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Abstract

The objective of this article is to provide the analyst with the necessary tools that
allow for a robust ordering of joint distributions of health and income. We contribute
to the literature on the measurement and inference of socioeconomic health inequality
in three distinct but complementary ways. First, we provide a formalization of the
socioeconomic health inequality-specific ethical principle introduced by Erreygers, Clark
and Van Ourti, (2012). Second, we propose new graphical tools and dominance tests
for the identification of robust orderings of joint distributions of income and health
associated with this new ethical principle. Finally, based on both pro-poor and pro-
extreme ranks ethical principles we address a very important aspect of dominance
literature: the inference. To illustrate the empirical relevance of the proposed approach,
we compare joint distributions of income and a health-related behavior in the United
States in 1997 and 2014.
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1 Introduction

Measuring socioeconomic health inequality is important from a social perspective and is

critical when evaluating the impact of health policy reforms on the distribution of popu-

lation’s health. There is a large body of literature on the measurement of socioeconomic

health inequalities most of which has focused on the properties and issues arising from the

use of these indices as well as the ethical principles they should obey. Some argue that

the analyst should be concerned with inequalities that occur in the lower part of the distri-

bution of socioeconomic status (Wagstaff, 2002) and others suggest that the analyst may

be more concerned with deviations occurring away from the median of the socioeconomic

status (Erreygers, Clarke and Van Ourti, 2012). While the desirable ethical principles for

these measures may still be on the debate table, this paper adopts a unified approach by

including both possibilities. As such, the overarching objective of this paper is to provide

the analyst with the necessary tools that allow for a robust ordering of joint distributions

of health and income including the associated statistical inference compatible with both

ethical principles.

This paper contributes to the literature on socioeconomic health inequality measure-

ment and inference in three distinct but complementary ways. First, it contributes to the

literature that formalizes the ethical principles underlying socioeconomic health inequality

indices by offering a formalization of Erreygers, Clarke and Van Ourti’s (2012) view of

what is considered an alternative ethical property for these indices. In doing so, it pro-

vides a formal presentation of the ethical principles associated with indices that pass the

upside-down test and coins these principles as the symmetry around the median principle

(at the second order) and the pro-extreme rank principles (at higher orders). Second, it

contributes to the socioeconomic health inequality measurement literature by introducing

new graphical tools associated with these principles, a new class of range curves, and by
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deriving the associated dominance conditions. These range curves have a role analogous to

the one played by health concentration curves where the analyst assumes pro-poor ethical

principles. Developing new dominance conditions (for these new range curves) will help the

analyst identify robust orderings under the assumptions of symmetry around the median

and pro-extreme rank. Finally, it contributes to the literature on hypothesis testing for

dominance conditions by providing estimators of health concentration curves and health

range curves as well as consistent testing methods for dominance compatible with both

ethical principles.

The remaining of this paper is organized as follows. In Section 2, we provide a brief

review of the literature on measures of socioeconomic health inequality, the basic ethical

principles on which they are founded as well as the associated literature on inference. In

Section 3, we describe the measurement framework in which we are operating and discuss

the associated basic ethical principles. In Section 4, we examine higher order ethical prin-

ciples for pro-poor and pro-extreme rank ethical principles then define the sets of indices

obeying these principles. In Section 5, we present the health concentration curve, the s-

health concentration curves, the health range curve, the s-health range curves and their

respective generalized versions. We also develop dominance conditions to identify robust

orderings for the sets of indices developed in Section 4. In Section 6, we present the natural

estimators for the curves presented in Section 5 and develop the statistical inference to

test for dominance. In Section 7, we provide an empirical illustration using information on

cigarette consumption and overweightedness from National Health Interview Survey (NHIS)

in 1997 and 2014. Finally, Section 8 concludes and presents future research directions.
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2 Literature Review

This paper is related to two main strains in the literature, the literature on the measurement

of socioeconomic health inequality and the literature on hypothesis testing for dominance

in the context of inequality. To highlight our contributions, we provide a brief review of

the relevant literature.

The most traditional measure of socioeconomic health inequality is the concentration in-

dex proposed by Wagstaff, Paci and van Doorslaer (1991). It has a mathematical structure

that assumes a very specific level of aversion to socioeconomic health inequality. Wagstaff

(2002) argues that it may be desirable to consider other levels of inequality aversion than

the one implicitly assumed in the standard concentration index. He suggests the extended

health concentration indices that allow for a wider range of levels for aversion to socioe-

conomic health inequality. Furthermore, the mathematical structure of the concentration

index imposes a specific type of aversion to socioeconomic health inequality. Intuitively,

its structure implies that the contribution of an individual’s health level to socioeconomic

health inequality is increasing with socioeconomic status (Bleichrodt and van Doorslaer,

2004).

Erreygers, Clarke and Van Ourti (2012) highlight that the use of extended health con-

centration indices imposes a specific ethical view on what constitutes an increase in aversion

to socioeconomic health inequality; they label it pro-poor transfer sensitivity. In the con-

text of pro-poor transfer sensitivity, increasing aversion to socioeconomic health inequality

is achieved by increasing the weight of transfers occurring at lower ranks of socioeconomic

distribution. This well-known ethical position is based on a concept developed in the

(unidimensional) income inequality literature and is adapted to fit the (bi-dimensional)

socioeconomic health inequality context. Erreygers, Clarke and Van Ourti (2012) propose

alternative ethical principles that we label as the symmetry around the median principle

3
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and pro-extreme rank transfer sensitivity principles. Based on this principle, an increase in

socioeconomic health inequality is achieved by increasing the weights on transfers occurring

farther away from the median of socioeconomic statuses.

Building on Wagstaff (2002), Makdissi and Yazbeck (2014) formalize the definition of

pro-poor transfer sensitivity principles and introduce higher orders of health concentration

curves, the s-health concentration curves. In their paper, they show how these curves can be

used to identify robust orderings of health distributions for indices obeying pro-poor trans-

fer sensitivity principles. This being said, they do not consider pro-extreme rank principles.

This paper fills this gap in the literature by formalizing the pro-extreme rank principles in-

troduced by Erreygers, Clarke and Van Ourti (2012) and deriving the corresponding higher

order ethical principles. It also contributes to the literature by proposing new graphical

tools associated with these principles; the health range curve and the s-health range curves.

These curves will be used to derive necessary and sufficient conditions for robust orderings

of joint distributions of income and health. From a measurement perspective, this paper is

related to Makdissi and Yazbeck (2014)1 yet is different from it in two distinct ways: the

ethical principles it formalizes as well as the graphical and dominance tools it proposes.

Compared to the literature on socioeconomic health inequality measures, the literature

on the statistical inference for these measures is scant as most of it focused on income

inequality measures (Kakwani, Wagstaff and Van Doorslaer (1997) and O’Donnell, van

Dooslaer, Wagstaff and Lindelow (2008)2 are two exceptions). As for inference regarding

various forms of stochastic dominance, it followed the same pattern as statistical inference

1Makdissi and Yazbeck’s (2014) contribution to the literature is twofold. In a first step, the paper
addresses the measurement issues arising in the presence of multiple categorical health variables by proposing
a framework that consists of transforming these multiple categorical health variables into one cardinal health
measure. In a second step, they provide a formalization of the ethical principles on which this new cardinal
health measure is based. So, Makdissi and Yazbeck (2014) starts with categorical variables, proposes a
measure to cardinalize the categorical information, then formalizes the ethical principles associated with the
proposed (cardinalized) measure.

2They consider inference on a grid of points of the concentration curves in Chapter 7.
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on inequality measures. It focused on dominance tests in the context of income inequality

literature namely in Anderson (1996), Davidson and Duclos (2000), Barrett and Donald

(2003), Linton, Maasoumi and Whang (2005), Linton, Song and Whang (2010), Barrett,

Donald and Batcharaya (2014) as well as Schechtman, Shelef, Yitzhaki and Zitifkis (2008).

While Anderson (1996) test is based on the assumption that observations are drawn from

two independent distributions, Davidson and Duclos’s asymptotic approach to inference

allows for observations to be drawn from a joint distribution. However, as in Anderson

(1996), Davidson and Duclos’s test uses a fixed number of arbitrary grid points. The use of

fixed number of arbitrary grid points is not a desirable feature of the test as the decision will

be contingent to the choice of the grid points and thus inconsistent (Barrett and Donald,

2003). To overcome this issue, Barrett and Donald (2003) propose a consistent Kolmogorov-

Smirnov (KS) type test. Their approach tests for dominance over all the points of the

support, however, their test (as Anderson’s) applies in cases where samples are drawn from

independent distributions of income. Thus, Barrett and Donald’s test does not allow for

dominance for bivariate measures of inequality (i.e., for marginal conditional dominance).

Schechtman et al. (2008) address this issue and propose a consistent statistical procedure

in the context of a bivariate measure of inequality; the absolute concentration curve (a.k.a

the generalized concentration curves in the health literature) in the context of portfolio

choice in finance.

This paper contributes to this literature by proposing a consistent statistical test akin

to the test Schechtman et al. (2008) and Barrett and Donald (2003) for the new dominance

conditions introduced in this paper. Given that the dominance conditions we develop are for

bivariate distributions, this paper is more akin to the work by Schechtman et al. (2008) than

to the work of Barrett Donald (2003) and Linton et al. (2005). Although the hypothesis

we are testing is, in some cases, mathematically analogous to the one tested in Schechtman
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et al. (2008), it remains different for three reasons. First, the framework and ethical

principles are different. As a result, many of the welfare foundations and mathematical

forms involved are different. Second, all estimators, dominance conditions and inference for

indices obeying pro-extreme rank ethical principles are new. Finally, all the higher order

dominance conditions for indices obeying higher order pro-poor ethical principles have no

available statistical inference in the literature.

3 Measurement framework

The purpose of this section is to set the measurement framework and elaborate on the eth-

ical principles underlying health achievement and relative socioeconomic health inequality

indices. These indices are functionals of the joint distribution of health, H and income, Y.

In this paper, the term “income” refers to a measure of socioeconomic status.

Let H and Y be 2 random variables that are absolutely continuous with support on the

positive half real line with densities fH and fY respectively, with a joint density fY,H and

with a cumulative distribution of income, FY (y).3 We are interested in measuring health

achievement and relative socioeconomic health inequality in a rank-dependent framework

where ranks represent an individual’s position in the distribution of socioeconomic status.

