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ABSTRACT 

There has been a growing demand for bone grafts for correction of bone defects in 

complicated fractures or tumors in the craniofacial region. Soft flexible membrane 

like material that could be inserted into defect by less invasive approaches; promote 

osteoconductivity and act as a barrier to soft tissue in growth while promoting bone 

formation is an attractive option for this region. Electrospinning has recently emerged 

as one of the most promising techniques for fabrication of extracellular matrix (ECM) 

like nano-fibrous scaffolds that can serve as a template for bone formation. To 

overcome the limitation of cell penetration of electrospun scaffolds and improve on 

its osteoconductive nature, in this study, we fabricated a novel electrospun 

composite scaffold of polyvinyl alcohol (PVA) - poly (ε) caprolactone (PCL) - 

Bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual 

electrospinning of PVA and PCL with HAB overcomes reduced cell attachment 

associated with hydrophobic poly (ε) caprolactone (PCL) by combination with a 

hydrophilic polyvinyl alcohol (PVA) and the bioceramic (HAB) can contribute to 

enhance osteo-conductivity. We characterized the physicochemical and 

biocompatibility properties of the new scaffold material.  Our results indicate PVA-

PCL-HAB scaffolds support attachment and growth of stromal stem cells; (human 

bone marrow skeletal (mesenchymal) stem cells (hMSC) and dental pulp stem cells 

(DPSC)). In addition, the scaffold supported in vitro osteogenic differentiation and in 

vivo vascularized bone formation. Thus, PVA-PCL-HAB scaffold is a suitable 

potential material for therapeutic bone regeneration in dentistry and orthopaedics. 
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1. Introduction  

Over the past few decades, there has been a growing demand for bone grafting for 

correcting bone defects in complicated fractures, following tumor resection or during 

repair of developmental disorders-associated pathologies in the craniofacial region 

(Giannoudis, Dinopoulos et al. 2005). Traditionally, autologous bone tissue has been 

the gold standard for bone grafting. However, donor site morbidity, inadequate 

supply ,and other associated impedements  has encouraged search for alternative 

sources of bone (Giannoudis, Dinopoulos et al. 2005). A promising alternative 

source is tissue-engineered bone derived from interaction of stromal skeletal 

(mesenchymal) stem cells (MSCs),biomaterial scaffolds and growth factors (Mikos, 

Herring et al. 2006). To be clinically useful, the properties of tissue-engineered bone 

should “mimic” the native bone tissue (Mikos, Herring et al. 2006).  

A large number of scaffolds with a wide number of applications ranging from mere 

bone filler to more specialized scaffolds have been developed for bone tissue 

engineering (Kouroupis, Baboolal et al. 2013, Wu, Zhou et al. 2013, Yang, Wang et 

al. 2013). The scaffolds should provide a supporting surface for MSCs and in 

addition they are expected to be biocompatible and bioactive (osteoconductive, 

allowing bone cells to grow on or osteoinductive, inducing new bone formation) as 

well as biodegradable at the rate of new bone formation(Jones 2013). The scaffolds 

are also expected to exhibit these ideal properties consistently when fabricated on a 

large scale, following sterilization and when used clinically(Jones 2013). The 

craniofacial region contains bones of varying shape, density and morphology and 

accommodates many vital organs and tissues. The healing of critical bone defects is 

better with patent vascular supply (Garcia and Garcia 2015) and inhibited by 

adjacent soft tissue.  
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Scaffolds which are soft flexible membrane like material that could be inserted into 

defect by less invasive approaches, promote osteoconductivity and act as a barrier 

to soft tissue in growth while promoting bone formation is an attractive option for this 

region. Electrospinning has recently emerged as one of the most promising 

techniques for fabrication of soft and extracellular matrix (ECM) like nano-fibrous 

scaffolds that can serve as a template for bone formation. Numerous polymers and 

natural tissue derivatives have been employed to fabricate scaffolds suitable for use 

in bone tissues. Poly (ε-caprolactone) (PCL) is widely chosen for its biocompatibility 

and mechanical properties (Ciapetti, Ambrosio et al. 2003). However, PCL exhibit 

hydrophobicity, which leads to limited cell attachment and also delayed 

biodegradation (Mohan and Nair 2008).Hydrophobicity of PCL tends to prevent cell 

migration and prolongs scaffold integration with host tissue(Zhu, Gao et al. 2002). 

One promising method of reducing hydrophobicity and increasing porosity of PCL is 

dual electrospinning of PCL with a hydrophilic and biocompatible polymer e.g. poly 

vinyl alcohol (PVA). PVA also introduces several  free hydroxyl chains, which can be 

employed for scaffold functionalization via linking drugs, biomolecules, or growth 

factors(Orienti, Bigucci et al. 2001). The electrospun composite of PVA and PCL is 

food and drug administration (FDA)-approved biomaterial for clinical use. The 

electrospun PVA-PCL material may be combined with a bioactive bioceramic for 

improving on osteoconductivity. 

