0) against α,15 as obtained from the numerical solution of the
equations of motion, and compare it with the expression (6.7.96). We plot both the stable and
the unstable branches. The agreement is perfect. For example, the numerically determined
maximum of δ(0) for the stable branch is located at α = 0.7071067, where δ(0) = 0.693148.
The expected results are α = 1/

√
2 = 0.7071068 and δ(0) = log(2) = 0.693147.

Figure 6.12: δ(0) vs α, numerical (red dots) and analytical (blue curve).

15Recall that α = αb, since the map between the magnetic and the pumping solutions has been obtained
in the boundary time gauge.



Chapter 7

Conclusions and future prospects

The question of how macroscopic, isolated quantum systems driven out-of-equilibrum ther-
malize has been under intense survey in recent years. A vast ammount of works have focused
on this question, by employing tools that range from integrability to numerical simulations.
Recently, it has become feasable to address it also from the experimental point of view. A
major lesson of this research is that the landscape of possible routes to final equilibration is
surprisingly rich.

On the other hand, Holography has provided a stunning way to look at the same problem
in strongly-coupled systems, by studying the dual counterpart as being gravitational collapse
in asymptotically global AdS spacetimes. In recent years, we have similarly learned that there
is an equally rich landscape of possible routes to final black hole formation, depending upon
the underlying dynamics and the initial conditions.

Therefore, the natural program that arises is trying to establish solid conections between
these two landscapes, as an extension of the holographic dictionary in the out-of-equilibrium
regime. It is the hope of this author that the work presented in this thesis has contributed
to this aim, at least infinitesimally. The essential philosophy has been to unravel robust
features that can be clearly identified from both sides.

In the planar case, the research in real-time Holography is a mature subject, that has
already delivered poweful lessons. They range from the discoverement of the almost-perfect
fluid nature of holographic matter at thermal equilibrium to its fast hydrodynamization.
These results have made contact with real-world phenomena and have sparked deep devel-
opments in other areas of Physics. Real-time holography has also been instrumental in the
study of entanglement propagation in time-dependent processes and has allowed to conjec-
ture new bounds on its speed, in certain regimes.

Compared to this state of affairs, the research about holographic thermalization in the
global case its still at its infancy, but also in rapid development and intense scrutiny. We
have clearly established in this work that the presence of finite-size effects naturally allows
for new phenomena, such as delayed thermalization processes, in which an ergodic stage is
not reached right away, full-fledged collapses and revivals of the system state, possibly new
late-time forms of relaxation for non-conserved quantities, or rich dynamics at adiabaticity.
Smoking guns like the ones already obtained in the planar case are still needed to establish
if the study of this new field is more than a theoretical curiosity.
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This author would like to close the main part of this manuscript by commenting on the
different research directions that unfold immediately from the results presented in it.1

• The stability band

As we have argued several times, a common feature of holographic QFTs whose black
hole spectrum is separated from the vacuum by a mass gap is the existence of a stability
band. This stability band consists of a region where kinematically allowed processes
of black hole formation are dynamically forbidden, at least during the times accessed
on the different numerical experiments that have been performed. At present, there
is evidence of its existence in the hard wall model [161], the AdS-soliton [162], five-
dimensional Einstein-Gauss-Bonnet gravity [229, 194], and AdS3 gravity ([160] and the
work presented here in chapter 3). The stability band lies at the transition between fast
thermalization, represented by prompt black hole formation, and a regime where the
gravitational system cannot undergo gravitational collapse to a black hole on kinematic
grounds.2 Just above the stability band, the thermalization time is generically non-
monotonic.

Several question arise. The most obvious one is if the stability band is indeed a region
where thermalization is halted or, on the other hand, the system collapses, but at
so late times that this collapse has never been observed experimentally. Simulating
reliably and efficiently the evolution of the system up to such long times will require
the development of improved numerical algorithms: as we have exemplified in chapter
3, the very existence of this region stems from the fact that the initial data break
into one or more extremely sharp subpulses. Resolving them with the appropriate
accuracy calls for a local mesh refinement technique, that surpasses the global one we
have employed in this work.

Once these techniques are developed, we could perform a detailed scan of the thermal-
ization time in terms of the mass above the gap, so as to find out if this magnitude
displays a self-similar structure at some intervals in the transition region between fast
and frustrated thermalization (preliminar evidence in favor of this was provided in
[194] for the case of Einstein-Gauss-Bonnet gravity in five dimensions). It is particu-
larly interesting to disentangle how kinematic (the existence of the gap, the dimension
of the spacetime) and dynamic effects (the precise form of the action) interact with
each other to determine the properties of this region.

We close this item by stressing two facts. The first one is that, since the geometries
falling within this transition region present suprisingly sharp features, perhaps a thin
shell analysis along the lines of [230, 201] could shed light on the questions raised above.
The second fact is that there exists yet another theory where the stability band phe-
nomenon can be looked for. Reference [231] analyzed in detail which D−dimensional
Lovelock theories allow for a single AdSD vacuum. It was found that, in D dimensions,

1The discussion is not going to include other interesting directions related to them in a more indirect
way.

2Although it may equilibrate in finite time to other static solution in some cases, see [194].
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there exist
⌊
D−1

2

⌋
of such theories, that can be indexed by the highest power of the

curvature in the Lovelock action, k. The case k = 1 corresponds thus to Einstein-
Hilbert gravity in any dimensionality. For odd D, the k =

⌊
D−1

2

⌋
theory is actually a

Chern-Simons theory, i.e., the Lovelock Lagrangian is given by the Chern-Simons form
of the AdS group. The cases with D = 3 and D = 5 correspond respectively to three-
dimensional Einstein gravity and five-dimensional Einstein-Gauss-Bonnet gravity. In
any odd D, these Chern-Simons theories share the property of having a mass gap in
their black hole spectrum, which ends on a critical black hole with vanishing entropy
and zero temperature. Furthermore, above the gap black holes always have positive
specific heat. To this author’s knowledge, a numerical study of gravitational collapse
in the D = 7 Chern-Simmons theory has never been performed.

• Long-lived oscillations?

In chapter 5, we provided premilinar evidence of long-lived oscillations in the late-
time relaxation of the scalar vev. Establishing their existence on firm grounds is a
mandatory and pressing direction of future research. As an immediate step, we must
scan the phase space of the system by performing additional high-resolution numerical
experiments that help to elucidate how accurate this phenomenon is. In this regard,
the development of new numerical methods able to manage efficiently the problem is
mandatory. We should consider the possibility of implementing local, instead of global,
mesh refinement algorithms or evaluate if it is convenient to describe the collapse
process in a horizon-penetrating coordinate system.

Apart from that, and as we already suggested in chapter 5, we should try to understand
these long-lived oscillations in terms of the quasinormal modes of the final black hole,
so as to find out if the slow relaxation we observe is in part due to a quasinormal
frequency pair of very small imaginary part. This can be achieved by adapting the
techniques we employed to compute soliton normal modes. Further light on this issue
can be shed by performing a real-time analysis of a linearized scalar fluctuation over
the static hairy solution, as was done in [232] for the case of Kerr-AdS black holes.
This would require the use of infalling coordinates. Of course, this procedure can be
carried out also for nonlinear perturbations (see for instance [233] for a study of the
superradiant instability of Reissner-Nordström black holes along these lines).

Finally, if our results prove to be robust, we can try to look for long-lived oscillations in
other holographic superfluids with extra length scales, apart from the temperature and
the chemical potential. It is worth mentioning that this kind of relaxation dynamics
has already been reported in the context of five-dimensional charged magnetic black
brane solutions to Einstein-Maxwell-Chern-Simons theory [234].

• Holographic quenches with global asymptotics

The numerical techniques we have developed to obtain the results presented in chapter
6 promise to be fruitful in the near future. A immediate direction sprouts from the
observation that the Einstein-scalar theory we have analyzed is a special example of a
wider class. Indeed one could consider complex, instead of real, massless bulk scalar
fields. These still correspond to marginal deformations, with many intriguing features
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such as cousins of the pumping solution with a nontrivial radial scalar profile and a
natural connection to periodically-driven systems. They also provide an intermediate
step to study relevant deformations in a similar setup.

It is mandatory to employ the numerical control we have achieved over this kind of
processes to determine how entanglement entropy is generated during the quench.
Finally, it is also worth realizing that the numerical techniques we have developed can
be employed to compute retarded correlators in generic time-dependent geometries,
following a proposal that was recently put forward in [235].



Chapter 8

Summary

Thermalization, strongly-coupled matter and String The-

ory

Consider an isolated macroscopic system in equilibrium. The Second Law guarantees that,
for the given extensive variables characterizing the system -such as total energy E, volume
V , total electric charge Q...- the equilbrium state maximizes the entropy S. Understand-
ing how a perturbed macroscopic system attains the final equilibrium state predicted by
Thermodynamics is the problem of thermalization. The nontrivial nature of this problem is
made manifest when we observe that physical evolution laws, both in the classical and in
the quantum realm, are unitary. Given some initial state, no information it contains is lost
during time evolution: the microscopical dynamics of the system are time-reversal invariant.
Threfore, where does the time-asymmetry implied by the Second Law come from?

Irreversibility can only come from coarse-graining: certain information pertaining the
exact description of the system must be kept away from the macroscopic observer. For a
non-isolated system, this information loss is certainly expected, since the effective descrip-
tion of the system neglects the environmental degrees of freedom. However, for an isolated
system, the situation is richer: the own microscopic dynamics of the system is to be held
responsible for the apparent information loss.

A nice example of this last observation can be found in classical statistical mechanics. For an
isolated system with energy E, confined in a volume V , the familiar thermodynamic descrip-
tion of the equilibrium state can be obtained straightforwardly by assuming the principle of
equal a priori probabilities. This principle poses that any microscopic state with energy E
is equally realizable by the macroscopic system. Secretly, it is a dynamical assumption: in
phase space, the microscopic time evolution equations must be such that, on the long run,
the time t the system spends in a region ω of the constant-energy manifold Ω(E) is propor-
tional to the volume of this region, t ∝ Vol(ω). Said otherwise, the microscopic dynamics
must be such that the time average of a given observable agrees with the microcanonical
average: it must be ergodic.

