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Abstract

This paper focuses on the vibration analysis of Cable-Driven Parallel
Robots (CDPRs). An oscillating model of CDPRs able to capture the
dynamic behavior of the cables is derived using Lagrangian approach in
conjunction with the Dynamic Stiffness Matrix method. Then, an original
approach to analyze the modal interaction between the local cable modes and
the global CDPR modes is presented. To illustrate this approach, numerical
investigations and experimental analyses are carried out on a large-dimension
6-DOF suspended CDPR driven by 8 cables.

Keywords: cable-driven parallel robots, dynamic stiffness matrix method,
sagging cable model, harmonic resonance

1. Introduction

A parallel robot can be defined as a closed-loop kinematic chain mechanism
whose end-effector is linked to the base by several independent kinematic
chains [1].

Cable-driven parallel robots (CDPRs) are a special variant of traditional5

rigid-link parallel robots such as the Stewart platform [2] and the Delta robot
[3]. Flexible cables are used instead of rigid links to connect the movable
end-effector and the fixed base. The end-effector is manipulated by changing
the lengths of the cables by means of winches.
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CDPRs have several advantages. First, CDPRs can achieve large workspaces.10

The cables being flexible, large cable lengths can easily be released and re-
tracted. Thus, cables allow much larger ranges of motion compared to
conventional rigid-links. CDPRs can be designed to be very large with an
acceptable cost, such as the Skycam1, and the Five hundred meter Aperture
Spherical Telescope (FAST) [4].15

In addition, CDPRs have high energy efficiency and large payload-to-
weight ratios since they use lightweight cables and usually have stationary
heavy components and few moving parts.

Another advantage of CDPRs is their simple structure. They can be
relatively easily disassembled, transported, reassembled, and reconfigured20

which makes them suitable for search and rescue applications [5, 6, 7]. Last
but not least, since cables are flexible, interferences between cables and/or
collisions between cables and other objects in the operating environment may
cause less accident or damage [8, 9], which is notably useful for haptic devices,
such as the NEREBOT [10] and the STING-MAN [11].25

Due to the compliance of cables, vibrations can become a crucial concern
for CDPRs. Vibrations have a significant effect on the static and dynamic
behaviors of CDPRs, such as on the positioning accuracy, settling time,
trajectory tracking, as well as on force distribution and control [1, 12, 13].
Although there are a lot of previous works on the vibration analysis and30

control of rigid-link parallel robots, e.g. [14, 15, 16, 17, 18, 19, 20, 21, 22],
only few studies are dedicated to the vibration analysis of CDPRs [23, 24, 25,
26, 27, 28, 29, 30]. Vibrations can notably be induced by (brutal) end-effector
velocity changes, wind disturbance, and/or friction of the cables around
pulleys [24]. In applications requiring high performances, especially dynamic35

performances, e.g. [13, 31], or in the presence of wind, e.g. [4, 32], vibrations
are an issue since they can affect the positioning accuracy of the end-effector,
and yield fluctuations around a desired nominal end-effector trajectory.

Cables have been modeled as linear massless axial springs, and end-
effector vibrations caused by axial and transverse cable flexibilities have been40

analyzed in simulations in [23, 26]. Using the same cable model, vibration
characteristics of a CDPR for processing applications are presented in [27]
while, in [28], a new approach to compensate for the rotational oscillations
of the end-effector using reaction wheels is proposed. [23, 26, 27, 28] only

1Skycam is a product of Skycam company: http://www.skycam.tv/

2



consider cable elasticity, while neglecting the effect of cable mass on the cable45

dynamics. Although the effect of cable weight on the static cable profile has
been considered in a number of works, e.g. [33, 34, 35, 36], the effect of cable
mass on the cable dynamics is totally ignored in the computation of the CDPR
eigenfrequencies. An important issue of the dynamic analysis of CDPRs is
to find out whether the cable natural modes and induced vibrations affect50

the dynamics of CDPRs. Finite Element Method (FEM) has been used in
the modeling of cable dynamics [24, 25, 37, 38]. Using FEM, the end-effector
vibrations and the system eigenfrequencies have been studied in simulations
in [24, 25]. However, cable modeling based on FEM uses distributed point
mass and ideal lines between them to simulate a continuous cable. Hence, it55

leads to a complex system with many partial differential equations. Moreover,
as well-known, the accuracy of FEM depends on the number of elements
so that there exists a strong trade-off between accuracy and computational
complexity. The dynamic behavior of CDPRs with long sagging cables has
been recently investigated in an analytical way using Hamilton’s principle [30].60

The assumed mode method is used to solve the obtained time-varying partial
differential equations of motion. In the assumed mode method, the shape
functions are a linear combination of the eigenfunctions of the related simpler
problem of transverse cable vibrations with standard boundary conditions.
The accuracy of the dynamic model thereby obtained highly depends on the65

adopted shape functions of the transverse cable vibrations and on their number.
In [30], no experimental validation of the theoretical predictions of the CDPR
dynamic responses has been presented. Moreover, it should also be noted
that the time integration of such dynamic models has not received particular
attention. There are two primary issues in time integrating these dynamic70

models. First, the discrete time-step integration method used for solving
the dynamic equations should be carefully selected to ensure convergence.
Second, the constitutive law governing the damping mechanisms should be
carefully defined. The latter is an important issue to predict vibration levels
along a trajectory, in transient responses, or in other characteristics that are75

influenced by energy dissipation.
Besides, an oscillating model developed using Lagrangian approach in

conjunction with the Dynamic Stiffness Matrix (DSM) method was presented
in our previous work [29]. This modeling framework does not allow the
computation of the time-domain response (motion) of the CDPR along80

a trajectory as the aforementioned modeling methods, but its advantages
include mathematical convenience, simplicity in numerical implementation
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and computation. This model is able to capture the effect of cable dynamics on
the robot vibrations in the framework of the linear theory of cable vibrations
[39]. The DSM method is often regarded as an exact method which provides85

