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ABSTRACT
Presently, a >3σ tension exists between values of the Hubble constant H0 derived from analysis
of fluctuations in the cosmic microwave background by Planck, and local measurements of
the expansion using calibrators of Type Ia supernovae (SNe Ia). We perform a blinded re-
analysis of Riess et al. (2011) to measure H0 from low-redshift SNe Ia, calibrated by Cepheid
variables and geometric distances including to NGC 4258. This paper is a demonstration
of techniques to be applied to the Riess et al. (2016) data. Our end-to-end analysis starts
from available Harvard -Smithsonian Center for Astrophysics (CfA3) and Lick Observatory
Supernova Search (LOSS) photometries, providing an independent validation of Riess et al.
(2011). We obscure the value of H0 throughout our analysis and the first stage of the referee
process, because calibration of SNe Ia requires a series of often subtle choices, and the
potential for results to be affected by human bias is significant. Our analysis departs from that
of Riess et al. (2011) by incorporating the covariance matrix method adopted in Supernova
Legacy Survey and Joint Lightcurve Analysis to quantify SN Ia systematics, and by including
a simultaneous fit of all SN Ia and Cepheid data. We find H0 = 72.5 ± 3.1(stat) ± 0.77(sys)
km s−1 Mpc−1with a three-galaxy (NGC 4258+LMC+MW) anchor. The relative uncertainties
are 4.3 per cent statistical, 1.1 per cent systematic, and 4.4 per cent total, larger than in Riess
et al. (2011) (3.3 per cent total) and the Efstathiou (2014) re-analysis (3.4 per cent total). Our
error budget for H0 is dominated by statistical errors due to the small size of the SN sample,
whilst the systematic contribution is dominated by variation in the Cepheid fits, and for the
SNe Ia, uncertainties in the host galaxy mass dependence and Malmquist bias.

Key words: supernovae: general – stars: variables: Cepheids – cosmological parameters –
distance scale – cosmology: observations.

1 IN T RO D U C T I O N

The Hubble constant H0 has proven difficult to measure since
the discovery of the Universe’s expansion almost a century ago
(Hubble 1929), following the prediction of the latter in Friedmann’s
equations (Friedmann 1922). As given in the Hubble law v = H0D
(first derived by Lemaı̂tre 1927), H0 sets the cosmic distance scale
via the present expansion rate of the local Universe. The quest to
make precise measurements of H0 has been a continual challenge in
observational cosmology, due to the difficulty of making accurate
distance measurements.

Recently, discrepant values obtained from local and global
measurements have propelled the Hubble constant back
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into the spotlight. Observations of cosmic microwave back-
ground (CMB) anisotropies with the Planck satellite found
H0 = 67.3 ± 1.2 km s−1 Mpc−1(Planck Collaboration XVI 2014),
assuming a standard � cold dark matter (�CDM) cosmology. This
value is ∼2.7σ lower than in Riess et al. (2011, hereafter R11),
who measure H0 = 73.8 ± 2.4 km s−1 Mpc−1from observations of
Type Ia supernovae (SNe Ia) in the more local Universe. While the
Planck measurement is dependent on an underlying cosmological
model, the SN Ia-based measurement is model independent. The
precision of these values highlights the importance of the tension
between the two modes of measurements, which has increased to
over 3σ significance in the updated analyses in Riess et al. (2016,
hereafter R16, finding H0 = 73.0 ± 1.8 km s−1 Mpc−1), and Planck
Collaboration XIII (2016, finding H0 = 67.8 ± 0.9 km s−1 Mpc−1).

Numerous re-analyses of the SN Ia-based measurement have
followed, many of which have focused on the methods for the
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rejection of Cepheid outliers. Efstathiou (2014, hereafter E14) ques-
tions and revises the outlier rejection algorithm in R11, conclud-
ing H0 = 72.5 ± 2.5 km s−1 Mpc−1 assuming a null metallic-
ity dependence of the Leavitt law. Recently, Cardona, Kunz &
Pettorino (2017) use Bayesian hyperparameters to downweight por-
tions of the Cepheid data for both R11 and R16 data sets, find-
ing H0 = 73.75 ± 2.11 km s−1 Mpc−1 for the R16 data. More-
over, the dependence of the intrinsic magnitude of SNe Ia on host
galaxy properties has been explored in recent years (e.g. Sullivan
et al. 2010). Rigault et al. (2013, 2015) find a relationship between
peak brightness and star formation rate, and infer an overestimate of
∼3 km s−1 Mpc−1 in the R11 value of H0 arising from the fact that
the calibration set of SNe Ia exist in galaxies which necessarily con-
tain Cepheids, hence are likely to be late-type galaxies. However,
Jones, Riess & Scolnic (2015) repeat the same analysis, with an in-
creased sample size and the R11 selection criteria applied, and find
no significant difference in the brightness of SNe Ia in star-forming
and passive environments.

The CMB data in Planck has been re-analysed in Spergel, Flauger
& Hložek (2015), who find a similar value to Planck Collabo-
ration XVI (2014), of H0 = 68.0 ± 1.1 km s−1 Mpc−1. Ben-
nett et al. (2014) provide a CMB-based measurement which is
independent of Planck, by combining data from Wilkinson Mi-
crowave Anisotropy Probe 9, the South Pole Telescope and Ata-
cama Cosmology Telescope, and baryon acoustic oscillation (BAO)
measurements from the Baryon Oscillation Spectroscopic Survey
in the Sloan Digital Sky Survey III (SDSS-III), finding a value
of H0 = 69.3 ± 0.7 km s−1 Mpc−1 (with a slight increase to
H0 = 69.7 ± 0.7 km s−1 Mpc−1 if SN Ia data from R11 are included),
which is slightly less discrepant with SN Ia-based values. Strong
lensing provides an independent but model-dependent local mea-
surement of H0: the Suyu et al. (2017, H0LiCOW) program studies
time delays between multiple images of quasars in strong gravita-
tional lens systems, and find H0 = 71.9+2.4

−3.0 km s−1 Mpc−1 (Bonvin
et al. 2017) in flat �CDM. It is noteworthy that the H0LiCOW
analysis was performed blind to derived cosmological parameters
(e.g. Bonvin et al. 2017, section 4.4); we discuss the importance of
blinding in our analysis in Section 2.4.

One of the biggest open questions in cosmology today is whether
the tension in H0 signifies new physics – where inconsistencies
between results from SNe and the CMB arise from the model-
dependence of the measurement, and disappear when the correct
model is used – or is the result of some systematic error in one or both
measurements that has yet to be accounted for. Possible theoretical
modifications to standard �CDM to reconcile the tension in H0 in-
clude an increased neutrino effective number (the existence of dark
radiation), and/or a more negative dark energy equation-of-state
parameter w at late times. Di Valentino, Melchiorri & Silk (2016)
explore these scenarios in a higher dimensional parameter space,
with their findings supporting phantom dark energy with w ∼ −1.3,
while Wyman et al. (2014), Dvorkin et al. (2014), and Leistedt,
Peiris & Verde (2014) focus on the implications of an additional
massive sterile neutrino species. Meanwhile, Bernal, Verde & Riess
(2016) examine the model dependence of the Universe’s distance
scale (anchored by H0 and by the scale rS of the sound horizon at
radiation drag, at late and early times, respectively) by reconstruct-
ing its expansion history with minimal cosmological assumptions.1

They conclude that the tension in H0 translates to a mismatch in the

1 This is possible as the combination of SNe Ia and BAO as probes constrains
the product rSH0 in a model-independent way.

normalizations provided by H0 and rs at two opposite ends of the
distance ladder.

A genuine inconsistency in the value of the Hubble constant at low
and high redshifts would have profound consequences. Therefore,
it is imperative to fully understand uncertainties in the measured
values of H0, and to preclude possible human biases on the result.
The most effective way of achieving the latter is to blind the value
of H0 throughout the analysis.

The use of data from R11 is for a proof of concept, necessary for
our blind analysis technique, and to be followed shortly with the
same analysis applied to R16 data. Numerous improvements over
R11 have been made in R16, in the analysis as well as the size and
quality of data. Changes to the outlier rejection and the Cepheid
metallicity calculations have addressed some of the concerns raised
in E14. However, our analysis involves both a simultaneous fit to all
data sets, and the accepted methodology of recent SN cosmology
analyses (Conley et al. 2011; Betoule et al. 2014) for considering
SN Ia systematics. Both of these points carry significant differences
from the R11 and R16 analysis chains, and have yet to be included
in a re-analysis. Nor have the SN data been revisited in its entirety,
starting from the available photometry. Thus, we are motivated by
the desire to provide such a validation of the SN data, and by the
current relevance and importance of the Hubble constant, to produce
in this work an independent, blinded, end-to-end re-analysis of the
R11 data to determine H0 and its uncertainty.

In summary, we combine the framework for calibrating an SN Ia
Hubble diagram with Cepheid variables, with the best estimates of
SN systematics via covariance matrices. We determine H0 using
the magnitude–redshift relation (i.e. a Hubble diagram) of low-
redshift SNe Ia, with their zero-point set by Cepheid variables in host
galaxies of eight nearby SNe Ia, which are in turn calibrated by very
long baseline interferometry (VLBI) observations of megamasers in
NGC 4258, and other geometric distances to the Large Magellanic
Cloud (LMC) and Cepheids in our Galaxy.

This paper is structured as follows. First, we present an overview
of our methods in Section 2, followed by the distinct sets of data
with the equations relating them in Section 3. In Section 4, we
focus on the Cepheid variables and perform a fit to the Cepheid data
only, comparable to the E14 re-analysis of R11. Next in Section 5,
we discuss SNe Ia, including details of fitting SNe Ia on a Hubble
diagram and results of a preliminary SN-only fit. This fit relies
on computations of individual SN systematic terms in the form of
covariance matrices, which are examined in depth in Appendix C.
Finally, Section 6 ties together the Cepheid and SN Ia information
into a combined and simultaneous fit of all data; we conclude with
a discussion of these results in Section 7.

2 M E T H O D S

In this section, we paint a broad picture of our approach to measuring
H0, postponing specific details of and equations relating to the
data to Section 3. We begin with the theory and mathematics of
finding H0 in the cosmology analysis, followed by the astronomy
that enables this: distance measurements with SNe Ia and Cepheid
variables as standard candles. Equally important are the Bayesian
statistics that underpin the analysis, and the method for blinding the
result.

2.1 Theory of extracting H0

In its traditional formulation, Hubble’s law states that the recession
velocity of objects is proportional to their distance:

v(z) = H0D(z) (1)
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where the constant of proportionality H0 represents the present
expansion rate of the Universe, scaled by its size (i.e. H0 = ȧ

a
,

where a is the scalefactor and overdot indicates differentiation with
respect to time, t). Methods of determining H0 typically involve
taking the ratio of the two sides of equation (1). We expand on the
subtleties of this below.

The distance in Hubble’s law is related to the luminosity distance
by

D(z) = 1

1 + z
DL(z), (2)

assuming a flat universe.2

The luminosity distance DL(z) can be determined observationally
(i.e. with no knowledge of cosmological parameters) using standard
candles. These have known absolute magnitudes M, so taking the
difference between M and the apparent magnitude m gives the dis-
tance modulus μ ≡ m − M and hence the luminosity distance

DL ≡ 10
μ−25

5 Mpc. In practice, the process of measuring distances
is far from straightforward, and is outlined in Section 2.2.

On the left-hand side, v(z) is the predicted velocity due to ex-
pansion for a galaxy at redshift z.3 The exact expression for v(z) is
given by integrating the Universe’s expansion up to redshift z:

v(z) = c

∫ z

0

dz′

E(z′)
, (3)

where E(z) ≡ H(z)/H0 is a function of cosmological parameters, as
defined in Peebles (1993),4 and v(z) is independent of H0.5

2 To include curvature, note that the present distance to an object at redshift
z is given by D(z) = R0χ , with χ being the comoving coordinate and R0 the
scalefactor at the present day with dimensions of distance (in the equation
for H0 above a(t) ≡ R(t)/R0). Then, luminosity distance is defined as

DL(z) ≡ (1 + z)R0Sk(χ ), (4)

with R0 ≡ c/(H0
√|�k |) and

Sk(x) =

⎧⎪⎪⎨
⎪⎪⎩

sinx k = 1,

x k = 0,

sinhx k = −1,

(5)

so D(z) = 1
1+z

χ
Sk (χ ) DL(z).

3 For simplicity, we do not distinguish here between redshifts in different ref-
erence frames, and only use one redshift z. We distinguish between different
redshifts, particularly in equation (2), in Appendix B4.
4 In Friedmann–Lemaı̂tre–Robertson–Walker cosmologies, E(z) is given by
(e.g. Carroll, Press & Turner 1992)

E(z) =
√

�M(1 + z)3 + �k(1 + z)2 + �� (6)

where �M and �� are, respectively, the densities of normal matter and the
cosmological constant (relative to the critical density), k is the curvature, and
�k ≡ 1 − �M − �� (zero in a flat universe). If dark energy is something
other than a cosmological constant, with a generic equation of state w,
replace �� with �de(1 + z)3(1 + w).
5 It is interesting to note that v(z) is independent of H0; it depends only
on redshift and cosmological parameters such as �M and ��. That may
seem unintuitive, but it is velocity as a function of distance v(D) that is
function of H0 (things that are moving faster have gone further). Velocity as
a function of redshift v(z) works differently since redshift is not proportional
to distance. A galaxy’s redshift is determined by how much the Universe
has expanded since the light was emitted. That depends on the travel time,
which does depend on the densities that cause the Universe to accelerate or
decelerate (and thus for the light to take longer or shorter times to reach us),
but not on H0.

