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Abstract

Adopting successful climate change mitigation policies requires the public to choose how to

balance the sometimes competing goals of managing CO2 emissions and achieving eco-

nomic growth. It follows that collective action on climate change depends on members of the

public to be knowledgeable of the causes and economic ramifications of climate change.

The existing literature, however, shows that people often struggle to correctly reason about

the fundamental accumulation dynamics that drive climate change. Previous research has

focused on using analogy to improve people’s reasoning about accumulation, which has

been met with some success. However, these existing studies have neglected the role eco-

nomic factors might play in shaping people’s decisions in relation to climate change. Here,

we introduce a novel iterated decision task in which people attempt to achieve a specific

economic goal by interacting with a causal dynamic system in which human economic activi-

ties, CO2 emissions, and warming are all causally interrelated. We show that when the

causal links between these factors are highlighted, people’s ability to achieve the economic

goal of the task is enhanced in a way that approaches optimal responding, and avoids dan-

gerous levels of warming.

Introduction

An ongoing challenge facing society is how to minimize the negative impacts of global climate

change. As noted by Newell, McDonald, Brewer, and Hayes[1], tackling this problem requires

an understanding of how people think and reason about (1) environmental systems, and (2)

the (adverse) effects that human activities have on these systems. A key insight is that the prob-

lem of climate change mitigation can be understood in terms of the more general problem of

how people manage and control dynamic causal systems[2]. Osman[3] provided a recent

review of the multitude of tasks that have been developed to investigate how people interact
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with, and manage, dynamic systems, and the different classes of theories that have been devel-

oped to explain performance. A common finding is that people often lack insight into the

rules, or interactions among variables, that govern how these systems behave. It follows that

the mental models—the psychological representation of system variables and their effects—

people rely on to complete these tasks are lacking in important ways[4]. Generally speaking,

people’s mental models of complex systems inaccurately represent and/or relate variables to

one another[5], are missing important mechanistic relationships[6], and misrepresent the

underlying system dynamics[7]. It follows, then, that people’s ability to control causal dynamic

systems tends to be quite poor[3]. A practical challenge lies in identifying ways in which peo-

ple’s reasoning about causal dynamic systems can be improved, such that better management

and control outcomes can be achieved.

The need to improve the accuracy of people’s mental models is especially important for cli-

mate change mitigation. Several authors view an accurate mental model of climate change as a

necessary step toward adoption of effective mitigation policies[8–9]. However, it is known that

laypeople possess highly inaccurate mental models about the causes of climate change[10–13],

and that they do not accurately represent the stock-and-flow dynamics that govern the accu-

mulation of atmospheric CO2[14]. Because misconceptions about climate change dynamics

have been argued to encourage complacency with respect to climate change mitigation[15], a

goal of recent research has been to identify ways of overcoming the limitations of people’s

mental models to improve their understanding of climate change dynamics. These studies

have focused on improving people’s reasoning about accumulation dynamics in tasks with an

explicit environmental goal: to stabilize levels of atmospheric CO2[14,16–19]. In this article,

we build upon this work, by investigating performance in a novel repeated-decision task,

where people have an explicit economic goal to achieve—rather than an environmental goal—

but their progress toward that goal can be hindered by negative effects of global warming

within the system. We show that people’s ability to achieve the economic goal is tied to receiv-

ing accurate causal knowledge about the system variables. Causal knowledge about the interac-

tions between economic and climate variables within the system appears to bias people toward

more cautious means-ends pursuit of the economic goal. The effect of causal knowledge

appears to be robust over time and incremental changes in the state of the causal system, and

persists for over two hundred consecutive decisions.

We proceed by reviewing previous studies that have examined people’s ability to manage

accumulation dynamics in climate change tasks. We discuss some of the methodological limi-

tations of these studies before introducing our novel repeated-decision task. We then consider

how a naïve decision-maker might approach the task, based on causal model-based, exemplar-

based and hypothesis-testing perspectives on how people manage dynamic causal systems, and

consider how causal knowledge might affect performance through the lens of these theoretical

frameworks.

Accumulation dynamics and climate change: Previous studies

It is now well established that people often have difficulty controlling and accurately predicting

the behavior of systems that are defined by accumulation dynamics[7,20]. In these systems, the

quantity of a stock is affected by inflows and outflows to the system, respectively increasing

and decreasing the quantity of stock. As noted repeatedly by Sterman and colleagues, accumu-

lation dynamics of this kind are central to understanding climate change mitigation, as accu-

mulated CO2 can be viewed as a stock affected by inflows (i.e., anthropogenic CO2 emissions),

as well as outflows (i.e., natural carbon sinks, such as forests and oceans). Because warming is

driven by the accumulation of atmospheric CO2 emissions (i.e., whenever the rate of inflow is
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greater than the rate of outflow), it follows that climate change mitigation hinges, minimally,

on stabilization of the stock of atmospheric CO2.

Sterman and Booth Sweeney[14] introduced a climate stabilization task intended to assess

how people reason about accumulation dynamics applicable to climate change mitigation.