HAB is triphasic bioceramic developed by incorporation of hydroxyapatite, beta 

tricalcium phosphate, calcium silicates and traces of magnesium in a unique 

combination to act synergistically to produce an osteoconductive and osteoinductive 

material(Jones 2013) . Magnesium was incorporated to aid in improve sintering 

window as well as to generate osteo-immunomodulatory effect (Chen, Mao et al. 
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2014).Incorporation of silicates facilitates bioactivity of scaffold and subsequent 

vascularization of the scaffold construct (Gorustovich, Roether et al. 2010). It is 

plausible that PVA and PCL along with an osteoconductive material such as 

bioactive hydroxyapatite-based triphasic bioceramic (HAB), is an ideal material 

suitable for craniofacial bone tissue engineering.   

To investigate the application of the scaffold for bone regeneration, we tested with 

the stromal cells, namely, hMSC and DPSC in vitro. The hMSC are bone marrow 

derived skeletal stem cells and widely reported to differentiate into osteoblast upon 

induction. We also tested DPSC, cells of craniofacial region; to understand possible 

interaction of cells of neural crest origin on the scaffold. Both the cells served as 

biological replicates to test wider application of scaffold for bone regeneration in the 

skeletal system 

The present study hence aims to fabricate a novel electrospun composite scaffold 

PVA-PCL-HAB, with nanofibrous structure and osteoconductive nature, and to 

investigate its potential role in bone regeneration by combining with bone marrow-

derived MSCs or DPSC through in vitro and in vivo studies in mice models  

2. Materials and Methods 

2.1 Scaffold Fabrication and Physicochemical characterization 

2.1.1 Bioceramic (HAB) Fabrication 

HAB was prepared by refluxing a solution of Tetraethyl-orthosilicate(TEOS) (Sigma-

Aldrich, Germany)  in  ethanol (Sigma Gmbh, Germany).  Calcium Nitrate (Rankem, 

India), Calcium Fluoride (SD Fine, India) and, Magnesium Nitrate (SD Fine, India) 

dissolved in Orthophosphoric Acid (SD Fine, India) was added to the refluxed TEOS 
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solution with heating. The mixture was heated and allowed to undergo gelation. The 

gel formed was dried and calcinated in a Raising-Hearth electric furnace (Bysakh 

&Co, India) at 600◦C for three hrs. The product was then compacted and sintered at 

1200 °C for two hr. The obtained product was then milled in a planetary ball mill 

(Retsch, Germany) at 250 rpm for 20 min. The HAB powder, where then sieved 

through 20µm sieve (Retsch, Germany). 

2.1.2 Electrospinning 

Ten percent w/v PCL solution (70,000-90,000 Mw, Sigma-Aldrich, USA) was 

prepared in a mixture of chloroform and methanol (70:30). Ten percent w/v Poly vinyl 

alcohol (PVA) (89,000-98,000 Mw, Sigma Aldrich, USA) solution was prepared by 

addition of PVA into boiling distilled water. The 0.5% w/v bioceramic granules were 

then dispersed in PCL solution by sonication. The electrospinning of scaffolds were 

performed in a commercially available unit (Holmarc Nanofiber spinning station, 

India).The dual electrospinning technique employed was with a dual pump and dual 

syringe system. The spinning parameters are described in (Table S1). The 

electrospun PVA-PCL-HAB obtained were then cross-linked by glutaraldehyde 

(Sigma Aldrich, USA) solution prepared in 70% Isopropyl alcohol (IP) (SD-Fine 

chemical limited, India) with Conc. Hydrochloric acid (SD-Fine chemical limited, 

India) added to the cross-linking solution as a catalyst. The cross linked product was 

washed in 50% isopropanol and further in water to remove unreacted components. 

The PVA-PCL-HAB scaffold obtained was then air dried in a laminar flow hood. The 

morphology of scaffold was imaged with scanning electron microscopy (SEM) (Nova 

NanoSEM 600; FEI Company, Netherlands and Hitachi S 2400, Japan). 
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2.1.3 Physicochemical Characterization 

The chemical compositions of the scaffolds were ascertained by comparing the 

Fourier Transform Infrared with Attenuated Total Reflectance (FTIR-ATR) spectra of 

scaffold and its individual components. FTIR-ATR spectra was obtained using 

ThermoNicolet 5700 FTIR with diamond ATR accessory, in the frequency range of 

(4000 – 400 cm-1). The thermal stability of the samples was determined by 

Thermogravimetric Analysis as according to ASTM E1131-03 using 

Thermogravimetric Analysis-Differential Thermal Analysis (TGA-DTA) instrument 

(Model SDT 2920 TA Instruments Inc., New Castle, DE).  

Water contact angle testing and swelling studies was performed to quantify the 

hydro-affinity of the scaffolds. The sessile drop method was employed to record 

water-in-air contact angles of the scaffolds at room temperature ( 25°C) using a 

video-based contact angle measuring device (Data Physics OCA15 plus) and 

imaging software (SCA 20 software) our published protocol (Thomas and Nair 2011). 

