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Abstract 

Fatigue under variable amplitude loading is currently assessed with the Palmgren-

Miner rule in structural standards, ignoring the order of loading, which would require 

non-linear or mixed rules, especially for the random loading sequences applied to 

certain structures. Therefore, the goal is to develop a practical and simple correction 

factor ensuring the linear summation of damage is conservative, so as to take the 

sequence effect into account in random loading from natural sources. The theoretical 

consistency of this approach is demonstrated and a case study is developed to test the 

feasibility of the new rule and its simplicity. 

Keywords: cumulative damage, variable amplitude fatigue, damage accumulation, 

sequence effect, random loading. 

1 Introduction 

It is well known in the literature that the sequential order of cycles is an important factor 

[1, 2, 3, 4, 5, 6, 7, 8] when assessing total cumulative fatigue damage. In fact, for 

certain sets of cycles, when larger ranges are applied beforehand, the resulting fatigue 

damage accumulation is higher, while precisely the opposite holds true in other cases 

[9, 10, 11, 12]: an aspect that will be explained in §2. However, simple linear 

approximations, such as the widely used Palmgren-Miner rule [13, 14], despite their 

practical and easy application, are unable to consider this effect [8, 15]. So, 

consideration of the sequence effect will require a more complex and therefore less 

practical non-linear rule [1, 2, 8, 15, 16]: as detailed in §3. Logically, the question arises 

of how to predict complex random loading from natural sources, i.e. wind, waves, 

seismic events, human-induced vibrations, etc., with disordered cycles of varying 

ranges, normally studied as stationary and ergodic processes. In such cases, the use 

of a non-linear rule for cumulative fatigue damage could be more accurate, but also 

more time intensive and of greater difficulty. In common structural elements and 

Eurocode design calculations [17, 18, 19] or equivalent structural standards, the real 

added value of a rule is its simplicity coupled with accuracy and safety [7]. These are 

the main advantages that justify why the Palmgren-Miner [13, 14] rule is still specified 

in these standards: although not more accurate, it is very practical, so the goal is to 

develop a practical correction factor ensuring the linear summation of damage is 

conservative. Following this acknowledged line of reasoning in engineering, a plain 



  

linear-rule for cumulative fatigue damage, considering the sequence effect in complex 

random loading, is presented in §4. An accelerating coefficient is presented for this 

process [20], analogous to the approach for the “damage equivalent factor” concept [7]. 

Finally, the practical application of this rule is presented in the case study of a steel rod 

in §5. Besides, for a wider review of existing fatigue rules see [5, 6, 20]. 

2 The sequence effect in cumulative fatigue damage 

Now, a short introduction on this topic looking for a triple benefit: First, to see how the 

sequence order is currently taken into account, even in a rudimentary way, for 

cumulative fatigue damage under a linear rule, to state the starting point. Second, how 

the uncertainty on the order could change the curve itself below the CAFL and why is 

that. Finally, third, the reason why the Hi-Lo sequences are more damaging than the 

Lo-Hi, related with crack size. 

Sequential cycles in a fatigue process can shorten the service life of certain structural 

elements [1, 2, 3, 4, 5, 6, 7, 8], in terms of the number of cycles an element will resist 

until failure; a process that can be understood from the perspective of fracture 

mechanics. If a low cyclic stress range under a given threshold stress intensity factor is 

applied before any other to an initial crack size, crack propagation will not occur. 

However, the application in the first place of a high cyclic stress range will propagate 

an increase in the initial crack size. Thus, the new crack size will reduce the threshold 

stress intensity factor, causing further crack propagation under subsequent lower 

stress ranges, so cumulative fatigue damage will therefore occur under both stress 

ranges, instead of only the higher ones in the opposite case [8].  

This effect can be observed in the S-N or the Δσ-N curves [21], which reflect the two 

stress range levels defined for completely reversed cycles. A first one called the fatigue 

endurance limit or Constant Amplitude Fatigue Limit (CAFL) and a second one, lower 

than the first, called the cut-off limit [7, 17, 18, 19]. The curves horizontally flatten in 

log-log scale, under the fatigue limit, if all cycles in the sequence are of a lower stress 

range. However, if there are some cycles with higher stress levels, the slope is 

intermediate, representing the availability of lower stress range cycles to produce 

fatigue damage after some higher stress range. However, there is a cut-off limit that 

represents the point where fatigue damage is inexistent, because the cyclic loading 

under this limit will not result in crack growth. 

