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Abstract

Motion planning under uncertainty is critical for ro-
bust autonomy. The Partially Observable Markov
Decision Process (POMDP) is a principled and
general framework for solving such problems. Al-
though solving a POMDP problem exactly is com-
putationally intractable, in the past decade, many
practical methods have been proposed to approx-
imate solution of POMDPs that represent motion
planning under uncertainty problems. However,
the problem remains relatively open when it in-
volves robots with complex non-linear dynamics.
Recently, linearization-based methods that are de-
rived from the Linear Quadratic Gaussian (LQG)
controller have been shown to perform well in
some planning under uncertainty problems with
non-linear robot dynamics. However, it is not clear
what the effect of linearization to motion planning
under uncertainty is. The control and estimation
results have clearly indicated that linearization per-
forms well only when the non-linear dynamics is
“weak”. These results will definitely apply to the
LQG-based derived methods for solving motion
planning under uncertainty problems, too. How-
ever, a significant difference between motion plan-
ning and control is in the presence of obstacles.
And it is not clear how the presence of obstacles af-
fect the effectiveness of linearization and Gaussian
simplification for solving motion planning prob-
lems. This paper presents a preliminary study in
understanding this effect, by performing compari-
son studies via simulation.

1 Introduction
An autonomous robot must devise reliable motion strategies
that avoid collision with obstacles and satisfy its kinemat-
ics and dynamics constraints, despite not knowing the ex-
act effect of its actions, despite various errors in sensing
and perception, and despite unpredictability of the environ-

ment. A systematic and principled approach to automati-
cally construct such a strategy is to frame the problem as
a stochastic motion planning problem —quantifying uncer-
tainty using probability distribution function and computing
the best strategy taking into account this quantified uncer-
tainty. One of the base framework for this approach is the Par-
tially Observable Markov Decision Process (POMDP) [12;
15]. POMDP represents the aforementioned types of uncer-
tainty as probability distributions, and estimates the system’s
states as a probability distributions called beliefs. It computes
the best strategy with respect to beliefs rather than with re-
spect to single states, because the actual state is uncertain due
to errors in the system’s dynamics and sensing. Although
the concept of POMDP was proposed in early 1960 [8], only
in recent years that it starts to become practical for robotics
problems (e.g., [11; 21]).

We can classify existing practical POMDP solvers into two
approaches. First is the general POMDP solvers. These
solvers do not restrict the type of dynamics and sensing model
of the system, nor the type of distributions used to repre-
sent uncertainty. It can now compute good motion strate-
gies on-line with 1-10Hz update rate for a number of robotics
problems [13; 18; 19; 17]. However, their speed degrades in
problems with complex non-linear dynamics, such as prob-
lems where unknown friction properties must be taken into
account.

The second approach linearizes the system’s dynamics
model and restricts the distribution to always be Gaussian [20;
1; 5; 6; 16]. These methods are often derived from stochastic
control methods, such as the LQG (Linear Quadratic Gaus-
sian) controller [7]. It does promise better speed in handling
complex non-linear dynamics, as it simplifies the dynamics
model and takes into account only the mean and variance
of the distribution. However, it is not clear when and where
would this strategy works well for motion planning under un-
certainty.

The control and estimation results have clearly indicated
that such linearization performs well only under certain prop-
erties of the system, namely when the non-linear dynamics is
“weak” [14]. These results will definitely apply to the LQG-
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based derived methods for solving motion planning under un-
certainty problems, too. However, a significant difference be-
tween motion planning and control is in the presence of obsta-
cles. And it is not clear how the presence of obstacles affect
the effectiveness of linearization and Gaussian simplification
for solving motion planning problems. This paper presents a
preliminary study in understanding this effect, by performing
comparison studies via simulation.

2 Background and Related Work
2.1 POMDP Background
A POMDP problem is defined as a tuple
〈S,A,O,T,Z,R,b0,γ〉, where S, A and O are the robot’s
state, action and observation spaces. T denotes a a con-
ditional probability function p(s′|s,a), where s,s′ ∈ S and
a ∈ A, that models the uncertainty in the effect of applying
an action, when the robot is in a particular state. Z denotes
the conditional probability function p(o|s,a) that models
the uncertainty in the observations the robot receives.
R : S×A 7→ R is a state-action dependent reward function,
b0 is an initial belief, and γ ∈ (0,1) a discount factor that
balances immediate rewards against future rewards.

