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R E S E A R C H  A R T I C L E

              Traditionally, workload  9 , 15 , 23   is   assessed by three main 

types of measurement approaches: assessment of the 

objective parameters of the task, measurement of behav-

ioral and physiological responses, and assessment of the subjec-

tive appraisal given by the performer. It is known that objective 

and subjective assessments are only weakly correlated with each 

other, and correlations between load design and physiological 

measurements are oft en lacking.  28   While all methods have their 

advantages and weaknesses, we will focus on objective methods 

for assessing psychophysiological arousal. To date, the objective 

in-fl ight assessment of arousal in aircraft  pilots  26   remains a chal-

lenge in aviation medicine. While technical obstacles regarding 

the acquisition and processing of large physiological data sets 

have been overcome, the interpretation of physiological indica-

tors recorded to assess mental stress remains a problem. Th ere 

certainly is need for objective and scaled measures of arousal. 

Especially under extreme conditions and situations it is helpful 

to have not only subjective reports, but objective measures to 

assess the state that a military operator is in. Th is is both for the 

personnel ’ s health and for the sake of safe mission planning. 
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    BACKGROUND:   The objective assessment of psychophysiological arousal during challenging fl ight maneuvers is of great interest to 

aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach 

was used which integrates diff erent psychophysiological variables, yielding an integral arousal index called the 

Psychophysiological Arousal Value (PAV). 

   METHODS:   The arousal levels of 15 male pilots were assessed during predetermined, well-defi ned fl ight maneuvers performed 

under simulated and real fl ight conditions. 

   RESULTS:   The physiological data, as expected, revealed inter- and intra-individual diff erences for the various measurement 

conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, 

arousal levels were comparable between simulator and real fl ight conditions. However, a distinct diff erence was 

observed when the pilots were divided by instructors into two groups based on their profi ciency in AAR with AWACS 

(AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 fl ight hours on other aircrafts. They 

showed higher arousal reactions to AAR in real fl ight (contact: PAV score 8.4  6  0.37) than under simulator conditions 

(7.1  6  0.30), whereas AAR-Professionals did not (8.5  6  0.46 vs.8.8  6  0.80). 

   DISCUSSION:   The psychophysiological arousal value assessment was tested in fi eld measurements, yielding quantifi able arousal 

diff erences between profi ciency groups of pilots during simulated and real fl ight conditions. The method used in this 

study allows an evaluation of the psychophysiological cost during a certain fl ying performance and thus is possibly a 

valuable tool for objectively evaluating the actual skill status of pilots.   
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 A substantial amount of psychophysiological studies  16 , 24 , 25   

exists on the development and verifi cation of physiological indi-

ces of arousal. Berntson  3  –  5   and Cacioppo  6  –  8   provided a model 

of an autonomic space for cardiac control, whereas Porges  22   

highlighted the phylogenetic development of autonomic con-

trol. For the identifi cation of independent sources, e.g., heart 

rate regulation, factor analytical approaches showed promising 

results. Backs  1 , 2   and Lenneman and Backs,  20   for instance, were 

successful in verifying independent factor structures to disen-

tangle sympathetic and parasympathetic components of the 

 “ autonomic space ”  in ECGs and impedance cardiograms. It 

should be acknowledged, however, that humans intrinsically 

respond diff erently such that raw measurements such as heart 

rate or skin conductance cannot be directly compared among 

individuals as indicators of arousal. Hence, for our own research 

a statistical scaling approach was developed that allows an inter-

individually comparable arousal assessment. For fi eld applica-

tions only, those measurements were included that can be 

robustly and reliably registered under fi eld conditions: electro-

cardiogram, skin resistance, fi nger temperature, and the fi nger 

pulse wave.  10 , 12 , 14     We have used the eigenvectors (a set of eigen-

vectors is the primary result of a factor analysis) of some large 

data sets that had previously been obtained (for details see 

Johannes and Gaillard  10  ) to construct an  “ arousal space ”  from 

the diff erent psychophysiological data measured. Th e orthogo-

nal dimensions were considered as representations of the inde-

pendent autonomic infl uences upon diff erent target organs,  4   

whereas the length (scalar) of the vector sum [referred to as 

the Psychophysiological Arousal Value (PAV)] served to quan-

tify arousal. Th e determination of the so-called  “ Autonomic 

Response Pattern ”  (ARP)  10   allowed a pattern-specifi c normal-

ization of the  “ arousal space, ”  thus providing an interindivid-

ual comparability of the PAV. Th e assessment of ARP is based 

on the individual ’ s responses to a psychological protocol that 

induces a series of mentally loading tasks and relaxing phases in 

between. Th e levels and the reactivity of diff erent physiological 

parameters were summarized in profi les which could be repeat-

edly classifi ed into fi ve diff erent ARP.  10 , 13   

 Objective psychophysiological arousal assessment has the 

advantage that it is not dependent on the openness of the test 

subjects, measurements can be taken instantaneously and con-

tinuously and with a high degree of temporal resolution, and 

are not confounding the events taking place at the same time. 

