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Abstract 12 

Background: Three dimensional (3D) food printing is being widely investigated in food sector recent 13 

years due to its multiple advantages such as customized food designs, personalized nutrition, 14 

simplifying supply chain, and broadening of the available food material.  15 

Scope and approach: Currently, 3D printing is being applied in food areas such as military and space 16 

food, elderly food, sweets food. An accurate and precise printing is critical to a successful and 17 

smooth printing. In this paper, we collect and analyze the information on how to achieve a precise 18 

and accurate food printing, and review the application of 3D printing in several food areas, as well as 19 

give some proposals and provide a critical insight into the trends and challenges to 3D food printing. 20 

Key findings and conclusions: To realize an accurate and precise printing, three main aspects should 21 

be investigated considerably: material properties, process parameters, and post-processing methods. 22 

We emphasize that the factors below should be given special attention to achieve a successful 23 

printing: rheological properties, binding mechanisms, thermodynamic properties, pre-treatment and 24 

post-processing methods. In addition, there are three challenges on 3D food printing: 1) printing 25 

precision and accuracy 2) process productivity and 3) production of colorful, multi-flavor, 26 

multi-structure products. A broad application of this technique is expected once these challenges are 27 

addressed.  28 

Key words: 3D food printing; printing precision; process parameters; productivity 29 

 30 

 31 

  32 
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Introduction 33 

3D printing, also known as additive manufacturing (AM), solid freeform fabrication (SFF), was 34 

firstly introduced in food sector by researchers from Cornell University using an extrusion based 35 

printer (Fab@home) (Periard, Schaal, Schaal, Malone, & Lipson, 2007). This technology is 36 

characterized by a layer by layer material deposition mode based directly from a pre-designed file 37 

(Pinna et al., 2016; Rayna & Striukova, 2016).   38 

There are many potential advantages of 3D printing technology applied to food sector, such as 39 

customized food designs, personalized and digitalized nutrition, simplifying supply chain, and 40 

broadening the source of available food material. Using this technology, some complex and fantastic 41 

food designs which cannot be achieved by manual labor or conventional mold can be produced by 42 

ordinary people based on predetermined data files that comprise culinary knowledge and artistic 43 

skills from chefs, nutrition experts, and food designers (Sun, Zhou, Huang, Fuh, & Hong, 2015). It 44 

also can be used to customize confectionery shapes and colorful images onto surface of solid edible 45 

substrates (Young, 2000; Zoran & Coelho, 2011). In addition, 3D food printing permits to digitize 46 

and personalize the nutrition and energy requirements of an individual person according to their 47 

physical and nutrition status (Severini & Derossi, 2016; Sun, Zhou, Huang, Fuh, & Hong, 2015; 48 

Wegrzyn, Golding, & Archer, 2012; Yang, Zhang, & Bhandari, 2015). Conventional food supply 49 

chain can be simplified by 3D food printing. The universal application this technique will make the 50 

manufacturing activities slowly moving to the places closer to the customers and will lead to the 51 

reduced transport volume, thus reducing the packaging, distribution and overriding costs (Chen, 52 

2016; Jia, Wang, Mustafee, & Hao, 2016; Sun et al., 2015). Food printing technology will also 53 

broaden the source of available food material by using non-traditional food materials such as insects, 54 

high fiber plant based materials, and plant and animal based by-products (Payne et al., 2016; Severini 55 

& Derossi, 2016; Tran, 2016). 56 

Currently, 3D printing techniques available in food sector generally include four types: extrusion 57 

based printing, selective sintering printing (SLS), binder jetting, and inkjet printing. Extrusion based 58 

printing is usually used in the extrusion of hot-melt chocolate or soft-material such as dough, mashed 59 

potatoes, and meat puree (Engmann & Mackley, 2006; Yang, Zhang, & Bhandari, 2015). Researchers 60 

from Cornell University studied the fabrication of cake frosting, processed cheese, and sugar cookies 61 

using extrusion based printing (Lipton et al., 2010; Periard, Schaal, Schaal, Malone, & Lipson, 2007). 62 

This technology has also been applied by Netherlands Organization for Applied Scientific Research 63 

(TNO) to fabricate various kinds of foods using traditional materials and non-traditional ingredients 64 

such as algae and insects (Daniel, 2015; Sol, Linden, & Bommel, 2015). Another extrusion based 65 

printer (Foodini Printer) has been created by Natural Machines to be used for surface filling and 66 

graphical decoration (Galdeano, 2015). Camille et al. (2017) studied the effect of 3D printing on 67 

quality of processed cheese. Results showed that the printed cheese was significantly less hard, by up 68 

to 49%, and exhibited higher degrees of meltability (21%), compared to untreated cheese samples 69 
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(not 3D printed samples) (Camille et al., 2017). The hot-melt extrusion of chocolate using 3D 70 

printing was firstly operated using a Fab@home printing system. They studied the deposition of 71 

chocolate and the processing factors affecting the printing accuracy during chocolate fabrication 72 

(Hao et al., 2010). The chocolate extrusion printing has been commercialized by Choc Edge’s Choc 73 

Creator, 3D System’s ChefJet, Hershey’s CocoJet, and Chocabyte (Millen, 2012; Zhuo, 2015). SLS 74 

has been utilized to fabricate complex structures using sugar or sugar-rich powders. Delicate and 75 

complex 3D structures has been created by researchers from TNO using sugars and NesQuik 76 

powders (Gray, 2010). Using SLS, CandyFab Project has successfully created various attractive 77 

complex structures using sugar powders which could not be produced by conventional ways 78 

(CandyFab 2007). Binder jetting offers advantages such as fast fabrication, building of complex 79 

structures and low material cost (Sun, Peng, Yan, Fuh, & Hong, 2015). Based on binder jetting, 80 

Southerland and Walters (2011) investigated the fabrication of edible constructs using sugars and 81 

starch mixtures. Researchers from 3D System have created a binder to produce a wide variety of 82 

colorful and flavors edible objects, such as various kinds of complex sculptural cakes by varying 83 

flavor and colorful binders (Izdebska & Tryznowska, 2016). Inkjet printing generally handle low 84 

viscosity materials, thus it is mainly used in the area of surface filling or image decoration (Pallottino 85 

et al., 2016). Grood and Grood (2011) created an drop-on-demand inkjet printer to dispense edible 86 

liquids onto food surfaces to create appealing images (Grood & Grood, 2011). The FoodJet printer 87 

uses pneumatic membrane nozzle-jets to deposit edible drops onto a moving object to form an 88 

appealing surfaces (FoodJet, 2015). Willcocks, Shastry, Collins, Camporini, and Suttle (2011) 89 

created a kind of edible ink to fabricate high resolutions of images on edible substrates, such as 90 

biscuit, cake, and crackers.  91 

3D printing is being widely investigated in food sector. However, few studies have focused on 92 

how to achieve an accurate and precise printing, though it is critical to a successful and smooth 93 

printing of the food objects. The aims of this review paper are to collect and analyze the information 94 

regarding how to achieve a precise and accurate food printing, and to review the application of 3D 95 

printing in several food areas, as well as to give some proposals and provide a critical insight into the 96 

trends and challenges faced by 3D food printing.  97 

 98 

2 3D food printing technologies and factors influencing printing precision and accuracy  99 