At low redshifts, the cosmological dependence of v(z) is very
weak and it is a good approximation to use a second-order Taylor
expansion in terms of the deceleration and jerk parameters q0 and
j0

6. Thus, we follow R11 and use,

v(z) = cz

1 + z

[
1 + 1

2
(1 − q0)z − 1

6

(
1 − q0 − 3q2

0 + j0

)
z2

]
. (7)

At low-redshift equations (3) and (7), both reduce to the familiar
v(z) ≈ cz. At moderate redshifts (z < 0.1), equation (7) closely
approximates most observationally reasonable cosmological mod-
els. We explored the uncertainty associated with assuming equation
(7) and the cosmology stated in (see footnote 6), finding the im-
pact to be small: varying either �M or w by 0.1 changes H0 by
0.015 km s−1 Mpc−1or 0.1 km s−1 Mpc−1, respectively, in the sense
that an increase in �M or w causes an increase in H0. The maximal
difference in M induced by varying q0, j0 within values allowed
by 1σ contours in Betoule et al. (2014) is an order of magnitude
smaller than its statistical uncertainty.

Rearranging equations (1), (2), and (7) gives us the equation for
H0 as a function of observables, z and DL,7

H0 = v(z)(1 + z)

DL(z)

= cz

DL(z)

[
1 + 1

2
(1 − q0)z − 1

6
(1 − q0 − 3q2

0 + j0)z2

]
. (8)

Thus, determining H0 amounts to comparing the velocity in equa-
tion (7) – derived from the measured redshift – to the observed lu-
minosity distance, measured with standard candles. The equations
encapsulating this process are detailed in Section 3.

2.2 Measuring distance

Astronomical distances can be measured using standard candles:
standardizable objects with known absolute magnitude which, com-
bined with an apparent magnitude, give the distance modulus. These
distances are often relative rather than absolute. Since each mode
of measurement is useful only over a limited range of distances,
multiple standard candles are tied together to form a so-called dis-
tance ladder. At the bottom of the ladder are absolute distances
determined from geometric methods (i.e. trigonometric parallax),
only accurate at relatively small distances. Then, nearby standard
candles (i.e. Cepheid variables) give distances relative to this geo-
metric scale; similarly, each rung of the ladder is calibrated on the
previous.

Standard candles (a distance scale) provide one approach to
measuring cosmological parameters including H0. Alternatively,
standard rods (a length-scale) in the form of BAO (e.g. Eisenstein
et al. 2005) provide complementary (and for some parameters, or-
thogonal) constraints, most recently in Planck Collaboration XIII
(2016). Weinberg et al. (2013) provide a review of cosmological
probes; we refer the interested reader to its section 4 for a review of
BAO.

In our determination of H0, we rely on two standard candles:
SNe Ia and Cepheid variables. These together prescribe a relative

6 We assume a standard �CDM cosmology with �M∼0.3,��∼0.7, fixing
q0 = −0.55 and j0 = 1.
7 For non-zero curvature, equation (8) becomes

H0 = v(z)(1 + z)

DL(z)

Sk(χ )

χ
. (9)
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distance scale for the low-z SNe Ia. The absolute calibration is given
by the geometric maser distance of NGC 4258 from Humphreys
et al. (2013). The Cepheid variables lie in this galaxy and eight
other galaxies containing nearby SNe Ia, calibrating the SNe. The
absolute distances and measured redshifts of the low-z SNe are com-
bined to determine H0 as described in Section 2.1, through equations
detailed in Section 3. Next we briefly describe each standard candle.

Cepheid variables are pulsating supergiants with periods of days
to hundreds of days, well characterized by their luminosity via the
empirical Leavitt law (Leavitt 1908; Leavitt & Pickering 1912)
– also commonly known as the period–luminosity relation. The
brightness and regular pulsation of Cepheid variables as well as
their ease of discovery and classification make Cepheids reliable
distance indicators in the nearby Universe, and the basis of the cos-
mic distance ladder (Freedman & Madore 2010). Some difficulties
and systematics include crowding and confusion (which necessitate
outlier rejection), metallicity, and extinction; these are discussed
further in Section 4.2.

SNe Ia are thought to be thermonuclear explosions of accreting
white dwarfs, with two qualities which recommend them as excel-
lent distance indicators up to high redshift: they are intrinsically very
bright, and highly standardizable in terms of their apparent peak
brightness, light-curve shape, and colour (Phillips 1993; Hamuy
et al. 1996; Riess, Press & Kirshner 1996) – see Section 3.2.2 for
more details. Indeed SNe Ia have played a pivotal role in recent
observational cosmology, particularly in the discovery of the accel-
erating Universe (Riess et al. 1998; Schmidt et al. 1998; Perlmutter
et al. 1999). In the past decade, SN Ia samples have greatly ex-
panded, reducing statistical uncertainty. However, observations of
SN Ia are still subject to numerous systematics, which can be sig-
nificant and correlated between SNe. These systematics include:
calibration uncertainties, dust, and corrections for peculiar veloci-
ties, and host galaxy mass, and will be discussed in Appendix C.

2.3 Bayesian statistical methods

We estimate the fit parameters � (given in Section 3) in a Bayesian
framework, relying on the principle of sampling the likelihoodL(�)
over the parameter space to determine the posterior distribution
function (PDF). The generalized likelihood is determined from the
χ2 statistic, a function of �:

L(�) = exp

(
−χ2(�)

2

)
(10)

χ2(�) = (m̂ − mmod)C−1(m̂ − mmod)T. (11)

Here, m̂ and mmod are the observed and theoretical magnitude vec-
tors (over all data) respectively,8 and C is the covariance matrix of
uncertainties in m̂. The model mmod is implicitly a function of �. In
each fit outlined in Section 3.4, an expression for χ2 will be given
explicitly, i.e. equations (20), (22), and (23). When uncertainties are
uncorrelated (i.e. C is diagonal) equation (11) reduces to the more
familiar

χ2(�) =
∑

i

(m̂i − mmodi)2

σ 2
i

. (12)

8 We retain this convention where it is necessary to explicitly distinguish the
data from the model.

2.3.1 PDF estimation

In higher dimensional parameter spaces, the computational expense
of calculating and integrating the likelihood necessitates Monte
Carlo techniques to statistically sample the parameter space,
the most common being Markov Chain Monte Carlo (MCMC).
These techniques are useful for parameter estimation or model
selection (see e.g. Davis & Parkinson 2016). Nested sampling
(Skilling 2004) is another such technique, in which the likelihood is
evaluated at sample ‘live’ points drawn from an iteratively replaced
distribution until convergence, where the posterior is recovered.
The MultiNest algorithm (Feroz & Hobson 2008; Feroz, Hobson &
Bridges 2009; Feroz et al. 2013) is a robust nested sampling tool
for retrieving posterior samples from distributions which may have
multiple peaks or ‘modes’. We use the implementation PYMULTINEST

described in Buchner et al. (2014) for most fits (details in Sec-
tion 3.4). For some lower dimensional fits (Section 5.4), we use
emcee (Foreman-Mackey et al. 2013), a PYTHON implementation of
MCMC.

Each algorithm takes as inputs the data, a prior distribution within
the parameter space (which live points are drawn from), and the
likelihood as a function of the data and parameters. In addition,
we select the sampling efficiency for parameter estimation and the
number of live points (walkers). MultiNest outputs include the best-
fitting (maximal likelihood) parameters and the marginalized pos-
terior distribution for each parameter. In our fits, the marginalized
PDFs appear symmetrical and Gaussian (e.g. Figs 3 and 4), so we
take our best estimates of values and uncertainties of each parameter
from the mean and standard deviation of the marginalized PDF.

2.4 Blind analysis

To perform a blind analysis is to obscure the principal aspects of the
result until the analysis is complete. The overarching motivation for
blinding is to eliminate the impact of human biases on the result, in-
cluding confirmation bias. Pre-conceptions about the ‘correct’ value
for a result are irrelevant to the validity of the analysis and can only
reduce the value of the findings. Conversely, a blind analysis has
all the more bearing for having reached its conclusion blind. Croft
& Dailey (2011) find evidence of confirmation bias in recent mea-
surements of cosmological parameters and recommend blinding;
similarly Maccoun & Perlmutter (2015) argue for its necessity. In
recent years, the practice of blind analysis has become standard in
particle physics, and is increasingly adopted in cosmology.

Our priority is to hide the value of H0 so as to not influence
its result, so we blind the parameter H which contains equivalent
information.9 We also blind the SN Ia magnitude zero-point MB

which has the most interaction with H, and is the best constrained
in the literature, relative to other parameters in �. We implement
these blinds in the analysis and data, respectively. For any likelihood
function containing H (i.e. involving the low-z SNe), we make the
shift H �→ H + oH for an offset oH. Meanwhile, we effectively
shift MB by adding another offset oM to all SN magnitudes mB. Both
offsets oH and oM are unknown real numbers, randomly drawn from
normal distributions and never printed. These are seeded by distinct
known numbers to ensure that the offsets are constant and can be
retrieved. Our method allows the recovery of the true unblinded
values by simply subtracting the offsets once the blind is lifted.

9 We fit for the parameter H := 5 log10 H0 − 25, which is linear in magni-
tude (equation 19), instead of H0.
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Table 1. Recent nearby SNe Ia and their host
galaxies used in R11, along with observations
of Cepheids in these galaxies.

Galaxy SN Ia NCepheids

NGC 4536 SN 1981B 69
NGC 4639 SN 1990N 32
NGC 3370 SN 1994ae 79
NGC 3982 SN 1998aq 29
NGC 3021 SN 1995al 26
NGC 1309 SN 2002fk 36
NGC 5584 SN 2007af 95
NGC 4038 SN 2007sr 39
NGC 4258 – 165

Total 570

We choose to not blind the other parameters which appear in
the preliminary Cepheid- or SN-only fits, primarily because these
parameters do not have strong enough priors from the literature to
introduce human bias. Moreover, the variation we observe in the
preliminary values of the nuisance parameters {bW, ZW, α, β} is
useful for informing which preliminary fits to carry forward to the
global fits. Knowing the preliminary nuisance parameters will not
bias our results because ‘best’ versions of the preliminary fits are
not chosen; instead we select a representative sample of these fits
and use the scatter to quantify the systematic uncertainties.

3 DATA A N D A NA LY S I S T E C H N I QU E S

This section describes our Cepheid and SN Ia data, using equations
for the apparent magnitude of each data set to demonstrate the
relationships between them. These are followed by an outline of the
steps of the fit.

3.1 Data samples

Our analysis uses three sets of data:

(i) Cepheid variables: 570 spread between nine nearby galaxies
(see Table 1), namely:

(a) 165 in the distance anchor NGC 4258, and
(b) 405 in eight galaxies that host recent nearby SNe Ia.

(ii) Anchor (‘nearby’) SNe: eight recent SNe Ia in the nearby
galaxies (also in Table 1).

(iii) Low-z SNe Ia: 280 low-redshift (z < 0.06) SNe Ia from
the Harvard-Smithsonian Center for Astrophysics (CfA3; Hicken
et al. 2009a) and Lick Observatory Supernova Search (LOSS;
Ganeshalingam et al. 2010) samples.

Together these three data sets allow us to calibrate our distance
ladder. The galaxy NGC 4258 hosts the water masers that give us a
precise absolute local distant measurement (Humphreys et al. 2013),
and allows us to calibrate the Cepheids. As in R11, we also use the
LMC and Milky Way (MW) as distance anchors in combination
with NGC 4258, relying on independent distances measured from
detached eclipsing binaries (Pietrzyński et al. 2013) to Cepheids
in the LMC, and Hipparcos and Hubble Space Telescope (HST)
parallax measurements of Cepheids in our Galaxy (van Leeuwen
et al. 2007). The Cepheids in turn enable us to calibrate the absolute
magnitudes of the eight SNe that occurred in nearby galaxies with
quality Cepheid measurements. These then allow us to calibrate the
whole SN sample, which ultimately gives most of the constraining
power for our H0 measurement. In practice, we perform a global fit

to all of these samples together. In the next section, we outline the
equations needed to relate all of these standard candles and extract
a measurement of H0 following the theory in Section 2.1.

Since the purpose of this paper is to provide an independent
analysis of the data in R11, we adopt an identical sample in order to
make a faithful comparison. Our aim is to use the same framework
to analyse newer data sets including SNe Ia in the CfA4 survey
(Hicken et al. 2012) and Cepheids in R16 at a later stage.