For the swelling studies, electrospun PVA, electrospun PCL and PVA-PCL-HAB 

were cut into squares of 100 mm2 sizes, weighed and immersed in distilled water (pH 

7.4) for continuous intervals of time. The strips were removed and carefully blotted 

using filter paper to remove excess fluid and weighed. The Swelling index calculated 

by the formula = ((Final weight - Initial weight) / (Initial weight)) ×100 

 2.1.4 Ion washout 

PVA-PCL-HAB was cut into 1cm2 area were immersed in 1mL of phosphate buffered 

saline (PBS) at 37 °C with pH of 7.4. Total volumes of the PBS were replaced with 

fresh PBS at day 1, 3, 5, 7 and 14 (Andersen, Offermanns et al. 2013). Ionic 
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concentration of calcium ions and silica ions released into the washout PBS was 

quantified with Inductive coupled plasma optical emission spectroscopy (ICP-OES) 

(5300DV, Perkin Elmer, USA). 

2.1.5 Stimulated Body Fluid (SBF) immersion 

SBF immersion experiment was performed to test the in vitro apatite forming ability 

of the scaffold (Kokubo and Takadama 2006).The scaffolds of 7 mm2 area were 

immersed in 10 ml SBF (pH 7.4) and incubated at 37°C for 30 days. The samples 

collected at days 14 and 30, were washed with deionized water and dried at 37 °C. 

The apatite formation on the PVA-PCL-HAB were imaged by SEM and analyzed by 

Energy dispersive X-ray Spectroscopy (EDAX). 

2.2 Cell Culture 

2.2.1 Cell isolation and characterization  

The DPSC were obtained from therapeutically extracted fully developed impacted 

healthy third molars from healthy young adult donors. The procedure was performed 

in accordance with the approved guidelines of The Central Denmark Region 

Committee on Biomedical Research Ethics. The isolation of DPSC, preparation of 

culture medium (CM) and osteogenic induction medium (OB) were performed as 

previously described (Kraft, Bindslev et al. 2010). For bone marrow MSCs, we used 

the human telomerase immortalized bone marrow derived skeletal stem cell line: 

hMSC-TERT that has been created in our laboratory and expresses all markers 

characteristics of primary hMSC including in vivo bone formation (Simonsen, Rosada 

et al. 2002, Al-Nbaheen, Vishnubalaji et al. 2013). For simplicity, we will refer to 

these cells hereafter as hMSC. All experiments included have a control group 
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supplemented with CM and an osteogenic differentiation group supplemented with 

OB.  

2.2.2 MSCs characterization 

Flow cytometry was performed on the cells to evaluate the MSC surface marker 

expression. DPSC and hMSC, were separately trypsinised to a single cell 

suspension, were blocked in 2% BSA before incubation with pre-conjugated 

antibodies, or matched isotype controls (Table S3), for 45 min on ice. All samples 

were washed in FACS buffer (PBS, 40 nM EDTA and FBS 2%) and were analyzed 

with Beckman Coulter Cell Lab QuantaTM SC and WinMdi software.  

2.2.3 Cell Seeding, Attachment, Spreading and Proliferation 

The PVA-PCL-HAB scaffolds of 3mm diameter were punched out using biopsy 

punch (Kai Europe GmbH, Germany). Scaffolds were sterilized in 70 % ethanol for 

thirty min, followed by washing thrice in sterile water and further sterilized by dried 

under UV light (Rainer, Centola et al. 2010) for 30 min. Prior to seeding, the 

scaffolds were conditioned by wetting with culture media to obtain uniform seeding. 

The conditioned scaffolds placed in ultra-low adhesion tissue culture plates (Costar, 

Corning) were seeded with 3 × 104 cells in 5 µl per scaffold.  Scaffolds were then 

incubated at 37 °C, 5% CO2 for 45 min to allow cell attachment. The CM was 

supplemented immediately after the cell attachment. Osteogenic induction was 

initiated at 24 hrs , post seeding. 

Cell attachment and proliferation on the PVA-PCL-HAB were assessed by 

DAPI/Phallodin staining and Cell Titre- Blue (Promega, Madison, USA) assay 

respectively for time points 1, 2, 5 and 7 days. DAPI/ Phalloidin staining were 
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performed as per, protocol (Andersen, Offermanns et al. 2013).The stained PVA-

PCL-HAB were imaged under Olympus FV1000MPE Confocal microscope for DAPI 

(359 nm) and Phallodin (550 nm) respectively.  

Cell spreading on scaffolds were examined by SEM. PVA-PCL-HAB seeded with 

lower cell density 1000 cells/ scaffolds were fixed in 2.5% glutraldehyde for one hour, 

washed in PBS and dehydrated in graded series of alcohol and SEM performed at 

conditions stated previously (Shabani, Haddadi-Asl et al. 2014). The spreading of 

cells on scaffolds was imaged at 1, 5, 10 and 15 days. The proliferation of cells 

seeded on the scaffolds was estimated by number of viable cells Using Cell Titer-

Blue reagent (Promega, Madison, USA). The absorbance measured was normalized 

to the standard linear curve established to obtain cell number. The assumption made 

was cells are not metabolically active until 24 hr. 