In summary, the PAV thus allows online monitoring and intra- 

and interindividual comparison of responses to a series of short-

term events such as diff erent kinds of fl ight maneuvers. 

 After comprehensive validation of the method by the 

German Institute of Aerospace Medicine (DLR),  10   the study 

presented here was to assess the PAV under real fl ight condi-

tions. Th e primary goal of the study  17  –  19   was to test and verify 

the PAV under defined flight conditions that evoke well-

reported arousal eff ects. As a second goal, this study aimed to 

address whether the eff ects of a simulated fl ight are compara-

ble to real fl ight conditions. Th e third goal was to test the pre-

dictability of real fl ight arousal based on standard baseline 

conditions.  

 METHODS  

    Subjects 

 In total, 15 male Caucasian AWACS pilots (average age 38  6  6 yr, 

BMI 27  6  3) volunteered for the study. All pilots were individu-

ally and extensively informed about the study by the fl ight sur-

geon and were provided with an exposition of the experiments 

scheduled before giving a written informed consent. Th e pilots 

had long-standing fl ight experience ( . 2000 h) on diff erent air-

planes and they had been assigned to fl y the AWACS prior to 

study inclusion. Based on their air-to-air refueling (AAR) expe-

rience in AWACS aircraft , the commanders of the participating 

squadrons divided them into two classes of profi ciency, i.e., 

AAR-Novices ( N   5  5), and AAR-Professionals ( N   5  10).   

 Equipment 

 Th e study focused on specifi c load during air-to-air refueling 

of an AWACS airplane. Herein the real fl ights were done with a 

modifi ed heavy class E-3 Sentry aircraft , which is a modifi ed 

Boeing 707 aircraft . Th e aircraft  is equipped with an external 

airborne radar picket system called the  A irborne  W arning  A nd 

 C ontrol  S ystem (AWACS). Th e AWACS was historically also 

mounted to other airplanes and on ground stations. All mea-

surements were carried out with the HealthLab system, a poly-

graph produced by Koralewski Industrie Elektronik oHG, 

Hambühren, Germany. All sensors and measurement modules 

of the system were integrated either into a body vest, which was 

used during psychophysiological baseline diagnostics, or, in the 

case of simulator and real fl ight conditions, into a biker belt (see 

    Fig. 1  ). Th e physiological raw data were transmitted by Blue-

tooth and stored on a Samsung tablet PC in real time. Th e PC 

featured a touch screen that was used by the investigators to 

mark each fl ight maneuver. Th is setup provided an excellent 

indoor telemetry and allowed the subject to move freely follow-

ing the preparation. Th e baseline test soft ware, the monitoring 

soft ware, and the soft ware for the analysis of the physiological 

data were provided by SpaceBit GmbH, Berlin, Germany.       

 Procedure 

 Th e study was conducted at the multinational Geilenkirchen-

Teveren Air Base in Germany, which is the main operating base 

of the E-3A Component of NATO. Th e participating pilots had 

to undergo three diff erent study phases: psychophysiological 

baseline diagnostics, a simulated fl ight, and a real fl ight. Th e 

simulator and real fl ight protocol included 22 diff erent fl ight 

phases, which were fi nally merged into the following 6 classes 

indexed as  “ Normal Flight, ”   “ Normal Approach, ”   “ 50 ft  AAR, ”  

 “ Contact, ”   “ Precision Final, ”  and  “ Landing ”  (in detail below). 

 Th e study was standardized to the greatest possible extent 

and was identical for the simulator and the real fl ights. Th e 

recorded data could be checked in real time by the researcher 

under all study conditions. 