In this context, a socioeconomic health inequality index can be written as

I (h) =

∫ 1

0
ν(p)

h(p)

µh
dp, (1)

where, µh =
∫ 1
0 h(p)dp is the expectation of H, ν(p) represents the social weight of an indi-

vidual at rank p ∈ [0, 1] in the income distribution, and h(p) is the conditional expectation

of health, H, with respect to Y equal to its p-quantile:

h(p) = E[H|Y = F−1Y (p)]. (2)

3In this paper, we assume that this health measure is a ratio-scale variable. For ease of exposition we
also assume that densities exist.

6
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In general, any index of socioeconomic health inequality can be interpreted as the ratio

between the cost in health achievement associated with socioeconomic health inequalities

and the average health level. This is why it is possible to write rank-dependent health

achievement indices as a function of socioeconomic health inequality indices. Thus, a health

achievement index A(h) can be directly be computed from a socioeconomic health inequality

index as

A(h) = µh(1− I(h)). (3)

This health achievement index can also be rewritten as

A (h) =

∫ 1

0
ω(p)h(p)dp, (4)

where ω(p) = 1− ν(p). The mathematical properties of the social weight function ν(p) and

ω(p) are associated with the indices’ ethical principles. The following section elaborates

on two different ethical principles underlying socioeconomic health inequality and health

achievement measures; the principle of income-related health transfer and the principle of

symmetry around the median.

3.1 Principle of income-related health transfer

According to this principle, the contribution of an individual’s health level to total health

achievement (socioeconomic health inequality) is non-increasing (increasing) with socioe-

conomic status. This means that ceteris paribus, if the rich (poor) are relatively healthier,

then the health achievement will be lower (higher), and the socioeconomic health inequal-

ity will be higher (lower). This ethical principle can be mathematically translated by the

following assumptions on the behavior of the derivatives of the weight functions:

A.1 ω(1)(p) ≤ 0

A.1’ ν(1)(p) > 0 (i.e. ω(1)(p) < 0),

7



Page 9 of 54

Acc
ep

te
d 

M
an

us
cr

ip
t

A.2
∫ 1
0 ω(p)dp = 1 (i.e.

∫ 1
0 ν(p)dp = 0),

where ω(i)(p) = ∂iω(p)
∂pi

and ν(i)(p) = ∂iν(p)
∂pi

. A(h), as defined in equation (4), is a rank-

dependent measure of health achievement when the weight function, ω(p) satisfies assump-

tions A.1. and A.2. Similarly, I(h), as defined in equation (1), is a rank-dependent measure

of socioeconomic health inequality when the weight function ν(p) satisfies assumptions A.1’

and A.2. The role of assumption A.2 is to guarantee that the weight function ν(p) sums to

zero (i.e.,
∫ 1
0 ν(p)dp = 0) and thus that inequality indices have two fundamental desirable

properties.4 The first desired property requires that in the absence of health inequality

(i.e., when everybody has the same health level), the inequality index I(h) value be equal

to zero. The second requires that I(h) remains unchanged if everyone’s health increases in

the same proportion. The roles of assumptions A.1 and A.1’ are embedded in Bleichrodt

and van Doorslaer (2006) principle of income-related health transfer.5

As illustrated in Figure 1, the principle of income-related health transfer implies that

performing a mean preserving health transfer δh from an individual at socioeconomic rank

p2 to a person at a lower socioeconomic rank p1, increases (decreases) health achievement

(socioeconomic health inequality).

Having elaborated on the underlying ethical principle, we define the sets of all rank

dependent health achievement and socioeconomic health inequality that we will be con-

sidering. In the remaining of this paper, we denote by Ω2 the set of all rank-dependent

health achievement indices obeying assumptions A.1 and A.2, and by Λ2 the set of all rank-

dependent socioeconomic health inequality indices obeying assumptions A.1’ and A.2. The

formal mathematical definitions of these set of indices as well as all subsequent subsets of

indices can be found in the appendix.

4Note that ν(p) = 1− ω(p).
5It is important to highlight the interpretation of the slight difference between assumptions A.1 and A.1’.

Assumption A.1 is less restrictive since it allows for ω(p) = 1 for all p whereas assumption A.1’ imposes a
strict inequality. When ω(1)(p) = 0 for all p is combined with A.2, there is only one possible weight function,
ω(p) = 1, the resulting health achievement is the unweighted average health level µh.

8
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3.2 Principle of symmetry around the median

According to Erreygers, Clarke and Van Ourti (2012), one may want to impose an additional

ethical constraint on the socioeconomic health inequality indices by focussing on those that

pass the upside-down test. This test consists in interchanging health levels of individuals

at rank p with their “carnival” counterpart at rank 1 − p. If an individual is at the 10th

percentile of the income distribution, her health level is compared with the health level

of the individual at the 90th percentile, and so on. Imposing this constraint means that

inequality is defined by focusing on the range of health levels r(p) = h(1 − p) − h(p) (for

p ∈ [0, 0.5]) rather than on the level h(p) itself. More formally, let g(p) = h(1 − p) be

the “carnival” counterpart distribution of h(p), the upside-down test consists in verifying if

I (g(p)) is always positive (negative) when I (h(p)) is negative (positive). Erreygers, Clarke

and Van Ourti (2012) show that an index passes this test only if its weight functions ν(p) is

symmetric around the median of socioeconomic statuses (i.e., around p = 0.5). This leads

to the following additional assumptions on the behavior of the social weight function:

A.3 ν(1− p) = −ν(p),

A3’ ω(1− p) = 2− ω(p).

Assumption A.3 and A.3’ implies that ν(0.5) = 0 and ω(0.5) = 1. These additional as-

sumptions allow us to define a subset of indices that pass the upside-down test, Λ2
ρ and

propose the associated subset of health achievement indices, Ω2
ρ.
6

3.3 Examples of parametric class of indices

As pointed by Erreygers, Clarke and Van Ourti (2012), equation (1) is reminiscent of

Mehran (1976) class of rank-dependent income inequality indices with a slight difference;

6These proposed health achievement indices passing the upside-down test are not yet available in the
literature, however, it is always possible to construct the health achievement index underlying each socioe-
conomic health inequality index.
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individual ranks (socioeconomic status) are not determined by the rank of the variable of

interest (health). The social weight functions, ν(p) and ω(p), may take different functional

forms that depend on socioeconomic rank p. As a result, each subset of the class of achieve-

ment or inequality indices will depend on the specific form imposed on its weight function.

For instance, if the analyst’s ethical position is compatible with sensitivity to poverty, then

a weight function ω(p) = ρ(1 − p)ρ−1, where ρ > 1 the socioeconomic health inequality

aversion parameter, is appropriate. In this case, equation (4) describes Wagstaff’s (2002)

class of health achievement indices, a subset of Ω2. For the same specific parametric form of

the weight function, equation (1) describes Wagstaff’s (2002) class of extended health con-

centration indices a subset of Λ2.7 One may want to impose an additional ethical constraint

on socioeconomic health inequality indices by requiring that they pass the upside-down test

(see, Erreygers, Clarke and van Ourti, 2012). In this case, if the analyst values transfers

occurring farther away from the median socioeconomic rank, then, sensitivity to extrem-

ities is an alternative to sensitivity to poverty. A compatible weight function would be

ν(p) = β2β−2
[(
p− 1

2

)2] (β−2)
2 (

p− 1
2

)
, where β > 1 is the socioeconomic health inequality

aversion parameter. For this specific parametric weight function, equation (1) describes Er-

reygers, Clarke and Van Ourti’s (2012) class of symmetric health socioeconomic inequality

indices, which is a subset of Λ2.8 It is important to underline that the standard health con-

centration index (i.e., when ρ = 2) passes the upside-down test since 1−ρ(1−p)ρ−1 = 2p−1

is by construction symmetric around the median. However, for all values of ρ 6= 2, the ex-

tended health concentration and health achievement indices do not pass the upside-down

test.

Wagstaff (2002) class of extended health concentration indices and Erreygers, Clarke

and Van Ourti’s (2012) class of symmetric health socioeconomic inequality indices are both

7Note that for the standard health concentration index ρ = 2.
8Note that when β = 2, the symmetric health socioeconomic inequality index collapses to the health

concentration index.
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subsets of Λ2. While Wagstaff (2002) and Erreygers, Clarke and Van Ourti (2012) are

the most widely known indices in the health economics literature, there are other possible

health achievement and socioeconomic health inequality indices.9

To conclude, the income-related health transfer principle and the symmetry around the

median principle presented above have intuitive ethical interpretations. The first principle

puts more weight on what occurs in the bottom of the socioeconomic distribution based on

the level of health, the second principle imposes an additional focus on the range between

an individual’s health level and the health level of her “carnival” counterpart.

4 Higher order aversion to socioeconomic health inequality

The interpretations of higher order ethical principles are less straightforward than the sec-

ond order principles discussed in the previous section however; they still have an intuitive

interpretation. Generally, a higher order principle can be viewed as a higher degree of

aversion to socioeconomic health inequality. This means that, for a given transfer, the

magnitude of the social weight depends on the location of the health transfers in the dis-

tribution of the socioeconomic status. The higher the degree of aversion to inequality, the

larger is the relative magnitude of the social weight given to transfers at the bottom of the

income distribution. In this context, higher order ethical principles are defined by com-

paring health transfers instead of health levels. The appeal in imposing higher order of

aversion to socioeconomic health inequality resides in its capacity to increase the power of

ordering by narrowing to a subset of indices instead of relying on the arbitrary choice of a

specific index.

In the literature, there are two distinct ethical views of higher order principles of aversion

to socioeconomic health inequality, one compatible with Wagstaff (2002) and the other with

9Erreygers, Clarke and Van Ourti (2012) class of symmetric indices has been included in a new Stata
routine. See O’Donnell, O’Neill, Van Ourti and Walsh (2016).

11
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Erreygers, Clarke and Van Ourti (2012). In his paper, Wagstaff (2002) adopts a pro-poor

health transfer sensitivity approach where health transfers occurring in the lower part of

the distribution of socioeconomic ranks are deemed to be more desirable. Subsequently,

Makdissi and Yazbeck (2014) present the details of the ethical implication of generalized

pro-poor health transfer sensitivity principles (i.e. higher order principles). They explain

that if one adopts this ethical perspective, an increase in aversion to socioeconomic health

inequality is achieved by increasing the weight of transfers occurring at lower ranks in the

distribution of socioeconomic status.10 In the context of this paper, this means that if an

index obeys A.1 (or A.1.’) and A.2 then, it obeys the sth-order pro-poor transfer sensitivity

if (−1)iω(i)(p) ≥ 0 or (−1)i+1ν(i)(p) ≥ 0 for all i = 1 to s− 1. We define the sets of indices

obeying the principle of income-related health transfer and obeying all pro-poor transfer

sensitivity principles of order i = 3 to s as Ωs
π and Λsπ.