Finally, the sequence effect in the fatigue processes has been studied in the literature 

and empirically verified several times [9, 10, 11, 12], pointing to the acceleration of 

these processes in cyclic blocks, ordered by decreasing stress ranges and the 

corresponding deceleration in the opposite case. The Palmgren-Miner [13, 14] linear 

rule is unable to predict these effects that are introduced by the commutative property 

of the summation of the partial cumulative fatigue damage of each block.  

3 Non-linear rule approach 

In this section, the sequence effect on complex random loading will be studied using a 

non-linear rule, see [22, 1, 2, 5, 8, 15, 16]. First, cumulative fatigue damage D is 

expressed in a general equation (1), where a certain cycle block i with a constant 

stress range Δσi has an exponent ωi=f(Δσi), anything other than 1 and higher the lower 



  

is the stress range. Finally, the number of cycles in that block i is ni and the number of 

cycles until failure at stress range Δσi is Nfi  

i

i

i

Nf

n
D



 









  (1) 

Thus, the first step to calculate the total damage DT caused by two consecutive blocks 

of cycles is to derive the damage of the first block D1, see (2). 
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Then, the same with the damage of the second block D2. However, this time it is more 

complex, since the element is not new and has been previously fatigued, so block 2 

starts with an initial damage D0,2. Logically, the damage with which the second block 

starts is precisely the damage with which the first one ends, so D0,2=D1. Besides, to 

continue with damage progression according to second block damage curve, the initial 

damage D0,2 should be expressed in terms of the equivalent initial second block cycles 

n0,2, see (6).  
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Therefore, the total damage DT=D1+D2, expressed in terms of cycles from the second 

block curve cycles n2, is derived in (4). 
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Besides, substituting equation (3) into equation (4), then the total damage DT=D1+D2 

could be expressed in terms of cycles in both blocks, n1 and n2, see (5). 
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Finally, the damage specifically done during second block D2 can be derived 

subtracting from the total damage DT, expressed in equation (5), the damage done 

during the first one D1, expressed in equation (2), yielding equation (6). 
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Moreover, in the case of a third block of cycles, the complexity of the operation will 

increase even further, as in (7) that shows the damage, D3, caused by this third block 

of cycles. This complexity will be increased after each new block of a different 

amplitude, becoming progressively less practical. 
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An interesting fact may be noted when analyzing these equations: there is an 

increment in terms of relative cycles, n/Nf, when passing from a curve to the next. 

When the fatigue process passes from the first block to the second block of cycles, it 

moves from corresponding damage curve 1 of block 1 to damage curve 2 of block 2, 

retaining the same level of damage, but there is a difference between the final quotient 

n1/Nf1 of the first, and the initial quotient n0,2/Nf2 of the second; see (8). 
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Analyzing equation (8), if the tendency of the non-linear rule were linear, then both ω1 

and ω2 would also tend to be equal to 1, yielding no increment. Moreover, if the non-

linear rule had a constant exponent, independent of the stress amplitude that 

corresponds to each block, then the increment would also be nil. A final important point 

is that, if the process moves from a block of cycles 1 with a certain stress amplitude to 

a block of cycles 2 with a lower stress amplitude, then the exponent, ω1, is lower than 

ω2, which implies a positive increase in terms of the relative quotient n/Nf of the cycle, 

thereby accelerating the cumulative fatigue damage that is approaching failure, while 

the opposite is verified when the first block has a lower stress amplitude than the 

second block of cycles; see (9). 
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(9) 

Fig. 1 shows the graph of a fatigue process after four blocks of cycles of different stress 

amplitude, ordered by decreasing stress amplitude, up until failure. The graph 

represents the Palmgren-Miner cumulative fatigue damage curves [13, 14] with a 

dotted line and the others correspond to the stress amplitudes of each block. The X 

(ordinate) axis or abscissa represents the relative cycle quotient, or life fraction, n/Nf, 

and the Y (coordinate) axis represents the accumulated fatigue damage, D; see [5, 8, 

23] 