 Th e baseline assessment was used to classify the individuals ’  

ARP to psychological stressors. For this purpose, a screening 

method was used that had been previously developed and veri-

fi ed. Th e pilots underwent a psychophysiological calibration 
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procedure during which alternating states of mental load and 

relaxation are induced. During these states, electrocardiogram, 

peripheral skin resistance, fi nger skin temperature, rate and 

depth of respiration, and pulse transition time are recorded 

continuously. In each experimental phase, blood pressure was 

assessed, both continuously at the fi nger and oscillographically 

at the arm. Based on these data, a classifi cation function was 

used to assign the pilots to one of fi ve distinct groups of ARPs. 

Details of these methods are described elsewhere.  10 , 12   Th e base-

line assessment provided the reference values for single channel 

measures and integrated PAV scores. 

 All AWACS pilots participating in this study completed the 

standard training program that included regular training fl ights 

in the E-3A component fl ight deck mission simulator from 

CAE Electronics, Montreal, Canada. Notably, cockpit design 

and handling of the simulator used in this study greatly resemble 

those of the real Boeing E-3A Sentry AWACS aircraft . More-

over, with its full-motion simulation and high-resolution 

panoramic view through the cockpit windows, the simulator 

provides realistic training possibilities for pilots. 

 Th e pilots, who were already familiar with the measuring 

device from the baseline assessment, were prepared for contin-

uous monitoring immediately before fl ight training, which 

started around 09:00. Preparation took about 20 min. During 

the course of the fl ight (either simulator or real fl ight), the vari-

ous fl ight maneuvers were indicated by the researcher and 

recorded, such that this information could later be assigned to 

the psychophysiological data. In order to ensure that the data 

were related to the appropriate fl ight maneuvers, the research 

  
 Fig. 1.        Measurement equipment during simulator and real fl ights.    

team was informed by the instruc-

tor when another flight phase 

started. Though the order of 

maneuvers was dependent on 

the existing training level of the 

respective pilot and the kind of 

maneuvers flown, it was quite 

homogeneous between all simu-

lator fl ights. Th e standard train-

ing fl ights were performed under 

normal weather conditions with 

an E-3 Sentry aircraft as part 

of the pilot ’ s education and train-

ing program. Like the simulator 

fl ights, the real fl ights were strictly 

defi ned by the training program. 

 Each fl ight usually involved 

four to six pilots, of which one or 

two participated in the experi-

ment. Th e instructors attempted 

to include all maneuvers of inter-

est to the research team into the 

training of the pilots participating 

in the experiment. For two volun-

teers, two fl ights were required to 

achieve a full set of data. In fl ight, 

the researcher was seated in the 

 “ fi ft h seat ”  or, if it was occupied, in the front part of the cabin 

close to the cockpit. In this case, the cockpit door remained 

open. Th e researcher was familiar with instrument fl ight regu-

lations (IFR) communication and was able to follow the fl ight 

phases listening to the communication within the cockpit and 

the communication between the cockpit and air traffi  c control 

by means of a head set connected to the aircraft  system. 

 One aim of the study was to estimate the arousal level evoked 

by the AAR maneuver in comparison to other standard maneu-

vers. It can be assumed that already simply approaching another 

large aircraft  constitutes an extraordinary psychological chal-

lenge for the pilots. Th e usual minimum air separation between 

aircraft  is about 1000 ft . During the contact phase of AAR, this 

distance is reduced to about only 15 ft . Th e boom from the tanker 

aircraft , large and heavy as it is, passes the cockpit windows very 

closely. Unlike jet fi ghters, which are more or less pulled from 

the tanker during the AAR contact phase, the AWACS aircraft  

is heavy and has to be controlled manually during that phase. 

Prediction of control eff ects during manual control of AWACS 

aircraft  involves time delays due to the enhanced moment of 

inertia, and is thus inherently diffi  cult. Th is becomes especially 

demanding under turbulent weather conditions. In addition, 

information about the contact position, which can be aff ected 

by weather conditions, is only visually available for the pilot. 

Due to the limited airspace reserved for the AAR maneuver, the 

fl ight path regularly involved 180° turns. 

