
 

 

Investigation on the separability of slums by multi-aspect TerraSAR-X 

dual-co-polarized high resolution spotlight images based on the 

multi-scale evaluation of local distributions 

Andreas Schmitt, Tobias Sieg, Michael Wurm, Hannes Taubenböck 

Abstract— Following recent advances in distinguishing settlements vs. non-settlement areas from latest 

SAR data, the question arises whether a further automatic intra-urban delineation and characterization of 

different structural types is possible. This paper studies the appearance of the structural type “slums” in high 

resolution SAR images. Geocoded Kennaugh elements are used as backscatter information and Schmittlet 

indices as descriptor of local texture. Three cities with a significant share of slums (Cape Town, Manila, 

Mumbai) are chosen as test sites. These are imaged by TerraSAR-X in the dual-co-polarized high resolution 

spotlight mode in any available aspect angle. Representative distributions are estimated and fused by a 

robust approach. Our observations identify a high similarity of slums throughout all three test sites. The 

derived similarity maps are validated with reference data sets from visual interpretation and ground truth. 

The final validation strategy is based on completeness and correctness versus other classes in relation to the 

similarity. High accuracies (up to 87%) in identifying morphologic slums are reached for Cape Town. For 

Manila (up to 60%) and Mumbai (up to 54%), the distinction is more difficult due to their complex structural 

configuration. Concluding, high resolution SAR data can be suitable to automatically trace potential locations 

of slums. Polarimetric information and the incidence angle seem to have a negligible impact on the results 

whereas the intensity patterns and the passing direction of the satellite are playing a key role. Hence, the 

combination of intensity images (brightness) acquired from ascending and descending orbits together with 

Schmittlet indices (spatial pattern) promises best results. The transfer from the automatically recognized 

physical similarity to the semantic interpretation remains challenging. 

Key words — Radar applications; Radar polarimetry; Radar remote sensing; Image analysis; Image 

classification; Image fusion; Image texture analysis; Pattern recognition; Urban areas. 

I. INTRODUCTION 

A. Thematic introduction 

About 827 million people across the globe live in conditions that UN-HABITAT [1] classifies as slums. Future 

projections suggest that by 2050 about two billion people will additionally live in self-built neighborhoods 

resulting from informal occupation and construction of precarious environments [1], [2]. The magnitude of 

these numbers reveals that informal city building is not a fringe phenomenon. Still, conventional data sources 

such as the census, maps or geodata on such locations are often outdated, incomplete, not reliable or missing 

completely. In consequence, spatiotemporal information on slums is scarce at the city scale. A global or at least 

large area inventory of informal settlements locations, extents or their morphology is inexistent [3]. 



 

 

Consequently, the numbers on slum population presented above are of high uncertainty [4]. 

Remote sensing is able to provide the only consistent and area-wide data set that allows realizing local, 

regional or global knowledge on slum locations and structural characteristics. Unfortunately, the only indicator 

from UN-Habitats slum definition allowing the usage of earth observation data is the “durability of housing 

conditions”. Hence, recent studies try to relate this indicator to physical information present in EO-data in order 

to develop appropriate target classification approaches [3]. The most frequently used characteristics are high 

building density, small building sizes, and irregular, organic patterns [5], [6], [7]. A survey of current literature 

on classification techniques reveals that predominantly very high resolution optical satellite images have been 

exploited in slum mapping. Spectral as well as textural features within object-based image analysis in 

knowledge-based frameworks are dominating the developments [8], [9], [10], [11], [12], [13], [14], [15]. Studies 

using synthetic aperture radar (SAR) techniques for the detection of morphologic slums are rare. SAR data are 

of high relevance in this domain because of their capability to provide a stable data set independent from 

atmospheric conditions or day-time. This is an important advantage compared to data sets acquired by optical 

sensors especially with regard to tropical regions in which many of cities with a large share of slum structures 

are located. Furthermore, the detection of urban settlements by means of polarimetric SAR acquisitions is 

shown to be possible [16], [17]. However, the discrimination of different settlement types by SAR data sets is 

still challenging. The texture of the acquired images is a key feature for the separation between different 

settlement types due to the complexity of urban environments. The fundamental problem in the description of 

texture is the great variety of different texture measures from simple local statistics [18] to grey-level co-

occurrence matrices [19] and their interpretative derivations [20]. Former studies search for the optimal 

descriptor, i.e. the (derived) SAR feature that shows the highest correlation with building density [21]. While 

former classification algorithms were designed for the use of a low number of distinct layers, recent studies try 

to include the whole entity of multifaceted descriptors by using self-learning approaches like the random forest 

method for classification of slums [22]. Though the classification from hundreds of feature layers is not a 

problem any longer, the calculation of those layers still is time and memory consuming. Hence, simple 

approaches are preferred for the classification of large areas, e.g. the global urban footprint [23]. Therefore, this 

study investigates the characteristics of slums in high resolution SAR images by their radiometric and spatial 

signature to distinguish between different settlement types. The data sets for this study are acquired by 

TerraSAR-X in the dual-co-polarized high resolution spotlight mode. Upcoming SAR satellite missions like the 

“Radarsat Constellation” [24] or the “High Resolution Wide Swath” mission [25] will probably be able to provide 

suitable image data with comparable radiometric resolution, but a much larger coverage. 

B. Methodological introduction 

TerraSAR-X images show a very high spatial resolution up to 1 m though imaged from space. A large set of 

measurements hence is available per point of interest. Hence the number of pixels within an area of interest is 

much higher compared to former SAR sensors with a lower spatial resolution of e.g. 30 meters. The mapping 

unit of one hectare formerly covered by roughly eleven pixels – which are necessary for the initial multi-looking 



 

 

prior to the polarimetric decomposition – contains about 10,000 pixels when acquired by TerraSAR-X. 

Consequently, the traditional pixel-based estimation and classification of the backscattering mechanisms by 

very sophisticated polarimetric decompositions [26] is not appropriate for these data sets. Thus, it is reasonable 

to investigate agglomerations of measurements in the range of the mapping unit instead of dealing with 

isolated pixels. 

Segment-based classification [27] represents one possible approach for this investigation introducing 

geometric features, as e.g. shape, size and context parameters of the segments. This requires a high quality of 

the initial segmentation which is challenging with respect to SAR data [28]. The segmentation algorithms 

applied to optical data assume a similarity of pixels which belong to the same segment and therewith, 

representing one object. In contrast, an object imaged by SAR generally appears as a collection of different 

backscattering effects, e.g. a residential house is characterized by the overlay of façade and forecourt, the roof, 

and the shadow behind. Even if highly accurate segment geometries from cadastral data (e.g. block units) are 

used, the imaging effects of SAR still impede a perfect match. Thus, we introduce a region-based evaluation as 

middle course between the pixel-based and the segment-based approach. The region-based strategy is partly 

pixel-based since the evaluation is performed at any position in the image and partly segment-based because a 

locally variable environment around the corresponding pixel is considered. 