The fatigue process represented in this graph has been quasi-linearized, showing 

horizontal lines that correspond to each cycle increment when moving from one curve 

to the next at the same damage level, and other positive slope lines, corresponding to 

the cumulative damage in each block of cycles. In terms of the abscissa coordinates, 

the summation of the relative cycle quotient of each block of cycles is equal to the 

result obtained by application of Palmgren-Miner rule [13, 14], while the difference 

between that result and 1 is the sum of the cycle increment caused by the sequence 

effect, when moving from one curve to the next. It is now evident that, when a fatigue 

process has positive cycle increments, the Palmgren-Miner rule [13, 14] will not predict 

failure when it indeed occurs and is therefore less accurate and potentially unsafe. 



  

 

Fig. 1: Process of cumulative fatigue damage following 4 blocks of cycles ordered by 

decreasing stress amplitude [20].  

Thus, in view of the above graph, the Palmgren-Miner [13, 14] rule may still be applied 

for certain load sequences, but multiplied by a coefficient of acceleration that pushes 

the fatigue process representing the loading sequence effect. The coefficient is equal 

to the inverse of 1 minus the sum of the expected relative cycle increments. This 

method is analogous to the “damage equivalent factor” concept approach used in the 

Eurocodes [7]. 

However, prediction of the sum of each cycle increment would be difficult in complex 

random loading of data from natural sources, because the sequence is very messy and 

disordered, meaning that it would not be, in principle, a very practical approach. 

Nevertheless, it is indeed possible to estimate the maximum expected value of the 

relative cycle increment and, therefore, the upper boundary of this coefficient. This 

approach reflects the dual advantage of the Palmgren-Miner rule [13, 14]: both 

practical and conservative. 

4 Plain linear rule approach 

Seeking to maintain practical, feasible and conservative fatigue damage predictions of 

elements under complex random loading from natural sources, the best approach is 

therefore to multiply the result of the calculation with a linear rule by an acceleration 

factor that takes into account the maximum expected relative cycle increment for any 

possible load sequence. We will call this factor a disorder pushing factor, as it actually 



  

takes into account an upper boundary of the disorder effect of the sequence and it 

pushes the cumulative fatigue damage of the process, which is finally responsible for 

accelerating the failure of the structural element. 

Therefore, the key to this approach is neither the identification nor the prediction of the 

actual loading sequence effect, which are tedious and time-consuming tasks of limited 

and partial accuracy. Instead, the key is to identify, for a certain load cycle sequence, 

the worst possible case in terms of the sequence effect, before the number of cycles is 

even counted and before all other considerations. This approach will guarantee that the 

disorder pushing factor will be the envelope value of any cyclic loading sequence with 

the same global maximum and minimum stress ranges. 

This maximum relative cycle increment between two curves is obtained when 

changing, or moving from the first curve to the second precisely at the damage level 

where the distance between both curves is maximized. This point will be better 

explained in section 4.1. Repeating this move at the proper damage level between 

every consecutive pair of curves will configure the worst path, defined in 4.2, 

determining the cumulative fatigue process that maximizes the sum of relative cyclic 

increments between each pair of curves. 

4.1 Maximum relative cycle increment 

The relative cycle increment, caused when passing from a cycle block of greater 

amplitude to another of lesser amplitude, is shown in Fig. 2, in terms of n/Nf, as an 

isolated movement between the two consecutive curves corresponding to both blocks 

of cycles. 

 



  

Fig. 2: Relative cycle increment when passing from one block of cycles of a higher 

range to another of a lower range [20].  

For a certain set of blocks ordered by stress range, such that Δσi > Δσi+1, there are 

always two consecutive blocks of cycles, the corresponding cumulative fatigue damage 

curves of which are respectively defined by equations (10) and (11) 
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Now, considering that the movement between curves is always repeated, keeping the 

same damage level, Di = Di+1, then equation (12) is verified and, consequently, the 

corresponding relative cycle increment is defined by equation (13): 
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(13) 

Thus, the maximum cycle increment can be determined as a derivative of equation 

(13), see equation (14), and by finding the relative cycle amount where it is nullified. 

