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GENERAL INTRODUCTION 

 

TERRESTRIAL GASTROPODS AS AGRICULTURAL PESTS 

With approximately 35,000 current species, gastropods can be considered one of the most 

successful and diverse groups in terrestrial ecosystems (Barker, 2001). In natural 

communities, terrestrial gastropods act mainly as primary consumers, although their 

quantitative importance in this regard is generally considered small (Curry, 1994). However, 

the strong selective pressure that they exert on plants, profoundly affects the morphology, 

phenology and defensive systems of the species they consume (Rathcke, 1985), as well as the 

production, composition and diversity of plant communities (Dirzo and Harper, 1982, Cottam, 

1986, Oliveira Silva, 1992; Speiser, 2001). In addition, terrestrial gastropods physically and 

chemically contribute to the recycling of organic matter (Mason, 1974, Chatfield, 1976; 

Jennings and Barkham, 1976, 1979; Richter, 1979; Curry, 1994; Theenhaus and Scheu, 1996). 

It has also been pointed out that their faeces and mucus may contribute to the structuring of 

soil (Newell, 1967). 

 

Terrestrial gastropods have always been closely related to humans, not only because they 

have been used as food since prehistory, but also due to aspects related to religion, culture or 

economics (Godan, 1999). The consumption of terrestrial gastropods by humans has focused 

almost exclusively on snails, while references to slug consumption are anecdotal and often 

related to folk medicine (South, 1992; Godan, 1999). At present, commercial snail farming 

are widespread in many countries around the world (Iglesias and Castillejo, 1997). 

 

The ability of snails and slugs to store contaminants in their tissues makes them excellent 

indicators of contamination, especially for heavy metals (Martin and Coughtrey, 1982; 

Dallinger et al., 2001). Also, terrestrial gastropods are frequently used as laboratory animals 

and are used as models in studies of neurophysiology, physiology of the circulatory system, 

behavioral ecology, or population genetics (Godan, 1999; Barker, 2001). 
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As negative aspects, terrestrial gastropods can cause severe damage to crops and act as 

vectors of transmission of plant pathogens (viruses, fungi) and intermediary hosts of parasites 

(trematodes, cestodes, nematodes) that affect domestic and wild animals, and even humans. 

For example, snails have been identified as responsible for the transmission of the pathogen 

Phytophthora citricola in avocado (El-Hamalawi and Menge, 1996), and slugs as responsible 

for the spread of Sclerotinia trifoliorum, which causes infections of white clover (Barker, 

2002). It has also been shown that slugs and snails, whose faeces frequently contaminate 

freshly consumed vegetables, act as vectors of Escherichia coli, as bacteria can survive on 

their faeces for up to 3 weeks (Sproston et al., 2006). 

 

A number of species of terrestrial gastropods are considered as agricultural pests because they 

cause serious damage to plants cultivated by man. These animals affect a wide variety of 

species and productive sectors, from large intensive crops to public and private gardens, 

including horticulture, floriculture, forestry, fruit growing, grassland and commercial crops of 

ornamental, aromatic and medicinal plants (Speiser, 2002). According to Barker (2002), land 

gastropods are currently one of the most difficult problems for an agriculture that claims to be 

sustainable. Terrestrial gastropod pest control in organic farming is especially difficult, 

making these animals the most harmful to organic crops according to professional 

associations in UK and Switzerland (Peackock and Norton, 1990; Kesper and Imhof, 1998).  

More recently, Douglas and Tooker (2012) also pointed out that slugs are challenging to 

control because of the limited number of management tactics that are available. Most of the 

research carried out on the importance of terrestrial gastropods as agricultural pests and their 

control has been carried out in Europe during the last third of the previous century, but 

publications on this topic have become increasingly frequent in recent years from other 

geographic areas (Prokop, 2005; Naranjo-García et al., 2007; Nash et al. 2007; Salvio et al., 

2008; Clemente et al., 2008; Hoffmann et al., 2008; Micic et al., 2008; McDonnell et al., 

2009; Ross et al., 2010; Eskelson et al., 2011; Douglas and Tooker, 2012; Douglas et al., 

2015), which demonstrates an increased concern about the negative impact of these animals 

worldwide. On the other hand, some studies suggest that the abundance, range and intensity of 

damage caused by some species of terrestrial gastropods will increase in coming years due to 

the effects of climate change (Willis et al., 2006; Capinha et al., 2014). 
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In economic terms, damage caused by terrestrial gastropods in agriculture is considered to be 

smaller than that caused by other pest organisms, such as insects, mites, nematodes or fungi, 

but in certain geographic areas and crops gastropods are responsible for very large crop losses 

(Barker, 2002). While some land snails can reach pest status even in relatively arid regions, 

slugs are especially problematic in temperate and rainy climates. One of the main 

characteristics of the damage caused to crops by these animals is that their magnitude varies 

widely at regional level and from year to year (Port and Port, 1986). Overall, the majority of 

specialists agree that the damage caused by gastropods has significantly increased in recent 

decades, due to factors such as the simplification of cultivation techniques (prohibition of 

burning straw, reduction of tillage, direct drilling, increased use of set-aside), reduction of 

insect populations due to abusive use of insecticides, the use of new crop varieties more 

susceptible to attack by gastropods, or the accidental or intentional introduction of alien 

species of gastropods in many regions of the world (Hommay, 1995, 2002; Godan, 1999; 

Speiser, 2002; Barker, 2002). 

 

Direct damage caused by terrestrial gastropods in agriculture is related, depending on the crop 

in question, to one or more of the following aspects: 

 

•   reduction of crop volume due to the consumption of seeds, seedlings, roots or aerial parts 

    of adult plants. 

•   loss of quality of the harvested products by the diminution of its size or vigour. 

•   loss of quality due to "cosmetic damage" (quantitative small damages that affect the appeal 

    of the harvested products). 

 

In short, what is affected is the economic value of the crop. The so-called cosmetic damages 

acquire special relevance in the sectors of horticulture and ornamental plants, where the 

external appearance of the final product is of great importance to the consumer, so that any 

small damage or malformation, or the presence in the product of the pest animals, their faeces, 

mucus or eggs, can lead to the loss of much of its economic value (Port and Ester, 2002). 

 

In large monocotyledonous (cereals, forage crops) and dicotyledonous (rape, sunflower, 

soybeans, beets) crops, the most significant damage caused by gastropods is due to the killing 
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of seeds after sowing and the destruction of seedlings, which leads to a significant reduction 

in the number of plants harvested (Port and Port, 1986). In France, 12.5% of the maize 

cultivated area, and 53% of sunflower cultivated area, are systematically treated with 

molluscicidal products (Hommay, 2002). In Great Britain, on the other hand, terrestrial 

gastropods have been estimated to cause on average a reduction of 2% in the annual wheat 

production (Glen and Moens, 2002), and that the rape crops treated with molluscicides have 

increased from 6% to 58% in the period 1977 to 1996 (Moens and Glen, 2002); furthermore, 

consumption of molluscicides in the UK increased by a factor of 67 between the early 1970s 

and mid-1990s (Garthwaite and Thomas, 1996). Crop losses caused by slugs have been 

estimated in approximately £8 million each year in Britain (Port et al., 2003). 

 

Horticultural crops affected by terrestrial gastropods are mainly brassicas (all kind of 

cabbages, Brussels sprouts, cauliflower, broccoli, etc.), but also others such as lettuce, carrots, 

asparagus, peppers, celery, strawberries, etc., frequently suffer the attack of these molluscs 

(Port and Ester, 2002). In horticultural land there is a low degree of soil disturbance and a 

greater diversity of habitats and plant species, factors which favour populations of gastropods. 

In addition, the tolerance of horticultural crops to damage caused by gastropods is generally 

very low, due to the great importance of the cosmetic component (Port and Ester, 2002). A 

clear example is represented by Brussels sprouts: it has been estimated that a single slug (D. 

reticulatum) damages between 4 and 8 sprouts per night, and that even with the application of 

molluscicides, between 60% and 80% of the harvested sprouts usually present some damage 

(Godan, 1973); however, in order to be considered of superior quality, a consignment of 

Brussels sprouts should not show more than 5% of damaged sprouts, even if the damage is 

merely superficial. In the case of cabbages and lettuces, slugs not only cause damage to the 

outermost leaves, which have to be removed before being marketed, but also take shelter 

inside and damage the innermost leaves; it has been observed that even in the conservation 

chambers, at temperatures 1 to 5 °C, the slugs sheltered inside these vegetables continue to 

feed on them (Port and Ester, 2002). 

 

In grassland, the impact caused by terrestrial gastropods is less known, although grassland 

usually harbours abundant and diverse communities (Barker, 2002). It has been pointed out 

that the selective predation of the gastropods on the seeds and seedlings of grassland 
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vegetation interferes with the natural process of regeneration of prairies, with its most 

important effect being the preferential consumption of legumes like Trifolium spp., Lotus 

spp., or Medicago spp., whose role in the productivity of the pasture is paramount: on the one 

hand, they contribute directly to the nutrition of livestock because their protein content and 

digestibility are superior to those of the grasses and, on the other hand, legumes make an 

extremely important indirect contribution to the primary productivity of the whole system 

because of its role in nitrogen fixation, which is the most limiting element of grassland 

productivity (Barker, 2002). Barker et al. (1985), and Barker and Addison (1992) showed that 

populations of the slug D. reticulatum with densities of 20 to 80 individuals m
-2

 produce a 

significant reduction of the leaf surface of Trifolium repens in New Zealand grassland, and 

observed that regular treatments with molluscicides produce an increase in T. repens coverage 

of up to 40%. Baker (1989) observed that the presence of populations of the snail Theba 

pisana can reduce by 23% the primary production in South Australia prairies, and by 75% the 

production of Trifolium spp; in this region, losses caused by gastropods in the production of 

permanent grasslands have been estimated as the equivalent of the vegetation consumed per 

hectare by 0.5 to 2.5 sheep. 

 

 

THE PEST SLUG Deroceras reticulatum 

Taxonomy and distribution 

The Mollusca are in appearance, anatomy, ecology, and physiology a highly diverse 

group, for which the phylogenetic pathways and higher classification have been controversial 

since the very beginning of comparative investigation. Within the Mollusca, most systematic 

problems arise among the ecologically most diverse Gastropoda, where most members are 

marine, but several lineages have colonised freshwater and/or terrestrial environments, and as 

a consequence the taxonomy and nomenclature of Gastropoda have always been particularly 

problematic and unstable (Barker, 2001). 

 

As regards taxonomy, we have followed the recent Classification and Nomenclator of 

Gastropod Families (Bouchet and Rocroi, 2005), a working classification attempting to 

reconcile recent advances in the phylogeny of the Gastropoda, which use unranked clades 

above the superfamily level, and more traditional approaches which use hierarchical ranking 
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and follow the International Code of Zoological Nomenclature for the superfamily and lower 

levels. For example, the Pulmonata gastropods, which are the molluscs that have radiated 

most extensively in terrestrial habitats, have been historically accepted as monophyletic, and  

many morphological as well as molecular analyses supported the monophyly of the 

Pulmonata; however, some phylogenetic analyses of 18S and 28S rDNA sequences did not 

confirm its monophyly, and the analyses of Grande et al. (2004) based on several 

mitochondrial gene sequences indicated with strong support that the Pulmonata are 

polyphyletic; thus, the traditional taxon Pulmonata Cuvier in Blainville, 1814 is treated as 

“informal group Pulmonata” by Bouchet and Rocroi (2005). The systematic framework of 

Bouchet and Rocroi (2005) is currently followed by many authors and it is expected that it 

will be the standard in the scientific community for the next decades (Gargominy et al., 

2011). 

 

According to the system proposed by Bouchet and Rocroi (2005), the systematic position of 

D. reticulatum is as follows:    

 

Phylum Mollusca Cuvier, 1795 

  Classis Gastropoda Cuvier, 1795 

    Subclassis Orthogastropoda Ponder y Lindberg, 1995 

      Clade Heterobranchia 

        Informal group Pulmonata 

          Clade Eupulmonata 

            Clade Stylommatophora 

              Informal group Sigmurethra 

                Limacoid clade 

                  Superfamilia Limacoidea Lamarck, 1801 

                    Familia Agriolimacidae H. Wagner, 1935 

                      Subfamilia Agriolimacinae H. Wagner, 1935 

                        Genus Deroceras Rafinesque, 1820 

                          Subgenus Deroceras Rafinesque, 1820  

                             Deroceras (Deroceras) reticulatum (O.F. Müller, 1774) 
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Figure 1. Distribution range of indigenous Deroceras species (after Witkor, 2000). 

 

 

Members of the Stylommatophora are strictly terrestrial and constitute the dominant group of 

Pulmonate molluscs on land, thanks to a suite of morphological, physiological and 

behavioural adaptations that enable a high degree of regulation of body hydration, such as the 

contractile pneumostoma, uricotelia, a remarkable physiological tolerance to variation of body 

water content, and a set of behaviours that allow them to survive in unstable environments 

while maintaining their ability to function effectively (Barker, 2001; Cook, 2001). 

Stylommatophorans are primarily snails, but the slug form has evolved many times in 

gastropods living in marine and terrestrial habitats (a process termed `limacisation' by Solem 

1974), and many taxa of widely divergent origins have, by parallel evolution, assumed a 

remarkable similarity in their sluggish aspect (Barker, 2001). Within the Stylommatophora 

there are families composed only of snail forms, families composed of both snails and slugs, 

and families composed only of slugs. The family Agriolimacidae comprises only slugs and is 

the most speciose and widest distributed slug family (Wiktor, 2000). Agriolimacids occur 

indigenously only in the northern hemisphere; their range covers nearly whole Eurasia, from 
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the Polar Circle up to the Himalayas and Central America, while in Africa they are delimited 

by the Sahara, even when a few endemic species of Deroceras inhabit Ethiopia. Within this 

wide range, the number of agriolimacid species is always low except for the Mediterranean 

area, suggesting that the historical centre of dispersal of the family was situated somewhere in 

the south-western Paleartic. The genus Deroceras, represended by nearly 120 species, is the 

only one found in the whole vast area covered by the family (Figure 1), with the highest 

number of Deroceras species inhabiting the Mediterranean region, especially the Balkans. 

However, several Deroceras species have been dispersed almost worldwide through human 

activities, and this is particularly true in the case of D. reticulatum (Barker, 1999, 2001; 

Wiktor, 2000). Currently, D. reticulatum is found in most temperate and subtropical regions, 

including Europe, Asia, Australia, New Zealand, Tasmania, Canada, the United States, South 

America, South Africa and many islands of the Pacific and Atlantic Oceans (Forsyth, 2004). 

 

Biology 

Deroceras reticulatum (Figure 2) is a medium-sized slug up to 45-50 mm in length when 

fully extended, with a short, ill-defined keel. Mantle shield about 0.3 of body length. Body 

wall thick, usually cream or pale brown, with blackish or brown spots distributed mainly in 

the skin grooves. Mantle similarly cream or pale brown, flecked or spotted black or brown. 

Pigmentation varying within populations from wholly dark to pale specimens. Border of 

pneumostome pale. Sole usually creamy, but brown in intensely coloured specimens. Mucus 

clear in undisturbed animals, but milky on irritation. Genital orifice immediately posterior to 

right ocular peduncle (Castillejo, 1997; Barker, 1999; Wiktor, 2000). 

 

The species shows a wide ecological tolerance, often found in anthropogenic, disturbed areas 

such as agricultural land and ruderal habitats (Runham and Hunter, 1970). D. reticulatum is a 

non-aggressive species, both at intraspecific and interspecific levels, which offers little 

competition to other slug species in stable environments (Rollo and Wellington, 1979; 

McCraken and Selander, 1980). However, its wide-ranging tolerance to factors such as 

temperature, soil moisture or food availability enables it to out-compete other slug species in 

unstable environments (Willis et al., 2008). Furthermore, D. reticulatum is able to reproduce 

throughout the year in temperate climates (Carrick, 1938; Barnes and Weil, 1945; South, 

1989; Córdoba et al., 2011). As a consequence of its traits, D. reticulatum is a successful 
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opportunistic and invasive species (Port and Port, 1986; South, 1992), and the most serious 

slug pest worldwide (Kerney and Cameron, 1979; Speiser, 2002; Grimm and Schaumberger, 

2002). Everywhere it occurs, D. reticulatum is generally the most abundant slug in modified 

habitats (Barker, 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Deroceras reticulatum. 