People were shown graphs illustrating the stabilization of atmospheric CO2 (the stock) at some

time in the future. People were also shown a graph of the recent history of CO2 emissions (the

inflow) along with the current rate at which CO2 was removed from the atmosphere (the out-

flow). The task was to sketch trajectories of emissions and passive CO2 removal—the latter

could effectively be assumed to be constant—that would achieve stabilization of the stock illus-

trated in the first graph. The results of this task showed that people frequently failed to identify

that stabilization of the stock could only be achieved when the rate of inflow (CO2 emissions)

matched the rate of outflow (passive removal of atmospheric CO2). Instead, people’s projected

emissions rates consistently exceeded the rate at which CO2 was removed, highlighting a fail-

ure to understand the fundamental accumulation dynamics that drive global warming.

Subsequent studies have sought to improve people’s performance on the climate stabiliza-

tion task by providing analogies to assist people’s reasoning. For example, Guy, Kashima,

Walker, and O’Neill[17] likened accumulation of atmospheric CO2 to water filling a bathtub,

and found that presentation of the bathtub analogy reduced the extent to which people overes-

timated emissions rates needed to stabilize CO2 levels. The effectiveness of analogy is not

unconditional, however, and depends on a number of other factors, such as level of education

[17], the presence or absence of graphical displays of inflows and outflows[17,19], as well as

the specific content of the analogy presented[18–19].

Extending previous research

A limitation of previous climate stabilization studies, such as those by Guy et al. [17], Newell

et al. [19], and Sterman and Booth Sweeney[14] is that people were not provided with an

opportunity to observe the accumulation dynamics of the system by interacting with it.

Moxnes and Saysel[18] investigated a version of the climate stabilization task where people

could observe the effects of emissions on CO2 accumulation over successive 10-year intervals.

They found that people who were able to observe the system dynamics in this way performed

better than people who did not have an opportunity to observe the effects of emissions on

accumulation. Similarly, Dutt and Gonzalez[21] investigated the effect of observing the system

dynamics, via interacting with the system, on subsequent performance on the climate stabiliza-

tion task. They introduced an iterated version of Sterman and Booth Sweeney’s[14] CO2 accu-

mulation scenario, where people were required to enter values that set rates of CO2 emissions

and removal of CO2 on a trial-by-trial basis to track the trajectory of the accumulated stock of

atmospheric CO2 through time. People who had the opportunity to observe the accumulation

dynamics by interacting with the system performed better on the climate stabilization task

compared to people who did not get a chance to interact with the system beforehand.

A more detailed examination of the way feedback about accumulation dynamics affects

people’s ability to manage a (simulated) climate system was reported by Dutt and Gonzalez

[16]. They presented people with an iterated version of the climate stabilization task, requiring

participants to keep CO2 concentration within a particular range of values on a trial-by-trial

basis. When CO2 levels exceeded the acceptable range for that trial, people incurred an eco-

nomic penalty—which affected whether they received a monetary bonus at the end of the

experiment—and thus had an opportunity to receive fine-grained feedback about their perfor-

mance in the task. This study found that people’s ability to stabilize the climate system over

the long-term was improved when feedback was more frequent and when system variables
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respond faster to changes in emissions levels. The latter echoes earlier findings that people

often struggle to stabilize dynamic systems that incorporate time delays and feedback loops

[22–23].

A common feature of previous research has been the use of tasks that include an explicit cli-

mate stabilization goal. In all of the key studies reviewed thus far, people were specifically

tasked with identifying a level of CO2 emissions that will stabilize the stock of atmospheric

CO2. This focus potentially ignores the role that economic factors play in shaping the stances

that individuals (and nations) are likely to adopt in relation to climate change mitigation. At

the level of individuals, economic concerns about wages and job availability heavily influence

people’s views about climate change intervention[24]. At the national level, economic down

turns are often associated with a decline in public concerns about climate change[25–26]. Sim-

ilarly, national and international decisions about climate change mitigation will be strongly

influenced by the estimated costs of climate change mitigation[27]. It follows that understand-

ing how people make decisions about managing the earth’s climate will be informed by, and

perhaps principally decided by, economic considerations.

Current study

In this article, we examine how people interact with a (simulated) climate system when their

goal is economic, rather than environmental, in nature. We further examine the effect causal

knowledge about the system variables has on people’s ability to achieve the economic goal. To

this end, we introduce a novel iterated decision task, where economic decisions are directly

linked to environmental outcomes, which, in turn, affect people’s ability to achieve an eco-

nomic goal. Like previous studies that have used iterated decision tasks[16,21], the responses

made by people in our task drive changes in the state of the climate system. That is, people’s

chosen actions produce emissions that affect the accumulated stock of atmospheric CO2, and

the level of global warming. Unlike previous research, the actions that people in our study take

are economic actions, rather than environmental actions. Instead of setting levels of emissions

directly—as in previous climate stabilization tasks—people’s responses drive changes to an

economy they are managing. In our task, people’s economic actions are not tied to an explicit

environmental goal. Participants are not instructed to stabilize CO2 levels, rather, their goal is

to grow the economy such that it is at least doubled by the end of the task. However, the cli-

mate and economic systems in our task are linked such that increases in warming make it pro-

gressively more difficult to achieve economic growth. By providing people with an explicit

economic goal, our task incorporates, in a novel way, a tension between achieving economic

growth on the one hand, and managing CO2 emissions on the other.