There are mainly two ways to investigate this large entity of measurements per evaluation point. First, a 

theoretical distribution function is adopted and its parameters are estimated from the samples [29]. In the 

simplest case of a normal distribution, the number of parameters reduces to the mean and the standard 

deviation. With respect to SAR images of urban environments the definition of an encompassing distribution, 

i.e. one statistical distribution that is valid for all settlement types, is not feasible, because different settlement 

types actually show different kinds of distribution [30]. Hence, the theoretical distribution is commonly chosen 

from a distribution family and adapted to the local image [31]. Second, the empirical distribution is accepted as 

it is and evaluated by so-called non-parametric approaches [32]. The latter approach is free from assumptions 

on the underlying statistics. In general, the computation of such algorithms is very expensive in terms of 

memory and time because of the usually high sampling rate which is required. The empirical probability density 

is commonly expressed by histograms. At this point, data preparation can help to reduce the number of bins of 

the histograms, i.e. the radiometric sampling rate, from several hundreds to just a few by a sophisticated and 

consistent scaling of the input data. The computing demand thus decreases considerably and the 

implementation becomes feasible with view to practical applications for the first time. One possible solution is 

provided by the TANH scaling implemented in the MultiSAR framework of DLR which will be introduced in the 

following and used as preprocessing environment for our SAR data sets. 

  



 

 

II. STUDY AREA AND DATA SET 

A. Reference data 

For our experiments, we select three cities – Cape Town (South Africa), Mumbai (India), and Manila (The 

Philippines) – because of the following reasons: First, all three cities contain a significant share of slums, e.g. 

more than 50% of the population lives in slums in Manila. Morphologically these morphologic target areas are 

in line with the typically physical characteristics (small building extents, complex alignment of buildings, etc.) 

identified by an expert group [33] as well as with the enhanced ontology presented by [34]. Second, all three 

cities are very large cities featuring a diverse mixture of different structural types across the city, but at the 

same time the structural configuration is varying across these cities. The Cape Town test area comprises 

Khayelitsha which represents a mixture of formal settlements, townships (generally planned settlements, but 

with very low living conditions), and slums. Further land cover classes in the image are bare soil and vegetation. 

The Manila test site is characterized by high-rise buildings in the central business district, a large amount of 

formal residential buildings, the harbor zone with industrial buildings, and several rather small-sized slums. 

Water and park areas like the Manila Cemetery are the main non-settlements classes. The Mumbai test ground 

is a very diverse landscape consisting of water, bog, grassland, bare soil, railroads, highways, the airport, and 

settlements. The built-up area is composed out of chemical factories, the central business district, the Mumbai 

university campus, formal residential buildings, and large slums like Dharavi. 

(a) (b) (c) 

Fig. 1. Exemplary maps of the slum segments (white diagonal hatch) for (a) Cape Town (UTM zone 34S), (b) Manila (UTM 
zone 51N), and (c) Mumbai (UTM zone 43N) with optical image (©GoogleEarth 2017) in the background. These subsets 
illustrate the complexity of deriving reliable and complete reference data sets for training and validation purposes. 



 

 

Thus, this setting allows evaluating transferability of the methodology across structural types of cities. Third, 

the availability of reference information on slum locations and extents is very scarce which limits the possible 

selection for test areas. Thus, we take advantage of classifications using EO-data from previous studies 

delineating slums [35]. This discrimination of morphologic slums is based on manual classification by an expert 

and thus, the reference data feature a very high accuracy. Fig. 1 shows one subset for each test site that 

demonstrates the problems in discriminating slums from other settlements types and/or land cover classes. 

From these reference data about a third of the slum segments (929 overall - 224 for Cape Town, 368 for Manila, 

and 337 for Mumbai) have been randomly chosen as training samples. The random selection ensures a spatial 

distribution of training samples across the entire city and across slightly varying morphologic characteristics. 

Only segments with a minimum size of one hectare out of a larger collection are considered for stability 

reasons. This complies with a minimum patch size of approximately 100-by-100 pixels for the training areas, i.e. 

each sample histogram is composed out of at least 10,000 measurements. 

B. Remotely sensed data 

The very high resolution SAR images are acquired by the TerraSAR-X mission in the high resolution spotlight 

mode. Each image covers an area of about 5 km by 10 km. Four different images have been taken of each test 

site: two images in ascending mode and two images in descending mode both with a steep and a flat incidence 

angle respectively. Two polarizations are measured at the same time, namely HH and VV, with a stable phase 

reference, so that the phase difference between the two co-polarized channels can be evaluated. The co-

polarized phase difference is essential for the discrimination of odd from even bounce effects [36]. All images 

are transformed into Kennaugh elements, geocoded, calibrated, speckle-filtered, and finally normalized [37]. 

Details on the acquisition time, the geometry, and the sampling rate resulting from the uniform pixel spacing on 

ground and the varying incidence angle are given in Table I. 

Polarimetric SAR data are delivered in linear scale and commonly processed to the coherency or the 

covariance matrix still in slant range geometry. The main diagonal elements are real intensity values in the 

range [0, ∞[ whereas the off-diagonal elements are complex values ranging in-between ] − ∞, ∞[ for the real 

and imaginary part or [0, ∞[ for the amplitude and [0,2𝜋[ for the phase angle. As the vast majority of intensity 

measurements can be found in the range ]0,0.5[, a high sampling rate is necessary resulting in thousands of 

bins. The conversion to decibel projects the intensity values onto a range of about ±30𝑑𝐵 in general [30]. The 

sampling can often be lowered down to around one hundred bins, but the theoretical range still is unlimited. In 

this context, the Kennaugh framework [37] provides the sophisticated hyperbolic tangent (TANH) normalization 

guaranteeing a closed value range ] − 1, +1[ which allows for reducing the sampling to only 21 bins, i.e. 

[‐ 1.0, ‐ 0.9, … , ‐ 0.1,0.0,0.1, … ,0.9,1.0], or even less, without significant loss of information. Following layers are 

available for dual-co-polarized images: 𝑘0 (total intensity, amplified by 7dB), 𝑘3 (relation between even-bounce 

and odd-bounce, e.g. diplane scattering vs. surface scattering), 𝑘4 (relation between HH and VV polarized 

intensity, e.g. horizontally oriented dipoles vs. vertically oriented dipoles), and 𝑘7 (phase correlation of the co-

pol channels) [38], see Figs. 4-6. It is worth to mention that the Kennaugh elements are nothing else than smart 



 

 

linear combinations of the covariance matrix elements and therewith very fast to compute. 