As mentioned earlier, the quality and precision of printed objects depend on the material 100 

properties, processing factors, and post-processing treatments. Each 3D food printing technique has 101 

its own advantages and limitations. Tab. 1 shows the comparison of different 3D printing techniques, 102 

and factors affecting the printing precision and accuracy. This is discussed in detail in the following 103 

section. 104 

 105 
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2.1 Extrusion-based printing and factors influencing printing accuracy 106 

The extrusion-based printing, also known as fused deposition modelling (FDM), was firstly 107 

introduced to fabricate plastics products (Ahn, Montero, Odell, Roundy, & Wright, 2002). During 108 

food printing process the melted material or paste-like slurry is extruded out continuously from a 109 

moving nozzle, and welds to the preceding layers on cooling. The extrusion based printing can be 110 

applied into chocolate printing and soft-materials printing, such as dough, mashed potatoes, cheese, 111 

and meat paste (Lipton et al., 2010; Yang, Zhang, & Bhandari, 2015). Though this technique has 112 

been applied in the deposition of a wide variety of soft-materials, the deposition of them into 113 

complex and delicate shapes are inherently limited as they are fundamentally prone to distortion and 114 

warping. To fabricate delicate and complex shapes during soft-material extrusion process, it is 115 

necessary to print the additional structural objects to support the product geometry. The supporting 116 

constructs must be manually removed in the final stage. This is a time consuming process and will 117 

slow printing speed and raise material costs (Hasseln, 2013; Hasseln, Hasseln, & Williams, 2014; 118 

Von, Von, Williams, & Gale, 2015b). Therefore, it is necessary to fully understand the material 119 

properties and relevant technologies, thus to be able to construct 3D structures. The printing 120 

precision and accuracy are critical in the production of an appealing object, and there are several 121 

factors which may be responsible for this: 1) extrusion mechanism 2) material properties, such as 122 

rheological properties, gelling, melting and glass transition temperature (Tg) 3) processing factors, 123 

such as nozzle height, nozzle diameter and extrusion speed 4) post-processing treatments. 124 

Three extrusion mechanisms have been applied in 3D food printing: screw-based extrusion, air 125 

pressure-based extrusion and syringe-based extrusion. In the screw-based extrusion process, food 126 

materials are put into the sample feeder and transported to the nozzle tip by a moving screw. During 127 

the extrusion process, food materials can be fed into the hopper continuously thus realizing the 128 

continuous printing. However, the screw-based extrusion is not suitable for the food slurry with high 129 

viscosity and high mechanical strength, thus the printed samples do not attain proper mechanical 130 

strength to support the following deposited layers and result in the compressed deformation and poor 131 

resolution (Liu, Zhang, Bhandari, & Yang, 2017). The air pressure-based extrusion, during which 132 

food materials are pushed to the nozzle by air pressure, is suitable to print liquid or low viscosity 133 

materials, (Sun, Zhou, Yan, Huang, & Lin, 2017). The syringe-based extrusion unit is suitable to 134 

print food materials with high viscosity and high mechanical strength, so that it probably can be used 135 

to fabricate complex 3D structures with high resolution. However, it should be noted that the air 136 

pressure-based extrusion and syringe-based extrusion do not allow the continuous feeding of food 137 

materials during printing 138 

In extrusion based printing, the properties of food material, such as the moisture content, 139 

rheological properties, specific crosslinking mechanisms and thermal properties, are critical to a 140 

successful printing. In the 3D printing of biomass of Nostoc aphaeroides, the moisture content 141 

affected the printing behavior greatly, and the slightly higher moisture content was helpful to form a 142 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

smooth structure (An, Zhang, Godoi, & Zhong, 2017). The viscosity of the soft-material should be 143 

both low enough to be easily extruded through a fine nozzle and high enough to hold the 144 

subsequently deposited layers (Godoi, Prakash, & Bhandari, 2016). Wang and Shaw (2005) 145 

concluded that dental porcelain slurries with shear thinning behavior are beneficial to the 146 

construction of objects, as they can be easily extruded out from the nozzle with the application of 147 

shear stress and become rigid and solidifies upon the departure from the extruder (Wang & Shaw, 148 

2005). In our previous work (Liu, Zhang, Bhandari, & Yang, 2017), we investigated the impact of 149 

rheological properties of mashed potatoes (MP) on 3D printing by addition of different 150 

concentrations of potato starch (PS). We concluded that the highly desirable materials for 3D food 151 

printing should not only possessed suitable yield stress (τ0) and elastic modulus (G′) to be capable of 152 

maintaining printed shapes, but also had relative low consistency index (K) and flow behavior index 153 

(n) to be easily extruded out from nozzle in extrusion-based type printer. MP with addition of 2% PS 154 

displayed excellent extrudability and printability, i.e., shear-thinning behavior, K of 118.44 (Pa•sn), 155 

and strong enough mechanical strength with yield stress (τ0) of 312.16 Pa and proper elastic modulus 156 

(G′), therefore the objects could withstand the shape over time and possessed smooth shape and 157 

resolution. No addition of PS induced a drop in τ0 (195.90 Pa) and G′, thus printed objects deformed 158 

in time because of sagging. Although MP with addition of 4% PS represented good shape retention 159 

due to proper τ0 (370.33 Pa) and G′, the poor extrudability made it difficult to print due to high K 160 

(214.27 Pa•sn) and viscosity. The printed samples are illustrated in Fig. 1 (Liu, Zhang, Bhandari, & 161 

Yang, 2017).We also investigated the printing behavior of MP with addition of different hydrocolloid, 162 

and Fig. 2 illustrates several sample pictures. In addition, our research group studied the fish surimi 163 

gel as potential food material for 3D printing (Wang, Zhang, Bhandari, & Yang, 2017). Results 164 

indicated that the surimi with high viscosity and low loss tangents (tanδ= G″/G′) could not extruded 165 

smoothly with large amounts of broken deposited lines. NaCl could be used to adjust the 166 

viscoelasticity of surimi and the printed objects using surimi with addition of 1.5g/100g NaCl 167 

displayed a smooth surface structure, better matching with the target geometry and no compressed 168 

deformation. Printed samples are shown in Fig. 3 (Wang, Zhang, Bhandari, & Yang, 2017). In the 169 

previous work of 3D printing Vegemite and Marmite, Hamilton, Alici, and Marc (2017) indicated 170 

that the n and K were critical in determining whether a material is suitable for 3D printing and 171 

determining the desired extrusion rates. Zhang et al. (2015) also reported that the gel with higher τ0 172 

and G′ revealed better performance to support the additional deposited layers in the printing of 173 

dual-responsive hydrogels. An, Zhang, Godoi, and Zhong (2017) studied 3D printing behavior of 174 

three types of biomass (Nostoc aphaeroides), that is fresh biomass, rehydrated biomass powder and 175 

rehydrated biomass powder with addition of starch. They studied the correlation between rheological 176 

behavior and printability, and pointed out that elasticity and viscosity balance is an essential 177 

parameter to achieve printability. The increase of elasticity went against smooth 3D print-running, 178 

but could help to strength of the construct (An, Zhang, Godoi, & Zhong, 2017). To achieve an ideal 179 

rheological properties to be capable of holding the 3D structures, rheological modifiers, such as 180 
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hydrocolloids and soluble protein, can be added but must comply with food safety standards. In 181 

addition, the crystallization state and glass transition temperature (Tg) of material is also critical to 182 

make the deposited material to support its own structure after printing (Godoi, Prakash, & Bhandari, 183 