3.2 Equations for apparent magnitude

3.2.1 Cepheids

Our first data set, the Cepheid variables, allow us to infer distances
to the nearby galaxies via the Leavitt law (also commonly known
as the period–luminosity relation):

mW = bW(log10 P − 1) + ZW
 log10[O/H]ij + MW + μ. (13)

Equation (13) relates the apparent ‘extinction-free’ (Wesenheit)
magnitude mW,10 period (P; in days), and metallicity of a Cepheid
at distance modulus μ. The slopes bW and ZW represent the depen-
dence of the magnitude on period and metallicity; the zero-point
MW physically represents the Wesenheit magnitude of a Cepheid in
our Galaxy (at a distance of 10 pc), with a period of 10 d. We use rel-
ative values of the metallicity (
log10[O/H]ij := log10[O/H] − 8.9)
and period to pivot the fit near the data.

3.2.2 Type Ia supernovae

SNe Ia comprise our remaining data. A spectroscopically normal
SN Ia has a light curve parametrized by its brightness (hence dis-
tance), observed colour and decline rate. These measures are rep-
resented by different quantities in various SN Ia frameworks; in
SALT2 (Spectral Adaptive Lightcurve Template; Guy et al. 2007),
these are the apparent magnitude mB at time of B-band maximum,
‘stretch’ X1 and colour C (roughly corresponding to B − V at max-
imum), related by:

mB = MB − αX1 + βC + μ (14)

where MB is the canonical SN Ia absolute magnitude, and αandβ are
SALT2 nuisance parameters for the stretch and colour dependences.

SNe Ia in more massive galaxies are brighter after these standard
corrections for colour and stretch, as discussed in Appendix B3.
To account for this, we replace MB in equation (14) with the cor-
rected absolute magnitude M∗

B, which can take two discrete values
depending on the host galaxy mass: MB or MB + 
MB. We will
fix 
MB (see Appendix B3) and fit for the three global parameters
{α, β, MB}.

Our second data set contains the eight ‘nearby’ SNe Ia in
Table 1, with apparent magnitudes given by equation (14) (with
M∗

B instead of MB). The SN Ia and Cepheid in the same galaxy
have common distance modulus μ in equations (14) and (13); thus,
the Cepheids calibrate the nearby SNe, which in turn determine the
SN Ia magnitude zero-point MB.

The much larger sample of 280 SNe Ia makes up our third
data set. These ‘low-z’ SNe originate from CfA3 and LOSS, with
details to follow in Section 5.1. Once we have calibrated their

10 We use the quantity MW ≡ V − RV(V − I) constructed in Madore (1982)
from the Wesenheit function (van den Bergh 1975), from V- and I-band
absolute magnitudes. Assuming constant ratio RV of total to selective ab-
sorption, MW is independent of extinction. We fix RV = AV/E(V − I) = 3.1
as in R11.
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absolute magnitudes using the eight ‘nearby’ SNe, we can use
the theory derived in Section 2.1 to relate their measured mag-
nitudes to the value of H0. Assuming equation (8) and writing

f (z) ≡ 1 + (1−q0)z
2 − (1−q0−3q2

0 +j0)z2

6 , we have in place of equation
(14)

mB = M∗
B − αX1 + βC + 5 log10

(
czf (z)

H0

)
+ 25. (15)

3.3 Global fit

We will fit equations (13)–(15) simultaneously for a combined fit
to all Cepheid and SN Ia data. We rewrite these equations, making
explicit the indexing: i varies over the eight nearby galaxies (and
the SNe Ia they contain), j varies over Cepheids in these galaxies
and NGC 4258, k varies over the low-z SNe.

mWij = bW(log10 Pij − 1) + ZW
 log10[O/H]ij

+ MW + μ4258 + 
μi (16)

mBi = M∗
B − αX1i + βCi + μ4258 + 
μi (17)

mBk = M∗
B − αX1k + βCk + 5 log10(czkf (zk)) − H. (18)

In equation (18), we separate the intercept of equation (15) into
parameters M∗

B (also appearing in equation (17)) and a constant
term H, which contains the same information as H0:

H := 5 log10 H0 − 25. (19)

We fit for all 16 parameters appearing in equations (16)–(18); explic-
itly these are � = {α, β,H,MB, bW, ZW, MW, μ4258, 
μi} where
i varies over the eight nearby galaxies. Note that we fit for MB in-
stead of M∗

B as the latter is not a constant. The distance moduli in
equations (16) and (17) are expressed as offsets 
μi ≡ μi − μ4258,
relative to NGC 4258.

Equations (16)–(18) assume a distance anchor of NGC 4258.
The use of the LMC and MW as alternate or additional anchors
is explored, and discussed in Appendix A2. We impose a strong
Gaussian prior μ4258 = 29.404 ± 0.066 on the distance, mea-
sured from VLBI observations of megamasers in Humphreys et al.
(2013)11, whenever NGC 4258 is used as an anchor, and similarly
μLMC = 18.494 ± 0.049 if the LMC is included.

3.4 Steps in fitting process

We break the process of fitting all data to equations (16)–(18) into
three steps to streamline the process: the data and parameters are
separated into spheres of influence so that results from the Cepheid-
and SN-only fits – in particular their dependencies on factors such
as rejection, cuts, and distance anchors – can be isolated, inspected,
and selectively carried forward to the global fit.

The three steps are as follows. First, we fit all Cepheid data si-
multaneously for parameters {bW, ZW, MW, {μi}} to equation (16).
Separately, we fit only the low-z SNe Ia to equation (18). The pa-
rameters MB and H are degenerate when constrained by only the
low-z data, so we fit for their difference M := MB − H, as well
as SN Ia parameters α and β. Finally, a global fit is performed (in-
dependent of the first two steps) of both data sets and the nearby

11 This distance is slightly higher than the older value μ4258 = 29.31 assumed
in Riess et al. (2012); this increase acts to decrease H0 relatively.

SNe Ia to equations (16)–(18) simultaneously. This step is similar
to the Cepheid-only fit but also includes H and the SN parameters
{α, β, MB}. Final values for all parameters including H0 are ex-
tracted from this global fit. Each preliminary fit is described in detail
in Sections 4.3 and 5.4, and the global fit in Section 6.1.

The Bayesian methods for parameter estimation (MultiNest for
the high-dimensional Cepheid-only and global fits, and MCMC for
the SN-only fit – described in Section 2.3) require priors, which may
be uniform, on each parameter in �. While some other parameters
are predominantly influenced by a subset of the data (namely the
nuisance parameters bW and ZW which only appear in the Cepheid-
only fit, and α and β which are predominantly determined by low-
z SNe), it would be statistically invalid to place Gaussian priors
on these parameters in the global fit based on results of either
preliminary fit. However, non-uniform priors based on external data
are allowed; our priors on μ4258 (and μLMC) are Gaussian if these
galaxies are included as calibrators, and we constrain bW with a
Gaussian prior informed by the LMC Cepheids in fits which are
not anchored on the LMC (discussed in Appendix A4). For the
remaining parameters in �, we set uniform priors over generous
intervals.

Our approach differs from the R11 and E14 analyses, which
both perform two independent steps: (i) using only the low-z SN
data, determine and fix aV (the intercept of the SN Ia m–z relation
equivalent to 0.2M in our analysis) and (ii) from the Cepheids
only, determine the Leavitt law parameters bW, ZW, and zp4258

(a zero-point comparable to our MW). The Cepheid parameters are
combined with the nearby SNe Ia light curves to find the quantity
m0

v,4258 which signifies the fiducial peak apparent magnitude of an
SN Ia in NGC 4258; this quantity is then combined with aV and
μ4258 to give H0 (R11, equation 4). We emphasize that, in contrast,
our final global fit is truly simultaneous in that it allows each param-
eter in � to be influenced by all Cepheid and SN data in the nearby
galaxies and low-z sample. Consequently, we allow the data sets to
interact freely with each other, enabling us to capture covariances
between parameters.

4 C EPHEI D LEAVI TT LAW FI T

Here, we describe an initial simultaneous fit of the Cepheids in
all nine galaxies to the Leavitt law (equation 16). This has two
purposes: to estimate the parameters {bW, ZW, MW, {μi}} for each
fit (which uniquely define a Cepheid data set), and to examine
the dependence of these parameters (particularly the period and
metallicity coefficients bW and ZW) on factors explored in R11 and
E14 – namely the rejection algorithm and threshold, distance anchor,
and inclusion of longer period Cepheids, discussed in Appendices
A1–A3. Some of these fits, with associated Cepheid data sets, are
selected to be carried forward to the global fit.

We emphasize that the process of choosing these fits is motivated
by the desire to capture and quantify variation that arises in results
when different (but also valid) choices are made in the fitting pro-
cess, rather than by the aim of choosing a ‘best’ fit; this will become
clear in Fig. 1 and its discussion. Thus, we do not blind this part
of the analysis (the Cepheid-only fit), because the results are not
final, and also because they do not directly reveal or affect the value
of H0.

4.1 Observations

The Cepheids in the nine galaxies in Table 1 were discovered
or re-observed in the Supernovae and H0 for the Equation of
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Figure 1. The best-fitting values for bW, ZW from all Cepheid-only fits to the Leavitt law (equation 16), assuming various distance anchors and rejection
algorithms, with and without a cut on the period. The different markers represent these properties as indicated in the legends, with the colour representing
the outlier rejection algorithm, shape representing the distance anchor, and solidness reflecting the period cut. We consider all seven combinations of distance
anchor galaxies NGC 4258, LMC, and MW (Appendix A2), and all three rejection algorithms (Appendix A1). This figure shows: (i) including the longer
period Cepheids increases both bW and ZW (empty markers lie up and to the right of solid markers). (ii) Systematic variation in parameters with distance
anchor (e.g. for each choice of period cut, the NGC 4258 + MW anchor gives the lowest bW and the NGC 4258-only anchor gives the highest); meanwhile fits
with both the LMC and MW as anchors (diamonds and upward triangles, with and without NGC 4258, respectively) are clustered tightly, indicating that these
two galaxies together provide a strong constraint on both parameters. (iii) The R11 rejection results in less negative ZW and to a lesser extent bW (reflected in
orange markers concentrated in the upper right portion of the figure), while the E14 algorithm with rejection threshold T = 2.5 (turquoise) results in higher ZW

compared to T = 2.25 (green) for fits other than those with both the LMC and MW anchors. The typical uncertainties, indicated by the arrows, are ∼0.05 for
bW and ∼0.1 for ZW for most fits, but can be larger for some anchors or rejection algorithms. Evidently the scatter arising from varying the distance anchor,
cut on period, and rejection far exceeds the statistical uncertainty. The histograms in the margins display distributions of bW and ZW values over all fits. The
histogram for bW shows that values are clustered around bW ∼ −3.25 for fits with a P < 60 d cut (reflective of the influence of the LMC Cepheids) and
bW ∼ −3.10 for fits without. The histogram for ZW shows a spread centred at ZW ∼ −0.3, dependent on distance anchor; fits with both the LMC and MW
anchors lie with −0.2 < ZW < 0.

State (SH0ES) project (Riess et al. 2009b) on the HST, from
Cycle 15. Infrared (F160W) observations of the SN Ia host galax-
ies were made using the Wide Field Camera 3 (WFC3). We re-
fer the reader to R11, Section 2 for descriptions of observations
and data reduction. Our initial data set consists of 570 Cepheids
from R11, table 2, excluding those marked ‘low P’; this number
is reduced to 488 if we adopt the P < 60 d cut on Cepheids,
following E14.

We supplement the sample of 157 Cepheids in NGC 4258 with
LMC and MW Cepheids, used as alternative anchors (discussed in
Appendix A2). Persson et al. (2004) present near-infrared photome-
try of 92 Cepheids, of which 53 have optical measurements in Sebo
et al. (2002), which we use for determining Wesenheit magnitudes.
Two of these 53 Cepheids have period greater than 60 d, which

we exclude if we impose the period cut on the Cepheids in the SN
host galaxies. We also make use of 13 Cepheids in the MW from
van Leeuwen et al. (2007, table 2, excluding Polaris, an overtone
pulsator), which have combined parallaxes from Hipparcos and
HST data.

4.2 Cepheid systematics

Cepheid variables are powerful distance indicators to nearby galax-
ies, however they are subject to systematics. We briefly mention
those that affect our method, and refer the reader to Freedman &
Madore (2010, section 3.1) and references therein for further dis-
cussion of Cepheid systematics. In Appendices A1–A3, we test and
report the dependence of the Leavitt law parameters on aspects of
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the Cepheid fit, namely outlier rejection, distance anchor, and cut
on Cepheid period.

Careful treatment of Cepheids starts with their discovery and
identification, where crowding and confusion can lead to misiden-
tification. Light from a Cepheid can be blended with nearby or
background sources, and aliasing or sampling problems can cause
the wrong period to be inferred. Thus, outliers from the Leavitt law
fit must be identified and rejected. Moreover, the intrinsic scatter in
the Leavitt law must be taken into account in assessing the goodness
of fit; outliers that are rejected should lie well outside the so-called
instability strip.