Task overview: Managing a dynamic human-climate system

In our task, people adopt the role of a policy director setting annual economic targets, with an

explicit goal to double the size of the economy by the end of the experiment. On each trial in

the experiment, people are shown numerical values reporting the current size of the economy,

concentration of atmospheric CO2, and global mean temperature. The participant then sets an

economic growth target, which updates the size of the economy, CO2 concentration, and tem-

perature. The relationship between variables in the human-climate system used in our task is

summarized schematically in Fig 1.

Formally, the changes in system variables are governed according to the following system

of equations, based on the MAGICC intermediate complexity Earth system model[28], which

describes the relationship between emissions, atmospheric CO2 concentration, and tempera-

ture. On each trial of the experiment, indexed by i, the participant generates a response, Ri,
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which sets an economic growth target. The resulting economic activity generates a quantity of

greenhouse gas emissions, Gi, according to

Gi ¼ ½Ei þ expðRi þ sÞ�ceff ; ð1Þ

where Ei is the size of the economic index on trial i, s is a scaling parameter indexing preferred

growth, and ceff is a carbon efficiency constant. Fig 2 lists values for constants used in the

model—these fixed parameter values were informed by recent calibration studies of the

MAGICC model against other climate models[28] and data[29]. The change in the economic

index in light of the response, Ri, is given by

ΔEi ¼ Ri � aTiEi; ð2Þ

where Ti is the level of warming on trial i, and α is an economic damage constant that deter-

mines the negative effect of warming on the economic index. A minimum value of 0 was

enforced when implementing trial-by-trial changes to the economic index.

Changes in emissions drive changes in atmospheric CO2 concentration according to

Δci ¼
Gi

p
�

ci

k
; ð3Þ

where ci is the level of atmospheric CO2 on trial i, p scales parts per million to gigatons of car-

bon, and κ is the rate at which CO2 is removed from the atmosphere by passive carbon sinks.

Eq 3 therefore summarizes the stock-and-flow relationship between atmospheric GHGs,

anthropogenic emissions, and carbon sinks in the environment.

Changes in temperature provoked by changes in CO2 concentration are given by

ΔTi ¼
sci

cpre
�

Ti

t
; ð4Þ

Fig 1. Schematic of the interactive human-climate model. Participants set an economic productivity

target, R, which drives economic growth, E, but also generates greenhouse gas emissions, G. Emissions

accumulate in the atmosphere, subject to passive removal by natural carbon sinks at rate κ. CO2

accumulation, c, generates warming, increasing the global mean temperature, T. Temperature has a negative

effect on economic growth. Capacity for economic growth is reduced under increased warming.

https://doi.org/10.1371/journal.pone.0184480.g001
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where σ indexes the climate sensitivity, the effect doubling CO2 concentration over pre-indus-

trial levels, cpre, would have on global mean temperature. The parameter τ reflects natural time

delays associated with changes in global mean temperature.

The behavior of the human-climate model is summarized in Fig 2. The panels illustrate the

dynamics of the economic index, CO2 concentration, and warming under five different levels

of responding—for simplicity, constant economic targets are used in the figure.

To get intuition about the behavior of the system, it is useful to consider how changes in

responding affect levels of CO2, warming, and the economic index. Fig 2 shows that there are

strict order relations between responding and both CO2 and warming—higher levels of

Fig 2. Illustration of the human-climate model dynamics for five different levels of responding. Economic productivity targets of 1, 2,

3, 4, and 5 percent are shown by the blue, green, red, cyan, and purple solid lines, respectively. Parameters governing the behavior of the

model are shown above the panels.

https://doi.org/10.1371/journal.pone.0184480.g002
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economic activity result in increased emissions, and, in turn, increased warming. It is also

clear from the figure that these order relations do not hold for the economic index. Owing to

the harmful effect of warming on economic performance (Eq 2), the relationship between

responding and the economic index is nonmonotonic. Although setting high growth targets

early in the task generates substantial economic growth, the high level of emissions associated

with this response pattern makes it such that, toward the end of the task, high levels of warm-

ing prevent economic growth, leading to subsequent declines in the economic index. By con-

trast, lower productivity targets result in smaller, but sustained, economic growth over the

duration of the task.