In the speckle reduction step, the image is filtered by a bank of round-shaped as well as longitudinal kernels 

(the “Schmittlets”) in different scales and azimuth orientations, see Fig. 2. The best-fitting Schmittlet is chosen 

locally before image reconstruction [39]. Thus, the index image of the best fitting Schmittlets 𝑆𝑏 provides a 

valuable descriptor of texture indicating the ellipticity, size, and absolute orientation of the underlying spatial 

patterns, see Figs. 4-6. The color thus refers to the azimuth orientation and the brightness to the scale, e.g., 

bright greenish structures indicate targets with an estimated length of about 16 m and an azimuth orientation 

of about 45° towards the north direction. Grey tones refer to round-shaped and undirected Schmittlets, e.g. 

medium grey indicates a circular kernel with a diameter of about 8 m. The Schmittlet image enhancement 

consists of the convolution of the original intensity image with each of the 35 Schmittlet kernels and the 

comparison to the original image. Although the convolution is computationally intensive, it can simply be 

accelerated by parallel computing. 

TABLE I 
TerraSAR-X high resolution spotlight scenes in dual-co-polarization HH&VV over the three test 
sites. All images are geocoded to the UTM coordinate frame with a uniform pixel spacing of 1 m. 
The look factor results from the original resolution in slant range, the targeted pixel spacing on 
ground, and the incidence angle. A slight oversampling is indicated and accepted. 

Test site Date Time Orbit direction Incidence angle Look factor 

Cape Town 

2015-07-27 17:30:18 ascending 50° 0.46 

2015-07-28 04:05:21 descending 45° 0.42 

2015-08-02 04:13:52 descending 30° 0.30 

2015-08-02 17:21:49 ascending 37° 0.36 

Manila 

2016-02-20 10:06:17 ascending 45° 0.44 

2016-02-26 09:57:46 ascending 27° 0.27 

2016-02-26 21:41:43 descending 54° 0.49 

2016-05-18 21:50:19 descending 39° 0.38 

Mumbai 

2015-07-21 01:07:21 descending 34° 0.34 

2015-07-27 00:58:50 descending 50° 0.48 

2016-05-18 13:17:13 ascending 46° 0.44 

2016-06-26 13:08:43 ascending 29° 0.28 

 



 

 

III. METHODOLOGY 

The fundamental idea of this study is to describe the image content by the help of representative empirical 

distributions for slums and to identify similar local distributions in the SAR image. For this purpose, intensity 

(𝑘0), polarimetric (𝑘3, 𝑘4, 𝑘7) and texture layers (𝑆𝑖) are systematically tested as possible input. The respective 

distributions are described by their probability density functions (PDF) denoted by 𝑝(x) for a specific variable x 

which are characterized by two properties  

𝑝(x) ≥ 0 for x ∈ ℝ     and     ∫ 𝑝(x) dx
+∞

−∞
= 1.  (1) 

The same applies to a two-dimensional probability function like 𝑝𝑐(𝑥, 𝑡) as well. Consequently, 𝑝(𝑥) and 

𝑝𝑐(𝑥, t) both have no negative values and the integral over the whole value range of 𝑥 (and 𝑡) reaches one. The 

interval ]−∞, +∞[ is omitted in the following for clarity reasons. Three types of PDFs 𝑝(x) will be addressed in 

the following: 𝑝𝑐(𝑥, 𝑡) denotes an empirical PDF of the training samples 𝑡 for a certain class c, 𝑝𝑐(𝑥) stands for 

an estimated representative PDF of class c derived from 𝑝𝑐(𝑥, 𝑡), and 𝑝𝑘(𝑥) describes the local PDF of an pixel 

environment defined by filter kernel fk. 

All variables and functions are listed in Table II for convenience. 

 

Fig. 2. The 35 Schmittlets of the current implementation [39] according to 
their characteristics: circular shape (left) or elliptical shape (right), scale 
from zero to four (concentric circles), and azimuth orientation from 0° to 
180° (azimuth of the elongated Schmittlets on the right hand site). 



 

 

A. PDF estimation 

1) Estimation of a representative PDF from a collection of samples 

In the ideal case, the representative PDF of a certain class 𝑝c(x) is reached by marginalizing the two-

dimensional PDF of the samples 𝑝c(x, t) over the t dimension. 

𝑝c,0(x) = ∫ 𝑝c(x, t) dy.  (2) 

This implies that all training samples t are equally weighted. As shown in Fig. 1 even reference data are not 

always reliable, a weighting function w𝑖+1(t) is introduced in order to reduce the impact of possible outliers in 

the training samples. The reliability of the respective training site w(t) is initialized uniformly as w0(t) = 1 

(equal weights) and adapted iteratively. 

wi+1(t) = {∫
𝑝c

2(x,t)

𝑝c,i(x)
dx}

−1

∈ [0,1].  (3) 

The similarity measure is identical to the one used for classification later on (see Eq. 8) and derived in a very 

detailed manner in A.1 and A.2. The weighted representative PDF thus unfolds to 

𝑝c,i(x) = ∫
wi(t)

wi̅̅ ̅̅
∙ 𝑝𝑐(x, t) dt  (4) 

TABLE II 
All variables and functions needed for the derivation of the similarity maps 

Variables 

x an arbitrary continuous variable, e.g. SAR feature 

t training samples of a certain class 

i iteration variable 

c class of interest 

k filter kernel 

d dimension  

a amplification of the SAR intensity in decibel 

Probability density functions 

𝑝(x) PDF of an arbitrary entity along x 

𝑝𝑐(x, t) PDF of an arbitrary entity along x and y (training samples) 

𝑝𝑐,𝑖(x) estimated PDF of class 𝑐 in the 𝑖-th iteration step 

𝑝𝑐(x) representative PDF of class 𝑐 after the iteration 

𝑝0(x) PDF of the center pixel  

𝑝𝑘(x) local PDF defined by filter kernel 𝑘 

fk filter kernel to calculate 𝑝𝑘(𝑥) from 𝑝0(𝑥) 

𝑝α(z) PDF of the Schmittlets along absolute azimuth orientations 

𝑝ρ(x) PDF of the Schmittlets along relative orientations 

Weighting functions 

w𝑖(t) iterative weight of the trainings samples of iteration 𝑖 

w𝑖̅̅ ̅ mean weight over the all trainings samples of iteration 𝑖 

Similarity functions 

sc,k,d similarity between a representative PDF of a certain class of interest 𝑐 and a local PDF 
defined by kernel 𝑘 along a specific dimension 𝑑 

sc,k similarity between a representative PDF of a certain class of interest 𝑐 and a local PDF 
defined by kernel 𝑘 

sc similarity to the class of interest 𝑐 
 



 

 

where 𝑖 stands for the iteration step. The iterative estimation of the optimal weights takes into account the 

similarity of the PDF 𝑝𝑐,𝑖(x) to each of the training samples gathered in 𝑝𝑐(x, t). 

These steps (Eqs 3&4) are repeated until the expected change of the weights becomes negligible. In our case, 

mostly less than ten iterations were already sufficient to reach a mean correction lower than 10−6 per iteration. 

The mean similarity mostly reaches at least 90%. This step guarantees that outliers do not corrupt the 

representative PDF 𝑝𝑐(x) of the class of interest. 

