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Volcanic SO2 plume height retrieval from UV sensors using a
full-physics inverse learning machine algorithm
Dmitry S. Efremenko a, Diego G. Loyola R.a, Pascal Hedelta and Robert J. D. Spurrb

aRemote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen, Germany;
bRT Solutions, Inc., Cambridge, MA, USA

ABSTRACT
Precise knowledge of the location and height of the volcanic
sulphur dioxide (SO2) plume is essential for accurate determina-
tion of SO2 emitted by volcanic eruptions. Current SO2 plume
height retrieval algorithms based on ultraviolet (UV) satellite mea-
surements are very time-consuming and therefore not suitable for
near-real-time applications. In this work we present a novel
method called the full-physics inverse learning machine (FP-ILM)
algorithm for extremely fast and accurate retrieval of the SO2

plume height. FP-ILM creates a mapping between the spectral
radiance and the geophysical parameters of interest using super-
vised learning methods. The FP-ILM combines smart sampling
methods, dimensionality reduction techniques, and various linear
and non-linear regression analysis schemes based on principal
component analysis and neural networks. The computationally
expensive operations in FP-ILM are the radiative transfer model
computations of a training dataset and the determination of the
inversion operator – these operations are performed off-line. The
application of the resulting inversion operator to real measure-
ments is extremely fast since it is based on calculations of simple
regression functions. Retrieval of the SO2 plume height is demon-
strated for the volcanic eruptions of Mt. Kasatochi (in 2008) and
Eyjafjallajökull (in 2010), measured by the GOME-2 (Global Ozone
Monitoring Instrument – 2) UV instrument on-board MetOp-A.

ARTICLE HISTORY
Received 5 April 2017
Accepted 19 June 2017

1. Introduction

During volcanic eruptions, sulphur dioxide (SO2) and various other gases are emitted to
the atmosphere. Depending on the type of eruption, ash is also emitted, and this is a
major threat to local populations and aviation safety. SO2 is a robust indicator for
volcanic activity, and it can serve as a proxy for the emission of volcanic ash, since
SO2 can be collocated initially with the ash. Timely global measurement of volcanic SO2

can thus provide critical information for aviation hazard mitigation, when used by the
volcanic ash advisory centres (VAACs) (Carn et al. 2009). Volcanic SO2 has an impact on
local air quality, and it also poses a threat to aviation safety on a long timescale: SO2

causes sulphidation in aircraft engines, which can lead to total engine failure if there is a
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long-time exposure. Volcanic SO2 and sulphate also have an effect on global climate.
When released into the atmosphere they are subject to wet and dry deposition as well
as oxidization to sulphate aerosols (Robock 2000). In the lower troposphere, SO2 and
sulphate aerosols have a lifetime of about 3 days (Lee et al. 2011; Myles, Meyers, and
Robinson 2011). When injected into the stratosphere by explosive volcanic eruptions,
the SO2 lifetime is several weeks, whereas sulphate aerosols can reside for over a year
(Forster et al. 2007; von Glasow, Bobrowski, and Kern 2009), affecting Earth’s radiative
forcing by reflection of solar irradiation and through induced changes in the albedos
and lifetimes of clouds. For example, the 1991 Mount Pinatubo eruption released about
20 megatons of SO2 into the atmosphere and caused an estimated average global
cooling of about 0.3–0.5°C for several years (McCormick, Thomason, and Trepte 1995;
Robock 2000).

Satellite measurements in the ultraviolet (UV) wavelength range between 305 and
330 nm provide the most sensitive measurements of SO2 in the atmosphere. This allows
for the detection and monitoring of volcanic and anthropogenic SO2 emissions on a
daily global basis (see, e.g. Fioletov et al. 2013). Backscattered UV Earthshine spectra in
this wavelength range contain quantitative information about the total SO2 loading and
the altitude of the SO2 layer (Yang et al. 2009); a change in the SO2 amount causes a
direct change in the optical depth, whereas a change in the altitude influences both the
number of photons passing through the SO2 layer and the layer absorption optical
thickness.

In recent years, a number of retrieval algorithms have been developed for the
interpretation of satellite-based measurements of reflected and scattered solar radiation
in the infrared (IR), microwave and ultraviolet/visible (UV/vis) range. The main applica-
tion of the method described in this paper is for the retrieval of SO2 plume height during
volcanic eruptions, based on UV measurements by nadir-viewing remote-sensing instru-
ments such as GOME-2 (Global Ozone Monitoring Instrument – 2).

SO2 total vertical columns can be retrieved easily using, for example the differential
optical absorption spectroscopy (DOAS) method (see, e.g. Rix et al. 2012) by making
explicit or implicit assumptions about the vertical distribution of SO2; DOAS is fast
enough for near-real-time (NRT) retrievals. However, retrieving plume height information
is more challenging. Current plume height retrievals in the literature make use of direct
fitting techniques comparing forward model computations to observations (see, e.g.
Yang et al. 2009, 2010; Nowlan et al. 2011, for UV; or Clarisse et al. 2008, for IR SO2 plume
height retrievals). Unfortunately, these fitting methods are very time-consuming and
thus not suitable for NRT applications. These limitations will be even more stringent for
the upcoming generation of satellite sensors (e.g. on-board the Sentinel-5 Precursor,
Sentinel 4, and Sentinel 5 platforms), having unprecedented spectral and spatial resolu-
tion and associated large increases in the amount of data. The objective of this research
is to develop a fast yet accurate algorithm for the retrieval of SO2 plume height from UV
Earthshine measurements.

2. Full-physics inverse learning machines

Volcanic SO2 plume height retrieval is intrinsically an ill-posed inverse problem (i.e. the
retrieved values are highly sensitive to changes in the UV Earthshine measurements). In
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the classical approach (Tikhonov and Arsenin 1977), the inverse problem is solved by
reducing it to an exercise in optimization. The main idea behind this method is to find
the state vector that minimizes the residual between simulated data and measurements.
A non-linear inverse problem is solved iteratively (Rodgers 2000; Doicu, Trautmann, and
Schreier 2010). Assuming an a priori state vector x, a non-linear forward model is
linearized about x. Then, the linearized model can be easily inverted and a new estima-
tion for the state vector can be found. This iterative approach is widely used for trace
gases retrieval as well as for estimating aerosol and cloud properties (Efremenko et al.
2016). However, this inversion method is very time-consuming, due to repeated calls to
complex radiative-transfer (RT) forward models that simulate radiances and Jacobians
(i.e. matrices of the first-order partial derivatives of spectral radiances with respect to x),
and subsequent inversion of relatively large matrices. These considerations motivate the
development of alternative inversion techniques for remote sensing real-time
applications.