Several other properties of the human-climate system are especially noteworthy. First, the

system is defined by time delays and multiple non-linear interactions among variables that are

not visible to the participant. These factors make it virtually impossible to predict the quantita-

tive behavior of the system through observation alone. Although people can uncover simple

causal structure—usually involving linear, but probabilistic, relations among variables with no

time delays—quite well through analyzing the effects their behavioral interventions have on

the system[30–32], people’s ability to predict and control systems with more complex dynam-

ics, like our human-climate system, can be quite poor[3,22–23]. Because our principal experi-

mental manipulation involves providing some, but not all, participants with causal knowledge

about the relationship between economic activities, CO2, and warming, having a low expected

baseline level of performance is advantageous. If causal knowledge from the outset of the task

confers a performance benefit, there should be ample room to observe its effect in the data.

The second noteworthy aspect of our task has to do with the presence of time delays within

the system[16]. In our task, people are able to adjust their responding across successive trials

to adapt to changes in the system state during the task. However, time delays in the system—

particularly with regards to temperature (Eq 4)—mean that, by the time the harmful effects of

warming on economic growth become apparent, even quite radical changes in responding

may not be enough to counteract the problem. Once warming increases past a certain point,

no level of responding will result in economic growth (Eq 2). A key question is whether people

are able to avoid this “point of no return” without causal knowledge of the relationship

between the economic and climate variables in the system.

Ways of approaching the task: Effects of causal knowledge

How might individuals respond in our task to achieve the economic goal of doubling the size

of the economy by the end of the experiment? How might people’s response strategies be

affected by causal knowledge of the system variables? Because people in our task have an

explicit economic goal to achieve (i.e., doubling the size of the economy) and a clear means of

achieving that goal (i.e., responding by setting large economic growth targets), we assume that

people will tend to adopt a means-ends approach to the task. That is, we expect people to set

economic growth targets that will promote rapid growth of the economic index, given the

absence of relevant causal knowledge. Because of the time delays involved in warming driven

by accumulated CO2 (Eqs 3 and 4), this pattern of responding will promote positive interim

outcomes—rapid progress toward achieving the economic goal of the task. Accordingly, it

would be predicted on the basis of instance theories[33], hypothesis-testing perspectives[34],

as well as causal model-based theories[35], that people would favor responding in this way for

the duration of the task. Once warming increases to the point where economic growth is

harmed—or even prevented—the predictions from these theories become less clear. Under

instance theory, people will not have a bank of similar trial instances to retrieve once economic

growth targets fail to achieve growth on a given trial, and so it is possible that people might

Causal knowledge and self-regulation
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persist in setting high growth targets. Under a hypothesis-testing framework, people may simi-

larly be expected to persist in setting high growth targets, as doing otherwise would result in

moving people away from achieving the economic goal (i.e., setting negative growth targets

would reduce the economic index). However, because high levels of warming would prevent

even high growth targets from increasing the economic index (Eq 2), people might attempt to

change their response pattern by inferring from feedback, that their current strategy is ineffec-

tive. Under a causal model-based approach, we would expect people to have developed a men-

tal model of the task that incorporates a strong positive relationship between growth targets

and approach toward the economic goal. Accordingly, people would be expected to persist in

setting high growth targets even after high levels of warming begin to limit increases to the eco-

nomic index (Eq 2).

When people have access to causal knowledge about the relationship between the climate

and economic variables in the system, we expect people to still apply a straightforward means-

ends approach to the task. However, we predict that people would adopt a more conservative

response profile, where relatively lower economic growth targets are set at the outset and per-

sist at relatively low levels for the duration of the task. The expected effect of causal knowledge

is perhaps most readily understood in terms of hypothesis-testing approaches[34] and causal

model-based perspectives[35], as people would be aware that allowing warming to increase

would have a strong negative effect on their ability to achieve the economic goal. It follows that

under both of these frameworks, people would be predicted to set more conservative economic

growth targets in an effort to avoid the harmful effects of warming on their ability to grow the

economic index. In sum, we expect that people will not manage the task well unless they are

provided with causal knowledge about the system variables at the outset of the task.

Overview of experiments

Our principal experimental manipulation involves a knowledge-based intervention where the

causal relationship among economic activities, CO2, and warming variables, is (Informed con-

dition), or is not (Uninformed condition) explicitly revealed to people at the outset of the task

(see S1 Text for details). Contrasting performance across the two conditions reveals whether

causal knowledge affects people’s ability to achieve the economic goal in light of the negative

effects of warming. Given that people are known to perform poorly in tasks involving non-lin-

ear systems with time delays[22–23], we expect causal knowledge to bias people’s interactions

with the system such that they favor more conservative responding. This will, in turn, improve

their ability to achieve the economic goal of the task and avoid harmful effects of warming.

We were also concerned that the labels for the system variables—specifically, CO2, and

warming—might introduce a demand effect, especially among our university sample in Exper-

iment 1, that could artificially bias people toward more conservative responding. To determine

whether any benefits of causal knowledge were restricted to variables involved in climate

change, we ran a separate version of the task using a different cover story involving fictitious

bacterial populations. Importantly, the system dynamics—based on known accumulation

dynamics involved in the carbon cycle—were identical across the two versions of the task (i.e.,

governed by Eqs 1–4). However, the labels for the system variables were different. Given that

knowledge effects are frequently found using a variety of cover stories in the causal learning lit-

erature[31,35–37], we expected similar results across the different cover story conditions.

