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Abstract

As an important branch of multimedia content analysis, Surveillance Event De-

tection (SED) is still a quite challenging task due to high abstraction and com-

plexity such as occlusions, cluttered backgrounds and viewpoint changes etc.

To address the problem, we propose a unified SED detection framework which

divides events into two categories, i.e., short-term events and long-duration

events. The former can be represented as a kind of snapshots of static key-poses

and embodies an inner-dependencies, while the latter contains complex interac-

tions between pedestrians, and shows obvious inter-dependencies and temporal

context. For short-term event, a novel cascade Convolutional Neural Network

(CNN)−HsNet is first constructed to detect the pedestrian, and then the corre-

sponding events are classified. For long-duration event, Dense Trajectory (DT)

and Improved Dense Trajectory (IDT) are first applied to explore the temporal

features of the events respectively, and subsequently, Fisher Vector (FV) coding

is adopted to encode raw features and linear SVM classifiers are learned to pre-

dict. Finally, a heuristic fusion scheme is used to obtain the results. In addition,
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Figure 1: Examples of two pre-defined surveillance events from different camera views.

a new large-scale pedestrian dataset, named SED-PD, is built for evaluation.

Comprehensive experiments on TRECVID SEDtest datasets demonstrate the

effectiveness of proposed framework.

Keywords: surveillance event detection, pedestrian dataset, pedestrian

detection, cascade CNN

1. Introduction

Video monitoring systems provide a necessary support for handling various

incidents and emergencies. Rapidly-growing amount of surveillance videos boom

the developments of content-based multimedia understanding, and SED [1, 2]

has become one of the most challenging tasks. As illustrated in Fig. 1, the5

goal of SED is to localize events of interest (e.g., “Embrace” and “Pointing”)

from a large-scale monitoring video dataset. These events are easily related to

potential menaces of the public security. Therefore, detecting specific events

quickly and accurately becomes an important and indispensable task.

SED contains three key elements: whether, when and where does the event10

happen. It concentrates on human behaviors and group activities, thus the

detection complexity is much higher than action recognition from simple KTH

dataset [3], in which actions are simulated individually under a controlled set-

ting. Additionally, unlike datasets Hollywood2 [4], UCF-101 [5] and Sports-1M

[6] etc, only actions are concerned, SED also emphasizes the interactions of in-15

dividuals. Moreover, videos are often collected from busy environments such
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as the airport and subway, where monitoring conditions (viewpoints, scales and

illumination etc.) are varied, and the people stream is bustling and serious

occlusion is common.

Therefore, some events become extremely complicated and abstract, SED in20

multi-camera views, despite recent progresses [7, 8, 9, 10] were made, is still in

its infancy. Compared with other unitary surveillance tasks such as pedestrian

detection [11, 12, 13], action recognition [6, 14] and person re-identification [15],

a great number of literatures exist, and the work of SED is quite few. As an in-

tegrated project of above tasks, SED not only relies on the capturing of spatial25

information at the semantic level, but also requires to fuse motion, temporal

relationships and contexts, which intensify the difficulties of SED: 1) data im-

balance is quite serious. For most of events, only a few positive samples are

available for training, and meanwhile, there are no bounding boxes annotated.

2) surveillance videos are unstructured and do not follow any particular dis-30

tribution, thus a host of statistical learning-based methods are intractable. 3)

SED has to suffer from cluttered surrounding and serious occlusion, and large

inner-variances of events weaken the capability of the detector.

We observe that: 1) surveillance events are centered at human actions and

activities. 2) they have strong dependencies: short-term events characterize35

unique actions (inner-dependencies), and could be represented by a series of

snapshots which are composed of key-poses, while long-duration events con-

sist of multiple interactions (inter-dependencies). As a result, we address SED

problem from two aspects. First, to detect the pedestrian in realistic monitor-

ing scenes, we build a new large-scale pedestrian dataset−SED-PD, and then40

propose a cascade CNN−HsNet to identify the human. Second, a unified SED

framework is presented to detect two kinds of events respectively: for short-

term events, multiple CNN models are trained to classify, and for events with

long-interactions, the temporal contexts are modeled by fusing DT and IDT.

Our contributions can be summarized as follows:45

1. Based on a systemically analysis on recent TRECVID SED practices, we

3
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propose a unified SED framework, which provides a practical solution by

combining the advantages of conventional video representations and deep

CNN models.

2. SED-PD: a large-scale pedestrian dataset is built to deal with the chal-50

lenge of serious occlusion. Meanwhile, a fast cascade CNN−HsNet is con-

structed to detect the pedestrian effectively.

3. Available surveillance events are divided into two categories: short-term

events and long-interaction activities, and then CNN-based and trajectory-

based methods are proposed to detect them respectively.55

4. Comprehensive experiments on TRECVID SEDtest datasets demonstrate

the effectiveness of proposed framework.