Most machine learning algorithms do not consider the optimization problem expli-
citly. Rather, they learn from a given dataset and make predictions regarding parameters
of interest. In this context, we have developed a new type of algorithm designed for
solving inverse problems, called full-physics inverse learning machines (FP-ILMs).
Conceptually, the FP-ILM consists of a training phase, wherein the inversion operator
is obtained using synthetic data generated using a radiative transfer model (RTM, which
expresses the ‘full-physics’ component), and an operational phase, in which the inver-
sion operator is applied to real measurements. The main advantage of the FP-ILM over
the classical optimization approach is that the time-consuming training phase involving
complex RT modelling is performed off-line; the inverse operator itself is robust and
computationally simple.

Figure 1 is a schematic representation of the FP-ILM used for estimating plume height
values. During the training phase, a training dataset is computed using a full-physics
forward model, which in our case is the RTM (see Section 2.2 for details). The RTM
computes simulated radiances as a function of the following n ¼ 8 input parameters: the
sulphur dioxide (SO2) total column density and plume height, the surface albedo, the
surface height, the ozone (O3) total column, the solar zenith angle (SZA), the viewing
zenith angle (VZA), and the relative azimuth angle (RAA) – see Section 3 for details. The
FP-ILM has the following attributes:

(1) The number of samples and the grid for input data are determined optimally by
smart sampling techniques, thereby assuring the best coverage of the input and
output spaces for a given number of samples (Loyola, Pedergnana, and Gimeno
Garcia 2016).

(2) In order to capture the essential features of the simulated data and to avoid ‘over-
dimensionality’ (the so-called Hughes effect, Hughes 1968), the simulated spectral
data are compressed using an appropriate dimensionality-reduction technique.

(3) The mapping between the dimensionality-reduced spectral simulations and the
plume height is captured via machine learning.

The design of FP-ILMs is centred around two dilemmas. The first is the trade-off
between variance and bias (Raviv and Intrator 1996): efforts to decrease the bias are
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likely to result in higher variance and vice versa. The second dilemma is the trade-off
between accuracy and stability: there is a risk of over-fitting when the inverse model
is affected more by random errors and noise rather than by any underlying relation-
ships between measurements and state vector elements. In practice, it is advanta-
geous to combine several techniques exploiting their best features. For example, in
Loyola (2006) the dimensionality reduction is done using non-linear PCA, accompa-
nied by a multi-neural network approach for solving the inverse problem. In Blackwell
and Chen (2009), linear regression schemes are used to predict bias, while neural
networks are used to reduce the variance. In this paper, the retrieval algorithm
initially proposed by Loyola (2006) is further developed and applied to the problem
of plume height retrieval.

The following sections describe in more detail the components of the FP-ILM retrieval
algorithm, with subsection numbers corresponding to the five algorithm steps indicated
in blue in Figure 1.

2.1. Smart sampling

The input dataset based on n input variables (n ¼ 8 in our case) is characterized by a
discrete set of samples (points). Sampling the input n-dimensional space with k values
per dimension requires kn samples in total; this number can be very large for high-

Training phase (offline)

Simulated

input

Forward

model

Dimensionality

reduction

Machine

learning

Inverse

model

Simulated

spectra

Compressed

spectral

information

Measured

spectra

Retrieved

parameters

Operational phase (real time)

Smart

sampling

1

2

3

4

5

Figure 1. Schematic representation of the full-physics inverse learning machine algorithm. A smart
sampling method provides an optimal numerical grid for the input data. Then, a forward model
computes the simulated spectra for a set of simulated input data. The high-dimensional spectral
data are transformed to a space of fewer dimensions using linear (e.g. principal component analysis
(PCA), independent component analysis (ICA)) or non-linear (e.g. neural network, kernel PCA)
mapping. Machine learning algorithms are applied to capture dependencies between compressed
spectral information and the parameter to be estimated. The resulting inverse operator is then used
to process the measurements.
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dimensional data. Clearly, the value of k should be as small as possible, without
compromising the correct representation of the dataset.

Conceptually, the easiest (though the least efficient) sampling technique is based on
an uniform grid along each axis of the hypercube 0; 1½ �n. More advanced algorithms rely
on quasi-random sequences with uniformly distributed points in 0; 1½ �n as k ! 1.
Following Weyl (1916), the uniformity of those sequences is measured using the so-
called discrepancy of the sequence. Without going into details (see, e.g. Wang and
Hickernell 2000, and references therein), we just remark here that the discrepancy is low
if the number of points belonging to a sub-interval of 0; 1½ �n is proportional to the
measure of the sub-interval. Low discrepancy values indicate that the points are well
scattered over the hypercube. Coverage using uniform grid sampling is very poor for a
low number of sampling points and high dimensionality.

Smart sampling methods developed by Loyola, Pedergnana, and Gimeno Garcia
(2016) are used to cover optimally the input and output spaces with a minimum number
of samples. These methods are based on special sequences (named quasi-random) that
share some properties of random variables. In Loyola, Pedergnana, and Gimeno Garcia
(2016), different sampling methods were analysed in the context of high-dimensional
regression problems. It was demonstrated that Halton series (Halton 1960) is superior for
handling high-dimensional data, yet having reasonable computational time. The
required number of sample points s is estimated iteratively. The smart sampling and
incremental function learning procedure includes the following steps:

(1) Given the expected accuracy ε and confidence δ, the number of samples s is taken
as the minimum number from sequences

s n; ið Þ ¼ in if n � 9;
10i if n � 10;

�
(1)

that satisfy the Chernoff bound

s � 1
2ε2

ln
2
δ
: (2)

(2) The input dataset with s n; ið Þ samples for each dimension is generated using Halton series.
(3) Using the full-physics RTM, the set of radiance spectra is computed. This is by far the
most time-consuming part of the sampling generation process.
(4) The parameters of the FP-ILM are estimated using regression models.
(5) The parameter i for Equation (1) is increased by 1.

Steps 2–5 are repeated until the statistical moments (mean, standard deviation,
skewness, and kurtosis) of the output as well as parameters of the FP-ILM converge.
Details of the smart sampling technique applied to the current problem are considered
in Section 3.2.

2.2. Full-physics radiative transfer forward model

For the spectral range of interest, 310–330 nm, SO2 and ozone (O3) are the two
principal trace gas absorbers. This range covers the O3 Hartley–Huggins absorption
bands, while there are strong SO2 absorption features towards the lower end of this
window. Figure 2 (top panel) shows the natural logarithm of the total optical
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thickness for O3 (total column amount 250.83 DU, from a climatological profile) and
SO2 (total amount 49.77 DU, distributed in a Gaussian profile centred around 3.0 km,
with half width 2.5 km).