Following this procedure, the relative cycles of the first curve (15) and the cumulative 

fatigue damage level (16) are addressed. 
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Therefore, by substituting equation (15) into equation (13), the maximum relative cycle 

increment is determined in (17) 
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Finally, two worthwhile observations may be noted. First, in view of (16), it is derived 

that the damage level at which the relative cycle increment is maximized decreases as 



  

the relation ωi+1/ωi increases. Second, the movement between curves with a maximum 

relative cycle increment occurs between two points, one on each curve, that share the 

same damage level and derivative, that is, a tangential slope. Indeed, to demonstrate 

the preceding observation, it is evident that equation (18) could simultaneously 

represent the inverse of equations (10) and (11), the derivative of which is equation 

(19). 
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Equalling out the derivatives of equations (10) and (11), both expressed in the form of 

equation (19), yields equation (20). But, considering that the increment is done at the 

same level of fatigue damage, i.e. Di = Di+1 = D, then equation (20) can be developed 

into equation (21), which is equal to (16). This development of the equation 

demonstrates the second and last observation. 
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4.2 Worst Path 

In practice, a random loading will present several cycles in a certain order that is 

unpredictable. Thus, being unpredictable the order, so it is the exact sequence effect. 

However, if not able to derive the exact sequence effect, at least it could be possible to 

derive its maximum, as an upper boundary value to work with. If the damage 

calculation considering this maximum value was safe, so it was any less damaging 

sequence. In order to do that, all cycles gathered in blocks of similar stress range will 

be applied in the most damaging order. Therefore, the itinerary passing from a block to 

the next having the maximum relative cycle increment will be the worst path. 

On this premise, the objective is now to extend the relation shown in section 4.1 to 

multiple blocks of cycles, at least over two, which reflect a generic sequence effect. 

The same study is followed for this task, but extending the same method to three 

consecutive blocks. These blocks are ordered and numbered by decreasing stress 

amplitudes. Thus, the initial stress range condition (22) is verified and, regarding the 

exponents of their corresponding cumulative fatigue damage curves, its immediate 

consequence (23). 
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For instance, if the derivative of equation (21) with respect to ωi+1, with ωi remaining 

constant, is always negative, it necessarily implies that the result of equation (21) will 

be lower while ωi+1 will increase and vice versa. Therefore, whatever the values of 

these exponents, it effectively implies a relation of D13<D12. 
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Thus, if equation (24) is negative, regardless of the exponent values, the terms of the 

equation between square brackets will necessarily be negative, as the remainder is 

always positive. This condition is expressed in equation (25), which is further 

developed into equation (26). 
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Now, equation (26) is transformed into equation (28) by substitution of the key quotient 

expressed in equation (27), at all times greater than 1. Then, equation (29) is 

developed from (28), in which c>1 is always the case and may always be verified with 

the corresponding limit that tends towards the asymptote. 
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Analogously, following the same procedure but keeping ωi+1 constant while obtaining 

the derivative with respect to ωi, is developed the derivative (30). This derivative cannot 

itself be negative, unless the term between square brackets is also negative, which is 

expressed in (31), and subsequently operated upon in (32). The same substitution 

yields (33), which is developed into (34), finally resulting in (35), which is also verified 

for any value greater than 1. Finally, this implies that D23<D13, regardless of the 

exponent values while the relationship is maintained (23). 

 

ii

ii

i

i

ii

ii

ii

i

ii

i

id

dD 














































































1

1

11

1

1

2

1

2

1 1
ln  (30) 

  

















 









i

i

ii

i

ii

ii

iid

dD















1

2

1

2

1

1

1 ln
1

0  (31) 













 





i

i

i

ii







 1

1

1 ln  (32) 

 c
c

c
ln

1



 (33) 



  

 
c

c
c




1
ln0  (34) 

c

c

ec





1

1  
(35) 

Finally, as a result of these derivatives, on the one hand, if (29) is true for any value of 

‘a’ greater than 1, then D13<D12 and, on the other hand, if (35) is true for any value of 

‘a’, then D23<D13. This result is summarized in equation (36). 

121323 DDD   (36) 

The consequences of this very last relationship are explained with the help of Fig. 3, 

which presents six cases with segments of the non-linear cumulative damage curves, 

depending on the relative cycles of the three consecutive blocks of cycles the 

exponents of which are ω1, ω2 and ω3. 