better accuracy compared to the FEM [40, 41, 42] since it relies on the
frequency-dependent shape functions that are exact solutions of the governing
differential equations. Since the shape functions used in the DSM method
are inherently frequency-dependent, the CDPR dynamics is analyzed in the
frequency domain. This is an essential prerequisite before studying CDPR90

responses in the time domain.
In this paper, an original methodology is presented to analyze the modal

interaction between the local cable modes and the global CDPR modes.
Compared to our previous work [29], with the intention to evaluate the effect of
the cable natural modes on the robot vibrations, the present paper focuses on95

a dynamic stiffness analysis where the calculation of the Frequency Response
Functions (FRFs) are explicated. The FRFs represent the input-output
relationships between an excitation force and a system response (position,
velocity or acceleration). Since the assessment of the damping has a minor
impact on the analysis of the CDPR eigenproperties, the frequency-dependence100

of the system is also analyzed in terms of eigenvalues. The changes in stiffness
in the region of the cable eigenfrequencies affect the eigenfrequencies of the
overall robot. This results in new and numerous resonances of the system,
which may be relevant for CDPRs used in wind tunnels and for outdoor
CDPR applications where a periodic excitation source can be directly or105

indirectly applied. System modeling and the proposed vibration analysis
methodology are illustrated with a 6-DOF CDPR prototype driven by 8 cables,
called CoGiRo [43]. Substantial experimental investigations have been carried
out around two static equilibria of the CoGiRo CDPR end-effector. The
experimental analysis of an end-effector trajectory has been also performed110

in the frequency domain for several trajectory durations. The corresponding
result comparisons illustrate the relevance of the proposed approach.

This paper is organized as follows. The DSM method and the dynamic
stiffness matrix of an inclined sagging cable are recalled in Section 2. The
oscillating model of CDPRs is then set up in Section 3 where the calculation115

of the FRFs is also detailed. In Section 4, dynamic experiments around
two static equilibria and along a trajectory are performed on the CoGiRo
CDPR prototype, to analyze its vibration characteristics and to validate the
proposed methodology. Finally, conclusions are drawn in Section 5.
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2. Dynamic stiffness matrix of a sagging cable120

In order to consider cable dynamics in the vibration analysis of CDPRs,
the dynamic stiffness matrix (DSM) of a cable with non-negligible elasticity
and mass is presented in this section by using the DSM method. The DSM
of a horizontal sagging cable is first presented. Then, it is extended to an
inclined sagging cable.125

2.1. Dynamic stiffness matrix of a horizontal sagging cable

Figure 1: Diagram of a horizontal sagging cable [39]

Figure 1 shows the diagram of a horizontal sagging cable, where d is the
sag perpendicular to the chord, lc is the chord length, and H is the static
cable tension at the section where the cable is parallel to the chord. One
cable end is fixed, and an external static force is applied to the other cable130

end. Under the effect of both the external static force and gravity (g is the
gravitational acceleration), the shape of the cable is not a straight line, but a
sagging curve in the cable vertical plane.

The considered dynamic cable model is based on the linear theory of
small transverse vibrations around a static equilibrium which should be the135

common case for CDPRs. The following assumptions are made [39, 44, 45].

� The cable is assumed to be continuous and uniform [39], and defined by
its unstrained cross section area A, mass per unit length ρ, and linear
Young�s modulus E.

� Only small displacements are admitted to meet the requirements of140

linear theory [46];

� Only small cable sag is allowed, i.e., the sag to span ratio d
lc
is smaller

than 1/20 [39];

� Only viscous damping is taken into consideration.
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The DSM of a viscous-damped small-sag horizontal cable K2D
dyn-h(ω) can

be defined as: [
δfCx

δfCz

]
= K2D

dyn-h(ω)

[
δxC

δzC

]
, (1)

where
[
δfCx δfCz

]T
and

[
δxC δzC

]T
are the vectors of the dynamic145

forces and displacements shown in Fig. 1. The differential notation is used to
represent small changes in force and position from the static equilibrium. In
linear theory, the in-plane motion of a cable is uncoupled with its out-of-plane
motion [44, 45]. For the sake of convenience, the DSM is firstly deduced
in the cable plane, then it will be extended to 3 dimensions without major150

difficulty.
It is assumed that only harmonic vibrations and exponentially variable

amplitude are admitted [41]. In that case, the DSM of the cable is complex
valued and depends on the frequency ω of the forcing function. The DSM
K2D

dyn-h(ω) can be formulated as [47]:155

K2D
dyn-h (ω) =

[
Kxx (ω) Kxz (ω)
Kzx (ω) Kzz (ω)

]
, (2)

where:

Kxx (ω) =
EA

Le

1

1 + λ2

Ω2
c
(κ− 1)

, (3)

Kxz (ω) =Kzx (ω) =
EA

Le

1
2
ε (κ− 1)

1 + λ2

Ω2
c
(κ− 1)

, (4)

Kzz (ω) =
EA

Le

ε2

λ2

1

κ
− EA

Le

1
4
ε2

λ2Ω
2
c

[
κ+ λ2

Ω2
c
(κ− 1)

]
1 + λ2

Ω2
c
(κ− 1)

. (5)

The parameters in Eqs. (3)-(5) are:

� λ2 =
(
ρglc
H

)2EAlc
HLe

is the fundamental cable parameter which represents
the elastic stiffness relative to the sag-induced stiffness;

� ε = ρglc
H

= 8d
lc

is the ratio between horizontal cable weight and static
cable tension;160
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� Le =
∫ lc
0

(
ds
dx

)3
dx � lc

[
1 + 8

(
d
lc

)2
]
is the cable length parameter;

� Ω = ωlc
√

ρ
H

is the dimensionless frequency parameter;

The cable is assumed to have a viscous damping behavior and the cable
transverse damping per unit length Cc is introduced through the following
damping ratio:165

ξ =
Cc

2ρω
. (6)

The following auxiliary parameter is then defined:

ωc = ω
√

1− 2ξi, (7)

and the two dimensionless quantities Ωc and κ used in Eq. (3)-(5) are:

� Ωc = ωclc
√

ρ
H
,

� κ =
tan(Ωc

2 )
(Ωc

2 )
.