2016). In hot-melt extrusion of chocolate, understanding the properties of the chocolate is critical to 184 

the quality of the printed objects due to the complex compositions and six different crystalline phases 185 

for cocoa butter (Marangoni & McGauley, 2003). Hao et al. (2010) investigated the material 186 

characterization on the quality of printed objects. During this process, a seed was added in the 187 

pre-melted chocolate to generate more V crystals which was desirable in the deposition of “good” 188 

chocolate. Chocolate slurries with pseudoplastic property at different temperatures was highly 189 

desirable in the deposition of 3D constructs (Hao et al., 2010). 190 

The processing parameters, such as nozzle diameter, nozzle height, extrusion rate and nozzle 191 

moving speed, are also critical to the quality of the resulting printed constructs. Previous work (Hao 192 

et al., 2010) on the deposition of chocolate showed that the distance between the nozzle tip and build 193 

platform played an important role in the quality of built objects, and an equation was developed 194 

regarding the critical nozzle height: 195 

               Equation 1  196 

Where, hc is the critical nozzle height, Vd the volume of slurries extruded out per unit time (cm3/s), 197 

vn the nozzle moving speed (mm/s), Dn the nozzle diameter (mm) and hc the optimal nozzle height. 198 

This study showed that when a lower nozzle height than hc was applied, the volume of the extruded 199 

chocolate would be too large for the space between the building platform and nozzle. Thus, the slurry 200 

was forced to spread in the directions perpendicular to the deposited slurry line and the resultant 201 

extruded objects displayed a squeezing effect and poor accuracy. Conversely, the application of a 202 

larger nozzle height resulting in parts of the chocolate not reaching the marble build surface in time, 203 

leading to massively inaccurate parts (Hao et al., 2010). Effects of nozzle height on the printing 204 

behavior was studied in our group. Results indicated that the application of a nozzle height lower 205 

than hc led to the thicker extruded lines than intended. The application of a nozzle height higher than 206 

hc led to parts of the extruded surimi lines not reaching the build surface before the nozzle turned a 207 

corner and thus resulted in massively inaccurate sections (Wang, Zhang, Bhandari, & Yang, 2017). 208 

The effect of various nozzle diameter on the built construct was simple to determine. A safe rule of 209 

thumb is to select the smallest nozzle tip that allows for easy material extrusion, as it is helpful to 210 

construct the object with the finest resolution and smooth surface during printing (Periard, Schaal, 211 

Schaal, Malone, & Lipson, 2007). Wang, Zhang, Bhandari, and Yang (2017) concluded that the 212 

nozzle diameter affected the printing precision and surface smooth considerably. The 3D printing of 213 

fish surimi displayed that the application of a small nozzle diameter (0.8mm, 1.5mm) led to 214 

relatively poor models due to the inconsistent extruded surimi filament in its diameter along the 215 

length. Conversely, the use of a larger nozzle diameter could extrude consistent lines, but the 216 
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resolution and accuracy of the objects were poor (Wang, Zhang, Bhandari, & Yang, 2017). Generally, 217 

a small nozzle diameter is beneficial to print objects with fine resolution, but it should be noted that 218 

the printing time required increased greatly when using a small nozzle size. A good balance must be 219 

made with the printing productivity and the printing precision. The extrusion rate and nozzle moving 220 

speed are also important in extrusion based printing. It was suggested that the critical nozzle 221 

movement rate can be determined by the following equation derived from Equation 1 (Khalil & Sun, 222 

2007):  223 

                Equation 2 224 

Where vN is the optimal nozzle speed (mm/s), Q the material flow rate (cm3/s) and DN the nozzle 225 

diameter. It was shown that a nozzle velocity greater than vN would result in a smaller diameter 226 

material bead than that of the nozzle, whereas a nozzle velocity less than vN would lead to a greater 227 

diameter material bead than that of the nozzle. Neither of them was desired in printing (Khalil & Sun, 228 

2007). Wang, Zhang, Bhandari, and Yang (2017) suggested that the alteration of nozzle speed would 229 

affect the critical nozzle height when all other parameters were kept constant. Too high speed (32 230 

mm/s) resulted in the dragging effect causing breaking of the extruded slurry filaments. While too 231 

low moving speed (20mm/s) resulted in the occurrence of flow instabilities of slurry and the 232 

formation of coils (Fig. 4). They also suggested that there is a linear relationship between the 233 

extrusion rate and the diameter of surimi lines. Too high extrusion rate (0.004 cm3/s) gave a larger 234 

extruded lines’ diameter than desired due to the extrusion of greater volume of material. Too low 235 

extrusion rate (0.002 cm3/s) led to an inconsistent surimi slurry (Wang, Zhang, Bhandari, & Yang, 236 

2017). In the 3D printing of chocolate, it was revealed that the printing accuracy was seriously 237 

affected by the extrusion rate and nozzle movement rate, due to the bead diameter of chocolate track 238 

decreased with the nozzle movement rate while increased with the extrusion rate, as shown in Fig. 5 239 

(Hao et al., 2010). Similar results was also reported in the creating of detailed and complex ceramic 240 

parts using extrusion based printing (Rueschhoff, Costakis, Michie, Youngblood, & Trice, 2016). In 241 

the previous work (Zhuo, 2015) on the development of 3D food printer, a positive linear relationship 242 

between nozzle moving speed and extrusion rate was studied. As shown in Fig. 6, the blue region 243 

represents the acceptable prints and any values outside the region led to bad prints (Zhuo, 2015).  244 

   The printing temperature should also be fine-tuned, as the viscosity of the food material is 245 

directly correlated with the temperature. The temperature should be low enough so that the extruded 246 

chocolate harden rapidly on the substrate without flowing too much (Periard, Schaal, Schaal, Malone, 247 

& Lipson, 2007). In the previous work of 3D printing Vegemite and Marmite (Hamilton, Alici, & 248 

Marc, 2017), the viscosity decreased when the temperature increased. 172 kPa of pressure was used 249 
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to extrude both materials at 25°C but it should be decrease to 103 kPa at 45°C. The application of a 250 

172 kPa pressure to fabricate objects at 45°C led to too large flow rate and the formation of a puddle 251 

of material. With a further increase of temperature to 65°C, too quick extrusion of the material was 252 

formed even with the application of a very low pressure (<34 kPa) (Hamilton, Alici, & Marc, 2017). 253 