The rest of the paper is organized as follows: in Section 2, we review related

works of SED. Section 3 describes our SED-PD dataset, and Section 4 introduces

the proposed framework and algorithm. Section 5 discusses the experimental60

results. Finally, we conclude our work in Section 6.

2. Related work

SED can be roughly divided into two phases. Before 2008, SED typically fol-

lowed a hierarchical pipeline: object detection and tracking were leveraged at the

low-level, and predefined actions were recognized at the middle-level, and finally65

at the high-level, activities were encoded based on the action primitives. In this

period, successful action recognition mainly benefited from the combination of

Bag-of-Words (BoW) framework, local spatio-temporal features and SVM clas-

sifier. Space-Time Interest Points (STIP) [16] and HOG [17] and Histogram of

Optical Flow (HOF) [18] were representative feature detectors and descriptors70

respectively. In order to explore the temporal relationships between primitive

actions of an event, graph-based models were proposed. Hidden Markov Model

(HMM) [19], neural networks [20, 21, 22], Bayes Network [23, 24, 25, 26, 27]

were used. However, due to the lacking of public large-scale datasets, most

experiments were conducted on small-scale self-built datasets.75
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In 2008, SED was introduced to the TRECVID serial and thus attracted

increasing attention [2]. Correspondingly, annual evaluation results highlight

the progress of action recognition and event detection, which undergoes the

evolution from modeling events based on hand-crafted features to represent-

ing videos with deep features [6]. Instead of local spatio-temporal cuboids,80

trajectory-based methods became a crucial branch of action recognition. With

Motion Boundary Histogram (MBH) [18] and FV encoding [28], methods based

on DT [29] and IDT [30] achieved the best performance among conventional

models.

Recently, encouraged by the results of CNNs achieved in image classification85

[31], researchers began to mine temporal correlation and then built novel CNN

models for action recognition and video analysis. For example, 3D CNN [6],

two-stream CNN [14] and C3D network [32]. [33] employed Long Short-Term

Memory (LSTM) network to seek temporal relationships and obtained the state-

of-the-art results on the UCF-101 and Sports-1M datasets. [34] also used LSTM90

to explore the temporal context of events and achieved a promising performance.

Although great successes have been achieved by motion-based CNN models,

very limited applications [35] are reported in recent SED practices. One reason

is that the SED dataset is quite different with above datasets, thus existing

models are hard to be transfered to SED. Moreover, due to high complexity,95

not all events in SED dataset can be modeled by a deep network. Actually,

after taking a panoramic view of the recent TRECVID SED evaluations, we find

that the conventional representation methods still hold a dominant place. For

instance, [9] used MoSIFT feature with SVM detector, and achieved outstanding

results in SED2012 dataset. The deformable part-based model (DPM) [36] also100

shown a high generalization ability.

However, existing SED methods share three main limitations: 1) different

dependences of the events were neglected and all events were treated in the

same way; 2) probabilistic frameworks such as HMM and CRF were difficult

to represent complex interactions between individuals; 3) the introduction of105

the deep model was quite limited and unsuccessful. As a result, comprehensive
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Figure 2: SED videos captured from 5 locations in Gatwick airport[2].

schemes need to be considered. In this paper, we combine the merits of the

conventional model and the deep network and propose a unified SED framework.

3. Pedestrian Dataset: SED-PD

To provide a true benchmark for pedestrian detection in highly occluded110

scenes, we label a large-scale surveillance video dataset, i.e., TRECVID SED-

train2008 [2]. It contains 50 full-length videos, which were collected from five

cameras in London Gatwick airport, where serious occlusions and frequent in-

teractions are common. Fig. 2 shows the camera views, displaying (from left to

right, top to bottom) a controlled access door, a waiting area with benches, a115

waiting area with kiosks, an elevator close-up view and a transit area.

Table 1: The SED-PD dataset.

SED-PD training set validating set test set

Person 124,000 63,000 210,000

Frame 15,000 7,500 22,500

We semi-automatically annotate 9 videos and collect total 397,000 pedestrian

instances. Table 1 shows the information. The resolution of the video frame is

720x576 pixels. The dataset is diviede into three subsets: training set, validating

set and test set. The training set contains 124,000 persons and covers 15,000120

frames, and set includes 63,000 pedestrains and 7,500 frames, and the test set

6
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Figure 3: (a) An annotation example from SED-PD. Red bounding boxes denote the pedes-

trians. (b) Partial details. Pedestrians in blue boxes are heavily occluded by pedestrians in

yellow boxes.

has 210,000 individuals and covers 22,500 frmes. Each frame averagely contains

9 persons. Fig. 3 shows an example.

We provide the bounding box of the head-shoulder of each pedestrian. The

labeling precedure is: first, based on [37], the pedestrians of each frame are125

detected, and then all candidates are manually inspected by the annotator.