 Th e air-to-air refueling maneuver started with a fi rst com-

munication contact between the aircraft . Th e tanker crew took 

control when the AWACS aircraft  entered the 3-mile range. 
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Upon approaching the tanker, the AWACS pilot fi rst had to sta-

bilize his position behind the tanker aircraft . Aft er receiving 

clearance by the tanker, the AWACS aircraft  further approached 

the tanker. Th e tanker ’ s boom operator then actively inserted 

the fuel boom into the docking neck (connecting piece) on 

top of the cockpit of the AWACS. Th is entire phase from the 

moment of direct contact until disconnection is hereaft er called 

 “ contact. ”  

 To ensure reliable psychophysiological measurements, the 

instructors and the research team agreed upon an AAR contact 

time of 3 to 5 min. Th e contact phase was terminated either 

aft er an automatic disconnection due to turbulence or aft er 

the regular measurement period upon request of the AWACS 

instructor. Upon disconnection, the AWACS aircraft  returned 

to the 50-ft  AAR position. 

 During the simulated and real fl ights, a 1-lead electrocardio-

gram (ECG), skin resistance, fi nger temperature [FT (°C)], and 

pulse wave were registered continuously. Th e ECG was sampled 

at 1000 Hz for the system ’ s internal analysis and down sam-

pled to 500 Hz for storage. Th e electrodes were of the standard 

single-use Ag/AgCl-ECG type (Kendall/Arbo H 124 SG Ø 

24 mm, Typo HealthCare Deutschland GmbH, Neustadt, 

Germany  ). Pulse wave, skin resistance, and FT were measured 

using an integrated multiuse fi nger sensor placed on the tip of 

the little fi nger of the hand not used for controlling the aircraft /

simulator. Pulse wave was measured by using photoplethys-

mography with infrared light. Th e data were sampled at 500 Hz. 

Skin conductance level [SCL ( m S)] was calculated from the skin 

resistance measured between the fi nger sensor (dry Ag sensor) 

and the mass electrode of the ECG using a maximum of 10  m A 

constant DC, i.e., measuring voltage sampled with 25 Hz. FT 

was registered using an FS-03/M thermo-sensor at a sampling 

rate of 5 Hz. 

 For each fl ight phase, the mean and SD of the following 

measures were calculated for further statistical analyses. ECG 

was used to obtain heart period duration [HPD (ms)], and 

the root of mean successive square diff erences [RMSSD (ms)] 

between R-peaks as a robust measure of vagal heart control. 

Pulse wave was used to obtain the pulse transit time [PTT 

(ms)], calculated as the interval between R-peaks of the ECG 

and the highest slope of the fi rst pulse wave front. During the 

baseline assessment, it was also possible to register blood pres-

sure both continuously at the left  middle fi nger (CNAP, CNSys-

tems, Graz, Austria) and oscillographically (Mobil-O-Graph, 

I.E.M. GmbH, Stolberg, Germany  ) at the right arm.   

 Statistical Analysis 

 Th e data presented here were statistically analyzed using IBM 

SPSS Statistics version 20. The Linear Mixed Effect (LME) 

model applied for the comparison among fl ight phases included 

as fi xed eff ects the fl ight type and the fl ight phase. Th e pilot 

ID was set as a random eff ect. Variances were allowed to diff er 

among pilots and the LME models were optimized according to 

the Akaike information criterion.  21   A model was accepted if the 

residuals were normally distributed. Th e level for statistical sig-

nifi cance was set to  a   5  0.05. However, due to the low statistical 

power, tendencies in the results (i.e., with  P -values  ,  0.1) will 

also be reported. A correlation analysis was run between base-

line, simulator, and real fl ight values using the Pearson correla-

tion coeffi  cient r.     

 RESULTS 

 In this manuscript we focus on the integrated PAV score. How-

ever, the raw data are given in   Appendix A   and can be viewed 

online ( https://doi.org/10.3357/amhp.4782sd.2017 ). Th e calcu-

lation of the PAV score is based on the individual autonomic 

response pattern. Four out of fi ve ARPs were observed in our 

cohort of subjects. Most frequently (nine times), pilots were of 

ARP type 1 (autonomic stable  “ non-responders ” ), four times 

of ARP type 2 (skin conductance responder), one time of ARP 

type 3 (heart rate responder), and one time of ARP type 5 

(blood pressure responder). Th ere was no signifi cant relation-

ship between the autonomic response pattern and the classes of 

profi ciency (cc  5  0.590,  P   5  0.238). All mentally relaxing phases 

(during the baseline measurement) were averaged to retrieve a 

solid  ‘ mentally unloaded ’  baseline value called  “ Baseline. ”  