 

 

Like most slugs, D. reticulatum is preferentially a nocturnal animal, beginning its activity 

around sunset, when the rate of the fall of temperature is slower (Dainton, 1989). The activity 

and abundance of D. reticulatum is strongly affected by temperature and other weather factors 

such as air humidity, soil moisture, rainfall or wind speed (Cook, 2001). However, the activity 

of D. reticulatum is not restricted by cold conditions to the same extent as for other slug 

species, and it is known to feed normally at temperatures as low as 0 ˚C (Crawford-

Sidebotham, 1972). D. reticulatum is a hermaphroditic, semelparous, outcrossing species, and 

mature individuals often evidence their sexuality by a prominence or dilation of the genital 

orifice; animals in this state are not infrequently observed, in the field and in laboratory cages, 
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to approach conspecifics in an attempt to arouse a mating response (Barker, 1999). They lay 

their eggs in the soil surface or under leaves, in batches with an average of 22 eggs per batch, 

and can lay up to 500 eggs over its life (Carrick, 1938; Port and Port, 1986). Temperature and 

soil moisture influence strongly the oviposition behaviour, and the range of temperature and 

moisture conditions over which D. reticulatum will oviposit has been pointed out by Carrick 

(1942) as being between 3 and 20 ˚C, and between 25 and 100% saturation of soil with 

moisture, with 10–20 ˚C and 64% soil moisture being optimal. More recently, Willis et al. 

(2008) demonstrated that D. reticulatum is able to adjust its egg laying to the surrounding 

temperature and moisture conditions, and thus to alter their investment in reproduction to 

maximise fitness, with most eggs being laid at a combination of 53% soil moisture and 18 ˚C. 

The incubation period strongly depends on temperature, and ranges from 175 days at 4.4 ˚C to 

15 days at 20 ˚C (Carrick, 1942). The young slugs hatch fully formed, breaking their way out 

of the egg by rasping at its envelope with the radula, and neonate slugs have been observed to 

eat the remains of their own eggs and other neighbouring intact eggs (Carrick, 1938). The 

maximum life span of D. reticulatum is 12 month or so (South, 1992), and the generation time 

can be as short as 6 month in the field (South, 1992; Barrada et al., 2004a). D. reticulatum 

feeds on a wide range of plants and is usually regarded as a generalist herbivore or as 

omnivore, although it is capable of exhibiting distinct preferences for different food items and 

plant species (Wiktor, 2000; Barrada et al., 2004b). 

 

Its reproductive phenology vary geographically and from year to year in the same location, 

but reproductive activity and abundance are generally higher in autumn and spring, in reaction 

to favourable weather conditions (Barker, 1999). Even so, a number of studies have shown 

that D. reticulatum will reproduce whenever environmental conditions permit (Carrick, 1938; 

Barnes and Weil, 1945; South, 1989; Córdoba et al., 2011), as is expected for opportunist 

species (Willis et al., 2008). The population structure of D. reticulatum is such that there is 

often more than one overlapping generation per year, resulting in individuals at the oocyte 

stage being present most of the time (Hunter and Symonds, 1971; Barrada et al., 2004a), 

which further allows reproduction whenever conditions are favourable. Individuals are 

therefore present throughout the year and are potentially always capable of causing damage to 

crops. 
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CONTROL OF PEST SLUGS 

Chemical control 

Except otherwise stated, this epigraph is based on South (1992), Bailey (2002), Henderson 

and Triebskorn (2002) and Speiser (2002). 

 

There are documents recommending using salt to kill slugs and snails from as early as 

1349. Different mixtures with salt, sand, caustic soda, lime, sawdust, soap and other products 

were recommended in a pamphlet of the British Ministry of Agriculture from 1905. More 

recently, a number of authors suggested inorganic salts such as copper sulphate, aluminium 

sulphate, iron sulphate, calcium arsenate, etc., applied as powder or spray; another traditional 

way of control is the use of metallic barriers made of cooper or zinc. All these forms of 

control are based on the irritating effect of the substances when in contact with the tegument 

of gastropods, causing in the slugs and snails a large production of mucus and dehydration, so 

that they avoid contact with the chemicals. However, after an initial reaction contact with the 

substances, most of the animals recover soon, and under conditions of high humidity all these 

methods lost most of their effectiveness. 

 

At present, the most common method of slug control is the use of chemical molluscicides. 

This are usually pellets or baits containing between 2% and 8% of either metaldehyde or 

methiocarb as active ingredient. In most countries, metaldehyde is the commonest 

molluscicide used. In Britain, metaldehyde baits are used in 55% of the crops treated against 

slug pests, compared to 40% treated with methiocarb. Metaldehyde is a cyclic tetramer of 

acetaldehyde. Its molluscicidal activity was discovered by chance, because it was originally 

sold as solid fuel (meta-tablets) and French farmers accidentally noticed dead slugs where 

meta-tablets had been left on the ground. It was introduced as a molluscicide in 1936 and was 

first used in slug baits in the early 1940s. Metaldehyde has molluscicidal activity both by 

ingestion and dermal contact. Its initial effect is just irritating, causing the slug to produce 

abundant mucus secretion and dehydration, but it has also a neurotoxic effect which ends in 

slug paralysis. Metaldehyde pellets lost effectiveness under conditions of high humidity 

and/or low temperature, and tends to depolymerize rapidly under acid pH conditions. Thus, it 

shows less effectiveness in areas of high soil humidity and acid soils, such as most Galicia. 
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The other widely used molluscicide is methiocarb. Like other compounds belonging to the 

family of carbamates, methiocarb causes metabolic alterations in insects, molluscs and warm-

blooded animals, and inhibits acetylcholinesterase in the nervous system interfering with 

nerve impulse transmission. Methiocarb poisoned slugs do not show mucous secretion or 

dehydration, but a reduction in feeding activity, a loss of muscle tone and swelling up with 

fluid becoming immobile until they die. Methiocarbs is particularly effective in wet weather 

and low temperatures, when the slugs show higher activity. Its main drawback is that is highly 

toxic to other organisms such as earthworms, insects, birds, and mammals. 

 

Research showed that molluscicidal baits with metaldehyde have a negative impact on 

populations of some carabid beetles, while negative effects on both carabids and staphylinids 

populations have been shown after treatments with molluscicidal baits with methiocarb. 

Furthermore, cases of poisoning of domestic and wild animals due to the consumption of 

molluscicidal baits with either metaldehyde or methiocarb are common, even when 

molluscicidal baits incorporate pigments (usually blue or green) and other substances like 

bitrex (an extremely bitter-tasting substance) to reduce the risk of ingestion by mammals and 

birds. Baits with methiocarbamate have been shown to pose a serious threat to populations of 

rodents such us the field mouse Apodemus sylvaticus. Molluscicidal baits with carbamates 

were banned in some states of North America by the end of the 1980s, due to recorded high 

frequencies of bird poisoning. Also, high concentrations of acetaldehyde (resulting from the 

depolymerisation of metaldehyde in the digestive tract have been reported in hedgehogs 

(Erinaceus europaeus) in the field, as well as poisoning symptoms and cases of death in 

hedgehogs fed with slugs that had previously ingested baits with methiocarb.  

 

In the las two decades, a new chemical molluscicide has been marketed in Europe and North 

America, containing iron phosphate as active ingredient. The mode of action of iron 

phosphate is not fully understood. In slugs and snails, iron phosphate acts as a stomach 

poison, damaging their digestive tissues, so that they stop eating and slowly die. Tests 

conducted to verify its effectiveness (Iglesias and Speiser, 2001; Speiser and Kistler, 2002) 

showed that it is comparable to the classical molluscicides, metaldehyde and methiocarb. 

However, unlike those chemically-synthesized compounds, iron phosphate naturally appears 

as a part of several minerals, especially strengite and metastrengite, and has a low toxicity 
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(EPA, 1998), to the point that it is authorized for use in organic farming in some countries. 

Notwithstanding, recent research have shown that molluscicide pellets containing iron 

phosphate have adverse effects on earthworm survival, activity and growth (Langan and 

Shaw, 2006; Edwards et al., 2009). The adverse effects seem to be caused by synthetic 

chelating agents added to the pellets (such as EDTA, ethylene diamine tetracetic acid, or 

EDDS, ethylene diamine succinic acid), which solubilize the iron contained in the iron 

phosphate and make it more available and toxic (Edwards et al., 2009). The chelating agents, 

in combination with iron phosphate, present significant hazards not only to earthworms and 

other soil inhabiting invertebrates, but to domestic animals and human child (Edwards et al., 

2009).  

 

Biological control and natural enemies 

Except otherwise stated, this epigraph is based on Barker (2004). 

 

Slugs and snails are preyed upon by a variety of vertebrate and invertebrate natural 

enemies. Vertebrate predators include birds, amphibians, reptiles and mammals. Among 

European birds, wild species of Turdidae (Turdus spp.), Corvidae (Corvus spp., Pica pica, 

Garrulus glandarius), Sturnidae (Sturnus vulgaris) are regular consumers of snails and slugs, 

although the quantitative contribution of molluscs to their diet is low; poultry, including 

chickens, ducks and geese eat large numbers of slugs if available, and the release of poultry in 

gardens, orchards and crops as a means of protection against gastropod damage is a popular 

practice, even when poultry also can cause significant damage to plants. With respect to 

amphibians and reptiles, it is known that some toads (Bufo bufo), salamanders (Salamandra 

salamandra), and the lizard Anguis fragilis eat slugs regularly. Hedgehogs (Erinaceus 

europaeus), moles (Talpa europaea), shrews (Sorex spp., Crocidura spp.), rodents (Rattus 

spp., Apodemus sylvaticus), badgers (Meles meles), wild pigs (Sus scrofa) and foxes (Vulpes 

vulpes) stand out among mammals as consumers of terrestrial gastropods. Although vertebrate 

predators undoubtedly make a contribution to the control of terrestrial gastropods, it is 

unlikely that the population densities of these predators are large enough to significantly 

influence slug and snail populations in the field. 
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Among invertebrates, the main natural enemies of terrestrial gastropods are arthropods, 

especially ground beetles (Carabidae), rove beetles (Staphylinidae), fireflies (Lampyridae), 

burying beetles (Silphidae), false firefly beetles (Drilidae), marsh flies (Sciomyzidae), 

blowflies (Calliphoridae), flesh flies (Sarcophagidae), harvestmen (Opiliones), and centipedes 

(Chilopoda). A number of Nematode species, mainly within the Rhabditidae, 

Angiostomatidae, Alloionematidae and Cosmocercidae, and a few species of mites (Acari), 

flatworms (Platyhelminthes), and carnivorous terrestrial gastropods, complete the list of 

invertebrates that feed on terrestrial molluscs, either as parasites or as predators. Carabid 

beetles and nematodes are the most important natural enemies of terrestrial gastropods and the 

most promising biological control agents. Some species within Fungi, Ciliophora (Protista) 

and Bacteria are known to be pathogens of terrestrial gastropods, and may be important 

natural enemies of pest slugs and snails, but have been poorly studied.   

 

Carabid beetles are widely recognized as beneficial organisms in agroecosystems and are 

increasingly regarded as crucial for regulating many pest populations, as many synthetic 

pesticides are phased out (Berthe et al., 2015). There are predatory carabid species that are 

considered gastropod specialist, such as Cychrus caraboides and Carabus violaceus, although 

studies have demonstrated that even these species feed on other prey items. Specialist, or at 

least stenophagous natural enemies are usually employed in classical biological control 

introductions, while conservation biological control rely mainly on generalist species, and it is 

known that many generalist carabids kill and eat slugs and snails in the field. Here, we follow 

Symondson et al. (2002) in considering synonymous the terms generalist, polyphagous, 

unspecialised, and omnivorous. Many unspecialized ground beetles which are common and 

abundant in agricultural land eat almost any prey it can subdue, including a wide range of 

arthropods, molluscs and annelid worms, and also feed on plants and fungi. The great 

influence of carabid beetles on slugs is reflected in some slug behaviours. For example, slugs 

are capable of detecting the presence of ground beetle species that regularly consume slugs, 

presumably via olfactory cues, and alter their behaviour by becoming less active (Armsworth 

et al., 2005), and can even discriminate amongst different predators and adjust their 

behavioural response according to the relevance of the threat (Bursztyka et al., 2013). When 

attacked, slugs produce copious quantities of defensive mucus, which can gum up the 
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mouthparts and even the legs of arthropod predators. Other defensive behaviours include tail-

wagging, escaping by descending on a mucus thread, and occasional autotomy of the tail. 

 

The only biological control agent ever marketed for the control of terrestrial gastropods is the 

bacterial-feeding, rhabditid nematode, Phasmarhabditis hermaphrodita, first launched to the 

market in the UK in 1994. Similar to many entomopathogenic nematodes, P. hermaphrodita 

enters its host as an infective juvenile (dauer larvae, equivalent to the L3 larval stage) 

associated with bacteria that are thought to be largely responsible for its pathogenicity. 

Infective dauer larvae actively search the soil for hosts such as D. reticulatum, following 

chemical cues, and when a host is found, the larvae enter the shell sac of the slug through a 

dorsal integumental pouch located in the posterior region of the slug mantle. Then the larvae 

develop into hermaphroditic self-fertilising adults and reproduce. Parasitized slugs develop a 

swelling of the mantle area and often shed their internal shell through a hole in the swollen 

mantle. Infested D. reticulatum soon stop feeding, and die between 4 and 21 days after 

becoming infected. The rapid inhibition of slug feeding enhances its effectiveness in 

preventing crop damage. After the death of the slug, the nematodes spread and reproduce over 

the cadaver until this food source is depleted. Then the nematodes fail to complete their life-

cycle and form new non-feeding dauer larvae that seek through the soil for a new host or other 

food source, since P. hermaphrodita is capable of living on other decaying hosts, slug faeces 

or leaf litter. In its European home range, where this nematode is common and widespread, it 

is believed that wild P. hermaphrodita realize a natural control of the populations of 

susceptible slug species (Rae et al., 2007). 

 

Nematodes are sold in sealed packs containing either 6 or 12 million dauer larvae interspersed 

with calcium montmorillonite clay. The packs must be stored in the refrigerator and have 

expiry date. To be used, the content of the pack is mixed with water and sprayed or watered 

into the ground, at a rate of 300000 larvae per square meter (allowing the treatment of either 

20 or 40 m
2
). Numerous field trials conducted in a wide variety of crops in different countries 

have shown that P. hermaphrodita is able to reduce the damage caused by slugs in agriculture 

and horticulture. Its effectiveness against D. reticulatum is beyond doubt, but its effect against 

other, larger slug species, may be lower. Although the effectiveness of P. hermaphrodita is 

highly dependent on soil temperature and moisture, which affect nematode survival, it has the 
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advantage that conditions that favour nematode survival also promote slug activity, increasing 

the chance that slugs and nematodes get in contact. Unfortunately, the short shelf life and high 

economic cost of P. hermaphrodita restricts its use to high-value crops such as ornamental 

plants and some vegetables. 

 

Other control methods 

Except otherwise stated, this epigraph is based on South (1992) and Speiser et al. (2001). 

 

There are a number of alternative, manual methods proposed to control slug populations 

and/or reduce slug damage. They include hand-picking of slugs at night, the use of different 

kinds of pit-fall traps (most frequently baited with beer) where the slugs fall and die, or 

artificial shelters where slugs can be found during the day to be collected and killed. Of 

course, these methods are only feasible for small areas such as gardens.   