2) Estimation of local PDFs in an image 

With view to image classification, PDFs of a local pixel environment 𝑝𝑘(x) are of interest. The starting point is 

defined by the PDF of one single pixel (equivalent to scale 0) that counts one where the image value 𝑣 fits the 

respective bin 𝑥, and zero otherwise 

𝑝0(x) = {
1 if  x = v
0 otherwise

  (5) 

This PDF consequently is binary with only one positive entry because only the center pixel is considered. The 

shape and size of the local environment is given by a two-dimensional filter fk. It shares the properties of a 

common PDF defined in Eq. 1. The convolution in spatial domain (denoted by ∗) hence produces a PDF 

𝑝𝑘(x) valid for a larger pixel environment 

𝑝𝑘(x) = 𝑝0(x) ∗ fk.  (6) 

In that way, multi-kernel PDF evaluation is simply enabled. One could explain it like this: the local histogram is 

filled by counting pixels with reduced radiometric sampling in a neighborhood. With respect to the Schmittlets, 

multi-scale and multi-directional processing becomes feasible. As the PDF estimation on varying pixel 

environments is reduced to a simple convolution, it can be implemented very effectively using parallel 

computing. 

3) Estimation of the relative orientation of Schmittlets 

In the case of urban structures, the azimuth direction of Schmittlets is secondary because the orientation of a 

building block towards the grid north direction generally is arbitrary. By contrast, the relative direction in a local 

environment, i.e. the presence of parallel or perpendicular pairs of Schmittlets is essential. Therefore, the 

elongated Schmittlets of one scale are grouped to angle pairs via  

𝑝ρ(x) =
∫ 𝑝α(z)∙𝑝α(x−z) dz

π

0

∫ 𝑝α(z) dz
π

0

.  (7) 

The PDFs hence are converted from azimuth orientations 𝑝α(z) to relative directions 𝑝ρ(x). Multiples of π are 

not further distinguishable and therefore omitted. For instance, the first scale recognizing vertical (north-south) 

and horizontal (east-west) Schmittlets in 𝑝α(z) now comprises parallel and perpendicular Schmittlet pairs 

independent of their absolute azimuth orientation in 𝑝ρ(x). This step is applied similarly to the PDF of each 

training site 𝑝c(x, t) before the robust estimation of the representative PDF 𝑝c(x) as well as to the local PDFs 



 

 

after spatial convolution 𝑝k(x). 

B. Similarity estimation 

1) Similarity of two PDFs 

Consistent with the PDFs under study which range in [0,1], we aim at the comparison of two PDFs by a 

normalized measure. Such a measure can be derived from the X²-similarity test for discrete PDFs in A.1. 

Alternatively, it can be derived comparably in the continuous domain via the weighted harmonic mean (cf. A.2). 

Both derivations result in the same equation for the similarity sc,k between a local PDF in the image 𝑝k(x) and a 

representative PDF of a certain class 𝑝c(x) given by 

sc,k = {∫
𝑝k

2(x)

𝑝c(x)
dx}

−1

∈ [0,1].  (8) 

The discrete evaluation of this measure requires a closed value range of the input data set as provided by the 

TANH scaling in the Kennaugh framework for (𝑘0, 𝑘3, 𝑘4, 𝑘7) [37] or discrete image values with a very low bit-

depth like the Schmittlets indices (𝑆𝑏) [39]. In this case, the implementation reduces to a simple matrix 

multiplication and element-wise division even in the multiple class case, see A.3. Hence, the computation can 

easily be parallelized. The similarity ranges in-between 0 for completely different and 1 for identical PDFs and 

thus, can be interpreted as probability measure again. The closed value range is the main advantage in 

comparison to other measures, e.g., the Kullback-Leibler-Divergence [40], which mostly range in [0, ∞[. 

2) Estimation of multi-dimensional similarities 

In order to process multi-layer images, the one-dimensional method derived above has to be extended to the 

evaluation of multi-dimensional data sets. But, the handling of these multi-dimensional PDFs raises serious 

problems. Assuming a sampling rate of at least 21 bins (which is sufficient for TANH-scaled values), the PDF of a 

ten layer image (e.g. quad-pol Kennaugh elements) requires at least 2110 ≈ 1.7 ∙ 1013 measurements. Apart 

from the immense memory demand, the number of pixels needed to adequately fill such a PDF is enormous. It 

is quite comprehensible, that this is not suitable for any practical application. Therefore, the multi-dimensional 

PDF is reduced to its marginal PDFs in each of the d dimensions and joint afterwards in the geometric mean 

which bases on the product of the marginal PDFs 

sc,k = ∏ {sc,k,d}
−1

d⁄
d ∈ [0,1],  (9) 

see A.4 for the detailed derivation. Using this formulation which is also known as “Naïve Bayes” because of 

ignoring the conditional probabilities, the number of pixels required is significantly reduced as the PDFs of the 

single layers can be evaluated separately. Back to the example of TANH-scaled values, the minimum number of 

pixels to fill a one-dimensional PDF quantized to 21 bins may already be reached by boxcar filter kernel fk of 5-

by-5 pixels. The uncomplicated extension to the multi-channel case is the second advantage of the new 

similarity measure over standard similarity measures like the Jensen-Shannon-Divergence (e.g.) which cannot 

easily be applied to marginal distributions separately. It is important to note, that correlation information is 



 

 

completely ignored in this approach, i.e. classes that only vary in their correlation properties cannot be 

discriminated. Contrariwise, a weighting of the input layers is simply possible replacing the geometric mean in 

Eq. 9 by a weighted geometric mean. In that way, layers with a high discriminative potential can be privileged in 

comparison to other input features. 

3) Estimation of multi-scale similarities 

The only remaining variable in the left hand side of Eq. 9 is the kernel function fk. The function defining the 

shape and scale of the pixel environment considered in the estimation of the local PDF can be arbitrarily 

chosen. Thus, any set of multi-scale kernels fk (e.g. the 35 Schmittlets) can be adopted. In order to reduce the 

similarity sc,kto a certain class 𝑐 estimated in different pixel environments defined by fk to only one single 

similarity value sc, simply the maximum value over all kernels is accepted 

sc = MAXk(sc,k).  (10) 

This step ensures that the best-fitting kernel is used for a specific class. Consequently, the class maxima might 

potentially appear in different scales in the multiple class case. This is reasonable because a potential class 

“building” (e.g.) logically might be part of a class named “residential area”. The whole surrounding might be 

classified as “residential area” whereas single buildings might possibly stick out of the environment. To simplify 

matters, the single class case detecting slums is investigated exclusively here. The multi-class problem is treated 

in concurrent studies on land cover classification [41] and multi-sensor wetland monitoring [42] so far and will 

be subject to future studies as well. 

IV. APPLICATION 

This section shows application results derived by the methodology presented in the preceding section. It is 

divided into the introduction of the representative histograms for the slum class, the similarity maps of different 

scenarios, and the validation of recognized slums vs. other classes. 

A. Sample PDFs 

The representative PDFs are illustrated in Fig. 3. The dashes lines plot the PDFs for each test site separately 

whereas the solid line indicates the joint PDF over all test sites for the slum class. 