2.2.4 ALP activity 

Alkaline phosphatase (ALP) activity was measured by using enzymatic p-nitrophenyl 

phosphate (Sigma-Aldrich) substrate reduction and further, normalized against the 

cell number. Cell number was quantified by the addition of Cell Titer-Blue reagent to 

culture medium, incubating at 37 °C for 1 hr., and measuring fluorescent intensity 

(560EX/590EM). Samples were then washed with PBS and Tris-buffered saline, fixed 

with 3.7% formaldehyde in 90% ethanol for 30 s at room temperature, incubated with 

substrate (1 mg/ml of p-nitro phenyl phosphate in 50 mM NaHCO3, pH 9.6, and 1 

mM MgCl2) at 37 °C for 20 min, and the absorbance measured at 405 nm (Qiu, Hu et 

al. 2010).ALP activity was normalized to cell number. ALP activity of cells on tissue 

culture plates (Plastic) with CM and OB were used as positive controls. 
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2.2.5 Cytochemical staining 

ALP staining (Harkness, Mahmood et al. 2011) and Alizarin red staining (AZR)  

(Harkness, Mahmood et al. 2011) (Sigma-Aldrich, Denmark) for osteogenic 

differentiation was performed post-fixation using either ice cold 70% ethanol for 1 hr. 

(AZR) or 0.10 mM citrate buffer pH 4.2/acetone fix (ratio 3:2) for 5 min at room 

temperature (ALP). ALP staining was carried out with a (ratio 1:1)solution mix of 

0.2 mg/ml Napthol AS-TR phosphate substrate (Sigma-Aldrich, Denmark) in water 

and 0.417 mg/ml of Fast red (Sigma-Aldrich, Denmark) in 0.1 M Tris (pH 9.5) for 

1 hr. at room temperature. Samples for AZR staining were incubated in 40 mM AZR 

at pH 4.2 for 10 min at room temperature followed by washing in distilled water and 

PBS, before examination for the presence of mineralized matrix. 

2.2.6 Osteogenic Gene expression 

Cell seeded on PVA-PCL-HAB and the controls, cells seeded on culture plates 

(Plastic) were lysed for total RNA extraction using Trizol (Invitrogen, Denmark); 

according to manufacturer's instructions The RNA pellets obtained were  quantified 

using NanoDrop1000 spectrophotometer v3.7 instrument (Thermo Fisher Scientific, 

U.S.A). cDNA were constructed using a revertAid H minus first strand cDNA 

synthesis kit (Fermentas, St Leon-Rot, Germany) according to the manufacturer's 

instructions. RT-qPCR analysis was performed with StepOnePlusTMsystem (Applied 

Biosystems, Denmark)..Following normalization to reference genes, quantification of 

relative gene expression was carried out using a comparative CT method at day 15. 

The expression of osteogenic markers RUNX2, alkaline phosphatase (ALP), 

Collagen 1α1 (COL1a1), Osteocalcin (BGLAP), Osteonectin (SPARC), and 

Osteopontin (SPP1) were compared with controls. The sequence of Primers (Eurofin 
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MSW Operon, UK) used for RT-qPCR reaction are depicted in supplementary 

information (Table S4). 

2.3. Ectopic bone formation  

All in vivo experiments were performed under the permission from Danish National 

Ethical committee on animal experiments. Danish regulations for care and use of 

laboratory animals were maintained throughout the experiments. Ectopic bone 

formations on cell seeded scaffolds were tested by implantation of cell laden 

scaffolds subcutaneously in NOD.CB17-Prkdcscid/J mice as per our lab protocol 

(Abdallah, Ditzel et al. 2008). 5×105 cells were seeded on scaffolds in vitro and were 

implanted subcutaneously. Each mouse  had four implants, two were the cell laden 

PVA-PCL-HABs and other two implants  were cells seeded on 40mg hydroxyapatite-

tricalcium phosphate (HA/TCP, Triosite 0.5 – 1mm granules, Biomatlante/Zimmer, 

Vigneux de Bretagne, France), which served as the control (Harkness, Mahmood et 

al. 2011). DPSC (n = 4) and hMSC (n = 4), seeded scaffolds were used in separate 

mice. Eight weeks after implantation, the scaffolds and implants was removed and 

fixed in 4% Paraformaldehyde and decalcified with 0.38 M EDTA before embedding 

in paraffin. Sections were stained with Haematoxylin and Eosin (H&E), human 

Vimentin antibody(VM) (clone SP20,Thermo Scientific) and Collagen Type I antibody 

(Col Type I) (LF-67 kindly provided by Dr. Larry Fisher, the National Institute of 

Dental and Craniofacial Research, National Institutes of Health) and Sirius red in 

picric acid(Sirius red F3BA), imaged under polarized light. 

2.3.3 Statistical Analysis 

All in vitro experiments were performed in at least in triplicates. The data represented 

are mean ± standard error of the mean. The comparisons between groups were 
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carried out by analysis of variance (ANOVA) with multiple comparisons followed by 

Tukey post hoc test. t - Tests were performed when only two groups were compared. 

Statistical analysis was performed using GraphPad Prism (version 6.00, GraphPad 

Software, La Jolla California USA). P values < 0.05 were considered significant. 