At any given time, the POMDP agent (representing the
robot) is at a state s ∈ S. It takes an action a ∈ A, per-
ceives an observation o ∈ O, and moves to next state in a
single time step. As a side effect of this movement, the
agent receives a reward based on the reward function R(s,a),
and moves to the next state. Due to uncertainty in the re-
sults of action and sensing, the robot never knows its exact
state and therefore, estimates its state as a probability dis-
tribution, called belief. The solution to the POMDP prob-
lem is an optimal policy (denoted as π∗), which is a map-
ping π∗ : B→ A from beliefs (B denotes the set of all beliefs,
which is called the belief space) to actions that maximizes
the expected total reward the robot receives, i.e., V ∗(b0) =
maxa∈A

(
R(b,a)+ γ

∫
o∈O p(o|b,a)V ∗(τ(b,a,o))do

)
, where

τ(b,a,o) computes the updated belief estimate after the robot
performs action a ∈ A and perceived o ∈O from belief b, and
is defined as:

b′(s) = τ(b,a,o)(s′) = η Z(s′,a,o)
∫

s∈S
T (s,a,s′)b(s)ds (1)

where η is a normalization constant.

2.2 Linearization in Control and Estimation
It is well known that linearization (and Gaussian assumption
for stochastic system models) only performs well when the
system’s non-linearity is “weak” [14]. The question is of
course what does “weak” non-linearity means. Many mea-
sures have been proposed to answer this question. Most of
these measures are designed for deterministic systems [3; 4;
10]. Some of them are based on the relative curvature [3],
which is derived from the ratio between the second and first
derivatives of the function, while others, e.g., [4], defines

non-linearity measure based on the distance between the non-
linear function and its nearest linearization. Few works have
expanded these measures to stochastic systems. For instance,
the work in [14] extends the approach of [4] to measure
non-linearity based on the average distance between the non-
linear function and the set of all possible linearization of the
function. More recently, [9] proposes a different class of
measures, which is based on the distance between distribu-
tion over states and its Gaussian approximation, rather than
based on the non-linear function itself. A short survey on
measures of non-linearity is available at [14].

Despite the many proposed measure of non-linearity, they
are not well suited for motion planning under uncertainty,
due to the difficulties in accounting the effect of obstacles
to linearization. These non-linearity measures are based on
the robot’s dynamics model when operating in open space.
Of course, obstacles can be incorporated to the robot’s state
space and dynamics models as constraints. However, this is
difficult to do for robots with many dimensions. In fact the
rise of probabilistic motion planning is exactly to avoid ex-
plicit construction of collision constraints / collision regions
in the state space. Therefore, the actual effects of obstacle
avoidance to the effectiveness of linearization is still rela-
tively unknown. This paper presents our exploratory studies
that attempt to understand the effects that obstacles have on
the effectiveness of linearization in stochastic motion plan-
ning.

3 Methods for Comparison
Our comparison studies will use LQG-MP [5], an LQG based
POMDP solver, and ABT [13], a general POMDP solver.
ABT provides a base-line for the performance of methods
that do not use linearization and Gaussian assumption as the
environment becomes more cluttered.

3.1 LQG-MP
LQG-MP [5] formulates the motion planning problem as a
linear-quadratic-Gaussian control problem [2]. Given a nom-
inal trajectory (s∗t ,a

∗
t )

T
t=0, where s∗ ∈ S and a∗ ∈ A the robot

has to follow, the control problem is formulated as a cost-
minimisation problem, such that deviations of the robot from
the given trajectory are quatratically penalized. More specif-
ically, the goal of the LQG-problem is to control a feedback
controller that minimizes the cost function

E(
T

∑
t=0

(st − s∗t )
TC(s∗t − st)+(at −a∗t )

T D(at −a∗t )) (2)

where C and D are positive-definite weight matrices. It is
well known that the LQR-feedback-controller that minimizes
2 for a linear system is the solution of a set of Ricatti differ-
ence equations. [5] shows that for a given nominal trajectory,
the distributions of the robot’s state and control inputs can be



estimated a-priori by linearizing the system around the trajec-
tory and assuming a LQR control policy. These distributions
can then be used to evaluate a given trajectory according to a
planning objective (e.q. maximizing the likelihood of a robot
to reach a given goal area inside an environment).