Across two experiments, using a university student sample and a sample of the general pub-

lic, we show that causal knowledge improves people’s ability to achieve the economic goal of

our task whilst avoiding (economically) harmful levels of warming. We show that the benefi-

cial effect of causal knowledge is not restricted to the climate change domain: When the same
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system dynamics were presented in the context of managing a population of bacteria, the same

pattern of effects emerged, ruling out experimental demand characteristics and ideological

views on climate change as explanations for our data. Finally, we show that, when provided

with causal knowledge, responding approaches what could be considered an optimal profile

for the task.

Experiment 1: Australian university sample

Method

Ethics statement. Both experiments were approved by and conducted in compliance with

the University of Melbourne Human Research Ethics Committee. After reading an informa-

tion sheet describing the task, participants in Experiment 1 signed and returned a consent

form to the experiment. In Experiment 2, which was conducted online, participants read

through an information screen prior to commencing the task, and indicated their consent

by agreeing to proceed from the information screen to the task itself via mouse click. All con-

sent procedures were approved by the University of Melbourne Human Research Ethics

Committee.

Design and participants. The experiment was a 2 (Information Condition: Informed vs.

Uninformed) × 2 (Cover Story: Climate vs. Bacteria) between-subjects design. One hundred

first-year psychology students from the University of Melbourne were recruited in exchange

for course credit.

Materials and procedure. Participants were randomly allocated to one of the four experi-

mental conditions. All participants were provided with information describing the key features

of the task display and instructions that their goal was to maximize the Economic Index (or

Bacterial Population), and at least double it by the end of the experiment. Participants in the

informed conditions were provided with additional information describing the causal relation-

ships between human economic activity and the three climate variables. The causal knowledge

manipulation included the following text summarizing the relationships: “Economic produc-

tivity affects CO2 concentration, which in turn affects Temperature. Temperature increases

make it increasingly difficult to achieve economic growth. Due to time lags in the climate sys-

tem, the effects of CO2 on economic growth will only be felt after a considerable delay, after

which they will be difficult to reverse. Hence, it is advisable to keep CO2 concentration from

escalating too high.” (see S1 Text for complete instructions). The experiment was controlled

by a Matlab program designed using the Psychophysics Toolbox. Participants completed the

experiment individually on PC computers. The task took approximately 30–40 minutes to

complete.

The experiment began once participants had read the summary information about the task.

On each trial, participants were presented with a display containing current information about

the three task parameters, Economic Index, CO2 concentration, and global mean temperature.

They then set an economic target by clicking in the response box, which allowed participants

to aim to grow or contract the economy by up to five percent in either direction. Once a target

had been selected, participants confirmed their response before proceeding. Upon confirma-

tion, the human-climate system variables were updated to take on new values. Participants

were presented with the new values along with the relative changes before clicking a button to

proceed to the next trial.

Results

The results of Experiment 1 are summarized in Fig 3. For ease of exposition, we describe

results and effects using the variables labels from the climate change cover story condition.

Causal knowledge and self-regulation
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The four panels of the figure plot trajectories of people’s responses (i.e., economic targets)

along with trajectories of the size of the economy, excess CO2 concentration, and warming

(which are determined by the underlying system dynamics). Data were binned into 10 25-trial

epochs, and were averaged across participants within each condition. Data for each variable

(response, economic index, CO2, and temperature) were analyzed with a 2 (Information Con-

dition: Informed vs. Uninformed) × 2 (Cover Story: Climate vs. Bacteria) × 10 (Trial Epoch)

between-within ANOVA. Because of the large number of variables analyzed, we restrict our

discussion to the most relevant effects (see S1 Text for additional analyses).

Two clear patterns are evident in the economic targets selected by participants over the

course of the experiment (Fig 3A). First, participants in the Informed condition set more con-

servative economic targets than participants in the Uninformed condition, F (1, 96) = 50.41,

MSe = .001, p< .001, ηp
2 = .34. Second, economic targets increased over the course of the

experiment, F (9, 864) = 24.42, MSe = 1e-5, p< .001, ηp
2 = .20 (Fig 3A), indicating that (a) par-

ticipants were attempting to grow the economy to meet the explicit goal of doubling the size of

the economy by the end of the experiment, and (b) participants responded to the increased dif-

ficulty in achieving economic growth—because of the negative effect of warming on economic

growth (Eq 2)—by progressively setting higher growth targets. A trend analysis showed that

the changes in economic targets increased linearly across trial epochs, F (1, 98) = 83.87,

Fig 3. Data from Experiment 1. Panels show group averaged data for participant responses (a), economic index (b), excess CO2

concentration (c), and warming (d). Error bars are one standard error of the mean.

https://doi.org/10.1371/journal.pone.0184480.g003
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MSe < .001, p< .001, ηp
2 = .46. No higher order trends were significant. Turning to the fol-

low-on effects of participant responses on the economic index and the two environmental vari-

ables, there are distinct patterns characteristic of the Informed and Uninformed conditions.