3. RESULTS 

Physiochemical Characterization of PVA-PCL-HAB scaffold 

The PVA-PCL-HAB was fabricated using the electrospinning process with dual pump 

and dual syringe. (Fig. 1A), shows fiber morphology visualized by SEM. The fibers 

are smooth, randomly aligned and formed a sheet consisting of interpenetrating 

network of thick (1000±240 nm; n = 60) and thin fibers (230±100 nm; n = 60).The 

pores in range from 2µm - 20 µm, were measured from SEM images. The 

bioceramic HAB particles dispersed in PCL solution during scaffold manufacturing 

adhere to the thick fibers with visible granules (Fig. 1A). 

The IR spectra (Fig.1B) exhibited characteristic peaks of individual polymers PVA 

and PCL as well as pure HAB and PVA-PCL-HAB. The spectra of pure polymer PCL 

show characteristic  IR bands (Table S2)of 1721 cm-1 attributed to C=O stretching 

(str), and  C-O str bands at 1238 cm-1 and 1292 cm-1. C-O-C str frequencies of 1164 

cm-1  ,1108 cm-1 and 1049 cm-1 and the 2941 cm-1are attributed to the asymmetric 

(Asy.str) of CH2 bands. All the typical bands for PCL were also seen in PVA-PCL-

HAB. Characteristic broad peaks at 3259 cm-1attributed to OH str and CH2 vibration 

(Vib) band at 1417 cm-1 were seen in both pure PVA and PVA-PCL-HAB. 

Characteristic 1050 cm-1peak attributed to Si-O-Si strand 960,934, 583, and 546 cm-

1peaks, attributed to PO4
3-ions were observable in pure HAB and PVA-PCL-HAB. 
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These data confirms that all polymers and bioceramic particles are present in the 

material. 

Thermal stability was assessed by Thermo gravimetric analysis (TGA) studies. TGA 

thermogram of electrospun PVA, PCL, and the PVA-PCL-HAB scaffolds shows that 

the materials are thermally stable at 37 °C (Fig.1E) and the thermogram of PVA 

showed the onset of decomposition at about 60 °C caused by the loss of water 

present in the scaffold. The second decomposition demonstrates breaking up of C-H 

bonds. The temperature at which 50% of the mass loss occurs is generally 

considered as a measure of thermal stability.  In the case of PVA, 50% mass is 

remaining at 299°C and 7.34% mass is remaining at 494°C. PCL has good thermal 

stability with onset of decomposition near to 330 °C, and mass loss was less than 

8% even at 353 °C. Half of mass is remaining at 395°C and 0.6% mass only is 

remaining at 494°C. The thermal stability of PCL is significantly greater than that of 

PVA. The thermal degradation pattern of the hybrid scaffold PVA-PCL-HAB tended 

to become similar to PCL. The hybrid material thus has a very good thermal stability 

with 50% mass loss at a slightly elevated temperature of 398°C. 

The hydrophilicities of the materials were assessed by studying their water 

absorption capacity and their air- water contact angles. Water contact angle 

measurements of PVA scaffolds and PCL scaffolds were (80.27°±11.8) and (124°± 

3.7) respectively (Fig. 1C). The combination of PVA fibers and PCL fibers showed 

significant increase in hydrophilic affinity (98.85°± 9.6; P< 0.05) of PVA-PCL-HAB, 

when compared with PCL scaffold. PCL is hydrophobic and its swelling index at pH 

7.4 was around 260 %. PVA on the other hand has been reported to be hydrophilic 

and we observed a higher swelling of around 450%. Co- electrospinning PCL and 

the hydrophilic PVA increased the hydrophilicity and water absorption capacity of the 
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hybrid material. As shown in (Fig. 1D) the water absorption capacity estimated by 

swelling of the hybrid material is around 350 % which lies between the values 

observed for the individual polymers. Thus, the swelling studies ensure that the 

hydrophilic/ hydrophobic tuning can be achieved by appropriate co-electrospun 

blends of materials. Incorporation of silica particles has been reported to reduce 

hydrophobicity of PCL (Lee, Teng et al. 2010). Water contact angle measurements 

for surface hydro affinity properties showed that the PVA-PCL-HAB scaffold had a 

mean contact angle significantly reduced compared to electrospun PCL under similar 

testing conditions. Our results indicated there is no significant change in water 

contact angle measurement following addition of HAB to PCL. The swelling ratio 

analysis showed the swelling capacity of PVA-PCL-HAB was at an intermittent 

percentage of 350% between the higher swelling ratio of PVA and lower swelling 

ratio of PCL. The higher swelling ratio favors the perfusion of nutrients required for 

cell growth(Shanmugasundaram, Ravichandran et al. 2001). The increased swelling 

ratio would also facilitate free ionic exchange from the scaffold 

ICP-OES analysis of the washout collected showed significant gradient increase in 

cumulative ion release of calcium and silica from the PVA-PCL-HAB until a plateau 

was reached at day7 (Fig . 1F). The ion release profile also indicates that PVA-PCL-

HAB was able to deliver calcium and silica ions essential for the initiation of bioactive 

response. 

 

SBF immersion 

The apatite depositions on the biomaterial surfaces upon immersion in SBF were 

reported to be predictive for in vivo bone bonding ability. The SEM image of PVA-

PCL-HAB samples immersed in SBF for 30 days showed accumulation of apatite like 
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crystals (Fig.1 G) .The EDAX analysis of the crystals confirmed apatite deposition 

with peaks of calcium and phosphorous (Fig.1 G). 