Given an LQR-feedback-controller that minimizes 2, [5]
shows how to approximate a-priori the distribution of the sys-
tem at each state of the nominal trajectory as a Gaussian dis-
tribution, assuming the system can be well linearized around
the trajectory. Using these approximated distributions, the
quality of a trajectory can be quickly evaluated according to a
planning objective (e.q. maximizing the likelihood of a robot
to reach a given goal area inside an environment). The idea
of LQG-MP is to sample a large set of candidate trajectories
for a given motion planning problem. At run-time, after se-
lecting a trajectory according to the planning objective, LQG-
MP uses LQR-feedback-controller as the control policy and a
Kalman filter to update the belief estimate of the robot.

3.2 Adaptive Belief Tree
ABT [13] is a online POMDP solver based on Monte-Carlo
tree search. From a given belief bt , ABT aims to find an ac-
tion a∗ that maximises the expected discounted future reward.
In order to do so, ABT iteratively generates a belief tree. Each
node in the tree corresponds to a belief, while the edges be-
tween nodes correspond to action-observation pairs. From
the current belief bt , which is maintained by a set of parti-
cles, ABT maintains a set of samples episodes. An episode
consists of a sequence of state, action, observation and im-
mediate reward quadruples (s,a,o,r). To sample an episode,
ABT samples a state s0 from bt , selects and action and uses
a generative black-box model to generate an observation and
immediate reward and the next state s1. One advantage of
this approach is that the exact belief dynamics don’t have to
be explicilty known.

These episodes are maintained within the belief tree. Since
the belief nodes are represented by a set of particles, each
node consists of the states of the corresponding quadruples of
the corresponding episodes. In order to select an action from
bt , ABT approximates Q̂(bt ,a), which is the value of per-
forming a from bt and continuing optimally afterwards, us-
ing forward simulation and value backup. At the leaf-nodes,
Q(b,a) is approximated by a heuristic function. After the
planning time is over, ABT selects and executes the action
with the highest Q and updates bt after receiving an observa-
tion.

4 Comparison Studies
In order to understand how cluttered environments affect the
performance of motion planning algorithms based on lin-
earization and Gaussian simplification, we compare LQG-
MP and ABT using two problem scenarios: A car-like non-
holonomic robot with 2nd order dynamics driving on a flat xy-
plane and a 4-degree-of-freedom holonomic manipulator op-

erating inside a 3D-environment. In each problem scenario,
the robot starts from a known initial state s0 and has to reach
a terminal state sT ∈ G where G ⊂ S is the set of terminal
states. Instead of looking at a fixed environment for the two
problem scenarios, we investigate how ABT and LQG-MP
perform in increasingly cluttered random environments when
the motion- and observation uncertainty increases.

4.1 Car-like robot
In this scenario a car-like robot starts from a known initial
state s0 (lower-left in figure 1) and has to reach a goal-area in
the upper-right corner of the map (green sphere in figure 1)
while avoiding collision with the obstacles (red boxes).

Figure 1: Two randomly sampled environment for the car-like
robot with 10 obstacles and 30 obstacles (right)

The state of the robot is defined as a 4D vector st =
(xt ,yt ,θt ,νt)

T where xt and yt is the position of the center
of the robot on the xy-plane, θt the orientation and νt the lin-
ear velocity of the robot. The control input at = (αt ,φt)

T is
a 2D vector consisting of the acceleration α and the steering
wheel angle φ . We assume that the control input is subject to
control noise vt = (α̃t , φ̃t)