 In the integral PAV (    Fig. 2    ), the changes with respect to the 

baseline were highly signifi cant both in the simulator (df: num 

6, denum: 69,079,  F (6, 69)  5  11.079,  P   ,  0.001) as well as dur-

ing real fl ight (df: num 6, denum: 69,115,  F (6, 69)  5  12.293, 

 P   ,  0.001). Th e PAV showed signifi cant interactions between 

the protocol phases and the profi ciency groups for the simulator 

Q3
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 Fig. 2.        Behavior of the integral PAV scores during the six phases of fl ight ( “ Nor-

mal Flight, ”   “ Normal Approach, ”   “ 50 ft AAR, ”   “ Contact, ”   “ Precision Final, ”  and  “ Land-

ing ” ) in comparison to the reference value called  “ Baseline ”  during two types of 

training: simulated fl ights (white circles) and real fl ights (black circles). The sig-

nifi cance of diff erences from the baseline is given (real fl ights  :  ##  P   ,  0.01,  ###  P   ,  

0.001; simulator: * P   ,  0.05, ** P   ,  0.01, *** P   ,  0.001).    
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(df: num 6, denum: 69,079,  F (6, 69)  5  2.937,  P   5  0.013), but 

not for the real fl ights. A general comparison of the PAV in the 

two types of training provided no statistical diff erences.     

 Th e second aim of the study was to directly compare arousal 

under simulated and real fl ight conditions. Here, we focus on 

the eff ect of air-to-air refueling since this was the specifi c goal 

of the training program (    Fig. 3  ). In addition, as expected, AAR 

also was the most challenging maneuver.     

 A signifi cant diff erence with respect to the PAV was found 

in the AAR phases of the two types of training (df: num 1, 

denum: 32,419,  F   5  5.376,  P   5  0.027). Additionally, a tendency 

was found for the interaction between the training type and 

the profi ciency classes (df: num 1, denum: 32,419,  F   5  2.951, 

 P   5  0.095). Separate analyses of both profi ciency groups veri-

fied the difference between training types to be related to 

AAR-Novices. Th e AAR-Novices showed a signifi cant diff er-

ence in PAV scores between the simulator and real flights 

(df: num 1, denum: 13,  F   5  4.894951,  P   5  0.045), whereas the 

AAR-Professionals did not. 

 As part of the second aim of the present study, the workload 

of AAR was compared to the workload of landing maneuvers. 

    Fig. 4   depicts the diff erences between simulations and real fl ight 

conditions for the AAR-Novices and the AAR-Professionals.     

 In the group of AAR-Novices, the PAV tended to be higher 

during real fl ights as compared to simulator fl ights (df: num 1, 

denum: 30,758,  F   5  3.778,  P   5  0.061). In the group of AAR-

Professionals, this was not the case. A tendency was also found 

for the threefold interaction between the loading effect of 

maneuvers, the training type, and the profi ciency groups (df: 

num 1, denum: 31,516,  F   5  2.900,  P   5  0.098). Overall, distinct 

data in PAV between both training types showed a tendency 

toward significant differences in AAR-Novices (df: num 1, 

denum: 12,  F   5  3.28,  P   5  0.095), whereas no diff erences could 

be obtained in the group of AAR-Professionals. 

 When both training types were analyzed together, no gen-

eral diff erence was found in the PAV of the AAR contact phase 

and the landing maneuver. For the AAR-Novices, the landing 

maneuvers were equally loading as the AAR maneuver. For the 

AAR-Professionals, however, the AAR contact evoked signifi -

cantly higher load levels than the landing maneuvers (df: num 1, 

denum: 22, 273,  F   5  4801,  P   5  0.039). In the simulator, the 

landing, as compared to the AAR maneuver, resulted in higher 

PAV scores in the AAR-Novices, whereas the opposite was 

found for the AAR-Professionals. 

 In general, the correlation analyses provided no signifi cant 

predictive value of the baseline scores, neither for the simulator 

nor for the real fl ight measures, nor for single parameters, nor 

for the integrated PAV scores. Signifi cant correlations between 

simulator and real fl ight data were found for single parameters 

(see   Appendix B  , which can be viewed online at  https://doi.

org/10.3357/amhp.4782sd.2017 ).   