First, considering a), the movement with the maximum relative cycle increment is the 

one that passes from curve 1 to curve 3, the amount of which in terms of relative cycles 

is J13. This movement occurs at a certain cumulative fatigue damage level, marked by 

the horizontal line. However, considering b), the point with the maximum relative 

increment J23 moving from curve 2 to curve 3, occurs at a lower level of fatigue 

damage; see (36). Finally, considering c), the movement from curve 1 to curve 2 has to 

be done before moving from 2 to 3, but the maximum relative cycle increment of 

moving from 1 to 2 J12 happens at a higher level of fatigue damage. Therefore, the 

maximum relative cycle increment occurs when moving from curve 1 to 2 at precisely 

the same damage level, since the relative cycle increment J12 will decrease if it is done 

any earlier. Now, considering c), the dotted line corresponds to J13, that has been 

defined as the maximum relative cycle increment moving directly from curve 1 to curve 

3, so in this case the maximum relative cycle increment is reached by passing directly 

from curve 1 to curve 3, since J13 > J12 + J23 is always true. 

Second, considering d), the maximum movement J13 passing from curve 1 to curve 3 

happens at a certain damage level. Considering e), and (36), the maximum movement 

passing from curve 1 to curve 2 happens at higher level of fatigue damage. Since the 

movement from curve 2 to curve 3 has to be done after moving from curve 1 to curve 2, 

but the maximum movement from curve 2 to curve 3 is done at a lower level of fatigue 

damage, then the maximum relative cycle increment is reached if moving at precisely 

the same level, because if done later the increment will be reduced. Therefore, looking 

at f) it becomes true that the sum of J12 and J23 will be less than J13, represented by the 

dotted line. So, in this case too, the maximum relative cyclic increment is reached by 

passing directly from curve 1 to curve 3, since J13 > J12 + J23 is always true. 

Therefore, the consequence of these two (36) issues is that every triple set of 

consecutive curves, where the relationships (22) and (23) are true, have a maximum 

relative cycle increment equivalent to the move from the first to the last. But, the real 

issue is raised here, as it could be extended for every fatigue process, of any number 

of blocks of any number of individual cycles, ordered in decreasing amplitude, which is 

the most damaging possible sequence in random loading. So, if the maximum relative 

cycle increment passing from curve 1 to curve 2, and then to curve 3, is to move 

directly from 1 to 3, then the same can be said for the next triple set of curves 1, 3, and 



  

4, and the maximum increment will move directly from 1 to 4, so the same can be said 

of the triple set of curves 1, 4 and 5, and so on until the last triple set 1, N-1 and N, the 

maximum relative cycle increment of which, according to (17), but now expressed in 

terms of the loading sequence of L blocks of cycles that is defined in equation (37). 
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Fig. 3: Interpretation of consequences derived from the relationship expressed in 

equation (36), [20]. 

4.3 Disorder Pushing Factor 

Finally, the disorder pushing factor FED, calculated in a general way for a certain set of 

blocks of cycles, will be valid for any order of the sequence, as it uses the maximum 

envelope value of the relative cycle increment. Besides, taking into account that the 

maximum relative cycle increment is the movement between the first and last 

cumulative fatigue damage curves, it will also be valid for any set of blocks of cycles 

sharing the maximum and minimum stress amplitude. 

As a comment on conservativism of this rule for a stationary and ergodic random 

loading coming from a natural source, mind that there are too concomitant permanent 

loading and some time-dependent processes like creep, relaxation, shrinkage, inertia 

loose, bolt untightening, etc. that tend to redistribute stress within a structure, reducing 

the stress in a certain detail. The consequence is higher mean stresses at beginning of 

fatigue process than at the end, and corresponding higher equivalent stress ranges 

before. This induces a quasi-order in the stationary ergodic process in terms of 

equivalent cycles that is decreasing order. 