The secondary dependence of Cepheid luminosities on atmo-
spheric metallicity is an ongoing area of research, and remains
contentious. This effect arises from changes in the atmospheres
and structure of Cepheids with their chemical composition, which
impacts colours and magnitudes. There is evidence of a mild metal-
licity dependence at optical wavelengths (Kennicutt et al. 1998;
Sakai et al. 2004; Macri et al. 2006; Scowcroft et al. 2009), which
is weaker in the infrared. In the LMC, using spectroscopic [Fe/H]
measurements, Freedman & Madore (2011) find that ZH (the metal-
licity dependence in the H band) is close to zero. Efstathiou (2014,
section 3.2) argues that these LMC observations, along with the-
oretical considerations, give cause to applying an external prior
on the metallicity dependence centred at ZW ∼ 0. We discuss
this prior, which we find is inconsistent with the R11 data, in
Appendix A4.

Historically, the zero-point of the Leavitt law has proven difficult
to measure, due to uncertainties in parallax measurements. To cir-
cumvent this, more accurate absolute distances have been pursued,
including VLBI measurements of water megamasers in NGC 4258
(Humphreys et al. 2013). Multiple distance anchors are also tested
and combined to reduce the impact of any single distance anchor.
The effects of varying and combining anchors is explored in this
analysis in Appendix A2, following R11 and E14.

4.3 Cepheid-only fit

Our fit to all Cepheid data is based on E14 with the difference that
we do not assume the SN Ia zero-point (the quantity aV in R11 and
E14) or indeed any SNe data. This is because we intend to fit the
Cepheids separately from the SN data, whereas E14 calculates val-
ues of H0 from the Cepheid fits, assuming SN Ia data from R11. All
Cepheid data are fit to the Leavitt law (equation 16) with MultiNest
(Section 2.3.1). The 12 parameters of fit include the three nuisance
parameters {bW, ZW, MW}, the strongly constrained distance μ4258,
and the eight distance modulus offsets {
μi}. We set an external
Gaussian prior on μ4258, and by default place uniform priors for all
other parameters over generous intervals. The χ2 function for the
Cepheid fit is a function of {bW, ZW, MW, μ4258}, and {
μi}, and
takes the form

χ2
c =

∑
ij

(m̂Wij − mWij ,mod)2

m̂2
Wij ,err + σ 2

int,C

. (20)

Here, mWij, mod(bW, ZW, MW, μ4258, {
μi}) is the model magnitude
of the jth Cepheid in galaxy i (given by equation 16) and σ int, C is
the intrinsic scatter in Cepheid magnitude, from the width of the
instability strip. For clarity, measured quantities are denoted with
hats to distinguish them from model quantities. The logarithm of
the likelihood L = e−χ2

c /2 and the priors on the fit parameters are

inputs for MultiNest. We use 1000 live points in MultiNest and
confirm that the precision is sufficient.12

4.4 Results of Cepheid-only fit

The results of all Leavitt law fits, for all combinations of distance
anchor, outlier rejection, and upper period limit, are presented in
Table D1. The details of these choices are given in Appendices
A1–A3, along with the effect they have on fit results. The variation
in the fits is visualized in Fig. 1 in bW, ZW space. The choice of these
two parameters is obvious as they characterize the Leavitt law and
are solely influenced by the Cepheid sample – all other parameters
in � are influenced by the SN data, even the zero-point MW. Fig. 1
allows us to identify which of the Cepheid fits lie at the edges of the
parameter space. The resultant scatter observed in Fig. 1 far exceeds
the statistical uncertainties reported in Table D1. Therefore, it is
paramount that the systematic associated with varying the choices
made in Appendices A1–A3 is propagated carefully through the
entire analysis process.

The choice of whether or not to apply the upper period limit of
P < 60 d has the most effect on the parameters, especially bW. Fig. 1
reveals clearly the impact of including the longer period Cepheids
on parameters bW and ZW, most notably splitting Fig. 1 down the
middle vertically, i.e. by Leavitt law slope. Both parameters are
smaller in magnitude by ∼0.1 when the longer period Cepheids
are included, indicating a weaker dependence of Cepheid magnitude
on both period and metallicity. For the slope bW, this difference
dominates the statistical uncertainty and any other variation in bW,
whereas for ZW, the resultant change from changing the period cut
is comparable in size to the dependence on rejection algorithm, and
the statistical uncertainty.

When the longer period Cepheids are included, each of bW and
ZW is better constrained by the distance anchor, and the rejection
algorithm, respectively: this is reflected in the vertical lines of empty
markers with the same shape, and near-horizontal lines of markers
with the same colour. That is, when the P < 60 d cut is applied, the
fit results are more sensitive to the choice of rejection algorithm and
distance anchor. However, even without the cut, there remain strong
dependencies of ZW on rejection, and of bW on distance anchor.

Within each choice of period cut, the slope bW varies systemati-
cally with distance anchor: the NGC 4258 + MW and NGC 4258
anchors result in the lowest and highest bW, respectively, with re-
sults from the other anchor combinations lying in between. The fits
with both the LMC and MW in the anchors (upward triangles and
diamonds) have the least spread in both parameters. With the ex-
ception of these fits, the data suggest a reasonably strong metallicity
dependence with −0.5 < ZW < −0.2. As noted above, the results
are sensitive to rejection algorithm, with the R11 rejection resulting
in less negative values for ZW (and for bW with the P < 60 d cut),
followed by the E14 rejection with T = 2.5 to a smaller extent.

We observe (Table D1) that there is little difference in values
for MW between fits with and without the P < 60 d cut, with the
difference decreasing to zero for fits anchored on both n4258 and
the MW. However, we defer further comment on MW (as well as
{
μi}) to the discussion of global fit results. As MW is a magnitude
zero-point, and the 
μi are affected by the nearby SNe, the values

12 For selected fits, we repeat the outlier rejection and fitting steps, and
find that the scatter in final parameters within 10 runs is <1 per cent of the
statistical uncertainty.
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Table 2. Summary of selected Cepheid fits to carry forward to global fit
(i.e. rejection, anchors, and period cut used). The positions of the best-fitting
values for bW and ZW in the bW, ZW-plane (represented in Fig. 1) are also
given, as well as the symbols for these fits in Fig. 1. The top half of the
table (solid symbols) lists fits with the P < 60 d cut, whilst the bottom half
(empty symbols) contains fits without.

Rej (T) Anchora Symbol

Top left 2.25 n4258+LMC+MW Solid green diamond
Top left 2.5 n4258+LMC+MW Solid turquoise diamond
Top left R11 n4258+LMC+MW Solid orange diamond
Top left R11 LMC+MW Solid orange 


Middle 2.5 n4258+LMC Solid turquoise hexagon
Middle R11 MW Solid orange star
Lower left 2.25 n4258+MW Solid green square
Lower 2.25 LMC Solid green ∇
Lower 2.25 n4258 Solid green circle
Top 2.25 n4258+LMC+MW Empty green diamond
Top 2.5 n4258+LMC+MW Empty turquoise diamond
Top R11 n4258+LMC+MW Empty orange diamond
Top R11 LMC+MW Empty orange 


Top 2.25 LMC+MW Empty green 


Middle 2.25 n4258+MW Empty green square
Right R11 n4258 Empty orange circle
Right 2.5 n4258 Empty turquoise circle
Lower right 2.25 n4258 Empty green circle

Note. aFor typographic ease, we abbreviate ‘NGC’ to ‘n’.

Table 3. Observations of nearby SNe Ia in Table 1, including sources
of photometry, SALT2 instruments, magnitude systems (including filters)
where available. Light curves of the two earliest SNe were given as standard
photometry only.

SN Ia Photometry source Magnitude system and filters

SN 1981B Buta & Turner (1983) Standard UBVR
SN 1990N Lira et al. (1998) Standard UBVRI
SN 1994ae Riess et al. (2005) AndyCama BVRI
SN 1998aq Riess et al. (2005) 4Shooter/AndyCam UBVRI
SN 1995al Riess et al. (2009a) AndyCam UBVRI
SN 2002fk CfA3b 4Shooter2 UBVRI

LOSSc KAIT3/NICKEL BVRI
SN 2007af CfA3 Keplercam BVri

LOSS KAIT3/KAIT4 BVRI
SN 2007sr CfA3 Keplercam BVri

LOSS KAIT3/4 BVRI

Notes. aA thin, back-illuminated CCD camera on the FLWO 1.2 m telescope
(Jha et al. 2006).
bHicken et al. (2009a).
cGaneshalingam et al. (2010). Both CfA3 and LOSS photometries were
available for the most recent three SNe Ia, so we used combined photometry
from both sources as described in Appendix B1.1.

of these parameters have potential to be influenced by the SN Ia
data, and are expected to change with their inclusion.

4.4.1 Comparison to R11 and E14

We compare our fits in Table D1 to equivalent results in R11 and
E14: our fits with R11 rejection and no period cut are compared to
bolded fits in R11, table 2, and we compare our fits with the P < 60
d cut to the results in E14, tables 2– 4 without priors on bW and ZW.
Relative to R11, our bW values with LMC-only or MW-only anchors
are slightly lower in magnitude (∼−3.12 instead of −3.19 in R11, a
∼1σ difference). Moreover our fits with LMC + MW anchors result

Table 4. Results of preliminary SN-only fits for various cuts.

SN cut NSN α β M
Default 171 0.164 (0.013) 3.07 (0.14) −3.240 (0.036)
Higher χ2 175 0.167 (0.013) 3.12 (0.13) −3.244 (0.036)
Lower χ2 163 0.158 (0.013) 3.04 (0.16) −3.256 (0.038)
z > 0.0233 96 0.163 (0.016) 2.73 (0.17) −3.252 (0.038)
Stricter C 160 0.158 (0.015) 2.93 (0.18) −3.238 (0.037)
Str. σX1 , σC 164 0.171 (0.014) 3.10 (0.14) −3.232 (0.038)
Str. σX1 165 0.171 (0.013) 3.10 (0.15) −3.245 (0.037)
Str. E(B − V) 166 0.167 (0.013) 3.06 (0.15) −3.241 (0.036)
t1st < +10d 187 0.165 (0.013) 3.11 (0.14) −3.234 (0.035)

in a lesser metallicity dependence (−0.2 < ZW < −0.1 instead of
ZW ∼ −0.3 in E14) – however uncertainties in ZW in these E14
fits exceed 0.1, and our ZW values (without the period cut) are
supported by R11. Aside from these differences, our results are in
good agreement with R11 and E14, lying well within ranges allowed
by statistical uncertainties. We retain 444 Cepheids when adopting
the rejection flagged in R11, table 2 (close to the minimum of 448
reported in table 4 of R11) and only 379 with the P < 60 d restriction.
Applying the E14 rejection algorithm, our fits consistently result in
lower numbers of remaining Cepheids by 10–20, and consequently
slightly lower σ int, C. It is worth noting that our methodology differs
from E14 (and R11) in that we do not involve any SNe in the
fit (omitting the third term in equation 14 of E14), whilst E14
includes the SN fit results by assuming a value of aV taken from R11.
Presumably, the complex ways of probing the multidimensional
parameter space are leading to differences, albeit slight, between
this work, R11, and E14, that cannot be easily reconciled. We believe
a solution for the future is for authors to provide code and data sets
used for calculations as part of publication that can be used to better
understand differences.

4.4.2 Selection for global fits

The choice of Cepheid fits to carry forward to the global fit is
informed by their results, i.e. Leavitt law slope bW and metallicity
dependence ZW, as these parameters are only influenced by the
Cepheid sample and are very minimally affected by the SN data. We
are interested in the effect the choice of Cepheid sample (through
varying aspects of the fit such as distance anchor, rejection, and
upper period limit) has on these parameters in the global fit. In
particular, it is essential to quantify the systematic uncertainty in H
with varying these choices.

We select 18 fits in total, summarized in Table 2. To span the
full range of uncertainty induced by various Cepheid fits, we select
fits at extremes of the parameter space (Fig. 1), with a selection
of anchors and rejection algorithms. The combination of all three
distance anchors has the most constraining power, so we include all
of these fits to quantify the uncertainty within them.

Each fit has an associated set of best-fitting parameters with un-
certainties, as well as (unless using the R11 rejection) the values of
the intrinsic scatter and rejection threshold, which together uniquely
define a set of Cepheids remaining after outlier rejection. These then
make up the Cepheid data and priors for some parameters in �, go-
ing into the global fit (Section 6).

5 SUPERNOVA FI T

We now focus on the SNe Ia. First, we outline the data set and discuss
systematics, then we describe various cuts on the SNe Ia and present
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the preliminary SN-only fit. This section is supplemented by details
provided in Appendices B1–B4 on the light-curve fitting method,
and the corrections applied for Malmquist bias, host galaxy mass,
and peculiar velocities respectively. Also central to the subject are
the computations of SN systematics in covariance matrices, which
are also relegated to Appendix C for detailed discussion.

5.1 Observations

Our SN data are identical to R11, consisting of eight ‘nearby’
SNe Ia in the galaxies hosting Cepheids (Table 1), and 280 unique
‘low-z’ SNe Ia from the 185 CfA3 (Hicken et al. 2009a) and
165 LOSS (Ganeshalingam et al. 2010) samples.13 Details of
sources of photometry for the nearby SNe are presented in Table 3.
Natural photometry was not available for the oldest two, SN
1981B and SN 1990N. The most recent SNe are already in
both CfA3 and LOSS, so we used combined photometry from
both sources as described in Appendix B1.1. The remaining
three (SN 1994e, SN 1995al, and SN 1998aq) were observed on
the Fred Lawrence Whipple Observatory (FLWO) 1.2 m tele-
scope with a variety of CCDs; we construct SALT2 instruments
(including transmissions and zero-points) using data from Jha
et al. (2006).