Ideally, the 3D food structures should resist to post-processing (baking, cooking, frying, etc), as 254 

most of foods consumed in daily life must go through these processes. The deposition of various 255 

kinds of soft-material, such as cookie dough, cheese and cake frosting, have been done via extrusion 256 

based 3D printing technique (Lipton et al., 2010). However, these objects were not suitable for 257 

conventional food processing techniques and would greatly deformed after post-processing 258 

treatments. In order to realize the wide application of 3D printing process on foods, this technique 259 

must be easily compatible with traditional food processing steps (Lipton, Cutler, Nigl, Cohen, & 260 

Lipson, 2015). Two main ways that have been applied to maintain the shape stability of objects after 261 

post-processing are recipe control and addition of additives (Lipton et al., 2010). Additives of various 262 

concentrations of transglutaminase was blended with lean beef paste to maintain printed shape 263 

stability after cooking. It was shown that addition of 0.5% of transglutaminase by weight 264 

significantly increased the structure stability after cooking. This was because that the addition of 265 

transglutaminase led to the formation of new protein matrix over time. The extrudates survivability 266 

of scallop through deep fried and turkey meat through sous-vide cooking were investigated, and 267 

excellent performances were obtained (Lipton et al., 2010). In another study, the composition of the 268 

cookie recipe was found to have significant effects on the printability and shape stability of the 269 

cookie. It was shown that increasing the butter content increased the printability but decreased the 270 

shape stability after baking. The increase of yolk concentrations increased the shape stability, which 271 

can be seen in Fig. 7 (Lipton et al., 2010). The method of varying recipe formulation of cookie dough 272 

to achieve desired printability and shape stability after baking has also been investigated (Zhuo, 273 

2015). Godoi, Prakash, and Bhandari (2016) believe that the 3D printed structures which can resist 274 

post-processing can be achieved by controlling the physical-chemical, rheological, structural and 275 

mechanical properties of the materials.  276 

 277 

2.2 Selective laser sintering based printing and factors influencing printing accuracy 278 

Selective laser sintering (SLS) is a technology that applies a power laser to selectively fuse 279 

powder particles together layer by layer finally into a 3D structure. The laser scans cross-sections on 280 

the surface of each layer and selectively fuses the powder. After scanning each cross-section, the 281 

powder bed is dropped and a new layer of powder is covered on top. This process is repeated until 282 

the desired structure is finished. Finally, the unfused powder is removed and reclaimed for next 283 

printing (Noort et al., 2016). SLS has been widely applied in the metal and ceramic industrial 284 

manufacturing, however, there are several hurdles for using SLS in food sector: (1) suitable 285 

powdered material which can fuse together without decomposition of the material itself during 286 
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fabricating process (2) the construction of various edible objects using a wide range of food materials 287 

(Diaz, Van, Noort, Henket, & Brier, 2014). Generally, SLS allows for the production of free standing 288 

complex 3D structures with high resolution, but the available material is limited to powder material, 289 

such as sugar, fat or starch granule. It is necessary to expand the available range of food ingredient 290 

thus to broaden the application of this technology in traditional food. In SLS, the material properties 291 

and processing factors (laser types, laser power, laser spot diameter, etc), are both critical to the 292 

printing precision and accuracy of fabricated parts (Shirazi et al., 2015).  293 

Material properties, such as particle size, flowability, bulk density and wettability of powder 294 

material, have a great impact on the printing precision and accuracy of objects in SLS (Godoi, 295 

Prakash, & Bhandari, 2016). Powder density and compressibility are also important in SLS, as they 296 

seriously affect the powder flowability inside the vessel which, in turn, contributes for the formation 297 

of patterns when the laser source is applied to the powder bed (Berretta, Ghita, Evans, Anderson, & 298 

Newman, 2013; Schmid, Amado, Levy, & Wegener, 2013). The preferred edible powder in SLS 299 

should be a free-flowing powder which can be poured without substantial clumping. In addition, the 300 

powdered material should not be sticky, and thus has no or any tendency to agglomerate or to adhere 301 

to contact surfaces (Diaz, Van, Noort, Henket, & Brier, 2014). The particle size affects the printing 302 

precision and resolution of fabricated objects (Duan et al., 2010; Sun, Peng, Yan, Fuh, & Hong, 303 

2015). A smaller layer thickness results in a stronger mechanical strength and a decrease in the 304 

porosity of fabricated constructs, while the minimum layer thickness that can be used in SLS is 305 

determined by the maximum particle size of the powder (Fred, Lohrengel, Neubert, Camila, & 306 

Czelusniak, 2014). Diaz, Van, Noort, Henket, and Brier (2014) invent a method for the production of 307 

edible objects with a high degree of resolution and precision using SLS. In this invention, the 308 

multi-material structures were created by using a powder composition comprising a structural 309 

element and a binder component. The structural element provided bulk and scaffold function and the 310 

binder component acted as particle-particle sintering helping bind the powder into the desired 311 

structure. Typically, the melting temperature (Tm) or glass transition temperature (Tg) of the binder 312 

component ranged between 10-200°C. The binder should undergo melting and glass transition in less 313 

than five seconds, while the structural component should be non-melting at the temperatures below 314 

200°C (Diaz, Van, Noort, Henket, & Brier, 2014). In addition, they concluded that the binder 315 

comprising at least two compounds that differ in their Tg or Tm, such as the palm oil powder with a 316 

Tm of 30°C and maltodextrin with a Tg of 62°C, demonstrated excellent performance in aspects of 317 

the printing precision and accuracy of printed objects. 318 

The processing factors, such as laser types, laser diameter, laser power, and scanning speed, 319 

should also be fine-tuned to get a desired outcome. The interaction between the powdered materials 320 

and laser beam is critical to the quality of fabricated constructs in SLS process, as the strength of 321 

interaction depends on the laser types and the fusion of material is affected by the laser energy 322 

density (Gu, Meiners, Wissenbach, & Poprawe, 2012). A higher laser energy density, which can be 323 
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obtained by adjusting the scanning speed and laser power, leads to denser parts with stronger 324 

mechanical strength due to longer interaction time. A porous and brittle structure will be obtained 325 

when a lower laser energy density is applied (Fred, Lohrengel, Neubert, Camila, & Czelusniak, 326 

2014). The CandyFab uses hot air to selectively sinter and melt sugar powder due to the low melting 327 

temperature of sugar powder. The interaction time between the hot air gun and sugar powder was one 328 

to three seconds, determined by the air temperature and layer thickness. Larger laser spot diameter 329 

made the constructs less likely to break, and a higher rate of fabrication was obtained by turning up 330 

the heat and speed, while the resulting object’s precision and resolution were poor. Changing the 331 

laser diameter from 5 mm to about 1.6 mm improved the printing resolution and precision, but at the 332 

expensing of lowering the constructing rate and reducing the mechanical strength of the printed 333 

object (CandyFab, 2009). In the fabrication of an colorful and detailed edible object, the SLS 334 

procedure was performed by Diaz et al. (2014) using a carbon dioxide laser with laser spot diameter 335 