Meanwhile, we generate more than 7 millions negative samples by a random

sampling scheme: 1) suppose an image has N pedestrians, 60N bounding boxes

with the same size of pedestrians are randomly yielded; 2) delete the negative

samples, whose overlaps with pedestrians exceed 0.5. We name the dataset the130

SED-PD 1, which is as large as Caltech dataset [38]. The biggest difference of

them is that our dataset contains more occlusion, while the backgrounds of the

latter are more various.

4. The Proposed Framework

As shown in Fig. 4, the proposed framework is mainly composed of 4135

parts: pedestrian detection, short-term event classification, long-duration ac-

tivities identification and results fusion. Firstly, based on SED-PD, we train a

cascade CNN (HsNet) to detect the pedestrian. Secondly, according to intra-

dependencies and inter-dependencies of events, we classify events into two cat-

egories: short-term events and long-duration activities. The former is charac-140

1http://www.bupt-mcprl.net/datadownload.php
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Figure 4: The unified framework of SED. It mainly includes 4 parts: pedestrian detection,

short-term event detection, long-duration event detection and results fusion.

terized with unique actions, and can be treated as a kind of static snapshots

of key-poses. Hence, using the results of pedestrian detection, we re-train new

CNN models to classify them. Regarding the long-duration events, in order to

narrow inherent semantic gap between motion patterns and complex events, we

model temporal context of events by DT and IDT, and apply FV to encode145

raw features. Afterwards, fast and effective linear SVM classifiers are learned

to detect them. Finally, a score-based late fusion scheme is applied to obtain

the final results.

4.1. Pedestrian Detection by Cascade CNN (HsNet)

Employing deep models to detect the pedestrian become a trend, and a series150

of experiments indicate that they can generate more interpretable results than

traditional approaches based on hand-crafted features such as HOG and DPM.

For example, JointDeep [11] improved the generalization ability by combining

feature learning, a DPM and an occlusion model. Hosang et.al [13] applied

AlexNet to obtain impressive performance on Caltech dataset. TA-CNN [39]155

reported state-of-the-art results on the Caltech and KTH datasets by joining

semantic tasks, pedestrian and scene attributes.

Mentioned deep models can effectively handle partial occlusion in ordinary

scenes such as Caltech and Hollywood2 datasets. For SED task, however, due

to frequent interactions and critical occlusion, pedestrian detection is still a160

8
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Figure 5: Two evidences for head-shoulder-based pedestrian detection. (a)Occurrence fre-

quency of body parts on SED-PD. (b)The miss rate of three parts test by the Cifar-10 model.

challenging problem. Moreover, the network architectures of existing models

such as JointDeep [11] and SDN [12] are too complicated to apply to a real-time

system. Hence, we address this problem from three aspects: 1) only head-

shoulders are used. 2) CNN is leveraged to capture the most discriminative

information. 3) a cascade detection structure is constructed to speed up the165

detection.

The first practice derives from two key evidences: the statistical analysis

and the experimental result. Firstly, we evaluate the occlusion distribution of

SED-PD by counting the average occurrences of three kinds of body parts, i.e.,

head-shoulder, upper-body and the whole body. The result is shown in Fig.170

5(a). We can see that most pedestrian instances (73%) show incomplete body

parts, while 98% head-shoulders are kept. Secondly, we conduct a preliminary

human detection experiment on SED-PD with the Cifar-10 network [40], and

the comparison is shown in Fig. 5(b). The result is consistent with Fig. 5(a),

i.e., the head-shoulder is the most distinctive part in SED.175

Afterwards, we propsoe a cascade CNN (HsNet) to detect the pedestrain,

Fig. 6(a) gives the flowchart. Let K denotes the number of cascade of CNN

models, fk and dk represent the false positive and the detection rates of the k-th

CNN model respectively. Tk is threshold for tuning fk and dk. The final false

positive and detection rates are defined as

F =

K∏

k=0

fk (1)

9
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Figure 6: Schematic depiction for the person detection. (a)cascade classifiers. (b)the archi-

tectures of three subnets.

D =

K∏

k=0

dk (2)

The learning goal of the cascade network is to achievie a satisfactory detec-

tion rate D, meanwhile, decreases the false positive rate F as far as possible.

Once wanted D and F are predefined, based on the performance of the k-th

model, parameters K, Tk, fk and dk can be determined. In our implementa-

tion, in order to balance the training time and the performance, we empirically180

set K=3. Furthermore, unlike popular cascade network, the same classifier

for all cascades are chosen, our cascade network (HsNet) concatenates different

CNN models.

Fig. 6(b) gives the network architecture, which is composed of 3 subnets: s1-

net, s2-net and s3-net. They are built from simple to complex so as to improve185

the discriminative representation for pedestrians step-by-step:

• s1-net: only contains a convolutional, a pooling and a two-class softmax

layer, and is designed to quickly get rid of majority obviously negative

candidates.