CfA3 ran from 2001 to 2008 on the 1.2 m telescope at FLWO
almost entirely with the CfA3 4Shooter2 and Keplercam imagers
(in UBVri and UBVRI filters, respectively), while LOSS took place
on the NICKEL and KAIT telescopes from 1998 to 2008 (in BVRI).
Unlike more recent magnitude-limited surveys, CfA3 and LOSS tar-
geted known galaxies and include SNe discovered by other sources,
resulting in a more complex selection function and generally re-
sulting in higher host galaxy masses (Appendix B3). We refer
the reader to the above works for further details of observations.
Newer low-z SNe Ia samples have since been published, notably
CfA4 (Hicken et al. 2012), Carnegie Supernova Project (Contreras
et al. 2010), Pan-STARRS (Rest et al. 2014), Palomar Transient
Factory (Law et al. 2009), and La Silla-QUEST Supernova Survey
(Walker et al. 2015). However, we retain the older CfA3–LOSS
sample for this analysis to more faithfully compare our results to
R11 and E14.

Photometry for the low-z sample is sourced from Hicken et al.
(2009b) and Ganeshalingam, Li & Filippenko (2013) in the natural
systems of each filter set, with the exception of the CfA3 4Shooter2
and Keplercam U filters for which reliable measurements do not
exist – we use photometry in the standard Johnson–Cousins UBVRI
system as presented in Bessell (1990) for these passbands only, as
well as the nearby SN 1981B and SN 1990N. We use SALT2 (Guy
et al. 2007) to fit these SN Ia light curves for the quantities mB, X1,
andC, which are used to derive distances via equation (14). Details
of the light-curve fitting are given in Appendix B1.

One reason for our choice of SALT2 as a light-curve fitter is that
our framework for assessing SN Ia systematic uncertainties with
covariance matrices (Section 5.2 and Appendix C) follows that in
the SNLS–SDSS Joint Lightcurve Analysis (hereafter JLA; Betoule
et al. 2014), which relies on the SALT2 model. In addition, SALT2 is
the most modern fitter and used ubiquitously in cosmology analyses;
thus our use allows for easier comparison and greater consistency.
While R11 test the effects of fitting light curves with both SALT2

13 There are 69 SNe in common between the samples; however SN 1998es
was discarded because the light-curve quality was so poor that the SALT2
light-curve fit failed.

and MLCS2k2 (Jha, Riess & Kirshner 2007)14 light-curve fitters,
we use SALT2 only. This is justified, as the latest version SALT2.4
(described in Betoule et al. 2014) was released in parallel with
simulations in Mosher et al. (2014) which assess and quantify the
uncertainty associated with the choice of light-curve fitter (and the
light-curve model itself) in covariance matrices (Appendix C1).
Hence, it is unnecessary to use of multiple fitters to assess the
aforementioned systematic uncertainty.

5.2 Supernova systematics

As a statistical sample, SNe Ia are high fidelity standard candles.
However, as astronomical objects, SNe Ia are diverse and subject to
systematics, with their measurable quantities (absolute brightness,
observed colour, and decline rate) dependent on factors which cor-
relate with their progenitors and environments. Countless investi-
gations into these correlations and their origins are partly motivated
by the need to reduce residual scatter from these intrinsic SN Ia
variations. Observations of SNe are also influenced by factors such
as galactic extinction, misclassifications, and differing telescope
magnitude systems. Most of these effects are not sufficiently well
understood or accurately modelled to correct for them entirely. It is
therefore essential to quantify the size of systematics; even when
efforts have been made to apply corrections we still wish to estimate
the uncertainty in the correction.

Our approach to accounting for SN Ia uncertainties follows meth-
ods in JLA, which are largely based on those in the Supernova
Legacy Survey (hereafter SNLS; Conley et al. 2011). These use
individual covariance matrices for each systematic, tracking cor-
related uncertainties between different SN quantities (i.e. mB, X1,
andC), between different SNe. Advantages of the covariance matrix
method over the more traditional method of adding systematics in
quadrature are discussed in Conley et al. (2011, section 4); these
include the ability to fully capture correlations in uncertainties, and
the ease of including or reproducing uncertainties in further analy-
ses. Details are our computations are provided in Appendix C.

5.3 Cuts on supernova sample

We make quality cuts on our SN Ia sample to eliminate potential
biases from poorly constrained light curves and peculiar events, and
to remain within the bounds of the SALT2 model. With the intent
of replicating the sample in R11 as closely as possible, we broadly
follow the cuts described in CfA3 (Hicken et al. 2009b) and LOSS
(Ganeshalingam et al. 2013), also using cuts in SNLS and JLA –
described in Guy et al. (2010, section 4.5), Conley et al. (2011,
section 2.1), Betoule et al. (2014, section 4.5) – as guidance or as
alternate cuts. In summary, our criteria are as follows:

(i) low MW extinction E(B − V) < 0.2;
(ii) exclude local SNe Ia not in the Hubble flow z > 0.01;
(iii) goodness of fit from SALT2 χ2/d.o.f. < 8;
(iv) first detection by +5 d, relative to B-band maximum;
(v) exclude stretch outliers |X1| < 3;
(vi) exclude colour outliers |C| < 0.5;
(vii) well-constrained stretch σX1 < 0.8;
(viii) well-constrained colour σ C < 0.1.

14 SALT2 differs from MLCS2k2 substantially in its treatment of extinction:
instead of prescribing a reddening parameters RV, all of the colour informa-
tion (including the SN’s intrinsic colour and host extinction) is included in
the single colour parameter C.
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The above encompass cuts in CfA3 and LOSS, with stricter cuts
on the date of first detection and light-curve goodness of fit (origi-
nally at +10 d and χ2/d.o.f. = 15 in CfA3, respectively), and with
additional cuts on the uncertainties in X1 and C to further exclude
SNe which have large uncertainties in their stretch or colour. Our
cuts are also informed by visual inspection of individual light curves
and their SALT2 fits, particularly in placing boundaries for the light-
curve goodness of fit, uncertainties in stretch and colour, and date
of first detection. In summary, we exclude SNe at very low redshift
(i.e. not yet in the Hubble flow), significantly extinguished by MW
dust, detected too late, with poorly constrained stretch and colour.
We also exclude SNe Ia with poor SALT2 fits, and SNe that are
too blue or red or have very fast or slow decline to exclude peculiar
objects and ensure our sample fit within the SALT2 model.

Furthermore we test some alternate cuts, including some sug-
gested in JLA and original CfA3/LOSS cuts which we have changed
above. We repeat the SN-only fit with these cuts to test the effect on
the SN fit parameters, carrying some through to the global fit. In par-
ticular, we follow R11 in raising the low-redshift cut to z = 0.0233,15

and test strengthening or relaxing the light-curve goodness-of-fit
threshold to χ2/d.o.f. < 5 or χ2/d.o.f. < 15, and relaxing the date
of first detection to +10 d. Following JLA, we examine the effects
of imposing a stricter bound on the colour (|C| < 0.3), the uncer-
tainty on the stretch (σX1 < 0.5), and MW extinction. These tests
are important as the influence of these alternate cuts on the fit re-
sults is not straightforward or obvious; moreover no particular cut
is necessarily more valid than the others. We discuss these results
and their significance in Section 5.5. Histograms showing X1 and C
distributions for several cuts are included in Appendix B5.

5.4 SN-only fit

Analogous to the Cepheid-only fit in Section 4.3, we perform a
preliminary fit of only the low-z SNe Ia to equation (18) using the
MCMC routine emcee (Section 2.3.1), to identify the dependence
of the SN parameters on the different cuts in Section 5.3. To clearly
separate the data and model in equation (18), we define the quantity
m

†
B for the apparent SN magnitude corrected for stretch and colour:

m
†
B := mB + αX1 − βC,

with m̂
†
Bmod = 5 log10(czf (z)) + M∗

B − H. (21)

Explicitly the χ2 function for the low-z SN fit is

χ2
SN =

(
m̂†

B − m†
Bmod

)
Cm†

B

−1
(

m̂†
B − m†

Bmod

)T

(22)

where the covariance matrix Cm†
B

is derived from covariances in all

SN parameters {mB, X1, C}, as given in equation (C1) in Appendix C
along with detailed explanations of statistical and systematic con-
tributions.

It is evident from equations (18) and (21) that the SN-only fit is
degenerate: we cannot constrain both MB and H simultaneously;
the nearby SNe are necessary to constrain MB. Instead, we fit for the
difference M := MB − H, adopting the blinds for each MB and H
noted in Section 2.4 i.e. with the transformations mB �→ mB + oMB

in equations (17) and (18) and H �→ H + oH in the likelihood
incorporating equation (22) (a function of both MB and H through

15 This is to reduce possible bias from local coherent flows, or a possible
local underdensity (a so-called Hubble bubble). The latter is discussed in
R11 and Conley et al. (2011); however there is no conclusive evidence for
its existence.

Figure 2. The best-fitting values for α, β from all SN-only fits to equation
(18), assuming various cuts on the low-z SNe. The different markers repre-
sent the cuts described in Section 5.3. The typical statistical uncertainties are
indicated by the arrows. The variation in α is comparable to the statistical
uncertainty, and the same is true for β if we disregard the higher low-redshift
cut.

equation 21). The marginalized posterior distributions (mean and
1σ width) for α and β are presented in Table 4 and plotted in Fig. 2;
these results are dependent on the choice of quality cuts on the SN
sample described in Section 5.3.

5.5 Results of SN-only fit

The results of the SN-only χ2-minimizing fit are presented in
Table 4, while Fig. 2 shows the differences in fits with various
SN cuts lie in the α, β-plane (this is analogous to Fig. 1, which
displays the numerous Cepheid fits in bW, ZW-space). We discuss
the dependence of the fit results on the various cuts, and select cuts
with results spanning the parameter space to carry forward to the
global fit to assess the associated systematic uncertainty.

The notable outlier is the higher low-redshift cut (z > 0.0233),
effecting a much lower value of β than the other cuts. This cut, along
with the stricter colour and stricter goodness-of-fit cuts, results in
lower α also. The lowest and highest values of α correspond to
lower χ2, and stricter σX1 , respectively. Fig. B4 in Appendix B5
shows normalized X1 and C distributions for the z > 0.0233 cut:
there are marginally slower declining SNe compared to the default,
but overall the distributions appear similar. It does not appear that
the discrepant fit results from this cut are the result of a change
in the colour or stretch distribution of the sample; indeed our tests
with jackknifed samples (described below) indicate this is likely the
result of removing a large portion of the sample (over 40 per cent
relative to the default). Disregarding the z > 0.0233 cut, the variation
in α and β with the different cuts we test appears only slightly larger
than the typical statistical uncertainties in these parameters (Fig. 2).

We use jackknife resampling to assess the statistical significance
of the dependence of results on the cuts in Table 4. For several
cuts (the lower light curve χ2/d.o.f., higher redshift cut, and stricter
cuts on colour or uncertainties in stretch and colour), we draw
subsamples of size NSN (Table 4) of the 171 SNe selected by the
default cut. For each cut, we compare the systematic change in fit
results (parameters α, β, andM) from the new cut to results from
repeated jackknifed subsamples of size NSN and their scatter. These
reveal a systematic variation of 1σ–3σ from the default for almost
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all combinations of parameters and cuts (where σ is the scatter
within the numerous jackknifed subsamples). Thus, the differences
between rows of Table 4 cannot be solely attributed to shot noise, and
the variation due to different cuts must be propagated to the global
fit (Section 6) and treated as a contribution to the total systematic
uncertainty. However, we will find that the variation from the choice
of SN cut is dwarfed by the analogous source of uncertainty from
the choice of Cepheid fits.

6 G LO BA L FIT R ESU LTS

This section contains our final simultaneous fits to all Cepheid
and SNe Ia data. We set out parameters and equations for this fit,
and present fit results for all parameters, including the dependence
of results on choices within the individual Cepheid and SN data
sets. We summarize our uncertainties, and discuss their increase
compared to other analyses of the same data. Finally, we break
down the statistical and systematic contributions to the uncertainty
budget.