Cell Characterization 

Both hMSC and DSPC exhibited similar stromal cell-like morphology (Fig. S1). Flow 

cytometry analysis showed that both hMSC and DPSC express characteristics MSC 

surface markers: CD44+, CD73+, CD90+, CD105+, and CD166+and CD14-(Fig.S1). 

hMSC cultures contained increased numbers of CD63+ and CD146+cells as 

compared to DPSC. DPSC had a mixed CD146 positive phenotype 

Cell Viability, Proliferation and Spreading 

DAPI and Phallodin staining at day one post cell seeding on PVA-PCL-HAB; (Fig. 2 

(I)) revealed good cell attachment as evidenced by the presence of elongated actin 

filaments. By day 7, the cells were evenly distributed throughout the scaffold. Both 

hMSC and DPSC proliferated efficiently on the PVA-PCL-HAB scaffold. Cell number 

as estimated by cell-Titre blue assay revealed increased cell number up to 7 days 

post-seeding (Fig. 2 (II)). SEM analysis showed both hMSC and DPSC attach, 

proliferate and spread on the scaffold surface (Fig.2 (III)). Both cell types formed 

confluent cell sheet with only limited visible on PVA-PCL-HAB surface by day 15. 

ALP Activity 

We employed ALP activity as a marker for osteoblastic lineage commitment. The 

ALP activities of both cell lines were compared when cultured on plastic surfaces 

and on PVA-PCL-HAB scaffold. Both cell types increased their ALP activity in 

response to osteoblast induction media. However, we observed some quantitative 

differences in ALP activity. For hMSC the maximal ALP activity was observed at day 
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10 when cultured on plastic and on day 15 when cultured on PVA-PCL-HAB scaffold 

(Fig. 3A) and there was no significant difference in maximal ALP activity. For DPSC, 

ALP activity was low when cultured on plastics compared to PVA-PCL-HAB scaffold. 

Similar to hMSC, maximal ALP activity was observed on day 15 when cultured on 

PVA-PCL-HAB scaffold (Fig. 3C).Similar results were obtained from cytochemical 

staining for ALP of cultured cells on plastic and on PVA-PCL-HAB scaffold(Fig.3 

B,D) 

Ex vivo mineralization 

The ability of PVA-PCL-HAB scaffold to support the formation of in vitro mineralized 

matrix was examined. Following in vitro osteoblast differentiation induction, cells 

cultured on plastics and on PVA-PCL-HAB scaffold were examined for the presence 

of mineralized matrix as visualized by Alizarin red staining. Both cell types formed 

mineralized matrix at day 15 post osteoblast differentiation, when cultured on plastics 

(Fig.3 E) and similar pattern was observed on PVA-PCL-HAB scaffold. However, 

hMSC exhibited more intense staining (Fig.3 E).  

Ex vivo Osteoblastic gene expression  

We also examined for the ability of PVA-PCL-HAB scaffold to maintain the 

differentiated osteoblastic phenotype compared to standard plastic culture surfaces. 

The expressions of RUNX2, Col1a1, ALP, SPARC, SPP1 and BGLAP, mRNA were 

quantitated at day 15 following in vitro osteoblast differentiation induction (Fig.4). 

Both hMSC and DPSC expressed osteoblast gene markers when cultured on plastic 

and on PVA-PCL-HAB scaffold (Fig.4). However, some markers exhibited 

quantitative differences when the cells were cultured on plastic versus PVA-PCL-

HAB scaffold. For hMSC (Fig. 4 A), Col1a1 expression was higher when cells 
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cultured on plastics whereas SPP1 was higher when cells were cultured on PVA-

PCL-HAB scaffold. Similarly, DPSC exhibited a dramatic upregulation expression of 

SPP1 when cultured on plastic compared to cells cultured on PVA-PCL-HAB scaffold 

(Fig. 4B). 

In vivo ectopic bone formation 

All mice implanted with PVA-PCL-HAB scaffolds were healthy, gained weight and 

had no signs of inflammation during the experiment. Eight weeks post subcutaneous 

implantation in immune deficient mice; PVA-PCL-HAB implants were vascularized as 

seen by visual inspection (Fig. 5 and inset). Histologic examination (Fig. 5) showed 

areas of bone formation in implants containing either hMSC or DPSCs as evidenced 

by the presence of a positive stain of type I collagen and the presence of 

characteristics birefringence of organized collagen type I (Sirius Red F3BA). These 

matrixes were produced by the cells of human origin, as evidenced by positive 

staining of human specific anti-VM antibody (Fig.5). 

 

4. Discussion  

The aim of the present study was to develop a biodegradable and less invasive 

electrospun biomaterial that supports skeletal stem cell osteoblastic differentiation 

and bone formation with vascularization in the peripheral and craniofacial skeleton. 

In the present study, we have demonstrated that an electrospun PVA-PCL-HAB 

scaffold can support osteoblast differentiation of two types of stem cells relevant to 

bone tissue regeneration: bone marrow derived skeletal stem cells and dental pulp 

stem cells as well as in vivo ectopic bone model.  
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We fabricated an electrospun scaffold with nano fibrous porous structure to mimic 

the native extracellular matrix of bone (Holzwarth and Ma 2011, Wang, Ding et al. 