 

For large crops, cultural practices that reduce slug activity are recommended, but they are 

sometimes labour-intensive, and may influence the performance of crops or affect the 

environment, which often limits their application. In general, rough seed beds and continuous, 

dense vegetation cover favour slugs, and should therefore be avoided. Good soil cultivation 

can reduce slug populations drastically. Machinery, timing and intensity of cultivation have to 

be adjusted to the soil type and to the needs for soil conservation. The objective is to obtain a 

fine seed bed, which reduces movement of slugs between their shelter in the soil and the 

crops. Soil cultivation at low temperatures exposes slugs or slug eggs to freezing. Sowing 

seeds deeper than usual protects seed against slug damage.  Sowing or planting susceptible 

crops at a distance of at least 5 m from field borders (fallows, meadows or hedges) reduces 

damage caused by immigrating large slugs. Optimal fertilization and irrigation methods, the 

use of vigorous cultivars, and changes in sowing or planting dates may reduce the duration of 

the phase when crops are most susceptible to slugs. It is well known that different cultivars of 

both horticultural and agricultural crop species show different degrees of susceptibility to slug 

damage, but slug resistant cultivars do not exist yet. 
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CLIMATE CHANGE AND PREDICTED EFFECTS ON AGRICULTURAL PESTS 

 

In recent decades, changes in climate have caused significant impacts on different 

ecosystems on all continents (IPCC, 2014). Overall, climate models for Europe predict 

significant warming, changes in the rainfall pattern and an increase in the frequency of 

extreme weather events, which are likely to cause significant impacts in agro-ecosystems 

(Olesen et al., 2011). Pests and pathogens are currently responsible for crop losses of up to 

40% worldwide (Oerke, 2006), and up to 25–30% in Europe and the USA, and these values 

are predicted to rise as a result of global warming (Maxmen, 2013). As a consequence, there 

is growing concern that global food security is threatened by the emergence and/or spread of 

crop pests and pathogens (Bebber et al., 2013). The links between climate change and food 

security are receiving increasing attention, as the role of pests in limiting the production of 

food, fiber, and feed is universally acknowledged (Ziska and McConnell, 2016). 

 

The expected warming in Europe is greatest over the eastern countries during winter, and over 

western and southern Europe in spring-summer; thus, projected increase in spring-summer 

temperatures could exceed 6 ˚C in parts of France and the Iberian Peninsula by the end of the 

21st century under the A2 emission scenario, which describes a heterogeneous world with 

high population growth, slow economic development and slow technological change (Olesen 

et al., 2011). 

 

Temperature is considered the most dominant environmental factor affecting the biology of 

ectotherms (Taylor, 1981; Brown et al., 2004), including important reproductive traits such as 

developmental rate, survival or fecundity, and therefore it is expected that global warming 

will have a deep impact on their population dynamics (Zidon et al., 2016). Climate change 

will lead to invasions and spread of pests and diseases adapted or able to survive under 

warmer climatic conditions, and evidences show that dispersal rate of pests and diseases are 

most often so high that their geographical extent is determined by the range of climatic 

suitability (Baker et al., 2000). Moreover, studies suggest that species that produce large 

numbers of offspring that grow and reproduce quickly but are small-sized and have a short 

life-span (i.e. r-strategists, such as most pest species) are prone to become successfully 

established outside their native regions and climate conditions (Sakai et al., 2001). Thus, 
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during the last decade multiple reports have shown that climate change is already altering the 

distribution (Kocmánková et al., 2011; Capinha et al., 2014; Gilioli et al., 2014), behaviour 

(Dalin, 2011; Hoffmann and Sgrò, 2011) and/or population dynamics (Willis et al., 2006; 

Altermatt, 2010; Zidon et al., 2016) of many agricultural pests around the globe.  

 

A classic approach to study the sensitivity of a species to temperature changes utilize thermal 

performance curves (Huey and Stevenson 1979), which are asymmetric functions describing 

the relationship between temperature and the intrinsic rate of population growth or fitness of 

the species (Kingsolver, 2009). These curves combine the effects of fitness indicators, such as 

fecundity, growth, or survivorship, and allow the identification of the species lower and upper 

temperature limits, the temperature of maximum performance, the species thermal breadth 

(Gilchrist, 1995) and its warming tolerance (Kingsolver et al., 2013). Another approach to 

predict the impact of climate changes on the species general performance and fitness is the 

utilization of temperature-dependent population dynamic models for simulating the species 

dynamics in the field under different temperature scenarios, which is generally achieved by 

running established degree-day models with projections from climate models (Gilioli et al., 

2013). However degree-day models assume a linear response of population parameters to 

temperature and might be limited in their ability to accurately predict population outbreaks 

and risks of pest populations dynamics, and more complex models of population dynamics 

comprising several demographic variables effecting population performance, in combination 

with stochastic models of climate change under different scenarios have been developed   

(Zidon et al., 2016). 

 

Climate change will not only affect the pest species of concern, but will also affect the 

biology of their natural enemies, the quality and/or quantity of available food, and many other 

factors. In the agricultural context, climate change is expected to affect also the varieties and 

species of crops grown, as well as the timing of agricultural practices (Olesen et al., 2011). 

All together throw a high degree of uncertainty on the forecasting of the responses of any 

particular species to future climatic conditions (Wilson et al., 2015). It is becoming more and 

more evident that forecasting should take into account not only the pest species, but also their 

natural enemies and ecological relationships (Lepetz et al., 2009). However, for modelling 

projections to be accurate they need to be parameterised and validated by experimental 
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evidence (Capinha et al., 2014; Berthe et al., 2015). Experimental manipulations of 

temperature and precipitation have already provided insights into the responses of terrestrial 

ecosystems to climate change, with warming generally increasing total net primary 

productivity (NPP) and photosynthesis (Wu et al., 2011). However, such studies have mostly 

focused on the responses of plants to simulated climate warming, and few have considered the 

response of animal communities, particularly in agro-ecosystems. Among the first to deal 

with this topic, Sternberg (2000) found that artificial winter warming in grassland caused an 

increase in D. reticulatum abundance due to increased winter survival, while increased 

summer rainfall caused a decrease in slug numbers associated with changes in the surrounding 

vegetation which reduced the preferred food of the slugs. More recently, Dong et al. (2013) 

demonstrated that experimental warming of wheat fields can lead to an increase in pest aphid 

abundance. Buchholz et al. (2013) showed increases in ground beetle, spider and grasshopper 

activity-densities, but lower diversity, under experimental grassland drought and warm 

conditions. Similarly, Berthe et al. (2015) showed that artificial warming by 2 ˚C in a spring-

sown wheat crop caused a reduction in overall diversity of coleopterans but and increase in 

activity-densities of the four most common species. All these studies have provided valuable 

information into the responses of different components of terrestrial ecosystems to predicted 

climate change, as a fundamental previous step for modelling the functional response of agro-

ecosystems to climate change at the farm-level or wider scales.    
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AIM AND OBJECTIVES 

 

The aim of the PhD work presented here is to explore potential changes in the feeding 

behaviour of the most serious slug pest worldwide, the grey field slug Deroceras reticulatum, 

as well as in the behaviours of some of their most important natural enemies, predatory 

carabid beetles and parasitic nematodes, under climatic conditions predicted for Galicia by the 

last third of the century. To achieve this general aim, different experiments under laboratory 

controlled conditions and under semi-natural conditions have been performed. In particular, 

the focus has been placed on shedding light on the following specific objectives: 

 

1) Whether, and to what extent, predicted climatic conditions affect the feeding activity of 

Deroceras reticulatum populations and their potential to damage crop seedlings, which are 

often the most vulnerable stage of crops to slug damage. Chapter 1. 

 

2) Whether, and to what extent, the carabid beetle Harpalus rufipes, one of the most common 

and abundant ground beetle in Europe, can destroy eggs and different sized slugs of the slug 

Deroceras reticulatum. Chapter 2. 

 

3) Whether, and to what extent, temperature and predicted climatic conditions affect the 

predatory activity of carabid beetles on the eggs of Deroceras reticulatum. Chapter 3. 

 

4) Whether, and to what extent, predicted climatic conditions affect the performance of the 

unique biological control agent currently marketed against terrestrial gastropods, the 

nematode Phasmarhabditis hermaphrodita. Chapter 4. 
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The effect of climate manipulations on the herbivory of the pest slug 

Deroceras reticulatum (Müller, 1774) (Pulmonata: Agriolimacidae) 
 

H. El-Danasoury, J. Iglesias-Piñeiro, M. Córdoba 

Abstract 

The pestiferous status of the terrestrial slug Deroceras reticulatum and the strong dependence 

of its biology and ecology on climatic factors have driven research on the potential responses 

of the slug to predicted scenarios of climate change. Here, we report two short-term 

experiments performed outdoors, under seminatural conditions, to assess the behavioural 

response of D. reticulatum to different climate manipulations in terms of herbivory, by 

measuring over 7 days the damage inflicted by slug populations to lettuce seedlings. The 

climate manipulations tested emulate predicted climatic conditions for northwest Spain, 

specifically winter warming and increased summer rainfall, in contrast respectively with 

normal winter conditions and summer without rain conditions. In a winter experiment, we 

compared a normal winter treatment with a winter warming treatment; with respect to the 

normal winter treatment, the winter warming treatment was characterised by higher 

temperature, lower relative humidity and the absence of rainfall. In a summer experiment, we 

compared a summer drought treatment with an increased summer rainfall treatment; with 

respect to the summer drought treatment, the increased summer rainfall treatment was 

characterised by the presence of rainfall, while the conditions of temperature and relative 

humidity were similar in both treatments. Neither winter warming nor increased summer 

rainfall did lead to a significant increase on the number of seedlings damaged by the slugs. 

However, with both treatments, we found a moderate increase on the amount of damage 

suffered by the seedlings. The results are discussed in the context of the potential responses of 

D. reticulatum to future climatic conditions.  

 

Keywords: Deroceras reticulatum, herbivory, crop damage, climate manipulations,  

                    behavioural change. 
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Predation by the carabid beetle Harpalus rufipes on the pest slug 

Deroceras reticulatum in the laboratory 

H. El-Danasoury, C. Cerecedo, M. Córdoba, J. Iglesias-Piñeiro 

Abstract 

The Harpalini species Harpalus rufipes, as many other generalist carabids, consume a wide 

variety of prey and it is known to feed on pest slugs such as the grey field slug Deroceras 

reticulatum, but quantitative data about the predatory activity of H. rufipes on slugs are very 

scarce. In laboratory experiments, we assessed the capability of male H. rufipes to kill eggs 

and different-sized slugs of the pest species D. reticulatum in either the absence or the 

presence of alternative live prey (dipteran larvae and aphids). We also investigated the 

preference of H. rufipes for eggs and hatchlings of D. reticulatum in a choice experiment. H. 

rufipes killed considerable amounts of eggs and small juveniles (≤5.0 mg) of D. reticulatum, 

both in no-choice and in choice situations. Medium-sized juvenile slugs (10–20 mg) were 

seldom killed only in no-choice situations, and no large juveniles (50–60 mg) were killed. 

Dipteran larvae and aphids were killed also in no-choice and in choice situations. The type of 

alternative prey presented with slug eggs affected the survival of the eggs to H. rufipes 

predation. The presence of dipteran larvae as alternative prey did not affect the survival of 

juvenile slugs. When eggs and small juvenile slugs were offered together, the survivals of 

both items were similar. The obtained results under laboratory conditions suggest that the 

generalist predator H. rufipes might realise an important contribution to the control of pest 

slugs. 

Keywords: alternative prey, biological control, Deroceras reticulatum, Harpalus rufipes, 

                    slug eggs, slug predator, slug size. 
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Predation by polyphagous carabid beetles on eggs of the pest slug Deroceras 

reticulatum: effect of temperature and potential implications of climate 

change 
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Abstract 

1 It is expected that climate change and global warming will have a dramatic impact on 

ectothermic animals. Terrestrial slugs are pests of increasing importance in temperate and 

tropical regions, and polyphagous carabids which are slug predators are being considered as 

promising biological control agents through conservation biological control. Harpalus 

rufipes and Poecilus cupreus are two polyphagous carabids which are abundant and 

widespread in agroecosystems of the temperate Northern hemisphere and which are known 

to destroy eggs of the pest slug Deroceras reticulatum in the laboratory.    

2 To examine the effect of temperature on the predatory activity of H. rufipes and P. cupreus 

on the eggs of D. reticulatum a laboratory experiment with different constant temperatures, 

and an outdoor experiment in semi-field conditions under current ambient temperature and 

under a simulated warmed-up-climate, were performed. 

3 In both experiments H. rufipes killed more eggs than P. cupreus and was the unique species 

whose predatory activity significantly increased with increasing temperature. 

4 To our knowledge, this is the first study on the predatory activity of polyphagous carabids 

on the eggs of a pest slug performed out of the laboratory under semi-field conditions and 

covering a realistic predicted climate warming scenario. Results suggest that biological pest 

control performed by polyphagous carabids such as H. rufipes upon pest slugs may be 

enhanced under predicted climate warming conditions. 

 

 

Introduction 

The warming of Earth as a consequence of climate change and their impacts on ecosystems on 

all continents is undeniable (IPCC, 2014). In Europe, the expected warming is greatest over 

the eastern countries during winter, and over western and southern Europe in spring-summer; 

thus, projected increase in summer temperatures could exceed 6 ˚C in parts of France and the 

Iberian Peninsula by the end of the 21st century under some emission scenarios (Olesen et al., 

2011). 
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For ectothermic animals temperature is probably the most important environmental factor 

affecting their biology (Taylor, 1981; Brown et al., 2004). Therefore, it is expected that global 

warming will have a dramatic impact on these animals, and during the last years multiple 

works have shown that climate change affect their distribution (Kocmánková et al., 2011; 

Capinha et al., 2014), behaviour (Dalin, 2011; Hoffmann & Sgrò, 2011) and/or dynamics 

(Willis et al., 2006; Altermatt, 2010), among other aspects of their biology. 

Although often overlooked, terrestrial gastropods (slugs and snails) are pests of increasing 

importance in temperate and tropical regions due to the impact they have on a vast array of 

crops over a wide geographical range, and because they are implicated in the transmission of 

many plant pathogens as well as parasites of humans, domestic livestock and wild mammals 

(South, 1992; Barker, 2002). The grey field slug Deroceras reticulatum (Müller) is the most 

widespread slug species worldwide and is believed to be responsible for most of the slug 

damage in economic terms (Speiser, 2002). Slug control is mainly based in the use of pelleted 

molluscicides, which operate only in the short-term and whose performance depends on 

weather conditions (Bailey, 2002); moreover, they may affect non-target organisms 

negatively, including natural enemies of gastropods and other pests (Langan et al., 2004). The 

only commercial biological control agent for gastropods is the rhabtitid nematode 

Phasmarhabditis hermaphrodita (Wilson et al., 1993), but the high cost of the biocontrol 

product based on it limits its use to high value horticultural crops (Glen & Wilson, 1997; 

Moens & Glen, 2002). Under these circumstances and the general increase of environmental 

concern and demand for food quality by consumers, integrated pest management of slugs is 

highly desirable, including the optimization of the regulation exercised by natural enemies. 

Carabids beetles are widely recognized as beneficial organisms in agroecosystems and are 

increasingly regarded as crucial for regulating many pest populations as some synthetic 

pesticides are phased out (Kromp, 1999; Sunderland, 2002; Symondson et al., 2002; Berthe et 

al., 2015). It is known that many polyphagous beetles within the Carabidae are important 

gastropod predators and they are the major natural enemies that are being considered as 

biological control agents of slugs as an alternative to commercial molluscicides, particularly 

through conservation biological control (Symondson, 2004). Carabids are mainly ground-

dwelling predators (Kromp, 1999) and a number of species predate on slug eggs (Ayre, 2001; 

Oberholzer & Frank, 2003; Hatteland et al., 2010; Pianezzola et al., 2013), which are laid 
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very superficially on the soil (Oberholzer & Frank, 2003). The amount of viable eggs is a key 

factor in the population dynamics of slugs (Heller, 2001; Schley & Bees, 2002), and thus 

carabid species which kill slug eggs in the field may make a significant contribution to the 

control of populations.  

Harpalus rufipes (De Geer) and Poecilus cupreus (Linnaeus) are two polyphagous 

carabids abundant and widespread in agroecosystems of the temperate Northern hemisphere 

(Kromp, 1999), which are known to destroy eggs of D. reticulatum in the laboratory 

(Oberholzer & Frank, 2003; El-Danasoury et al., 2016). It is also known that temperature has 

a positive effect on the predatory activity of these and others generalist carabids when preying 

on live, moving prey, in the laboratory (Kielty et al., 1999; Ayre, 2001; Frank & Brambröck, 

2016), but predation on slug eggs is much less documented. Therefore, the main purposes of 

the present study were to examine the effect of temperature on the predatory activity H. 

rufipes and P. cupreus on the eggs of D. reticulatum and to gain insight into their ability to 

kill slug eggs under more natural conditions. For this, we performed a laboratory experiment 

to compare the amounts of eggs killed by the beetles at 5 different constant temperatures over 

24 h, and an outdoor experiment in semi-natural conditions to compare the amounts of eggs 

killed over 72 h under current ambient temperature and under a simulated warmed-up-climate 

with increased temperature; in the latter experiment we tested also two different egg densities.            