With consideration of the out-of-plane motion (motion along the y-axis which170

is perpendicular to the cable plane), the spatial DSM of a horizontal sagging
cable in 3 dimensions can be expressed as:

K3D
dyn-h (ω) =

⎡
⎣ Kxx (ω) 0 Kxz (ω)

0 Kyy (ω) 0
Kzx (ω) 0 Kzz (ω)

⎤
⎦ . (8)

Due to the uncoupling between the in-plane and the out-of-plane motions,
the interaction coefficients in Eq. (8) are zeros. According to [44], the stiffness

matrix coefficient for the out-of-plane motion is Kyy (ω) =
τ(4−κ2Ω2

c)
4κlc

. The175

other coefficients are the same as those in Eq. (2).

2.2. Dynamic stiffness matrix of an inclined sagging cable

The dynamic analysis of a horizontal sagging cable presented in Section 2.1
can be extended to study the dynamics of an inclined sagging cable [39, 48].

Figure 2a represents an inclined sagging cable in the local cable frame,
where the x-axis is parallel to the chord. It can be obtained by rotating
the horizontal sagging cable (Fig. 1) about the y-axis, where the rotation
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(a) In the local cable frame (b) In the global frame

Figure 2: Forces and displacements of an inclined sagging cable

angle is α. The extension to an inclined sagging cable is made by the
following substitutions. Firstly, the gravity acceleration g is replaced by the
gravitational component g′, where g′ is perpendicular to the cable chord and
g′ = g · cosα. Secondly, the horizontal static cable tension H is replaced by τ .
τ represents the static cable tension at the section where the cable is parallel
to the chord. Parameters related to H become:

λ2 =

(
ρglc
τ

)2
EAlc
τLe

cos2α, (9)

ε =
ρglc
τ

cosα =
8d

lc
, (10)

Ω = ωlc

√
ρ

τ
, (11)

Ωc = ωclc

√
ρ

τ
. (12)

With these new definitions, the theory for the vibration analysis of a horizontal
sagging cable can be used for an inclined sagging cable. It should be noted that
according to [39, 48], this extension is valid as long as the cable parameters
λ2 and ε together with the inclination angle α do not exceed certain limits.
In particular, λ2 should maintain a proper distance (about 20%) from the
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so-called crossover points 4n2π2 (n=1,2. . . ), specifically:

λ2 ≤ 24, (13)

and α ≤ 60◦, ε ≤ 0.1

(
d

lc
≤ 1

80

)
, (14)

or α ≤ 30◦, ε ≤ 0.24

(
d

lc
≤ 1

33

)
.

The DSM can now be expressed in the global cable frame. Figure 2b
represents the forces and displacements of an inclined sagging cable in the
global cable frame �i, where the zi-axis is vertical and directed upward; Oxizi
is in the cable plane. This global cable frame can be obtained by rotating the
local cable frame (in Fig. 2a) α degrees around the y-axis. The global DSM
iK2D

dyn(ω) is defined as the DSM in the global cable frame �i, i.e.:

[
iδfCx
iδfCz

]
= iK2D

dyn(ω)

[
iδxC
iδzC

]
, (15)

where [iδfCx
iδfCz]

T
and [iδxC

iδzC ]
T
are the vectors of the dynamic forces

and displacements around a static equilibrium as shown in Fig. 2b. The rela-
tionships between [δfCx δfCz]

T and [iδfCx
iδfCz]

T
, and between [δxC δzC ]

T

and [iδxC
iδzC ]

T
can be expressed by means of the rotation matrix iT that

maps coordinates in the local cable frame to coordinates in the global cable
frame:

[
iδfCx

iδfCz

]T
= iT [δfCx δfCz]

T , (16)[
iδxC

iδzC
]T

= iT [δxC δzC ]
T , (17)

where iT =

[
cosα sinα
− sinα cosα

]
. Therefore, the DSM of an inclined sagging

cable in the global cable frame �i can be obtained as:

iK2D
dyn(ω) =

iT K2D
dyn(ω)

iT−1. (18)

where K2D
dyn(ω) is defined as in Eq. (2) but with λ2, ε, Ω, and Ωc defined in180

Eq. (9) to (12).
In Eq. (18), K2D

dyn(ω) is a 2× 2 matrix that only considers the in-plane
cable motion. If the out-of-plane cable motion is taken into account, the 3× 3
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DSM of an inclined sagging cable in the global frame can be obtained through
a similar coordinate transformation:

iK3D
dyn(ω) =

⎡
⎣ cosα 0 sinα

0 1 0
− sinα 0 cosα

⎤
⎦ ·K3D

dyn(ω) ·
⎡
⎣ cosα 0 sinα

0 1 0
− sinα 0 cosα

⎤
⎦
−1

. (19)

3. Oscillating model and vibration analysis of CDPRs

Based on the DSM of an inclined sagging cable presented in Section 2, the
oscillating model of CDPRs is presented in this section, with consideration of185

the rigid-body vibrations of the end-effector suspended on the cable stiffness,
the local cable vibrations, and the coupling between both. Firstly, the DSM of
CDPRs is formulated. Then, the oscillating model of the end-effector around
a static equilibrium is formulated through the Lagrange�s equations. Finally,
FRFs under a harmonic excitation are defined. By means of the plots of190

the FRFs, the resonances of CDPRs can be identified and the effect of cable
dynamics on the overall system dynamic behavior can be analyzed.

3.1. Computation of the dynamic stiffness matrix of CDPRs

For CDPRs, the system stiffness is mainly affected by the stiffness of their
cables, actuators and end-effector. By assuming that the compliance of the195

end-effector and the actuators is negligible compared to the compliance of
the driving cables, in the oscillating model, the end-effector is considered as a
rigid-body suspended on the stiffness of the cables. The oscillations of the
end-effector around a static equilibrium are then described in terms of a set
of generalized coordinates q(t) which characterize the 3 translations and the200

3 rotations of the frame �e attached to the end-effector with reference to the
global frame �G (Fig. 3).