 DISCUSSION 

 Acceptable psychophysiological costs are one of the basic con-

ditions that determine the capacity of an individual to cope 

with and react to unexpected events and situations. As such, the 

assessment of psychophysiological arousal level values in pilots 

in combination with actual fl ight performance would be a potent 

tool since it can be used for evaluating pilot training status and 

progress during the training program. During active coping 

  
 Fig. 3.        Comparison of load levels of AAR phases during simulator and real 

fl ights. The behavior of the PAV indicated diff erent reactions of the two profi -

ciency groups in the two AAR phases (approach vs. contact phase) during simu-

lator fl ights, but not in real fl ights. The white circles represent AAR-Novices and 

the black circles represent AAR-Professionals.    

  
 Fig. 4.        Comparison of load levels (PAV) during the contact phase of AAR and 

the landing phase. The scores indicated diff erent reactions of the profi ciency 

groups during the contact phase of AAR and the landing procedures in the 

simulator and real fl ights. The white circles represent AAR-Novices and the black 

circles represent AAR-Professionals.    
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situations the chances to develop a higher level of arousal are 

high. Th is is exactly the trade-off  we are using to investigate the 

level of  “ profi ciency. ”  We assume the more one person acts pro-

fessionally in a certain operation, the less is his level of arousal. 

Methodologically we verifi ed that the mobile psychophysiolog-

ical measurement system HealthLab can be used successfully 

under standard fl ight conditions. Th e system was anecdotally 

nonobtrusive to the pilots and the scientifi c monitoring proce-

dure using telemetric data transmission worked reliably. Th e 

physiological measurements taken in fl ight were of good qual-

ity and the selected statistical measurement parameters were 

robust enough for semiautomated analyses. More importantly, 

the method, which integrated various correlates of autono-

mous activation in different physiological measures into 

one integral value (PAV), provided plausible results. Flight 

phases that were commonly known to be more challenging to 

the pilots were indeed refl ected by higher PAVs, indicating the 

validity of the methodology. Between profi ciency groups, the 

PAV provided signifi cant diff erences or interactions despite 

the limited number of pilots tested and the large interindi-

vidual variability in the underlying physiological raw data. Th e 

pilots in our study were classifi ed into fi ve ARP by a validated 

baseline screening method. Most of the pilots ( N   5  9) were 

classifi ed as  “ non-responders, ”  which is typical of specifi c, 

highly selected subject groups, such as pilots and rangers  27   or 

astronauts.  11   Six of the pilots showed a higher responsiveness to 

mentally loading tasks with various autonomic response pat-

terns. Th ese pattern groups diff er signifi cantly in level and reac-

tivity magnitudes of the underlying physiological data.  10   

 From an operational point of view, the comparison of the 

loading eff ect of training fl ights in the simulator with that of 

real fl ights was the main interest. Overall, the mean PAV levels 

were comparable between simulator and real fl ight conditions. 

Dividing the pilots according to profi ciency revealed, however, 

that AAR-Novices showed noticeably higher PAVs, particularly 

with regard to air-to-air refueling in real fl ights as compared to 

simulator fl ights ( Fig. 4 ). Th is fi nding is of special importance if 

one considers that even the AAR-Novices already had, on aver-

age, more than 2000 fl ight hours of general fl ying practice. Th ey 

only were AAR-Novices with regard to the AWACS aircraft  

with its specifi c aerodynamic characteristics. Hence, the objec-

tive evaluation not only of fl ying performance, but, in particular, 

of the associated psychophysiological cost is a potential potent 

tool for objectively evaluating the training status and progress 

of AAR-Novices on their way to becoming AAR-Professionals. 

 A second operational aim was to objectively assess whether 

air-to-air refueling constitutes a signifi cantly more demanding 

mental task than a landing maneuver, which is anecdotally 

reported and now quantitatively supported by our data. For 

the AAR-Novices, the landing maneuver was still similarly 

demanding. 

 A third aim was to analyze the predictability of real fl ight 

arousal based on standardized baseline measurements. Th ere 

were notable correlations between simulator data and the data 

obtained in real flight (see Appendix B, Table BI, BII, and 

BIII, which can be viewed online at  https://doi.org/10.3357/

amhp.4782sd.2017 ) for single parameters, but not for the inte-

grated PAV. Th is could be understood as an eff ect of the 

interindividual diff erences of the raw parameters providing 

correlations among situations, whereas the PAV neglects these 

individual features. 

 All in all, the objective assessment of psychophysiological 

workload developed by Johannes and Gaillard  10   was success-

fully applied under real fl ight conditions in the present study. 