With the advent of classical chaos, the ergodic hypothesis gained a firm ground. Con-
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sider a chaotic system that is, at t = 0, in a phase space region α(E; 0) ⊂ Ω(E) such that
Vol(α(E; 0)) � Vol(Ω(E)). The trajectories associated to two initial states in α(E; 0) flow
appart exponentially as time passes. On the other hand, the Liouville theorem guaran-
tees that the phase space volume occupied by the system remains invariant, Vol(α(E; 0)) =
Vol(α(E; t)). As a consequence, on the long run, α(E; t) is a region with fractal-like structure
that, when viewed with finite resolution, reduces to Ω(E). For a system with this mixing
behavior, ergodicity follows.

This qualitative picture cannot be fundamental, for one reason: Nature is essentially quantum-
mechanical and, in quantum physics, time-evolution is not only unitary, but also linear. If
we cannot rely on chaotic behavior, how is even thermalization going to be achieved?

Providing a definitive answer to this question has been in the theoretical physicist to-do
list since the advent of quantum mechanics in the first half of the 20th century. However,
and rather surprisingly, it was not until recently that this question gained widespread atten-
tion. These efforts culminated in the so called Eigenstate Thermalization Hypothesis (ETH),
which we will introduce latter. The ETH is believed to be the fundamental mechanism
behind thermalization in the quantum realm. Understanding its regime of validity, and the
possible exceptions to it, has reveled a great deal of valuable information about the out-of-
equilibrium physics of isolated quantum systems.

The fundamental reason behind this delay is that not until modern times isolated quan-
tum systems of physical interest were accessible by experiment. Nowadays, optical lattices
can be efficiently employed to manipulate cold atom sytems in the laboratory, while keeping
them in a very good degree of isolation. Different perturbations can be introduced and the
possible routes to thermal equilibrium, or its absence, can be monitored. Away from non-
relativistic many-body physics, great attention has been also paid to the question of how
relativistic QFTs thermalize. One paradignamtic example is provided by inflation and the
subsequent re-heating. The other one, which is currently under intense experimental survey,
is the quark-gluon plasma (QGP). Advances in accelerator technology have made possible
to collide heavy ions so as to overcome confinement and recreate this novel phase of matter,
that permeated the Universe shortly after inflation. Quantifying the dynamics of the QGP
formation, relaxation and final dissipation into the hadron shower experimentally detected
forces us to deepen into our understanding of QFTs out-of-equilibrium.

In parallel with these developments, novel phases of fermionic matter have been found
in the condensed matter realm; most famously, high-Tc superconductors. These phases
defy the standard description in terms of weakly-coupled quasiparticles: they are apparently
strongly-coupled systems, where these entities cannot even be defined. In fact, the QGP itself
is believed to be a strongly-coupled liquid above/but close to the deconfinement transition,
which is the relevant energy regime for the experiments carried on at RHIC and LHC.

If so, we face a problem. Standard perturbative QCD techniques are certainly not valid
at strong-coupling: a collective medium in this regime is not ammenable to a kinetic de-
scription. Furthermore, even if Lattice QCD allows one to perform explicit computations
at any coupling, the sign problem prevents any attempt to study real-time processes, since
numerical control demands working with the Euclidean version of the theory. The finite
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resolution unavoidable in any numerical approximation implies that the analitycal continu-
ation of Lattice QCD answers to real-time is an ill-defined procedure. Not even transport
coefficients in linear response theory can be efficiently accessed, even though they are of the
uttermost importance in order to characterize the time-evolution of the QGP when it enters
into the hydrodynamical regime.

Far from being specific to the QGP, these caveats apply to the first-principles study of
any dynamical process in a strongly-coupled phase of matter with no quasiparticles. We
soon realize that the standard field theorist arsenal has no weapon that can take down this
problem. This would be a sad endpoint, if it were not for one of the most remarkable tri-
umphs of the human endeavor: string/M-theory.

Originally proposed as a theory of the strong interaction in the sixties, string theory was
soon after recognized as a viable theory of quantum gravity (QG), at the same time that
is was being surpassed by QCD in its original goal. Latter research, culminating in the
First Superstring Revolution in the eighties, showed that string theory included the necessay
ingredients to generate four-dimensional, anomaly free non-abelian gauge theories with the
right properties to describe Nature and, furthermore, consistently coupled to gravity. The
nineties witnessed the discoverement of new objects of extended nature, called D-branes.
At the same time, it was discovered that the five different string theories known from the
First Superstring Revolution where secretly related by a web of non-perturbative dualities.
This observation sparked the Second Superstring Revolution, that changed completely the
previous perspective on the theory. Rather than being independent, the different superstring
theories were different perturbative limits of a fundamental theory, whose final nature is still
waiting to reveal herself in its full splendor: M-theory.

It is in this context where the holographic duality first appears. Introduced by Maldacena
in 1997 by carefully examining a system of D-branes, the holographic duality postulates that
certain non-abelian gauge theories, without gravity, are secretly string theories living in a
higher-dimensional spacetime. From a rethorical perspective, the higher-dimensional string
theory is a hologram, encoded by the lower-dimensional QFT. The strongly-coupled and
large-N regime of these holographic QFTs is shown to be equivalent to the classical, pointlike
limit of their string theory counterparts. As these strings theories are consistent theories of
QG, this limit is nothing but General Relativity in a higher-dimensional spacetime. More
concretely, the QFT has an ultraviolet fixed point: it is a conformal field theory (CFT) at
high energies. In accordance with this fact, the spacetime in which its dual gravitational
theory lives is asymptotically anti-de Sitter (AdS). In this way, the duality usually goes
under the name of AdS/CFT correspondence. Asymptotically AdS spacetimes are endowed
with a timelike boundary at infinity, and the dual CFT can be pictured as living on it.

In the light of the discussion above, we realize that AdS/CFT is a first-principles tool
to study out-of-equilibrium processes at strong-coupling, at least in certain QFTs. We just
have to map the QFT setup we are interested in into a classical gravitational construction.
In this way, considering a strongly-coupled QFT at thermal equilibrium involves putting a
stationary black hole in the gravity theory. Wonderfully, classical black hole thermodynamics
is mapped to the standard thermodynamical description of a QFT plasma. Moreover, black
hole perturbations encode both the linear and the hydrodynamical response of this plasma.
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Transport coefficients can be easily computed, and the limits of validity of the hydrodynamic
expansion can be addressed. Most famously, it was found that the shear-viscosity to entropy-
density ratio of these holograhic plasmas was lower than the one present in any system ever
observed in the laboratory. More remarkably, compatible with the value experimentally
measured for the QGP at RHIC.

This observation bolstered a rapidly developing line of research, that tries to under-
stand the fully out-of-equilibrium regime of the QGP by employing holographic QFTs as
toy models. Starting from some excited state, the formation of an equilibrated plasma in
the holographic QFT is nothing but a process of black hole formation in familiar General
Relativity. Our originally intractable problem is thus reduced to solving a coupled system
of non-linear PDEs, a task that can be undertaken by standard numerical techniques. This
corner of the AdS/CFT landscape goes under the name of Numerical Holography. Far from
being restricted to an effective modeling of the QGP, Numerical Holography has proven to
be useful in a wide variety of different physical setups. These include, for instance, quantum
turbulence or quantum quenches in strongy-coupled systems.

This thesis focuses on the study of this last kind of process in the case where the holographic
QFT lives on a finite-sized space. The interplay of finite size effects with the strong-coupling
limit of a quantum theory out-of-equilibrium leads to a rich landscape of possible routes to
thermalization, or even to its absence thereof. Charting and, more importantly, understand-
ing these routes is a challenging endeavor, both from the theoretical and from the purely
computational perspective.

The entanglement entropy

The partition functions and the Hlbert spaces of the CFT and the gravitational theory are
identified by the duality. This identification provides a way of accessing the partition function
of the strongly-coupled CFT in terms of the partition function of the classical gravitational
theory, allowing for an explicit computation of n-point correlation functions or entanglement
entropies in the CFT.

Consider a quantum system described by some Hilbert space H, that we factorize in two
subsystems, A e Ā, as H = HA ⊗HĀ. The entanglement entropy of A, SA, is defined as the
von Neumann entropy of the reduced density matrix of the subsystem,

SA = −tr(ρA log ρA),

and provides a measure of the ammount of correlation between A and Ā. In QFT, the
subsystem A typically corresponds to a spacelike region in a Cauchy surface.

In the case of a holographic CFT, this region lives in the boundary of an asymptoti-
cally AdS spacetime. Let us consider a spacelike codimension-two hypersurface σA which,
departing from the boundary of A, penetrates inside this spacetime. From the set of hy-
persurfaces σA of this kind, take the one that minimizes its area, γA. The entanglement
entropy of A is given by the area of this extremal hypersurface from a relation analogous to
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the Bekenstein-Hawking formula computing the entropy of a black hole

SA =
1

4G
Area(γA).

This formula is known as the holographic prescription for the entanglement entropy, or HEE
prescription for short [63, 64, 65]. The HEE prescription also applies in the case where the
CFT state, and as a consequence the dual geometry, are time dependent. Therefore, it allows
accessing the dyamical evolution of the entanglement entropy in a thermalization process.

Thus, the entanglement entropy is an quantity extremely useful to characterize how an
out-of-equilibrium system relaxes. The main problem it presents is that its computation
cannot be carryed out in a generic situation. The existence of the HEE prescription shows
that holoraphic CFTs are an exception to this observation. However, they are not the only
one. The entanglement entropy can be also computed explicitly in 1 + 1-dimensional CFTs,
with the help of the so-called replica trick. Calabrese and Cardy were the first to employ
this method to obtain the entanglement entropy of a one-dimensional system that had been
taken out of equilibrium by a quantum quech.

Quantum quenches

Let us consider a Hamiltonian H0 that depends on an external parameter λ0, and image
that the system is in the groundstate. A quantum quench consists on the sudden change
λ0 → λ1 = λ0 + δλ. With respect to the new Hamiltonian H1, the original groundstate of
H0 is a highly excited state. Its subsequent time evolution with respect to H1 must lead in
a natural way to the final thermalization of the system.