The DSMs of all the cables have to be assembled to form the oscillating
model. In Section 2, the DSM of an inclined sagging cable K3D

dyn (Eq. (19)) is
expressed in the global cable frame �i relatively to the force-displacement205

response at the attachment point Ai. In order to assemble the DSMs of all
the cables to formulate the overall system DSM, it is necessary to transform
each DSM to the global frame �G:

GKi(ω) =
GTi

iK3D
dyn

GTi
−1, (20)
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Figure 3: The schematic diagram of a suspended CDPR

by using suitable 3× 3 rotation matrices GTi. Then, the 6× 6 DSM of the
CDPR GKE(ω) can be formulated by assembling the DSMs of the m driving
cables:

GKE(ω) =
m∑
i=1

AT
i
GKi(ω)Ai, (21)

with:Ai =

⎡
⎣ 1 0 0 0 z−−−→

OeAi
−y−−−→

OeAi

0 1 0 −z−−−→
OeAi

0 x−−−→
OeAi

0 0 1 y−−−→
OeAi

−x−−−→
OeAi

0

⎤
⎦ , (22)

where x−−−→
OeAi

, y−−−→
OeAi

and z−−−→
OeAi

are the components of the vector
−−−→
OeAi, along

the axis xG, yG and zG, expressed in the global frame �G. Oe is the origin of210

the end-effector frame �e and Ai is the point where the ith cable is attached
to the end-effector. In addition, the DSM of CDPRs can also be expressed in
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the end-effector frame �e through the coordinate transformation:

eKE(ω) =

[
eTG 0
0 eTG

]
· GKE(ω) ·

[
eTG 0
0 eTG

]−1
. (23)

where eTG is the rotation matrix that maps coordinates in the global frame
to coordinates in the end-effector frame.215

As explained in Section 2, the DSM of an inclined sagging cable is
frequency-dependent because it considers the effect of cable mass on the
cable dynamics. The DSM of a CDPR is also frequency-dependent, which
means that each element of GKE(ω) depends on the frequency ω of the forcing
function. This DSM will be used in the following CDPR dynamic model.220

3.2. Vibration model of the end-effector around a static equilibrium

The oscillating model of the end-effector around a static equilibrium can be
derived in terms of generalized coordinates by using the Lagrange�s equations
[49]:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+

∂V

∂qi
=fi, i = 1, 2, · · · 6 (24)

where:

� T and V represent the kinetic and potential energies of the system,
respectively;

� qi, i = 1, ..., 6, are the generalized coordinates corresponding to the225

3 translational motions along axis-xe, ye and ze and the 3 rotational
motions around axis-xe, ye and ze. For example, in Section 4, qi,
i = 1, ..., 3 are the end-effector frame position coordinates x, y, z, and qi,
i = 4, ..., 6 are the three parameters α, β, γ of the infinitesimal rotation
vector defining the end-effector frame orientation in the global frame230

�G.

� q̇i is the time derivative of the generalized coordinate qi;

� fi represents the non-conservative generalized force or moment applied
to the end-effector.
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According to the oscillating theory [50], the movements of the end-effector
around its static equilibrium are assumed to be small, and the Coriolis
acceleration can be neglected. Consequently, the oscillating model of the
end-effector can be linearized by simplifying the kinetic energy T of the
system:

T =
1

2
q̇T eME q̇, (25)

where eME is the 6× 6 generalized mass matrix of the end-effector expressed235

in frame �e (Eq. (26)):

eME =

[
mE.diag(1, 1, 1) 0

0 eIE

]
(26)

mE is the mass of the end-effector and eIE its 3 × 3 inertia matrix point
Oe and expressed in the frame �e. q and q̇ are the column vectors of the
generalized coordinates and their time derivatives: q = [q1 q2 q3 q4 q5 q6]

T

and q̇ = [q̇1 q̇2 q̇3 q̇4 q̇5 q̇6]
T .240

The potential energy V of the system is:

V =
1

2
qT eKE q. (27)

According to Eq. (24), the dynamic equations of the end-effector of a
CDPR around a static equilibrium can then be written in matrix form as:

eME q̈(t) + eKE(ω) q(t) = f(t), (28)

where f(t) is a column vector of the non-conservative forces and moments:
f(t) = [f1(t) f2(t) f3(t) f4(t) f5(t) f6(t)]

T .

3.3. Dynamic analysis of CDPRs

When the effect of cable mass on the cable dynamics is neglected in the
vibration analysis, the stiffness matrix eKE is constant and independent of245

the frequency ω. According to the free vibration theory of multi-degree-of-
freedom systems, the eigenfrequencies of the CDPR can then be calculated
by transforming the system dynamic equations into its modal space, and then
solving the classic eigenvalue and eigenvector problems [33].

In this paper, both the cable elasticity and the effect of cable mass on250

the cable dynamics are considered through the dynamic stiffness of CDPRs.
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Thereby, the internal degrees of freedom of the cables do not have to be
considered. Each cable is reduced to an equivalent spring element whose
nodal coordinates are the coordinates of the end-effector. The dynamic
stiffness matrices of the cables become the basic matrices for assembling the255

global DSM of the CDPR. The order of the resulting eigenvalue equation
of the system (28) is equal to the number of generalized coordinates of the
CDPR and is frequency dependent because of eKE(ω). Thus, the number
of modes predicted by this model is not limited to the number of degrees of
freedom of the CDPR. The classic modal analysis methods such as the modal260

superposition are no longer suitable because of the frequency dependence of
the equation system. Hence, a suitable eigensolution procedure should be
adopted to identify the eigenfrequencies.