Further research has to enhance the statistical power of single 

fi ndings by increasing the sample size. Th e successful applica-

tion of the nonobtrusive methodology and the semiautomated 

data analysis should make this feasible. Altogether, this method 

appears to be a promising approach for an objective and quan-

titative in-fl ight assessment of arousal.     
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  APPENDIX A. PHYSIOLOGICAL RAW DATA 

     Fig. A1   presents the single measures during baseline and fl ight 

phases. Signifi cant changes from the baseline were observed 

for the HPD in both during the simulator fl ights (df: num 6, 

denum: 69,497,  F   5  25.996,  P   ,  0.001) and the real fl ights (df: 

num 6, denum: 70,169,  F   5  13.410,  P   ,  0.001). In all cases of 

the Linear Mixed Eff ect Model (LME), also below, the residuals 

were normally distributed. Heart period duration (HPD) is the 

interbeat interval, the interval between two R-spikes of the con-

tinuous ECG. In clinical applications heart rate is likely more 

appropriate. However, heart rate is the inverse function of the 

HPD that would provide confounding nonlinear infl uences on 

the factor structures used in this manuscript.     

 Th e pulse transit time (PTT) did not change in the simula-

tor, but did during the real fl ight (df: num 6, denum: 69,314, 

 F   5  4.658,  P   5  0.001). The interaction between the flight 

phases and the profi ciency groups was not signifi cant during 

  
 Fig. A1:        Physiological results in six fl ight phases ( “ Normal Flight Activities, ”   “ Normal Approach Activities, ”   “ 50-ft AAR, ”   “ Contact, ”   “ Precision Final, ”  and  “ Touch and Go/

Landing ” ) in comparison to a reference baseline  “ Baseline. ”  The black circles represent data from the real fl ights; the white circles show data from simulated fl ights. 

The signifi cant diff erences from the baseline are given (simulator: * P   ,  0.05, ** P   ,  0.01, *** P   ,  0.001; real fl ights:  #  P   ,  0.05,  ##  P   ,  0.01,  ###  P   ,  0.001).    



 Table BI.        Correlations of HPD Scores Between Simulated and Real Flights.  

  

HPD_

NORMAPPROACH HPD_50FT-TOAAR HPD_-CONTACT HPD_PREC-FINAL

HPD_

TOUCHANDGO  

   HPD_SNORM-APPROACH Pearson Correlation 0.841 0.733 0.692 0.747 0.642 

 Sig. (2-tailed) 0.000 0.003 0.006 0.005 0.018 

  HPD_S50FTTOAAR Pearson Correlation 0.680 0.735 0.725 0.700 0.525 

 Sig. (2-tailed) 0.005 0.003 0.003 0.011 0.065 

  HPD_SCONTACT Pearson Correlation 0.610 0.703 0.690 0.642 0.511 

 Sig. (2-tailed) 0.016 0.005 0.006 0.024 0.074 

  HPD_SPRECFINAL Pearson Correlation 0.899 0.785 0.768 0.836 0.735 

 Sig. (2-tailed) 0.000 0.001 0.001 0.001 0.004 

  HPD_STOUCHANDGO Pearson Correlation 0.887 0.762 0.766 0.779 0.678 

 Sig. (2-tailed) 0.000 0.002 0.001 0.003 0.011 

  N 15 14 14 12 13  

 Table BII.        Correlations of PAV Scores Between Simulated and Real Flights.  

PAV_NORM-APPROACH PAV_ 50FTTOAAR PAV_ CONTACT PAV_ PRECFINAL

PAV_ 

TOUCHANDGO 

  PAV_ SNORMAPPROACH Pearson Correlation 0.476 0.286 0.414 0.511 0.150 

 Sig. (2-tailed) 0.073 0.321 0.142 0.090 0.625 

  

  PAV_ S50FTTOAAR Pearson Correlation 0.453 0.327 0.445 0.558 0.335 

 Sig. (2-tailed) 0.090 0.253 0.111 0.059 0.263 

  

  PAV_ SCONTACT Pearson Correlation 0.511 0.372 0.521 0.553 0.371 

 Sig. (2-tailed) 0.052 0.190 0.056 0.062 0.212 

  

  PAV_ SPRECFINAL Pearson Correlation 0.521 0.359 0.530 0.507 0.237 

 Sig. (2-tailed) 0.046 0.208 0.051 0.093 0.436 

  

  PAV_ STOUCHANDGO Pearson Correlation 0.447 0.307 0.447 0.470 0.107 

 Sig. (2-tailed) 0.095 0.285 0.109 0.123 0.728 

  N 15 14 14 12 13  

the simulator, but was during the real fl ights (df: num 6, denum: 

69,314,  F   5  3.228,  P   5  0.007). Skin conductance level (SCL) 

changed during the simulated flights (df: num 6, denum: 

69,082,  F   5  4.302,  P   5  0.001), but not during the real fl ights. 