Erreygers, Clarke and Van Ourti (2012) highlight that, in the context of pro-poor trans-

fer sensitivity, the weight of a progressive health transfer decreases with socioeconomic

status regardless of its distance to the median socioeconomic rank. They introduce a sym-

metric class of indices that accounts for deviations from the median of socioeconomic rank.

However, they do not formalize the associated ethical principles. This is why we propose

formal definitions of different transfer-sensitivity principles that are compatible with the

upside-down test. Given that a class of indices that passes the upside-down test is more

sensitive to transfers occurring farther away from the median of socioeconomic statuses (i.e.,

for cases when β > 2), we label the associated ethical principles as the pro-extreme rank

transfer sensitivity principles. We also provide a formal presentation of the pro-extreme

10At this point, it is important to note that some caution has to be taken when interpreting the transfer
principles related to Makdissi and Yazbeck (2014). The interpretation of these transfer principles are specific
to their cardinalized health variables; a transfer should involve a marginal change that leads to a jump across
the threshold. This is not required in the context of this paper. An interesting transfer principle adapted to
the case of ordinal (binary) variables are bilateral transfers. These transfers involve a movement of a mass
from one outcome to another is provided by Sonne-Schmidt et al. (2016)

12
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rank transfer sensitivity principles, starting with the third order then generalizing to the

sth order.

Figure 2 illustrates two equivalent 3rd order pro-extreme rank favorable combinations of

transfers. An index obeying 3rd order pro-extreme rank transfer sensitivity reacts favorably

to a combination of progressive transfers occurring farther away from the median (p2 to p1

or p6 to p5) and a regressive one occurring closer to the median (p3 to p4). Both progressive

transfers have a similar impact on the value of ranges r(p1) = h(p6) − h(p1) − δh and

r(p2) = h(p5) − h(p2) + δh when p6 = 1 − p1 and p5 = 1 − p2. Since pro-extreme rank

principles focus on the range, r(p), there is an ethical equivalence between a transfer from

p2 to p1 and from p6 to p5. It is important to note that indices at the third order still weight

negatively the transfer from p3 to p4. However, since pro-extreme rank transfer sensitivity

imposes higher ethical weights on transfers affecting ranges in the bottom of socioeconomic

statuses, this negative transfer is more than compensated by a progressive transfer occurring

further away from the median (from p2 to p1 or equivalently, from p6 to p5). Following a

similar logic, order s pro-extreme rank transfer sensitivity principles impose an increasing

weight to transfers occurring further away from the median of socioeconomic statuses as s

increases. They are defined recursively by combining two groups of transfers of order s−1, a

favorable one occurring farther from the median and an unfavorable one occurring closer to

the median of socioeconomic statuses. Formally, if a rank-dependent socioeconomic health

inequality (health achievement) index obeys A.1’ (or A.1), A.2 and A.3 (or A.3’), then it

obeys the sth-order pro-extreme rank transfer sensitivity if (−1)i+1ν(i)(p) ≥ 0 ((−1)iω(i) ≥

0) for p ∈ [0, 0.5] and for all i = 1 to s− 1. We define the sets of all rank-dependent indices

obeying the principle of income-related health transfer and obeying all pro-extreme rank

transfer sensitivity principles of order i = 3 to s as Λsρ and Ωs
ρ. It is important to note that

since pro-poor and pro-extreme rank principles are different, an index that belongs to Λsρ

13
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does not belong to Λsπ and an index that belongs to Ωs
ρ does not belong to Ωs

π.

To conclude, it is important to emphasize that the two sets of higher order ethical

principles are different, they are developed from (and presented as an extension of) the same

ethical view, the principle of income-related health transfer. This principle puts more weight

on health improvements if they happen further down in the distribution of socioeconomic

statuses. This means that a transfer of health to a person with lower income is deemed

socially improving. Both ethical views agreed on this principle. The additional ethical

constraint that Erreygers, Clarke and Van Ourti (2012) apply on socioeconomic health

inequality indices, the upside-down test, imposes a view of inequality that focuses on the

range of health levels r(p) rather than on the health levels h(p). In this context, it is natural

to interpret an increase aversion to socioeconomic health inequality as an increase in the

weight of transfers occurring farther away from the median. Since these two normative

views co-exist in the health inequality literature, the next section proposes tests that identify

robust rankings for each of these views.

5 Identifying robust orderings of health distributions

When an analyst uses indices to perform a comparison between two distributions, one

important question surfaces: is the comparison obtained valid for wide spectra of indices

obeying the same set of ethical principles? More specifically, is the comparison contingent

on the particular mathematical expression of the index? To answer this question, one needs

an approach that allows for comparisons that are robust over broad spectra of indices; this

is why a dominance approach is necessary.

In this section, we first present some dominance tests developed in Makdissi and Yazbeck

(2014). These tests are based on the standard health concentration curves (Wagstaff, Paci

and Van Doorslaer, 1991), generalized health concentration curves, s-health concentration
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curves and generalized s-health concentration curves. The health concentration curve may

be used to identify orderings of distributions that are robust for all rank-dependent so-

cioeconomic health inequality indices. Also, generalized health concentration curves may

be used to identify robust orderings of health achievement indices. To identify robust

orderings for subsets of socioeconomic health inequality and health achievement indices

obeying pro-poor transfer sensitivity principles, the analyst can rely on s-health concentra-

tion curves and generalized s-health concentration curves respectively. Also, in this section,

we propose new tests that identify robust orderings of distributions for indices obeying pro-

extreme rank transfer sensitivity ethical principles. In doing so, we introduce new graphical

tools: s-health range and generalized s-health range concentration curves. These curves

are akin to the s-health concentration curves and generalized s-health concentration curves

but are different as they are designed to obey the symmetry around the median principle

and pro-extreme rank ethical principles.

5.1 Socioeconomic health inequality orderings

Before providing more details about the proposed dominance tests, it is important to pro-

vide some background on health concentration curves. Wagstaff, Paci and Van Doorslaer

(1991) introduced the health concentration curve in the health economics literature. This

curve plots the cumulative proportion of total health in the population against the cu-

mulative proportion of individuals ranked by socioeconomic status. Formally, the health

concentration curve, Ci(p), associated with f iY,H , is defined on the interval [0, 1] as

Ci(p) =
1

µhi

∫ p

0
hi(u)du (5)

When this curve lies above (under) the 45◦ diagonal, health inequality is pro-poor (pro-

rich)11. An opposite conclusion may be reached if the analysis is based on an ill-health

variable.
11In this context pro-poor means that the poor have better health than the rich
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Makdissi and Yazbeck (2014) explain how these health concentration curves may be

used to identify robust orderings of distributions of income and health.12

Theorem 1 Let f1Y,H and f2Y,H represent two joint densities of income and health. I(h1) ≤

I(h2) for all I(h) ∈ Λ2 if and only if

C1(p) ≥ C2(p) for all p ∈ [0, 1].

Theorem 1 is very powerful since it allows for the identification of orderings that are

robust for all rank-dependent relative socioeconomic health inequality indices. This ro-

bustness comes at a cost, as following such an approach produces an incomplete ordering

of socioeconomic health distributions.

When the ranking between two distributions is not robust, two paths may be followed.

First, the analyst may decide to rely on a particular index by imposing a specific parametric

form on the weight function (as seen in Section 3.3). In this case, depending on whether

the analyst’s ethical position is compatible with sensitivity to poverty or sensitivity to

extremities, the extended health concentration indices or the symmetric indices may be

used. While this solution leads to complete orderings of distributions, these orderings are

contingent on the ethical position adopted by the analyst and the specific mathematical

structure of the selected index.

An alternative solution is to increase the power of orderings by restricting the set of

admissible rank-dependent socioeconomic health inequality indices either via pro-poor or

via pro-extreme rank transfer sensitivity principles. It is important to note that these two

sets of principles are based on different ethical views regarding what constitutes an increase

in socioeconomic health inequality aversion (i.e., sensitivity to poverty and sensitivity to

extremities). As a result, choosing one path or the other leads to different subsets of indices

and may potentially lead to different orderings of distributions. In this case, the ordering

12For a complete proof see Makdissi and Yazbeck (2014).
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will not depend on a specific parametric form of the weight function, and therefore they

will be robust. However, as in any dominance tests, the orderings will still be contingent to

the ethical position taken by the analyst. In what follows, we focus on the the second path

and develop tests that will identify robust orderings for both types of higher order ethical

principles.

5.1.1 Pro-poor ethical principles

To test if orderings are robust for a subset of rank-dependent socioeconomic health in-

equality indices obeying these pro-poor ethical principles, Makdissi and Yazbeck (2014)

define higher order s-health concentration curves, Csi (p).13 These curves are defined on the

interval [0, 1] as:

Csi (p) =

∫ p

0
Cs−1i (u)du, (6)

where C2
i (p) = Ci(p). It is possible to identify robust rankings of distributions using these

higher order health concentration curves.14

Theorem 2 Let f1Y,H and f2Y,H represent two joint densities of income and health. I(h1) ≤

I(h2) for all I(h) ∈ Λsπ if and only if

Cs1(p) ≥ Cs2(p) for all p ∈ [0, 1].

Theorem 2 proposes a graphical test based on the non-intersection of two curves; the s-

health concentration curves associated with the two distributions. If there is an intersection

between the two curves at order s, the analyst can impose more restrictions on the subset of

rank-dependent relative socioeconomic health inequality indices by imposing the pro-poor

transfer sensitivity principle of order s+ 1.15

13This curves adapt to the health inequality context the concept of s-concentration curves proposed by
Makdissi and Mussard (2008) in the context of marginal indirect tax reforms.