10
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• s2-net: includes 2 convolution layers and is used to further reduce the190

number of false detections.

• s3-net: is the most complex subnet. It follows the similar architecture

of Cifar-10 network to strengthen the learning of hard samples and can

achieve the most discriminative power.

Since the number of cascade K is fixed to 3, the training objective can be195

simplified as: obtaining the optimal parameters to guarantee a high detection

rate dk. During the course of HsNet training, all positive samples are input

into s1-net, s2-net and s3-net. For negative samples in k-the subnet, when the

output scores are higher than the threshold Tk, they will be fed into the (k+1)-th

subnet. The implementation of HsNet will be introduced in Section 5.200

The detection flowchart is: for a video frame Ii, a multi-scale sliding window

scheme is first used to yield input patches Pj . Afterwards, HsNet is applied to

determine the candidate head-shoulders. Fianlly, the Non-Maximum Suppres-

sion (NMS) algorithm is used to eliminate redundant detection boxes and obtain

the final results Hk.205

4.2. Event Detection

Existing SED approaches treat with different events in the same way. Ac-

tually, events are featured with different dependencies: a kind of events often

shortly occur on a single pedestrian and can be represented by simple actions,

showing strong inner-dependencies. Another kind of events are complex and210

contain long interactions between individuals. In these cases, the inter depen-

dencies become crucial. Therefore, our SED goes through two parallell detection

pipelines: short-term event detection and long-duration one detection.

4.2.1. Short-term Event Detection

Key-poses classification. For an arbitrary event, if it is dominated by a pure215

and transitory action, and meanwhile, the subject of the event usually keeps a

static gesture for a while, the event is defined as a short-term event.

11
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Figure 7: Short-term events: (a) “Pointing”. (b) “ObjectPut”. (c) “Embrace”. Note that we

normalize the direction of “Pointing” to left direction.

In this paper, we regard short event as a series of key-poses, as shown in

Fig. 7, and then apply CNN models to detect them. However, fairly insufficient

positive events highlight the data imbalance problem. To decrease the impact220

and enhance the generalization ability of models, we take 2 measures: 1) aug-

menting the positive samples by conducting multiple transformations such as

mirror, randomly rotation and crop etc. Finally, we increase the size of the

positive data set by a factor of 4; 2) employing the same architecture of HsNet,

we train novel CNN models to classify this type of events. Given a video, the225

detection of the short-term events can be summarized as 3 steps:

1. Pedestrain detection. For each video frame, the HsNet is first employed to

detect the pedestrains, and then the sizes of all detected bounding boxes

are expanded by 1.5 times.

2. Key-pose classification. The pedestrain is resized into 32x32 pixels, and230

then is input into the key-pose models to classify respectively.

3. Event localization. Based on the nearest-neighbor (NN) search, a fast

object trackig algorithm (see Algorithm 1)is used to associate consecutive

key-poses into an individual event.

key-pose tracking for event localization. According to spatial position and tem-235

poral consistency, we adopt a simple tracking algorithm based on NN search to

link key-poses into events. For key-pose pi, NN search traverses all poses qj in

next ∆T frames to find the best matching pair (pi, qj∗), and meanwhile, follow

a spatial constraint. i.e., if their Intersection-Over-Union (IoU) ratio exceeds

12
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Algorithm 1 The NN search for event localization

Require: The key-poses coordinate set of the first frame: P =
{
pi0
}N0

i=1
; The coordi-

nate set of all key-poses: Q =
{
qj
t

}
, j = 1, 2, ..., Nt, t = 1, 2, ..., T . T : the length

of tracking window; N0 and Nt: the number of detected key-poses in the first and

the t-th frame respectively.

Ensure: Tracking sequence of S = {sk}.
1: Initialize N0 tracking sequences,

2: for i = 1 to N0 do

3: for t = 1 to T do

4: for j = 1 to Nt do

5: Compute the distance: dij = ||pi-qj ||2;

6: end for

7: end for

8: Find the nearest neighbour of pi : dij∗ ← arg min
j

dij ;

9: Compute the ratio of IoU between pi and qj∗;
10: if IoU>0.5 then

11: Record qj∗ and find next NN within next T frames;

12: else

13: Create a new tracking sequence sj∗ for qj∗;

14: Add a new tracking for qj∗;

15: end if

16: end for

0.5, this pair is recorded. Otherwise, a new event will be labeled from qj∗, and240

correspondingly, a new tracking sequence will be created. Here, we apply l2-

norm to calculate the distance of two poses pi and qj . The tracking algorithm

can be described in Algorithm 1. Here, qjt= (xjt , y
j
t ) denotes the j-th key-pose

in the t-th frame, and (xjt , y
j
t ) is the central coordinate of the key-pose. In

experiments, we set ∆T=25.245

4.2.2. Long-duration Event Detection

If an event includes multiple human interactions with different actions and

holds a relative long time, the event is defined as the long-duration event.