6.1 Global fit

We fit all Cepheid and SN data simultaneously to equations (16)–
(18) as described in Section 3.3. We minimize a global χ2 function
(a function of � = {α, β, MB,H, bW, ZW, MW, μ4258, {
μi}}),
which has contributions from the Cepheids and low-z SNe remain-
ing after cuts (given in equations 20 and 22, respectively), and also
an equivalent term to χ2

low−z for the eight nearby SNe:

χ2
global = χ2

c + χ2
SN + χ2

nearby (23)

χ2
nearby =

(
m̂†

B − m̂†
Bmod

)
Cm†

B,n
−1

(
m̂†

B − m̂†
Bmod

)T

. (24)

The bolded quantities in equation (24) are vectors, over the eight
nearby SNe Ia. The terms contributing to the nearby covariance
matrix Cm†

B,n are covariances between SALT2 quantities mB, X1,

and C, and the diagonal intrinsic scatter σ int, SN.
The global simultaneous fit is 16- or 17-dimensional (without

and with the LMC included as a distance anchor, respectively),
and performed using MultiNest as described in Section 2.3.1. We
are ultimately interested in H, which contains the value of H0.
However to demonstrate degeneracies and correlations between pa-
rameters, we display in Figs 3 and 4 marginalized contour plots of
the posterior distribution of an example fit (with T = 2.25, NGC
4258+LMC+MW anchor, P < 60 d cut Cepheid fit, and default
SN cuts).16 The former posterior distribution is marginalized over
the eight 
μi, while the latter is also marginalized over μ4258 and
the SN and Cepheid parameters which are strongly constrained by
initial fits: {α, β, bW, ZW}. Fig. 3 shows a strong positive correlation
between MB and H as expected from their degeneracy in the low-z
SN sample (equation 18), and less apparent correlations between
the ‘zero-point-like’ parameters {H,MB,MW, μ4258}. In contrast,
the five other parameters {α, β, bW, ZW, μ4258} each are largely
independent of the other parameters (Fig. 3).

We repeat the global fit for each of 18 Cepheid fits in Table 2 and
six SN cuts determined in Section 5.5 from Fig. 2. Each Cepheid fit
and SN cut corresponds to a subset of the total sample to use in the

16 Figs 3, 4, and 9 were created with the CHAINCONSUMER package
(Hinton 2016).

global fit, and associated values of best-fitting parameters, as well
as σ int, C for the Cepheids. In total there are 108 fits; the analysis of
these results and the variation therein follows.

6.2 Results of global fit

The best-fitting values and uncertainties of parameters in � are
given in Table D3 for each of 108 fits. Fig. 5 displays these fits in
various subspaces of the 16- or 17-dimensional space spanned by
�, focusing on parameters {α, β, bW, ZW, MW, MB,H}. We dis-
cuss the dependencies that this figure shows (which motivate the
averaged tables and figures later), then present results for the nui-
sance parameters and the parameters of interest: the SN Ia peak
absolute magnitude MB and (proxy for the) Hubble constant H,
which are degenerate with each other.

In the remainder of the section, we depart from the distinc-
tion we make between statistical and systematic uncertainties in
Appendix C2: the uncertainties returned by MultiNest, reported in
Table D3, simply the 1σ widths of the PDFs, do not distinguish
between the statistical and systematic components of covariance
matrices input into the fit in the likelihood. Henceforth, we refer to
this uncertainty from the MultiNest fit as statistical, and the varia-
tion observed in, e.g. Fig. 5 between global fits with differing SN
cuts or Cepheid fits as systematic.

6.2.1 Dependence of parameters

Fig. 5 highlights the following dependence of parameters on prop-
erties of the global fit:

(i) The Cepheid parameters {bW, ZW, MW} depend only on the
choice of Cepheid fit (carried forward from Section 4.4.2), reflecting
the variation observed in Fig. 1. Thus, there is negligible scatter in
values for these parameters between fits with the same Cepheid
data, regardless of the SN cut (Figs 5 a and b).

(ii) Similarly, the SN parameters {α, β} depend most strongly on
cuts, and minimally on Cepheid fit, although there is more scatter
than in {bW, ZW}. On average fits without an upper period cut on
the Cepheids result in slightly lower α by ∼0.01, for each SN cut
(Fig. 5c).

(iii) The Cepheid and SN zero-points MW and MB both depend
predominantly on the Cepheid fit (Fig. 5b), reflecting the fact that the
SNe Ia are calibrated on the Cepheids. While MW depends directly
on the Cepheid data (equation 16), the influence on MB is through
its interaction with MW via the distance modulus offsets {
μi}
(equations 16 and 17). We note that MW has negligible dependence
on SN cut, whereas MB varies slightly with the choice of SN cut
(with a spread of ∼0.01 within each choice of Cepheid fit).

(iv) As mentioned in Section 3.4, H is degenerate with MB.
Fig. 5(d) shows this degeneracy between the parameters, and that
the difference M = MB − H lies on a straight line. Within each
choice of Cepheid fit, there is slight systematic dependence only
on the choice of SN cut. There is no systematic difference between
these parameters from fits with and without a cut on Cepheid period.

(v) {
μi}: the values of the distance modulus offsets from the
global fit depend significantly on the Cepheid fit, as shown in Figs 6
and 7.

In summary, it is expected that the SN cuts determine parameters
{α, β}, and the Cepheid fits determine parameters {bW, ZW, MW}.
However, the interaction of the ‘zero-point-like’ parameters is more
subtle, and emerges from the simultaneous fit of the three data
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Figure 3. Constraints on parameters in � from an example global MultiNest fit (with T = 2.25, NGC 4258+LMC+MW anchor, P < 60 d cut Cepheid fit,
and default SN cuts) marginalized over {
μi}. The shaded regions in the PDFs represent 1σ levels, and the 1σ , 2σ , and 3σ regions are shown in the contours.
Note the strong degeneracy between H and MB, and slightly weaker degeneracies between H, MB, μ4258, and MW. The other parameters appear uncorrelated.

samples, most obvious in Fig. 5(b). Even though the parameter
MB only appears in the SN apparent magnitudes (equations 17
and 18), it is most strongly influenced by the Cepheid data via
MW, as the two parameters are tied to their respective data sets
through the distance modulus offsets {
μi}. Furthermore, MB and
H are degenerate with their difference determined by the low-z SNe.
Thus, the resultant value of H, hence H0, is sensitive both to the
choice of SN cut (via the MB − H degeneracy) and to the choice
of Cepheid fit (via the influence of MW on MB). Unsurprisingly, the
most extreme values of MB and H (both driven by MW, as seen
in Fig. 5b) arise from Cepheid fits anchored on only the LMC or
MW (most and least negative, represented by dark purple and pink
symbols, respectively). It is clear from Fig. 5(d) that the variation
with Cepheid fits (anchor and rejection) is at least an order of

magnitude larger than the variation with SN cuts, even when the fits
anchored on the LMC or MW only are excluded.

6.2.2 Nuisance parameter results

Tables 5 and 6 contain results for the SN and Cepheid nuisance
parameters, averaged over the Cepheid fits and SN cuts, respectively.
We choose to average over these aspects of the fit that have minimal
effect on the parameters, as shown in Fig. 5: the SN parameters
in (c) predominantly depend on shape (SN cut) and not on colour
(Cepheid fit), while the Cepheid parameters in (a) depend entirely
on colour and not on shape. We omit statistical uncertainties of
parameters in these tables as they can be obtained from the full set
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Figure 4. The same fit as Fig. 3, also marginalized over {α, β, bW, ZW,
μ4258}. This shows the three parameters that are the most highly correlated.

of results in Table D3. For the nuisance parameters, we select a
single best fit (bolded in Table D3 and indicated in Fig. 5). This
is preferable to averaging over results in Tables 5 and 6, which
are asymmetric, based on different premises (e.g. different distance
anchors), and include more questionable fits (e.g. those SN cuts
that reject a larger fraction of the total). Thus, we use the maximal
variation in these values to inform our systematic error budget, but
not to influence the best fit.

Final values for the nuisance parameters are taken from the bolded
reference fits, which have the default SN cut and the Cepheid fit with
all three anchors, T = 2.25 rejection, and no cut on Cepheid period.
We have chosen this fit because the results are representative and
centred amongst the different choices. The Cepheid fit here also
aligns with fits selected in E14 and R11. As in R11, we choose to
not impose a cut on Cepheid period, and note the effects of including
this cut on nuisance parameters described in Section 4.4: both bW

and ZW are more negative with the P < 60 d cut, while there is
no difference in MW when all three distance anchors are used. The
global SN results differ slightly from the initial results in Table 4,
and we again note that the most deviant (lowest) values of α or β

are where a large number of SNe have been rejected; the remaining
cuts are in agreement with values derived from the default cut. In
summary, the fit parameters and uncertainties from Tables 5 and 6
are:

α = 0.165 ± 0.010(stat)+0.004
−0.005(sys)

β = 3.09 ± 0.11(stat)+0.04
−0.12(sys)

bW = −3.17 ± 0.04(stat)+0.13
−0.11(sys)

ZW = −0.11 ± 0.09(stat)+0.08
−0.10(sys)

MW = −5.95 ± 0.04(stat)+0.06
−0.12(sys). (25)

These statistical uncertainties are found from Table D3. We gen-
erally take the maximal variation measured from the reference fits
in Tables 5 and 6 as the systematic uncertainty, with the following
exceptions. We disregard the higher low-redshift cut (associated
with a large fraction of the SNe being discarded) in estimating the

systematic uncertainty in β – see discussion in Section 5.5. For the
uncertainty in ZW, we only consider the variation over fits which in-
clude both the LMC and MW in the distance anchor: the constraints
on the metallicity dependence provided by different distance an-
chors are inconsistent with each other, so we only consider these
fits for estimating the uncertainty for the nuisance parameter ZW

alone (i.e. the other anchors are considered for estimating uncer-
tainties on MB and H, in Section 6.2.3.) From Fig. 5(c), it is clear
that the statistical uncertainties in the SN parameters are around
double the systematic uncertainty if we disregard the higher low-
redshift SN cut. The opposite is true for the Cepheid parameters,
where the statistical uncertainties are dwarfed by systematic varia-
tion with differing fits. If we restrict our analysis to only Cepheid
fits anchored on all three galaxies, the statistical and systematic
uncertainties are comparable in size.

The systematic errors are asymmetric for most parameters, espe-
cially for β (due to the outlying z > 0.0233 cut) and ZW. This can
be observed in Figs 5(a)–(c), where it is evident that our reference
fits do not lie centrally within the parameter subspaces. Fig. 5(b)
shows that the MW as a distance anchor drives MW up, while the
LMC (and to a lesser extent NGC 4258) drives MW down, an ef-
fect which propagates to MB and H (Fig. 5d). Fits anchored on
all three distance anchors lie centrally. Our Cepheid nuisance pa-
rameters remain consistent with R11 and E14 as initially found in
Section 4.4.1.

We note that our best-fitting value for α is significantly higher
than found in JLA (Betoule et al. (2014), table 10) and LOSS
(Ganeshalingam et al. 2013), by ∼0.02 (around double the total
uncertainty in α). This difference occurs consistently over a range
of SN cuts. While the JLA analysis always determines α from
the low-z sample in conjunction with a higher redshift sample,
Ganeshalingam et al. (2013) find α = 0.146 ± 0.007 from the
LOSS sample, which overlaps with ours considerably and is over
a similar redshift range. Our results for β are consistent with the
literature with the exception of the z > 0.0233 SN cut, which re-
sults in a value ∼1σ below the other cuts (the triangles in Fig. 5c).
The impact of this cut on H can be seen in Fig. 5(d): the trian-
gles (higher low-z cut) have higher H than the other shapes (cuts)
for each colour/fill (Cepheid fit). This effect is much smaller than
the differences from varying the Cepheid fit. Nevertheless, it is in
agreement with the increase of H0 with increasing low-z observed in
R16, fig. 13.

The remaining nuisance parameters are the distance modulus off-
sets {
μi}, which, like all other nuisance parameters, are eventually
marginalized over. Their values depend primarily on the Cepheid
fits. The full table of fit values is left to Table D2 in Appendix D.
The 
μi are visualized in Figs 6 and 7 with different colour/fill
representing Cepheid fit. Fig. 6 gives some insight into the inter-
play and correlations between distance moduli of different galaxies,
while Fig. 7 shows the scatter and relative values of the 
μi from
different fits. The statistical uncertainties in 
μi from individual
fits range from 0.05 to 0.1, and is comparable to the scatter over
different fits.

6.2.3 Results for MB and H
We now consider the parameters MB andHwhich, together, directly
reveal H0. The degeneracy between them is apparent in Fig. 5(d),
which also shows that their primary dependence is on the Cepheid
fits. Thus, in Table 7, we present the global fit results averaged over
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Figure 5. Results of all global fits to equations (16)–(18) simultaneously, in the (a) bW, ZW-, (b) MB, MW-, (c) α, β-, and (d) MB,H-planes, when assuming
various choices of SN cut and Cepheid fit. As shown in the legends the different combinations of colour and fill encapsulate information on the choice of
Cepheid fit as described in Section 4.4.2, while the different shapes represent difference cuts on the SNe from Section 5.5. The chosen reference fits (bolded
in Tables 5 and 6) are indicated by the violet arrows in (a) and (c). The overlap of points with the same colour and fill in (a) demonstrate that the Cepheid
parameters bW, ZW depend only on the Cepheid fit; similarly, the clusters of points with the same shape in (c) show that the SN Ia parameters α, β depend
mostly on the SN cut. Subplot (b) shows that MW and MB both depend predominantly on the choice of Cepheid fit, with the effect more strong in MW. A strong
degeneracy between MB and H is evident in (d), indicating that H depends primarily on the Cepheid fit, and secondarily on the SN cut. There is no systematic
difference in MW, MB, and H between fits with and without an upper limit on Cepheid period.

the SN cuts.17 Given that the fits in Table 7 anchored on all three
galaxies are spread out, we average these fits rather than choose a
best fit, and take the maximal variation in these fits as the systematic
uncertainty. There is a slight systematic difference between fits in

17 We report MB and H to 3 decimal places, unlike most other parameters
which have been truncated to 2 decimal places (but not rounded in the
analysis). These two quantities are of particular interest, and it is desirable
to retain precision in both their values and uncertainties throughout this
section.