For the Uninformed participants, the economic index initially increased rapidly, but then

declined toward the end of the experiment. For the Informed participants, the economic index

steadily grew throughout the experiment. The difference between the economic trajectories

was supported statistically by an interaction between Information Condition and Trial Epoch,

F (9, 864) = 38.53, MSe = 772.34, p< .001, ηp
2 = .29. Note also that Informed participants were

more successful at meeting the primary goal of the task, doubling the economic index by

the final Trial Epoch, in both the Climate, t (48) = 2.80, p = .007, r2 = .14, and Bacteria,

t (48) = 5.89, p< .001, r2 = .42, Cover Story conditions.

Similar patterns of differences between the Informed and Uninformed conditions emerged

for the CO2 and temperature variables—irrespective of Cover Story—as shown in Fig 3C and

3D. Uninformed participants achieved poorer environmental outcomes than Informed partic-

ipants, reflected in main effects of Information Condition for both CO2, F (1, 96) = 66.80,

MSe = 193860.94, p< .001, ηp
2 = .41, and temperature, F (1, 96) = 66.14, MSe = 16.23, p< .001,

ηp
2 = .41.

Discussion

The results of Experiment 1 are readily summarized. Regardless of cover story, providing peo-

ple with knowledge of the causal relations among system variables improved people’s ability

to perform the task. The benefit of receiving this information up front is particularly interest-

ing, as learning by observing the effects of responses often results in successful performance

[30,32]. We believe that the complexity of our task, specifically, the incorporation of non-linear

dynamics and time delays contributed to the causal knowledge effect we observe here, as learn-

ing the precise behavior of the system through the effects of individual responses alone would

be extremely difficult, if not impossible. That the benefits of causal knowledge were sustained

across both cover story contexts implies that artificial demand characteristics or specific views

about climate change were not key drivers of performance in our task.

Experiment 2: United states general population sample

To generalize the Experiment 1 results to a broader population, we conducted an online repli-

cation study with a US sample recruited from the general population.

Method

Design and participants. The experimental design was the same as in Experiment 1. Par-

ticipants for Experiment 2 were recruited online via Amazon Mechanical Turk, which has

been shown to replicate a multitude of benchmark results involving complex, multi-trial

experimental designs like ours[38]. Participant samples recruited via Mechanical Turk are

known to be demographically more diverse than university samples[39]. In total, 112 partici-

pants completed the experiment and were paid $3 in exchange for their participation. The

remuneration rate was commensurate with other psychological studies that have used

Mechanical Turk for participant recruitment purposes.

Materials and procedure. The general procedure was identical to that of Experiment 1,

except that the experiment was controlled using Python/Django routines for online presenta-

tion purposes.

The data from Experiment 2, presented in Fig 4, mirror those from Experiment 1. As in

Experiment 1, economic targets selected by participants increased over the course of the task,
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F (9, 972) = 10.13, MSe = 1e-6, p< .001, ηp
2 = .09 (Fig 4A). A trend analysis confirmed that the

increase in economic targets was linear across trial epochs, F (1, 110) = 28.46, MSe < .001, p<
.001, ηp

2 = .26. There were also significant, but less readily interpretable, cubic, F (1, 110) =

6.53, MSe = 5e-5, p = .012, ηp
2 = .06, and 8th-order polynomial trends, F (1, 110) = 5.08, MSe =

3e-5, p = .026, ηp
2 = .04. No other trends were significant. Critically, there was an effect of

Information Condition reflecting lower, more conservative, economic targets being set by peo-

ple in the Uninformed condition relative to the Informed condition, F (1, 108) = 28.90, MSe =

.001, p< .001, ηp
2 = .21.

The economic consequences of differential responding in the Informed and Uninformed

conditions are illustrated in Fig 4B. As in Experiment 1, Uninformed participants produced a

“boom-bust” economic trajectory, characterized by a sharp initial rise in the economic index

followed by decline over the latter portion of the task. By contrast, Informed participants

increased the economic index throughout the task, resulting in a significant interaction

between Information Condition and Trial Epoch, F (9, 972) = 18.60, MSe = 882.46, p< .001,

ηp
2 = .15. Like Experiment 1, participants in the Informed conditions were more successful at

achieving the economic goals of the task by the final Trial Epoch in both the Climate, t (54) =

2.27, p< .03, r2 = .09, and Bacteria, t (54) = 2.02, p< .05, r2 = .07, Cover Story conditions.

Fig 4. Data from Experiment 2. Panels show group averaged data for participant responses (a), economic index (b), excess CO2

concentration (c), and warming (d). Error bars are one standard error of the mean.

https://doi.org/10.1371/journal.pone.0184480.g004
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Experiment 2 produced CO2 and temperature trajectories that strongly resembled those

found in Experiment 1 (see Fig 4C and 4D). Uninformed participants produced poorer envi-

ronmental outcomes than Informed participants. Mirroring Experiment 1, there were main

effects of Information Condition for both CO2, F (1, 108) = 23.65, MSe = 299014.48, p< .001,

ηp
2 = .18, and temperature, F (1, 108) = 24.33, MSe = 24.84, p< .001, ηp

2 = .18.