13
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Figure 8: The pipeline of video representation and long-duration event detection.

For this kind of events, static postures are hard to represent. In addition, our

preliminary experiments show that temporal deep networks such as LSTM and250

two-stream CNNs can also not play positive role. [35, 41] use CNN models, but

the results are not satisfactory. Therefore, we adopt a trajectory-based method

to extract the contexts. Fig. 8 shows the pipeline, which mainly consists of

5 parts: 1) local-level feature extraction; 2) dimension reduction by PCA and

whiten PCA; 3) video representation based on FV encoding and normalization;255

4) linear SVM classification for events; 5) results fusion.

Low-Level feature extraction. In order to accelerate the feature extraction, for

an input video V , we firstly resize it to 320x240 pixels, and then split it into

Nv temporal segments with a fixed length Lv and 50% overlap, i.e., V =

{V1, ..., VNv
}. For a complex event, local motion is distinctive information.260

Compared with some sparse detectors such as STIP etc, DT and IDT, since

integrates much richer visual cues, can more steadily capture special motion

patterns in complex scenes.

In DT, five kinds of descriptors, i.e., dense trajectory, HOG, HOF, MBHx,

and MBHy are yielded to represent the spatio-temporal relationships of videos.265

IDT enhances the representation of object motion by removing the “global mo-

tion” of videos. In fact, IDT regards the dominant motion between two frames

as the global motion to remove. In SED, videos are always recorded from fixed

angles and no camera motions happen, thus the dominant motion actually comes

from the people stream, where the interference from the irrelevant persons could270

14
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be decreased, but true local motions of events would also be eliminated. In this

situation, DT will be more suitable. In our experiment, DT and IDT show a

complementary feature so that we combine them.

Raw feature encoding with Fisher vector. To represent each video clip Vi, we

encode the various number of raw features into a fixed dimension. For the IDT275

and DT feature, the PCA operation is beneficial to speed up the computation

and remove the correlation of the data. In recent literature [42], the whiten

PCA has been proved to be superior to PCA in action recognition. In our

implementation, before raw features are encoded, both PCA and whiten PCA

are employed, and their performance comparison will be discussed in Section 5.280

Afterwards, we employ FV to encode DT and IDT descriptors. Based on

Fisher kernel [28], FVs model the video through optimizing a generative Gaus-

sian mixture model (GMM) p(x; θ)

Gx
θ = ∇θlogp(x; θ) (3)

p(x; θ) =
K∑

k=1

πkN (x;µk,Σk)

∀k : πk ≥ 0,ΣKk=1πk = 1

(4)

where x ∈ RD represents the feature descriptor, and K is the number of Gaus-

sian components. The GMM parameters θ = {πk, µk,Σk, k = 1, ...,K}. πk,

µk and Σk denote the mixture weight, mean vector and covariance matrix re-

spectively. Σk is assumed to be diagonal with variance vector δ2k. θ could be

estimated by Expectation-Maximization (EM) with Maximum Likelihood (ML)

estimation. FV generates a 2DK-dimension signature x for D dimensional

descriptors and K Gaussian clusterings. Let x stands for a set of descriptors

extracted from a video clip Vi. The final FV of x is the concatenation of gradient

vectors

G =
{
Gx
µ,1, G

x
δ,1, ..., G

x
µ,k, G

x
δ,k, ..., G

x
µ,K , G

x
δ,K

}
(5)

15
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where Gx
µ,k and Gx

δ,k are D-dimensional gradients with respect to the mean

vector µk and standard deviation δk of the k-th component.

Gx
µ,k =

1√
πk
ωk(

xi − µk
δk

) (6)

Gx
δ,k =

1√
2πk

ωk(
(xi − µk)2

δ2k
− 1) (7)

where ωk is the soft assignment of descriptor xi with respect to the k-th com-

ponent.

ωk =
πkN (x;µk,Σk)

ΣKi πiN (x;µi,Σi)
(8)

Prior to G is applied to train the classifier, the power normalization and `2

normalization are successively introduced to adjust the absolute differences of

video clips so that FV representation could fit to the change of the numbers of

local descriptors and Gaussian components.

We observe that the bigger of the size of Gaussian clustering is, the sparser285

the FV will become, which results in some dimensions of the FV distribution

concentrate to zero. Hence, we firstly apply power normalization to suppress the

tendency. And then, `2 normalization is employed to remove the particularity of

specific events so as to enhance the generalization ability of FV representation.

Event classification. Based on normalized video representations, one-against-290

rest linear SVM classifiers are learned to detect events. Specifically, firstly, we

orderly train one SVM classifier for each event and each camera, and then a

later-fusion scheme based on the scores of the classifiers is used to get the final

results. It consists of 3 steps:

1. Data augmentation. we treat the video clips which have 50% overlap with295

the ground truth as the positive samples.