Table 7 with and without the upper period limit (on average, H is
decreased by 0.015 mag where the P < 60 d cut is applied). From
a theoretical standpoint, we have no reason to preference one cut
over the other. Thus, our best estimates for MB and H are averaged
over all fits anchored on all three galaxies (including fits both with
and without the upper period limit), represented by solid and empty
navy, green, and dark purple markers in Figs 5–8.

Our best estimates are

MB = −18.943 ± 0.088(stat) ± 0.024(sys)

H = −15.698 ± 0.093(stat) ± 0.023(sys). (26)
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Figure 6. Visualization of the best-fitting values for each 
μi, which vary
slightly with the different Cepheid fits in Section 4.4.2 (symbols shown
in legends of Figs 5 and 8). Each horizontal subplot represents a different
galaxy.

Figure 7. Visualization of the relative value of the 
μi with respect to the
mean over all Cepheid fits for each galaxy, marked by the black dashed line.
The legends in Figs 5 and 8 show the Cepheid fit (colour and fill).

Table 5. Global fit results for SN parameters α, β for each
SN cut, averaged over Cepheid fits. The default rejection
(bolded) detailed in Section 5.3 is chosen as our reference fit.

SN cut α β

Default 0.165 3.09
Higher χ2 0.167 3.134
z > 0.0233 0.162 2.759
Lower χ2 0.158 3.057
Stricter C 0.156 2.974
Stricter σX1 0.171 3.106

Table 6. Global fit results for Cepheid parameters {bW, ZW, MW} for each
Cepheid fit, averaged over SN cuts. The bolded fit (T = 2.25 rejection, all
three anchors, and no upper cut on the period) is chosen as our reference fit.

Rejection Distance anchor P < 60d bW ZW MW

2.25 Alla Y −3.28 −0.19 −5.95
2.5 All Y −3.28 −0.21 −5.96
R11 All Y −3.26 −0.14 −5.95
2.5 n4258+LMC Y −3.23 −0.45 −6.11
2.25 n4258+MW Y −3.31 −0.52 −5.89
R11 LMC+MW Y −3.25 −0.11 −5.91
2.25 n4258 Y −3.23 −0.55 −6.03
2.25 LMC Y −3.24 −0.55 −6.16
R11 MW Y −3.21 −0.35 −5.83
2.25 All N −3.17 −0.11 −5.95
2.5 All N −3.20 −0.10 −5.96
R11 All N −3.21 −0.06 −5.94
2.25 n4258+MW N −3.16 −0.41 −5.89
2.25 LMC+MW N −3.16 −0.07 −5.90
R11 LMC+MW N −3.20 −0.03 −5.89
2.25 n4258 N −3.04 −0.44 −6.10
2.5 n4258 N −3.06 −0.34 −6.11
R11 n4258 N −3.09 −0.23 −6.08

Note. aThat is n4258+LMC+MW.

Table 7. Global fit results for degenerate parameters MB and H, averaged
over SN cuts. The bolded fit (T = 2.25 rejection, all three anchors, and no
upper cut on the period) is chosen as our reference fit.

Rejection Distance anchor P < 60d MB H
2.25 Alla Y −18.953 −15.709
2.5 All Y −18.967 −15.722
R11 All Y −18.932 −15.687
2.5 n4258+LMC Y −19.061 −15.816
2.25 n4258+MW Y −18.892 −15.647
R11 LMC+MW Y −18.889 −15.644
2.25 n4258 Y −18.988 −15.743
2.25 LMC Y −19.122 −15.877
R11 MW Y −18.759 −15.514
2.25 All N −18.929 −15.685
2.5 All N −18.953 −15.708
R11 All N −18.924 −15.679
2.25 n4258+MW N −18.859 −15.614
2.25 LMC+MW N −18.875 −15.631
R11 LMC+MW N −18.868 −15.623
2.25 n4258 N −18.996 −15.751
2.5 n4258 N −19.015 −15.770
R11 n4258 N −18.970 −15.725

Note. aThat is n4258+LMC+MW.
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Figure 8. Histogram of best-fitting values for H from all global fits: essen-
tially a histogram of Fig. 5(d) projected on to its y-axis. The blue line shows
the binned histogram, while the individual points are plotted with their true
H values and to reflect the distribution (i.e. they are stacked vertically for
each bin). The frequency reflects the fits we chose to include in the global
fit, i.e. we deliberately included more fits with all three anchors (and to a
lesser extent, anchored on NGC 4258), rather than an inherent distribution.
The legends are the same as in Fig. 5, and reflect the Cepheid fit (colour
and fill, with solidity of markers reflecting the inclusion of a Cepheid period
cut) and SN cut (shape). The fits anchored on NGC 4258 only have a much
broader spread in H, and are responsible for the lowest values. The range in
values in the NGC 4258-anchored fits is much greater, extending from left-
filled pink markers to top-filled navy and dark purple markers and spanning
∼0.11 mag. In contrast, the fits anchored on all three galaxies extend from
the solid navy markers to the empty green markers, spanning ∼0.04 mag.

Here, the statistical uncertainties are found from relevant fits in
Table D3, in which a representative fit is bolded (with default SN cut,
T = 2.25 rejection, and no upper period limit). The above systematic
uncertainties are given by the maximal variation in values with the
combined NGC 4258+LMC+MW distance anchor. We impose this
constraint on the anchor so that we can fairly assess the systematic
uncertainty when all available distance information is used, and to
allow better comparison with R11 and E14 who primarily report
errors with all three anchors. In Section 6.3, we investigate and
discuss uncertainties in H, including converting from an absolute
error in the logarithmic quantity H to a relative error in H0.

We next consider fits anchored on NGC 4258 only, to estimate
the uncertainty in this case, and for the sake of comparison with R11
and E14. These fits are represented by the empty turquoise and pink
markers, and by all red markers in Figs 8 and 5. We average these
results from Table 7 to find equation (27), as with equation (26).
The systematic uncertainties are given by the maximal variation
in values derived from these fits, and the statistical uncertainties
are found from NGC 4258 anchored fits in Table D3, with one
representative fit bolded.

MB = −18.993 ± 0.104(stat) ± 0.023(sys)

H = −15.748 ± 0.107(stat) ± 0.023(sys). (27)

The resultant value of H in equation (27) is 0.05 mag lower (cor-
responding to a 2.3 per cent decrease in H0) compared to where
all three anchors are used (equation 26). Moreover, MB (which is
largely degenerate with H) is also 0.05 mag lower (brighter). The
systematic uncertainty (i.e. the spread in values between differ-
ent fits) is the same, while the statistical uncertainties are larger,

Table 8. Summary of uncertainties in H from Section 6.2.3
(equations 26 and 27), converted to relative errors in H0 using
equation (28), and added in quadrature in line with R11.
The statistical error below are those reported by MultiNest
(Table D3) and include terms (i) and (ii) described at the start
of Section 6.3. The systematic error is from the variation
between fit results with different choices of Cepheid fits, and
secondarily SN cuts, i.e. term (iii).

Anchor All NGC 4258 only

H −15.698 −15.748

σH
Statistical 0.093 0.107
Systematic 0.023 0.023

Relative H0 error ( per cent)
Statistical 4.3 4.9
Systematic 1.1 1.1

Total 4.4 5.0

reflective of the fact that a distance scale is anchored on a smaller
set of data.

Our best estimate of the peak SN Ia brightness MB [in equation
(26), from the three-galaxy anchor] appears mildly higher (dimmer)
than values reported in JLA (assuming H0 = 70 km s−1 Mpc−1),
which are MB = −19.05 ± 0.02 from all SN Ia data, or
MB = −19.02 ± 0.03 from a lower redshift subsample consisting
of low-z and SDSS SNe (table 10 of Betoule et al. 2014). However,
the SN-only fit in JLA cannot constrain both MB and H0, which are
degenerate. As they have assumed a value for H0 (while we have
fitted separately using a distance ladder), our numerical values for
MB are not directly comparable, but merely reflect the influence of
different values of H0.

Returning to H0, equation (26) corresponds to a value of
H0 = 72.5 ± 3.1(stat) ± 0.77(sys) km s−1 Mpc−1 (total uncertainty
of 4.4 per cent) from the combined NGC 4258+LMC+MW an-
chors. If we assume the older distance μ4258 = 29.31 in R11 (foot-
note 11), our best estimate increases to H0 = 73.8 ± 3.2(stat) ±
0.78(sys). These central values agree with R11 (H0 = 73.8 ± 2.4)
and E14 (H0 = 72.5 ± 2.5), which respectively assume
μ4258 = 29.31 and 29.404. Using only NGC 4258 as a distance an-
chor (and the new Humphreys et al. 2013 value of μ4258 = 29.404)
gives H0 = 70.9 ± 3.5(stat) ± 0.75(sys) km s−1 Mpc−1, which is
2.3 per cent lower than with the three anchors. The uncertainties
in H are broken down in Section 6.3.1 and summarized in Ta-
ble 8. We next discuss the uncertainties in H0; their size informs the
significance of the tension between values of the Hubble constant
measured using different probes, so they are of equal interest to the
values.

6.3 Uncertainties

We have emphasized the importance of quantifying and incorporat-
ing the scatter in parameters arising from varying aspects of the SN
and Cepheid fits, and indeed we use this overall variation in results to
gauge the systematic uncertainty in these parameters. However, we
have also seen that the statistical uncertainty dominates for the SN
parameters α and β (Figs 2 and 5c), as well as for MB and H when
only considering the systematic variation between fits with all three
anchors (Fig. 5d). This dominance reflects the fact that the SN Ia
samples, especially the nearby sample (i.e. in Cepheid hosts), are
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Table 9. Relative contributions to the uncertainty in H0

(i.e. the variance) from individual statistical and systematic
sources uncertainties, calculated as described in Betoule et al.
(2014, section 6.2).

Source of Relative contribution Described in
uncertainty to σ 2(H0) ( per cent) Appendix

Statistical
Light curves 62.1 C2
SALT2 training 1.2 C2

Total statistical 63.3
Systematic
Malmquist bias 13.7 B2,C
Host galaxy 13.0 C5
Light-curve model 6.8 C
Calibration 3.1 C4
Peculiar velocities 0.04 C6
MW extinction 0.03 C3
Total systematic 36.7

relatively small with large errors when compared to the Cepheids.
Hence, the SNe are statistically limited, while the Cepheids are not.

For clarity, we divide the contributions to the total uncertainty in
the parameters into three classes:

(i) The statistical (in the usual sense) portion of the uncertainty
reported by MultiNest, which is dominated by noise in the nearby
and low-z SNe.

(ii) The systematic elements of Cη, which make up remainder of
the uncertainty reported by MultiNest, listed in Table 9.

(iii) The systematic uncertainty associated with varying aspects
of the fit between reasonable alternatives is dominated by the vari-
ation in the choice of Cepheid fit, as shown in Figs 5 and 8. For
our final value and uncertainty of H0, we focus on fits with all three
anchors only (with some consideration of fits with only NGC 4258
as an anchor for the sake of comparison to R11 and E14). Then,
in effect we are only considering the variation with the rejection
algorithm and the cut on Cepheid period.

6.3.1 Uncertainties in H0

We now address the uncertainty in the Hubble constant H0 explicitly,
using results in Section 6.2.3 (equations 26 and 27). As the quantity
H is related to the logarithm of H0, its absolute error informs the
relative error in H0, via

σH0

H0
= log(10)

5
σH. (28)

Table 8 summarizes our calculations of the final uncertainty in H0

from equations (26) and (27). We find using equation (28) relative
errors in H0 of 4.3 per cent statistical and 1.1 per cent systematic
[corresponding to terms (i) and (ii) combined, and (iii) respectively
as described at the start of Section 6.3] from all three distance an-
chors. From using only NGC 4258 as an anchor, these errors are
4.9 per cent statistical, 1.1 per cent systematic, and 5.0 per cent
total. The final uncertainty in H0 (the bottom row of Table 8) is
the quadrature sum of the above statistical and systematic terms.
Table 8 is comparable to the lower portion of table 5 of R11 (and
subsequently table 7 of R16), which lists all systematic and sta-
tistical uncertainties contributing in quadrature to the uncertainty
in H0.