Once the maximum relative cycle increment has been determined, corresponding to 

the worst path, the failure of the structural element by fatigue will occur when equation 

(38) is fulfilled. So, the factor by which the result of the Palmgren-Miner rule [13, 14] 

should be multiplied, which is the summation of only the relative cycles of each block of 



  

cycles, should (39) predict the point of failure. Finally, substituting equation (37) in (39) 

yields equation (40), which is the general form of the factor. In this very last equation, 1 

is the notation that indicates the first block of cycles, or the one with higher stress 

amplitude, and L is the notation to indicate the last block of cycles, or the one with the 

lowest level of stress amplitude in the sequence. 
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Therefore, the fatigue damage of a certain random fatigue load sequence can be 

analyzed by means of a linear rule, completing the corresponding histogram and 

applying the Palmgren-Miner procedure [13, 14], but multiplying the result by this 

disorder pushing factor that accelerates the deterioration process. The disordered 

linear rule therefore corresponds to equation (41), useful for easy safety limit 

calculations, a central added value, similar to those prescribed in structural standards. 
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As a final remark, the proposed rule develops a correction factor to take into account 

sequence effect in random loadings under linear rule, which is the rule used in practice. 

The non-linear basis to derive this factor is consistent with fracture mechanics theory, 

since its exponent is found by means of it, as shown in next section. However, its 

added value is not to be more accurate with experimental data, inherently scattered. In 

fact, its truly added value is to keep simple while enabling the consideration of 

sequence effects, dealing with uncertainty in random loadings, that introduces double 

scattering, even being little conservative. For instance, a cycle by cycle approach like 

Mesmacque et al. [24] or others [25, 26] could be very accurate but it deals with 

certainty, i.e. with known sequences, such as those applied in laboratories. When the 

sequence is no longer previously known, like in random loadings, then uncertainty is 

introduced in the prediction and it becomes blurry and inaccurate, if not unable to be 

done. In such cases, where the accurate prediction is not possible, the next best option 

is to determine the safe prediction. 

5. Case study: a steel rod 

A steel rod is proposed as a case study [27], for the purpose of demonstrating the 

feasibility of this method. The principal advantage is that this geometry is easily 

extensible to elements such as rebars, bolts, cables, rod shaped suspension cables, 

etc. 



  

5.1 Deriving exponent ω as a function of stress range and diameter 

Now, in order to be able to derive exponent ω by fracture mechanics, without additional 

tests, the first step is to develop equation (10) into equation (42). In this equation, the 

exponent ω is precisely the slope that results from the linear regression of the fatigue 

damage D, expressed as a function of the relative cycles N/Nf, both on a logarithmic 

scale. However, fatigue damage D still has to be correlated with the relative cycles N/N f 

on a physical/mechanical basis, which is done by the fracture mechanics theory, 

defining equation (43) as the fatigue damage function that depends on the number of 

cycles D(N), as in [8]. In this equation ath is the threshold crack size, below which no 

fatigue occurs, ac is the critical crack size, beyond which fatigue failure occurs, and 

a(N) is the actual crack size depending on the number of cycles, passing from ath with 

N=0 to ac with N=Nf. Therefore, the damage function D that is defined in this way 

passes from 0, when N=0, to 1, when N=Nf. 
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The process to derive the equation that defines the crack size as a function of the 

number of cycles a(N) starts with the Paris law [28], defined in equation (44), as stated 

in the seminal work leading to fatigue treatment in the Eurocode [17], with material 

constants A=2∙10-13 and m=3 corresponding to steel [29], and the stress intensity factor 

defined in (45), yielding equation (46). This approach is suitable for details that have 

initial crack length above the threshold, normally the case for structural applications, 

otherwise most fatigue life is expended in crack nucleation and there are more cycles 

to take into account. 
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The geometry factor for circular sections Y(a) is taken from [30] and is defined in 

equation (47), where r is the radius. The threshold crack size ath and the critical crack 

size ac [31, 32] are respectively developed, in equations (48) and (49), as functions of 

Kth and KIC, both borrowed from [33, 34] and [35], in the same way as shown in [27]. 
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Now, after substituting equations (47), (48) and (49) in equation (46) and solving it, the 

crack size as a function of relative cycles is derived, a=f(N/Nf). Besides, introducing the 

new found a=f(N/Nf) relationship in equation (43), the damage as function of relative 

cycles can be derived too, D=f(N/Nf). Finally, substituting the new found damage 

relationship in equation (42) and finding out ω, the equation (50) is derived. 
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Taking this into account, in view of equation (50), if the damage as a function of relative 

cycles D=f(N/Nf) is plotted in a double logarithmic scale graph, then the ω is derived by 

linear regression, as the mean slope of the line passing by the origin. Then, repeating 

this method for each pair of range Δσ and diameter Φ values, the exponent values can 

be obtained, and are summarized in Table 1.  