2. Detector training. we use LIBLINEAR [43] with twofold cross-validation

to train linear SVM detectors. Moreover, via a robust probability function

[44], we transform the decision values into probabilities. Finally, multiple

detectors are learned for per feature, and each of them only focuses on300

one event under one camera.
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3. Event merge. we first learn an optimal threshold for each detector by cross-

validation, and then apply NMS to merge the adjacent positive clips. The

merging rule is: filtering the clips whose output probabilities are below

predefine threshold firstly, and then attributing the adjacent clips’ labels305

to the clip whose probability is the local maximum.

5. Experimental Results

5.1. Datasets and experimental setup

5.1.1. The dataset

According to the Miss Rate (MR), we first compare our pedestrian detection310

algorithm with state-of-the-art methods on the SED-PD dataset. Then we eval-

uate the SED framework on TRECVID SED2015 dataset [1], containing seven

events. i.e., “CellToEar”, “Embrace”, “ObjectPut”, “Pointing”, “PeopleMeet”,

“PeopleSplitUp” and “PersonRuns”. Table 2 provides a brief description. Note

that due to fairly high complexity and the scale of this dataset, the TRECVID315

SED evaluations over the years always focus on seven ad hoc events.

Table 2: The test events.

Event Description

CellToEar someone puts a cell phone to his/her ear.

ObjectPut someone drops or puts down an object.

Embrace someone puts one or both arms part way around another person.

PeopleMeet
one or more people walk up to one or more others, stop and the

conversation occurs.

PeopleSplitUp

when one or more people separate themselves from a group of

two or more people, who are either standing, sitting or moving

together communicating, and then leave the frame.

PersonRuns someone runs.

Pointing someone points.

The training data of SED2015 consists of about 100 hours videos and the

testing set has additional 45 hours. This dataset is extremely challenging due
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to multiple confounding factors such as dense group activities, serious intra-

variances of the same events (e.g., PeopleSplitUp) from different cameras and320

tiny object (e.g., CellToEar) etc. In addition, the annotations of events only

contain category labels and temporal extents without bounding boxes. Further-

more, a rough statistics on training set show that the proportion of all positive

events are not more than 5%. The least frequent event, “CellToEar” occupies

less than 0.5% indeed, which pop outs the problem of the data imbalance.325

In experiments, we partition the training data into two parts: 2/3 of them

is used to train and 1/3 is used to validate.

5.1.2. The setting

Following the SED evaluation, we use the Normalized Detection Cost Rate

(NDCR) [2] to evaluate the performance. NDCR is a weighted linear combi-

nation of the system’s two error types: Miss Detections Probability (Pmiss)

and False Alarms Rate (RFA). The lower of the NDCR is, the better of the

performance will be. It is defined as:

NDCR = Pmiss + 0.005×RFA

Pmiss = Nmiss/NRef

RFA = Nfalse/NCamHrs

(9)

where, Nmiss is the number missed detections, and NRef is the number of true

event observations. Nfalse is he number of incorrect detections. NCamHrs is330

the number of camera hours of processed material.

In the evaluation, NDCR uses two criteria: the Actual NDCR (ADCR)

and the Minimum NDCR (MDCR). The ADCR is the primary metric, which

is computed by restricting the putative observations to those with true actual

decisions. The MDCR is a diagnostic metric that is found by searching the335

detection error tradeoff curve for the minimum cost. The difference between

the ADCR and MDCR indicates the benefit a system could have gained by

selecting a better threshold.

Experiments are conducted on a PC with an Intel Core i7 CPU (3.4 GHz)
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Figure 9: Comparison with state-of-the-art methods. (a) the miss rate. (b) a detection

instance: red bounding boxes are correct results, and green and blue ones stand for the

missing and flase detection respectively.

and 8GB memory, and an NVIDIA Titan-X GPU.340

5.2. Pedestrian Detection

We apply Stochastic Gradient Descent (SGD) with back-propagation to op-

timize the HsNet. We bias the sampling towards the positive data because it is

extremely rare. The deep model is implemented by Caffe toolbox [45], and the

parameter configuration is as follows: 32 positive samples and 96 negative ones345

are uniformly sampled to construct a mini-batch in each iteration. All layers

are randomly initialized from a Gaussian distribution with δ = 0.01. The initial

learning rate is 0.01 and will be dropped 90% for every 5,000-iteration. The

momentum is set to 0.9 to speed up the learning, and the maximum iteration

number is 60,000. The detection rate of the HsNet is set to D = 0.995.350

We compare our model with state-of-the-art methods, i.e., DPM+LSVM

[36], JointDeep [11] and CifarNet [13]. Fig. 9(a) shows the comparison. We can

see that the DPM-based model performs the worst due to the limitation of the

hand-crafted features. Although [11] and [13] leverage the strength of the deep

network, they still cannot deal with the highly occluded pedestrians, thus get355

high MR (58.5% and 57.4% respectively). In contrast, our HsNet can effectively
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Table 3: The comparison for runtime efficiency.