14For a complete proof, please refer to Makdissi and Yazbeck (2014).
15As explained in Davidson and Duclos (2000), when s increases the relative weight assigned at the bottom

of the distributions increases and only the very bottom of the distributions determines which dominates the
other for very large s. At the limit, when s → ∞, a complete ranking is obtained. In this limit case, the
test consists of comparing only limp→0

h1(p)
µh1

and limp→0
h2(p)
µh2

.
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5.1.2 Symmetry around the median and pro-extreme rank ethical principles

As mentioned earlier, the analyst can choose to restrict the set of admissible rank-dependent

socioeconomic health inequality indices by imposing symmetry around the median and pro-

extreme rank transfer sensitivity. To test if the orderings are robust for a subset of socioeco-

nomic health inequality indices that obey these normative principles, we need to introduce

a new graphical tool, the s-health range curves, Rsi (p), associated with distribution f iY,H .

These curves are defined on the interval [0, 0.5] as:

Rsi (p) =

{ 1
µhi

∫ p
0 ri(u)du if s = 2∫ p

0 R
s−1
i (u)du if s ∈ {3, 4, . . . }

(7)

The health range curve, R2(p), has as intuitive graphical interpretation that is akin to the

interpretation of the health concentration curve, C2(p). It represents the cumulative relative

health range at rank p (relative to the average health level). In this case, the horizontal axis

plays a role that is analogous to the 45-degree line for the health concentration curve. If the

health range curve, R2(p), is above this horizontal axis, it indicates that the distribution of

health (ill-health) is pro-rich (pro-poor). On the other hand, if it is below this axis, it implies

that the distribution is pro-poor (pro-rich). In addition to their intuitive interpretation, it

is possible to identify robust orderings using these curves.16

Theorem 3 Let f1Y,H and f2Y,H represent two joint densities of income and health. I(h1) ≤

I(h2) for all I(h) ∈ Λsρ if and only if

Rs2(p) ≥ Rs1(p) for all p ∈ [0, 0.5].

Theorem 3 provides a simple graphical test for the identification of robust orderings.

Note that since Λsρ is a subset of indices that belongs to Λ2, the test based on R2
i (p) curves

has more ordering power (is less general) than the test based on health concentration curves

in Theorem 1. This increase in ordering power is obtained by imposing the principle of

16For a complete proof, please refer to Appendix A2
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symmetry around the median on the indices. Restricting the requirement for a unanimous

ordering to a smaller set of indices eases the identification of robust orderings. If the analyst

thinks that a socioeconomic health inequality index should pass the upside-down test, then

she should use R2
i (p) curves, instead of health concentration curves Ci(p). In this case,

the only cost associated with the increase in the ordering power of the test is imposing

symmetry of ν(p).17 If there is an intersection between two health range curves at order

s, the analyst can impose more restriction on the subset of rank-dependent socioeconomic

health inequality indices by imposing the pro-extreme rank transfer sensitivity principle of

order s+ 1.18

5.2 Health achievement orderings

Robust rankings of health achievement can be identified using the generalized health concen-

tration curve. At quantile p, the generalized health concentration curve gives the absolute

contribution of the p poorest individuals to average health. In other words, its value in-

dicates the average health that would be attained if total health was only the sum of the

health of these p poorest individuals. Formally, the generalized health concentration curve,

GCi(p), associated with distribution f iY,H , is defined on the interval [0, 1] as

GCi(p) =

∫ p

0
hi(u)du (8)

Generalized health concentration curves may be used to identify robust orderings of joint

distributions of income and health.19

17As we will see in the empirical examples presented in the Section 7, it is clear that imposing symmetry
around the median (i.e. using range curves) allows for an increase in the power of orderings of socioeconomic
health inequality.

18At the limit, when s → ∞, a complete ranking is obtained. In this limit case, the test consists of
comparing only limp→0

r1(p)
µh1

and limp→0
r2(p)
µh2

.
19For a complete proof, please refer to Makdissi and Yazbeck (2014).

19



Page 21 of 54

Acc
ep

te
d 

M
an

us
cr

ip
t

Theorem 4 Let f1Y,H and f2Y,H represent two joint densities of income and health. A(h1) ≥

A(h2) for all A(h) ∈ Ω2 if and only if

GC1(p) ≥ GC2(p) for all p ∈ [0, 1].

Theorem 4 allows for the identification of health achievement orderings that remain

valid for all rank-dependent health achievement indices. However, this robustness comes at

the cost of an incomplete order. As earlier, in case there is no dominance, two paths may

be followed: choosing a particular index or imposing higher order ethical principles. As in

the case of inequality indices, we follow the second path.

5.2.1 Pro-poor ethical principles

Let us first consider pro-poor transfer sensitivity principles. Makdissi and Yazbeck (2014)

introduce s-generalized health concentration curves, GCsi (p), for the identification of these

robust orderings. These curves are defined on the interval [0, 1] as

GCsi (p) =

∫ p

0
GCs−1i (u)du, (9)

where GC2
i (p) = GCi(p). Robust rankings of distributions can be identified using these

higher order generalized health concentration curves.20

Theorem 5 Let f1Y,H and f2Y,H represent two joint densities of income and health. A(h1) ≥

A(h2) for all A(h) ∈ Ωs
π if and only if

GCs1(p) ≥ GCs2(p) for all p ∈ [0, 1].

Theorem 5 proposes another graphical test based on the non-intersection of two curves,

the s-generalized health concentration curves associated with the two distributions. If

there is an intersection between the two curves at order s, the analyst can impose more

20For a complete proof, please refer to Makdissi and Yazbeck (2014)
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restriction on the subset of rank-dependent achievement indices by imposing the pro-poor

transfer sensitivity principle of order s+ 1.21

5.2.2 Symmetry around the median and pro-extreme rank ethical principles

An alternative path to imposing pro-poor ethical principles consists in restricting the set

of admissible health achievement indices by imposing symmetry around the median and

pro-extreme rank ethical principles. In this case, the identification of robust orderings is

based on a new graphical tool, the s-generalized health range curves, GRsi (p), associated

with distribution f iY,H . These curves are defined on the interval [0, 0.5] as:

GRsi (p) =

{ ∫ p
0 ri(u)du if s = 2∫ p

0 GR
s−1
i (u)du if s ∈ {3, 4, . . . } (10)

As for health range curves, GR2(p) has an appealing graphical interpretation. It represents

the cumulative absolute health range at rank p. In addition to this intuitive graphical

interpretation at order 2, these range curves can be used to obtain robust rankings of

socioeconomic health distributions.22

Theorem 6 Let f1Y,H and f2Y,H represent two joint densities of income and health. A(h1) ≥

A(h2) for all A(h) ∈ Ωs
ρ if and only if

GRs2(p) ≥ GRs1(p) for all p ∈ [0, 0.5].

and,

µh1 ≥ µh2

Theorem 6 offers another graphical test. However, the identification of robust rankings

for indices obeying the symmetry around the median and pro-extreme rank transfer princi-

ples has an additional condition on the average of health level when compared to pro-poor

transfer principles.23

21At the limit, when s → ∞, a complete ranking is obtained. In this limit case, the test consists of
comparing only limp→0 h1(p) and limp→0 h2(p).

22For a complete proof, please refer to Appendix A2.
23Since Theorem 6 states necessary and sufficient conditions, the tests on the averages and on the range
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6 Estimation and inference

In this section, we show how to estimate the curves presented in the previous section. We

then show how one can perform statistical inference and thus identify rankings that are

robust to the set of indices selected by the analyst.

6.1 Concentration and range curves estimators

Suppose we have a random sample of N individuals drawn from a joint distribution fH,Y .

We first show how to construct estimators of C and R, Cs and Rs for s > 2 and then show

how to test dominance using these curves. We start by showing that C and R can both be

written in a form that is directly amenable to non-parametric estimation. Given that C(p)

can be re-written as

C(p) =
1

µh

∫ 1

0
1(u < p)h(u)du, (11)

a simple estimator for C(p) can be written as follows:

Ĉ(p) =
1

Nh̄

N∑
i=1

hi1(yi 6 F̂−1Y (p)) (12)

from a sample (yi, hi) for i = 1, . . . , n. Here h̄ is the sample average and F̂−1Y is a non-

parametric estimator of the quantile function of Y based on the order statistics of (yi).

Estimators for Cs(p) can be recursively derived from that of C(p) (for details see Appendix

A3.1). The resulting estimators are as follows:

Ĉs(p) =
1

Nh̄

N∑
i=1

hi
(p− F̂Y (yi))

s−2

(s− 1)!
1(yi 6 F̂−1Y (p)) (13)

The generalized concentration curve can be therefore written as:

ĜC
s
(p) = h̄Ĉs(p) (14)

curves need to be verified. Although GC2
i (1) =

∫ 1

0
hi(u)du = µhi, GR

2
i (0.5) =

∫ 0.5

0
ri(u)du 6= µh. This is

why testing for the first condition at order 2 over [0,0.5] does not imply that the second condition is verified.
As a result, the second condition is also necessary at the second order.

22



Page 24 of 54

Acc
ep

te
d 

M
an

us
cr

ip
t

In a similar fashion, we can construct an estimator for R. Let us first rewrite R(p) in

the same form as C(p):

µhR(p) =

∫ p

0
r(u)du (15)

Given that r(u) can be written as h(1 − u) − h(u) for u ∈ [0, 1], we can re-write this

relationship as follows:

µhR(p) =

∫ 1

1−p
h(u)du−

∫ p

0
h(u)du, (16)

which can be re-written as follows:

µhR(p) =

∫ 1

0
[1(u > 1− p)− 1(u < p)]h(u)du (17)

A simple estimator for R(p) can be written as follows:

R̂(p) =
1

Nh̄

{
N∑
i=1

hi[1(yi > F̂−1Y (1− p))]−
N∑
i=1

hi[1(yi 6 F̂−1Y (p))]

}
(18)

Similarly to Cs, it is possible to recursively compute estimators of Rs by first plugging the

estimators of R̂s−1, integrating them analytically and then by recursively computing R̂s

(see details in Appendix A3.2). The resulting estimators are as follows:

R̂
s
(p) =

1

Nh̄

N∑
i=1

hi
1

(s− 1)!
ps−2(p+ (s− 1)[F̂Y (yi)− 1])[1(yi > F̂−1Y (1− p))]

− 1

Nh̄

N∑
i=1

hi
(p− F̂Y (yi))

s−2

(s− 1)!
[1(yi 6 F̂−1Y (p))] (19)

The generalized range curve can be written as follows:

ĜR
s
(p) = h̄R̂s(p) (20)

6.2 Dominance tests

Let us denote by L one of the curves from the previous section (e.g., C(p)). Let L1 and L2

be two different theoretical curves corresponding to two different theoretical populations.
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Assume that we have an i.i.d. sample of size n1 from the random variable corresponding

to first theoretical curve L1 and an i.i.d. sample of size n2 from the random variable

corresponding to the second theoretical curve L2. Denote those samples by S1 and S2

respectively. As we are interested in testing the dominance between two distributions, we

define the new function L12(p) := L1(p) − L2(p) for p ∈ [0, 1]. The null and alternative

hypotheses we are interested in are:

H0 : L12(p) 6 0,∀p

H1 : L12(p) > 0 for some p

When performing inference, for each pair of distributions we will test a set of inequalities.