0.6 mm, and specific process parameters (layer distance of 0.1 mm, writing speed 1250 mm/sec, 336 

laser power 50% and layer thickness 0.3 mm).  337 

 The printed objects in selective laser sintering may require further post processing, such as the 338 

removal of the excess food material powder to improve the surface smooth and further heating to 339 

enhance the mechanical strength.  340 

2.3 Binder jetting based printing and factors influencing printing accuracy  341 

Binder jetting printing, also known as inkjet 3D printing (3DP), was firstly introduced by Sachs, 342 

Haggerty, Cima, and Williams (1994), during which powdered materials were deposited layer by 343 

layer and the binder was selectively ejected upon each material layer at certain regions based on the 344 

data file for the object being produced. The binder fuses the current cross-sections to previous and 345 

afterwards fused cross-sections. The un-fused powdered support the fused parts at all times during 346 

the fabrication process, allowing for the production of intricate and complex structures. Finally, the 347 

unbound powder is removed and recycled for further use (Sachs, Haggerty, Cima, & Williams, 1994). 348 

Binder jetting technology can be used to fabricate complex and delicate 3D structures, and have the 349 

potential to produce colorful 3D edible objects by varying binder composition. However, the 350 

structural material is only limited to powder stuff, and the edible binder affects its wide application in 351 

food sector, especially in the field of traditional food consumed in daily life.  352 

In binder jetting process, properties of powdered material and binder are critical to the successful 353 

fabrication of parts. The binder must have suitable viscosity, surface tension, ink density, and suitable 354 

properties to prevent spreading from nozzles. The binder concentration was also important to the 355 

successful fabrication of parts with desired dimensional precision (Peters et al., 2006). In a 356 

successful fabrication process, the bound structures should possess adequate product strength with 357 

minimal shrinkage or expansion and minimal 'bleeding' of the binder into neighboring voxels 358 

(Hasseln, 2013; Hasseln, Hasseln, & Williams, 2014; Von, Von, Williams, & Gale, 2015a). 359 

Flowability of powder is important. The powder with suitable flowability permits the roller to easily 360 
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build up thin layers, which facilitates the fabrication with high precision and accuracy. Conversely, 361 

poor flowability reduces the resolution and accuracy of fabricated parts due to insufficient recoating 362 

(Lanzetta & Sachs, 2003). A free-flowing powder with suitable spreading and packing properties is 363 

preferred in binder jetting. It means that the powder should be not sticky, and thus has hardly any or 364 

no tendency to agglomerate or to adhere to contact surfaces. Typically, the angle of repose of the 365 

powder should be low, e.g. smaller than 30° (Diaz, Noort, & Van, 2015). The wettability of powder is 366 

another affecting factor in accurate printing. It has been suggested that too-low wetting of powder 367 

material leads to the rearrangement of powder bed that is detrimental to subsequent printing. 368 

Too-high wetting and slow reaction between powder and binder reduce the resolution of and 369 

precision of fabricated objects (Hogekamp & Pohl, 2004; Shirazi et al., 2015). The moisture content 370 

of edible powder used in binder jetting should be less than 6% based on the powder material 371 

composition (Von, Von, Williams, & Gale, 2015b). In addition, wetting methods has also been 372 

applied to reduce the unbound powder migration during the fabrication process (Hunter, Kasperchik, 373 

Nielsen, Collins, & Cruz-Uribe, 2008). The particle size and distribution of powders also affect the 374 

printing precision and accuracy, as the variation of particle size influences the pore size distribution 375 

within the powder bed and thus affects the binding behavior of a water-based binder (Hapgood, 376 

Litster, Biggs, & Howes, 2002; Von, Von, Williams, & Gale, 2015a). To achieve an edible powder 377 

with suitable spreading and packing qualities, coarse powder particles can be mixed with fine 378 

powder particles (Von Hasseln, 2013; Von Hasseln, Von Hasseln, & Williams, 2014; Von, Von, 379 

Williams, & Gale, 2015a).  380 

The processing factors, such as head types, printing velocity, droplets path, nozzle diameter, and 381 

resonance frequency of the head, also affect the precision of printed objects. In general a larger 382 

nozzle diameter helps to increase printing speed but reduce the resolution and precision of fabricated 383 

objects (Shirazi et al., 2015). In order to realize a successful printing, the processing factors 384 

mentioned above should be properly adjusted.  385 

The fabricated objects in binder jetting may require further post processing, such as baking, 386 

heating, or removal of the excess food material powder to improve the mechanical strength or 387 

precision (Von Hasseln, Von Hasseln, & Williams, 2014; Von, Von, Williams, & Gale, 2015a). 388 

Making use of the adsorbability of pores within the printed parts, an additive can be sprinkled over 389 

the surface of the edible constructs to add different flavors or colors to improve the appearance of the 390 

food (Lai & Cheng, 2008).  391 

 392 

2.4 Inkjet printing and factors influencing printing accuracy 393 

Inkjet printing dispenses a stream of droplets from a thermal or piezoelectric head to certain 394 

regions for the surface filling or image decoration on food surfaces, such as cookie, cake, and pizza 395 

(Kruth, Levy, Klocke, & Childs, 2007). There are two types of inkjet printing methods: continuous 396 
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jet printing and drop-on-demand printing. In a continuous jet printer, ink is ejected continuously 397 

through a piezoelectric crystal vibrating at a constant frequency. To get a desired flowability of the 398 

ink, it is charged by the addition of some conductive agents. In a drop-on-demand printer, ink is 399 

ejected out from heads under pressure exerted by a valve. Generally, the printing rates of 400 

drop-on-demand systems are slower than that of continuous jet systems, but the resolution and 401 

precision of produced images are higher. A typical maximum resolution for a single print head 402 

continuous jet printer image is about 70-90 dots per square inch (dpi) (Willcocks, Shastry, Collins, 403 

Camporini, & Suttle, 2011). Generally, inkjet printing handles low viscosity materials that do not 404 

possess enough mechanical strength to hold 3D structure. Therefore, it is usually used to print 405 

two-dimensional images. From the point of view of printing precision and accuracy, the 406 

compatibility between ink and substrate surface, viscosity and rheological properties of ink, 407 

temperature and printing rate, are important to a successful printing.  408 

The compatibility of the printed image with surfaces of substrates play a critical role in 409 

determining the final image quality and resolution. The surface chemistry of the substrates and that 410 

of the ink influence the interaction behavior once the ink droplets are jetted onto the surface. 411 

Sometimes it is necessary to improve the compatibility of substrate’s surface by coating the surface 412 

with a binder film or other compatibility-enhancing film before printing an image (Shastry, Ben, & 413 

Collins, 2006; Shastry et al., 2004; Willcocks, Shastry, Collins, Camporini, & Suttle, 2011). In the 414 

previous work (Mandery, 2010), a binder such as shellac or poly (1-vinyl-2-pyrrolidone), was added 415 

to the edible ink to increase the compatibility between the ink and the substrate (Mandery, 2010). 416 