Device
Model (second/frame)

Our CifarNet[13] DPM[36] JointDeep[11]

CPU 1.02 1.69 3.76 31.52

GPU 0.33 0.56 – –

restrain the appearance variations of pedestrians. A clear example is shown in

Fig. 9(b). Compared with other methods, our model effectively detects most of

humans and obtains the lowest false detection rate.

Table 3 compares the runtime efficiency. Our HsNet obtains the lowest360

computation cost and we owe it to two reasons. First, detecting the head-

shoulder instead of the full-body is a much beneficial scheme, which drives

us to design a simple deep network to achieve the competitive accuracy with

complex models such as JointDeep. Second, the cascade architecture quickly

filters out most of the negetive samples in the early stages, thus further reduces365

the detection time.

5.3. Evaluation for Event Detection

5.3.1. Short-term event classification

According to previous definition, three events in SED2015 dataset, i.e., “Em-

brace”, “ObjectPut” and “Pointing” are viewed as short-term events. Corre-370

spondingly, three cascade CNN models are learned to classify them respectively.

In our experiments, in order to demonstrate the effectiveness of cascade CNN,

a single CNN model is also trained for comparing. As is shown in Fig. 10, it

includes 3 convolution layers, 2 fully-connect layers and a softmax classifier.

Firstly, on the SEDtest2015, we compare cascade CNN, single CNN and the375

best results of other systems at SED2015 evaluation. Trajectory-based approach

(is represented as “DT+IDT” in Table 4) is also tested to illustrate the superi-

ority of CNN-based method. According to this Table, We can see that cascade

CNN achieves the best performance, and the single CNN and trajectory-based
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Figure 10: The single CNN architecture for short-term event detection.

methods follow successively, and outperform other methods at SED2015 evalu-380

ation. The results indicate that for short events, the CNN model can capture

discriminative gesture information. Additionally, the cascade CNN is better

than single CNN. The results show that the cascade architecture can not only

partly overcome data imbalance by eliminating most of negative samples but

also gradually concentrate the learning of hard samples, thus boosts the perfor-385

mance.

Moreover, we referentially compare the best results of SED2013 [10] and

SED2014 [46] evaluations, and Chen’s method [9] that was conducted on SED-

2012. Note that the test data of annual SED evaluation is different and the

annotations are also not available, thus we qualitatively compare these num-390

bers. We notice that our “Embrace” obtains a new record in recent years’ SED

competitions, which indicates cascade CNN has a superiority for short-term

event detection.

5.3.2. Long-duration events evaluation

The rest of four events of SEDtest2015, i.e., “CellToEar”, “PeopleMeet”,395

“PeopleSplitUp” and “PersonRuns” are defined as the long-duration event. We

firstly resized videos to 320x240 pixels, and then split them into temporal clips

with a fixed length (Lv=60 frames) and keep 50% overlap with the adjacent clips.

Because DT and IDT track feature points within 15 frames, thus for each video

clip we append 15 subsequent frames behind the original 60 frames. Totally,400

350k clips are generated to extract DT and IDT features respectively. After-
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Table 4: Performance comparison for short-term events.

Event
Casade CNN Single CNN DT+IDT SED20151[47]

ADCR MDCR ADCR MDCR ADCR MDCR ADCR MDCR

Embrace 0.790 0.790 0.833 0.833 0.868 0.845 0.991 0.945

ObjectPut 1.012 0.996 1.015 0.999 1.016 0.988 1.033 0.999

Pointing 1.004 0.998 1.008 0.999 1.014 0.994 1.073 0.997

Event
SED20141[46] SED20131[10] Chen[9]

ADCR MDCR ADCR MDCR ADCR MDCR

Embrace 0.811 0.811 0.835 0.833 0.800 0.779

ObjectPut 0.971 0.967 0.998 0.997 1.000 0.999

Pointing 0.999 0.995 0.995 0.989 1.017 0.992

1 note: SED2015 denotes the best results of other systems at SED’2015 evalua-

tion, and SED2014 and SED2013 stand for the best results at SED’2014 and

SED’2013 evaluations respectively.

wards, both normal PCA and PCA-whiten are applied to reduce the descriptors

to 80-D, and the power and `2 normalizations follow successively. Meanwhile,

K-means clustering is applied to initialize the GMM training, where its co-

variance matrix of each mixture is defined as a diagonal one. The number of405

Gaussian components K is set to 128. Thirdly, a 116736-dimensinal feature vec-

tor is yielded and input into LIBLINEAR to train the SVM detector for each

event. Finally, a late fusion is employed to combine two results from DT and

IDT detectors.