Table 1: Exponent values depending on stress range and diameter ω = f(Δσ,Φ), [20]: 

Δσ\Φ Φ10 Φ12 Φ16 Φ20 Φ25 Φ32 

50 3.0857 3.2285 3.4795 3.7045 3.9529 4.2543 

100 3.0444 3.1813 3.4357 3.6100 3.8407 4.1430 

150 2.9418 3.0824 3.3264 3.5587 3.7838 4.0301 

200 2.9190 3.0412 3.2945 3.4464 3.6773 3.9594 

250 2.8704 3.0090 3.2448 3.4000 3.6251 3.8490 

300 2.8513 2.9785 3.1507 3.3624 3.5184 3.7415 

350 2.8187 2.9391 3.1039 3.2588 3.4676 3.6895 

400 2.7785 2.8450 3.0792 3.2177 3.4174 3.5828 

450 2.7552 2.8220 3.0305 3.1833 3.3298 3.5308 

500 2.6640 2.7791 2.9442 3.1328 3.2823 3.4777 

 

Thus, the only remaining task is to define the exponent ω as a function of the diameter 

and the stress range ω=f(Φ,Δσ). This definition is done through a triple linear 

regression: the first one obtains, for each diameter, the slope and the constant of the 

exponent only as a function of the stress range. Then, the second and third 

respectively calculate the constant and the slope of this last linear equation as a 

function of the diameter. The resulting equation is presented in (51), the 

correspondence of which with the discrete values summarized in Table 1 is shown in 

Fig. 4. 
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Fig. 4: Correspondence between discrete values of exponent ω summarized in Table 1 

and derived from ω=f(Δσ,Φ) (51), [20]. 

5.2 Calculation of fatigue damage 

The steel rod for this calculation corresponds to a steel rebar of 25 mm diameter, 

subjected to random variable loading of several disordered cycles. The cycle counting 

is done by the Rainflow method, which yields the following histogram, shown in Fig. 5, 

ordered by blocks of cycles of varying stress ranges from 50 MPa to 500 MPa.  

 

Fig. 5: Cycle histogram of the random process 

The next step for the fatigue damage calculation under the Palmgren-Miner linear rule 

[13, 14] would be to obtain the final number, Nf, or cycles until failure, of the structural 

element. To do so, the Δσ-N curves derived from Wohler [21] are employed; in this 

case, the one specified in [17] for steel rods. This is the original ECCS publication that 

originated the Structural Eurocodes, based entirely on experimental results. For every 

stress range level, Δσ, corresponds a characteristic cycles until failure, Nf, that are the 

amount of cycles with a probability of further survival of 95% with a confidence level of 



  

75%, obtained from all samples tested at each stress range Δσ. The S-N curve is then 

defined joining all these points. Therefore, taking this detail category we keep the same 

level of structural reliability. Thus, with a detail category of 100 MPa at 2∙106 cycles, a 

constant amplitude fatigue limit (CAFL) of 74 MPa at 5∙106 cycles, and a cut-off limit of 

40 MPa at 108 cycles, corresponding to a steel rebar, with slope 1/3 for stress ranges 

greater than CAFL, slope 1/5 between CAFL and the cut-off limit, and slope zero below 

the cut-off limit.  The CAFL corresponds with the Detail Category, obtained by fatigue 

testing at several stress range levels, doing several tests on each level. For every 

stress range level Δσ corresponds a characteristic cycles until failure Nf, that are the 

cycles with a probability of further survival of 95% with a confidence level of 75%, 

obtained from all samples tested at that stress range Δσ. The S-N curve is then defined 

joining all points. Therefore, taking this detail category we keep the same level of 

structural reliability. 

The actual number of cycles N in each block with a certain stress range Δσ, the cycles 

until failure Nf and the partial damage N/ Nf, are summarized in Table 2.  