 

B. Similarity maps 

Based on these representative PDFs 𝑝𝑐(x), similarity maps are generated using multi-scale environments. In 

order to accelerate the calculation a simple boxcar filter covering the window sizes [5, 11, 25, 51, 101] is used 

as kernel function fk. Numerous experiments are carried out and validated in the subsequent section. This 

section illustrates the input data and the derived similarity maps. Subsets of the reference (optical image in 

background), the similarity maps, the intensity images, polarimetric Kennaugh elements and best-fitting 

Schmittlets of the respective image acquisitions in ascending pass direction with a flat incidence angle are 

presented in Fig. 4 for Cape Town, in Fig. 5 for Manila, and in Fig. 6 for Mumbai. The complete similarity maps 



 

 

are calculated by combining all images per test site together are given in Fig. 7. Similarities in-between 50% and 

70% are colored in green tones. Similarities exceeding 70% are colored in ochre tones. The expected similarity 

ranges around 90% as derived from the reference samples.  

C. Validation 

In order to numerically validate the similarity maps, their values are correlated with the reference data and 

the resulting distribution is plotted in Figs 8-10. Common approaches presume a quantization into a low 

number of equally-frequent classes. Unfortunately, this is not the case in our study because of the rare 

occurrence of the class slums. Per-class-measures like the completeness (also producer’s accuracy) and 

correctness (or user’s accuracy) are more appropriate in order to level out the unequal occurrence of the 

classes and thus, are better suited for our single-class problem. Additionally, the two measures under study can 

simply be derived without prior quantization, i.e. instead of thresholding the similarity measure in favor of a 

binary slum / no slum classification the slum similarities are directly evaluated. Completeness only concerns the 

samples of the slum class whereas correctness always involves other classes. Therefore, the correctness is 

checked in relation to mixed settlements, to pure formal settlements and to non-built-up classes, i.e. water, 

bare soil, forest, etc.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 3.  The representative PDFs 𝑝𝑐(x) for the slum class of (a) the normalized intensity k0, (b) the Schmittlets 𝑆𝑖 and the 
normalized polarimetric Kennaugh elements (c) k3, (d) k4, (e) k7, derived from the three test sites Cape Town, Mumbai, 
Manila, and over all test sites. The ordinate shows the relative frequency. The abscissa contains the normalized Kennaugh 
values ]-1,+1[ and the 35 Schmittlet indices respectively. Illustrations of the trainings sites can be found in Figs 4-6. 



 

 

 

 
Fig. 4.  Subset of the test site Cape Town: (a) optical image from Google Earth, (b) similarity map derived by the 
presented technique, (c) legends to the illustrations, (d) intensity image, (e) RGB color composition of 
polarimetric Kennaugh elements, and (f) the best-fitting Schmittlets. Slums are delineated by white lines with 
(above) or without (below) hatching. The coordinates refer to UTM zone 34S. 



 

 

 

 
Fig. 5.  Subset of the test site Manila: (a) optical image from Bing Maps, (b) similarity map derived by the 
presented technique, (c) legends to the illustrations, (d) intensity image, (e) RGB color composition of 
polarimetric Kennaugh elements, and (f) the best-fitting Schmittlets. Slums are delineated by white lines with 
(above) or without (below) hatching. The coordinates refer to UTM zone 51N. 
 



 

 

  

 
Fig. 6.  Subset of the test site Mumbai: (a) optical image from Google Earth, (b) similarity map derived by the 
presented technique, (c) legends to the illustrations, (d) intensity image, (e) RGB color composition of 
polarimetric Kennaugh elements, and (f) the best-fitting Schmittlets. Slums are delineated by white lines with 
(above) or without (below) hatching. The coordinates refer to UTM zone 43N. 
 



 

 

The interpretation of Figs 8-10 is quite simple: for a similarity of zero all slums are detected and the 

completeness logically equals one. When the similarity increases, the completeness decreases and reaches zero 

when the similarity reaches one, i.e. the higher the threshold the more class members are not detected. Using a 

very low threshold the correctness is equally low because of a vast overestimation. With a higher threshold, the 

correctness understandably increases because of a lower false alarm rate. The intersecting point of 

completeness and correctness marks the similarity value where completeness and correctness vs. the 

designated class become equal, see Tables III, IV, and V. The denoted tables contain even more experiments 

than reported in Figs 8-10. The corresponding plots are omitted for clarity reasons. 

Taking Fig. 8a as practical example, the completeness and correctness are plotted for the slum similarity derived 

from a dual-co-polarized high resolution spotlight image of TerraSAR-X in ascending orbit direction with steep 

incidence angle. A similarity value of 0.5 (see the abscissa) promises a completeness of about 95%, but a 

correctness of only 60% vs. formal settlements, 40% vs. non-built-up classes, and 20% vs. mixed settlements. In 

other words, applying a similarity threshold of 0.5 for classification detects 95% of all slum areas, but also 

delivers 80% of the mixed settlements, 60% of the non-built-up areas, and 40% of the formal settlements. 

Increasing the similarity threshold increases the correctness and decreases the completeness. A similarity of 0.7 

(e.g.) leads to a completeness value of about 80% whereas the correctness vs. formal settlements ranges just 

above 80% and the correctness vs. non-built-up classes ranges just below 80%. The separability of slums and 

mixed settlements is understandably very low. The balance between completeness and correctness is reached 

in 60% which refers to a similarity of 0.8, see Fig. 8a. In the optimal case, the correctness already increases at 

low similarity values, but the completeness does not decrease until higher similarity values are reached. In 

consequence, the intersecting point has a very high cumulative probability. The explicit partition of the 

correctness in correctness towards different classes allows for the estimation of the quality for the distinction of 

the two classes under consideration which is reported in the Tables III, IV, and V. 

V. DISCUSSION 

A. Sample PDFs 

Fig. 3 shows that the training data of slums show nearly identical features in the three test sites although they 

are from different cities in different cultural areas. The polarimetric Kennaugh elements (Fig. 3 c-e) indicate a 

central – almost truncated normal – distribution, for all three study sites. The only difference can be found in 

the spreading: Cape Town delivers training samples with the highest accordance, whereas the samples of 

Mumbai are characterized by a higher variation. The mode of k3 (Fig. 3c) is shifted to negative values, i.e. 

surface scattering is the dominant scattering mechanism over slums equally measured in all test sites. 