Calabrese and Cardy were the first to compute the entanglement entropy evolution in a
process of this type [22]. They started with the groundstate of a 1 + 1-dimensional theory
with a mass gap, that lived on an infinite line. By erasing suddenly the mass gap, this
groundstate becomes a highly excited state in a conformal theory. Calabrese and Cardy
observed that, during the time evolution of this excited state, the expectation values of non-
conserved quantities relaxed exponentially fast to their thermal equilibrium value. However,
the relaxation of the entanglement entropy of a segment on length l displayed a totally
different behavior. There exists a horizon time, th = l/2, such that i) for times 0 ≤ t < th,
the entanglement entropy growth linearly, Sl ∝ t and ii) for times t ≥ th, the entanglement
entropy saturates at its thermal equilibrum value, Sl = lsth, where sth is the thermodynamical
entropy density of the system.

In their original work, Calabrese and Cardy explained the existence of the horizon effect
in terms of a simple heuristic picture. They assumed that the sudden removal of the original
mass gap resulted in the creation of a homogeneous distribution of pointlike entangled quasi-
particle pairs and that, after the quench, these quasiparticles traveled in opposite directions
at the speed of light. This picture explains in a natural way both the existence of regimes i)
and ii) as well as the particular value of th.

In a remarkable way, in [26] it was shown that in 1 + 1-dimensional holographic CFTs,
the computation of the entanglement entropy in the simplest model of gravitational collapse
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available precisely reproduced the horizon effect, even though we are in a strongly-coupled
theory. This spacetime is the Vaidya solution, which represents the gravitational collapse of
a distribution of null dust or incoherent radiation.

Thermalization in finite-size systems

Whe considering a finite-sized system, new ways of relaxation to thermal equilibrium may
appear. Already at the classical level, the Fermi-Pasta-Ulam-Tsingou paradox (FPUT para-
dox) demonstrated that the existence of finite size effects enriches significantly the possible
routes to equilibration the system has at its disposal.

The FPUT paradox was the foundational numerical experiment of the field of computa-
tional physics. FPUT started from a one-dimensional chain of particles coupled harmonically
at first neighbours. This system is integrable, as the energy-per-mode is a conserved quantity.
In this case, the initial energy of the system cannot be redistributed between the different
normal modes, in such a way that equipartition is impossible and thermalization cannot
be achieved in a standard sense. Fermi’s original expectation was that the introduction of
small aharmonic couplings between the particles would result in an ergodic behavior, that
would finally lead to the equipartition of the initial energy. Starting from an initial state in
which only the fundamental mode was excited, the simulations performed showed that, at
short times, this expectation was correct: energy started to flow to higher normal modes.
However, at sufficiently long times, it was observed that most part of the energy came back
again to the fundamental mode: the initial state was reconstructed in a quasiperodic way.

The FPUT paradox consists of the observation that nonlinearity is not a sufficient con-
dition for ergoidicity. Understanding the physics behind this paradox contributed decisevely
to some of the most important breaktroughs of the XXth century in classical mechanics, as
soliton theory an chaos theory. Even today, there exist aspects of the FPU paradox that
await to be fully understood as, for instance, its persistence in the thermodynamic limit.

The experimental evidence available clearly shows that macroscopic, isolated and finite-
sized quantum systems also display a rich phenomenology. There exists a plethora of routes
to final equlibration that depend both on the microscopic interactions and the inital state,
and it has even been veryfied that in somes cases an ergodic behavior is not quickly estab-
lished. For certain integrable systems, the initial momentum distribution frozens and the
memory of the initial state is conserved. A paradigmatic example of this phenomenon is the
quantum Newton’s cradle [170]. In quasi-integrable systems, thermalization may not happen
right away, but rather the system can go through a mestastable intermediate phase known
as pre-thermalization. For other systems, the time needed for the loss of quantum coherence
is greater than the characteristic propagation time of the excitations, and the initial state
can be partially reconstructed several times before thermalization finally takes place.

This reconstruction of the initial state is named a quantum revival. A well-known ex-
perimental example of this phenomenon is provided by a three-dimensional Bose gas in an
optical lattice [184]. At the theoretical level, quantum revivals have been recently studied
by Cardy in the context of 1 + 1-dimensional rational CFTs [187] and are trivially present
in free theories. For instance, in [178] Takayanagi and Ugajin computed the time evolution
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of the entanglement entropy of a free Dirac fermion on a circle of lenght 2π after a quantum
quench. The entanglement entropy turned out to be periodic, coming back to its initial value
every π seconds. In the light of this observation, Takayanagi and Ugajin proposed that that
this process could be represented holographically as the periodic formation and evaporation
of a quantum black hole.

The natural question is if there exist a process analogous to the Takayanagi and Ugajin
one at strong coupling. Under the AdS/CFT correspondence, answering this question just
ammounts to finding out if there exist oscillating geometries in General Relativity in an
asymptotically global AdS spacetime. The answer is affirmative, and represents the focus of
chapters 2, 3 and 4 of this work.

Quantum revivals in Holography

Even though the Vaidya solution considered in [26] can be trivially generalized to the global
case, the fact that the radiation supporting it is incoherent implies that the matter wave-
front does not have an internal pressure able to counteract the attractive force of gravity.
Therefore, this solutions represents a process of direct gravitational collapse to a black hole.
Obtaining an oscillating geometry implies considering coherent radiation.

The simplest example of coherent radiation is provided by a massless scalar field. The
study of gravitational collapse processes triggered by scalar fields is an old subject in numer-
ical General Relativity. Already at the level of asymptotically flat spacetimes, the pioneering
work of Choptuik in this area allow establishing the existence of critical phenomena in gravity
[158]. Choptuik observed that, depending on its total energy, a spherically symmetric scalar
pulse could face two distinguished fates. At energies above some threshold energy, the pulse
collapse directly to a black hole. However, at energies below this threshold, collapse did not
take place: the pulse implosioned and the dispersed to future null infinity. The fundamental
discoverement of Choptuik lies between these two possibilities: at the threshold energy, the
scalar pulse evolves to an universal solution that contains a naked singularity at its center.
The existence of this solution explains the critical behavior of the mass of the black holes
formed by scalar pulses just above threshold.

This numerical experiment can be repeated in an asymptotically global AdS spacetime.
For scalar pulses energetic enough, the results agree with the original ones of Choptuik.
However, for scalar pulses below threshold, the phenomenology changes radically. After
implosioning and dispersing, the scalar pulse reaches the spacetime boundary in a finite
time, where it is reflected. This reflection results in a new implosion. The natural question
that arises is what happens next. This problem was addressed by Bizon and Rostworowski
in 2011 [130]. For the scalar pulse shape they considered, their observations vindicated that,
independently of the initial energy, the evolution after the first implosion always results in
gravitational collapse; there exists a sequence of critical energies {Mn, n ∈ N} such that, if
the energy M of the scalar pulse lies in the range Mn+1 < M < Mn, a black hole forms after
n rebounds against the AdS boundary.

The merchanism underlying the existene of the sequence of critical energies is a turbulent
instability: by decomposing the scalar field in normal modes, it is found that the initial en-
ergy flow from low to high frequencies, until a power-law spectrum is eventually established.
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In real space, after each implosion, part of the scalar pulse focuses. This focusing results in
an increment of the local energy density, that eventually is concentrated enough to form a
black hole.

In the light of the holographic duality, in chapter 2 we propose that oscillating geome-
tries that eventually end up forming a black hole are correspond to macroscopical states in
the dual CFT that experience a series of quantum revivals before thermalizing completely.
We focus on four-dimensional oscillating geometries, reproducing different results previously
obtained in the literature and introducing some new ones. We support our proposal in an
explicit numerical computation of the entanglement entropy, following the HEE prescription.
We analyze in detail the different regimes that the entanglement entropy goes through during
its time evolution, as well as their dependence on the initial state considered.

In chapter 3 we discuss three-dimensional oscillating geometries. General Relativity in
asymptotically AdS3 spacetimes is essentially different from its higher-dimensional coun-
terparts. The fundamental reason behind this difference stems from the fact that global
AdS3 is separated by the static black hole solutions by a mass gap. Within this gap, the
static geometries correspond to horizonless conical singularities. The study of dynamical
scalar fields in these spacetimes was initiated by Pretorius and Choptuik in the context of
critical phenomena in gravitation [160], and was revisited recently by Bizon and Jalmuzana
with the focus on the possible existence of the turbulent instability and is consequences for
cosmic censorship. They determined that, even though the instability is still present, it never
leads to a cosmic censorship violation, as it does not form a conical singularity in finite time.

Our focus in this chapter is discussing the entanglement entropy evolution in these three-
dimensional oscillating geometries, which we compare with the results obtained in chapter
2. We demonstrate that, in three dimensions, these geometries represent quantum revival
processes with an apparently arbitrary periodicity, in stricking contrast with their higher-
dimensional counterparts. We analyze in detail the dependence of this period with respect
to the energy density of the initial state and the scalar pulse shape, and discuss the physics
behind its increase. Finally, we comment on simple quantu systems where this phenomenon
also takes place.

Nowadays, there is solid evidence favoring that the existence of oscillating geometries in
asymptotically global AdS spacetimes is a generic phenomenon. Up to this point, we have
only mentioned nonlinearly unstable oscillating geometries, that eventually end up collaps-
ing into a black hole. However, this is not the only possibility. There exist cases in which
the turbulent instablity is not at work [135]. Instead of thermalizing, the dual CFT remains
forever in a quasiperiodic state, keeping the memory of the initial one.

The natural question that arises is which is the physical mechanism that underlyes this
inhibition of the turbulent instability. One answer can be found in [136], where it was
emphasized that the existence of the turbulent instability herself relies on the fact that the
eigenfrequency spectrum of the normal modes of the scalar field over global AdS is exactly
resonant, i.e., it has a linear dispersion relation. In this way, an oscillating solution could be
immune to the turbulent instability if, instead of being a perturbation of global AdS, could
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be regarded as a perturbation of an attractor that breaks the linearity of the dispersion
relation. Do these attractors exist?

Already in the original work of Bizon and Rostworowski, it was suggested that a scalar
normal mode over AdS4 allows for a nonlinear extension to an exactly periodic geometry.
These geometries were constructed numerically by Maliborski and Rostworowski in [140],
and were previously known for a complex scalar field [210]. In this last case, in [134] it was
shown that the normal mode eigenfrequency spectrum of the complex scalar field over the
exactly periodic solution is non-resonant, as well as that this property is directly correlated
with the absence of the turbulent instablity for perturbations of this solution. Assuming that
the nonlinearity of the dispersion relation holds also in the real case, the nonlinear stability
of the oscillating geometries constructed in [135] can be explained by this argument [141].