In fact, one of the most important objective of modal analysis is to establish
and verify, through vibration tests, an acceptable mathematical model that265

describes the dynamic behavior of the studied system. In this paper, modal
superposition is not suitable because of the frequency dependence of eKE in
Eq. (28). Hence, an original method to analyze the cable modes and their
effect on the end-effector vibrations is presented. The FRFs of the CDPR to
a harmonic excitation are used.270

For each pose of the end-effector in the workspace, according to Eq. (28),
the dynamic equations of a CDPR under a harmonic excitation can be written
as:

eME q̈(t) + eKE(ω) q(t) = f(t), (29)

where f(t) is a column vector of the harmonic excitation. This harmonic
excitation can be expressed as:

f(t) =f̄ ejωt, (30)

where f̄ is the column vector whose elements are complex numbers representing
the amplitudes and the initial phases of the excitation.275

Based on the assumption that the system can be considered time invariant
during the experiments, if a harmonic excitation is inputed into the system
at a given frequency, the system will respond at the same frequency with
a certain magnitude and a certain phase angle relative to the input. The
harmonic response of the end-effector q(t) can then be expressed as:

q(t) =q̄ ejωt. (31)

14



Substituting Eqs. (30) and (31) into Eq. (29) yields:

−eME ω2 q̄ ejωt + eKE(ω) q̄ ejωt = f̄ ejωt. (32)

The FRF matrix can then be expressed as:

H(ω) =
q(t)

f(t)
=

q̄

f̄
=

1

−ω2 eME + eKE(ω)
. (33)

The FRF representation is the transfer function evaluated along the
jω frequency axis. In the above equations, the system responses q(t) are
displacement responses and H(ω) is also called the dynamic compliance.
Generally, velocity responses and acceleration responses can also be used
in the vibration analysis. The velocity responses v(t) and the acceleration
responses a(t) can be expressed as:

v(t) =q̇(t) = jωq̄ ejωt = v̄ ejωt, (34)

a(t) =q̈(t) = −ω2q̄ ejωt = ā ejωt, (35)

where v̄ and ā are the column vectors whose elements are complex numbers
representing the amplitudes and the initial phases of the velocity and acceler-
ation responses such that: v̄ = jωq̄ and ā = −ω2q̄. According to Eq. (33),
the FRFs of the end-effector under a harmonic excitation can be expressed
as:

HV (ω) =
v(t)

f(t)
=

v̄

f̄
=

jω

−ω2 eME + eKE(ω)
, (36)

HA(ω) =
a(t)

f(t)
=

ā

f̄
=

−ω2

−ω2 eME + eKE(ω)
, (37)

where HV (ω) and HA(ω) are also called the mobility and the impedance,
respectively. The dynamic information of a CDPR contained in these FRFs280

include the cable modes, the end-effector vibrations, and their coupling. In
addition, the dynamic responses of the end-effector can be plotted as functions
of the frequency ω. From these plots, the resonances of the CDPR can be
identified and the effect of cable dynamics on the CDPR vibrations can be
analyzed. The latter issue will be further detailed in the following section.285
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4. Experimental validations and discussion

Dynamic experiments around two static equilibria and along a trajectory
have been carried out on CoGiRo, a 6-DOF CDPR prototype suspended by 8
cables [43].

4.1. Description of the CDPR prototype290

Figure 4: A schematic of the CDPR prototype CoGiRo [43]

Table 1: Configuration parameters of CoGiRo: Coordinates of Bi expressed in the global
frame �G, and coordinates of Ai expressed in the end-effector frame �e

Bi x (m) y (m) z (m) Ai x (m) y (m) z (m)
B1 -7.224 -5.359 5.468 A1 0.500 -0.507 0.555
B2 -7.435 -5.058 5.477 A2 -0.488 0.361 0.554
B3 -7.425 5.196 5.486 A3 -0.500 -0.260 0.555
B4 -7.210 5.497 5.495 A4 0.503 0.342 0.548
B5 7.139 5.463 5.481 A5 -0.500 0.507 0.555
B6 7.440 5.158 5.494 A6 0.497 -0.353 0.554
B7 7.415 -5.089 5.481 A7 0.499 0.260 0.549
B8 7.113 -5.388 5.492 A8 -0.495 -0.333 0.554

The schematic of CoGiRo is shown in Fig. 4. The configuration parameters
are listed in Tab. 1. This robot uses φ4 mm anti-rotation steel cables as
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driving cables. The Young�s Modulus of the cable is 20 GPa and the linear
weight of the cable is 0.067 kg/m. The Young�s modulus has been identified
using a material testing machine. All cables work within their linear elastic295

region. More details on this robot can be found in [43].

4.2. Dynamic experiments around a static equilibrium

The dynamic experiments aims at verifying the ability of the DSM method
to find the eigen-properties of the CDPR prototype by:

� Identifying the eigenfrequencies of the driving cables and the resonances300

of the end-effector under harmonic excitation at certain poses in the
workspace;

� Studying the interaction between local cable modes and global rigid-
body oscillations of the end-effector.

4.2.1. Experimental setup305

Figure 5: Electro-dynamic shaker mounted on the end-effector of CoGiRo

The experimental setup is shown in Fig. 5. An electro-dynamic shaker is
mounted on the end-effector (PCB K2100E11 ± 440 N). A small mass block
is fixed to the mobile stick of the shaker (0.05 kg). Thus, the shaker can
deliver a harmonic vertical force to the end-effector. The force is proportional
to the acceleration of the mass block, and can be measured by a force sensor310

placed between the mass block and the shaker mobile stick (PCB 208C05). A
triaxial accelerometer fixed on the platform is used to obtain the responses of
the end-effector along three mutually perpendicular directions (PCB 356A15).
Moreover, one tri-axial accelerometer is fixed on each cable. A preliminary
study allowed us to find where to fix the sensor to avoid particular wave nodes315
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of transverse vibration which might have weakened the measured acceleration
level. Each sensor has a mass of 0.0058 kg. Compared to the weight of the
cable taken as a whole (for example, for the 5th cable, more than 0.4 kg at
the center pose and more than 0.15 kg at the boundary pose, these center
and boundary poses being defined below), it was assumed to be negligible.320

This assumption has not been verified further. The responses of the sensors
are recorded by a National Instrument2 data acquisition system (NI - 9234).