 

 

  

(a) 

 

(b) 

 

(c) 

 

Fig. 7.  Complete view of similarity maps scderived by the combination of ascending and descending dual-co-polarized 
high resolution spotlight images of TerraSAR-X (©DLR 2015, 2016) framed by partly cloudy Sentinel-2 multi-spectral 
images (©ESA 2017) for test site (a) Cape Town (UTM 34S), (b) Manila (UTM 51N), and (c) Mumbai (UTM 43N). 
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Fig. 8.  Validation of the similarity maps sc from the test site Cape Town: completeness of the slum class and correctness vs. 
“formal”, “mixed”, and “non-built-up” areas on the ordinate in relation to the similarity on the abscissa for following layer 
combinations: (a)-(f) intensity only (k0), (g)-(l) intensity with Schmittlet index (𝑆𝑏), and (m)-(r) supplementary polarimetry 
(k3,k4,k7). All layer combinations are tested using varying passing directions (columns) and varying incidence angles (rows). 
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Fig. 9.  Validation of the similarity maps sc from the test site Manila: completeness of the slum class and correctness vs. 
“formal”, “mixed”, and “non-built-up” areas on the ordinate in relation to the similarity on the abscissa for following layer 
combinations: (a)-(f) intensity only (k0), (g)-(l) intensity with Schmittlet index (𝑆𝑏), and (m)-(r) supplementary polarimetry 
(k3,k4,k7). All layer combinations are tested using varying passing directions (columns) and varying incidence angles (rows). 
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Fig. 10.  Validation of the similarity maps sc from the test site Mumbai: completeness of the slum class and correctness vs. 
“formal”, “mixed”, and “non-built-up” areas on the ordinate in relation to the similarity on the abscissa for following layer 
combinations: (a)-(f) intensity only (k0), (g)-(l) intensity with Schmittlet index (𝑆𝑏), and (m)-(r) supplementary polarimetry 
(k3,k4,k7). All layer combinations are tested using varying passing directions (columns) and varying incidence angles (rows). 



 

 

The relation of the co-pol intensities in k4 (Fig. 3d) suggests a slight shift to positive values, i.e. a higher 

backscattering in HH than in VV. The co-pol correlation or phase shift in k7 (Fig. 3e) is centered over zero, i.e. no 

dominant scattering behavior can be observed. One might attribute this observation to the deficiencies of a 

partial polarimetric acquisition ignoring the cross-polarized component. But a concurrent study published 

recently proves that polarimetric Kennaugh elements derived from dual-co-polarized images can replace the 

elements from quad-polarized images nearly without limitation [43]. The total intensity in Fig. 3a underlines 

that slums are characterized by a rather low backscattering, i.e. lower than 7dB in the visualized case. Slums in 

Cape Town have the lowest backscattering over all four images under study. From Manila to Mumbai the 

proportion of brighter targets slightly increases. Nevertheless, the representative PDFs are quite similar for all 

three test sites. The same behavior can be observed for the best-fitting Schmittlet indices 𝑆𝑖 in Fig. 3b: Only the 

proportion of very short Schmittlets slightly varies between 18% (Cape Town) and 26% (Mumbai). This may 

correspond to the observed variations in the total intensity: a lower total intensity indicates a lower number of 

bright targets and therewith no necessity for small Schmittlets to be used for image enhancement. One reason 

might be a lower building density of the slums in the Cape Town data set which is indicated by visual inspection. 

B. Similarity maps 

The representative PDFs derived from all image acquisitions in all test sites provide the basis for the similarity 

maps produced by the multi-scale approach. The purely visual inspection of the total intensity in Fig. 4d 

indicates nearly no difference of the slums from the remaining areas. Only bare soil stands out by its lower 

intensity and smooth appearance after the Schmittlet enhancement. The best-fitting Schmittlet index image 

show rather dark red or turquoise colors over slums, which indicates only small structures in contrast to grey 

tones over unstructured areas (e.g., bare soil) and brighter colors, i.e. longer linear structures (e.g., streets) in 

the surrounding areas. Regarding Manila in Fig. 5 the overall proportion of short Schmittlets is much higher than 

in Cape Town, i.e., even formal building agglomerates show very fine structures. Only non-built-up areas like 

water or bare soil are clearly distinguishable. In the chosen subset of Mumbai (Fig. 6) the areas of short 

Schmittlets (dark red or turquoise) are interfused with longer linear structures quite contrary to what is 

observed in Cape Town and Manila. Despite this difference, the similarity map produced by combining all 

images over the respective test site delivers a high concordance with the reference data set in all three test 

sites. The similarity over slums provided by the reference data set is generally higher than 70% whereas 

surrounding areas drop down to less than 50% in the case of bare soil and less than 20% in the case of water, 

see Fig. 5b. The applied method does not seem to be suitable to trace the borders of slums. Indeed, it is a very 

difficult and often fuzzy task even for visual interpreters to delineate structural changes in the complex urban 

environments, cf. Fig. 1. Thus, the method provides a local probability for the existence of slums. Back to the 

Manila test site where the harbor area shows similar patterns like the slums: a container terminal for sure 

cannot be distinguished from container settlements. Mono-temporal remote sensing methods can only 

recognize an agglomerate of containers, but they are not able to recognize the use of the containers: for 

transportation or as shelter for inhabitants. In other words, earth observation techniques are only able to derive 



 

 

the syntax of slums, e.g. physical indicators. The semantic classification as slum may potentially deviate from 

that. 

C. Validation 

The special validation considers a continuous variation of the similarity in order to recognize a certain local 

PDF pk(x) as PDF of the slum class pc(x). Although the weighting of the completeness measure versus the 

correctness measure strongly depends on the application, only the case where completeness equals correctness 

will be addressed in the following for the sake of clarity. The respective value is printed as ordinate value of the 

intersecting point of the black curve with the colored curves in Figures 8-10. For each test site, combinations of 

36 features and acquisitions geometries are tested and reported in Tables II-IV: intensity only (k0), Schmittlets 

only (Sb), dual-co-polarized Kennaugh elements (k0, k3, k4, k7), Intensity and Schmittlets (k0, Sb), dual-co-

polarization and Schmittlets (k0, k3, k4, k7, Sb) with a flat or a steep incidence angle in ascending or descending 

orbit direction respectively as well as combinations of the available imaging geometries. Only the most 

important combinations are illustrated: The plots for Cape Town can be found in Fig. 8. Throughout all 

combinations the distinction between the structural class slums and non-built-up areas ranges around 80% to 

90% and represents the best class distinction except for one image acquisition: the image with a steep incidence 

angle in ascending orbit direction (see Figs 8a&g&m) provides a better distinction between the structural 

classes of formal settlements and slums. This can be seen as positive outlier caused by the acquisition geometry 

and the orientation of the built-up areas. The discrimination between formal settlements and slums generally 

ranges between 60% and 85% percent except for the Schmittlets in Fig. 8g that show only 40%. The lowest 

distinction accuracy with around 60% is perceived between slums and the mixed class, which is conceivable 

because this class contains both formal and 

slums. Combining ascending and descending 

image acquisitions usually increases the accuracy 

by 10 percentage points. Combining backscatter 

and structure information (see Fig. 8g-l) has a 

further stabilizing effect. Most interestingly, the 

use of polarimetric information does not seem to 

influence the accuracy because the curves using 

the full dual-co-polarized information do not 

differ very much from the ones resulting from the 

use of intensity and Schmittlets only (cf. 