Far from being restricted to spherically symmetric setups, exactly periodic geometries
also appear in the purely gravitational case, where they are known as geons [167]. Collecting
the experimental evidence available so far, the existence of exactly periodic geometries seems
to be a common feature of asymptotically global AdS spacetimes.

In chapter 4 we check that, under mild dynamical assumptions, this kind of solutions ex-
ist in the simplest setup imaginable: we consider a spherically symmetric thin shell with a
linear equation of state. The shell interior is given by a global AdS spacetime, while the
exterior corresponds to a global AdS-Schawarzschild spacetime with a mass equal to that
of the shell. The shell equation of motion is determined by the Israel junction conditions,
which guarantee that the Einstein equation is well-defined in a distributional sense.

By scanning over the spacetime dimensionality we establish that, in any dimension,
our construction supports thin shells that oscillate periodically between a maximum and
a minimum radius, as long as the matter they are made of has a nonzero pressure. We check
that the shell never crosses its Schwarzschild radius, and illustrate how this simple exactly
periodic solutions present similar properties to the solutions we discussed in the previous
paragraphs.

Holographc thermalization at finite charge density

In chapter 5 we undertake the study of the turbulent instability in situations where there
exist an additional conserved quantity in the CFT: the charge density. With this aim, we
consider a gravitational theory in global AdS4 that contains a massless, complex scalar field,
covariantly coupled to an electromagnetic field.

The electromagnetic field is dual to a conserved current. Therefore, our CFT is endowed
with a global U(1) internal symmetry. The fact that the scalar field is charged implies that
its dual operator also has a nontrivial charge under this global symmetry. The possible equi-
librium states the CFT has at its disposal are significantly enriched. When the expectation
value of the scala operator vanishes, the gravitational solution corresponding to an equi-
librium state at finite temperature with a nonzero charge density is a Reissner-Nordström
black hole. However, this is not the only solution at finite charge density. There exists also
the possibility of obtaining states where the global U(1) symmetry is spontaneously broken:
the dual scalar operator adquires a nonzero expectation value. From the CFT point of view,
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these states are superfluids. From the gravitational theory point of view, they correspond to
hairy black holes, where a nontrivial scalar field profile exists outside the horizon. Further-
more, there is also possible to obtain other horizonless solutions with this property. These
geometries are dubbed solitons, and are static configurations supported by a nontrivial scalar
field. Their very existence relies of the fact that the presence of electrostatic repulsion is
able to compensate exactly the attractive force of gravity. From the dual point of view, they
correspond to pure states that must be pictured as macroscopic Bose-Einstein condensates.

The existence of these different equilibrium states leads to a rich phase diagram, that
we construct both in the microcanonical and grand-canonical ensembles. When several
phases coexist, the dominant one corresponds to the solution that extremizes the appropriate
thermodynamical potential. In the microcanonical ensemble, this potential is the entropy,
which must be maximized; in the grand-canoncial ensemble, this potential corresponds to
the Gibbs free energy. Depending on the value of the electromagnetic coupling, there exist
three well differentiated structures for the microcanonical phase diagram, which we discuss
in detail.

Once the landscape of equilibrium states the theory could thermalize into is understood,
we perform a study of the holographic thermalization is this model. We check that the eigen-
frequency spectrum of the scalar field normal modes over global AdS4 is exactly resonant,
and we demonstrate that the turbulent instability is still present for small perturbations of
the vacuum, even at finte charge density. These results validate the hypothesis proposed in
[136]. We also consider collapse protocols at constant charge density, and we show that for
sufficiently small masses the turbulent instability is inhibited. This suggest that the non-
linear stability of the initial data considered is controlled by a soliton with a nonresonant
eigenfrequency spectrum.

With this expectation in mind, we undertake the stability analysis of the soliton, both at
the linear and at the nonlinear level. We argue that when the mass of the solution reaches an
extremum in terms of its central energy density a linear instability appears, and we confirm
this hypothesis by means of a numerical computation of the soliton normal modes. The
results we obtain also show that, indeed, the eigenfrequency spectrum is non-resonant.

Having confirmed our previous expectations, we study the nonlinear stability of the
soliton. We identify a region where neutras perturbations of the soliton never result in
gravitational collapse, and bound its extension in the microcanonical phase diagram by
finding the critical mass curve below which the perturbation considered requires at least one
rebound against the AdS boundary to form a black hole. This critical mass curve does not
show the right scaling properties to survive in the planar limit, and therefore we argue that
oscillating geometries disappear in this limit. We put forward the hypothesis that the critical
mass curve can only survive if, under this limit, the soliton maps to a solution that breaks
the infrared conformal symmetry of the theory, i.e., if the dual theory has a mass gap.

Finally, we study the post-collapse relaxation of the expectation value of the scalar oper-
ator and the chemical potential. In the case here the initial perturbation collapses directly to
a black hole, we identify three different relaxation regimes, that we put into correspondence
with previous discoverements in the planar case [103]. The agreement between the results of
[103] and our observations, given the manifest difference between our constructions, signals
that that the existence of these three regimes in our case relies on the mechanism proposed
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in [103] and points to its universality. Finally, we also consider the post-collapse relaxation
of the expectation value of the scalar operator in oscillating geometries. This problem is
extremely demanding from the numerical point of view but, nevertheless, we are able to
identify a novel relaxation regime, where this quantity displays long-lived oscillations.

Holographic quenches

Up to this date, studies of holographic thermalization in global AdS startfrom an out-of-
equiibrium state, specified by some initial data, and do not address the question of how this
initial state can in principle be produced. In chapter 6, we undertake, for the first time, the
study of quantum quenches in Holography in the global context.

We consider homgeneous holographic quenches implemented by a deformation of the
CFT Lagrangian by means of a marginal scalar operator. In this way, our gravitational
theory coincides with the one discussed in 2. Our quench is implemented by turning on a
non-normalizable mode of the scalar field. Recently, the fast quench limit has been under an
intense theoretical survey [217]. In holographic constructions, it has been possible to show
that the energy injected by the quench satisfies simple scaling laws in terms of its time span.
Afterward, these results have been confirmed in conformal perturbation theory.

However, our focus in this chapter are not the fast, but the adiabatic quenches. We con-
sider an injection process in which the non-normalizable mode of the scalar field increases
linearly with time. Surprisingly, for small enough slopes, the system, instead of ending up
forming a black hole, relaxes to an attractor that we identify: the pumping solution. This
solution is endowed with a static metric, and its only nontrivial time dependence comes from
the scalar field. We discuss the fundamental properties of these pumping solutions, demon-
stating that they only exist for linear injection processes with a slope below a maximum,
that indicates the presence of an intrinsic adiabaticity threshold in our system. Below this
threshold, we show that the pumping solution is not univocally determined by the contour
conditions of our problem, as there exist two different branches. The first one is linearly
stable and has a negative mass, while the second is linearly unstable and, within it, the
mass does not have a well-defined sign. Having established the linear stability properties of
the pumping solution, we undertake the analysis of its nonlinear stability. We argue that,
for the linearly stable branch, the stability is mantained at the nonlinear level. The case of
the linearly unstable branch is more complex. We provide evidence in favor of the existence
of two different scenarios, in such a way that this branch is divided into two subbranches.
The second one, upon any perturbation, collapses directly into a black hole. However, the
first one does not collapse gravitationally, but it rather decays into a new attractor that
correponds to a limiting cycle. We perform different checks that favor both the existence as
well as the nonlinear stability of this new solution.

Motivated by the existence of this new kind of solution we build, both at the perturbative
and the numerical level, solutions in which, even though the non-normalizable mode of the
scalar field continues to increase linearly with time, both the expectation value of the dual
scalar operator and the mass of the system are exactly periodic. This solutions are natural
extensions of the time-periodic solutions uncovered in [140] to the case of a nontrivial non-
normalizable mode.
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Being able to employ the negative mass pumping solutions to obtain a normalizable
geometry that shares this property raises an obvious concern regarding the stability of the
AdS vacuum itself. We close our analysis of the four-dimensional pumping solution by
demonstrating that, by turning off the source, a boundary observer can never devise a
normalizable solution with a negative mass. We focus on the process when this turning off
is sufficiently fast, uncovering simple scaling relations for the final positive mass attained by
the system, and discussing their similarities and differences with respecto to similar results
already known in the literature for fast quenches over the vacuum.

Finally, we discuss the three dimensional pumping solution. We demonstrate that, in
this case, this solution can be put into correspondence with other solutions previously knwn
in the literature by means of a series of duality maps. These already known solutions
include charged black hole, purely magnetic solutions, or solutions that break invariance
under spatial translations. With the help of this duality chain, we are able to find an exact
analytical expression for the three-dimensional pumping solution and establish that, in this
case, the intrinsic adiabaticity threshold can be put into correspondence with the extremal
limit of a charged black hole.



Chapter 9

Resumo

Termalización, materia fortemente acoplada e Teoŕıa de

Cordas

Consideremos un sistema macroscópico isolado e en equilibrio. A Segunda Lei da Ter-
modinámica garante que, para as variábeis extensivas caracterizando o sistema -tais como a
enerx́ıa total E, o volume V , a carga eléctrica Q, etc.- a entroṕıa S é maximizada. Endenter
como un sistema macroscópico perturbado acada o estado de equilibrio final predito pola
Termodinámica é o problema da termalización. A natureza non trivial deste problema ponse
de manifesto cando observamos que as leis de evolución f́ısicas, tanto a nivel cuántico como
clásico, son unitarias. Dado un estado inicial arbitrario, nengunha parte da información
que este contén pérdese durante a evolución temporal: a dinámica microscópica do sistema
é invariante baixo inversión temporal. Por tanto, de onde procese a asimetria temporal
implicada pola Segunda Lei?