Materials and methods 

Test organisms 

Beetles were collected from April 2016 in a grassy uncultivated field (42º 48’ 33’’ N; 8º 38’ 

12’’ W) near Santiago de Compostela by pitfall traps baited with a slightly moist mixture of 

wheat bran and sugar. Twenty traps were set in the field the week before the start of each 

experiment, during which time the traps were checked and emptied every morning. In the 

laboratory, the H. rufipes and P. cupreus individuals were selected and classified by species, 

sex and date of collection. Subsequently they were kept without food in transparent plastic 

boxes with perforated walls and lids, with the floor covered with wet filter paper and refuges 

consisting of small pieces of black plastic tubes. The beetles were kept in a climate room at 16 

ºC with a 8 dark : 16 light photoperiod. Only male beetles were used in the experiments, since 
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females were infrequently caught. They were used just once and always after they had 

remained between four and eight days in starvation after they were collected.  

Slug eggs were obtained in the laboratory from field collected adults D. reticulatum. Slugs 

were hand collected at night in the same field as the beetles at approximately monthly 

intervals from February 2016, and were kept in the same climate room and boxes as the 

beetles, but with food consisting of pieces lettuce, carrots and cabbage. The boxes and food 

were replaced twice weekly and inspection for eggs was performed every day. The eggs were 

collected and kept on wet filter paper in the darkness at 16 ºC, inside Petri dishes labelled with 

the date. 

The entire course of the development of the embryo of D. reticulatum is observable when 

the egg is immersed in water and viewed under transmitted light (Carrick, 1938). About ten 

days after collection, the eggs were inspected under a binocular microscope for the selection 

of those to be used in the experiments. Only eggs containing a single living embryo and 

without foreign inclusions were selected, while non-motile embryos were considered to be 

dead (Iglesias et al., 2000). 

 Eggs of approximately the same age were used in each of the experiments. Killed eggs 

were considered those which lost their round shape and looked like smashed remains of the 

egg shell (Pianezzola et al., 2013). The eggs recovered at the end of the experiments were 

examined under a binocular microscope, as described above, to check whether they were still 

alive or not. Eggs which completely disappeared were considered as entirely eaten by the 

beetles.  

Egg predation at different temperatures in the laboratory 

The amounts of eggs killed by the two beetle species at five different constant temperatures 

were assessed using incubators (Radiber AGP500HR, Barcelona, Spain) maintained at 12, 14, 

16, 18 or 20 ˚C, with a 8 dark : 16 light photoperiod. Experimental units consisted of 9-cm 

diameter petri dishes with the bottom lined with wet filter paper, a small piece of black plastic 

tubing acting as shelter for the beetle, and 20 live eggs of D. reticulatum placed in a group in 

the centre of each dish to emulate the way that eggs can be found in the field. For each 

temperature, 12 petri dishes were used, 5 of which had one H. rufipes each, 5 had one P. 

cupreus each, and 2 served as controls with eggs but without beetle. The beetles used for each 
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temperature were individually weighed to the nearest 0.1 mg with a scale Sartorius BP211D, 

and then allowed to adapt to the respective temperature by keeping them 24 h in the proper 

incubator inside petri dishes with wet filter paper and shelter. After that, at the middle point of 

the photo-phase, the beetles were added to test dishes with eggs and the control dishes were 

placed in the incubators. After 24 h the beetles were removed and the eggs of each dish were 

collected and examined to check whether they were alive or not. 

Egg predation in semi-natural conditions  

An experiment was performed outdoor to compare the amounts of eggs killed by the two 

beetle species under two different climate conditions and densities of eggs. The experiment 

was performed within 14 brick-built plots measuring 1 × 0.5 m and 20 cm height walls each. 

The plots were arranged in 2 parallel rows of seven plots situated next to the laboratory and 

oriented south-easterly. The whole area of the plots was covered with a transparent roof to 

protect them against rain.  

Experimental units consisted of plastic trays measuring 44  28  8 cm with the bottom 

holed to allow drainage and lined with a double layer of filter paper (FILTER-LAB® 

RM13055858), which was filled with a 4 cm layer of moistened soil. The soil was a field 

collected loam soil (36.3% sand, 43.9% silt, 19.8% clay, 2.8% organic matter and pH 6.7) 

which had been previously heated in an oven at 105 ˚C for 24 h to eliminate any predators, 

pests or parasites potentially present, allowed to cool at room temperature and strained 

through a 2 mm sieve. The inner walls of the trays over the soil level were smeared with an 

aqueous dispersion of polytetrafluoroethylene (Fluon® AD309E, Whitford Ltd, Cheshire, 

UK) in order to prevent the escape of the beetles. Live slug eggs were placed on the soil 

surface in groups of five eggs. In order to emulate field conditions more closely, the whole 

tray surface was covered with a layer of senescent leaves of chestnut tree collected in the 

same field as the beetles and adult slugs; the leaves had been kept frozen for 6 months, 

allowed to defrost at room temperature and washed with tap water. The position of the eggs 

was signalized by means of toothpicks stuck in the leaves and soil.  

The factors used in the experiment were (i) climate conditions, with levels current-climate 

and warmed-up-climate; (ii) egg density, with levels low and high density, and (iii) beetle 

species, with levels H. rufipes and P. cupreus. 
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The current-climate conditions were represented by 7 plots which were just covered with a 

plastic netting of 1  1 cm mesh to avoid birds. The warmed-up-climate conditions were 

represented by 7 plots which were covered with a lid made of a transparent plastic sheet, to 

produce a greenhouse effect.  Air temperature and humidity during the experiment were 

monitored at hourly intervals by means of 2 automatic data-takers HOBO® Pro v2 (Onset 

Computer Corporation, Bourne, Massachusetts, USA) placed each at 5 cm height within one 

of the plots used for each climate conditions. The low and high egg densities consisted of four 

or eight groups of 5 eggs respectively, evenly placed on the soil surface of the trays.  

Two trays were placed in each plot. Both the plots corresponding to each climatic 

condition and the trays corresponding to each combination of beetle species  egg density 

were distributed at random. Thus, there were three replicated trays for every combination of 

climate  egg density  beetle species. One control tray without beetles was used for each of 

the four combinations of climate  egg density. 

The experiment was run for 3 days between 21 and 24 June 2016. The first day, once the 

trays were ready, two previously weighed beetles of the same species were released in each 

tray at noon. Each day, at sunset, the trays were watered to keep moist the leaves and the soil; 

to avoid mess up and watering of the chemical barrier of the trays, the water was carefully 

applied to the surface of the trays using a thin plastic tube to pour the water directly on the 

leaves, avoiding any splash effect; water was applied at a rate of 200 mL per day and tray. 

After 72 h, the beetles were carefully searched for and removed from the trays. Then the 

eggs of each tray were collected and examined to check whether they were alive or not. 

Statistical analyses 

Data on weights of beetles were log10 transformed, and data on the proportion of live eggs at 

the end of the experiments were arcsine transformed to stabilize the variance prior to analysis. 

The analyses were performed using the IBM SPSS Statistics package (Version 19, 2010; IBM 

Corporation, Somer, NY, USA), by means of univariate general linear models with the 

different factors studied in the experiments introduced as fixed factors. Data in the text are 

shown as mean ± SE and sample size (N). 
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Results 

Egg predation at different temperatures in the laboratory 

The weights of the beetles used in the experiment were 92.4 ± 1.9 mg in the case of H. rufipes 

and 77.3 ± 1.5 mg in the case of P. cupreus (N = 25). The weights of the two species were 

significantly different but they were similar across temperatures and both factors did not 

interact (beetle species ANOVA:  F1,40 = 40.15, P < 0.001; temperature ANOVA: F4,40 = 1.38; 

P = 0.26; beetle  temperature ANOVA: F4,40 = 1.07; P = 0.39).  

At the end of the experiment all the beetles and control eggs were alive, and all test dishes 

contained live eggs. Overall, in 24 h one H. rufipes killed 9.04 ± 0.83 (range 3-17) eggs of D. 

reticulatum and P. cupreus 4.44 ± 0.51 eggs (range 0-10) (N = 25). Both beetle species and 

temperature had significant effects on the proportion of live eggs after 24 h exposition to the 

beetles, but the two factors did not interact (beetle species ANOVA:  F1,40 = 39.18; 

temperature ANOVA: F4,40 = 9.91; P < 0.001; beetle  temperature ANOVA: F4,40 = 1.42; P = 

0.25); the proportion of live eggs after 24 h was lower for eggs exposed to H. rufipes than for 

eggs exposed to P. cupreus, but only for H. rufipes significantly decreased with increasing 

temperature (Fig. 1).  

Egg predation in semi-natural conditions  

The weight of the beetles used in the experiment were 100.8 ± 1.7 mg  in the case of H. 

rufipes and 84.4 ± 1.3 mg in the case of P. cupreus (N = 24). The weights of the two species 

were significantly different but they were similar across climate conditions and egg densities 

(beetle species ANOVA:  F1,40 = 58.53, P < 0.001; climate conditions ANOVA: F1,40 = 0.09, P 

= 0.76; egg density ANOVA: F1,40 = 1.33, P = 0.26), and all interactions between factors were 

non-significant (P > 0.05 in all cases). 

Table 1 summarizes the values of temperature and relative humidity recorded in the plots 

over the experiment. In the warmed-up-climate plots, mean temperature was nearly 3.0 ˚C 

higher than in the current-climate plots. In both climate conditions the mean relative humidity 

was higher than 80%, but it was slightly lower in the current-climate plots. 
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Figure 1 Proportion of live eggs of Deroceras reticulatum after 24 h exposition to either one 
Harpalus rufipes or one Poecilus cupreus in the laboratory at five different constant 
temperatures. Data shown are arcsine transformed means with 95% confidence limits of 5 
replicated dishes.     

 

 

 

Table 1 Temperature and relative humidity (RH) recorded for the two climate conditions in 
the experimental plots. Values shown are means ± SD (N = 72), and minimum / maximum 
values (in brackets). 

 

 Climate conditions 

 Current-climate Warmed-up-climate 

Temperature (ºC)  18.6 ± 3.1 (14.3 / 26.1) 21.5 ± 4.4 (15.5 / 31.3) 

RH (%) 83.5 ± 9.9 (65.0 / 95.1) 87.5 ± 8.8 (66.4 / 96.5) 
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Figure 2 Proportion of live eggs of Deroceras reticulatum after 72 h exposition to either two 
Harpalus rufipes or two Poecilus cupreus in the experiment performed outdoor, according to 
(A) climate conditions and (B) egg density. Data shown are arcsine transformed means with 
95% confidence limits of 6 replicated trays.     

 

A 
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At the end of the experiment all beetles could be recovered from the test trays and all 

contained live eggs. No mortality was observed in the control eggs. Beetle species and climate 

conditions had both significant effects on the proportion of live eggs after 72 h exposition to 

the beetles, and the two factors showed a significant interaction (beetle species ANOVA:  

F1,16 = 587.78, P < 0.001; climate conditions ANOVA: F1,16 = 15.08, P < 0.01; beetle  

climate ANOVA: F1,16 = 8.95, P < 0.01); the survival of the eggs was lower when exposed to 

H. rufipes, and only for this species it was significantly lower under warmed-up than under 

current-climate conditions (Fig. 2A). Egg density, and the interaction beetle species  egg 

density, showed both marginally significant effects (egg density ANOVA:  F1,16 = 4.22, P = 

0.057; beetle  egg density ANOVA: F1,16 = 3.99, P = 0.063) (Fig. 2B); there was a trend to 

lower egg survival at high egg density, and this was due to H. rufipes.     

 

Discussion 

The reported experiments support previous findings about the ability of the polyphagous 

beetles H. rufipes and P. cupreus to kill eggs of the pest slug D. reticulatum in petri dishes in 

the laboratory. In similar no-choice laboratory experiments, Oberholzer & Frank (2003) found 

a range of 1-10 eggs of D. reticulatum destroyed in 24 h by one P. cupreus maintained with a 

temperature cycle of 15 ˚C for 12 h and 10 ˚C for 12 h; Al-Danasoury et al. (2016) reported 

ranges of 6-11 and 7-13 eggs killed in 24 h by one H. rufipes in two different experiments 

performed at 16 ˚C; in the laboratory experiment reported here, P. cupreus destroyed eggs in 

the range 0-10 and H. rufipes in the range 3-17 when all temperatures were pooled. In the 

outdoor experiment, two H. rufipes killed between 65% and 89% of the eggs in 72 h, while 

the figures for two P. cupreus were between 15% and 17%; to our knowledge, this is the first 

demonstration of the ability of both carabid species to find and kill eggs of D. reticulatum 

outside petri dishes, under emulated field conditions. 

The survival of D. reticulatum eggs exposed to H. rufipes decreased with increasing 

temperatures, both in the laboratory and in the outdoor experiment, which agrees with 

previous findings pointing a positive impact of temperature on the predatory activity of 

generalist carabid beetles. In laboratory experiments, Kielty et al. (1999) found a positive 

relationship between temperature and the number of aphids predated by H. rufipes and by 
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Pterostichus madidus, while Ayre (2001) found a positive relationship between temperature 

and the proportions of H. rufipes or P. madidus individuals predating on newly-hatched D. 

reticulatum. Recently, Frank & Bramböck (2016) showed that four polyphagous carabid 

species abundantly found in spring in European arable crops (Amara ovata, Harpalus 

distinguendus, Poecilus cupreus and Anchomenus dorsalis) killed more larvae of the pollen 

beetle Meligethes aeneus at rising temperature, demonstrating for the first time a higher 

predatory activity of polyphagous carabids on an insect pest under realistic forecasted climate 

warming scenarios, with increases of mean temperatures of 3 and 5 ˚C over current mean 

temperatures of their region (Eastern Austria). The outdoor experiment reported here studied 

the predatory activity of polyphagous carabids on slug eggs under a mean temperature 

increased 3˚ over current mean temperature, a warming scenario which falls within the 

temperature increases predicted for NW-Spain for the second half of the century (De Castro et 

al., 2005; Martínez de la Torre & Míguez-Macho, 2009). Overall, all these findings suggest 

that biological pest control exercised by different species of polyphagous carabids upon 

different pest prey may be enhanced under climate warming conditions. 

As predicted by the metabolic theory of ecology for ectothermic animals (Brown et al., 

2004), temperature-mediated increases of metabolic rates and therefore of demand for food 

are expected with increasing temperature; in turn, higher demand for food implies higher 

foraging activity and higher overall activity, which has been recorded for carabids in field 

studies (Honek, 1997; Tuf et al., 2012; Berthe et al., 2015). Although these arguments can 

help to explain the results obtained in this and other studies, there are other factors which have 

to be considered, such as the particular traits of predators and prey. In the work of Frank & 

Bramböck (2016) P. cupreus was the species which killed the highest number of M. auneus 

larvae and showed an increased predatory activity at higher temperature. However, in the 

present work, the predatory activity of P. cupreus upon the eggs of D. reticulatum was not 

significantly affected by temperature neither in the laboratory nor in the outdoor experiment. 

In the laboratory experiments of Oberholzer & Frank (2003), P. cupreus killed less eggs of D. 

reticulatum than Pterotichus melanarius when the eggs were offered alone; when the eggs of 

D. reticulatum were offered with alternative prey, the amount destroyed by P. cupreus was 

significantly reduced, while alternative prey did not affect P. melanarius predation on the 

eggs of D. reticulatum; P. cupreus also killed less slugs than P. melanarius both in the 

absence and in the presence of alternative prey. Oberholzer et al. (2003) showed that P. 
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cupreus failed to reduce damage to germinating oilseed rape caused by D. reticulatum, while 

P. melanarius significantly reduced slug damage caused by this slug species. However, P. 

cupreus and Anchomenus dorsalis were observed to reduce populations of oilseed rape insect 

pests in winter rape fields (Zaller et al., 2009). These and other findings (Symondson, 2004) 

suggest that terrestrial molluscs are non-attractive prey for P. cupreus, while it has much more 

potential as antagonist of insect pests, and this could explain why P. cupreus showed a 

significant increased predatory activity on M. auneus larvae at higher temperature (Frank & 

Bramböck, 2016), but in the present work the predatory activity of P. cupreus upon the eggs 

of D. reticulatum was unaffected by temperature.  