Water-based glazes containing gums or other surfactants, such as polyglycerol oleates and 417 

polysorbates, were also used to modify the chocolate adequately to allow the printing of 418 

high-resolution images on surface. Moreover, the application of multi-layer of surfactant on the 419 

substrate surface before printing an image, the compatibility was significantly increased. Thus the 420 

printed images was better with high printing precision and resolution (Willcocks, Shastry, Collins, 421 

Camporini, & Suttle, 2011). The contact angle of ink droplet on surface, closely related with the 422 

compatibility and adhesion between the ink and the substrate, is desired less than about 50 degrees. 423 

Another indication of the compatibility, surface tension of the inks, is most preferred below 35 424 

dynes/cm (Shastry et al., 2004). Shastry, Ben, and Collins (2006) also indicated that a low polarity 425 

material such as carnauba wax is typically coated on the surface of many hard panned sugar shell 426 

confections, which shows an adverse effect on the printing of an image with high precision and 427 

accuracy due to the low polarity surfaces. Thus a hydrophilic substance was usually coated to the 428 

surface of substrates to form a polarity-modified surface to improve the compatibility of water-based 429 

ink with the substrate (Shastry, Ben, & Collins, 2006). 430 

The viscosity and rheological properties of edible ink is also critical to the printing precision and 431 

accuracy (Godoi, Prakash, & Bhandari, 2016). Generally, it is necessary that the edible inks possess 432 

low viscosity so that they can be easily ejected through the tiny orifices of the print-head (Shastry, 433 
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Ben, & Collins, 2006). The desired inks in continuous jet have a narrow range of acceptable viscosity. 434 

The viscosity above 10 mPas easily leads to the pump’s cavitation inside print-head during printing. 435 

The ink with viscosity below about 2 mPas is not stable. Thus the most desired viscosity of inks in a 436 

continuous jet printer should be between about 2.8 to about 6 mPas (Shastry et al., 2004). Willcocks, 437 

Shastry, Collins, Camporini, and Suttle (2011) also suggested that the inks should possess ideal 438 

viscosity to enable the proper flowability (Willcocks, Shastry, Collins, Camporini, & Suttle, 2011).  439 

Temperature is another important factor in the ink jetting, as it can be used to modify the 440 

rheological properties and surface energy of the inks. A low temperature may be applied to lower 441 

surface energy and reduce the spreading tendency of inks across the chocolate surface (Shastry, Ben, 442 

& Collins, 2006; Willcocks, Shastry, Collins, Camporini, & Suttle, 2011). The temperature required 443 

to achieve desired viscosity also changes with the ink ingredients (Shastry et al., 2004). 444 

The proper jetting rates and rapid drying of ink droplets are required for a precise and accurate 445 

inkjet printing. When too much ink is jetted to a given section, the ink droplets will coalesce into 446 

larger droplets due to the lack of sufficient time for the ink to completely dry, resulting in a loss of 447 

precision and a poor image quality. Application of a stream of dry gas and addition of alcohol to 448 

ensure the rapid drying of ink droplets can significantly increase the printing precision and accuracy 449 

(Shastry, Ben, & Collins, 2006; Willcocks, Shastry, Collins, Camporini, & Suttle, 2011).  450 

 451 

3 Application of 3D food printing in some specific food areas 452 

3.1 Military and space food 453 

The US Army has shown a great deal of interest in the application of 3D food printing in 454 

military foods due to the several reasons. 1) this technology allows for the production of meals on 455 

demand in the battlefield; 2) meals can be personalized and customized depending on individual 456 

soldier's nutrition and energy requirements; 3) this technology could extend the shelf life of food 457 

material by storing them in raw material form rather than in final product form (Jennifer, 2014). The 458 

use of ultrasonic agglomeration to fuse particles together by shooting ultrasonic waves at them in 3D 459 

food printing in the US Army, have been experimented to produce a wider variety of meals and thus 460 

offering more options to soldier’s food. US Army also intended to create a 3D compact unit which 461 

can transform forage plant materials (such as tree bark, berries) into food (Davide & Xavier, 2015; 462 

Jasmine, 2014).  463 

NASA funded Systems and Materials Research Corporation (SMRC) to investigate the 464 

possibility and application of 3D printing for producing food during long space missions (Lin, 2015; 465 

Lipton, Cutler, Nigl, Cohen, & Lipson, 2015). NASA wanted to use 3D food printing to meet the 466 

requirements of food safety, nutritional stability and acceptability of meals for long space missions, 467 

while using the least amount of spacecraft resources. Currently, the food system in NASA could not 468 
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meet the nutritional and five-year shelf life requirements for long missions, as the individual 469 

packaged foods processed with traditional cooking methods possess little micronutrients due to 470 

degradation over time. The refrigeration equipment will take up much spacecraft resources. In 471 

addition, the current space food system could not meet personalized nutritional and energy 472 

requirements of astronauts (Davide & Xavier, 2015; Lin, 2015; Lipton, Cutler, Nigl, Cohen, & 473 

Lipson, 2015). According to the proposal of SMRC, in order to design a food system to meet 474 

nutritional and personalized requirements for individual astronaut for long space missions, the 3D 475 

printing will be used to deliver macronutrients (carbohydrate, protein, and fat), structure and texture, 476 

and the inkjet printing to deliver micronutrients, flavor and smell. Dry sterile containers will be used 477 

to store the macronutrient stocks and sterile packs to store the micronutrients and flavors as liquids, 478 

aqueous solutions or dispersions. During the production of food, the macronutrient stocks will be fed 479 

directly to the printer by combining with water or oil and blending with flavors and texture modifiers 480 

at the print head. Then the mixtures will be extruded into desired structures and shapes. This 481 

technology could not only solve the uniform long term storage, sustenance, and micro-nutrition, but 482 

also could meet the personalized dietary needs and improve the pleasure of eating (Irvin, 2013).  483 

 484 

3.2 Elderly food 485 

Many countries are facing with the aging problem, such as Japan, Sweden, and Canada. About 486 

15%-25% of elderly people over the age of 50 and up to 60% of nursing home residents suffer from 487 

chewing and swallowing difficulties (Sun, Peng, Yan, Fuh, & Hong, 2015). People suffering from 488 

this disease are often provided with unappealing ‘porridge-like food’, which cause the loss of 489 

appetite and even nutritional deficiencies. To address this issue, European Union (EU) has funded the 490 

PERFORMANCE project, aiming at designing an automated manufacturing method and offering 491 

personalized and specially textured food using 3D printing technology (PERFORMANCE, 2012). 492 

Scientists in the project have created simulation foods, such as peas and gnocchi, imitating their taste 493 

and texture. Not only the elderly will be fond of eating these foods, but also the soft, pureed texture 494 

is easier for them to swallow. Besides, personalized nutritional meals of each person can be produced 495 

based on individual age, physical condition, and nutrition and energy requirements (Davide & Xavier, 496 

2015; Severini & Derossi, 2016). A survey done by the PERFORMANCE regarding 3D printing 497 

food in care homes have shown that 54 % of participants felt the food texture was good, 79% thought 498 

the printed food is equivalent to the one prepared by traditionally cooking method and 43% preferred 499 

to printed food when dysphagia occurred (Lunardo, 2016). In Germany, a few nursing homes served 500 

a printed soft food to elderly suffering from chewing and swallowing difficulties (Wiggers, 2015). 501 