2013). The PVA-PCL-HAB scaffold comprises a dual electrospun network of PCL 

and PVA which has incorporated HAB bioceramic to facilitate osteoconductivity. 

Hydrophilic PVA is included in the scaffold as it degrades faster than PCL and thus 

reducing the bulk of the scaffold as new bone is formed. The combination of PVA 

and PCL is used for enhancing the hydrophilicity; cell attachment allows better cell 

penetration upon attachment. We have also included in the scaffold a bioceramic: 

HAB. Bioceramics support bone formation by hydroxycarbonate apatite 

(HCA)(Hench and Paschall 1973). The HAB used for scaffold fabrication was a 

triphasic bioceramic (an amorphous mixture of hydroxyl apatite (HA), beta tricalcium 

phosphate (TCP) and calcium silicate and traces of magnesium).The optimized 

concentration of magnesium was added to improve sintering window without 

affecting bioactivity (Ma, Chen et al. 2010) . The incorporation of magnesium along 

with beta tricalcium phosphate has been reported to generate an osteo-

immunomodulatory effect and inhibit osteoclastogenesis (Chen, Mao et al. 2014). 

We mixed HAB with PCL before electrospinning to produce electrospun PVA-PCL-

HAB composite. The anticipated bioactive mechanism is based on HAB releasing 

calcium and phosphate ions upon contact with body fluids that raise local pH and 

form a silica rich interface as well as facilitating surface mobilization and 

accumulation of amorphous apatitic calcium phosphate phase. Assimilation of 

hydroxyls and carbonates from the solution by the apatitic calcium phosphate phase 

leads to reorganization and deposition of HCA. The HCA layer binds to the host 

bone by its interaction with collagen fibrils of the native bone. We employed a 

number of technologies to confirm the expected biophysical characteristics of PVA-
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PCL-HAB scaffold. The SEM images confirmed that the electrospinning of PVA-PCL-

HAB resulted in nanofibrous porous network. The presence of bioceramic granules 

on the thick fibers denote that thick fibers were PCL and the EDAX spectra of the 

granules also confirmed the elemental peaks of calcium, phosphate, silica and 

magnesium. The FTIR spectral peaks confirm the presence of PCL, PVA and HAB in 

the electrospun scaffold. The thermal stability data confirmed the stability of the 

PVA-PCL-HAB was comparable to highly stable PCL and the thermal stability was 

also considerably higher than PVA. The PVA-PCL-HAB scaffold depicted the typical 

characteristic peaks of all the constituent individual materials with no evidence of 

covalent interactions. Hence, the composite material maintains the characteristics of 

the constituent materials and act as a synergistic blend (Mohan and Nair 2008).  

Ion washout release profile studies demonstrated that calcium and silica ions were 

released from PVA-PCL-HAB scaffold. The release of calcium and silicion increased 

until day 7, where it attained a plateau. The lower levels of released silicon ions 

when compared with calcium ions released were proportional to the lower 

percentage of silicates incorporated while fabrication of HAB. Silicon ions are only 

required for initiation of bioactive reaction, while the progression of reaction and 

completion of the reaction would be governed by calcium and phosphate complex 

(Hench 1991) 

We tested the hypothesized bioactivity and bone bonding of the scaffold by SBF 

immersion experiments in accordance with the proposal by Kokubo et al, that any 

bone boding surface is expected to produce apatite like structure upon immersion in 

SBF for a period of four weeks (Kokubo and Takadama 2006). SEM images of the 

SBF immersed PVA-PCL-HAB showed surface deposition of apatite like crystals at 
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day 30. The EDS examination of crystals showed increased calcium and phosphate 

peaks indicative of apatite crystal formation.  

We tested two stromal derived stem cells: DPSC and hMSC. DPSC, are stem cells 

of neural crest origin (Arthur, Rychkov et al. 2008, La Noce, Mele et al. 2014) 

whereas hMSC are bone marrow derived skeletal stem cells of mesodermal origin; 

both the stem cells are capable of bone formation in craniofacial region (Tollemar, 

Collier et al. , La Noce, Mele et al. 2014, Tollemar, Collier et al. 2016). Generally 

both cell types exhibited similar phenotype but we observed some quantitative 

differences. Fewer CD146 expressing cells were present in DPSC cultures 

compared with bone marrow hMSC. CD146 expressions has been reported to 

associated with osteogenic potential of bone marrow hMSC(Sacchetti, Funari et al. 

2007).  

We observed that both hMSC and DPSC attached readily to the PVA-PCL-HAB 

scaffold and more than 70 % of the seeded cells attached at day 1 post seeding. Cell 

attachment on the scaffold surface is dependent on the method of seeding and 

hydro-affinity of the scaffold surface. We employed the sessile drop high density 

seeding method that has been reported to provide maximal cell attachment 

(Reynolds, Riehle et al. 2014).  