The same interspecific differences regarding the effect of temperature on the predatory 

activity of these beetles upon the eggs of D. reticulatum were observed regarding the density 

of egg prey. A positive effect of prey density on the amount of prey killed by H. rufipes has 

been reported for predation on adult Myzus persicae aphids (Loughridge & Luff, 1983) or on 

larvae of the medfly Ceratitis capitata (Monzó et al., 2011), and with P. cupreus for predation 

on Rhopalosiphum padi aphids or on fruit flies or house crickets (Lang & Gsödl, 2003). 

However, in our outdoor experiment, only H. rufipes showed a trend to lower egg survival at 

higher egg density, which may be explained as well by the bare willingness of P. cupreus to 

predate on slug eggs.   

Not surprisingly, egg mortality was proportionally lower in the outdoor than in the 

laboratory experiment, mainly in the case of P. cupreus; the same was observed by Hatteland 

et al. (2010) when comparing predation of P. melanarius or Pterostichus niger on eggs and 

hatchlings of Arion vulgaris (often regarded as A. lusitanicus) in laboratory and semi-field 

experiments, reflecting that higher available area and environmental heterogeneity demand a 

higher and more realistic prey-searching effort from the beetles than the experiments in petri 

dishes. Moreover, Hatteland at al. (2010) found that while P. melanarius and P. niger 

attacked similar proportions of eggs and hatchlings of A. vulgaris when each item was offered 

alone or when both items were offered together in petri dishes, they killed much higher 

proportions of eggs than of hatchlings when both items were offered together under semi-field 

conditions. This reflects that small slugs are more likely to escape predation under field 

conditions because they have access to a great number and diversity of refugia, as shown by 

McKemey et al. (2003), while slug eggs by no means can escape predation if attacked. Al-
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Danasoury et al. (2016) did not find differences in the survival of eggs and hatchling of D. 

reticulatum exposed to H. rufipes in choice experiments in petri dishes. Besides, predation on 

slug eggs by polyphagous carabids may be less constrained by beetle size than predation on 

slugs, because small carabid species which are incapable of overcoming the defences 

(thickness of body wall and ability to produce defensive mucus) of even the smallest slug, 

could potentially affect their population dynamics by preying on slug eggs (Symondson, 

2004). Positive relationships between the size of the beetle species and their ability to predate 

on slugs had been pointed from both laboratory (Ayre, 2001) and field studies (Tod, 1973; 

Ayre & Port, 1996), as well as negative relationships between slug size and their 

susceptibility to be killed by generalist carabid beetles (Paill, 2000, 2004; McKemey et al., 

2001; Oberholzer & Frank, 2003; Hatteland et al., 2010, 2011; Al-Danasoury et al., 2016). 

However, we do not know whether there exists any relationship between size of the beetle 

predator and size and/or toughness of slug eggs, although some observations suggest that such 

relationship may exist. Carabid beetles can easily break the slug eggshell (Pianezzola et al., 

2013), and it has been recorded that even small species such as Nebria brevicollis, an 

oligophagous (Seric Jelaska et al., 2014) beetle of similar size to P. cupreous (Homburg et al., 

2013), was able to destroy the relatively hard eggs of A. vulgaris in the laboratory, although it 

was unable to kill newly-hatched slugs (Hatteland et al., 2010). The eggs of A. vulgaris, 

which are larger and harder (tougher shell) than those of D. reticulatum, are less susceptible to 

be destroyed by P. melanarius in both no-choice and choice situations (Oberholzer & Frank, 

2003). Experiments with different prey species and slug eggs are needed to confirm the 

existence of this relationship.   

While some species of ground beetles are able to actively search for slugs by detecting 

their mucus trails (Digweed, 1994; Thomas et al., 2008; McKemey et al., 2004), it is not 

known whether the predators actively search for slug eggs or they are randomly found. Even 

if beetles kill slug eggs by finding them at random, their ability to aggregate in areas of high 

slug density, as found in field studies (Symondson et al., 1996; Bohan et al., 2000) will 

increase the probability of these highly mobile predators to find and kill slug eggs. 

Furthermore, the obtained results suggest that under predicted climate warming conditions it 

is expected that carabids will show higher foraging activity, which in turn will increase their 

probabilities to find and destroy slug eggs. 
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A consistent finding of studies on the predatory activity of carabids upon a number of 

different prey is that beetles do not consume all that they kill (Hagley et al., 1982; 

Symondson, 1989; Ayre, 2001; Lang & Gsödl, 2003; Hatteland at al., 2010; Al-Danasoury et 

al., 2016). That superfluous or wasteful killing is regarded as a beneficial component of the 

impact that carabids may have on pest organisms (Ayre, 2001; Lang & Gsödl, 2003). 

However, such assassin behaviour likely is strongly affected by experimental conditions such 

as reduced space, absence of refugia or high availability of even non-attractive prey, thus 

research is clearly needed to confirm whether the same behaviour of carabids persists under 

field conditions or not.   

Both H. rufipes and P. cupreus are considered as typical representatives of the carabid 

fauna of open habitats (Tuf et al., 2012) and agricultural land (Fusser et al., 2016).  In Europe, 

H. rufipes is usually considered an autumn breeding species, while P. cupreus is considered a 

spring breeder (Tuf et al., 2012). However, Den Boer & Den Boer-Daanje (1990) showed that 

the division of Western European carabids in spring or autumn breeders, or in adult or larval 

hibernators, are inadequate, and that the activity period of most species usually extends over 

most of the year. In particular, adults of most Harpalini species are active during most months 

of the year, although are generally less active during cooler months (Kromp, 1999; Larochelle 

& Larivière, 2005). In Northumberland (England), Luff (1980) found that adult H. rufipes 

were active from April to November. In the Czech Republic, Honek (1997) reported peaks of 

abundance in spring and early summer for P. cupreus and in late summer for H. rufipes. In 

North Spain, Miñarro & Dapena (2003) found adult H. rufipes and P. cupreus from August to 

October in apple orchards, although they did not sample other months. Langmaack et al. 

(2001) collected adult H. rufipes and P. cupreus in oil seed rape crops in spring-summer in 

Northern Germany. Fusser et al. (2016) sampled semi-natural habitats in a number of 

locations in agricultural landscapes in Southwest Germany in spring-summer and found H. 

rufipes and P. cupreus as the most abundant out of 128 carabid species. El-Danasoury et al. 

(2016) collected adult H. rufipes from the end of April to the beginning of July in northwest 

Spain in 2015, and in the present work we collected adults of both carabid species from April 

to June 2016.  

Breeding in D. reticulatum takes place whenever environmental conditions are suitable 

(Carrick 1938; South 1989), leading to both geographical and inter-annual variability in the 



HEBA-T-ALLA EL-DANASOURY 

 

52 

 

breeding periods and the pattern of generations (South, 1992). Previous field studies at 

different localities in our region point to the presence of eggs of D. reticulatum throughout 

most of the year (Barrada et al., 2004; Córdoba et al., 2011) and thus, in our region, the 

beetles will have high probabilities to find eggs of D. reticulatum in the field. Furthermore, 

Berthe et al. (2015) found that H. rufipes was the coleopteran species which showed the 

highest increase in activity-density in response to a 2 ˚C artificial warming of a spring-shown 

wheat crop. 

To our knowledge, this is the first study on the predatory activity of polyphagous carabids 

on the eggs of a pest slug performed outdoors under semi-field conditions and covering a 

realistic predicted climate warming scenario. This and previous studies clearly suggest that 

biological pest control performed by polyphagous carabids upon pest prey may be enhanced 

under predicted climate warming conditions. However, forecasting the responses of organisms 

and ecological relationships between organisms to future climatic conditions is difficult, 

because climate change may also affect different aspects of the biology of prey, of predators 

and their natural enemies, the quality and/or quantity of available food, and many other 

factors. In the agricultural context, climate change is expected to affect also the varieties and 

species of crops grown, as well as the timing of agricultural practices, among other factors 

which might affect any particular organism and its relationships with the biotic and abiotic 

environment.  
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Performance of the slug parasitic nematode Phasmarhabditis 

hermaphrodita under predicted conditions of winter warming 

Heba EL-DANASOURY and Javier IGLESIAS-PIÑEIRO 

 

Abstract 

The nematode Phasmarhabditis hermaphrodita is the only commercial biological control 

agent for terrestrial slugs. We investigated whether the predicted conditions of winter 

warming could have any effect on its performance. In the presence of nematodes, slug 

damage to lettuce plants and slug survival were significantly lower under the predicted 

conditions of winter warming than under normal winter conditions, while in the absence of 

nematodes, slug damage and survival were similar under the conditions of winter warming 

and under current winter conditions. The data suggest that P. hermaphrodita may perform 

better under the predicted conditions of winter warming. 

 

Keywords: Phasmarhabditis hermaphrodita, Deroceras reticulatum, winter warming,  

                   climate change, nematodes, slugs. 
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GENERAL DISCUSSION 

 

Unwanted pests have hindered human efforts in land management since the onset of 

organized agriculture in the Neolithic. Thus, pest management has been an integral aspect of 

human civilization, and has evolved from simple manual techniques to sophisticated strategies 

employing pheromones, biopesticides or genetically modified organisms (GMOs). Without 

doubt, pest management has played a role of paramount importance in the impressive rise in 

food production in the last 50 years (Oerke 2006). Currently, the most rational and successful 

strategy is considered to be integrated pest management (IPM), which include the integrated 

implementation of cultural, mechanical, chemical, and biological control measures. Even so, 

the application of chemicals remains the most widely used method for pest control worldwide 

(Ziska and McConnell, 2016), although increasing awareness of health and environmental 

issues, as well as increasingly restrictive legislation on pesticide use in developed countries, 

pose a great challenge to future agriculture, as reliance on pesticides must be drastically 

reduced (Hossard et al., 2014; Lamichhane et al., 2015). Concomitantly, global food 

production must increase by 50 % to meet the projected demand of the world’s population by 

2050 (Chakraborty and Newton, 2011; Foley et al., 2011). In essence, there is an urgent need 

to meet food demands by increasing crop yield and satisfy sustainability goals by reducing 

reliance on pesticides, which is challenging task for twenty-first century agriculture, further 

complicated against the background of climate change. 

 

There is a general agreement in that climate change will affect pest biology due to two 

elementary relationships. First, increased global temperature will have profound effects in 

ectotherm organisms such as most agricultural pests, altering their metabolic rates and 

demand for food, competitive ability, spread, phenology and population dynamics, as have 

already been reported. Second, increased atmospheric CO2 means higher availability of an 

essential resource for plants, that currently lack optimal levels of CO2 needed to maximize 

photosynthesis, growth and reproduction (Wang et al., 2012), and therefore pests and 

pathogens will indirectly be affected through their crop hosts (Ziska and Runion, 2007). 

Overall, the multiple expected effects of climate change on the biology of agricultural pests 

converge on an increased pest pressure, and this turns unclear if previous management 

paradigms will be adequate in the future (Ziska and McConnell, 2016). 
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Increased pest pressure is expected to result in increased pesticide use (Ziska, 2014), in the 

form of higher amounts, doses, frequencies and range of varieties or types of products 

applied. At the same time, it is also expected that climate change will affect the efficacy of 

chemical pesticides, for a number of reasons including reduced application opportunities, 

lower effectiveness of application methods, reduced pesticide efficacy due to accelerated 

degradation, and increased injury of non-target organisms (Delcour et al., 2015). Both rising 

temperatures and increased pesticide use are likely to increase pesticide resistance in pest 

organisms due to augmented exposure and evolutionary rate of genetically different strains 

under warm conditions (Jackson et al., 2011; Delcour et al., 2015). Although the most evident 

responses of pest organisms to climate change are phenology alterations and/or geographical 

redistributions (Scherm, 2004), there is also a high likelihood that climate change, especially 

warming, will exacerbate the already high phenotypic plasticity of most pest species, and even 

the appearance of genetic adaptation of pests to new climate conditions (Bloomfield et al., 

2006; Lepetz et al., 2009; Lamichhane et al., 2015). 

 

Among terrestrial gastropods, there exist a number of examples of local adaptations attributed 

to high ecophysiological plasticity (Wolda and Kreulen, 1973; Briner and Frank, 1998; Martin 

and Bergey, 2013; Slotsbo et al., 2013). In this work, significant changes in the feeding 

pressure exerted by D. reticulatum populations under predicted climatic conditions of winter 

warming and increased summer rainfall, have been found, even when the experiments were 

run for only seven days (Chapter 1). The obtained results suggest a higher potential of the 

species for crop damaging under predicted climatic conditions. The outcome of these 

experiments agrees with known traits of D. reticulatum, such as its wide-ranging tolerance to 

environmental factors and high adaptability to unstable environments (Runham and Hunter, 

1970; Port and Port, 1986; South, 1992; Willis et al., 2008). Indeed, D. reticulatum currently 

inhabits a very high diversity of climates types, and although ecophysiological plasticity can 

help to explain this fact, just its great ability to search and exploit suitable microenvironments 

and microclimates, which in turn increases their likelihood to thrive in a wide diversity of 

macroclimatic conditions, undoubtedly makes a great contribution to explain its wide 

geographic and climatic range (Capinha et al., 2014). In short, D. reticulatum, as many other 

invasive pest species, is very likely to successfully adapt to future climatic conditions and to 

increase its potential for crop damaging.  
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With the expectation of increased pest pressure and increased resistance to pesticides in pest 

organisms, biological control does not only turn up as an environment friendly option, but 

also as a solution with high probabilities of success in keeping pest populations below 

acceptable thresholds, both for already established pests and to potential invasive new pest 

species (Delcour et al., 2015; Lamichhane et al., 2015). Therefore, biological control is a 

priority area of research which will help to adapt agriculture to the changing climatic 

conditions and, under this view, pro-active studies devoted to identify natural enemies as 

possible biocontrol agents of pest species are essential (Jackson et al., 2011). In this context, 

generalist natural enemies, i.e., natural enemies able to attack a wide range of prey including 

those already established as well as exotic and invasive ones, are seen as the most promising 

biocontrol agents of pests (Lu et al., 2012; Liu et al., 2014). 

 

Here, it has been shown that a previously overlooked polyphagous carabid beetle, Harpalus 

rufipes, which is one of the most common and abundant ground beetle in a wide range of 

agroecosystems in most European countries and in the USA (Harrison and Gallandt, 2012), 

may realise an important contribution to the control of D. reticulatum populations by 

predating upon its eggs and small juveniles (Chapter 2). In laboratory experiments, H. rufipes 

was able to kill considerable amounts of eggs and small juveniles of D. reticulatum, both 

when they were the only available prey, and when the beetles had a choice between slugs or 

eggs and alternative prey known to be predated by H. rufipes in the field, such as live aphids 

or live dipteran larvae. Moreover, H. rufipes was able to find and kill eggs of D. reticultum in 

outdoor experiments emulating field conditions, and showed a significant increase in 

predatory activity with increasing temperature, both in the laboratory and in the outdoor 

experiment (Chapter 3); H. rufipes also showed a trend to higher predatory activity with 

higher egg density. The smaller polyphagous carabid beetle Poecilus cupreus was also able to 

destroy eggs of D. reticultum in the laboratory, and to find and kill eggs under semi-field 

conditions, but the predatory activity of P. cupreus on slug eggs was always lower than that of 

H. rufipes, and it was unaffected neither by temperature nor by egg density; our results and 

those of previous studies suggest that P. cupreus has a high potential as antagonist of insect 

pests, but terrestrial slugs and their eggs seems to be non-attractive prey for P. cupreus. 
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An outstanding finding consistently observed in studies about the predatory activity of carabid 

beetles upon a number of different prey, is that beetles do not consume all that they kill, and 

this seemingly superfluous killing is regarded as an important beneficial component of the 

impact that carabids have on pest organisms. This phenomenon has been recorded by many 

authors, and also by us, in different species of beetles predating upon a number of different 

prey in laboratory and semi-field conditions. However, such behaviour is likely to be strongly 

affected by experimental conditions, and its existence under field conditions guarantees 

further research.   