Figs 8i&o). Looking at Manila in Fig. 9 the 

distinction between slums and non-built-up areas 

ranges in-between 60% and 80%. The separability 

of formal and slums drops down to 50%. The 

combination of features and acquisition 

TABLE III 
Accuracies achieved using the denoted layer and acquisition 
geometry combinations. The assigned value reflects the 
equilibrium between completeness and correctness vs. following 
classes: formal settlements (bold), mixed settlements (italic), 
non-built-up classes as given in Figs 6&7 for Cape Town. 

inc. angle ascending descending combined layers 

steep 82 61 78 64 56 83 83 67 83 
𝑘0 

flat 67 64 85 81 65 84 82 53 87 

steep 45 40 73 62 56 86 56 49 87 
𝑆𝑏 

flat 66 61 86 62 76 86 74 69 88 

steep 87 65 82 72 64 86 87 70 87 𝑘0 
𝑘3, 𝑘4, 𝑘7  flat 73 70 88 84 65 89 83 75 90 

steep 81 59 78 64 56 86 80 69 88 
𝑘0 
𝑆𝑏 

flat 67 61 87 80 62 85 77 70 88 

combined 75 65 89 80 69 88 79 70 89 

steep 85 63 82 70 62 87 82 68 88 𝑘0 
𝑘3, 𝑘4, 𝑘7  

𝑆𝑏 

flat 69 66 87 82 62 87 80 72 89 

combined 74 69 90 83 70 89 82 72 90 

 



 

 

geometries enhances the accuracy of slums vs. non-built-up, but does not change the distinction between the 

different built-up classes. Again, the polarimetric information seems to be of minor influence. The validation for 

the test site Mumbai in Fig. 10 indicates class distinction accuracies around 50% for all layer combinations. 

Combining ascending and descending acquisitions in general improves the accuracy. The incidence angle is 

playing a minor role in this context. Even combinations of steep and flat incidence angles do not increase the 

separability considerably. 

In order to simplify the interpretation of the results, the accuracies reached in the equilibrium of 

completeness and correctness vs. formal settlement, mixed settlement and non-built-up areas are summarized 

in the Tables III, IV, and V. The maximum accuracies of about 90% can be found in the test site Cape Town 

(Table III) for the discrimination of slums from non-built-up areas. The discrimination from formal settlements 

ranges around 87% for the combination of ascending and descending geometries of dual-co-polarized images. 

With view to Manila (Table IV), the highest accuracy again is reported for the discrimination of slums from non-

built-up areas in the combination of ascending and descending images using both polarimetric and structural 

information at once. The maximum discrimination between formal and slums only amounts 62%. In our third 

test site Mumbai, the class discrimination is extremely low and ranges around 50% only for all class and image 

combinations, see Table V. 

VI. Conclusion 

This paper studies the appearance of slums in dual-co-polarized high resolution SAR images based on their 

empirical distribution. Intensity information is provided by the backscattering strength k0 in hyperbolic tangent 

scaling, polarimetric information is kept in the normalized Kennaugh elements k3, k4, and k7. Local Texture is 

described by the indices of the best-fitting 

Schmittlets Sb whereas the originally absolute 

azimuth orientations are reduced to relative 

directions in order to represent parallel, 

perpendicular, or diagonal structures (inter alia). 

The representative PDFs for the slum class are 

derived from training data sets via a robust 

estimation approach that reduces the impact of 

possible outliers iteratively. Local PDFs are 

calculated by convolving one multi-channel 

probability image per input layer with a multi-

scale filter bank. A simple similarity measure 

guaranteeing a closed value range and resulting 

in a new probability measure is applied for the 

comparison of the local and the representative 

TABLE IV 
Accuracies achieved using the denoted layer and acquisition 
geometry combinations. The assigned value reflects the 
equilibrium between completeness and correctness vs. following 
classes: formal settlements (bold), mixed settlements (italic), 
non-built-up classes as given in Figs 8 & 9 for Manila. 

inc. angle ascending descending combined layers 

steep 37 52 64 39 48 68 36 54 65 
𝑘0 

flat 56 54 80 59 53 80 58 53 80 

steep 32 50 54 41 50 74 34 52 65 
𝑆𝑏 

flat 75 76 83 60 51 82 60 50 83 

steep 35 51 64 42 50 72 38 75 67 𝑘0 
𝑘3, 𝑘4, 𝑘7  flat 59 56 82 62 55 81 60 56 83 

steep 34 51 60 41 48 72 53 49 80 
𝑘0 
𝑆𝑏 

flat 56 55 83 60 51 83 60 51 84 

combined 39 54 72 52 49 80 44 53 75 

steep 33 50 61 43 50 74 36 53 65 𝑘0 
𝑘3, 𝑘4, 𝑘7  

𝑆𝑏 

flat 59 57 83 62 54 83 61 54 84 

combined 40 53 73 56 51 81 46 54 75 

 



 

 

PDFs to produce similarity maps. Similarity in this context is synonymous with the probability of local 

occurrence the class of interest. Thanks to the mathematical characteristics of this similarity measure the input 

layers can be evaluated separately and joined afterwards which simplifies the data processing to a great extent. 

The validation is performed by weighting completeness vs. correctness in relation to different reference 

classes. In general, the measured appearance of slums (based on the morphological reference information) in 

SAR images is very similar in all three test sites: Cape Town, Manila, and Mumbai. The combination of intensity 

and structure information provided by the Schmittlets has the greatest impact on the discrimination from other 

urban structure types. Polarimetric layers in general only deliver a slight enhancement of the discrimination of 

slums from formal settlements. In contrast, polarimetry turns out to be essential for the distinction of 

settlements from non-built-up areas. The combination of different acquisition geometries, mainly ascending 

and descending acquisitions, further enhances the classification accuracy. In summary, local patterns seem to 

be the crucial feature for the recognition of slums. Although they are similar for three cities under study (even 

on different continents) the contrast to surrounding formal buildings (or its relation to the surrounding urban 

morphology) is very special with respect to the specific complex urban morphologic configurations in each 

location. The Cape Town test site delivers accuracies for the class discrimination of slums from formal 

settlements up to 87% which is excellent whereas Manila reaches 62% and Mumbai only allows for slightly 

more than 50%. Thus, the presented method is applicable, but the classification accuracy highly depends on the 

specific city structure. 

This result is supported by a concurrent study on the use of grey-level co-occurrence matrices and random 

forest classifiers for the identification of urban structure types [22]: Although it is generally possible to separate 

formal settlements from slums using multi-

polarized SAR images and texture or structural 

information, the impact of the orientation of the 

quarters inter alia is immense. This fact is 

confirmed by our study: the combination of 

ascending and descending acquisitions (and 

hence varying aspect angles) promises the best 

discrimination accuracies. However, space-borne 

SAR sensors today can only provide a narrow 

range of imaging geometries. 