A irreversibilidade só pode proceder dun proceso de graulado: certa información ref-
erente á descrición exacta do sistema ten que permanecer inacceśıbel para o observador
macroscópico. Para sistemas non isolados, esta perda de información é certamente esperada,
dado que a descrición efectiva do sistema obvia os graos de liberdade do seu entorno. Porén,
no caso dun sistema isolado, a situación enriquécese: a propia dinámica microscópica do
sistema ten que ser responsábel da aparente perda de información.

Un belo exemplo desta última observación pode atoparse na mecánica estat́ıstica clásica.
Para un sistema isolado de enerx́ıa E, confinado nun volume V , a descrición termodinámica
usual do estado de equilibrio final pode obterse de forma inmediata asumindo o postulado
de iguais probabilidades a priori: calquer estado microscópico con enerx́ıa E é igualmente
realizábel polo sistema macroscópico. Este principio é, en segredo, unha asunción dinámica.
Situémonos no espazo de fases do sistema a enerx́ıa constante, que denotamos por Ω(E). As
leis de evolución temporal microscópicas deben ser tais que, a longo prazo, o tempo t que o
sistema pasa nunha rexión ω ∈ Ω(E) é proporcional ao volume de dita rexión, t ∝ Vol(ω):
a dinámica microscópica do sistema debe ser ergódica.

Co descobrimento do caos clásico, a hipótese ergódica gañou fundamentos sólidos. Con-
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sideremos que o sistema está, a t = 0, nunha rexión α(E; 0) ∈ Ω(E) de volume infinitesimal.
Para un sistema caótico, o efecto bolboreta implica as diferentes traxectorias que o sistema
segue no espazo de fases separánse exponencialmente a medida que o tempo transcorre, men-
tres que o teorema de Liouville garante que o volume do espazo de fases ocupado polo sis-
tema permanece invariante, Vol(α(E; 0)) = Vol(α(E; t)). Como consecuencia, a longo prazo,
α(E; t) é unha rexión de estrutura fractal que, observada con resolución finita, redúcese a
Ω(E). A ergodicidade do sistema séguese deste simple razonamento.

Esta imaxe cualitativa non pode ser fundamental, por unha razón: a Natureza é esencial-
mente cuántica e, en f́ısica cuántica, a evolución temporal non é soamente unitaria, mais
tamén linear. Se non podemos confiar no caos, como ten lugar a termalización?

Proporcionar unha resposta definitiva a esta pregunta leva na lista de tarefas pendentes
do f́ısico teórico desde o nacimento da mecánica cuántica na primeira metade do século XX.
Porén, e quizá de xeito sorprendente, non fai atá recentemente que esta pregunta gañou
extensa atención. Estes esforzos culminaron na chamada Hipótese da Termalización de Au-
toestados. Actualmente, crese que esta hipótese describe o mecanismo fundamental detrás
da termalización no reino cuántico. Entender o seu rexime de aplicabilidade, aśı como as
suas pośıbeis excepcións, ten relevado valiosa información sobre a f́ısica fóra do equilibrio de
sistemas cuánticos isolados.

A razón fundamental detrás desta tardanza é que só en tempos recentes sistemas cuánticos
isolados de interés f́ısico foron acceśıbeis experimentalmente. Actualmente, redes ópticas po-
den ser empregadas eficazmente para manipular sistemas de átomos frios no laboratorio cun
razoble grao de isolamento. Diferentes perturbacións poden ser introducidas, e as diferentes
rutas que conducen até o equilibrio térmico, ou a súa ausencia, poden monitorizarse. Lonxe
da f́ısica de moitos corpos non relativista, tamén se prestou grande atención ao proceso de
termalización en teoŕıa cuántica de campos (TCC). Un exemplo paradigmático é o propor-
cionado pola inflación e o subsecuente re-aquecimento. Outro, que se atopa actualmente
baixo un intenso escrutinio experimental, é o plasma de quarks e gluóns (PQG). Avances
tecnolóxicos no campos dos aceleradores de part́ıculas teñen feito pośıbel recrear esta nova
fase de materia mediante a colisión de ións pesados. Cuantificar a dinámica da formación,
evolución e final disipación do PQG na chuvia de hadróns detectada experimentalmente
fórzanos a profundizar no noso entendimento das TCC fóra do equilibrio.

De xeito parelelo a estes avances, novas fases de materia fermiónica tamén foron atopadas
no campo da materia condensada, sendo o caso máis coñecido os supercondutores de alta
temperatura cŕıtica. Estas fases novidosas desaf́ıan a descrición estándar en termos de cuase-
part́ıculas debilmente interactuantes. Aparentemente, son sistemas fortemente acoplados,
onde estas entidades non poden ser definidas. De feito, o propio PQG semella ser un ĺıquido
fortemente acoplado xusto acima da transición ao deconfinamento, que é o réxime de enerx́ıa
relevante para os experimentos levados a cabo nos modernos aceleradores.

Deste xeito, enfrontámonos a un problema. As técnicas perturbativas estándar en cro-
modinámica cuántica non poden aplicarse directamente a acoplamento forte: un medio colec-
tivo neste réxime non se axusta a unha descrición de tipo cinético. Ademais, áında que a
Cromodinámica Cuántica no Ret́ıculo permita realizar cálculos explićıtios a calquer acopla-
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mento, o problema do signo imposibilita calquer intento de estudar procesos en tempo real,
xa que para obter control numérico é preciso traballar na versión eucĺıdea da teoŕıa. A
resolución finita inevitábel en calquer experimento numérico fai que continuar as respostas
obtidas nesta aproximación a tempo real sexa un procedimento indefinido. Nen sequer pode
accederse de xeito eficaz aos coeficientes de transporte do PQG en teoŕıa de resposta lin-
ear, a pesar de que son dunha importancia fundamental á hora de caracterizar a evolución
temporal to PQG unha vez este entra no réxime hidrodinámico.

Lonxe de ser espećıficas ao PQG, estas reservas aplican a xenericamente a calquer estudo
que, partindo de primeiros principios, pretenda abordar un proceso dinámico nunha fase da
materia fortemente acoplada sen cuase-part́ıculas. A caixa de ferramentas estándar do f́ısico
teórico carece dun instrumento capaz de atacar este problema. Este seŕıa un punto e final
certamente triste, de non ser por un dos triunfos máis salientábeis do intelecto humano: a
teoŕıa de cordas ou teoŕıa M.

Orixinalmente proposta como unha teoria da interacción forte nos anos sesenta do século
XX, a Teoŕıa de Cordas foi rapidamente recoñecida como unha teoŕıa viábel da Gravidade
Cuántica (GC), ao mesmo tempo que era sobrepasada pola Cromodinámica Cuántica no
seu obxectivo orixinal. Investigación posterior, que culminou na chamada primeira rev-
olución das supercordas nos anos oitenta, amosou que a Teoŕıa de Cordas incorpora de xeito
automático os ingredientes precisos para construir TCC non abelianas libres de anomaĺıas
capaces de describir a Natureza e, ademais, consistentemente acopladas á gravidade. Os
anos noventa foron testigos do descobrimento de novos obxectos de natureza extensa, de-
nominados D-branas. Ao mesmo tempo, decubriuse que as cinco teoŕıas de cordas coñecidas
desde a primeira revolución das supercordas estaban relacionadas en segredo por unha rede
de dualidades non perturbativas. Esta observación, que foi a semente da segunda revolución
das supercordas, cambiou de ráız a perspectiva anterior sobre a teoŕıa. En lugar de ser inde-
pendentes, as diferentes teoŕıas de cordas son diferentes ĺımites perturbativos dunha única
teoŕıa máis fundamental, cuxa naturaleza final áında agarda a ser revelada en todo o seu
esplendor: a teoŕıa M.

É neste contexto cando a dualidade holográfica aparece por primeira vez. Introducida
por Maldacena no ano 1997 mediante a análise coidadosa dun sistema de D-branas, a cor-
respondencia postula que certas teoŕıas gauge non abelianas, sen gravidade, son en segredo
teoŕıas de cordas que habitan un espazo-tempo de dimensión máis alta. Desde unha per-
spectiva retórica, a teoŕıa de cordas en dimensión superiores é un holograma, codificado na
teoŕıa gauge. O aspecto máis poderoso da dualidade holográfica é a súa natureza forte/débil:
cando o grupo de simetŕıa gauge da TCC ten un rango infinito, e o acoplamento é forte,
a teoŕıa de cordas dual atópase no ĺımite clásico e puntual. Dado que a teoŕıa de cordas é
unha teoŕıa consistente de GC, este ĺımite non e máis que Relatividade Xeral estándar nun
espazo-tempo multidimensional. Máis concretamente, a teoŕıa cuántica de campos posúe un
punto fixo ultravioleta: é unha teoŕıa cuántica de campos conforme a altas enerx́ıas (unha
conformal field theory ou CFT). De acordo con este feito, o espazotempo no que habita a súa
teoŕıa gravitatoria dual é asintóticamente anti-de Sitter ou AdS. Deste xeito, a dualidade
recibe habitualmente o nome de correspondencia AdS/CFT. Os espazotempos asintotica-
mente AdS posúen unha fronteira de tipo tempo no infinito, e pode imaxinarse que nela
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habita a CFT dual.

Á luz do anterior, vemos que AdS/CFT é unha ferramenta de primeiros principios para
estudar procesos fóra do equilibrio a acoplamento forte, polo menos en certas TCC. Soamente
é preciso atopar a construción graviatotoria dual ao proceso en TCC no que estexamos
interesados. Deste modo, considerar unha TCC a acoplamento forte en equilibrio térmico
impica incluir un buraco negro estacionario na teoŕıa gravitatoria. De xeito marabilloso, a
termodinámica de buracos negros é posta en correspondencia coa descrición termodinámica
estándar dun plasma equlibrado en TCC. Ademais, as diferentes perturbacións deste buraco
negro codifican tanto a resposta linear como a resposta hidrodinámica deste plasma. Os
coeficientes de transporte do plasma poden ser calculados eficazmente, e pode accederse aos
ĺımites de validez da expansión hidrodinámica. Un famoso resultado é que o ratio entre a
visocidade e a densidade de entroṕıa do plasma holográfico é menor que o de calquer fluido
xamais observado no laboratorio e, de forma máis salientable áında, da orde de magnitude
do valor determinado experimentalmente para o PQG.