In this paper, we will test for H0: L12 ≤ 0 for all p and H0: L12 ≥ 0 for all p where under

the null we assume dominance. If we can reject one of the null hypotheses of dominance for

the same pair of distributions, then we have evidence against that null of the dominance

of one distribution over the other. While one may think that it is more intuitive to test

the null hypothesis of non-dominance and hence establish a case of dominance, such a test

requires a strong evidence against the null, which may be difficult to obtain over the entire

support (Davidson and Duclos, 2013).

The nonparametric estimators L̂1 and L̂2, of L1 and L2 respectively, can be constructed

from these two samples and subsequently L̂12(p) = L̂1(p)− L̂2(p). Let τ = supp L12(p), it is

straightforward to construct a KS type test statistic τ̂ that is a non-parametric estimator

of τ as follows:

τ̂ =

√
n1n2
n1 + n2

sup
p
L̂12(p). (21)

The asymptotic distribution of τ̂ will be that of a functional of a two-dimensional Gaussian

process that is very complicated to compute. To overcome this issue, we rely on a bootstrap

procedure as in Shechtman et al. (2008). For a detailed description of the bootstrap

procedure, please refer to the Appendix A4.
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As for the indices obeying the symmetry around the median principle and pro-extreme

rank principles (i.e., theorem 6), the associated the joint test H1
0 and H2

0 can be defined,

using GR12(p) = GR1(p)−GR2(p), as follows,

H1
0 : GR12(p) 6 0,∀p

H1
1 : GR12(p) > 0 for some p,

and,

H2
0 : µ1 ≥ µ2

H2
1 : µ1 < µ2,

where the nonparametric estimators ĜR1 and ĜR2 of GR1 and GR2 can respectively be

constructed from the two samples and subsequently, ĜR12(p) = ĜR1(p)− ĜR2(p).

The test statistic, τ̂ , for testing H0 (H1
0 ) takes the same form; however, the joint test

(i.e., H1
0 and H2

0 ) has an additional condition on the mean that needs to be tested when

establishing the dominance results. To account for this additional condition, we adjust

the significance level of the joint test by relying on the Holm procedure as described in

the Lehmann and Romano (2005) [chapter 9 p. 348]. The purpose of the procedure is to

control for the family-wise error rate (FWER), which is the probability of one or more false

rejections not exceeding a certain level, by making sure that this error is below a certain

threshold α.

Let I ⊂ {1, 2} be the set of indices for which H i
0 is true for i = 1, 2, then the objective is

to ensure the following condition: Pr
{
reject any H i

0 with i ∈ I
}
6 α. Given the two tests

H1
0 and H2

0 with p-values p1 and p2, the Holm procedure works as follows. First, order

the p-values pA 6 pB, where A,B ∈ {1, 2} and A 6= B, and label correspondingly HA
0 and

HB
0 . If pA > α

2 , then we do not reject both hypotheses and stop. However, if pA <
α
2 and

pB > α, then we reject HA
0 and do not reject HB

0 . Otherwise, reject both hypotheses. It
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should be noted that if we reject one of the two hypotheses, then we reject dominance.

7 Empirical illustration

To provide evidence that the differences between various ethical principles adopted by the

analyst influence the type of conclusion reached, we conduct an empirical illustration of

the methods proposed using National Health Interview Survey data from years 1997 and

2014. We focus on comparisons of two ill-health variables that have been of great interest in

the health economics literature: cigarettes consumption (i.e., the number of cigarettes/day)

and overweightedness. We follow Bilger, Kruger and Finkelstein (2016) and use max[0,BMI-

25] as a measure of overweightedness. Given that the empirical application is mainly for

illustration purposes, we will refrain from drawing policy recommendation, but we will

indicate potential interesting paths.

The NHIS monitors health outcomes of Americans since 1957. It is a cross-sectional

household interview survey representative of American households and non-institutionalized

individuals. It contains data on a broad range of health topics that are collected via personal

household interviews. For comparison purposes, we focus on 1997 and 2014 public use data

and restrict our attention to the adult population. After applying all these restrictions

to the data, we end up with a sample size of 34776 for overweightedness and 35667 for

cigarette consumption in 1997 and is 35197 for overweightedness and 36363 for cigarette

consumption in 2014. We use the sample adult file to extract information on health-related

behavior and use family income adjusted for family size to infer the socioeconomic rank of

individuals.24

We first start the illustration by looking at comparisons from an inequality perspective

and then revisit these comparisons from an achievement perspective.

24We compute equivalent income by dividing family income by the square root of household size.
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7.1 Comparisons of inequalities in health-related behaviors and outcomes

In the first set of inequalities comparisons presented in Table 1 we focus on comparisons

(over time) at the national level. These comparisons are complemented by regional com-

parisons in Table 2. Cigarette consumption seems to display a higher socioeconomic health

inequality in 2014 than in 1997 (Figure 3). There is a clear dominance of the concentration

curve C2
2014 over C2

1997 without any intersection on the interval [0, 1]. As is shown in Table

1, when the null hypothesis is that of the dominance of C2
1997 over C2

2014 there is a very

weak evidence against the null. However, when the null hypothesis of the dominance of

C2
2014 over C2

1997 is tested, there is strong evidence against the null (p-value=0.0000). As

a result, one can conclude that there is more socioeconomic health inequality in smoking

in 2014 for all indices obeying the income-related health transfer principle. While deriving

any policy conclusion is beyond the scope of this paper, it is important to emphasize that

an increase in the disparities at the cigarette consumption level may be a major contributor

to the widening disparities in health outcomes.

In addition to testing dominance at the second order (i.e., C2) we provide a test for order

3 dominance, C3, and order 2 dominance for indices meeting the upside-down test criteria

(i.e., ranges curves R2). We know from our theoretical results that if dominance is obtained

at the second order for the C2, it follows that dominance will be obtained for both higher

order dominance Cs and second order range curves R2. To show the empirical validity of

these theoretical results we conduct this additional test. Test results presented in the lower

panel of Table 1 confirm what was theoretically expected; there is more socioeconomic

health inequality in smoking in 2014 than 1997. This is true for all indices obeying the

income-related health transfer principle and for the subset of these indices obeying the

pro-poor transfer sensitivity principle. Similarly, as there is more socioeconomic health

inequality in smoking in 2014 for all indices obeying the income-related health transfer
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principle, this result applies to the subset of these indices passing the upside-down test.

Another health variable that one may want to consider in the analysis of socioeconomic

health inequality is overweightedness (defined as max[0, BMI − 25]). Overweightedness

is defined as any positive deviation (in BMI units) from the maximal threshold of the

normal (healthy) weight category. Since deviations from below and above the healthy

weight category are deemed negative, BMI is not an ill-health ratio-scale variable. However,

Bilger, Kruger and Finkelstein’s (2016) transformation, for a given threshold, is a cardinal

variable with a well defined 0. Looking at the top left panel in Figure 4, one can notice

that the two overweightedness concentration curves (C2) intersect. There is strong evidence

against the null when dominance of C2
1997 over C2

2014 and dominance of C2
2014 over C2

1997

are tested at the 1% level (p-values are respectively 0.0060 and 0.0000 in Table-1).25 As

a result, we cannot assess whether socioeconomic health inequality in overweightedness

has increased or decreased when we consider all indices obeying the income-related health

transfer principle. As mentioned earlier in the paper, when there is no clear dominance in

the context of concentration curves (i.e., C2), one can consider the subset of indices obeying

a higher order ethical such as the pro-poor transfer sensitivity principle (i.e. considering,

C3) so we follow this path. The results shown in the top right panel of Figure 4 allow for the

conclusion that socioeconomic health inequality in overweightedness decreases from 1997

to 2014. In other words, there is more socioeconomic health inequality in overweightedness

in 1997 for all indices obeying the income-related health transfer principle as well as the

pro-poor transfer sensitivity principle. An alternative path may be taken in the absence of

dominance at the second order if one is willing to focus on the subset of indices passing

25It is important to note that if one decreases the level to 0.5%, the dominance conclusions reached at
order 2 will not hold at third order. While this may seem in contradiction with the theory at first, it is not
the case in this application. In reality this “incoherence” between the second and third order dominance
is due to the magnitude of the distance just before p = 0.8 in the first panel of Figure 4. Given that this
distance is quite large, integrating the second order curves results apparently flipped around result at the
third order.
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the upside-down test (i.e., R2 curves). As shown in the lower panel of Figure 4, following

these paths lead to the same conclusion as the one reached when exploring higher order

dominance in the case of concentration curves. Indeed, there is more socioeconomic health

inequality in overweightedness in 1997 for all indices obeying the income-related health

transfer principle and the upside-down test and these results are supported by the associated

p-values displayed in Table 1. It is important to note that the subset of indices obeying

higher order pro-poor principles and the subset of indices that pass the upside-down test

are disjoint. So while the conclusions reached in this part of the empirical application are

the same, there is no theoretical reason for this to be always the case.

As for regional comparisons, we focus our attention on the most recent year, 2014

and compare the Northeast, the West, the Midwest and the South.26 When we focus

on cigarette consumption, we notice there are no clear patterns of dominance and thus

no complete order.27 More specifically, at 5% significance level, the West dominates the

Northeast for all indices obeying pro-poor transfer sensitivity (i.e., Λ3
π), and dominates the

South for all indices (i.e., Λ2). Also, for the subset passing the upside-down test, the West

dominates the Northeast, the Midwest at the second order (i.e., Λ2
ρ). If we decrease the

significance level to 1%, then we only have one dominance result: the West dominates the

South at the second order for all indices (i.e., Λ2).