Discussion

The results of Experiment 2 replicate those of Experiment 1 with a general population sample.

We again demonstrate that the beneficial effects of causal knowledge are robust across cover

stories, implying that experimental demand effects did not have a strong influence over perfor-

mance in our task.

Optimal response analysis

Our analysis of the behavioral data showed that providing people with information about the

causal relationships between human economic activities, CO2 accumulation, and warming,

improved their ability to manage the human-climate system. Given the explicit economic

goals of the task though, a pertinent question is how well people could perform in our task,

given the instructions. To this end, we conducted an optimal response analysis. The aim of the

analysis was to identify the response profile that maximized the average of (1) the mean eco-

nomic index over the course of the task, and (2) the economic index at a time point beyond

the life of the task (i.e., at trial 300). These criteria map onto the instructions to (1) maximize

the overall economic index, and (2) aim to at least double the size of the economy by the end

of the task. For the latter criterion, evaluating the size of the economy at trial 300—rather than

trial 250—was chosen to reduce the influence of end-of-task artifacts associated with optimiza-

tion (e.g., excess warming will not penalize economic growth immediately due to time delays

in the human-climate system, which means that the optimal way to respond on the last 20–30

trials is to set the highest possible economic growth targets; see S1 Text for complete details).

For the optimal response analysis, we adopted a parameter estimation approach. For our

initial analyses, we divided the task into 25 equally-sized response intervals (i.e., for 300 trials,

each response interval comprised 12 trials). Using a standard simplex algorithm, we estimated,

for each interval, an economic target from the range of responses available to participants (i.e.,

the interval of -5 to +5), which maximized the joint optimization criteria. Our initial analyses

revealed that much of the estimated optimal response functions had a clear exponential form.

We also found that across different optimization runs, estimates for the early response inter-

vals were quite volatile. This makes sense, as the effects of the earliest responses can, to some

extent, be offset by later ones, given the optimization criteria we used. To improve stability and

better avoid local minima—and greatly reduce the time required for optimization—we consid-

ered an exponential response function,

Ri ¼ aexpðciÞ þ Δ: ð5Þ

In Eq 5, Ri denotes the response, or economic target set, on trial i, α is scaling parameter, c
determines the steepness of the exponential function, and Δ is an offset term. The optimal

response profile, along with the resulting economic and climate dynamics, is shown in Fig 5

alongside response trajectories and system dynamics for the informed and uninformed condi-

tions—averaged across both experiments and cover story conditions.

The optimal response profile is characterized by setting moderate economic growth targets

for much of the task—approximately +2.25—before progressively increasing responding

toward the end of the experiment. Although this ramping up of economic growth targets
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partially reflects an “end-of-task” artifact—due to time lags in the human-climate system, the

warming that would result from the increase in economic activity toward the end of the task

does not have sufficient time to provoke a reduction in the economic index (see Eqs 2 and 4)—

participants in our experiments also tended to increase economic growth targets in the latter

part of the task. The most striking aspect of the optimal response profile is in how similar it is

to performance of the informed participants over the course of the task. One implication is

that causal knowledge may lead people to behave in a way that is not only sustainable, but

more closely approximates optimal management of the human-climate system. This is consis-

tent with the idea that causal knowledge results in improved, but imperfect, performance in a

variety of causal inference tasks[40].

General discussion

A fairly common view among researchers is that adoption of effective climate change mitiga-

tion policies depends on people having an accurate mental model of the processes that lead to

global warming[8–9]. However, people have repeatedly been shown to struggle to understand

the fundamental accumulation dynamics that are involved[7,14]. We investigated the effect of

providing people with causal knowledge about the variables involved in CO2 accumulation

Fig 5. System dynamics associated with the optimal response profile (solid curves) overlaid with data from informed and

uninformed conditions (dashed lines). Data are collapsed across cover story conditions and across Experiments 1 and 2. The panels

show trajectories for responses (a), economic index (b), excess CO2 concentration (c), and warming (d). Error bars are one standard error of

the mean.

https://doi.org/10.1371/journal.pone.0184480.g005
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and warming in the context of a novel iterated decision task where pursuit of an economic

goal drove changes in the climate system. We showed that providing people with up-front

information about relevant causal relationships in the human-climate system resulted in

improved task performance, suggesting that people successfully used this causal knowledge to

guide their responding in the task. The basic pattern of results was replicated in a parallel set of

experiments that framed the decision task in terms of managing a fictitious bacterial popula-

tion, suggesting that the benefits of receiving causal knowledge were not restricted to variables

related to climate change. We further showed that receiving causal knowledge about the

underlying system resulted in decision-making performance that approached an optimal

response profile.

Limitations

Although our study extended existing work on the effect of knowledge in reasoning about cli-

mate change[16,21], it is not without its limitations. We discuss several limitations and poten-

tial concerns about (1) distinguishing effects of causal knowledge from response bias, (2) the

way economic activities were represented in the human-climate system, and (3) whether our

results will scale up from individual decision-makers to collectives.