Molecular scattering dominates in the UV, and the RTM must include single and
multiple scattering in a multi-layer atmosphere. The solar irradiance spectrum in this
wavelength range exhibits strong Fraunhofer structures (Figure 2, middle panel, is a
solar spectrum from the GOME-2 instrument). Not all scattered light is ‘elastic’; it is well
known that Earthshine spectra show marked ‘filling-in’ of Fraunhofer-solar and telluric-
absorber features, due to ‘inelastic’ (wavelength-redistributed) rotational Raman scatter-
ing (RRS) by air molecules – this filling-in phenomenon is known as the Ring effect
(Grainger and Ring 1962). In our case, RRS filling is a marked interference effect, and we
need an RTM that can handle it.

LIDORT-RRS (LRRS) (Spurr et al. 2008) is a discrete-ordinate RT model that has the
ability to treat elastic scattering to all orders, and RRS to one order (photons are
scattered just once inelastically). RRS is a small effect; about 4% of molecular scattering
is inelastic (Young 1981). LRRS is based on the LIDORT models (Spurr 2008), which use
discrete-ordinate methods to solve the RT equations in each layer of an optically
stratified atmosphere. RRS is governed by quantum-mechanical rotational transitions
for molecular oxygen (O2) and nitrogen (N2). For each excitation wavelength of interest,
some light is lost when photons scatter inelastically out of this wavelength, and some
light is gained for those photons that are scattered into this wavelength. In the UV, the
redistribution range is typically ±2 nm.
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Figure 2. Top panel: Total optical thickness of O3 and SO2. Middle panel: Solar irradiance spectrum
from GOME-2. Lower panel: Relative difference of a purely ‘elastic’ calculation (with no RRS) and a
‘Raman’ calculation including RRS.
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LRRS is based on a perturbation approach. First, elastic-scattering RT calculations are
performed at the excitation wavelength and all RRS transition wavelengths; these ‘zero-
order’ elastic-scattering solutions are then taken as source terms for the first-order
radiative transfer equation including RRS. This procedure is described in detail in Spurr
et al. (2008). LRRS is slower than LIDORT, though there are procedures involving the
selective grouping of rotational-Raman transitions that can speed up the calculations.
The choice of Fraunhofer spectrum is very important, and it is usual to do calculations
on the wavelength grid of this spectrum.

LRRS has all the capabilities of LIDORT, including treatment of solar beam attenuation
in a spherical atmosphere, an exact computation of single-scattering radiation (both
elastic and inelastic), the ability to model non-Lambertian surfaces, and a facility for the
analytic generation of Jacobians (radiance weighting functions). Excluding RRS, the
model will reproduce standard LIDORT results.

In Figure 2 (lower panel), we contrast the purely ‘elastic’ calculation (with no RRS)
with a ‘Raman’ calculation including RRS, expressing this contrast as the relative
difference (in per cent) between elastic and Raman radiances – this is one definition
of the filling. This calculation was done for a molecular atmosphere with no aerosol
scattering, with four discrete ordinates, and for solar and viewing angles in the
principal plane, an albedo of 0.06, and amounts of trace species as indicated in the
upper panel. It is clear that neglect of RRS can lead to very substantial radiance errors
with plenty of differential structure, for example in the large Fraunhofer features over
310–315 nm.

2.3. Dimensionality reduction

Dimensionality reduction is crucial for stable and high-performance processing of spec-
tral measurements. It excludes redundant information from the initial dataset and
improves the efficiency of machine learning. This topic has been addressed frequently
in the context of high-performance radiative transfer modelling (Natraj et al. 2005; Liu
et al. 2006; Matricardi 2010; Efremenko et al. 2014b; Budak et al. 2015).

There is a distinction between linear and non-linear techniques for dimensionality
reduction. Linear techniques embed the data into a subspace of lower dimensionality.
PCA constructs a new basis-vector dataset in which the large majority of the data
variance is captured. The new basis vectors are related to the eigenvectors of the
covariance matrix of the initial dataset. ICA seeks linear projectors, not necessarily
orthogonal to each other, though they are statistically independent.

To preserve non-linear properties of datasets and discover relationships between
variables, several non-linear methods have been developed. Kernel PCA is a reformula-
tion of conventional PCA in which the basis vectors are constructed from eigenvectors of
the kernel matrix, rather than from those of the covariance matrix. Other non-linear
methods are related to locally linear embedding (LLE) (Roweis and Saul 2000), in which
the global non-linear structure is recovered through application of locally linear fits to
optimally preserve local neighbourhood information. To find a new representation for a
given ensemble of observations, artificial neural networks can be also used (Kramer
1991). More detailed review can be found in Gorban (2008), Fodor (2002), and references
therein.
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Linear and non-linear techniques have been inter-compared by van der Maaten, Postma,
and van den Herik (2009). Results of these numerical experiments reveal that non-linear
techniques perform well on selected artificial tasks. However, they hardly outperform PCA
on real-world tasks. Similar conclusions were reported by Efremenko et al. (2014a), where
several methods for dimensionality reduction were inter-compared in the context of
accelerating radiative transfer performance. In this work, no obviously superior method
emerged in the benchmarking; increasingly time-consuming and sophisticated dimension-
ality reduction techniques lead to more accurate results, and vice versa. Indeed, classical
PCA showed good results for the ‘computational time–accuracy’ trade-off.

2.3.1. Principal components
Here, we make a short mathematical exposition to put the above considerations in the
proper context. For clarity, we specify sizes of matrices using the nota-
tion 2 R

rows�columns.
Let y ¼ y λ1ð Þ; y λ2ð Þ; . . . ; y λWð Þð Þ, y 2 R

1�W , be a row-vector of atmospheric radiances

at W wavelengths λwf gw¼1;...;W . A set of S spectra are assembled into a matrix Y 2 R
S�W

whose ith row is yi. Then, yi can be represented in a new basis system as follows:

yi ¼ �yþ
XW
k¼1

tikfk: (3)

Here, �y ¼ 1
S

PS
i¼1

yi, �y 2 R
1�W is the sample mean of the spectra (the average spectrum), tik

is the kth coordinate of the vector yi in the new basis system, and fk ¼
fk λ1ð Þ; fk λ2ð Þ; . . . ; fk λWð Þð Þ 2 R

1�W is the kth basis vector. Noting that high-dimensional
real data are often situated on or near a lower-dimensional manifold, the spectrum yi
can be projected onto the K-dimensional subspace (K<W) as follows:

yi � �yþ
XK
k¼1

tikfk; (4)

or in matrix form for the initial dataset:

Y � �Yþ TF; (5)

where �Y ¼ �y; . . . ; �yg 2 R
S�W�

, F ¼ f1; f2; . . . ; fKf gT 2 R
K�W , T 2 R

S�K is the matrix

whose entries are tikf gk¼1;...;K
i¼1;...;S . Hereinafter, the superscript T stands for ‘transform’.