PVA-PCL-HAB scaffold with its balanced hydrophobic-hydrophilic properties 

supported cell viability and proliferation of both bone marrow hMSC and DPSC. Both 

cell types were seen to be uniformly distributed, viable and proliferating on the 

scaffold. However, the three dimensional distribution of the cells in the scaffold 3D 

architecture impedes its quantification. Hence we adopted the cell titer blue assay to 

quantify the average number of viable cells present at different time points. The 
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hMSC were seen to proliferate at significantly higher rate at day 7 when compared to 

DPSC which continued at stationary phase.  

The ability of PVA-PCL-HAB scaffold to support osteoblastic differentiation of hMSC 

and DPSC cells were tested using a number of criteria: ALP activity, osteoblastic 

gene expression and the ability to form mineralized matrix.  While we observed 

similar results between hMSC and DPSC, there were quantitative differences in the 

levels of ALP activity or osteoblastic gene expression, that can be explained by 

differences in cell confluence and cell number as these factors may exert additional 

effects independent of the differentiated status of the cells (Tomlinson, Dennis et al. 

2015). In addition to the ability of PVA-PCL-HAB scaffold to support in vitro 

osteoblast differentiation of DPSC and hMSC, it supported bone formation in vivo in 

an ectopic bone formation model. We observed good vascularization of the PVA-

PCL-HAB scaffold which may be linked to stimulated local production of VEGF by 

the dissolute products of HAB(Day, Boccaccini et al. 2004). Histological analysis of 

the implants demonstrates the ability of the PVA-PCL-HAB scaffold to support bone 

formation. The in vivo implantations without inducing the seeded cells also confirm 

the ability of scaffold to receive molecular cues from host tissue and synchronize 

bone formation. The material could hence be used as a soft and less invasive 

scaffold for bone defects of the craniofacial region.  

The highlighting feature of the study was to reproduce the in vitro bone formation 

results in an in vivo setting even in the absence of osteogenic induction through 

using appropriate biomaterial of the study. These in vivo studies provide a supportive 

data to the first time report of potential clinical use of this scaffold in contrast to any 

other previously reported polymer based biomaterials.  
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5. Conclusions 

In this study we have developed an electrospun PVA-PCL-HAB scaffold with a 

hydrophobic-hydrophilic nature and promoting osteoconductivity. The scaffold has 

ability to support proliferation, osteoblastic differentiation and bone formation for two 

different stem cell types; hMSC and DPSC in vitro. The biomaterial further supports 

skeletal stem cell osteoblastic differentiation and bone formation with vascularization 

in vivo. These results encourage testing of this material for therapeutic applications 

of bone regeneration in the field of orthopedics and dentistry. Hence we recommend 

PVA-PCL-HAB scaffold with multiple applications as an ideal material for 

vascularized craniofacial bone tissue engineering. Further studies with craniofacial 

defects in mice and large animal models are planned in future. 
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Fig.1. Physicochemical characterization. 

(A) Scanning Electron Microscopic (SEM) image PVA-PCL-HAB (Scale bar: 5 µm). (B) Stacked 

FTIR spectra shows peaks of PVA, HAB, PCL, PCL-HAB and PVA-PCL-HAB. (C) Water Contact 

angle measurement of PVA, PCL, PCL-HAB and PVA-PCL-HAB. ( * P< 0.05)  (D) Swelling 

profile of  PCL, PVA-PCL-HAB and PCL ( E ) Thermogram of PVA, PCL and PVA-PCL-HAB. (F) 

ICP-OES analyses of ion washout  PVA-PCL-HAB.  (* P< 0.05) (G) SEM (Scale bar: 50 µm) and 

Electron Dispersive X-ray spectra shows apatite crystals formation at day 30 after immersion in 

Stimulated Body Fluid. 
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Fig.2. Cell attachment, proliferation and spreading 

(I) Dapi / Phalloidin staining. Confocal microscopy of Dapi / Phalloidin stained cells attached 

on PVA-PCL-HAB  (Scale bar: 100 µm)  (A) hMSC day 1 (B) hMSC day 7 (C) DPSC day 1 

(D) DPSC day 7 .  

(II)  Cell proliferation assay. A significant increase (* P< 0.05) in cell number was detected for 

both hMSC and DPSC on PVA-PCL-HAB.  

(III) Cell proliferation and spreading on PVA-PCL-HAB.   Scanning Electron Microscopy 

(Scale bar: 50µm). 
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Fig.3. Osteoblastic differentiation and mineralization. 

(A) ALP activity hMSC (*P<0.05) (B) ALP staining hMSC ( C) ALP activity DPSC (*P<0.05) 

 (D) ALP staining DPSC (E) Alizarin RED staining (Scale bar : 200 µm) ; inset shows macroscopic 

view 
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Fig.4. Osteogenic gene expression 

Relative fold change by RT-qPCR analysis at day 15 on Plastic and PVA-PCL-HAB (*P<0.05)  

(A) hMSC (B) DPSC 
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Fig. 5. In vivo implantations in NOD-SCID mice. 

 At eight weeks, ectopic bone formation on subcutaneous implantation demonstrate blood vessel 

ingrowth seen both cell groups (hMSC and DPSC). Histology mosaic image (10x) magnification and 

the inset (H&E) shows bone formation and cell migration through PVA-PCL-HAB. Human Anti 

vimentin (VM) stain shows presence of cells of human origin  