During the experiments, the end-effector is firstly moved vertically from
its home pose to a pose above the ground. The coordinates of the latter,
measured by means of a laser tracker, are x = 0.012 m, y = 0.0697 m,325

z = 1.219 m, and α, β, γ = 0�. This pose, referred to as the center pose,
is used to check the validity of the model since it possesses a practically
symmetrical arrangement of the cables. After all the cables and the end-
effector are stabilized, a harmonic excitation is generated by the shaker. The
frequency of the harmonic excitation is changed step by step. The step size is330

0.05 Hz. At each step, there is a stabilization time of 8 s, a measuring time of
8 s, and a sample frequency of 1024 Hz. The frequency range is chosen based
on a sensitivity analysis of model output. Its range of interest is limited to 20
Hz in this work, even if the experimental tests were performed up to 30 Hz.
Indeed, it was found that the system is characterized by interactions between335

the cables modes and the rigid-body modes of the end-effector which are
dominant in the low frequency range below 20 Hz. As the electro-dynamic
shaker is not suitable for the frequency generation below 2 Hz, the frequency
range of interest is 2 ∼ 20 Hz.

The end-effector is then moved to another pose located near the workspace340

boundary (x = 4.012 m; y = 0.0697 m; z = 1.219 m; α, β, γ = 0�), and the
previous procedure is repeated. This particular pose has been chosen for its
asymmetric configuration in terms of cable lengths and force distribution in
the cables.

4.2.2. Experimental results and discussions: eigenfrequencies of the cables345

The cable dynamics are firstly analyzed to show the relevance of the
dynamic stiffness matrix in reflecting the effects of cable modes on the
dynamic behavior of the CDPR.

Figure 6a presents the FRF plot of the 5th cable when the end-effector is

2http://www.ni.com/data-acquisition/
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at the center pose (Fig. 4). The 5th cable is chosen to illustrate the approach350

because it has the greater variation in length between the two studied poses.
To assess the frequencies of the in-plane and out-of-plane cable modes, the
FRF measurement shown in Fig. 6a refers to the norm of the acceleration
vector and to the excitation force applied by the shaker mounted on the end-
effector. The norm of the acceleration vector is effectively used to overcome355

the lack of precision in the alignment of the axes of the tri-axial accelerometer
with those of the cable. The horizontal axis corresponds to the frequency
range of 2 ∼ 20 Hz while the vertical axis is the amplitude of the FRF. As
the unit of acceleration used is g and the unit of force is N , the unit of the
amplitude is g/N . This FRF shows several sharp resonance peaks which360

correspond to the first eigenfrequencies of the cable.
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(b) Amplitude variation of the trace of the cable dynamic stiffness matrix
obtained by the DSM method

Figure 6: Experimental and simulation results of the vibration analysis of the 5th cable at
the center pose (x = 0.012 m; y = 0.0697 m; z = 1.219 m; α, β, γ = 0�)

The DSM method does not allow the computation of the FRF between
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the acceleration response of the cable at the measurement point and the force
applied on the end-effector by the shaker. In fact, each cable is reduced to
an equivalent spring element whose nodal coordinates are the coordinates365

of the end-effector. The internal degrees of freedom of the cables are thus
not included in the model. A direct FRF-based model updating technique
cannot thus be used to validate the DSM model. In order to demonstrate
the procedure and to show the efficiency of the method to introduce the
cable dynamics in the CDPR oscillating model, the amplitude of the trace370

of the cable DSM (Eq. (19)) is used for identifying the local cable modes in
simulation, as shown in Fig. 6b. Note that the trace is invariant with respect
to a change of basis and that the calculation of the cable tensions at the static
equilibrium of the CDPR is done by a suitable force distribution algorithm
[51]. As shown in Fig. 6b, several peaks appear. The corresponding changes375

in the cable stiffness are due to the cable modes and they illustrate that the
DSM method reveals the effects of cable mass and elasticity on the dynamic
behavior of the CDPR. Similar experiments and simulations were made at
the boundary pose. The corresponding results are shown in Fig. 7.

Table 2: Eigenfrequencies of the 5th cable (Fig. 4) between 2 and 20 Hz (identified from
FRF measurements and computed using the DSM model)

(Hz) center pose boundary pose

f1 meas. 3.8 5.2
f1 calc. 3.6 5.4
f2 meas. 7.3 10.4
f2 calc. 7.1 10.7
f3 meas. 10.9 15.6
f3 calc. 10.7 15.7
f4 meas. 14.5 -
f4 calc. 14.3 -
f5 meas. 18.0 -
f5 calc. 17.8 -

As a result, the eigenfrequencies of the 5th cable can, on the one hand, be380

identified from the FRF measurements and, on the other hand, be predicted
using the DSM model. The eigenfrequencies between 2 and 20 Hz are given
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(b) Amplitude variation of the trace of the cable dynamic stiffness matrix
obtained by the DSM method

Figure 7: Experimental and simulation results of the vibration analysis of the 5th cable at
the boundary pose (x = 4.012 m; y = 0.0697 m; z = 1.219 m; α, β, γ = 0�)

in Tab. 2. According to this table, the eigenfrequencies of the cable modes
identified by experimental analysis are close to those obtained by the DSM
method for the two studied poses. The relative differences between simulation385

and experiment are all less than 5 %. In the short-length configuration at the
pose located near the workspace boundary, the increase of the cable tension
strengthen the first natural modes and spread them over the frequency range.
Only three resonances remain between 2 and 20 Hz.

In Fig. 7a, it can be noted that the lowest frequency peak close to 4390

Hz is not captured by the DSM prediction. Due to the experimental setup
constraints, the dynamic cable behavior is not looked in isolation but only
in a complete CDPR configuration. The presence of the peak at 4 Hz is due
to the interaction between the first rigid-body mode of the end-effector and
the cable oscillations, as described in more detail in the following section. In395
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fact, there is a strong coupling of cable modes and end-effector resonances
in low frequencies, where a lot of energy is transferred to the cables, due to
the harmonic excitation used in the present experiments (16 s by frequency
step), at the frequency of the first global end-effector rigid-body mode. When
combined with the phase distributions of the involved modes, this results in400

a decrease of the first cable resonance.
Similar measurements were made for two other cables (cables 4 and 6, see

Fig. 4). For the sake of brevity, since the observations were the same, only
the results of cable 5 are reported here.