As noted by reviewers, it is possible that our manipulation of causal knowledge simply

induced a favorable response bias in participants in the Informed condition. We acknowledge

that, while we cannot completely rule this out as a possible explanation, the fact that people in

the Informed condition produced response profiles that adapted to the changing demands of

the task—increasing economic productivity targets to potentially compensate for the negative

effects of warming on economic growth toward the end of the task (see Figs 3 and 4)—speaks

against a simple response bias account. Nevertheless it would be worth investigating whether

instruction to simply produce low economic growth targets early on in the task, without pro-

viding any other information about how the variables interact, would produce a different

response profile in the Informed condition than the causal knowledge intervention we used in

the current experiments. One possibility is that promoting a response bias (without causal

knowledge) would result in no difference in performance compared to the Informed condi-

tion. We suspect, however, that without causal knowledge, people may be reluctant to continue

making conservative economic growth targets when the system dynamics—at least in the early

stage in the task—provide no compelling reason to do so. Although people will achieve eco-

nomic growth when responding conservatively, exploration of the effects of responding with

higher economic growth targets would reveal that more rapid economic growth could be

achieved. Ultimately, this is an empirical question that awaits future research.

Another potential limitation of our study was in the way economic activities were imple-

mented in the human-climate system. Rather than having economic growth being character-

ized in terms of the aggregate of a number of different kinds of economic activities (e.g.,

different types of industry with potentially different carbon intensities), we relied on only a sin-

gle, monolithic, economic sector. We readily acknowledge that this limits the realism of our

human-climate system, but note that increasing the complexity of what is already a complex

system is likely to result in poor performance, which can create substantial difficulties inferring

people’s decision strategies from data[41–42]. Put another way, the (over-)simplified economic

aspect of our human-climate system is a feature, rather than a bug. It is nevertheless an inter-

esting question to investigate what effect, if any, providing people with different economic

response alternatives will have on people’s ability to manage the human-climate system.

Finally, we note that the current study investigated individual decision-making behavior,

whereas the problem of climate change mitigation is unequivocally a problem of collective

Causal knowledge and self-regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0184480 September 7, 2017 15 / 19

https://doi.org/10.1371/journal.pone.0184480


decision-making. We conjecture that providing the public with better information about the

underlying causes of climate change—in addition to the strong scientific consensus on the role

of CO2 emissions—will produce decision-making benefits at the group level. As the proportion

of well-informed decision-makers increases, it is reasonable to suspect that the quality of deci-

sions made by aggregations of such agents will also be improved.

At the same time, results that identify highly polarized opinions along political lines implies

that provision of relevant information may not produce the desired effects on group decision-

making unless the information is presented in a way that resonates with diverse socio-economic

values[43]. Causal knowledge may yet be important though, as extreme political positions have

been shown to be relaxed when people holding such views are prompted to provide causal expla-

nations to support their views[44]. Fostering higher levels of knowledge about climate change

issues may serve to reduce the extent of polarization[45]. Ultimately, the tension between knowl-

edge, values, and polarization remains an interesting issue that warrants further research.

Relationship to climate change attitudes

An important question left open by our research is how a causal knowledge intervention,

which we have shown to influence people’s economic decision-making behavior, relates to

more general attitudes about climate change mitigation. It is now established that knowledge

about the causes of climate change is a key driver of climate change acceptance among the gen-

eral public[46–47]. At a more practical level, relevant causal knowledge about climate change

has also been shown to increase people’s intention to engage in mitigation behavior[48], as well

as levels of support for implementing climate change mitigation policies[49–50]. It follows that

possessing relevant causal knowledge about climate change dynamics—and the pivotal role

that human (economic) activities play in driving these dynamics—has the capacity to influence

how people think about the climate system, and importantly, consider how their actions might

adversely affect it[1]. At minimum, it seems that equipping people with relevant causal knowl-

edge will make achieving collective action on climate change more likely to happen.

Conclusions

The results of our study show that when people are made aware of the economic ramifications

of climate change, they alter the way they make decisions about satisfying an economic goal.

By showing a beneficial effect of causal knowledge on people’s decision-making, our study

reinforces the utility of knowledge-based interventions in advancing public debate on climate

change mitigation. Highlighting the critical role of human CO2 emissions in causing climate

change coupled with the economic risks posed by climate change produced a dramatic reduc-

tion in the economic targets people set. Specifically, people appeared able to forego short-term

economic gains if they knew that doing so would increase the likelihood that continued growth

over the long-term could be achieved. This resulted in long-term economic sustainability and

significantly better environmental outcomes (viz. less accumulated CO2 and less warming)

compared to when no causal information was provided. Given the role of causal knowledge in

evaluating the effectiveness of mitigation strategies and their socio-economic implications

[43,50], we believe our results reinforce the idea that relevant knowledge improves people’s

decision-making with regards to climate change mitigation.
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