The transformation (Equation (4)) can be done using dimensionality reduction tech-
niques, such as PCA (Pearson 1901). In the latter, basic vectors fk in Equation (4) are
referred to as ‘principal components’ (PCs) or empirical orthogonal functions (EOFs),
while the coordinates tik in the new coordinate system and the corresponding matrix T
are called ‘principal component scores’. Considering a spectral decomposition for the

covariance matrix cov Y;Yð Þ;CY 2 R
W�W :

CY ¼ ELET; (6)

where E 2 R
W�W is the eigenvector matrix, and L 2 R

W�W is the diagonal matrix of
eigenvalues, the principal components are taken as K eigenvectors related to the K most
significant eigenvalues. The principal component scores are computed as follows:

8 D. S. EFREMENKO ET AL.
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T ¼ Y� �YÞFT:�
(7)

The number K depends on the desired level of variance to be captured by the principal
components. Several semi-empirical rules have been proposed for the optimal number
of principal components (e.g. the broken stick model, MacArthur 1957). However, there
is no universal rule for the selection of K; the choice is application-specific. In practice, K
can be significantly smaller than W when K principal components capture a significant
part of the spectral radiance variability. Note that high-order principal components are
related to noise rather than useful data and therefore it makes sense to neglect them.

By characterizing the set of measurements yif gSi¼1 with fewer parameters, we are led
to more simple, stable, and computationally efficient inversion schemes. PCA has proved
to be a very useful tool for retrieval of earth atmospheric constituent information from
measurements. For instance, in Li et al. (2013), the PCA has been applied to the SO2 total
column retrieval, in the following manner. First, the set of principal components is
defined for regions with no significant SO2 loading. In the second step, the resulting
principal components and SO2 Jacobians are used to estimate SO2 vertical column
density. These authors reported that the correction of instrument-specific features is
not necessary, since these have been already captured by principal components. In
Timofeyev et al. (2003), the dimensionality reduction technique was applied to para-
meterize the aerosol extinction coefficient for incorporation into the inversion algorithm,
while in Kataev and Lukyanov (2016) this method was used for carbon dioxide (CO2) and
methane (CH4) retrieval.

2.4. Machine learning

2.4.1. Linear regression
Let us assume that we want to retrieve an atmospheric parameter x (e.g. the volcanic
SO2 plume height in our case) from a measured spectrum y ¼ F x;bð Þ, where F is the
forward model, and the vector b comprises atmospheric parameters (excepting x) and
observation geometry. The corresponding inverse problem x ¼ F�1 y;bð Þ is a non-linear
large-scale problem, which is usually solved by fitting the forward model to measure-
ments at each spectral point.

The inversion would be easier if we retrieved the desired property not from the
observations y, but from a smooth function of a single argument x. Such a function can
be constructed by using the standard linear regression model L 2 R

W�1 with regression

coefficients lif gWi¼1 between x and the spectral data y:

x ¼ cþ
XW
w¼1

lwy λwð Þ; (8)

where c is the linear offset. For the vector X ¼ x1; x2; . . . ; xSf gT 2 R
S�1, with, x1; x2; . . . ; xS

the plume height values for S cases, the corresponding relation in matrix form reads

X ¼ Cþ YL; (9)
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where C ¼ diag c; . . . ; cf g 2 R
S�1. However, this technique can be unstable under data

perturbation, and instrumental artefacts (instrument-associated errors) greatly affect the
result.

Another approach, which is referred to as ‘principal component regression’ (PCR),
employs the linear regression model between X and the principal component scores T
of the spectral radiance:

xi ¼ cþ
XK
k¼1

lktik; (10)

X ¼ Cþ Y� �YÞFTL ¼ Cþ TL:
�

(11)

In this case L 2 R
K�1. As the number of PC scores K in most cases is significantly smaller

than the number of spectral points W, the dimension of the linear regression model (and
the corresponding inverse problem) is reduced. Moreover, since the instrument noise
does not affect PC scores of low order, the whole inversion scheme is more stable.

For noisy data, the set of eigenvectors F must be computed for the matrix CY þ Ce,
rather than for CY, where Ce is the noise covariance matrix. In this case, the PC scores for
the noisy data are correlated and are therefore called ‘projected principal components’
(Blackwell and Chen 2009). If the statistics of the noise are unknown, the noise covar-
iance matrix can be estimated by making some assumptions (e.g. Gaussian noise). For
simplicity, we use the following approximation Ce � αI, where I is the identity matrix
and α is the regularization parameter. Adding Ce to CY shifts the eigenvalues of the
covariance matrix in the positive direction. This procedure reduces the impact of high-
order principal components.

The kernel ridge regression (KRR) algorithm (Shawe-Taylor and Cristianini 2004)
generalizes the PCR method; KRR has been used for predicting atmospheric profiles
from the IASI (the Infrared Atmospheric Sounding Interferometer) instrument (Camps-
Valls et al. 2012). One drawback of the PCR and KRR models is that the basis vectors F
characterize the measurements Y, while information contained in X is not taken into
account. An alternative model that gets round this drawback is the partial least squares
regression (PLSR) (Rosipal and Krämer 2006).

In Wentzell and Montoto (2003) and Maitra and Yan (2008), it was shown that PLSR
leads to model-fitting with fewer PCs than required with PCR.

The PLSR method is based on the following linear decomposition both for Y and X:

Y � Y
^

QT; (12)

X � X
^

WT; (13)

where Y
^ 2 R

S�K and X
^ 2 R

S�K are the Y-scores and X-scores, respectively, whileQ andW are
the corresponding basic vectors. The Q and W vectors are constructed in such a way to

maximize the correlation betweenY
^

andX
^

(the correlation between Y
^

andX
^

is expected to be

stronger than that between T (or Y) and X). To find new coordinates Y
^

and X
^

, the eigenvalue

decomposition algorithm can be applied. The first coordinate y
^

1 2 R
S�1 of Y

^ ¼ y
^

1; . . . ; y
^

K

n o

10 D. S. EFREMENKO ET AL.
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is computed as y
^

1 ¼ Yq, where q is the eigenvector corresponding to the first eigenvalue of

YTXXTY. Similarly, the first X-score X
^

1 2 R
S�1 is X

^

1 ¼ Xw, where w is the eigenvector

corresponding to the first eigenvalue of XTYYTX. Once y
^

1 and X
^

1 have been found, we repeat

this procedure for matrices Y1 ¼ Y� y
^

1y
^T

1Y and X1 ¼ X� y
^

1y
^T

1X to find the second scores.
The process is repeated recursively until all scores are found.