Turning our attention to regional dominance in the case of overweightedness, we notice

that the Northeast is dominated by the West, the Midwest as well as the South. While the

significance level and the order at which this dominance occur vary by region, one can safely

conclude that this dominance occurs at the 5% significance level. If we were to decrease

the significance level to 1%, then the order and subset of indices at which this dominance

occurs changes. For instance, the Northeast is dominated by the Midwest at the pro-poor

26It is important to note that we chose the most recent year to save on space.
27It is important to note that the rows have lower socioeconomic inequality than the columns.
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third order instead of the second order. Also, the Northeast is dominated by the South and

the Midwest for all subset of indices passing the upside-down test.

7.2 Comparisons of health achievements in health-related behaviors and
outcomes

In this section, we compare health achievements between 1997 and 2014. To save on space,

Table 3 will not report the p-values but rather dominance results along with the standard

notation to indicate the significance level of the dominance tests. When reading Table

3, one has to keep in mind that the columns dominate the rows; this means that when

there is dominance, the year that dominates has lower “ill health” level and hence higher

health achievement. Given that we are dealing with an “ill-health” variable it is more

sensible to talk about health failures rather than health achievements (see Makdissi, Sylla

and Yazbeck, 2013).28

Comparisons of generalized health concentration curve reveal that GC2
2014 dominates

GC2
1997 with strong evidence against the null hypothesis. This means that, as far as cigarette

consumption is concerned, there is more health failure in 1997 than in 2014 for all health

achievement(/failure) indices obeying the principle of income-related health transfer. As in

the case of inequality, we reach the same conclusion if we test for a higher order dominance

(i.e., GC3). This, once again, confirms what was theoretically expected. In other words,

since there is more health failure (when smoking is considered) in 1997 for all indices obeying

the income-related health transfer principle, it is expected this is true for the subset of these

indices that are obeying the pro-poor transfer sensitivity principle. As mentioned earlier,

the analyst may argue that the principle of pro-poor transfers sensitivity is debatable and

focus on the set of indices that pass the upside-down test. To account for this possibility,

we test for dominance using the generalized health range curves. Empirical results show

28It is important to note that the rows have lower failure than the columns in the tables which means
that the rows have a higher achievement.
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that there is more failure in smoking in 1997 for all indices obeying the income-related

health transfer principle and the upside-down test. Given that the set of indices that pass

the upside-down test are subsets of the indices belonging to Ω2, we can re-write the results

concisely by saying that there is a dominance at the second order for all rank-dependent

indices that is all indices in Ω2. As for overweightedness, we have the mirror picture of

the cigarette consumption comparison as there is more failure in 2014 than in 1997. These

second order dominance results are statistically significant at the 1% level and hold for all

rank-dependent indices (see Table 3).

Before turning to the regional comparisons, it is important to compare the results ob-

tained from the inequality analysis with the results obtained from the achievement analysis

to emphasize the policy relevance of developing and using both approaches in an inequality

analysis. While the inequality analysis revealed that there is more inequality in cigarette

consumption in 2014, the analysis on health achievement (or failure) shows that there is

a lower failure in health in 2014 than 1997. So while the inequality analysis may show

that there are concerns regarding socioeconomic inequality in smoking behavior, this same

behavior seems to be less prevalent when assessed by a measure that puts higher weight for

smoking behavior when it occurs in the lower part of the income distribution. The same

logic applies to the results obtained in overweightedness. The socioeconomic inequalities

are lower in 2014 than in 1997 but the failure is higher in 2014 than in 1997. The results

discussed in this section indicate that focusing on inequality alone provides an incomplete

picture of the situation.

As for regional comparisons for health failures, it is clear that we have more results than

in the inequality section. The first panel of Table 4 focuses on cigarette consumption in

2014 and shows that we have dominance results for all regions at the 1% level. This allows

for a complete ordering of regions in ascending inequalities as follows West, Northeast,
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South and Midwest. The second panel in Table 4 shows second order dominance results for

overweightedness at mixed significance levels (i.e., some are at the 5% level and others are at

the 1% level). Unlike the case of cigarette consumption, we do not have a complete ordering

of regions for overweightedness. All we can say is that the West dominates the Northeast,

the Midwest and the South and that the Northeast dominates the Midwest and South. To

assess whether we can have a dominance result at a higher significance level (i.e., 1% level

instead of 5% level) for the Northeast and West, we focus on indices that pass the upside-

down text. In doing so, one needs to remember that testing for achievement (/failure) for

these subsets of indices requires a joint test on the range curves and the average value of

the health variable. Figure 6 displays GR2 curves for the two regions where GR2
W seem

to be everywhere above (or equal) to GR2
NE . The results of the associated statistical tests

displayed in Table 5 suggest that we cannot reject dominance and that the West has less

failure in overweightedness than the Northeast if we focus our attention on indices that

pass the upside-down test and obey the principle of income-related health transfer.29

8 Conclusion

In this paper, we adopt a unified approach to indices that obey pro-poor ethical principles as

well as the symmetry around the median ethical principle and pro-extreme rank principles.

To do so, we first fill the gap in the literature by formalizing the ethical principles associated

with the symmetric indices (i.e., the set of indices that pass the upside-down test). We coin

these ethical principles as the symmetry around the median ethical principle and pro-extreme

rank ethical principles. We then develop the curves associated with these principles, the

health range curve and the s-health range curves, and derive the dominance conditions that

allow us to identify robust orderings of joint distributions of income and health. Having

filled the gap in the inequality measurement literature, we proceed to the literature on

29Note that, if we consider the p-values in Table 5, we cannot reject equality between µNE and µW .
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the statistical inference and provide the natural estimators for the indices obeying both

pro-poor and pro-extreme rank ethical principles. Based on these estimators and on the

work of Schechtman et al. (2008) we develop KS-type statistical tests associated with

the dominance tests for indices obeying both ethical principles. Finally, to illustrate the

applicability of the methods proposed we provide an empirical illustration using information

on overweightedness and cigarette consumption from the NHIS 1997 and 2014.

Throughout this paper, we have assumed that the information on the level of health

(ill-health) takes the form of a ratio-scale cardinal variable. This means that we allow

the social weight functions to take different mathematical forms assuming that we know

the value of the level of health. This last assumption does not hold for categorical health

variables such as self-reported health statuses as any increasing cardinal scale is a valid

representation of a categorical variable. To address this issue, one may cardinalize the

categorical health measure (Makdissi and Yazbeck, 2014) or use a dominance approach

that is invariant to the numerical scale (Allison and Foster, 2004; Sonne-Schmidt, Tarp and

Østerdal, 2016; and Makdissi and Yazbeck, 2017). Since many of health variables available

in surveys are categorical, future research is needed to allow the researcher to use cardinal

variables while dealing simultaneously with the multiplicity of social weight functions and

of cardinal scales.

In addition, it may be argued that the normative views presented in this paper (rank-

dependent views) are debatable. One could extend this paper to account for this possibility

by following Karsu (2016) and Karsu, Morton and Argyris (2012) and imposing other nor-

mative restrictions on the decision maker’s preferences. This can be achieved by proposing

a class of indices displaying aversion to pure health inequality (by transforming the health

level using an s-concave function) in addition to aversion to socioeconomic health inequality

as in Makdissi and Yazbeck (2016).
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Table 1: Dominance tests for Cs and Rs comparisons for cigarette consumption and over-
weightedness

p-value
cigarette cons. overweightedness
s=2 s=3 s=2 s=3

H0 : Cs1997(p) 6 Cs2014(p),∀p
H1 : Cs1997(p) > Cs2014(p) for some p 0.9970 0.8248 0.0060 0.0010

H0 : Cs2014(p) 6 Cs1997(p),∀p
H1 : Cs2014(p) > Cs1997(p) for some p 0.0000 0.0000 0.0000 0.8658

H0 : Rs1997(p) 6 Rs2014(p),∀p
H1 : Rs1997(p) > Rs2014(p) for some p 0.0000 0.5305

H0 : Rs2014(p) 6 Rs1997(p),∀p
H1 : Rs2014(p) > Rs1997(p) for some p 0.9670 0.0020

Table 2: Regional dominance tests: cigarette consumption and overweightedness

Cigarette consumption

Northeast West Midwest South

Northeast - ND ND
West Λ3

π
∗∗ and Λ2

ρ
∗∗ - Λ2

ρ
∗∗ Λ2 ∗∗∗

Midwest ND - ND
South ND ND -

overweightedness

Northeast West Midwest South

Northeast -
West Λ2 ∗∗∗ - ND ND
Midwest Λ2 ∗∗ and Λ3

π
∗∗∗ and Λ2

ρ
∗∗∗ ND - ND

South Λ2 ∗∗ and Λ2
ρ
∗∗∗ ND ND -

Significance levels ∗∗ 5%; ∗∗∗ 1%

Table 3: Evolution of health failures: 1997-2014

1997 2014

1997 - overweightedness: Ω2 ∗∗∗

2014 Cigarette: Ω2 ∗∗∗ -

Significance levels: ∗∗ 5%; ∗∗∗ 1%.
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Table 4: Regional dominance tests: cigarette consumption and overweightedness

Cigarette consumption

Northeast West Midwest South

Northeast - Ω2 ∗∗∗ Ω2 ∗∗∗

West Ω2 ∗∗∗ - Ω2 ∗∗∗ Ω2 ∗∗∗

Midwest -
South Ω2 ∗∗∗ -

overweightedness

Northeast West Midwest South

Northeast - Ω2 ∗∗∗ Ω2 ∗∗∗

West Ω2 ∗∗ and Ω2
ρ
∗∗∗ - Ω2 ∗∗∗ Ω2 ∗∗∗

Midwest - ND
South ND -

Significance levels ∗∗ 5%; ∗∗∗ 1%

Table 5: Dominance tests for failure in overweightedness between the Northeast and the
West for indices belonging to Ω2

ρ

p-value

H0 : GR2
W (p) 6 GR2

NE(p),∀p
H1 : GR2

W (p) > GR2
NE(p) for some p 0.0040

H0 : GR2
NE(p) 6 GR2

W (p),∀p
H1 : GR2

NE(p) > GR2
W (p) for some p 0.9219

H0 : µW > µNE
H1 : µW < µNE 0.2843

H0 : µNE > µW
H1 : µNE < µW 0.7157

H0 : µW = µNE
H1 : µW 6= µNE 0.5876
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Figure 1: Second order ethical principle
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Figure 2: Third order pro-extreme rank transfer sensitivity
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Figure 3: C2 comparison: cigarette consumption
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Figure 5: Second order health failures comparisons

Cigarette
overweightedness

Figure 6: GR2 comparison: overweightedness
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Appendix

A1 Set of indices

The proofs are based on the following mathematical definition of the set of indices.