T ∼ N(0,Σv)
The nonlinear stochastic dynamics of the robot is modelled

as

st+1 =


xt +∆tνcosθt
yt +∆tνsinθt

θ +∆t tan(φt + φ̃)/d
ν +∆t(αt + α̃)


where ∆t is the duration of a time step and d the distance

between the front and rear axles of the wheels.
The robot localizes itself with the help of two beacons located
inside the environment. Suppose the beacons are located at
(x̂1, ŷ1) and (x̂2, x̂1). Then, the signals the robot receives from
these two beacons is a function of the distance to them. Fur-
thermore the robot receives information regarding its current
velocity from a velocity sensor mounted on the robot. We as-
sume that both sensor readings are disturbed by sensor noise
wt . More formally, the robot’s observation model is defined
as:

zt =

1/((xt − x̂1)
2 +(yt − ŷ1)

2 +1)
1/((xt − x̂2)

2 +(yt − ŷ2)
2 +1)

νt

+wt

where wt is drawn from a zero-mean Gaussian distribution,
such that wt ∼ N(0,Σw).



4.2 4DOF-manipulator

Figure 2: A randomly sampled manipulator environment with
30 obstacles. The manipulator consists of a fixed base (black
cuboid) and 4 links connected by rotary joints. The yellow
link visualizes the end-effector link. The green sphere is the
goal area for the end-effector

In this set of experiments we consider a 4-degrees-of-
freedom holonomic, articulated manipulator with a fixed base
(black cuboid in figure 2). Starting from an initial state x0,
the goal of the planner is to move the manipulator to a state in
which the end-effector (yellow link in figure 2) is inside a goal
region inside the robot’s workspace, avoiding self-collision
and collisions with the obstacles in the environment. The
state of the manipulator is defined as s = (θ , θ̇)T ∈R8, where
θ is the vector of joint angles and θ̇ is the vector of rotational
joint velocities. Using Lagrangian dynamics, the manipula-
tor is modelled as a continuous-time stochastic system of the
form:

∂

∂ t

[
θ

θ̇

]
=

[
θ̇

M(θ)−1(a+ v−C(θ , θ̇)θ̇ −N(θ))

]
(3)

where M ∈ R4×4 is the inertia matrix, C ∈ R4×4 the cen-
trifugal and coriolis matrix and N ∈ R4 the vector of external
forces acting on the joints. Here we assume that the exter-
nal forces are gravity and viscous joint friction. The control
input a∈ A⊂R4 is the joint torques and is assumed to be dis-
turbed by a 4-dimensional random error vector v∼ N(0,Σv).
In our experiments, we discretize the time to transform the
continuous-time dynamics into a discrete-time system. Note
also that although the error is Gaussian distributed, due to the
non-linearity of the dynamics, the resulting belief estimate
will generally not be Gaussian distributed.
The robot is equipped with two types of sensors. The first
sensor measures the position of the end-effector in the robot’s
workspace. The second sensor measures the joint velocities.
Suppose g : R4 7→ R3 is a function that maps the state of

the robot to an end-effector position in the workspace and
wt ∼ N(0,Σw) is the error vector, then the observation model
is defined as zt = [g(st), θ̇t ]

T +wt .

4.3 Experimental setup
To see the effect of increasingly cluttered environments on
the performance of LQG-MP and ABT, the experiments con-
ducted for this paper for both robots consist of 4 scenar-
ios: An environment with 0, 10, 20 and 30 fixed-sized,
randomly distributed box-shaped obstacles. Furthermore,
we test each scenario using 2 motion and observation er-
ror values errmotion,errobs = 2.5 and errmotion,errobs = 5.0.
errmotion,errobs are hereby defined as follows: Recall that
in our experimental setting for both robots, the motion and
observation noise terms are drawn from zero-mean multi-
variate Normal distributions with covariance matrices Σv and
Σw. errmotion,errobs serve as scaling parameters for the vari-
ance terms of the covariance matrices (the diagonal entries
σ1, ...,σn). In the case of the observaton error error co-
variance matrix, these variance parameters are defined as

σi =
[
|Oi|
100 errobs

]2
where |Oi| is the value range of the i-th

dimension of O. Similarly the variance entries of the motion-

error covariance matrix are defined as σi =
[
|Ai|
100 errmotion

]2
.