The PLSR approach can be generalized to the case when we are retrieving a set of
correlated parameters (e.g. the temperature profile) rather than a single variable x. The
corresponding method is then referred to as canonical correlations (Hotelling 1935). The use
of canonical correlations in atmospheric sciences applications is summarized in Wilks (2011).

One final remark – we emphasize again that the training dataset of observations Y
and the regression model are obtained using full-physics RTM simulations in the training
phase. This step is very time-consuming, but it is done off-line.

2.4.2. Non-linear regression
As noted in the previous section, linear regression models find linear relations between
the observations and parameters to be obtained. In practice, linearity is a very strong
assumption for real data. Fortunately, linear regression appears to be a useful tool even
in cases where the measurements are non-linearly related to the parameters to be
retrieved. When a large number of spectral channels are considered, the non-linear
dependencies can be excluded by appropriate linear combinations. For instance, in
Weisz et al. (2007), temperature is retrieved from thermal-IR measurements using linear
regression, although the governing forward-model relationship (the Planck function in
this case) is non-linear.

However, when non-linear dependencies cannot be excluded, non-linear regression
schemes must be applied for correct representation of the data. If non-linearities are
specified by means of analytical expressions (e.g. in the form of a polynomial in
wavelength), the linear regression framework can incorporate the corresponding non-
linear functions. Then, the linear regression is used to estimate coefficients of these non-
linear functions. If the non-linear dependence is not expressed analytically (as in our
case) and the predictor form is not predetermined, then we have a non-parametric
model, which can be determined from a given set of observations during the training
process. The kernel regression or the neural network approach can be used to find the
corresponding non-linear relation. Obviously, neural networks can be trained directly for
a mapping from the observation space into the space of parameters to be estimated.
Consequently, inversion using trained neural networks is extremely fast, as reported by
Loyola (2006).

2.5. Inverse model

The inverse model comprises two steps: first, the measured spectra are transformed into
a space of lower dimension, thereby providing a set of principal component scores.
Second, the FP-ILM inverse operator obtained during the training phase is applied to the
spectra in the reduced space. Note again that there are no RTM calculations, matrix
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inversions, or iterative algorithms in the inverse model. The inverse value is computed
using only straightforward matrix multiplications; the inverse model is simple and fast.

3. Retrieval of SO2 plume height based on synthetic data

In this section, we discuss the organization of the training dataset, and we test the
retrieval procedure based on the use of synthetic measurement data.

3.1. RTM setup for spectra simulations

For the training simulations, we calculate high-resolution reflectance spectra in the
wavelength range from 310 to 335 nm with the LRRS RTM (see Section 2.2) using a
high-resolution solar irradiance spectrum as input (Chance and Kurucz 2010). The
calculations were done for a molecular-scattering atmosphere, with Rayleigh scattering
parameterization taken from Bodhaine et al. (1999), and Raman spectroscopy from the
literature (e.g. Chance and Spurr 1997). Eight discrete ordinates (in the polar half-space)
were used in the multiple scattering treatment.

Simulations were performed in an eight-dimensional parameter space using the smart
sampling algorithm (see Section 3.2). The parameters and associated ranges can be found in
Table 1. O3 profiles are classified according to the total column amount, month, and latitude
zones as specified in the TOMS version 8 O3 profile climatology (Bhartia 2003). The SO2

profile has a Gaussian shape characterized by the total SO2 loading and centred at a certain
plume height, with a half width fixed to 2.5 km. Simulations were done on a pressure/
temperature/height grid from the US standard atmosphere, with a finer-grid vertical height
resolution of 0.25 km below 15 km to account for the Gaussian SO2 plume shapes.

We note that fixed O3 and temperature–pressure profilesmight affect the results because
they differ from the real profiles during the satellite measurements. However, the effect on
the retrieved plume height is believed to be rather small; this is the subject of a future article.

Simulated reflectance spectra were then convolved with the GOME-2 instrument slit-
function (available at: ftp://ftp.eumetsat.int/pub/EPS/out/GOME/Calibration-Data-Sets/
Slit-Function-Key-Data/). To reduce non-linearity of the problem, the simulated spectra
are normalized according to the quantity lnðyÞμμ0 μþ μ0ð Þ�1, where μ0 and μ are the
cosines of VZA and SZA, respectively. This expression is based on the quasi-single
scattering approximation for the radiative transfer equation (Afanas’ev, Efremenko, and
Lubenchenko 2012, 2013).

Table 1. Physical parameters varied for the generation of reflectance
spectra.
Parameter Range

SZA 0–90
VZA 0–60
RAA 0–180
Surface albedo 0–1
Surface height 0–8 km
O3 total column 225–525 DU
SO2 total column 0–1000 DU
SO2 plume height 2.5–20 km

12 D. S. EFREMENKO ET AL.
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3.2. Smart sampling for creating the training dataset

As noted in Section 2.1, in order to estimate the optimal number of samples for the
training dataset, it is recommended to check convergence of the statistical moments of
the output dataset (Romero et al. 2006). In addition to the mean and standard deviation,
Loyola, Pedergnana, and Gimeno Garcia (2016) proposed to consider higher-order
statistics such as skewness (measure of asymmetry) and kurtosis (measure of peaked-
ness). Normalized values of these parameters are plotted as a function of the number of
samples in Figure 3. All statistical moments converge with the number of samples larger
than 38. The final FP-ILM is trained using 48 ¼ 65; 536 simulated spectra covering the
wavelength domain 310� 335 nm. A mesh of input parameters is computed using
Halton sequences. The dataset generated at the previous iteration with 38 samples is
used as a test dataset, from which the plume height is retrieved. Thanks to smart
sampling, both the test and training datasets cover the full input space and are
complementary, with no duplicated inputs.