The results confirm that the DSM model can accurately predict the cable405

modes in the frequency range of interest.

4.2.3. Experimental results and discussions on the dynamic behavior of the
CDPR

The experimental and simulation results of the vibration analysis of the
end-effector at the center pose are shown in Fig. 8.410

Figure 8a depicts the experimental FRF plots referring to the acceleration
responses of the end-effector along the x-, y-, z-axis and the excitation force
along the z-axis. The corresponding FRFs computed from the DSM model
by using Eq. (37) are given in Fig. 8b. As seen by comparing Fig. 8a and
Fig. 8b, the DSM model considered in this paper does not provide a good415

fit for the FRF levels because the damping model used is too restrictive and
does not depict the reality. To be practical, FRF-based model calibration
requires an accurate identification of the damping mechanisms and of the
spatial distribution of the damping over the system, in the presence of noisy
data. Indeed, in this model, a constant viscous damping ratio of 1 % is420

only used to describe the various damping mechanisms in steel wire cables
such as hysteretic, viscous and viscoelastic which were recently identified
[52]. According to a sensitivity analysis not presented here, a non-linear
relationship between the cable axial damping and the frequency as well as
some friction damping brought by the joints between the cables and the425

end-effector are also expected.
In the present study, it is not intended to carry out an in-depth investiga-

tion of the most appropriate damping model. The focus is placed on finding
the correct number and values of the eigenfrequencies. It should be noted
that estimation of modal damping ratios will have little effects in resonance430

identification. The damping related issue should be investigated in future
works to better simulate the actual damping behavior.
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Figure 8: Experimental and simulation results of the FRFs between the acceleration
responses of the end-effector along the x, y, and z-axis and the excitation force along the
z-axis at the center pose (x = 0.012 m; y = 0.0697 m; z = 1.219 m; α, β, γ = 0�)

From Fig. 8b, it is possible to identify in the studied frequency range
numerous damped resonances of the end-effector suspended on the cable
stiffness. The number of resonances is clearly not equal to the number of435
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degrees of freedom of the system, i.e. to 6. The results obtained with the DSM
model of the CDPR should be compared to the ones obtained with a model
using a constant static stiffness matrix [33] (Fig. 8c). In the latter approach,
the cable sag-induced stiffness and axial elasticity are considered but the effect
of cable mass on the CDPR dynamics are neglected. This model predicts only440

the 6 rigid-body modes of the end-effector suspended on the static stiffness of
the cables and omit the coupling between the dynamics of the platform and
the cable resonances. A comparison of Figures 8b and 8c clearly shows that
the dynamics of the cables changes the value of eigenfrequencies and add new
resonances.445
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Figure 9: Amplitude variations of the damped eigenfrequencies of the CDPR obtained by
simulation at the center pose (x = 0.012 m; y = 0.0697 m; z = 1.219 m; α, β, γ = 0�)

The complex interaction between local cable modes and global rigid-body
oscillations of the end-effector can be analyzed by means of Fig. 9. This
figure depicts the evolution of the 6 damped eigenvalues of the end-effector
suspended on the cable stiffnesses over the frequency range 0-14 Hz. The
analytical model is developed in the frequency domain to represent the FRFs450

between any possible measurement locations and directions on the end-effector
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of the CDPR (Eq. (33)). The denominator of the FRF is the characteristic
or frequency equation of the system, which depends on the frequency of the
forcing function. The solution of this characteristic equation for a given
frequency of the forcing function yields a set of 6 eigenvalues. The solid lines455

correspond to the damped eigenfrequencies computed at each frequency of
the forcing function with the proposed model using the DSM. The eigenvalues
are calculated and plotted with a frequency step of 0.05 Hz. Comparing the
solid lines with the dotted lines which represent the damped eigenfrequencies
obtained with a model synthesized with a constant static stiffness matrix [33],460

it is apparent that the stiffness variations in the region of the cable modes
modify the eigenvalues of the overall robot.

Cable dynamics affect the CDPR response when a periodic excitation
source is directly or indirectly applied to the driving cables. The first bisector
in Fig. 9 represents the frequency ω of the forcing function. Each intersection465

between the frequency curves (end-effector modes) and the first bisector
(excitation frequency) should result in a resonance on the CDPR responses,
depending upon the relative direction of the eigenvector and of the excitation
force. Comparing Fig. 8a with Fig. 9, we can find out that the first strong
resonance just below 4 Hz for each response direction of the FRFs is due to470

the first mode of the 8 driving cables. The changes in the cable stiffnesses
lower locally the eigenvalues of the robot. Since the pose of the end-effector is
at the center of the workspace, all the cables have similar lengths and tensions
and, consequently, have similar first eigenfrequencies. The second cable modes
(symmetric in-plane mode) and the third cable modes (anti-symmetric in-475

plane mode) induce the numerous but relatively damped resonances around 8
Hz and 12 Hz, respectively.

The two resonances of the end-effector response in the y-axis at 4.7 and 6
Hz are due to the two first rigid-body modes of the end-effector suspended
on the stiffness of the cables (Fig. 8a). The associated eigenvectors of these480

two modes are close to the y-axis of the global frame. Neglecting the effect
of the cable dynamics in the CDPR vibration analysis [33], these resonances
due to the two first rigid-body modes of the end-effector are predicted at
frequencies just below (Fig. 8c). It should be noted that the DSM model
damps the cables modes considerably more than the rigid-body modes of the485

end-effector (Fig. 8b and Fig. 8c). The model should thus account separately
for different transverse and axial damping parameters to better simulate the
true damping behavior of steel wire cables.

It is shown that the method presented in this paper predicts more accu-
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rately all the eigensolutions of the measured FRF data. Experimentally, the490

eigenfrequencies are globally a little bit lower (about 0.5 Hz). It should be due
to the modeling and experimental errors. In the experimental setup, metal
rings are used as joints to connect the cables to the end-effector. However, it
is assumed in the simulation that the cable end is directly fixed to the end-
effector. Another reason could be the inertia parameters of the end-effector495

used in the simulations. These parameters have been obtained by CAD model
without considering the welds.