 

Another important finding is that slug eggs seem to be more susceptible than slugs (even the 

smallest slugs) to predation by generalist beetles, especially when environmental 

heterogeneity demands a prey-searching effort from the beetles. This can be explained 

because slugs are more likely to escape predation by sheltering, as they have access to a great 

number and diversity of refugia under field conditions, while slug eggs by no means can 

escape predation if attacked. Besides, predation on slug eggs by beetles should be less 

constrained by beetle size than predation on slugs, since small beetle species which are 

incapable to subdue even the smallest slugs, have been shown to be able to destroy slug eggs 

(Hatteland et al., 2010). This is important because the amount of viable eggs is a key factor in 

the population dynamics of pest slugs (Heller, 2001; Schley and Bees, 2002), and therefore 

beetles capable of killing eggs are expected to make a significant contribution to the control of 

populations.        

  

Abundance, a long period of seasonal activity, and circadian rhythm coincidence with the 

prey are important attributes of a generalist predator to significantly contribute to the control 

of a pest (Symondson et al., 2002; Winder et al., 2005). Available data suggest that H. rufipes 

meet all those criteria with regard to D. reticulatum and, in the particular case of Galicia, this 

beetle will have high probabilities to find eggs and hatchlings of D. reticulatum both at the 

beginning (April-June) and at the end (October-November) of its activity period, and 

therefore high probabilities to cause a considerable impact on populations of D. reticulatum.        
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A point of concern about the necessary synchrony between pest species and natural enemies is 

that, as a result of climate change, the phenology of biocontrol agent and pest target may be 

differentially affected (Scherm, 2004; Gutierrez et al., 2008; Ziska and McConnell, 2016). 

Fortunately, generalist natural enemies such as many carabid beetles are usually highly 

adaptable species (Holland and Luff, 2000), and H. rufipes, in particular, has been found to 

increase abundance under warming conditions. Buchholz et al. (2013), in a simulated drought 

experiment (i.e. warming of a grassland community of arthropods), found a disproportionately 

increased abundance of H.rufipes and an overall reduced beetle diversity. Similarly, Berthe et 

al. (2015) found that H. rufipes was the beetle species which showed the highest increase in 

activity-density in response to a 2 ˚C artificial warming of a spring-shown wheat crop, while 

beetle diversity decreased. Together, the results of Buchholz et al. (2013) and those of Berthe 

et al. (2015) suggest that climate warming promotes common and highly adaptable beetle 

species at the cost of others, resulting in an overall loss of beetle diversity. From the point of 

view of biological control, climate-driven increases in the activity-densities of generalist 

beetle species such as H. rufipes, are expected to enhance the important service that these 

natural enemies provide to agroecosystems controlling major agricultural pests (Holland and 

Luff, 2000).   

 

The effect of predicted conditions of winter warming on the performance of the rhabditid 

nematode Phasmarhabditis hermaphrodita, as slug biocontrol agent, was studied in Chapter 

4. P. hermaphrodita is the only commercial biological control agent for terrestrial gastropods, 

but it is known that is common and widespread in many European countries, especially in 

central and north Europe, where it is believed to perform a natural control of susceptible slug 

species (Rae et al., 2007). It is also known that P. hermaphrodita is very sensitive to 

moderately high temperatures (Maupas, 1900), and therefore is suspected to be highly 

susceptible to global warming. Recently, Wilson et al. (2015) studied the effect of 

temperature on the interaction between P. hermaphrodita and D. reticulatum, in the range of 

the slug’s optimum temperature, which is 14 °C, and up to 24 °C; they found that the 

nematode is much less tolerant of increasing temperatures than the host slug, so that when 

parasites were present, slug feeding increased significantly with raising temperatures as the 

inhibitory effect of the parasites lessened, but in the absence of parasites, slug feeding 
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significantly decreased over the same range as temperature rose above the slug’s optimum; 

Wilson et al. (2015) concluded from their findings that rising temperatures due to global 

warming will increase slug problems in the European home range of the slug and the 

nematode, as P. hermaphrodita will perform worse in controlling slug damage. However, 

high levels of abundance of D. reticultum and of damage caused by its feeding activity are 

common, widespread, and well known over the autumn-winter in many European countries, 

with much lower temperatures than those used by Wilson et al. (2015); in fact, crops such as 

winter wheat or winter rape are among the most damaged by D. reticulatum and other slugs 

(Port and Port, 1986; South, 1992).  

 

Here, we performed an experiment under semi-natural conditions to study the effect of winter 

warming on the interaction between P. hermaphrodita and D. reticulatum, comparing its 

performance under normal (non-manipulated) winter temperature (mean 9.7 ˚C), and under 

winter warming conditions with a rise in mean temperature of 4.5 ˚C, which matches the rise 

in winter temperature predicted for the last third of the century in north-west Spain (De Castro 

et al., 2005). Performance was measured as damage to lettuce plants and as slug survival. We 

found that, in the presence of nematodes and under predicted winter temperatures, slug 

damage to lettuce plants and slug survival were lower than under normal winter temperatures, 

while in the absence of nematodes slug damage and survival were similar under under normal 

and predicted winter temperatures.  These findings suggest that increased mean winter 

temperature in the range 4.0-4.5 ˚C, as predicted for NW-Spain, should improve the 

performance of P. hermaphrodita as slug biocontrol agent during the winter. 

 

The commercial P. hermaphrodita is reared in monoxenic culture with the bacterium 

Moraxella osloensis, which produces an endotoxin consisting of a lipopolysaccharide lethal to 

slugs (Tan and Grewal, 2002). However, P. hermaphrodita is a facultative parasite known to 

be capable of growing on a wide range of bacteria (Wilson et al., 1995), and when living 

saprobically P. hermaphrodita associates with complex and variable bacterial assemblages 

while keeping unchanged its virulence to D. reticulatum (Rae et al., 2010). Thus, as suggested 

by Tan and Grewal (2001), P. hermaphrodita is expected to persist in the environment living 
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saprobically on decaying hosts, slug faeces or leaf litter, and therefore may be suitable for 

long-term inoculative slug control, since inundative applications are unfeasible from the 

economic point of view. According to our results, in areas where climate change brought 

winter temperatures nearer to the optimum of both parasite and host, as expected for NW-

Spain, the performance of both naturally occurring and commercial P. hermaphrodita as slug 

biocontrol agent should be expected to improve. As a consequence, important crops severely 

damaged by slugs, such as winter wheat or winter rape, may benefit from natural control 

exerted by wild nematodes and/or from long-term inoculative slug control. 

 

Crop damage by pests is the result of complex ecological dynamics between two or more 

organisms, and is therefore very difficult to predict (Rosenzweig et al., 2001; Scherm, 2004). 

As discussed above, forecasting is much more intricate with the background of climate 

change. Globalization and climate change are leading to an international homogenization of 

pest threats (Ziska and McConnell, 2016), and although a great body of research on potential 

consequences of climate change on agriculture already exists, our level of uncertainty, and our 

inability to make confident predictions is such, that studies in this regard can be considered to 

remain in their infancy (Lamichhane et al., 2015). Models, which are perceived as essential 

tools to support decision making and guide research needs, should be taken with caution 

because of their high level of uncertainty (Chakraborty, 2013; Delcour et al., 2015), and this 

highlights the urgent need for more research on several fronts. Improved biological control 

appears as one of the most promising strategies (Jackson et al., 2011), but its success depends 

on the acquisition of in-depth knowledge about pests, natural enemies, their interactions and 

their relationships with the biotic and abiotic environment (Lamichhane et al., 2015). In this 

context of uncertainty, simulation studies like those presented here provide valuable insights 

and information for posterior modelling studies.  

 

 

 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

75 

 

CONCLUSIONS 

1. Predicted climatic conditions of winter warming and increased summer rainfall caused 

an increase in the feeding pressure exerted by Deroceras reticulatum populations on 

cultivated plants. Given its recognised great adaptability to environments and climates, 

as well as its wide distribution, it should be expected an increase in pest problems 

caused by this species in the future. 

 

2. The polyphagous carabid beetle Harpalus rufipes is able to find and kill eggs and 

small juveniles of D. reticulatum, and its predatory activity increases with increasing 

temperature. Given that H. rufipes is one of the most common and abundant ground 

beetles in European  agroecosystems, and that is known to respond to predicted rise in 

temperature by increasing its activity-density, it should be expected that H. rufipes 

plays a significant role as antagonist of D. reticulatum under future climatic 

conditions. 

 

3. Slug eggs are more susceptible than even the smallest slugs, to predation by generalist 

beetles such as H. rufipes and Poecilus cupreus. This means that beetles capable of 

killing eggs may make a significant contribution to the control of slug pest 

populations, but predation on slug eggs is difficult to reveal and deserves further 

research.     

 

4. A rise of nearly 4.5 ˚C in mean winter temperature enhanced the effectiveness of the 

commercial strain of Phasmarhabditis hermaphrodita in controlling damage caused 

by D. reticulatum populations. Given that P. hermaphrodita is a facultative parasite 

able to live saprobically on a wide range of bacteria while keeping its virulence to D. 

reticulatum, and that this nematode is common and abundant in European soils, it 

should be expected an improvement in the performance as slug biocontrol agent of 

both the commercial strain and the naturally occurring P. hermaphrodita, in areas 



HEBA-T-ALLA EL-DANASOURY 

 

76 

 

where climate change brings winter temperatures closer to the 14 ˚C optimum 

temperature of both the nematode and its slug host. 

5. Measures that promote abundance of natural enemies such as generalist carabid 

beetles should be implemented and assessed, as biocontrol services provided by 

natural enemies are regarded as one of the most promising strategies to fight pest in 

the climate change scenario.  
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  SUMMARY 

 

Keywords: pest slugs, climate change, biological control, Deroceras reticulatum, carabid 

beetles, parasitic nematodes, slug eggs.    

 

Changes in climate have caused significant impacts on different ecosystems on all 

continents in recent decades. Climate models for Europe predict significant warming, changes 

in the rainfall pattern and an increase in the frequency of extreme weather events. As 

temperature is considered the most dominant environmental factor affecting the biology of 

ectotherms, it is expected that global warming will have a deep impact on their population 

dynamics, leading to invasions and spread of pests and diseases able to survive under warmer 

climatic conditions. Over the last decade, multiple reports have shown that climate change is 

already altering the distribution, behaviour, and/or population dynamics of many agricultural 

pests around the globe. As a consequence, there is growing concern that global food security 

is threatened by the emergence and/or spread of crop pests and pathogens. 

 

Terrestrial gastropods can cause severe damage to crops, can act as vectors of transmission of 

plant pathogens, and as intermediary hosts of parasites of domestic and wild animals. A 

number of species of terrestrial slugs and snails are considered important agricultural pests 

because they cause serious damage to plants cultivated by man, affecting a wide variety of 

species and productive sectors, from large intensive crops to public and private gardens, 

including horticulture, floriculture, forestry, fruit growing, grassland and commercial crops of 

ornamental, aromatic and medicinal plants.  While some land snails can reach pest status 

even in relatively arid regions, slugs are especially problematic in temperate and rainy 

climates. Several slug species of the genus Deroceras have been dispersed almost worldwide 

through human activities, and this is particularly true in the case of Deroceras reticulatum 

(Müller, 1774), a successful opportunistic and invasive species considered the most serious 

slug pest worldwide, that is currently found in most temperate and subtropical regions, 

including Europe, Asia, Australia, New Zealand, Tasmania, Canada, the United States, South 

America, South Africa and many islands of the Pacific and Atlantic Oceans.  
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The most common method of slug control is the use of chemical molluscicides, which are 

usually pellets or baits containing between 2% and 8% of either metaldehyde or methiocarb as 

active ingredient. Both molluscicidal compounds have negative impacts on non-target 

organism, such as carabid beetles, which in turn are important predators of terrestrial 

gastropods, and domestic and wild animals, especially birds and mammals. A chemical 

molluscicide containing iron phosphate as active ingredient is sold under the claims of being 

natural and safe to wildlife and domestic animals, but recent research have shown that 

molluscicide pellets containing iron phosphate have adverse effects on earthworm survival, 

activity and growth, and present significant hazards to other soil inhabiting invertebrates, 

domestic animals and human child. 

 

Regarding natural enemies, slugs and snails are preyed upon by a wide range of both 

vertebrates and invertebrates, and are parasitized by a number of dipterans, nematodes and 

mites. It is unlikely that most of these natural enemies could perform an effective control of 

populations of pest gastropods in the field, but research showed that carabid beetles and 

nematodes are promising biological control agents. In fact, the only biological control agent 

ever marketed for terrestrial gastropods is the nematode Phasmarhabditis hermaphrodita 

(Schneider, 1859). 

 

Climate change will not only affect pest species of concern, but will also affect the biology of 

their natural enemies, the quality and/or quantity of available food, and many other factors. 

Thus, it is becoming more and more evident that modelling projections of responses to 

climate change by any particular organism should take into account not only the particular 

species, but also their natural enemies and ecological relationship. To be accurate, models 

need to be parameterised and validated by experimental evidences, such as experimental 

manipulations of temperature and precipitation, which have already provided valuable 

information into the responses of different components of terrestrial ecosystems to predicted 

climate change. This is a fundamental previous step for modelling the functional response of 

agro-ecosystems to climate change at the farm-level or wider scales. Modelling studies have 

suggested that the abundance, range, and intensity of damage caused by D. reticulatum may 

increase in coming years in Europe due to the effects of climate change, but these models do 
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not account for factors other than population dynamics and physiological traits of the own 

species.  

 

The main objective of this PhD work is to explore potential changes in the feeding behaviour 

of the pest slug Deroceras reticulatum, as well as in the behaviours of some of their most 

important natural enemies, under climatic conditions predicted for Galicia by the last third of 

the century. The studied natural enemies were the carabid beetles Harpalus rufipes (De Geer, 

1774) and Poecilus cupreus (Linnaeus, 1758), and the slug parasitic nematode 

Phasmarhabditis hermaphrodita. In order to achieve this general objective, different 

experiments were performed under laboratory controlled conditions and under semi-natural 

conditions.  

 

Chapter 1 reports two experiments designed to assess the behavioural response of D. 

reticulatum to different climate manipulations in terms of herbivory, by measuring the 

damage inflicted by slug populations to lettuce seedlings. The experiments were performed 

outdoors under semi-natural conditions. The climate manipulations tested emulate predicted 

climatic conditions for Northwest Spain, specifically winter warming and increased summer 

rainfall, in contrast with normal winter conditions and summer without rain conditions, 

respectively. In the winter experiment, a normal winter treatment was compared with a winter 

warming treatment, with higher temperature, lower relative humidity and the absence of 

rainfall. In the summer experiment, a summer without rain treatment was compared with an 

increased summer rainfall treatment, characterised by the presence of rainfall, whereas the 

conditions of temperature and relative humidity were similar in both summer treatments. The 

results showed significant changes in the feeding pressure exerted by D. reticulatum under 

predicted climatic conditions, pointing to a higher potential of the species for crop damaging.    

 

Chapter 2 reports a series of laboratory experiments designed to assess the capability of the 

carabid beetle H. rufipes to kill eggs and different-sized D. reticulatum slugs, either in the 

absence or in the presence of alternative prey. While it was known that many polyphagous 

carabid beetles are important gastropod predators, most studies have focused on just a few 

species of beetles. H. rufipes, however, received little attention even when is one of the most 

common and abundant ground beetle in a wide range of agroecosystems in most European 
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countries. The results showed that H. rufipes is able to kill considerable amounts of eggs and 

small juveniles of D. reticulatum, both in no-choice and in choice situations, suggesting that 

this beetle might realise an important contribution to the control of D. reticulatum 

populations.  

 

Chapter 3 reports two experiments, one performed under laboratory controlled conditions and 

one under semi-natural conditions, designed to examine the effect of temperature on the 

predatory activity of the carabid beetles H. rufipes and P. cupreus on the eggs of D. 

reticulatum. The laboratory experiment tested five different constant temperatures, and the 

outdoor experiment compared current ambient temperature in spring-summer with an 

experimentally manipulated higher temperature emulating predicted warming conditions. In 

both experiments, H. rufipes killed more eggs than P. cupreus, and was the unique species 

whose predatory activity significantly increased with increasing temperature, suggesting that 

biological pest control performed by H. rufipes upon D. reticulatum may be enhanced under 

predicted climate warming conditions.   