3.3. Dimensionality reduction of the training dataset

PCA, ICA, LLE, and kernel-PCA with a polynomial kernel have been applied to the
training dataset. The errors in spectral radiances reconstructed from a given number
of principal component scores are similar for all methods. Figure 4 shows the mean and
first three empirical orthogonal functions computed for the training dataset. To estimate
the number of principal components used in the regression models, we investigated the
dependence of the correlation coefficient (r) between the predicted plume height and
the actual plume height on the number of principal components. In Figure 5, r is plotted
for PCR and PLSR models. As expected, the PLSR method delivers higher values of r than
those from PCR. For both methods, r scales linearly for a small number of PCs. Using

Figure 3. Statistical moments (mean, standard deviation, skewness, and kurtosis) of the radiance
spectra as function of the number of sample patterns. Values have been re-scaled for convenience of
display.
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more than 15 PCs does not increase r significantly. Thus, K ¼ 15 principal components
should be sufficient to capture the radiance information that is correlated to plume
height. The difference between the maximum actual value of r ( � 0:9) and the theore-
tical maximum value (1.0) can be regarded as a measure of the error induced by using
linear regression models.

3.4. SO2 plume height retrieval using linear inversion models

3.4.1. Retrieval from noise-free data
In Figure 6, we show the histograms of relative errors in the prediction of the plume
height using PCR and PLSR with K ¼ 15 and K ¼ 30 principal components, respectively.

Figure 4. Empirical orthogonal functions computed using the training dataset. EOF0 is the mean
spectrum of the dataset.

Figure 5. The correlation coefficient (r) between predicted and actual plume heights, as a function
of the number of principal components used in the PCR and PLSR models.
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The width of the error distribution for K ¼ 30 is narrower than that for K ¼ 15, while the
average error of the plume height retrieval for the PLSR is less than that for the PCR in
both cases.

Figure 7 shows the predicted plume height values as a function of actual plume
height; from the initial dataset we plot every 100th point for clarity. Points are distrib-
uted near the straight line (y xð Þ ¼ x). The lowest errors can be found in the range of 9–
13 km.

3.4.2. Sensitivity to instrumental noise
Here, we apply the PLSR and PCR models to noisy data to study the influence of noise on
the retrieval results. For the signal-to-noise ratio (SNR), we use the following definition:

1
SNR

¼
ffiffiffiffiffi
W

p
σ

k y k ; (14)

where σ is the standard deviation and k y k is the L2-norm of the spectrum.

(a) (b)

Figure 6. Histogram of errors of the plume height retrieved using the PCR and the PLSR with K ¼ 15
and K ¼ 30 principal components. SD, standard deviation (SD for the relative error is given in
brackets).

(a) (b)

Figure 7. Accuracy of the PLSR and PCR models using K ¼ 15 and K ¼ 30 principal components for
the simulated data.
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Gaussian noise is added to the simulated data. The average retrieval errors and
corresponding values of r are shown in Table 2. Note, that r decreases and the average
relative error increases when the SNR decreases. For SNRs larger than 500, both PLSR
and PCR models can capture the information related to the plume height, while for the
SNRs less than 100, the correlation between the predicted and actual values of the
plume height is low (the plume height information is hidden by noise). Unlike the
situation with noise-free data, using more than 15 principal components does not
lead to any improvement in retrievals with noisy data, since higher-order principal
components are affected by noise.

3.4.3. Sensitivity to instrument degradation
In traditional differential optical absorption spectroscopy (DOAS) methods for retrieval of
trace gas vertical columns (see, e.g. Loyola et al. 2011), the spectral data are filtered with
a low-degree polynomial to improve the stability of the retrieval. This procedure is
expected to reduce the uncertainty arising from imperfect instrument calibration and
sensor degradation (Smedt et al. 2012) – effects that are usually strong in the UV spectral
range used for the SO2 column retrieval. In our simulations, we observed that filtering a
linear function or a quadratic polynomial from each spectrum of the training dataset
does not affect the quality of the retrieval. However, the PLSR and PCR models are still
sensitive to degradation regardless of the filtering. One source of error is an imperfectly
known instrumental slit function, which could suffer from temporal changes. For this
paper, we used the official pre-flight GOME-2 slit-function dataset, which is certainly not
equal to on-going in-flight slit-function values. Another source of error is noise increas-
ing over time due to degradation of the instrument. In this paper, we used a fixed SNR
level for training the retrieval. In a subsequent paper, we will analyse the effect of the slit
function and take into account the measured noise of the spectra.

Table 2. Degradation of the retrieval results due to noise in the data.
PLSR PCR

SNR ratio K ¼ 15 K ¼ 30 K ¼ 15 K ¼ 30

r
Noise-free 0.84 0.91 0.81 0.84
1000 0.81 0.88 0.75 0.79
500 0.77 0.81 0.72 0.75
100 0.62 0.64 0.55 0.58
50 0.31 0.31 0.29 0.29

Average relative error (%)
Noise-free 14.1 10.1 16.6 14.0
1000 15.8 13.2 17.2 16.4
500 17.1 16.1 17.8 17.0
100 24.3 23.0 23.8 23.2
50 28.5 28.3 29.3 29.20

Note that the errors in Table 2 are averaged over all values of SO2 total column in the input dataset. The plume height
retrieval errors as a function of the SO2 amount and the ‘true’ plume height are shown in Figure 8. This figure shows
that the plume height can be retrieved with errors of � 1 km for high SO2 total columns (>50 DU) and a plume
height in the range between 6 and 18 km. This is in agreement with Yang et al. (2009) and Nowlan et al. (2011). This
is a low bound for the sensitivity (the best that we can expect). In practice, plume height sensitivity will be worse. For
a more comprehensive analysis, one should include errors associated with spectral calibration; this will be a topic for
our future research.
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3.5. SO2 plume height retrieval using non-linear inversion

3.5.1. Taking into account the SO2 total column
One possible way to improve the quality of the plume height retrieval (in other words, to
increase the correlation coefficient between the predicted and the actual plume height
and to reduce the dispersion of the error) would be to include other input parameters in
the regression scheme (such as the SO2 total column). This can be done easily using
neural networks. In general, neural networks can be used for establishing a non-linear
mapping between a dataset of numeric inputs and a set of numeric outputs. A neural
network consists of interconnected neurons, or nodes, that implement a simple, non-
linear function (a sigmoid function in our case) of the inputs.

In this study, the Levenberg–Marquardt least-squares fitting algorithm is used for
training the neural network. The dataset is separated into three parts:

● a training set (a set of examples used for learning);
● a validation set (a set of examples used to tune the number of hidden units or

determine a stopping point for the learning process);
● a test set (a set of examples used only to assess the performance of a fully trained

neural network).