Similar experiments have been made at the boundary pose (x = 4.012
m; y = 0.0697 m; z = 1.219 m; α, β, γ = 0�), and the same conclusions were
drawn. For the sake of brevity, the corresponding experimental results are500

not presented here.

4.3. Trajectory experiments

This section aims at studying the dynamic behavior of the CDPR prototype
along a trajectory of its end-effector. Since the DSM model introduced in
this paper does not allow the computation of the time-domain response, the505

analysis of experimental CDPR trajectories is done in the frequency domain
focusing on the coupling between the cable dynamics and the end-effector
vibrations.

Figure 10: Experimental setup used for the trajectory experiments

The experimental procedure is described below.

1) As shown in Fig. 10, a photogrammetric Nikon Metrology K600-10 system3
510

based on three CCD linear cameras and infra-red light active LEDs is

3http://www.nikonmetrology.com/optical cmm/
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used. Three LEDs are attached to the end-effector and their positions are
measured simultaneously by the camera, thereby allowing the simultaneous
tracking of multiple points and the measurement of both the position and
the orientation of the end-effector. The system has a maximum position515

measuring accuracy of 37 μm for a single point. An accelerometer is fixed
along the cable, and a triaxial accelerometer is fixed to one edge of the
end-effector.

2) The controller is asked to move the end-effector along a straight line
trajectory from x = 1 m, y = −2 m, z = 1.3 m, α, β, γ = 0� to x = −0.5520

m, y = −0.7 m, z = 1.05 m, α, β, γ = 0�. The time of this trajectory is set
to be 30 seconds in the controller. Along the trajectory, the pose of the
end-effector is measured by the Nikon system, and the measurements of
the accelerometers is recorded by the National Instrument data acquisition
system.525

3) Once the motion is achieved, the controller is asked to move the end-
effector back to the starting point of the trajectory. The same trajectory
is then followed again with three other durations: 10, 5, and 1.5 seconds.

Firstly, the pose error of the end-effector during the trajectory is studied.
The trajectory in the controller is an ideal straight line. However, due to the530

vibrations of the end-effector, the real trajectory in the experiment is not a
straight line. The pose error of the end-effector is defined as the difference
between the desired end-effector pose and the end-effector pose measured by
the Nikon system. Figure 11 shows the pose error of the end-effector along the
trajectory for the four different durations. Figure 11a shows the pose error535

along the y-axis, and Fig. 11b shows the pose error along the z-axis. From
Fig. 11, obvious variations of the pose error can be found. These variations
are due to the vibrations of the end-effector. It is also found that the faster
the end-effector moves, the larger the variation becomes. This means that
the velocity and the acceleration of the end-effector can affect the amplitude540

of its vibrations.
Moreover, time-frequency analysis of the acceleration measurements are

made to study the frequency content of the vibrations of the end-effector
during the trajectory. Figure 12 presents the experimental results of the
vibration analysis of the end-effector along the z-axis during the trajectory.545

The acceleration of the end-effector is shown in Fig. 12b, and the time-
frequency response of the end-effector is shown in Fig. 12c. Firstly, in Fig.
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Figure 11: Pose error of the end-effector during the trajectory from x = 1 m; y = −2 m;
z = 1.3 m; α, β, γ = 0� to x = −0.5 m; y = −0.7 m; z = 1.05 m; α, β, γ = 0� with different
trajectory durations

12, the peaks of the vibration amplitude are seen to appear at 7 s, 15 s,
24 s during the trajectory. These peaks correspond to the extreme points
and the inflection point of the acceleration curve. Secondly, three groups of550

frequencies can be identified from Fig. 12c: One group around 4 Hz, a second
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(b) Acceleration of the end-effector along the z-axis during the tra-
jectory of 30 seconds (data measured by the accelerometer). These
data do not contain the continuous component of the acceleration

(c) Time-Frequency response of the end-effector along the
z-axis during the trajectory of 30 seconds

Figure 12: Experimental results of the vibration analysis of the end-effector along the
z-axis during the trajectory of 30 seconds

group around 8 Hz, and a third group around 12 Hz. Referring to Fig. 9 in
Section 4.2.1, these frequencies correspond to the end-effector eigenfrequencies
affected by the cable modes.
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5. Conclusions and perspectives555

With the intention to evaluate the effect of the cable natural modes
on CDPR vibrations, this paper focused on a dynamic stiffness analysis
where the cable vibrations, the end-effector vibrations, and their coupling
are taken into account. To this end, the calculations of FRFs were detailed.
The changes in stiffness in the region of the cable eigenfrequencies affect560

the eigenfrequencies of the overall robot. This results in numerous system
resonances which are relevant in cases such as CDPRs for wind tunnels
and outdoor CDPR applications, where a periodic excitation source may
be directly or indirectly applied. Moreover, the proposed vibration analysis
methodology was illustrated by means of experiments performed on a large565

6-DOF 8-cable CDPR prototype called CoGiRo. Experiments around two
static equilibria and along a trajectory were reported. These experiments
validate the vibration analysis methodology introduced in this paper, and
allowed an analysis of the CoGiRo CDPR vibrations. The latter analysis
revealed a strong coupling between cable and end-effector vibrations when a570

periodic external excitation is applied. Further experiments and analysis are
however required in order to further investigate the damping mechanisms.

Based on the results of this paper, methods to reduce vibrations can be
further developed, notably in order to significantly improve end-effector path
following accuracy. For example, active vibration canceling or input shaping575

methods can be used to suppress or, at least, attenuate vibrations. Using the
proposed system modeling and analysis method, any vibration mode may be
eliminated by a suitable open-loop or closed-loop control strategy since it can
be estimated with good accuracy. By extending attention to developments
in cable-supported bridge dynamic analysis [53, 54], further investigations580

should be dedicated to the potential impact of frequency veering and modal
hybridization phenomena on the spectral properties of CDPRs.
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