The tastier 3D-printed foods made of peas, mashed potatoes, and broccoli have successfully entered 502 

the market and 1,000 of the country’s agencies supply this type of food daily (Wiggers, 2015).  503 

 504 
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3.3 Confectionery market 505 

Sweets, accounting for a large proportion of the food market, are widely consumed in the world. 506 

Most of the leading companies and research centers of 3D food makers are focusing on sweets, such 507 

as Hershey, ChocEdge and 3D Systems. Tab. 2 shows the comparison of different confectionery or 508 

sweets printing machines. 509 

One of the world largest manufacturers of industrial-grade 3D printers - 3D Systems, 510 

cooperating with Hershey (a leader in the production of chocolate and desserts), has developed an 511 

extrusion-based chocolate printer called Cocojet, which can print various shapes in chocolate (Millen, 512 

2012; Zhuo, 2015). The first commercial chocolate printer called ChocCreator, was designed by the 513 

scientists in the University of Exeter (Davide & Xavier, 2015). Hans Fouche invented a 8 nozzle 514 

Cheetah chocolate 3D printer and used this system to experiment with different kinds of chocolates 515 

(Victor, 2015). Currently, most 3D chocolate is created using melt-extrusion based printer, while four 516 

students called 3D Chocolateering coming from University of Waterloo built a low cost selective 517 

laser sintering based printers to create 3D chocolate structures using chocolate powder (Victor, 2015). 518 

The CandyFab project was the first to create 3D dimensional structures using sugar in 2007 and 519 

introduced a selective sintering based printer, CandyFab. They created a technology SHASAM 520 

(selective hot air sintering and melting), in which a focused heat source was used to fused the 521 

particles together to create complex structures (CandyFab project, 2007). The 3D Systems ChefJet 522 

Pro is able to print both tasty and visually appealing sweets or food decorations using various kinds 523 

of food materials including sugar, chocolate and cheese. Complex structures such as interlocking 524 

sweets, various sugar sculptures and entire wedding cakes have been created using this system. 525 

Moreover, the ChefJet Pro equipped with four print heads was able to create multi-color structure, 526 

such as multi-color cocktail decorations (iReviews, 2014). Several examples of 3D customized 527 

sweets are shown in Fig. 8.  528 

The GumLab project established by two London-based students, invented a GumJet 3D printer 529 

to print an appealing chewing gum. The extrusion based printer equipped with a Cartesian platform 530 

was able to print gum resin along with flavoring layer by layer (Krassenstein, 2015). Wacker has 531 

designed a chewing gum 3D printer, which could create gum with fruit juice, coconut and plant 532 

extracts thus allowing the production of gum with different mouth feel and flavor. In addition, 533 

Wacker also invented a new method called Candy2Gum to turn existing candy into gum. This 534 

technology can handle water-based and fat-containing ingredients while the traditional dry kneading 535 

method cannot (Corey, 2016). 536 

4 Some proposals 537 

3D food printing is an emerging technology in food sector, we emphasize that the aspects as 538 

shown below should be kept in mind to achieve a successful printing.  539 
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Rheological properties of food materials is important to improve the printing performance and 540 

self-supporting ability in extrusion-based printing. The food material for extrusion printing should be 541 

pseudoplastic fluids with suitable shear-thinning behavior and rapid structural recovery ability as it 542 

can be easily extruded out from the nozzle with the application of shear force and solidify rapidly 543 

again after leaving the nozzle. τ0 and G′ are critical to the self-supporting ability, and K, n play an 544 

important role in extrudability and printability. A good balance must be made so that the mixture is 545 

as strong as possible to maintain the printed shape while still could be printable and capable of 546 

adhering to previously deposited layers (Liu, Zhang, Bhandari, & Yang, 2017). We emphasize that 547 

the rheological properties are critical to a successful extrusion printing.  548 

The material’s binding mechanisms and thermodynamic properties like Tm and Tg are important 549 

to a successful extrusion-based printing. Various kinds of additives can be added to achieve desired 550 

rheological properties. Thus, the binding mechanisms, such solidification upon cooling, cross-linking 551 

mechanisms, gel properties under different conditions (such as pH, ion, time, etc.) should be 552 

investigated to achieve desired properties suitable for 3D printing. Some additives like fat, blood 553 

plasma protein can be added to adjust the thermodynamic properties of material. The correlation 554 

between printing temperature and printing performance should be studied based on material’s 555 

thermodynamic properties. 556 

As pre-treatment methods (ultrasound, radio frequency, etc) and post-processing methods 557 

(drying, cooking, frying, etc) affect the gel formation mechanisms and the stability of printed objects, 558 

the impact of pre-treatment and post-processing methods should be studied, so as to determine the 559 

most suitable pre-treatment and post-processing method. 560 

5 Challenges and trends 561 

Recently, great efforts have been put by researchers aiming at applying 3D food printing into 562 

food industry. However, there are still many difficulties for this technology to be widely used in food 563 

sector due to several reasons 1) printing precision and accuracy 2) process productivity 3) production 564 

of colorful, multi-flavor, multi-structure products. 565 

Printing precision and accuracy are critical to the application of 3D printing technology in food 566 

sector. One of the advantages of 3D printing is to fabricate an exquisite and fascinating structure of 567 

edible products to increase consumer’s interesting and appetite. However, currently few works 568 

focused on printing accuracy are published. To achieve a precise and accurate printing, material 569 

properties (i.e. rheological properties, particle size, etc), process parameters (i.e. nozzle diameter, 570 

printing speed, printing distance, etc), and post-processing methods (i.e. baking, frying, cooking, etc) 571 

should be kept in mind. More efforts should be given in the achievement of precise and accurate 572 

printing. 573 
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Improving production efficiency can reduce production costs. A common example of enhancing 574 

process productivity is to increase the printing speed and to use large nozzle or laser diameter. 575 

However, this often leads the reduction of precision and resolution of printed objects, thus placing 576 

3D food printing in an unfavorable circumstance. We emphasize that under the premise of ensuring 577 

acceptable printing accuracy, a large nozzle diameter and fast printing speed should be adopted. 578 

Another potential way to improve printing productivity is to use multi-nozzle printers to fabricate 579 

multiple objects simultaneously. However, this will surely increase the complexity of control system 580 

and technical challenge, thus it is necessary to carry out considerable studies to achieve both accurate 581 

printing and high process productivity.  582 

As the color, flavor, and texture of food are critical to the experience of people, it is necessary to 583 

fabricate a 3D edible structure with these desired attributes. Several attempts have been made in the 584 

production of colorful, varying flavor and texture of food products using 3D printing technology 585 