Table 2: Fatigue damage calculation under the Palmgren-Miner linear rule 

Δσ N Nf N/Nf 

[MPa] [#] [#] [#] 

50 1.138 35.504.106 0,0000 

100 1.602 2.000.000 0,0008 

150 3.014 592.593 0,0051 

200 4.839 250.000 0,0194 

250 6.636 128.000 0,0518 

300 7.771 74.074 0,1049 

350 7.771 46.647 0,1666 

400 6.636 31.250 0,2124 

450 4.839 21.948 0,2205 

500 3.014 16.000 0,1883 

ΣN 47.260 D=ΣN/Nf 0,9698 

 

The total damage is then calculated as the summation of all partial damages 

corresponding to each block. In this case, the direct use of the Palmgren-Miner rule 

[13, 14] results in damage of 0.9698, a value of less than 1, which predicts the survival 

of the specimen. 

However, the load sequence is disordered, as it is a random load, so there is an 

acceleration of the damage process that has been neglected by the linear rule 

approach. The method presented in this paper accounts for this factor, by calculating 

the exponent ω corresponding to 50 MPa and 500 MPa for a diameter of 25 mm using 

equation (51) and then the exponents ω1=ω(500 MPa, 25 mm) and ωL=ω(50 MPa, 25 

mm) are defined as an input for equation (40), that results in a disorder pushing factor 

FED = 1.073, representing an increase of 7.3% in fatigue damage. Therefore, the actual 

maximum fatigue damage, considering the possible sequence effect caused by 



  

disorder, is calculated in (52), yielding a value that is greater than 1, which safely 

predicts failure. 
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6 Conclusions 

1. The Palmgren-Miner linear rule, despite its simplicity, is unable to consider the 

sequence effect, which potentially yields inaccurate predictions in certain cases 

related to complex random dynamic loading where the fatigue process may be 

accelerated. 

2. The sequence effect on cumulative fatigue damage has then been considered by 

means of a non-linear rule approach. The upper boundary of the sequence effect 

has then been determined and used to define a Disorder Pushing Factor FED, an 

accelerating coefficient to multiply the application of a plain linear rule for 

cumulative fatigue damage, thereby defining a new modified linear rule. 

3. A case study for a steel rod has been presented, for demonstrative purposes, 

showing the simplicity of this new methodology. The exponent of the corresponding 

non-linear rule, and the value of the FED, in the context of various geometries, and 

maximum and minimum stress ranges in the sequence for this detail category have 

been summarized in a table/template. These tables/templates can be easily 

extended to all detail categories in standard fatigue tables. 

4. The new procedure has been applied to a steel rod of 25 mm in diameter, 

subjected to a random dynamic loading sequence with stress ranges of between 50 

and 500 Mpa. The results have revealed an acceleration of the fatigue procedure 

by up to 7.3%. A fatigue damage prediction of safety using the conventional linear 

method is therefore shown to be a prediction of failure when using the method that 

has been advanced in the case study. 

 

7 List of Symbols 

 

Δσ Stress range. 

Δσi Stress range of the cycle block i. 

ω Exponent of non-linear rule for cumulative damage, normally f(Δσ). 

ωi Exponent of non-linear rule for cumulative damage of cycle block i with Δσi. 

A Material constant applied as factor to derive stress intensity factor K. 

a Crack size. 

ac Critical crack size. 



  

ath Crack threshold. 

D Fatigue Damage. 

Di Damage of cycle block i with Δσi. 

Dij Damage increment passing from a cycle block i with Δσi to a cycle block j with 

Δσj. 

FED Disorder Pushing Factor. 

Jij Jump from curve i to curve j. 

L Ordinal of last block of cycles. 

m Material constant applied as exponent to derive stress intensity factor K. 

N, n Number of cycles. 

Nf Number of cycles until failure at same Δσ. 

Nfi Number of cycles until failure with stress range Δσi. 

N0,i Equivalent number of cycles of Δσi applied before cycle block i. 

ni  Number of cycles in cycle block i. 

K Stress intensity factor. 

Y(a) Geometry factor, depending on specimen geometry. 
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Highlights 

 A review of sequence effect in fatigue by linear and non-linear rule approaches 

 Assessment of non-linear approach suitability for natural random loadings analysis 

 Determination of accelerating factor for equivalent damage by linear-rule approach 

 Linear-rule suitability for natural random loads considering structural reliability 

 Simplicity and suitability demo case with a representative structural element. 
 