Two schemes are considered. In Scheme 1, K=15 PC scores and the SO2 total column
values are used as input data, while Scheme 2 uses K=15 PC scores only to estimate the
plume height. The average error and r are given in Table 3. Clearly, Scheme 1 is superior
to Scheme 2. That means that including SO2 total column improves the quality of the
retrieval. However, the SO2 total column is unknown a priori and is estimated given the
plume height values. Thus, Scheme 1 implies an iterative inversion procedure, in which
the plume height and the SO2 amount are to be estimated recursively. Also, noting that
Scheme 2 is not substantially better than the PLSR and PCR models, we conclude that
Scheme 1 is preferable to Scheme 2 for the operational algorithm.

3.6. SO2 plume height retrieval using both linear and non-linear models

As proposed by Blackwell and Chen (2009), computational efficiency of the retrieval algorithm
can be improved by separating the initial problem into linear and non-linear components.
Here, the linear component is realized using linear models (e.g. PLSR), while the non-linear
component is computed using neural networks. Here, we consider three neural networks:

Table 3. Average relative errors and correlation coefficients for the non-linear plume
height inversion using K ¼ 15 PCs.

Scheme 1 Scheme 2

Average error (%) r Average error (%) r

Training 13 0.94 20 0.89
Validation 13 0.94 20 0.89
Testing 14 0.94 21 0.88
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● The first neural network (NN1) predicts the plume height using 4 PC scores of the
spectra;

● The second neural network (NN2) uses the plume height value predicted by the
PLSR model and four PC scores of the spectra. In its turn, the PLSR model uses K ¼
30 components;

● The third neural network (NN3) predicts the plume height using 30 PC scores.

For the linear model, the regularization is implemented by adding a regularization
matrix to the covariance matrix of the spectra. For neural networks, the regularization is
done by training the neural network with noisy data (alternatively, error weights for
input parameters can be introduced). Both methods reduce the impact of higher-order
PC scores.

Table 4 lists values of r, the average relative errors, and training times for these three
networks. The training automatically stops when the mean square errors of the valida-
tion samples start to increase.

Two conclusions can be drawn:

(1) Using PLSR prediction as an input parameter can significantly increase the accu-
racy of the model (72 % for NN1 against 13 % for NN2).

(2) By capturing some part of the information by the linear model and applying the
neural network for the rest, we simplify the structure of the neural network.
Consequently, the training time decreases significantly (12 s for NN2 against
220 s for NN3).

We conclude that the ‘hybrid’ model (NN2) seems to be the best in terms of
computational time and accuracy.

4. Application to measured volcanic eruptions

In this section, the inversion operator is applied to two volcanic eruptions measured by
the GOME-2 instrument.

GOME-2 is a nadir-viewing across-track scanning UV spectrometer (240–790 nm); GOME-
2 (Munro et al. 2016) is currently flying on two of the three EUMETSAT polar satellites (EPS)
MetOp-A (launched 2006), MetOp-B (launched 2012), and is expected to fly on MetOp-C
(projected launch 2018). For these satellites, the equatorial overpass is at 9:30 h local time on
the descending node of the orbit. The instrument takes regular Earthshinemeasurements as
well as daily solar reference irradiance measurements. GOME-2 has a nominal swath of 1920
km and a corresponding ground-pixel size of 80 km × 40 km. In this configuration, global

Table 4. Average relative errors and correlation coefficients, various algorithms.
Neural network type NN1 (using 4 PCs) NN2 (using PLSR and 4 PCs) NN3 (using 30 PCs)

Time of training 10 s 12 s 220 s
Average error (%) r Average error (%) r Average error (%) r

Training 72 0.63 13 0.94 10 0.98
Validation 72 0.63 13 0.94 10 0.98
Testing 72 0.62 14 0.94 11 0.96
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coverage is achieved within 1.5 days. Since 2012, GOME-2A has operated in narrow-swath
modewith a reduced ground-pixel size of 40 km× 40 km. Currently, data fromboth GOME-2
instruments allow for daily global coverage of atmospheric trace-gas concentrations (see,
e.g. Hassinen et al. 2016). For this work, however, we investigate only volcanic eruptions
measured by GOME-2 aboard MetOp-A.

The inversion operator is applied to selected GOME-2 pixels with volcanic SO2 plume
signatures. For pixel selection, we make use of the volcanic activity flag provided by the
GDP4.x operational products (Loyola et al. 2011; Hassinen et al. 2016). The volcanic activity
detection algorithm is based on the SACS warning algorithm (Brenot et al. 2014) to
discriminate between real plumes and background noise. For each flagged pixel, reflectance
spectra are calculated from the GOME-2 Level-1 solar irradiance and Earthshine radiance
spectra in the wavelength range 315–330 nm. Wavelength calibration for the solar irradi-
ance and Earthshine spectra is performed by applying a traditional DOAS retrieval using a
high-resolution solar reference spectrum (Chance and Kurucz 2010) to correct for Doppler
shifts. During the retrieval, small shifts and stretches of the Earthshine spectrum as a
function of wavelength across the detector array are fitted. These shift and stretch values
are used to generate a wavelength-calibrated Earthshine spectrum. In this way, both the
solar and Earth radiance spectra are calibrated and an appropriate reflectance spectrum
determined – this is then the starting point for retrieving the SO2 plume height.

The plume height values are retrieved using a hybrid algorithm incorporating the
PLSR model with 10 PC scores and a neural network using 4 PC scores. Based on the
retrieved plume height, total vertical SO2 columns (VCDs) are calculated in a two-step
approach: first, for each measurement, the SO2 slant-column density (SCD) is retrieved
using DOAS optical density fitting to appropriate O3 and SO2 cross-sections in the
wavelength range 315–325 nm, and including a Ring-effect reference spectrum for
RRS filling – details can be found in Rix et al. (2012). We note that for high SO2 amounts,
which are common to most strong volcanic eruptions, the DOAS assumption of optically
thin absorption no longer holds in the range 315–325 nm. In order to compensate for
this, a multi-window scheme as described in Hörmann et al. (2013) was applied to
retrieve the SO2 slant columns. In addition to the main window, additional fitting regions
of 325–335 nm and 360–390 nm are used for moderate and very high SO2 amounts,
respectively. A simple threshold criterion based on retrieved SCDs will select the appro-
priate fit window (see Theys et al. 2017).

Second, in order to convert retrieved SCDs to final VCD values, single-wavelength air
mass factors (AMFs) for each viewing and solar geometries, the surface reflection
conditions, the total O3 column retrieved from GOME-2 (Loyola et al. 2011), as well as
the retrieved SO2 plume height from the PLSR model.

In the following sections, we present results of the plume height retrieval and
associated SO2 VCDs for two volcanic eruptions measured by GOME-2 on MetOp-A.