Future SAR missions will provide high 

resolution wide swath SAR images and enable 

regional coverages to be derived. Further, 

experiments with passive SAR receivers on 

microsatellites are ongoing. The idea behind this 

TABLE V 
Accuracies achieved using the denoted layer and acquisition 
geometry combinations. The assigned value reflects the 
equilibrium between completeness and correctness vs. following 
classes: formal settlements (bold), mixed settlements (italic), 
non-built-up classes as given in Figs 10 & 11 for Mumbai. 

inc. angle ascending descending combined layers 

steep 44 51 43 50 55 50 46 53 46 
𝑘0 

flat 49 50 47 51 52 49 50 49 46 

steep 46 53 46 51 55 50 46 55 46 
𝑆𝑏 

flat 49 48 47 53 52 50 52 50 49 

steep 42 52 42 50 55 50 44 53 44 𝑘0 
𝑘3, 𝑘4, 𝑘7  flat 48 50 46 54 55 51 50 50 49 

steep 43 50 43 50 55 50 54 55 50 
𝑘0 
𝑆𝑏 

flat 49 49 47 53 53 50 50 49 48 

combined 46 49 45 54 55 50 50 50 47 

steep 42 52 42 50 55 50 45 53 45 𝑘0 
𝑘3, 𝑘4, 𝑘7  

𝑆𝑏 

flat 49 49 46 53 54 50 51 50 49 

combined 45 50 44 54 55 50 51 52 48 

 



 

 

bi-static SAR concept [44] is the illumination of a scene by one emitter and the recording of the backscattered 

signal by several receivers. Thus, multiple imaging geometries become conceivable. To support this work, a 

signature database for different urban structure types might be established allowing for a multi-class 

differentiation of settlement types. As stated before, the presented method is designed to derive class 

similarities. With respect to the detection of slums this means that local probabilities for the existence of slums 

are produced. The method thus can only point out possible locations of those by the local patterns. The 

semantic decision, e.g., if a detected container depot is inhabited or not, cannot be taken automatically. The 

technique introduced in this paper can carve out regions of interest, even in regional to global data sets, but the 

final interpretation still has to take into account much more data sources and therefore, will still need human 

interaction in the near future. 

In summary, this study constitutes a further step towards the practical application of SAR remote sensing for 

a regional inventory of slums and other informal settlements. Together with further data sources and 

observations it might provide one component to the understanding of self-built environments which is 

expected to host about two billion people in the coming years. 
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VII. APPENDIX 

Analytical derivations of the normalized similarity measure are summarized in the appendix. They are 

indispensable for the justification of the chosen approach. For the sake of simplicity, local PDFs are symbolized 

by 𝑙 and model PDFs of a certain class by 𝑚 whereas 𝑛 denotes the number of measurements and 𝑏 the number 

of bins in the histogram. 

A.1 Derivation of the normalized similarity measure via the 𝜒2-test 

The χ2-similarity measure for the comparison of two discrete distributions is defined as sum of the squared 

differences (Li − Mi)
2 divided by the frequencies of the target distribution Mi. The number of observations n is 

equal in both histograms and thus, can be excluded. The squared difference is dissolved into the sum of 

products. As the remaining normalized frequencies li and mi both sum up to one, the last two summands finally 

result in minus one. 
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The number of observations is playing a key role in the χ2-test: the higher the number of independent 

observations, the higher the reliability of the derived PDF. For low numbers the χ2-test even should be replaced 

be the Exact Fisher Test. In image processing, this case occurs very seldom. Furthermore, the similarity of a local 

and a representative histogram increases with rising number of observations anyways. Thus, the number of 

observations can be canceled. Adding one to the relation reveals that the following relation where χ2-

distribution with b − 1 degrees of freedom, i.e. b bins considered.  

χ2(b−1)

n
+ 1~ ∑

li
2

mi

b
i=1  ∈ [1, ∞[   (A.2) 

Because of the data range of the χ2-distribution which is [0, ∞[ , the sum over the quotients of the squared 

local histograms by the representative sample histograms must obtain positive values higher than one. 

Reversely, the reciprocal shares the same properties of a typical probability value. 

s =  {∑
li

2

mi

b
i=1 }

−1

 ∈ [0,1]  (A.3) 

A.2 Derivation of the normalized similarity measure via the weighted harmonic mean 

The harmonic mean is defined as the Hölder mean with parameter -1. For positive values, it is the one next to 

the minimum value out of the typical means (arithmetic, geometric, and harmonic). It is ideally suited for 

relative measures like normalized frequencies. In the weighted version, is composed of the quotient of the sum 

over the weights divided by the sum over the weights divided by the values 

weighted harmonic mean =  
∫ weights

∫
weights

values

 (A.4) 

Assuming the similarity measure in Eq. 8 can be interpreted as harmonic mean of the representative sample 

PDF weighted by the local PDFs which are introduced as squared frequencies in order to enhance typical 

features in the PDF. A further constant c is necessary to normalize the mean value to one  

s =
∫ l2(x)dx

∫
l2(x)

m(x)
dx

∙ c = {
1 l ≡ m

[0,1[ else
 (A.5) 

Let l be identical to m. In this case, the denominator simplifies to the integral over the local PDF which is one. 

The enumerator stays unchanged. Their product is required to be one. 

s =
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l(x)
dx
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∫ l2(x)dx

∫ l(x)dx
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Consequently, the constant c must result in the reciprocal of the initial enumerator {∫ l2(x)dx}−1 and the 

similarity measure unfolds to 

s = {∫
l2(x)

m(x)
dx}

−1

 (A.7) 

which is the same as derived from the χ2-test in Eq. A.3. 

A.3 Efficient implementation of the normalized similarity measure via matrix multiplication 



 

 

The similarity measure has been derived from the harmonic mean by the help of integral notation and from 

the χ2-test via sum notation for the comparison of two PDFs. In practice, a set of q local PDFs has to be 

compared to a set of r representative histograms of different classes. In order to avoid the implementation 

using inefficient loops, a very simple calculation based on matrix multiplication is derived. 
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 (A.8) 

The local PDFs are stored in a matrix lq×b with q the number of pixel environments under study and b the 

number of bins. The representative sample PDFs are stored in a matrix mb×r with b again the number of bins 

and r the number of classes. The diagonal cross × stands for the matrix multiplication. Divisions are performed 

entry by entry. In that way, a whole image can be transformed into multiple class properties with minimal time 

effort. 

A.4 Extension of the normalized similarity measure to multi-channel images 

So far, the whole theory bases on the evaluation of single layer images. With respect to remote sensing 

applications, multi-channel images or even multi-source data sets are the standard nowadays. Therefore, the 

formulation is extended exemplarily via sum notation to three dimensions in the following. 
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As all layers are assumed to be uncorrelated, the joint PDF can be written as the product of the marginal PDFs 

along the three dimensions. Thus, the similarity measure over d dimensions equals the product of the 

similarities of each dimension. The dimensions are completely independent, i.e. the number of bins may 

arbitrarily vary. As the similarity necessarily lowers with each dimension, a normalization based on the 

geometric mean s
1

nd⁄  is recommended for comparative and normalization purposes, e.g. to compare class 

probabilities derived from a two layer image to class probabilities derived from a ten layer image. 
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