Esta observación cimentou unha liña de investigación en rápido densenvolvimento, que
intenta comprender o réxime fóra do equlibrio do PQG empregando TCC holográficas como
modelos de xoguete. Partindo dun certo estado excitado, a formación dun plasma equili-
brado na TCC holográfica é nada máis que un proceso de colapso gravitatorio na imaxe dual.
Este proceso de termalización, orixinalmente intratábel, é por tanto mapeado nun sistema
non linear de ecuacións en derivadas parciais acopladas, que pode resolverse con técnicas
numéricas estándar. Esta esquina da paisaxe da correspondencia AdS/CFT coñécese como
holograf́ıa numérica. Lonxe de estar restrinxida a unha modelización efectiva do PQG, a
holograf́ıa numérica ten demostrado ser útil nunha grande variedade de problemas f́ısicos.
Estes inclúen, por exemplo, turbulencia cuántica ou quenches cuánticos en sistemas forte-
mente acoplados.

Esta tese ocúpase do estudo deste último tipo de procesos, no caso no que a TCC holográfica
habita nun espazo de tamaño finito. A interrelación entre efectos de tamaño finito e o ĺımite
de acoplamento forte dunha teoŕıa cuántica fóra do equilibrio da lugar a unha rica paisaxe de
rutas cara a termalización, ou incluso á sua ausencia. Clasificar e, de xeito máis importante,
entender estas rutas supón un desaf́ıo, tanto desde unha perspectiva teórica como puramente
computacional.

A entroṕıa de entrelazamento

As funcións de partición e os espazos de Hilbert da CFT e da teoŕıa gravitatoria identif́ıcanse
baixo a dualidade. Esta identificación proporciona a posibilidade de acceder á función de
partición da CFT fortemente acoplada en termos da función de partición da teoŕıa gravita-
toria clásica, permitindo o cálculo de funcións de correlación a n-puntos ou de entroṕıas de
entrelazamento na CFT.

Consideremos un sistema cuántico descrito por un espazo de Hilbert H, que factorizamos
en dous subsistemas A e Ā como H = HA ⊗ HĀ. A entroṕıa de entrelazamento de A, SA,
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def́ınise como a entroṕıa de von Neumann da matriz densidade reducida do subsistema,

SA = −tr(ρA log ρA),

e proporcion unha medida do grado de correlación existente entre A e Ā. En TCC, o
subsistema A é tipicamente unha rexión espacial nunha superficie de Cauchy.

No caso dunha CFT holográfica, a rexión A habita na fronteira dun espazotempo asintóti-
camente AdS. Consideremos unha hipersuperficie tipo espazo σA que, partindo da fronteira
de A, se introduce no interior deste espazotempo. De entre todas as pośıbeis hipersuperficies
σA deste tipo, tomemos a que extremiza a súa área, γA. A entroṕıa de entrelazamento de A
ven entón dada pola área desta hipersuperficie extremal en termos dunha fórmula análoga á
relación de Bekenstein-Hawking para a entroṕıa dun buraco negro,

SA =
1

4G
Area(γA).

Esta fórmula coñécese como prescrición holográfica para a entroṕıa de entrelazamento ou
prescrición HEE [63, 64, 65]. A prescrición HEE aplica tamén no caso de que o estado
da CFT, e por tanto a xeometŕıa dual, dependen do tempo. Por tanto, permite acceder á
evolución dinámica da entroṕıa de entrelazamento nun proceso de termalización.

A entroṕıa de entrelazamento é por tanto unha cantidade extremadamente útil para
caracterizar cómo un sistema fóra do equilibrio se relaxa. O principal problema que presenta
é que o seu cálculo non pode levarse a cabo nunha situación xeral. A existencia da prescrición
HEE amosa que as CFTs holográficas son unha excepción a esta observación. Porén, non
son a única. A entroṕıa de entrelazamento pode tamén calcularse explicitamente en CFTs
1+1-dimensionais, empregando o chamado truco da réplica. Calabrese e Cardy foron os
primeiros en empregar este método para obter a entroṕıa de entrelazamento dun sistema
unidimensional que foi levado fóra do equilibrio mediante un quench cuántico.

Quenches cuánticos

Tomemos un Hamiltoniado H0 que depende dun parámetro externo λ0, e imaxinemos que
o sistema se encontra no estado fundamental. O quench cuántico consiste no cambio súbito
λ0 → λ1 = λ0 + δλ. Con respeito ao novo Hamiltoniano H1, o estado fundamental de H0

no que o sistema se atopaba orixinalmente convértese nun estado altamente excitado. A súa
evolución temporal posterior con respeito a H1 debe levar, de xeito natural, á termalización
final do sistema.

Calabrese e Cardy foron quen de calcular a evolución da entroṕıa de entrelazamento nun
proceso deste tipo [22]. Eles partiron do estado fundamental dunha teoŕıa 1+1-dimensional
cun intervalo de masa, que habita nunha liña de extensión infinita. Eliminando o intervalo de
masa súbitamente, este estado fundamental pasa a ser un estado altamente excitado nunha
teoŕıa conforme. Calabrese e Cardy observaron que, durante a evolución temporal deste
estado excitado, os valores esperados de cantidades non conservadas se relaxan exponencial-
mente ao seu valor en equilibrio térmico. Porén, a relaxación da entroṕıa de entrelazamento
dun segmento de lonxitude l amosa un comportamento diferente. Existe un tempo de hor-
izonte, th = l/2, tal que i) para tempos 0 ≤ t < th, a entroṕıa de entrelazamento do
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intervalo medra de xeito linear, Sl ∝ t e ii) para tempos t ≥ th, a entroṕıa de entrelazamento
satura ao seu valor en equilibrio térmico, Sl = lsterm, onde sterm e a densidade de entroṕıa
termodinámica do sistema.

No seu traballo orixinal, Calabrese e Cardy explicaron a existencia deste efecto horizonte
mediante unha sinxela imaxe heuŕıstica. Asumiron que a eliminación súbita do intervalo
de masa orixinal resultou na creación dunha distribución homoxénea de pares puntuais de
cuase-part́ıculas entrelezadas e que, após o quench, as cuase-part́ıculas viaxan en direccións
opostas á velocidade da luz. Esta imaxe explica de xeito natural tanto a existencia dos
réximes i) e ii) como o valor particular de th.

De xeito sorprendente, en [26] demostrouse que en CFTs holográficas en 1+1-dimensións,
o cálculo da entroṕıa de entrelazamento no modelo de colapso gravitatorio máis sinxelo
dispoñ́ıbel reproduce de forma precisa o efecto horizonte, a pesar de que nos encontremos
nunha teoŕıa fortemente acoplada. Este espazotempo é a solución de Vaidya, que representa
o colapso gravitatorio dunha distribución de polvo nulo ou radiación incoherente.

Termalización en sistemas de tamaño finito

Cando consideramos un sistema de tamaño finito, novas formas de relaxación ao equilibrio
térmico poden aparecer. Xa a nivel clásico, a paradoxa de Fermi, Pasta, Ulam e Tsingou
(paradoxa FPUT) amosou que a existencia de efectos de tamaño finito enriquece significati-
vamente as pośıbeis rutas cara a equilibración das que dispón o sistema.

A paradoxa FPUT foi o experimento numérico fundacional do campo da f́ısica com-
putacional. FPUT partiron dunha cadena unidimensional finita de part́ıculas acopladas
harmonicamente a primeiros veciños. Este sistema é integrable, xa que a enerx́ıa por modo
normal é unha cantidade conservada. Neste caso, a enerx́ıa inicial do sistema non pode re-
distribuirse entre os modos normais, a equipartición é impośıbel, e por tanto a termalización
nun sentido estándar non pode darse. A expectativa orixinal de Fermi era que a introdución
de pequenos acoplamentos nonlineares entre as part́ıculas resultaŕıa nunha dinámica ergódica
que finalmente conduciŕıa á equipartición da enerx́ıa inicial. Partindo dun estado inicial no
que únicamente o modo fundamental do sistema estaba excitado, as simulación realizadas
amosaron que, a tempos curtos, esta expectativa era correcta: a enerx́ıa comezaba a fluir a
modos normais superiores. Porén, a tempos suficientemente longos, observouse que a maior
parte da enerx́ıa regresaba de novo ao modo fundamental: o estado inicial reconstrúıase de
forma cuase-periódica.

A paradoxa de FPUT consiste na observación de que a nonlinearidade non é condición
suficiente para a termalización. Comprender a f́ısica detrás desta paradoxa contribuiu deci-
sivamente a algúns dos avances máis importantes do século XX en mecánica clásica, como
son a teoŕıa de solitóns ou a teoŕıa do caos. Aı́nda a d́ıa de hoxe, existen aspectos da
paradoxa FPUT que agardan ser totalmente entendidos, como son súa pervivencia no ĺımite
termodinámico.

A evidencia experimental dispoñ́ıbel demostra claramente que sistemas cuánticos macroscópicos,
isolados e de tamaño finito tamén posúen unha rica fenomenolox́ıa. Existe unha plétora de
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rutas cara a equilibración final que dependen tanto das interaccións microscópicas como do
estado inicial, e tense comprobado que en certos casos non se estabelece rapidamente un com-
portamento ergódico. Para certos sistemas integrábeis, a distribución de momentos conxélase
e a memoria do estado inicial consérvase. Un exemplo paradigmático deste fenómeno é o
péndulo de Newton cuántico [170]. En sistemas cuase-integrábeis, a termalización pode non
suceder de maneira directa, senón que o sistema pode atravesar unha fase metaestábel inter-
media denominada pre-termalización. Para outros sistemas, o tempo de perda da coherencia
cuántica é maior que o tempo de propagación caracteŕıstico das excitacións, e o estado inicial
pode reconstruirse parcialmente varias veces antes de que a termalización final teña lugar.

Esta reconstrución do estado inicial do sistema denomı́nase resurximento cuántico. Un
coñecido exemplo experimental deste comportamento é o proporcionado por un gas de Bose
tridimensional nunha rede óptica [184]. A nivel teórico, os resurximentos cuánticos foron
estudados recentemente por Cardy no contexto de CFTs racionais en 1+1-dimensións [187]
e están trivialmente presentes en teoŕıas libres. Por exemplo, en [178] Takayanagi e Uga-
jin calcularon a evolución temporal da entroṕıa de entrelazamento dun fermión de Dirac
libre nunha circunferencia de lonxitude 2π após un quench cuántico. A entroṕıa de en-
trelezamento resultou ser periódica, regresando ao seu valor inicial cada π segundos. Á luz
desta observación, Takayanagi e Ugajin propuxeron que o seu quench pod́ıa representarse
holograficamente como a formación e evaporación periódica dun buraco negro cuántico no
espazotempo dual.