 

Chapter 4 reports an outdoor experiment comparing the performance of the slug biocontrol 

agent nematode P. hermaphrodita, under normal winter conditions and under winter warming 

conditions emulating predicted warmer winters. In the presence of nematodes, slug damage to 

lettuce plants and slug survival were significantly lower under the predicted conditions of 

winter warming than under normal winter conditions, while in the absence of nematodes, slug 

damage and survival were similar under the conditions of winter warming and under current 

winter conditions. Thus, the results suggest that P. hermaphrodita, as biological control agent 

against D. reticulatum, may perform better under predicted conditions of winter warming. 

 

Overall, from the obtained results it should be expected that both the pest slug D. reticulatum 

and its natural enemies H. rufipes and P. hermaphrodita will be affected by predicted 

conditions of climate. Specifically, it should be expected a higher potential of D. reticulatum 

populations for crop damaging, and an enhanced performance of H. rufipes and P. 

hermaphrodita as biological control agents of D. reticulatum. In turn, these findings 

emphasize the importance of taking into account natural enemies and ecological interactions 

when modelling the response of species to climate change.       
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RESUMEN 

 

Palabras clave: plagas de babosas, cambio climático, control biológico, Deroceras 

reticulatum, nematodos parásitos, huevos de babosas.   

 

Los cambios en el clima han causado impactos significativos en diferentes ecosistemas de 

todos los continentes a lo largo de las últimas décadas. Los modelos climáticos para Europa 

predicen un calentamiento significativo, cambios en el patrón temporal y espacial de 

distribución de las lluvias, y un aumento en la frecuencia de fenómenos meteorológicos 

extremos. La temperatura se considera el factor ambiental más importante en la biología de 

los organismos ectotermos, por lo cual se espera que el calentamiento global tenga un 

profundo impacto en su dinámica poblacional, lo que conduce a esperar invasiones y 

aumentos del rango de distribución de organismos causantes de plagas y enfermedades que 

sean capaces de sobrevivir bajo condiciones climáticas más cálidas. Durante la última década, 

numerosas investigaciones han demostrado que el cambio climático ya está alterando la 

distribución, el comportamiento y/o la dinámica poblacional de muchas plagas agrícolas en 

todo el mundo. Como consecuencia, existe una preocupación creciente con respecto a que la 

seguridad alimentaria mundial esté amenazada por la aparición y/o propagación de plagas y 

patógenos de los cultivos. 

 

Los gasterópodos terrestres pueden causar graves daños a los cultivos, pueden actuar como 

vectores de transmisión de patógenos de las plantas, y también como hospedadores 

intermediarios de parásitos de animales domésticos y silvestres. Varias especies de babosas y 

caracoles terrestres son consideradas plagas agrícolas de gran importancia porque pueden 

causar serios daños a las plantas cultivadas por el hombre, afectando a una amplia variedad de 

especies y sectores productivos, desde los grandes cultivos intensivos hasta jardines públicos 

o privados, incluyendo la horticultura, floricultura, silvicultura, fruticultura, pastos y cultivos 

comerciales de plantas ornamentales, aromáticas y medicinales. Algunos caracoles terrestres 

pueden alcanzar el estatus de plagas incluso en regiones relativamente áridas, pero las babosas 

son especialmente problemáticas en climas templados y lluviosos. Varias especies de babosas 

del género Deroceras se han dispersado por casi todo el mundo gracias al hombre, y esto es 
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particularmente cierto en el caso de Deroceras reticulatum (Müller, 1774), una exitosa 

especie oportunista e invasora, considerada como la babosa causante de plagas más 

perjudicial, a nivel mundial. Actualmente  D. reticulatum se encuentra en la mayoría de las 

regiones templadas y subtropicales, incluyendo Europa, Asia, Australia, Nueva Zelanda, 

Tasmania, Canadá, Estados Unidos, Sudamérica, Sudáfrica y muchas islas de los océanos 

Pacífico y Atlántico. 

 

El método más común para el control de las babosas es el uso de molusquicidas químicos, que 

habitualmente son pellets o cebos que contienen como ingrediente activo entre un 2% y un 

8% de metaldehído o de metiocarbamato. Ambos compuestos molusquicidas tienen impactos 

negativos sobre otros organismos, como escarabajos de la familia Carabidae, que a su vez son 

importantes depredadores de gasterópodos terrestres en el campo, y también sobre animales 

domésticos y silvestres, especialmente aves y mamíferos. De forma relativamente reciente han 

comenzado a comercializarse cebos molusquicidas que contienen fosfato de hierro como 

ingrediente activo, y que reivindican ser productos totalmente naturales y seguros para la 

fauna y los animales domésticos. Sin embargo, recientes investigaciones han demostrado que 

los molusquicidas con fosfato de hierro tienen también efectos adversos sobre la fauna; en 

particular se ha demostrado que afectan a la supervivencia, crecimiento y actividad de 

lombrices terrestres, y existen indicios de que también representan un peligro para otros 

invertebrados del suelo, así como para animales domésticos y para humanos, especialmente 

niños. 

 

Con respecto a los enemigos naturales, las babosas y los caracoles son depredados por una 

amplia gama de vertebrados e invertebrados, y son parasitados por numerosas especies de 

dípteros, nematodos y ácaros. En el caso de la mayoría de estos enemigos naturales, es poco 

probable que puedan realizar un control efectivo en el campo de las poblaciones de 

gasterópodos perjudiciales, pero numerosas investigaciones han demostrado que los carábidos 

y los nematodos presentan un elevado potencial como agentes de control biológico de 

gasterópodos. De hecho, el único agente de control biológico de gasterópodos que se 

comercializa es el nematodo Phasmarhabditis hermaphrodita (Schneider, 1859). 
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Una de las consecuencias del cambio climático global es un aumento de la expectativa de 

mayores problemas ocasionados por las plagas agrícolas, así como de un incremento en el 

desarrollo de resistencia a los plaguicidas por parte de muchas especies dañinas. Ante estas 

expectativas, el control biológico de plagas aparece no sólo como una opción no agresiva para 

el medio ambiente, sino también como una alternativa con elevadas probabilidades de éxito 

para mantener las poblaciones de organismos causantes de plagas por debajo de umbrales 

aceptables, tanto en el caso de plagas ya establecidas como en el caso de potenciales nuevas 

especies invasoras. Desde este punto de vista, el control biológico de plagas se convierte en 

un objetivo prioritario de investigación, con el fin de contribuir a adaptar la agricultura a las 

condiciones climáticas cambiantes. Una primera fase, esencial, la representan los estudios 

dedicados a la identificación de enemigos naturales que puedan ser utilizados como agentes 

de control biológico de plagas. Los conocimientos actuales en este ámbito indican que los 

enemigos naturales generalistas, es decir, aquellos capaces de atacar a una amplia gama de 

presas, son los más prometedores como agentes de control biológico de plagas en un ambiente 

cambiante. 

 

Es evidente que el cambio climático no sólo afecta a las especies causantes de plagas, sino 

también a sus enemigos naturales, a la calidad y/o cantidad de alimento disponible para ellas, 

y a muchos otros factores. En función de esto, las proyecciones realizadas por los modelos de 

predicción de las respuestas al cambio climático por parte de cualquier organismo deben tener 

en cuenta, no sólo a las especies de interés en particular, sino también a sus enemigos 

naturales y sus relaciones ecológicas. El éxito de los modelos depende en gran medida de los 

parámetros que utilicen y de su validación por medio de evidencias experimentales, tales 

como manipulaciones experimentales de la temperatura y la precipitación, las cuales ya han 

proporcionado valiosa información sobre las respuestas de diferentes componentes de los 

ecosistemas terrestres al cambio climático. Éste es un paso previo fundamental para la 

modelización de la respuesta funcional de los agroecosistemas al cambio climático, no sólo a 

nivel de especie sino a escalas más amplias. Estudios previos de modelización sugieren que la 

abundancia, el rango de distribución, y la intensidad de los daños causados por D. reticulatum 

pueden aumentar en los próximos años en Europa debido a los efectos del cambio climático, 

pero dichos modelos  sólo han tenido en cuenta las propiedades fisiológicas y las relacionadas 

con la dinámica poblacional de la propia especie. 



HEBA-T-ALLA EL-DANASOURY 

 

102 

 

 

El objetivo principal de este trabajo de doctorado es explorar potenciales modificaciones  en 

el comportamiento alimentario de la babosa Deroceras reticulatum, así como en el 

comportamientos de algunos de sus enemigos naturales más importantes, bajo condiciones 

climáticas pronosticadas para Galicia en el último tercio del presente siglo. Los enemigos 

naturales estudiados fueron los escarabajos Harpalus rufipes (De Geer, 1774) y Poecilus 

cupreus (Linnaeus, 1758), y el nematodo zooparásito Phasmarhabditis hermaphrodita. Para 

alcanzar este objetivo general se realizaron diferentes experimentos bajo condiciones 

controladas en el laboratorio, y bajo condiciones semi-naturales. 

 

En el Capítulo 1 se presentan dos experimentos diseñados para evaluar la respuesta de D. 

reticulatum frente a diferentes manipulaciones climáticas, en términos de consumo de plantas 

cultivadas. Para ello se cuantificó el daño infligido por poblaciones de babosas a plántulas de 

lechuga. Estos experimentos se realizaron al aire libre bajo condiciones semi-naturales. Las 

manipulaciones climáticas que se utilizaron emulan condiciones climáticas previstas para el 

Noroeste de España, en concreto el calentamiento invernal y el aumento de precipitación en 

verano. En el experimento de invierno se comparó un tratamiento que representa un invierno 

normal, con un tratamiento de calentamiento invernal, caracterizado por temperaturas más 

altas, menor humedad relativa y ausencia de lluvia. En el experimento de verano se comparó 

un tratamiento que representa un verano normal sin lluvia, con un tratamiento de verano con 

precipitación, caracterizado por la presencia de lluvias, mientras que las condiciones de 

temperatura y humedad relativa fueron similares en ambos tratamientos de verano. Los 

resultados mostraron cambios significativos en la cantidad de daño ocasionado a las plantas 

por D. reticulatum bajo las condiciones climáticas pronosticadas, lo cual sugiere un 

incremento del potencial de esta babosa para causar daños a los cultivos en el futuro. 

 

En el Capítulo 2 se presenta una serie de experimentos de laboratorio diseñados para valorar 

la capacidad del escarabajo H. rufipes para depredar sobre huevos y sobre babosas de 

diferentes tamaños, de la especie D. reticulatum, tanto en ausencia como en presencia de 

presas alternativas. Es bien conocido que muchas especies de escarabajos polífagos son 

importantes depredadores de gasterópodos, pero la mayoría de los estudios realizados hasta la 

actualidad se han centrado en sólo unas pocas especies de escarabajos. H. rufipes, sin 
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embargo, ha recibido poca atención, aun cuando es uno de los escarabajos más comunes y 

abundantes en todo tipo de agroecosistemas en la mayoría de los países europeos. Los 

resultados demostraron que H. rufipes es capaz de matar considerables cantidades de huevos y 

de pequeños juveniles de D. reticulatum, tanto en situaciones en las que no existe alternativa 

como en situaciones con otras presas disponibles. Esto sugiere que H. rufipes podría realizar 

una importante contribución al control de las poblaciones de D. reticulatum. 

 

En el Capítulo 3 se describen dos experimentos, uno realizado bajo condiciones controladas 

de laboratorio, y otro bajo condiciones semi-naturales, diseñados para estudiar el efecto de la 

temperatura sobre la actividad depredadora de los escarabajos H. rufipes y P. cupreus sobre 

los huevos de D. reticulatum. En el experimento del laboratorio se utilizaron cinco 

temperaturas constantes diferentes, y en el experimento al aire libre se comparó la actual 

temperatura ambiente de primavera-verano con una temperatura manipulada 

experimentalmente para emular las condiciones previstas de calentamiento. En ambos 

experimentos H. rufipes destruyó más huevos que P. cupreus y también fue la única especie 

cuya actividad depredadora aumentó significativamente con el aumento de la temperatura, lo 

que sugiere que el control biológico realizado por H. rufipes sobre D. reticulatum puede verse 

favorecido bajo las condiciones previstas de calentamiento. 

 

En el Capítulo 4 se compara la eficacia como agente de control biológico de D. reticulatum 

del nematodo P. hermaphrodita, bajo condiciones invernales actuales y bajo condiciones de 

calentamiento invernal. En presencia del nematodo, tanto el daño causado por las babosas a 

plantas de lechuga como la supervivencia de las babosas fueron significativamente menores 

bajo las condiciones de calentamiento invernal. En ausencia de nematodos, el daño causado 

por las babosas y su supervivencia fueron similares en ambas condiciones. Por lo tanto, los 

resultados sugieren que la eficacia de P. hermaphrodita como agente de control biológico de 

D. reticulatum puede aumentar en las condiciones previstas de calentamiento. 

 

Globalmente, los resultados obtenidos indican que tanto la babosa D. reticulatum, como sus 

enemigos naturales H. rufipes y P. hermaphrodita, se verán significativamente afectados por 

las condiciones climáticas previstas. En concreto, los resultados señalan que sería de esperar 

una mayor capacidad de las poblaciones de D. reticulatum para ocasionar daños a los cultivos,  
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y una mayor eficacia de H. rufipes y P. hermaphrodita para actuar como agentes de control 

biológico de esta especie de babosa. Estos hallazgos enfatizan la importancia de considerar a 

los enemigos naturales y las interacciones ecológicas entre especies a la hora de modelizar la 

respuesta de las especies a futuras condiciones climáticas. 

 

Del presente trabajo de investigación se han extraído las siguientes conclusiones generales:   

 

1. Las condiciones climáticas previstas de calentamiento invernal y de aumento de las 

precipitaciones en verano provocaron un aumento en el daño causado por la actividad 

alimentaria de poblaciones de Deroceras reticulatum a plantas cultivadas. Dada su 

gran adaptabilidad a diversos ambientes y climas, así como su amplia distribución 

geográfica, en el futuro cabe esperar un aumento en los perjuicios causados por esta 

especie de babosa a la producción agrícola. 

 

2. El escarabajo polífago Harpalus rufipes es capaz de localizar y matar huevos y 

pequeños juveniles de D. reticulatum, y su actividad depredadora sobre estas presas 

aumenta si aumenta la temperatura. Dado que H. rufipes es uno de los escarabajos 

terrestres más comunes y abundantes en los agroecosistemas europeos, y dado que 

responde a los incrementos de temperatura previstos para el futuro aumentando su 

abundancia y actividad, cabe esperar que H. rufipes desempeñe un importante papel 

como antagonista natural de D. reticulatum en condiciones climáticas futuras. 

 

3. Los huevos de las babosa son más susceptibles que las propias babosas, incluídos los 

juveniles más pequeños, a la depredación por parte de escarabajos generalistas como 

H. rufipes y Poecilus cupreus. Esto implica que las especies de escarabajos capaces de 

destruir los huevos de las babosas pueden realizar una significativa contribución al 

control de las poblaciones de babosa causantes de plagas. Sin embargo, la existencia 

de depredación sobre los huevos de las babosas por parte de sus enemigos naturales es 

difícil de poner de manifiesto, de manera que este tipo de depredación debe de ser 

objeto de mayor investigación. 
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4. Un incremento de aproximadamente 4.5 ˚C en la temperatura media de invierno 

resultó en un aumento de la eficacia de la cepa comercial de Phasmarhabditis 

hermaphrodita como agente de control biológico de D. reticulatum. Dado que P. 

hermaphrodita es un parásito facultativo, capaz de vivir como saprobionte 

asociándose a una amplia gama de bacterias, pero manteniendo su virulencia para D. 

reticulatum, y dado que este nematodo es común y abundante en los suelos de los 

agroecosistemas europeos, en zonas en las que el cambio climático provoque un 

aumento de las temperaturas invernales de magnitud tal que éstas se aproximen a los 

14 ˚C, cabe esperar un aumento de la eficacia de P. hermaphrodita como antagonista 

de D. reticulatum, y este aumento de eficacia debería ser aplicable tanto de la cepa 

comercial como a las poblaciones naturales de P. hermaphrodita.  