Ω2 :=

A(h)

∣∣∣∣∣∣
ω(p) is continuous and differentiable almost

everywhere over [0, 1] ,
∫ 1
0 ω(p)dp = 1,

ω(1) = 0, ω(1) (p) ≤ 0, ∀p ∈ [0, 1]

 .

Λ2 :=

I(h)

∣∣∣∣∣∣
ν(p) is continuous and differentiable almost

everywhere over [0, 1] ,
∫ 1
0 ν(p)dp = 0,

ν(1) = 1, ν(1) (p) > 0, ∀p ∈ [0, 1]

 .

Λ2
ρ :=

{
I(h) ∈ Λ2 | ν(1− p) = −ν(p) ∀p ∈ [0, 1]

}
.

Ω2
ρ :=

{
AA(h) ∈ Ω2 | ω(1− p) = 2− ω(p) ∀p ∈ [0, 1]

}
.

Ωs
π :=

A(h) ∈ Ω2

∣∣∣∣∣∣
ω(p) is continuous and (s− 1)-time differentiable almost

everywhere over [0, 1] , ω(i)(1) = 0, (−1)i ω(i) (p) ≥ 0, ∀p ∈ [0, 1],
∀i = 1, 2, . . . , s− 1

 .

Λsπ :=

I(h) ∈ Λ2

∣∣∣∣∣∣
ν(p) is continuous and (s− 1)-time differentiable almost

everywhere over [0, 1] , ν(i)(1) = 0, (−1)i+1 ν(i) (p) ≥ 0, ∀p ∈ [0, 1],
∀i = 1, 2, . . . , s− 1

 .

Λsρ :=

I(h) ∈ Λ2
ρ

∣∣∣∣∣∣
ν(p)is continuous and (s− 1)-time differentiable almost

everywhere over [0, 1] , ν(i)(0.5) = 0, (−1)i+1 ν(i) (p) ≥ 0,
∀p ∈ [0, 0.5], ∀i = 1, 2, . . . , s− 1

 .

Ωs
ρ :=

A(h) ∈ Ω2
ρ

∣∣∣∣∣∣
ω(p)is continuous and (s− 1)-time differentiable almost

everywhere over [0, 1] , ω(i)(0.5) = 0, (−1)i ω(i) (p) ≥ 0,
∀p ∈ [0, 0.5], ∀i = 1, 2, . . . , s− 1

 .

Note that increasing s means imposing more ethical structure on indices. This in turns

implies that Ωs
π ⊂ Ωs−1

π ⊂ · · · ⊂ Ω3
π ⊂ Ω2, Λsπ ⊂ Λs−1π ⊂ · · · ⊂ Λ3

π ⊂ Λ2, Λsρ ⊂ Λs−1ρ ⊂ · · · ⊂

Λ3
ρ ⊂ Λ2

ρ ⊂ Λ2 and Ωs
ρ ⊂ Ωs−1

ρ ⊂ · · · ⊂ Ω3
ρ ⊂ Ω2

ρ ⊂ Ω2.
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A2 Proofs for section 4

Proofs of Theorems 1, 2, 4, 5 are provided by Makdissi and Yazbeck (2014).

Proof of Theorem 3. First note that for I(h) ∈ Λsρ, equation (1) can be rewritten as

I(h) = − 1

µh

∫ 0.5

0
ν(p)r(p)dp (A1)

Integrating by parts equation (A1), we get

I(h) = −ν(p)R2(p)
∣∣0.5
0

+

∫ 0.5

0
ν(1)(p)R2(p)dp. (A2)

Since by definition R2(0) = 0 and ν(0.5) = 0 for all indices I(h) ∈ Λsρ, the first term on the

right hand side of the equation is nil. This yields to

I(h) =

∫ 0.5

0
ν(1)(p)R2(p)dp. (A3)

Now assume that for s− 1, we have

I(h) = (−1)s−1
∫ 0.5

0
ν(s−2)(p)Rs−1(p)dp. (A4)

Integrating by parts equation (A4) yields

I(h) = (−1)s−1
{
ν(s−2)(p)Rs(p)

∣∣∣0.5
0
−
∫ 0.5

0
ν(s−1)Rs(p)dp

}
. (A5)

Since by definition Rs(0) = 0 and ν(s−2)(0.5) = 0 for all indices I(h) ∈ Λsρ, the first term

in the braces on the right hand side of the equation is nil. This yield

I(h) = (−1)s
∫ 0.5

0
ν(s−1)(p)Rs(p)dp. (A6)

Given that equations (A3) and (A6) both conform to the relation depicted in equation

(A4), it follows that equation (A6) holds for all s ∈ {2, 3, . . . }. Let ∆I12 = I(h2) − I(h1).

From equation (A6), we get

∆I12 = (−1)s
∫ 0.5

0
ν(s−1)(p) [Rs2(p)−Rs1(p)] dp. (A7)
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Note that (−1)sν(s−1)(p) is non negative. This implies that if Rs2(p) ≥ Rs1(p) for all p ∈

[0, 0.5], then ∆I12 ≥ 0. This proves for sufficiency of the condition.

Having provided a sufficiency condition let us now prove for the necessity of the con-

dition. Consider now the set of indices I(h) ∈ Λsρ for which ν(s−2)(p) takes the following

form:

ν(s−2)(p) =


(−1)s−1ε 0 ≤ pc

(−1)s−1 [pc + ε− p] pc ≤ p ≤ pc + ε
0 p ≥ pc + ε

(A8)

where pc ∈ [0, 0.5]. Since ν(p) is differentiable almost everywhere, it satisfies the conditions

in the definition of Λsρ. Differentiating equation (A8) yields

ν(s−1)(p) =


0 0 ≤ pc

(−1)s pc ≤ p ≤ pc + ε
0 p ≥ pc + ε

(A9)

Imagine now that Rs2(p) < Rs1(p) on an interval [pc, pc + ε] for ε that can be arbitrarily

close to 0. For any ν(p) obeying the relation in equation (A8), the expression in equation

(A7) is negative. Hence it cannot be that Rs2(p) < Rs1(p) for p ∈ [pc, pc + ε]. This proves

the necessity of the condition.

Proof of Theorem 6. First note that for A(h) ∈ Ωs
ρ, equation (4) can be rewritten as

A(h) =

∫ 1

0
(1− ν(p))h(p)dp (A10)

A(h) = µh −
∫ 1

0
ν(p)h(p)dp (A11)

A(h) = µh −
∫ 0.5

0
ν(p)h(p)dp−

∫ 1

0.5
ν(p)h(p)dp (A12)

Since r(p) = h(1− p)− h(p) and ν(p) = −ν(1− p), we can rewrite equation (A12) as

A(h) = µh +

∫ 0.5

0
ν(p)r(p)dp (A13)

Integrating by parts equation (A13), we get

A(h) = µh + ν(p)GR2(p)
∣∣0.5
0
−
∫ 0.5

0
ν(1)(p)GR2(p)dp. (A14)
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Since by definition GR2(0) = 0 and ν(0.5) = 0 for all indices A(h) ∈ Ωs
ρ, the second term

on the right hand side of the equation is nil. This yields to

A(h) = µh −
∫ 0.5

0
ν(1)(p)GR2(p)dp. (A15)

Now assume that for s− 1, we have

A(h) = µh + (−1)s−2
∫ 0.5

0
ν(s−2)(p)GRs−1(p)dp. (A16)

Integrating by parts the second term of the r.h.s. of equation (A16) yields

A(h) = µh + (−1)s−2
{
ν(s−2)(p)GRs(p)

∣∣∣0.5
0
−
∫ 0.5

0
ν(s−1)GRs(p)dp

}
. (A17)

Since by definition GRs(0) = 0 and ν(s−2)(0.5) = 0 for all indices A(h) ∈ Ωρ, the first term

in the braces on the right hand side of the equation is nil. This yield

A(h) = µh + (−1)s−1
∫ 0.5

0
ν(s− 1)(p)GRs(p)dp. (A18)

Given that equations (A15) and (A18) both conform to the relation depicted in equation

(A16), it follows that equation (A18) holds for all s ∈ {2, 3, . . . }. Let ∆A12 = A(h2)−A(h1).

From equation (A18), we get

∆A12 = µh2 = µh1 + (−1)s−1
∫ 0.5

0
ν(s−1)(p) [GRs2(p)−GRs1(p)] dp. (A19)

Note that (−1)s−1ν(s−1)(p) is non positive. This implies that if GRs2(p) ≥ GRs1(p) for all

p ∈ [0, 0.5], then (−1)s−1
∫ 0.5
0 ν(s−1)(p) [GRs2(p)−GRs1(p)] dp ≥ 0. If in addition, µh2 ≤ µh1,

then ∆A12 ≤ 0. This proves for sufficiency of the condition.

Having provided a sufficiency condition let us now prove for the necessity of the condi-

tion. In order to prove necessity, we need to consider three cases:

1. µh1 < µh2 together with GRs2(p) ≥ GRs1(p) for all p ∈ [0, 0.5]

2. GRs2(p) < GRs1(p) on some arbitrary small interval [pc, pc+ε] together with µh1 = µh2
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3. GRs2(p) < GRs1(p) on some arbitrary small interval [pc, pc+ε] together with µh1 > µh2

Case 1: Consider the set of indices A(h) ∈ Ωs
ρ for which ν(s−2)(p) is constant for all

p ∈ [0, 0.5]. This weight function ν(p) satisfies the conditions in the definition of Ωs
ρ. Since

ν(s−1)(p) = 0 for all p ∈ [0, 0.5], (−1)s−1
∫ 0.5
0 ν(s−1)(p) [GRs2(p)−GRs1(p)] dp = 0. From

equation (A19) this implies that ∆A12 > 0. Hence it cannot be that µh1 < µh2.