A pregunta natural é se existe un análogo do proceso de Takayanagi e Ugajin a acopla-
mento forte. Baixo a dualidade AdS/CFT, responder a esta pregunta redúcese a averiguar se
existen xeometŕıas oscilantes en Relatividade Xeral nun espazotempo asintóticamente AdS
global. A resposta é afirmativa, e constitúe o foco dos caṕıtulos 2, 3 e 4 deste traballo.

Resurximentos cuánticos en Holograf́ıa

Se ben a solución de Vaidya considerada en [26] pode xeralizarse trivialemente ao caso global,
o feito de que a radiación que lle da soporte sexa incoherente implica que a fronte de onda
non dispón dunha presión interna capaz de se sobrepor á forza atractiva da gravitatición.
Deste xeito, esta solución representa un proceso de colapso gravitatorio directo a un buraco
negro. Obter unha xeometŕıa oscilante implica considerar radiación coherente.

O exemplo máis sinxelo de radiación coherente é o proporcionado por un campo escalar
real. O estudo de procesos de colapso gravitatorio soportados por un campo escalar é unha
vella asignatura en Relatividade Xeral numérica. Xa a nivel de espazotempos asintóticamente
planos, o pioneiro traballo de Choptuik neste eido permitiu estabelecer a existencia de
fenómenos cŕıticos en gravitación [158]. Choptuik observou que, dependendo da súa enerx́ıa
total, un pulso escalar esfericamente simétrico pod́ıa afrontar dous destinos ben diferentes.
A enerx́ıas superiores a unha enerx́ıa umbral, o pulso colapsaba directamente a un buraco
negro. Porén, a enerx́ıas inferiores, o colapso non tiña lugar: o pulso implosionaba sobre si
mesmo e posteriormente dispersábase ao infinito nulo futuro. O descubrimento fundamental
de Choptuik sitúase na transición entre estas dúas posibilidades: á enerx́ıa umbral o pulso
escalar evolúe até unha solución universal que contén unha singularidade desnuda no seu
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centro. A existencia desta solución universal explica o comportamento cŕıtico da masa dos
buracos negros formados por pulsos escalares xusto por riba do umbral.

Este experimento numérico pode ser repetido nun espazotempo asintóticamente AdS
global. Para pulsos escalares suficientemente enerxéticos, os resultados coinciden cos atopa-
dos orixinalmente por Choptuik. Porén, para pulsos escalares por debaixo do umbral, a
fenomenolox́ıa cambia radicalmente. Tras implosionar sobre si mesmo e dispersarse, o pulso
escalar alcanza a fronteira do espazotempo nun tempo finito, onde é reflexado. Isto resulta
nunha nova implosión. A pregunta natural que surxe é que sucede a continuación. Este
problema foi abordado por Bizon e Rostworowski en 2011 [130]. Para a forma do pulso
escalar que consideraron, observaron que, independentemente da enerx́ıa inicial, a evolución
posterior á primeira implosión sempre resulta nun colapso gravitatorio: existe unha secuen-
cia de enerx́ıa cŕıticas {Mn, n ∈ N} tais que, se a enerx́ıa M do pulso escalar se atopa no
rango Mn+1 < M < Mn, un buraco negro se forma tras n rebotes contra a fronteira de AdS.

O mecanismo que subxace á existencia da secuencia de enerx́ıas cŕıticas e unha inestabil-
idade turbulenta: descopoñendo o campo escalar en modos normais, obsérvase que a enerx́ıa
inicial flúe de baixas a altas frecuencias, até que eventualmente se estabelece un espectro
polinómico. No espazo real, tras cada implosión sobre si mesmo, parte do pulso escalar se
focaliza. Esta focalización resulta no incremento da densidade local de enerx́ıa, que even-
tualmente está o suficientemente concentrada como para formar un buraco negro.

Á luz da dualidade holográfica, no caṕıtulo 2 propoñemos que as xeometŕıas oscilantes que
eventualmente rematan colapsando nun buraco negro son duais a estados macroscópicos na
CFT dual que experimentan unha serie de resurximentos cuánticos antes de termalizar defini-
tivamente. Centrámonos en xeometŕıas oscilantes catro-dimensionais, reproducindo difer-
entes resultados previamente obtidos na literatura e introducindo algúns novos. Apoiamos
a nosa proposta nun cálculo numérico expĺıcito da entroṕıa de entrelazamento seguindo a
prescrición HEE. Analizamos en detalle tanto os diferentes réximes que atravesa a entroṕıa
de entrelazamento na súa evolución temporal como a súa dependencia do estado inicial.

No caṕıtulo 3 discutimos as xeometŕıas oscilantes tridimensionais. A Relatividade Xeral en
espazos asintóticamente AdS3 é esencialmente diferente da súa contrapartida en dimesións
superiores. A razón fundamental detrás desta diferenza é que AdS3 global está separado dos
buracos negros estáticos por un intervalo de masa. Dentro deste intervalo, as xeometŕıas
estaticas son singularidades cónicas sen horizonte. O estudo de campos escalares dinámicos
nestes espazotempos foi inciado por Pretorius e Choptuik no contexto dos fenómenos cŕıticos
en gravitación [160], e foi revisitado recentemente por Bizon e Jalmuzna coa atención posta
na pośıbel existencia da inestabilidade turbulenta e as súas consecuencias [159]. Neste tra-
ballo determinouse que, áında que a inestabilidade segue estando presente, esta non resulta
nunha violación da censura cósmica, dado que non conduce á formación dunha singularidade
cónica nun tempo finito.

O noso foco neste caṕıtulo é discutir a evolución da entroṕıa de entrelazamento nas
xeometŕıas oscilantes tridimensionais, que comparamos cos resultados obtidos no caṕıtulo 2.
Demostramos que, en tres dimensións, estas xeometŕıas representan procesos de resurximento
cuántico que poden presentar unha periodicidade aparentemente arbitraria, en marcado con-
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traste co que sucede en dimensións superiores. Analizamos en detalle a dependencia deste
periodo con respeito á densidade de enerx́ıa do estado inicial e a forma do pulso escalar,
e discutimos a f́ısica detrás do seu elongamento. Finalmente, comentamos sobre sistemas
cuánticos sinxelos nos que este fenómeno tamén ten lugar.

Actualmente existe evidencia sólida a favor de que a existencia de xeometŕıas oscilantes
en espazotempos asintóticamente AdS é un fenómeno xenérico. Até o momento, soamente
temos discutido xeometŕıas oscilantes nonlinearmente inestábeis, que eventualmente rematan
colapsando nun buraco negro. Porén, esta non é a única situación que se pode dar. Existen
casos nos que a inestabilidade turbulenta non está activa [135]. A teoŕıa dual, en lugar de
termalizar, permanece para sempre nun estado cuase-periódico, conservando a memoria do
estado inicial.

A pregunta natural que surxe é cal é o mecanismo f́ısico que subxace a esta inhibición
da inestabilidade turbulenta. Unha resposta pode atoparse en [136], onde se enfatizou que
a mesma existencia da inestabilidade turbulenta descansa no feito de que o espectro de aut-
ofrecuencias dos modos normais do campo escalar sobre AdS global é exactamente resonante,
i.e., ten unha relación de dispersión linear. Deste xeito, unha solución oscilante podeŕıa ser
inmune á inestabilidade turbulenta se, en lugar ser unha perturbación sobre AdS global, fose
unha perturbación dun atractor que rompa a linearidade da relación de dispersión. Cales
son estes atractores?

Xa no traballo orixinal de Bizon e Rostworowski se suxeriu que un modo normal es-
calar sobre AdS4 admite unha extensión nonlinear a unha xeometŕıa exactamente periódica.
Estas xeometŕıas foron constrúıdas numericamente por Maliborski e Rostworowski en [140]
para o campo escalar real, e xa eran previamente coñecidas no caso dun campo escalar
complexo [210]. Para este último exemplo, en [134] demostrouse que o espectro de autofre-
cuencias dos modos normais do campo escalar sobre a solución exactamente periódica é non
resonante, aśı como que este feito está directamente correlacionado coa ausencia da inesta-
bilidade turbulenta para perturbacións desta solución. O cálculo análogo para o caso real
non foi realizado, pero asumindo que a nonlinearidade da relación de dispersión se mantén,
a estabilidade nonlinear das xeometŕıas oscilatorias constrúıdas en [135] pode explicarse por
medio deste argumento [141].

Lonxe de estar restinxidas a situacións esféricamente simétricas, xeometŕıas exactamente
periódicas tamén aparecen no caso puramente gravitatorio, onde se coñecen como xeóns
[167]. Xuntando a evidencia experimental dispoñ́ıbel, a existencia de solucións exactamente
periódicas semella ser unha propiedade común dos espazotempos asintóticamente AdS.

No caṕıtulo 4 comprobamos que, baixo asuncións dinámicas moi febles, este tipo de solucións
existen na situación máis sinxela imaxinable: consideramos unha cáscara delgada de materia
cunha ecuación de estado linear e esfericamente simétrica. O interior da cáscara ven dado
por un espazotempo AdS global, mentres que o exterior se corresponde cun espazotempo
AdS-Schwarzschild cunha masa igual á enerx́ıa da cáscara. A ecuación de movimento da
cáscara é determinada polas condicións de pegado de Israel, que se obteñen demandando
que a ecuación de Einstein estexa ben definida nun senso distribucional.

Realizando un barrido na dimensionalidade total do espazotempo demostramos que, en
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calquer dimensión, a nosa construción soporta cáscaras delgadas que oscilan periodicamente
entre un radio máximo e un radio mı́nimo, sempre e cando a materia que as conforma posúa
unha presión distinta de cero. Comprobamos que a cáscara nunca atravesa o seu radio
de Schwarzschild, e ilustramos como estas solucións exactamente periódicas tan sinxelas
presentan propiedades semellantes ás das solucións que discutimos nos parágrafos anteriores.

