ENGAGING SCIENCE FACULTY IN PROGRAM ASSESSMENT: Planting Seeds and Cultivating Growth

Geoffrey S. Mathews

UH Manoa Dept. of Physics and Astronomy

BS Astrophysics & BA Astronomy Approved in August 2014, the undergraduate Astro- program is staffed by the ~30 research faculty at the Institute for Astronomy in Manoa. The combined majors currently include 16 women and 20 men, with an additional 13 students pursuing a minor. **STUDENT LEARNING** SKILL MAP EXAMPLE **CURRICULUM OBJECTIVES** ALIGNMENT 3. Physical laws in Astronomy eciation of the universality of phy A top-level curriculum map was We aim to have each **instructor** Subject **Orbital motion** Intro written as part of the program Keple versi Circu "hand-off" to the next, along Kepler's Laws. Newton's version of proposal. Via faculty negli Introduction Kepler's 3rd law. with course planning sessions to Circular orbits with a interviews, we are filling in the negligible mass. help all faculty build a sense of General 2-body progression of skills and laws. of Int where their course's role. **Basic Usage** problem, Perturbations: secular evolution. knowledge. Non-Keplerian potentials; orbital Mastery invariants **COURSE DESIGN**

WRITING RUBRIC

Subject

Orbital motion

Continuum mechanics

Matter & Radiation

Nuclear Reactions

Instructors for ASTR 300L, 301, and 494 are testing and refining a rubric to guide student growth in:

Control of syntax and mechanics

Communication tools, such as tables, lists, and figures

Content

Reasoning

SIGNATURE ASSIGNMENTS

Identifying a few key types of tasks in which students build proficiency over several semesters. Common rubrics helps students understand what skills they should develop.

Engaging faculty

Work with faculty to define

course goals, write summative

assessments, backwards design,

and implement active learning

and formative assessments.

Iteratively refine by **analyzing**

outcomes.

- Honor faculty time and expertise
- Take advantage of casual encounters
- Redirect faculty frustrations into professional development experiences

POST-CLASS DEBRIEFING PRE-CLASS BRIEFING

Instructors discuss student performance and difficulties in course transitions; this drives revision of earlier courses.

 \checkmark ASTR 241 \leftrightarrow ASTR 242 □ ASTR 210, 242 \leftrightarrow ASTR 300 ✓ ASTR 300 ↔ ASTR 301 □ ASTR 301 \leftrightarrow ASTR 494

ITEM ANALYSIS

Early stages of mapping exam questions to learning objectives, e.g.:

In the absence of read noise, what is the error on the measured number of photons, N?

SLO 2: "Be able to formulate scientific problems in mathematical terms and apply analytical and numerical methods towards its solution."

Requires knowledge of counting (Poisson) statistics, be able to calculate the square-root of a number

COS Mathews, G. S. (2017, March). Engaging science faculty in program assessment: planting seeds and cultivating growth. Poster session presented at the Assessment for Curricular Improvement Poster Exhibit at the University of Hawai'i at Mānoa, Honolulu, HI