5. En las zonas de producción agrícola deberían implementarse, y evaluarse, medidas 

destinadas a favorecer el establecimiento y la proliferación de poblaciones de 

escarabajos generalistas y otros enemigos naturales, de las babosas, y de muchas otras 

plagas, puesto que una de las estrategias más prometedoras para combatir las plagas 

agrícolas en el contexto del cambio climático, es fomentar y aprovechar al máximo el 

servicio que proporcionan los enemigos naturales para el control de plagas. 
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RESUMO 

 

Palabras chave: pragas de lesmas, cambio climático, control biolóxico, Deroceras 

reticulatum, nematodos parasitos, ovos das lesmas.   

 

Os cambios no clima teñen causado impactos significativos en diferentes ecosistemas de 

todos os continentes ao longo das últimas décadas. Os modelos climáticos para Europa prevén 

un quecemento significativo, cambios no patrón temporal e espacial de distribución das 

choivas, e un aumento na frecuencia de fenómenos meteorolóxicos extremos. A temperatura 

considérase o factor ambiental máis importante na bioloxía dos organismos ectotermos, polo 

cal se espera que o quecemento global teña un profundo impacto na súa dinámica 

poboacional, o que conduce a esperar invasións e aumentos do rango de distribución de 

organismos causantes de pragas e enfermidades que sexan capaces de sobrevivir baixo 

condicións climáticas máis cálidas. Durante a última década, numerosas investigacións 

demostraron que o cambio climático xa está a alterar a distribución, o comportamento e/ou a 

dinámica poboacional de moitas pragas agrícolas en todo o mundo. Como consecuencia, 

existe unha preocupación crecente con respecto a que a seguridade alimentaria mundial estea 

ameazada pola aparición e/ou propagación de pragas e patóxenos dos cultivos. 

 

Os gasterópodos terrestres poden causar graves danos aos cultivos, poden actuar como 

axentes de transmisión de patóxenos das plantas, e tamén como hóspedes intermediarios de 

parasitos de animais domésticos e silvestres. Varias especies de lesmas e caracois terrestres 

considéranse pragas agrícolas de importancia xa que poden causar serios danos ás plantas 

cultivadas polo home, afectando a unha ampla variedade de especies e sectores produtivos, 

dende os grandes cultivos intensivos, ata xardíns públicos ou privados, incluíndo a 

horticultura, floricultura, silvicultura, fruticultura, pastos e cultivos comerciais de plantas 

ornamentais, aromáticas e medicinais. Algúns caracois terrestres poden alcanzar o status de 

pragas mesmo en rexións relativamente áridas, pero as lesmas son especialmente 

problemáticas en climas tépedos e chuviosos. Varias especies de lesmas do xénero Deroceras 

dispersáronse por case todo o mundo grazas ao home, e isto é particularmente certo no caso 

de Deroceras reticulatum (Müller, 1774), unha exitosa especie oportunista e invasora, 
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considerada como a babosa causante de pragas máis prexudicial, a nivel mundial. 

Actualmente D. reticulatum atópase na maioría das rexións tépedas e subtropicais, incluíndo 

Europa, Asia, Australia, Nova Zelandia, Tasmania, Canadá, Estados Unidos, Sudamérica, 

Sudáfrica e moitas illas dos océanos Pacífico e Atlántico. 

 

O método máis común para o control das lesmas é o uso de molusquicidas químicos, que 

xeralmente son pellets ou cebos que conteñen como ingrediente activo entre un 2% e un 8% 

de metaldehído ou de metiocarbamato. Ambos compostos molusquicidas teñen impactos 

negativos sobre outros organismos, como escaravellos da familia Carabidae, que á súa vez son 

importantes depredadores de gasterópodos terrestres no campo, e tamén sobre animais 

domésticos e silvestres, especialmente aves e mamíferos. De forma relativamente recente 

comezaron a comercializarse cebos molusquicidas que conteñen fosfato de ferro como 

ingrediente activo, e que reivindican ser produtos totalmente naturais e seguros para a fauna e 

os animais domésticos. Nembargante, investigacións recentes demostraron que os 

molusquicidas con fosfato de ferro teñen tamén efectos adversos sobre a fauna; en particular 

demostrouse que afectan á supervivencia, crecemento e actividade de lombrigas terrestres, e 

existen indicios de que tamén representan un perigo para outros invertebrados do chan, así 

como para animais domésticos e para humanos, especialmente os cativos. 

 

Respecto aos inimigos naturais, as lesmas e os caracois son depredados por unha ampla gama 

de vertebrados e invertebrados, e son parasitados por numerosas especies de dípteros, 

nematodos e ácaros. No caso da maioría destes inimigos naturais, é pouco probable que 

poidan realizar un control efectivo no campo das poboacións de gasterópodos prexudiciais, 

pero numerosas investigacións demostraron que os carábidos e os nematodos presentan un 

elevado potencial como axentes de control biolóxico de gasterópodos. De feito, o único 

axente de control biolóxico de gasterópodos que se comercializa é o nematodo 

Phasmarhabditis hermaphrodita (Schneider, 1859). 

 

Unha das consecuencias do cambio climático global é un aumento da expectativa de maiores 

problemas ocasionados polas pragas agrícolas, así como dun incremento no desenvolvemento 

de resistencia aos praguicidas por parte de moitas especies daniñas. Ante estas expectativas, o 

control biolóxico de pragas aparece non só como unha opción non agresiva para o medio 
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ambiente, senón tamén como unha alternativa con elevadas probabilidades de éxito para 

manter as poboacións de organismos causantes de pragas por baixo de límites aceptables, 

tanto no caso de pragas xa establecidas como no caso de potenciais novas especies invasoras. 

Desde este punto de vista, o control biolóxico de pragas convértese nun obxectivo prioritario 

de investigación, co fin de contribuír a adaptar a agricultura ás condicións climáticas 

cambiantes. Unha primeira fase, esencial, represéntana os estudos dedicados á identificación 

de inimigos naturais que poidan ser utilizados como axentes de control biolóxico de pragas. 

Os coñecementos actuais neste ámbito indican que os inimigos naturais xeneralistas, é dicir, 

aqueles capaces de atacar a unha ampla gama de presas, son os máis prometedores como 

axentes de control biolóxico de pragas nun ambiente cambiante. 

 

É evidente que o cambio climático non só afecta as especies causantes de pragas, senón tamén 

aos seus inimigos naturais, á calidade e/ou cantidade de alimento dispoñible para elas, e a 

moitos outros factores. En función disto, as proxeccións realizadas polos modelos de 

predición das respostas ao cambio climático por parte de calquera organismo deben ter en 

conta, non só ás especies de interese en particular, senón tamén aos seus inimigos naturais e 

as súas relacións ecolóxicas. O éxito dos modelos depende en gran medida dos parámetros 

que utilicen e da súa validación por medio de evidencias experimentais, tales como 

manipulacións experimentais da temperatura e a precipitación, as cales xa teñen 

proporcionado valiosa información sobre as respostas de diferentes compoñentes dos 

ecosistemas terrestres ao cambio climático. Este é un paso previo fundamental para a 

modelización da resposta funcional dos agroecosistemas ao cambio climático, non só a nivel 

de especie senón a escalas máis amplas. Estudos previos de modelización suxiren que a 

abundancia, o rango de distribución, e a intensidade dos danos causados por D. reticulatum 

poden aumentar nos próximos anos en Europa debido aos efectos do cambio climático, pero 

devanditos modelos só tiveron en conta as propiedades fisiolóxicas e as relacionadas coa 

dinámica poboacional da propia especie. 

 

O obxectivo principal deste traballo de doutoramento é explorar potenciais modificacións  no 

comportamento alimentario da lesma Deroceras reticulatum, así como nos comportamentos 

dalgúns dos seus inimigos naturais máis importantes, baixo condicións climáticas 

pronosticadas para Galicia no último terzo do presente século. Os inimigos naturais estudados 
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foron os escaravellos Harpalus rufipes (De Geer, 1774) e Poecilus cupreus (Linnaeus, 1758), 

e o nematodo zooparasito Phasmarhabditis hermaphrodita. Para alcanzar este obxectivo xeral 

realizáronse diferentes experimentos baixo condicións controladas no laboratorio, e no 

exterior baixo condicións semi-naturais. 

 

No Capítulo 1 preséntanse dous experimentos deseñados para avaliar a resposta de D. 

reticulatum fronte a diferentes manipulacións climáticas, en termos de consumo de plantas 

cultivadas. Para iso cuantificouse o dano inflixido por poboacións de lesmas a plántulas de 

leituga. Estes experimentos realizáronse ao aire libre baixo condicións semi-naturais. As 

manipulacións climáticas que se utilizaron emulan condicións climáticas previstas para o 

Noroeste de España, en concreto un quecemento invernal e un aumento da precipitación no 

verán. No experimento de inverno comparouse un tratamento que representa un inverno 

normal, cun tratamento de quecemento invernal, caracterizado por temperaturas máis altas, 

menor humidade relativa e ausencia de choiva. No experimento de verán comparouse un 

tratamento que representa un verán normal sen choiva, cun tratamento de verán con 

precipitación, caracterizado pola presenza de choivas, mentres que as condicións de 

temperatura e humidade relativa foron similares en ambos os tratamentos de verán. Os 

resultados mostraron cambios significativos na cantidade de dano ocasionado ás plantas por 

D. reticulatum baixo as condicións climáticas previstas, o cal suxire un incremento do 

potencial desta lesma para causar danos aos cultivos no futuro. 

 

No Capítulo 2 preséntase unha serie de experimentos de laboratorio deseñados para valorar a 

capacidade do escaravello H. rufipes para depredar sobre ovos e sobre babosas de diferentes 

tamaños, da especie D. reticulatum, tanto en ausencia como en presenza de presas 

alternativas. É ben coñecido que moitas especies de escaravellos polífagos son importantes 

depredadores de gasterópodos, pero a maioría dos estudos realizados ata a actualidade 

centráronse en só unas poucas especies de escaravellos. H. rufipes, nembargante, recibiu 

pouca atención, aínda cando é un dos escaravellos máis comúns e abundantes en todo tipo de 

agroecosistemas na maioría dos países europeos. Os resultados demostraron que H. rufipes é 

capaz de matar considerables cantidades de ovos e de pequenos xuvenís de D. reticulatum, 

tanto en situacións nas que non existe alternativa como en situacións con outras presas 
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dispoñibles. Isto suxire que H. rufipes podería realizar unha importante contribución ao 

control das poboacións de D. reticulatum. 

 

No Capítulo 3 descríbense dous experimentos, un realizado baixo condicións controladas de 

laboratorio, e outras baixo condicións semi-naturais, deseñados para estudar o efecto da 

temperatura sobre a actividade depredadora dos escaravellos H. rufipes e P. cupreus sobre os 

ovos de D. reticulatum. No experimento de laboratorio utilizáronse cinco temperaturas 

constantes diferentes, e no experimento ao aire libre comparouse a actual temperatura 

ambiente de primavera-verán, cunha temperatura manipulada experimentalmente para emular 

as condicións previstas de quecemento. En ambos os experimentos H. rufipes destruíu máis 

ovos que P. cupreus e tamén foi a única especie cuxa actividade depredadora aumentou de 

xeito significativo co aumento da temperatura, o que suxire que o control biolóxico realizado 

por H. rufipes sobre D. reticulatum pode verse favorecido baixo as condicións previstas de 

quecemento. 

 

No Capítulo 4 compárase a eficacia como axente de control biolóxico de D. reticulatum do 

nematodo P. hermaphrodita, baixo condicións invernais actuais e baixo condicións de 

quecemento invernal. En presenza do nematodo, tanto o dano causado polas lesmas ás plantas 

de leituga, como a supervivencia das lesmas, foron menores baixo as condicións de 

quecemento invernal. En ausencia de nematodos, o dano causado polas lesmas e a súa 

supervivencia foron similares en ambas as condicións. Polo tanto, os resultados suxiren que a 

eficacia de P. hermaphrodita como axente de control biolóxico de D. reticulatum pode 

aumentar nas condicións previstas de quecemento. 

 

En definitiva, os resultados obtidos indican que tanto a lesma D. reticulatum, como os seus 

inimigos naturais H. rufipes e P. hermaphrodita, veranse afectados de xeito significativo 

polas condicións climáticas previstas. En concreto, os resultados sinalan que será de esperar 

unha maior capacidade das poboacións de D. reticulatum para ocasionar danos aos cultivos,  e 

unha maior eficacia de H. rufipes e P. hermaphrodita para actuar como axentes de control 

biolóxico desta especie de lesma. Estes achados salientan a importancia de ter en conta aos 

inimigos naturais e ás interaccións ecolóxicas entre especies á hora de modelizar a resposta 

das especies a futuras condicións climáticas. 
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Do presente traballo de investigación extraéronse as seguintes conclusións xerais:   

 

1. As condicións climáticas previstas de quecemento invernal e de aumento das 

precipitacións no verán provocaron un aumento no dano causado pola actividade 

alimentaria de poboacións de Deroceras reticulatum ás plantas cultivadas. Dada a súa 

adaptabilidade a diversos ambientes e climas, así como a súa ampla distribución 

xeográfica, no futuro cabe esperar un aumento dos danos causados por esta especie de 

lesma á produción agrícola. 

 

2. O escaravello polífago Harpalus rufipes é capaz de localizar e matar ovos e pequenos 

xuvenís de D. reticulatum, e a súa actividade depredadora sobre estas presas aumenta 

se aumenta a temperatura. Dado que H. rufipes é un dos escaravellos terrestres máis 

comúns e abundantes nos agroecosistemas europeos, e dado que responde ós 

incrementos de temperatura previstos para o futuro aumentando a súa abundancia e 

actividade, cabe esperar que H. rufipes desempeñe un importante papel como 

antagonista natural de D. reticulatum en condicións climáticas futuras. 

 

3. Fronte á depredación por parte de escaravellos xeneralistas como H. rufipes e Poecilus 

cupreus, os ovos das lesmas son máis susceptibles que as lesmas mesmas, incluídos os 

xuvenís máis pequenos. Isto implica que as especies de escaravellos capaces de 

destruír os ovos das lesmas poden realizar unha contribución significativa ao control 

das poboacións causantes de pragas. Con todo, a existencia de depredación sobre os 

ovos das lesmas por parte dos seus inimigos naturais é difícil de pór de manifesto, de 

maneira que este tipo de depredación debe de ser obxecto de máis investigación. 

 

4. Un incremento de aproximadamente 4.5 ˚C na temperatura media de inverno resultou 

nun aumento da eficacia da cepa comercial de Phasmarhabditis hermaphrodita como 

axente de control biolóxico de D. reticulatum. Dado que P. hermaphrodita é un 

parásito facultativo, capaz de vivir como saprobionte asociándose a unha ampla gama 

de bacterias, pero mantendo a súa virulencia para D. reticulatum, e dado que este 

nematodo é común e abundante nos chans dos agroecosistemas europeos, cabe esperar 
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que en zonas nas que o cambio climático provoque un aumento das temperaturas 

invernais de xeito que estas se aproximen aos 14 ˚C, se produza un aumento da 

eficacia de P. hermaphrodita como antagonista de D. reticulatum, e este aumento de 

eficacia debera ser aplicable tanto á cepa comercial como ás poboacións naturais de P. 

hermaphrodita.  

 

5. Nas zonas de produción agrícola deberan implementarse, e avaliarse, medidas 

destinadas a favorecer o establecemento e a proliferación de poboacións de 

escaravellos xeneralistas e outros inimigos naturais, das babosas, e de moitas outras 

pragas, posto que unha das estratexias máis prometedoras para combater as pragas 

agrícolas no contexto do cambio climático, é fomentar e aproveitar ao máximo o 

servizo que proporcionan os inimigos naturais para o control de pragas. 
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Unwanted pests have hindered human efforts in land management since the onset of 

organized agriculture in the Neolithic, so that pest management has become an integral aspect 

of human civilization. There is an urgent need to meet increasing food demands by increasing 

crop yields, and satisfy sustainability goals by reducing reliance on synthetic pesticides. This 

is a challenging task for twenty-first century agriculture, further complicated against the 

background of climate change. Improved biological control appears as one of the most 

promising strategies. The research presented here explores potential changes, under predicted 

climatic conditions, in the feeding behaviour of the pest slug Deroceras reticulatum, as well 

as in the behaviours of some of their most important natural enemies, namely the carabid 

beetles Harpalus rufipes and Poecilus cupreus, and the slug parasitic nematode 

Phasmarhabditis hermaphrodita.  
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