Termalización holográfica a densidade de carga finita

No caṕıtulo 5 abordamos o estudo da inestabilidade turbulenta en situacións nos que existe
unha cantidade conservada adicional na CFT: a densidade de carga. Con este fin, consid-
eramos unha teoŕıa graviatoria asintóticamente AdS4 global que contén un campo escalar
complexo sen masa, covariantemente acoplado a un campo electromagnético.

O campo electromagnético é dual a unha corrente global conservada. Por tanto, a nosa
CFT posúe unha simetŕıa U(1) global interna. O feto de que o campo escalar estexa cargado
implica que o seu operador marxinal dual ten unha carga non trivial baixo esta simetŕıa
global. Os pośıbeis estados de equilibrio dos que dispón a CFT enriquécense significativa-
mente. Cando o valor de expectación do operador escalar dual é nulo, a solución gravitatoria
que se corresponde cun estado de equilibrio a temperature finita no que densidade de carga
non é nula é un buraco negro de Reissner-Nordström. Porén, esta non é a única solución a
densidade de carga finita. Existe tamén a posibilidade de obter estados nos que a simetŕıa
U(1) global se rompe espontaneamente: o operador escalar dual adquire un valor de ex-
pectación distinto de cero. Desde o punto de vista da CFT, estes estados son superfluidos.
Desde o punto de vista da teoŕıa gravitatoria, corresponden a buracos negros con pelo, nos
que existe un perfil nontrivial do campo escalar fóra do horizonte. Ademais, tamén é pośıbel
obter solucións sen horizonte con esta propiedade. Estas xeometŕıas denomı́nanse solitóns,
e son configuracións estáticas soportadas por un campo escalar nontrivial. A súa mesma
existencia descansa sobre o feito de que a presenza da repulsión electrostática é capaz de
compensar exactamente a forza atractiva da gravidade. Desde o punto de vista dual, cor-
respóndense a estados puros que deben ser visualizados como condensados de Bose-Einstein
macroscópicos.

A existencia destas diferentes estados de equilibrio da lugar a un rico diagrama de fases,
que constrúımos tanto no colectivo microcanónico como no gran-canónico. Cando varias
fasen coexisten, a dominante correspóndense coa solución que minimiza o potencial ter-
modinámico apropiado. No colectivo microcanónico, este potencial é a entroṕıa; no gran-
canónico, é a enerx́ıa libre de Gibss. Dependendo do valor do acoplamento electromagnético,
existen tres estruturas ben diferentes no diagrama de fases microcanónico, que discutimos
en detalle.

Unha vez comprendida a paisaxe de estados de equilibrio nos que pode termalizar a
teoŕıa, realizamos un estudo da termalización holográfica neste modelo. Amosamos que o
espectro de autofrecuencias dos modos normais do campo escalar sobre AdS4 é exactamente
resonante, e comprobamos como a inestabilidade turbulenta segue estando presente para
pequenas perturbacións do vaćıo incluso a carga finita. Estes resultados validan a hipótese
proporsta en [136]. Ao mesmo tempo, consideramos protocolos de colapso a carga constante,
e comprobamos que a masas suficientemente pequenas a inestabilidade turbulenta inh́ıbese.
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Isto suxire que a estabilidade nonlinear dos datos iniciais considerados está controlada por
un solitón cun espectro de autofrecuencias non resonante.

Con esta expectación de fondo, pasamos a estudar tanto estabilidade linear como nonlin-
ear do solitón. Argumentamos que cando a masa da solución alcanza un extremo con respeito
á densidade de enerx́ıa no seu centro unha inestabilidade linear aparece, e confirmamos esta
hipótese mediante un cálculo numérico dos modos normais do solitón, empregando para elo
un método pseudospectral. Os resultados obtidos amosan que, efectivamente, o espectro de
autofrecucias non é resonante.

Tendo confirmado as nosas expectativas previas, pasamos ao estudo da inestabilidade
nonlinear do solitón. Identificamos unha rexión na que perturbacións neutras do solitón
nunca resultan nun colapso gravitatorio, e acotamos a súa extensión no diagrama de fases
microcanónico atopando a curva de masa cŕıtica por debaixo da cal a perturbación consider-
ada necesita polo menos un rebote contra a fronteira de AdS para formar un buraco negro.
Esta curva de masa cŕıtica non manifesta as propiedades de escaleado necesarias para sobre-
vivr no ĺımite planar, e por tanto argumentamos que as xeometŕıas oscilantes desaparecen
nese ĺımite. Propoñemos a hipótese de que esta curva de masa cŕıtica só pode sobrevivir se,
baixo este ĺımite, o solitón se transforma nunha solución que rompe a simetŕıa conforme do
infravermello da teoŕıa, é dicir, se a teoŕıa dual ten un intervalo de masa.

Finalemente, estudamos a relaxación post-colapso do valor esperado do operador escalar
e do potencial qúımico. No caso de que a perturbación colapse directamente a un buraco
negro, identificamos tres réximes de relaxación diferentes, que poñemos en correspondencia
con descubrimentos previos no caso planar [103]. O acordo entre os resultados de [103] e
as nosas observacións, a pesar da diferenza manifesta entre as nosas construcións, sinalan
que a existencia destes tres réximes no noso caso descansa no mecanismo proposto en [103]
e apuntan á universalidade do mesmo. Por último, consideramos tamén a relaxación post-
colapso do valor esperado do operador escalar en xeometŕıas oscilantes. Este problema é
extremadamente demandante desde o punto de vista numérico, pero a pesar disto somos
quen de idenficar un réxime de relaxación novidoso, no que esta cantidade amosa osilacións
de longa vida media.

Quenches holográficos

Até o momento, os estudos de termalización holográfica en AdS global parten dun estado
fóra do equilibrio especificado no instante inicial, pero non abordan como este estado é
orixinalmente producido. No caṕıtulo 6 tratamos por vez primeira quenches cuánticos en
Holograf́ıa no contexto global.

Consideramos quenches holográficos homoxéneo implementado mediante unha defor-
mación do Lagranxiano da CFT por medio dun operador escalar marxinal. Deste xeito,
a nosa teoŕıa gravitaria coincide ca discutida no caṕıtulo 2. O quench impleméntase por
medio da activación no modo non-normalizábel do campo escalar. Recentemente, o ĺımite de
quenches rápidos estivo baixo un intenso escrutinio teórico [217]. En construcións holográficas,
foi posible amosar que a enerx́ıa inxectada polo quench satisface relacións de escala en termos
da súa duración. Posteriormente, estes resultados for confirmados en teoŕıa de perturbacións
conforme.
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O noso foco de atención, porén, non os quenches rápidos, senón os quenches adiabáticos.
Consideramos un proceso de inxección no que o modo non-normalizábel do campo escalar
se incrementa linearmente co tempo. De xeito sorprendente, para pendentes suficientemente
pequenas o sistema, en lugar de rematar colapsando, reláxase a un atractor que idenficamos:
a solución de bombeo. Esta solución posúe unha métrica estática, e a súa única depen-
dencia temporal non trivial provén do propio campo escalar. Discutimos as propiedades
fundamentais destas solucións de bombeo, demostrando como soamente existen para proce-
sos de inxeción lineares cunha pendente por debaixo dun máximo, que indica a existencia
dun umbral de adiabaticidade intŕınseco presente no sistema. Por debaixo deste umbral,
amosamos que a solución non está univocamente determinada polas condicións de contorno
do problema, xa que existen dúas pośıbeis ramas. A primeira é linearmente estábel é ten
masa negativa, mentres que a segunda é linearmente inestábel e nela a masa non ten un
signo definido. Tendo estabelecido a estabilidade linear da solución de bombeo, pasamos ao
estudo da súa estabilidade nonlinear. Argumentamos que, para a rama linearmente estábel,
a estabilidade mantense a nivel nonlinear. O caso da rama linearmente inestábel é máis
complexo. Amosamos evidencia a favor da existencia de dous escenarios diferentes, de modo
que a rama se divide en dúas subramas. A segunda, perante calquer perturbación, decae
directamente a un buraco negro. Porén, a primeira non colapsa gravitatoriamente, senón
que decae a un novo atractor, que se corresponde cun ciclo ĺımite. Realizamos diferentes
comprobacións que favorecen tanto a existencia como a estabilidade nonlinear deste novo
tipo de solución.

Motivados pola existencia deste novo tipo de solucións contrúımos, tanto a nivel pertur-
bativo como numérico, solucións nas que, a pesar de que o modo non-normalizábel do campo
continúa a se incrementar linearmente co tempo, tanto o valor de expectación do operador
escalar dual como a masa do sistema son exactamente periódicos. Estas solucións son ex-
tensións naturais das xeometŕıas descubertas en [140] ao caso dun modo non-normalizábel
non trivial.

Poder empregar a solucións de bombeo de masa negativa para obter unha xeometŕıa
normalizable que comparta esta propiedade da lugar a unha preocupación obvia con respecto
á estabilidade do propio vaćıo AdS. Fechamos a nosa análise da solución de bombeo catro-
dimensional demostrando que, apagando a fonte, un observador na teoŕıa dual non pode crear
unha solución normalizábel de masa negativa. Centrámonos no caso en que este proceso de
apagado é suficientemente rápido, descubrindo sinxelas relacións de escala para a masa final
positiva que acada o sistema, e discutimos as similitudes e diferenzas con respeito a resultados
semellantes xa coñecidos na literatura para quenches rápidos sobre o vaćıo.

Por último, discutimos a solución de bombeo en tres dimensións. Demostramos que,
neste caso, esta solución pode relacionarse por medio dunha serie de dualidades con outras
solucións previamente coñecidas na literatura. Estas solucións inclúen buracos negros carga-
dos, solucións puramente magnéticas, ou solucións que rompen invarianza baixo traslacións
espaciais. Ca axuda desta cadea de dualidades, atopamos unha expresión anaĺıtica exacta
para a solución de bombeo e establecemos que, nesta caso, o ĺımite intŕınseco de adiabatici-
dade pode ser posto en correspondencia co ĺımite extremal dun buraco negro cargado.
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[184] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, “Collapse and revival of the
matter wave field of a bose-einstein condensate,” Nature, vol. 419, no. 6902, pp. 51–54,
2002.
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