(Hasseln, 2013; Hasseln, Hasseln, & Williams, 2014; Von, Von, Williams, & Gale, 2015a), but they 586 

have not been widely applied. Thus, more attention should be given to the production of varying 587 

color, flavor and texture food products.  588 

 589 

Conclusion 590 

3D food printing has several great advantages, such as customized food designs, personalized 591 

nutrition, simplifying supply chain, and broadening of the available food material. 3D printing has 592 

been recently investigated in food sector. However, few studies have focused on how to achieve an 593 

accurate and precise printing. Material properties, process parameters, and post-processing 594 

treatments are three main aspects affecting the printing precision and accuracy, which should be kept 595 

in mind in order to produce a delicate and complex edible structures. 3D printing has been applied in 596 

food areas such as military and space food, elderly food, sweets food, and chewing gum. Though the 597 

investigation of 3D food printing has been expanding at the moment, there are still a few challenges 598 

that need to be addressed such as printing precision and accuracy, printing speed and production of 599 

food with multiple quality and nutritional attributes. Wider application of 3D food printing are 600 

expected once these challenges are overcome. 601 
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Tab.1 Comparison of different 3D food technologies 799 

  Extrusion based printing Selective laser sintering  Binder jetting Inkjet printing 

 
Available 

material 

Chocolate, soft-material 

such as dough, cheese, 

meat puree 

Powdered materials such as 

sugar, chocolate, fat 

Liquid binder and 

powdered materials such 

as starch, sugar, protein 

Low viscosity material 

such as pizza sauce 

Factors 

affecting 

printing 

precision 

Material 

properties 

Rheological properties, 

mechanical strength, Tg 

Melting temperature, 

flowability, particle size, 

wettability, Tg 

Flowability, particle size, 

wettability and binder’s 

viscosity and surface 

tension 

Compatibility, ink 

rheological properties, 

surface properties 

Processing 

factors 

Printing height, nozzle 

diameter, printing rate, 

nozzle movement rate 

Laser types, laser power, laser 

energy density, scanning 

speed, laser spot diameter, 

laser thickness 

Head types, printing rate, 

nozzle diameter, layer 

thickness 

Temperature, printing 

rate, nozzle diameter, 

printing height 

Post 

processing 

Additive, recipe control Removal of excess parts 

Heating, baking, surface 

coating, removal of excess 

parts 

No 

 Advantages 
More material choices, 

simple device 

Complex 3D food fabrication, 

varying textures 

Complex 3D food 

fabrication, full color 

potential, varying flavors 

and textures 

More material choices, 

better printing quality, 

fast fabrication 

 Limitations 

Incapable of fabricating of 

complex food designs, 

difficult to hold 3D 

structures in 

post-processing 

Limited materials, less 

nutritious products 

Limited material, less 

nutritious products 

Simple food design, only 

for surface filling or 

image decoration 

 Products 

    

*The products images were reproduced from website:  (a) Natural Machines Co., available at 800 

https://www.naturalmachines.com/  (b) TNO (Linden, 2015)  (c) 3D Systems Co., available at 801 

https://www.3dsystems.com/culinary/gallery  (d) FoodJet Printing Systems, available at 802 

http://www.foodjet.com/  803 

804 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

26 

 

Tab.2 Comparison of different sweets printing machines 805 

Company 
CandyFab 

Project 
3D Systems Choc Edge 3D Systems 3DCloud Porimy 

Fouche 

Chocolates 

Machine 
CandyFab-600

0 
ChefJet Choc Creator CocoJet QiaoKe 

3D Food 

Printer 

Fouche 

Chocolate  

printer 

Materials Sugar 

Chocolate, 

sugar, starch, 

protein 

Chocolate Chocolate Chocolate 
Chocolate, 

soft-material 
Chocolate 

Technolo

gy 

Selective laser 

sintering 
Binder jetting 

Extrusion 

based printing 

Extrusion 

based 

printing 

Extrusion 

based printing 

Extrusion 

based 

printing 

Extrusion 

based printing 

Machine 

image 

 

*The machine images were reproduced from website: (a) CandyFab Poject (CandyFab, 2007) (b) 3D Systems Co., 806 

available at https://www.3dsystems.com/culinary/gallery  (c) ChocEdge Co., available at 807 

http://chocedge.com/ (d) 3D Systems Co., available at http://www.3dsystems.com/de/node/7563 (e) 3DCloud Co., 808 

available at 809 

http://www.3ders.org/articles/20150811-china-3dcloud-unveils-new-qiaoke-chocolate-3d-printer-with-a-unique-so810 

lid-feed-system.html (f) KunShan Porimy Co., available at  http://www.porimy.com/product.asp?plt=370  (g) 811 

Fouche Chocolates, available at  812 

http://www.3ders.org/articles/20140102-south-africas-3d-printed-chocolate-factory.html 813 

814 
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 815 

Fig. 1 Desired images and printed objects using mashed potatoes with addition of different 816 

concentrations of potato starch (Liu et al, 2017) 817 
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  819 

Fig. 2 Printed objects using mashed potatoes (our research group) 820 
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 822 

Fig.3 Different geometrical shapes of 3D printed surimi gel samples by the addition of three different 823 

levels of NaCl (A=Control, B=0.5 g/100 g, C=1.0 g/100 g, D=1.5 g/100 g).Extrusion parameters are 824 

nozzle diameter 2.0 mm, nozzle height 5.0 mm, nozzle moving speed 28 mm/s and extrusion rate 825 

0.003 cm3/s (Wang et al., 2017). 826 
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 828 

Fig. 4. Geometry shape of printed surimi gel samples (NaCl content 1.5 g/100 g) with different 829 

nozzle moving speed (A=20, B=24, C=28, D=32 mm/s). Other extrusion parameters are nozzle 830 

diameter 2.0 mm, nozzle height 5.0 mm and extrusion rate 0.003 cm3/s (Wang et al., 2017). 831 
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 833 

  834 

Fig. 5 Relationship between software extrusion rate and resulting bead diameter in chocolate printing (Hao et al., 835 

2010) 836 

  837 
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 838 

Fig. 6 Graph of the relationship of extrusion speed and print speed in cookie printing (Zhuo, 2015) 839 
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 841 

Fig. 7. Variations in the amount of butter, yolk, and sugar relative to the nominal cookie recipe effect the shape 842 

stability. Yolk concentration can improve stability in the X direction (in the plane of the backing pan) at the expense 843 

of stability in the Z direction (height). This creates a narrow band, between two thirds and one and a third normal, 844 

where yolk concentration can be varied and still printed. For each data point, ten cubes were made and measured in 845 

3 places along the X and Z directions (Lipton et al., 2010) 846 
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 848 

Fig. 8 Examples of customized sweets reproduced from website: (a) chocolate “Mr. Black”, 849 

KunShan Porimy Co., available at http://www.porimy.com/product.asp?plt=370 (b) colorful 850 

sweets, 3D Systems Co., available at https://www.3dsystems.com/culinary/gallery (b) sugar structures, 851 

CandyFab Project (CandyFab, 2007) (d) chocolate rose, 3D Systems Co., available at 852 

https://www.3dsystems.com/culinary/gallery  853 
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3D printing: printing precision and application in food 

sector 

 

Highlights 

� Factors affecting 3D food printing precision were discussed.  

� Applications of 3D printing in food sector were reviewed. 

� Challenges to 3D food printing were proposed.  

 