4.1. Eyjafjallajökull, Iceland, May 2010

With the May 2010 eruption of the Eyjafjallajökull volcano in Iceland, large amounts of
ash and gases such as water vapour and SO2 were emitted into the atmosphere. Carried
by winds aloft, the volcanic ash cloud resulted in the closure of airports throughout the
UK and Scandinavia, and later in the rest of northern and western Europe. The volcano
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erupted on 20 March 2010 for the first time since 1821, and again on 14 April. The SO2

plume was clearly detectable by GOME-2 for about 4 weeks after 22 April, with a
maximum vertical column of not more than 15 DU. For this work, we have analysed
the 5th May 2010 GOME-2 measurements, which show a strong SO2 plume over Great
Britain. The retrieved plume heights using the FP-ILM are in the range 6–9 km (see
Figure 9), which is in good agreement with results found by Rix et al. (2012) and
Flemming and Inness (2013) (both 6–10 km) based on GOME-2 UV data, and Carboni
et al. (2015) (4–8 km) based on IASI IR data. Nevertheless the associated errors on the
plume height are expected to be very high according to Figure 8, since the retrieved SO2

total column was generally lower than 15 DU.

4.2. Kasatochi, Aleutian Islands, August 2008

Kasatochi is a stratovolcano located in the Alaskan Aleutian Island chain; it erupted on 7
August 2008 after a period of increased seismicity, with three distinctive explosive
eruptions. About 2 Mt of SO2 were released into the stratosphere, together with large
amounts of ash, which however fell out of the atmosphere very quickly (see Yang et al.
2010). The SO2 plume was transported over the entire Northern Hemisphere and was
detectable by GOME-2 for several weeks.

The plume height retrieval using the FP-ILM detects the SO2 plume at an altitude in the
range 9–10 km, with some parts of the plume even reaching altitudes of 14 km in those
parts of the plume with very high SO2 amounts. Associated errors on the plume height are
expected to be lower, according to Figure 8. Figure 10 shows the retrieved plume height
(left panels) and the recalculated VCDs (right panels) for the first three days after the
eruption, that is from 8 August (upper row) through 10 August (lower row). Although the
ash loadingwas very high for the first few days after the eruption, we note that this had very
little effect on the retrieved plume heights, which are consistent for all days.

Figure 8. Absolute error of the retrieved plume height using the PCR model with K ¼ 15 principal
components as a function of SO2 total column and plume height.
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The results are in very good agreement with those obtained by Yang et al. (2010)
using a direct fitting approach (see Figure 6 therein); these authors also found that the
bulk of the plume was situated at heights of 9–11 km. In their paper, they also compared
their retrievals with CALIOP (cloud-aerosol lidar with orthogonal polarization) measure-
ments of scattering particles and found a slightly higher plume height for scattering
particles (e.g. aeresols) than their retrieved plume height. Also, the results of Nowlan
et al. (2011) showed that most of the plume was situated in the altitude range of 9–10
km, with parts of the plume around 15 km (see Figure 9 therein).
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Figure 9. SO2 plume of Eyjafjallajökull detected by GOME-2a on 5 May 2010. The left panel shows
the retrieved plume heights, the right column the recalculated VCDs based on these retrieved plume
heights.

160°W 140°W

50
°N

60
°N

50°N
60°N

160°W 140°W

50
°N

60
°N

50°N
60°N

50
°N

60
°N

50°N
60°N

50
°N

60
°N

50°N
60°N

160°W 140°W

50
°N

60
°N

50°N
60°N

Plume height (km)

4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

160°W 140°W

50
°N

60
°N

50°N
60°N

>50.0

Vertical column density (DU)

0.1 1.0 2.0 5.0 10.0 20.0

Figure 10. SO2 plumes from Kasatochi measured by GOME-2A on 8 August (upper row), 9 August
(middle row), and 10 August 2008 (lower row). The left panels show the retrieved plume heights, and
the right panels the recalculated VCDs based on these retrieved plume heights.
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5. Conclusions

In this paper, we have described the FP-ILM model for fast and accurate retrieval of SO2

plume height. The FP-ILM has two phases – training and operational. The training phase
involves:

● Smart sampling for generating the training dataset of simulated spectra; a set that
covers optimally the function to invert and at the same time minimise the number
of calls to the RTM;

● dimensionality reduction for mitigating the effects of instrumental noise and
improving the speed and stability of the inversion algorithms of the spectral
radiance dataset;

● linear and non-linear regression models for obtaining the inversion operator.

Smart sampling reduces the total number of samples required to reproduce ade-
quately any statistical dependencies in the training datasets. To reduce the number of
predictors in the regression model and improve the stability of the algorithm, dimen-
sionality reduction methods were applied to the spectral radiance dataset. We have
considered the principal component regression (PCR) and the PLSR. Unlike PCR, PLSR
computes a new set of basis vectors to maximize the correlation between input and
output datasets. In our numerical tests, the PLSR model appeared to be more efficient in
terms of accuracy than the PCR model, although the difference between them is not
dramatic.

The regression analysis is performed in two steps. First, the linear regression model
(PCR or PLSR) is applied to capture general dependencies between spectral radiances
and plume height information. Second, we account for non-linear dependencies by
using neural networks. One important aspect is that, as a result of extracting ‘linear’
dependencies by using PLSR, the neural network structure can be simplified, and the
training time significantly reduced thereby. For our application, we showed that such a
hybrid approach is superior to linear or non-linear regression alone. Regarding the
computational time, we note that the training phase is performed off-line, while the
resulting inverse operator is computationally simple.

The FP-ILM has been applied to the GOME-2 measurements for two volcanic erup-
tions. Results are in good agreement with the literature. However, for the FP-ILM,
additional work still needs to be done to characterize properly the errors in plume
height retrieval and sensitivity. In particular, errors associated with aerosols have not so
far been considered. Note that the influence of aerosols on the spectrum is smooth and
similar to the effect of ground albedo, in contrast to the SO2 absorption-based signa-
tures. It follows that the variability of spectral radiances due to aerosols can be (at least
partially) compensated for through changes in the surface albedo. With that in mind, the
FP-ILM designed for plume height retrieval should be more sensitive to differential
absorption signatures rather than to the continuum signatures associated with aerosols.

The second paper is anticipated which will follow up on some of the issues raised in
this paper. In particular, we plan to apply the FP-ILM to other sensors and more volcanic
eruptions. The effect of temperature–pressure profiles and errors associated with spec-
tral calibration and slit function on the retrieved plume height will be assessed.
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