To determine which feature and PCA are the best, we conduct heuristic410

experiments on the validation set. Our scheme averagely fuses the detection

scores from two kinds of features and PCAs to rank the best results, i.e., 1) DT

with normal PCA (DT-FV); 2) DT with whiten-PCA (DT-WFV); 3) IDT with

PCA (IDT-FV); 4) IDT with whiten-PCA (IDT-WFV). Table 5 lists four mutual

combinations and corresponding ADCR scores. As a whole, the combination of415

DT-WFV and IDT-WFV is better than others, thus we choose it as the final

test method. Note that “DT+IDT” in Table 4 also adopts this combination.
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Table 5: The comparison of different features and fusion schemes.

Event

Fusion method (ADCR)

IDT
DT-FV+ IDT-FV+ DT-WF+

IDT-WFV IDT-WFV IDT-WFV

CellToEar 1.005 1.000 1.003 1.004

Embrace 1.006 0.925 0.919 0.910

Pointing 1.014 0.992 0.989 0.985

ObjectPut 1.004 1.002 1.002 1.002

PeopleMeet 0.952 0.923 0.9369 0.929

PeopleSplitUp 0.961 0.893 0.903 0.886

PersonRuns 0.644 0.647 0.654 0.629

Table 6 gives the comparison. The results indicate that on SEDtest2015

dataset, our method outperforms state-of-the-art apporaches, which demon-

strates the effectiveness of the proposed framework. The best results of recent420

years’ SED evaluation are also referentially given. We find that the event “Per-

sonRuns” achieves a new record, and “PeopleMeet” and “PeopleSplitUp” also

obtain comparable results, indicating the fusion of DT and IDT is beneficial to

the detection of long interaction events.

5.3.3. Discussion and visualization analysis425

According to above experiments, we observe that CNN-based approach can

surely capture representative postures in short-term events, while conventional

hand-crafted features such as STIP, DT and IDT, cannot abstract the most

informative part well. On the contrary, for long-duration events, the trajectory-

based method can catch clear motion patterns so as to represent the interac-430

tion of individuals, while the deep model cannot achieve remarkable progresses.

Meanwhile, DT and IDT are complementary, and their fusion can boost the

performance.
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Table 6: The comparison for long-duration events.

Event
DT + IDT SED151[47] SED141[46] SED131[10] Chen[9]

ADCR MDCR ADCRMDCR ADCRMDCR ADCRMDCR ADCRMDCR

CellToEar 1.004 1.004 1.370 1.370 0.992 0.991 1.000 1.000 1.000 1.000

PeopleMeet 0.893 0.893 1.042 1.042 0.858 0.858 0.949 0.945 1.036 0.949

PeopleSplitUp 0.893 0.893 0.938 0.938 0.835 0.833 0.894 0.887 0.843 0.788

PersonRun 0.576 0.576 0.970 0.970 0.830 0.830 0.770 0.764 0.834 0.787

1 note: SED15 denotes the best results of other systems at SED’2015, and SED14

and SED13 stand for the best results at SED’2014 and SED’2013 evaluations.

Figure 11: The detected instances of SED.

In order to reduce the impacts of the data imbalance, the data augmentation

scheme can play a positive role. In addition, the cascade network architecture435

may be another feasible method, because it can quickly eliminate vast negative

samples in the early training. To some extent, the cascade architecture alleviates

the data imbalance and decreases the overfitting.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fig. 11 visualizes several detected event sequences. The short-term events

are localized with bounding boxes (marked by red rectangle) and the frame440

number, and long-duration events show trajectories (marked by color curve) of

pedestrains (denoted by a white point with a number) and the frame number.

The first image of each row is a closeup of the corresponding event. We observe

that our method could localize events in complex surroundings such as heavy

occlusion, crowded people stream etc. The detected events may rapidly pro-445

vide important clues in dealing with the emergencies. However, some false and

missing detections are still exist, especially for ”CellToEar”, containing a small

object. We believe this kind of mistakes can be improved by appending more

training data and introducing a deeper network architecture.

6. Conclusion450

SED is an extremely challenging task due to many factors such as uncon-

trolled surrounding, multiple camera views, crowded people stream, the data

imbalance and insufficient annotations etc. In order to address these problems,

we firstly build a new large-scale pedestrian dataset (SED-PD) and propose a

novel cascade CNN to detect pedestrains. Secondly, we present a unified SED455

framework to detect two kinds of events: short-term events and long-duration

events. For the former, we regard the event detection as a classification problem

of static key-poses, and adopt a CNN-based method. For the latter, we apply

trajectory-based approach to represent the spatio-temporal context. The exper-

imental results on SED-PD and TRECVID SED datasets show the effectiveness460

of proposed framework.
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