For each type of scenario (0, 10, 20 and 30 random obstacles)
we run 50 simulation runs for the two error values. In each
simulation run we sample a new random environment with
the respective number of rando obstacles. We hereby assume
that once a new environment has been sampled, is is fully
known to the robot.

Since the idea behind LQG-MP is to evaluate a large set
of nominal trajectories for a given scenario, we sample a set
of 500 trajectories for each random scenario which serve as
candidate trajectories for LQG-MP. Throughout all the exper-
iments, we use RRT [?] to sample the candidate trajectories.
Here the planning objective is to maximise the the expected
discounted reward when following a specific trajectory. We
evaluate the 500 candidate trajectories using a simple Monte-
Carlo approach: LQG-MP approximates the beliefs around
a trajectory with Gaussian distributions. By sampling these
distributions using 500 samples per belief, we can approxi-
mate the expected discounted reward of the trajectory. The
reward function used throughout the experiments is defined
as R(st) = 1000 if st is a terminal state, R(st) = −500 when
st collides with an obstacle, or, in case-of the manipulator
robot, collides with itself, and R(st) =−1 else. The same re-
ward function is used for ABT throughout the experiments.
Since ABT is an online planner we give 1 second of planning
time for each planning step.

Results and Discussion
Figure 3 presents the mean rewards achieved by both algo-
rithms in the car-like scenario as the number of obstacles in-
crease. It can be seen that, as the number of obstacles increase
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Figure 3: This plot show the mean reward of 50 simula-
tion runs achieved for the car-like robot by ABT and LQG-
MP with errobs = errmotion = 2.5 (top figure) and errobs =
errmotion = 5.0 (bottom figure). The x-axis shows the number
of randomly sampled obstacles for each simulation run. The
y-axis shows the mean reward achieved over 50 simulation
runs starting from b0

and the environment get more cluttered, LQG-MP seems to
be more sensitive to increasingly cluttered environments. In-
tuitively, as the environment becomes more cluttered and the
robot operates in the proximity of obstacles, the Gaussian
assumption can be a particular poor approximation of the
robot’s belief. In what follows is that the LQR-control pol-
icy is suboptimal with respect to the true belief of the robot.
Furthermore, the LQR control policy is is a minimizer for the
quadratic cost function 2 which does not include cost terms
that are depended on the environment. Hence, during run-
time, the LQR controller objective is to follow the nominal
trajectory as closely as possible, even though this possibly
yields dangerous situations near obstacles. Looking at the re-
sults of the manipulator scenario in figure 4, it becomes clear
that the advantage of ABT over LQG-MP increases, as the
uncertainty increases. This is not surprising, since the manip-
ulator as modelled in the experiments is a highly non-linear
system for which linearization only works for small errors. A
possible interresting future venue could be to quantify how
well a stochastic system is linerizable and, following that,
when a linearization-based solver is likely to compute good
motion strategies.
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Figure 4: This plot show the mean reward of 50 simulation
runs achieved for the manipulator robot by ABT and LQG-
MP with errobs = errmotion = 2.5 (top figure) and errobs =
errmotion = 5.0 (bottom figure). The x-axis shows the number
of randomly sampled obstacles for each simulation run. The
y-axis shows the mean reward achieved over 50 simulation
runs starting from b0

5 Conclusion
This paper presents our comparative study in understanding
the effect of linearization and Gaussian simplifications in mo-
tion planning under uncertainty. In particular, our study in-
dicates that the effectiveness of linearization and Gaussian
simplifications decreases as the environment becomes more
cluttered. Future work abounds. First, more exhaustive com-
parison studies are needed to better understand the issue. The-
oretically, it is useful to design a non-linearity measure suited
for motion planning under uncertainty. Measures that can be
computed efficiently could also improve existing capabilities
in motion planning under uncertainty. Furthermore, such a
measure may help us in deciding what type of linearization
methods to use for particular types of problems. Some part of
these possible extensions (i.e., a more suitable non-linearity
measure) will be available in [reference omitted to comply
with the double-blind requirement].
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