Th e root of mean successive square diff erences (RMSSD) did 

not change signifi cantly with respect to baseline values in either 

training condition. 

 Signifi cant diff erences between the training types were not 

found in single data. However, the interaction of profi ciency 

and training was significant for HPD (df: num 1, denum: 

31,739,  F   5  4.401,  P   5  0.044), PTT (df: num 1, denum: 34,817, 

 F   5  4.467,  P   5  0.042), and SCL (df: num 1, denum: 31,385,  F   5  

10.496,  P   5  0.003). 

 At the single parameter level, HPD showed no signifi cant 

fi xed eff ects. When analyzed separately, the professionals showed 

a signifi cant interaction between the maneuvers and the train-

ing type (df: num 1, denum: 22,231,  F   5  4582,  P   5  0.044), sup-

porting the impression that both groups reacted diff erently in 

simulator and real fl ights during the diff erent maneuvers. Th e 

PTT analysis provided a near-signifi cant interaction between 

proficiency classes and training types (df: num 1, denum: 

33,974,  F   5  3832,  P   5  0.059) and for the beginners separately a 

near-signifi cance of lower values during real fl ights (df: num 1, 

denum: 12,  F   5  4614,  P   5  0.052). In the SCL data no signifi -

cant general fi xed eff ect was found. However, the beginners, 

separately analyzed, showed signifi cant diff erences between the 

training types (df: num 1, denum: 8056,  F   5  10,017,  P   5  0.013), 

the maneuvers (df: num 1, denum: 8056,  F   5  5727,  P   5  0.043), 

as well as a tendency toward signifi cance for the interaction 

of maneuvers and training types (df: num 1, denum: 8182,  F   5  

4555,  P   5  0.065). Th is interaction between maneuvers and 

training types was found to be signifi cant for the professionals 

(df: num 1, denum: 22,191,  F   5  5358,  P   5  0.030).  

  APPENDIX B 

 A correlation analysis was performed to scrutinize the predict-

ability of measures during the real fl ight based on measures dur-

ing the simulator training. High correlations between simulator 

and real fl ight data were found for HPD ( Table BI ) and SCL 

( Table BIII ). Th e integrated PAV scores ( Table BII ) showed ten-

dencies for correlations, whereas no correlations were found for 

respiratory sinus arrhythmia (RMSSD) and fi nger temperature. 

Th e diff ering  N  indicates respectively the number of subjects 

having fl own both maneuvers. Th e S following the variable name 

(e.g., HPD_S) indicates data from simulated fl ights. NormAp-

proach stands for normal approach; 50FtToAAR and Contact 

the respective AAR phases; PrecFinal describes data from a pre-

cision fi nal; and TouchAndGo indicates each kind of landing.              



 Table BIII.        Correlations of SCL Scores Between Simulated and Real Flight.  

  SCL_ NORMAPPROACH SCL_ 50FTTOAAR SCL_ CONTACT SCL_ PRECFINAL

SCL_ 

TOUCHANDGO  

   SCL_ SNORMAPPROACH Pearson Correlation 0.672 0.594 0.585 0.615 0.562 

 Sig. (2-tailed) 0.006 0.025 0.028 0.033 0.045 

  SCL_ S50FTTOAAR Pearson Correlation 0.774 0.776 0.771 0.793 0.808 

 Sig. (2-tailed) 0.001 0.001 0.001 0.002 0.001 

  SCL_ SCONTACT Pearson Correlation 0.721 0.708 0.723 0.741 0.803 

 Sig. (2-tailed) 0.002 0.005 0.003 0.006 0.001 

  SCL_ SPRECFINAL Pearson Correlation 0.749 0.675 0.661 0.710 0.692 

 Sig. (2-tailed) 0.001 0.008 0.010 0.010 0.009 

  SCL_ STOUCHANDGO Pearson Correlation 0.690 0.659 0.635 0.657 0.617 

 Sig. (2-tailed) 0.004 0.010 0.015 0.020 0.025 

  N 15 14 14 12 13  
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