Case 2: Consider the set of indices A(h) ∈ Ωs
ρ for which ν(s−2)(p) takes the following form:

ν(s−2)(p) =


(−1)s−1ε 0 ≤ pc

(−1)s−1 [pc + ε− p] pc ≤ p ≤ pc + ε
0 p ≥ pc + ε

(A20)

where pc ∈ [0, 0.5]. Since ν(p) is differentiable almost everywhere, it satisfies the conditions

in the definition of Ωs
ρ. Differentiating equation (A20) yields

ν(s−1)(p) =


0 0 ≤ pc

(−1)s pc ≤ p ≤ pc + ε
0 p ≥ pc + ε

(A21)

Imagine now that GRs2(p) < GRs1(p) on an interval [pc, pc + ε] for ε that can be arbitrarily

close to 0. For any ν(p) obeying the relation in equation (A20), the expression in equation

(A19) is negative. Hence it cannot be that GRs2(p) < GRs1(p) for p ∈ [pc, pc+ε] if µh1 = µh2.

Case 3: Consider the set of indices A(h) ∈ Ωs
ρ for which ν(s−2)(p) takes the following form:

ν(s−2)(p) =


(−1)s−1κ 0 ≤ pc

(−1)s−1κ [pc + ε− p] pc ≤ p ≤ pc + ε
0 p ≥ pc + ε

(A22)

where κ >
(µh1−µh2

ε

)
and pc ∈ [0, 0.5]. Since ν(p) is differentiable almost everywhere, it

satisfies the conditions in the definition of Ωs
ρ. Differentiating equation (A22) yields

ν(s−1)(p) =


0 0 ≤ pc

(−1)sκ pc ≤ p ≤ pc + ε
0 p ≥ pc + ε

(A23)

Imagine now that GRs2(p) < GRs1(p) on an interval [pc, pc + ε] for ε that can be arbitrarily

close to 0. For any ν(p) obeying the relation in equation (A22), the expression in equation

(A20) is negative. Hence it cannot be that GRs2(p) < GRs1(p) for p ∈ [pc, pc+ε] if µh1 > µh2.

Cases 1 to 3 prove the necessity of the condition.
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A3 Construction of Cs(p) and Rs(p) estimators

A3.1 Estimator for Cs(p)

As seen earlier, the health concentration curve C(p) is defined as follows

C(p) =
1

µh

∫ p

0
h(u)du. (A24)

It can be re-written as

C(p) =
1

µh

∫ 1

0
1(u < p)h(u)du. (A25)

Apply the transformation y = F−1Y (u) (with jacobian term fY (y))

C(p) =
1

µh

∫ ∞
0

1(y < F−1Y (p))h(FY (y))fY (y)dy (A26)

Let fH|Y be the conditional density of H on Y insert the following definition of the condi-

tional expectation

E[H|Y = y] =

∫ ∞
0

hfH|Y (h|y)dh (A27)

in equation A26 and using the definition for the joint density fH,Y = fH|Y fY , we get

C(p) =
1

µh

∫ ∞
0

∫ ∞
0

h1(y < F−1Y (p))fH,Y (h, y)dhdy, (A28)

which gives the simple estimator for C(p) from a sample (yi, hi) for i = 1, . . . , n:

Ĉ(p) =
1

Nh̄

N∑
i=1

hi1(yi 6 F̂−1Y (p)). (A29)

Here h̄ is the sample average and F̂−1Y is a non-parametric estimator of the quantile function

of Y based on the order statistics of (yi).

Estimators for Cs(p) could be recursively derived from that of C(p) (derivation of this result

is in section A3.3).

Ĉs(p) =
1

Nh̄

N∑
i=1

hi
(p− F̂Y (yi))

s−2

(s− 1)!
1(yi 6 F̂−1Y (p)) (A30)
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A3.2 Estimator for Rs(p)

In a similar fashion we can construct an estimator for R. Let us first rewrite R(p) in the

same form as C(p):

µhR(p) =

∫ p

0
r(u)du (A31)

Given that Define r(u) can be written as h(1− u)− h(u) for u ∈ [0, 1], we can re-write this

relationship as follows:

µhR(p) =

∫ 1

1−p
h(u)du−

∫ p

0
h(u)du, (A32)

which can be re-written as follows:

µhR(p) =

∫ 1

0
[1(u > 1− p)− 1(u < p)]h(u)du (A33)

If ones defines a new variable t = 1− u, then u = φ(t) = 1− t. In this framework,∫ p

0
h(1− u)du =

∫ 1−p

1
h (1− φ(t))φ′(t)dt (A34)

=

∫ 1−p

1
h (t) (−1)dt (A35)

=

∫ 1

1−p
h(t)dt (A36)

The above sequence you have written should be

µhR(p) =

∫ p

0
r(u)du (A37)

=

∫ p

0
h(1− u)du−

∫ p

0
h(u)du (A38)

= −
∫ 1−p

1
h(u)du−

∫ p

0
h(u)du (A39)

=

∫ 1

1−p
h(u)du−

∫ p

0
h(u)du (A40)

Furthermore, we could deduce that

µhR(p) =

∫ 1

0
[1(u > 1− p)− 1(u < p)]h(u)du (A41)
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This expression, upon applying a transformation y = F−1Y (u), expanding the formula for h,

yields

R(p)× µh =

∫ ∞
0

∫ ∞
0

h[1(y > F−1Y (1− p))]fH,Y (h, y)dhdy (A42)

−
∫ ∞
0

∫ ∞
0

h[1(y < F−1Y (p))]fH,Y (h, y)dhdy (A43)

which yields the estimator of R(p)

R̂(p) =
1

Nh̄

{
N∑
i=1

hi[1(yi > F̂−1Y (1− p))]−
N∑
i=1

hi[1(yi 6 F̂−1Y (p))]

}
(A44)

As for Cs, it is possible to recursively compute estimators of Rs by first plugging the

estimators of R̂ and then by recursively computing (derivation of this result is in section

A3.3)

R̂s(p) =

∫ p

0
R̂s−1(u)du, (A45)

and

R̂
s
(p) =

1

Nh̄

N∑
i=1

hi
1

(s− 1)!
ps−2(p+ (s− 1)[F̂Y (yi)− 1])[1(yi > F̂−1Y (1− p))]

− 1

Nh̄

N∑
i=1

hi
(p− F̂Y (yi))

s−2

(s− 1)!
[1(yi 6 F̂−1Y (p))] (A46)

are the resulting estimators.

A3.3 Computation of integrals containing indicator variables involving inverse
of F̂Y

Even though F̂Y is a step function, the following standard result holds: yi 6 F̂−1Y (p) if

and only if F̂Y (yi) 6 p. In what follows, We will check the formula for the estimator by

induction.
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First set I1(p) =
∫ p
0 1(yi 6 F̂−1Y (u))du and compute

∫ p

0
1(yi 6 F̂−1Y (u))du =

∫ p

0
1(F̂Y (yi) 6 u)du (A47)

= (p− F̂Y (yi))1(F̂Y (yi) 6 p). (A48)

Then recursively compute

Ik(p) =

∫ p

0
Ik−1(u)du (A49)

=

∫ p

0

(u− F̂Y (yi))
k−1

k!
1(F̂Y (yi) 6 u)du (A50)

=
(p− F̂Y (yi))

k

(k + 1)!
1(F̂Y (yi) 6 p). (A51)

By making the change of variable s = k + 2, the result follows.

In order to compute integrals containing indicator variables involving the (quantile)

inverse of F̂Y , it is important to make a previous argument more explicit. In fact because

F̂Y is non-decreasing {yi : F̂Y (yi) > p} is unbounded from above and because F̂Y is right-

continuous, {yi : F̂Y (yi) > p} is closed to the left, thus it is closed at its infimum. However,

by the definition of the quantile function,

F̂−1Y (p) = inf
yi
{yi : F̂Y (p) > p}, (A52)

we get the set equality

{yi : F̂Y (yi) > p} = [F̂−1Y (p),∞) (A53)

This set inequality shows that F̂−1Y (p) 6 yi if and only if p 6 F̂Y (yi). Taking complements

of the set equality in [0,∞) yields the equality

{yi : F̂Y (yi) < p} = [0, F̂−1Y (p))], (A54)

which implies yi < F̂−1Y (p) if and only if F̂Y (yi) < p.This allows us to compute the following
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integral, ∫ p

0
1(yi > F̂−1Y (1− u))du =

∫ p

0
1(F̂Y (yi) > (1− u))du (A55)

=

∫ 1

1−p
1(F̂Y (yi) > u)du (A56)

= 1(F̂Y (yi) > (1− p))(F̂Y (yi)− 1 + p). (A57)

From equation (A57), it is clear that integrating recursively, we should obtain at step k an

integrand of the form

1

k!
pk−1(p+ k[F̂Y (yi)− 1])1(F̂Y (yi) > (1− p)), (A58)

resulting at step k + 1 in an integrand of the form

1

(k + 1)!
pk(p+ (k + 1)[F̂Y (yi)− 1])1(F̂Y (yi) > (1− p)). (A59)

We could verify that by induction. Since we checked for k = 1, what remains to do is to

check for an arbitrary k and see if we get the correct form for k + 1.

Set J1(p) = 1(yi > F̂−1Y (1− u))du and recursively compute

Jk(p) =

∫ p

0
Jk−1(u)du (A60)

=

∫ p

0
1(F̂Y (yi) > (1− u))

1

k!
uk−1(u+ k[F̂Y (yi)− 1])du (A61)

= 1(F̂Y (yi) > (1− p)) 1

k!

∫ p

0
uk−1(u+ k[F̂Y (yi)− 1])du (A62)

= 1(F̂Y (yi) > (1− p)) 1

k!

[
pk+1

k + 1
+
pk

k
k[F̂Y (yi)− 1]

]
(A63)

= 1(F̂Y (yi) > (1− p)) pk

(k + 1)!
[p+ (k + 1)[F̂Y (yi)− 1]] (A64)

By making the change of variable s = k + 2, the result follows.

A4 Bootstrap procedure

As suggest by Linton et al. (2005) and Shechtman et al. (2008), we used a recentered

bootstrap procedure. The bootstrap algorithm for B repetitions is constructed as follows:
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1. Repeat for b = 1, . . . , B

• Draw a sample of size n1 from S1. Compute the nonparametric estimator L̂1b.

• Draw a sample of size n2 from S2. Compute the nonparametric estimator L̂2b.

• Compute L̂12b(p) = L̂1b(p)− L̂2b(p).

• Compute τ̂b = supp

√
n1n2
n1+n2

[L̂12b(p)− L̂12(p)].

2. Using the sample τ̂1, . . . , τ̂B, compute the bootstrap p-value

1

B

B∑
b=1

1(τ̂b > τ̂).
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