6.3.2 Increase in error compared to R11 and E14

Our final uncertainty in H0 is 4.4 per cent total (4.3 per cent sta-
tistical and 1.1 per cent systematic, with the statistical term inclu-
sive of contributions from SN Ia covariance matrices) for the NGC
4258+LMC+MW distance anchor, which is significantly larger
than previously found for the same data set (by 1 per cent ab-
solutely, or a ∼20 per cent increase): R11 and E1418 report total
uncertainties of 3.3 per cent19 and 3.4 per cent, respectively. If NGC
4258 alone is used as a distance anchor, the above errors increase
to 5.0 per cent total (4.9 per cent statistical and 1.1 per cent system-
atic) for our fit, 4.1 per cent (4.0 per cent statistical and 1.0 per cent
systematic) from R11, and 4.7 per cent total from E14. The differ-
ence between our errors and those found in E14 is smaller with the
NGC 4258 anchor compared to when all three anchors are used –
however, both are significantly larger than found in R11. For the
remainder of Section 6.3.2, our discussion of errors pertains to fits
with all three distance anchors.

Although it appears that the increase in our error lies in the sta-
tistical term (with the systematic term remaining the same), it is
important to note the significant differences in how these terms are
derived and defined in this work [given in points (i)–(iii) at the start
of Section 6.3], compared to R11. Explicitly, the covariance matri-
ces which quantify our SN Ia systematic terms directly contribute
to the statistical errors in our global fits (i.e. increase the widths of
PDFs) via the likelihood, while our systematic term contains the
variation in parameters resulting from changing features of the fits.
In comparison, the errors in each part of the calibration chain from
the distance calibrators to the SNe Ia are separately given in R11,
table 5. The total uncertainty is a quadrature sum of these individual
terms, and the systematic variation described in R11, section 4.

The two major differences in our analysis which potentially con-
tribute to the increased error are the inclusion of the SN covariance
matrices, detailed in Appendix C1, and the simultaneous fit to all
parameters, described in Section 3.3. As outlined above, it is not
possible to make a direct comparison between contributions to our
error and errors given in R11, with the aim of isolating the source of
the discrepancy. However, we attempt to separate the influences of
the covariance matrices and simultaneous fit, replicating the quadra-
ture sum in R11 as closely as we can below.

First, we isolate the effect of the SN covariance matrices alone on
the size of uncertainties, by considering the error in the intercept of
the SN Ia m–z relation: this is M determined from our SN-only fit
(Table 4 in Section 5.4), and is equivalent to 5aV = 3.485 ± 0.010
in R11. Our error in M is ∼0.036, over three times larger than in
R11. This error is roughly halved to 0.019 if we only consider the
strictly statistical covariance matrix, i.e. Cstat in equation (40).20

For the same SN data, our statistical-only error exceeds the total
error in R11. Including the SN Ia systematic covariance matrices
doubles the error again. We infer that the increase in error in this
analysis compared to R11 is attributable to both the covariance
matrix method of accounting for correlated SN Ia uncertainties,

18 E14 adopts the error in R11 for the SN Ia-side of the analysis.
19 The errors reported in table 5 of R11 are: 2.9 per cent statistical,
1.0 per cent systematic, and 3.1 per cent total. However, the final error
given with all three distance anchors conservatively includes the larger sta-
tistical error associated with using two distance anchors instead of three,
resulting in a total of 3.3 per cent.
20 Neglecting the uncertainty from the finiteness of the SALT2 training
sample reduces the error slightly to 0.017, which reflects the statistical error
in the observed SNe Ia only (i.e. the tridiagonal matrix Cstat,diag).
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and to the individual systematic covariance matrices this method
comprises.

Next, we attempt to replicate the quadrature summation of terms
in R11, table 5 (most of which unfortunately do not have equivalent
terms in our analysis) using projected uncertainties from our global
fit. It is important to note that this comparison is not directly equiva-
lent, because we are marginalizing simultaneously over all nuisance
parameters. With this caveat, we break down the uncertainty in the
overall value of H0 into three components: the uncertainties in
the distance anchor, in the calibration of the SN Ia absolute mag-
nitude MB via Cepheids, and in the measurement of the local ex-
pansion rate via SNe Ia (given in the intercept M).21 These can
be determined separately from three disjoint data sets, as follows.
The anchor distance is constrained by external data: the megamaser
distance to NGC 4258 has a 0.066 mag uncertainty, corresponding
to 3.0 per cent in H0. Only the low-z SNe Ia are used to constrain
M (or 5aV), with a 0.036 mag or 1.7 per cent uncertainty. The
calibration transfer from the Cepheids to the SNe Ia occurs in the
simultaneous fit of the nearby SN and Cepheid data22 to equations
(16) and (17). The resultant uncertainty in MB is 0.103 mag (with
only the NGC 4258 anchor) and incorporates both the uncertainty
in the SN Ia-Cepheid calibration and the uncertainty in the distance
anchor; thus the former is 0.079 mag or 3.6 per cent in H0.23 In
quadrature, these three terms sum to 5.0 per cent in H0 using the
NGC 4258 anchor, and 4.3 per cent with all three anchors. This de-
composition, whilst approximate, indicates that a quadrature sum
of uncertainties in independent components results in similar un-
certainties to our simultaneous fit. Thus, the simultaneous fit does
not by itself result in the increase in statistical error.

6.3.3 Relative size of SN Ia uncertainties

We now examine the breakdown of uncertainties contributing to the
statistical error, which include the multiple statistical and systematic
uncertainties in SN Ia parameters making up Cη as constructed in
Appendix C.

To visually assess the impact on confidence contours, we com-
pare results from MultiNest with different covariance matrix inputs.
For an example global fit (with Cepheid fit T = 2.5, NGC 4258 an-
chor, no priors, and default SN cuts), we test each systematic, and
compare their results from MultiNest. The full expression for the co-
variance matrix Cη for observed SN Ia quantities is described in Ap-
pendix C1. As entries of Cη in MultiNest, we try the following: only
the statistical contribution Cstat (described in Appendix C2), each
single systematic term added to Cstat, and all systematics added, i.e.
Cstat + Csys (the default for all global fits). The confidence contours
with statistical uncertainties only and with all systematics are easily
distinguishable in Fig. 9, but the contours with individual systemat-
ics are not. Thus, for clarity, we only show in Fig. 9, the systematic
term from the uncertainty in host mass correction corrections [Chost

in equation (40), described in Appendix C5], in addition to Cstat and
Cstat + Csys. The difference between the contours is slight, indicat-
ing that the uncertainties in the parameters only increase slightly

21 This decomposition essentially follows equation (4) of R11.
22 For the uncertainty in MB to be independent of the error in M, only these
data can be included.
23 The same calculation with all three anchors results in the same number.
In the setup of R11, equation (4), this SN Ia-Cepheid calibration uncertainty
is the error in m0

v,4258, which is equivalent to MB + μ4258.

Figure 9. Constraints on parameters H, MB, and MW from an example
global MultiNest fit (with Cepheid fit T = 2.5, NGC 4258 anchor, no priors,
and default SN cuts) with partial and full contributions to the full SN Ia
covariance matrix. Confidence contours are shown with the statistical con-
tribution Cstat only (turquoise filled), with one systematic term (the host
mass correction) added i.e. Cstat + Chost (orange solid line), and with all
SN Ia systematics, i.e. Cstat + Csys (red dashed). The inclusion of system-
atic terms only increases the widths of contours marginally relative to the
Cstat-only (turquoise) contours, reflecting that the statistical contribution
dominates the uncertainty in the parameters.

when covariance matrices for different systematics are added to the
statistical term Cstat.

Following the method in JLA (Betoule et al. 2014, section 6.2),
we quantify the relative contributions, replacing the parameters
{�M, w, α, β, MB, 
M} with our parameters {H0, MB, α, β} (the
only parameters in � which can be influenced by the low-z SN Ia
covariance matrices). The breakdown of relative contributions to the
variance in H0 from each term (the purely statistical term Cstat, and
each systematic) are reported in Table 9. We emphasize that each of
these numbers represents a proportion of the uncertainty [terms (i)
and (ii) in Section 6.3 combined] from the systematic or statistical
term in question alone, rather than reflecting an uncertainty in H0.

From Table 9 and Fig. 9, it is clear that Cstat is the largest
component of Cη. Even though the contributions to Cη from SN
systematics are included in the statistical uncertainty, all of these
systematics together are smaller than the SN statistical uncertain-
ties: the relative contributions to the variance in H0 are dominated
by Cstat,diag (Table 9), and the contours with and without sys-
tematic covariance matrices added to Cstat in Fig. 9 are similar
to each other. Of the systematic terms (Appendices C3–C6), the
most significant in their impact on H0 are from uncertainties in the
Malmquist bias correction (including the selection function) and
the host mass correction (Appendices B2 and C5), followed by the
uncertainty in light-curve model. While JLA had found the photo-
metric calibration (Appendix C4), especially from low-z SNe, to be
the dominant uncertainty for �M and w, its effect on H0 is decidedly
smaller. It is interesting to note that despite conservative estimates
of both the uncertainties in MW extinction and peculiar velocity
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correction (Appendices C3 and C6), their effects on the error in H0

are negligible.

7 C O N C L U S I O N S A N D F U T U R E WO R K

Our independent analysis of the Riess et al. (2011) data comple-
ments the R11 and E14 analyses in understanding the local mea-
surement of the Hubble constant from SNe Ia. This work occupies
the unique position of combining the precise Cepheid calibration
of nearby SNe Ia (R11) with the sophisticated, thorough treatment
of SN light curves and systematics within a SALT2 framework
(Betoule et al. 2014). In the context of the present tension in H0,
we present the first blinded SN Ia-based determination of H0, elim-
inating confirmation and other biases. This work is intentionally
applied to the well understood historical work of R11 and E14, as a
proof of concept. It is our intent to extend this analysis to the sample
of Riess et al. (2016).

Our best estimate from R11 data is H0 = 72.5 ±
3.1(stat) ± 0.77(sys) km s−1 Mpc−1using a three-galaxy (NGC
4258+LMC+MW) anchor. The central value is in excellent
agreement with both R11 (after correcting for the lower value of
μ4258 adopted – see footnote 11) and the E14 re-analysis. Our above
value and uncertainty imply tension with the Planck value at ∼1.5σ

significance, which is smaller than found in previous analyses
of the R11 data, due to our increased uncertainties. However,
our blinded affirmation of the central value in R11 signifies that
the discrepancy between SN Ia- and CMB-derived values of the
Hubble constant continues to exist. While this discrepancy is less
significant in our analysis than in the original analysis of R11
data, it has potential to be magnified by the improved data set
in R16 (which has smaller statistical uncertainties compared to
R11), and hence remains of interest. It is thus necessary to apply
the techniques in this paper to the R16 data, in order to make a
contemporary assessment of the significance of the tension in the
Hubble constant.

Incidentally, we find a higher stretch coefficient
α = 0.165 ± 0.010 for our low-z SNe compared to LOSS
(which find α = 0.147 ± 0.007 over a similar redshift range) and
JLA. This discrepancy at ∼2σ is surprising, and prompts further
investigation. While our SN Ia zero-point MB = −18.94 ± 0.09
appears higher than in JLA, this difference arises because the
parameters are degenerate using SNe only: the JLA analysis
assumes H0 = 70 km s−1 Mpc−1, whereas we have used a distance
ladder to constrain both H0 and MB.

We find a larger relative uncertainty in H0 (4.4 per cent
total) compared to R11 and E14 analyses of the same data
(3.3 per cent and 3.4 per cent total, respectively), based on the
NGC 4258+LMC+MW distance scale. The difference appears in
the statistical error; our systematic term is similar to that in R11
(1.1 per cent and 1.0 per cent, respectively), with the caveat that
the separation of our total uncertainty into statistical and system-
atic components is not directly comparable to R11, as described in
Section 6.3.2. Our larger error primarily arises from our use of co-
variance matrices to estimate SN Ia systematic uncertainties. Other
significant differences in our analysis, which potentially contribute
to the increased uncertainty, are our simultaneous fit of all three sets
of data, allowing all parameters to interact, and our use of variation
in results to quantify systematic error. These distinctions are in our
view justified and desirable. Given the increase in uncertainty they
produce compared to previous works, they are important to consider
in future analyses.

As found in R11, our results are limited by statistics in the SN
samples. Steps to reduce this statistical uncertainty have been im-
plemented in R16, namely increasing the number of nearby galaxies
to 18 and improving the SN Ia photometry, to reduce the total un-
certainty to 2.4 per cent. We envisage a similar relative increase in
precision when the techniques in this work are applied to the same
data set. R16 also includes important changes to data analysis of the
Cepheids. Other contributions to our error budget are the system-
atic uncertainty, which is dominated by the variation in the different
Cepheid fits, and the SN Ia systematic terms in Cη, the largest of
which are Cbias and Chost.

Foremost, we find that both the use of covariance matrices and
the simultaneous fit of data from different rungs of a distance lad-
der will be important in future analyses in order to wholly account
for uncertainties. Furthermore, our findings recommend more so-
phisticated techniques for quantifying host galaxy dependence of
SN Ia magnitudes, and modelling of Malmquist bias – both of
which have the potential to diminish the systematic error in H0.
These techniques are continually improved in SN analyses, partic-
ularly in the pursuit of more precise measurements of dark energy,
for example in the Dark Energy Survey (Dark Energy Survey Col-
laboration et al. 2016). Meanwhile a uniform, non-targeted low-z
sample (e.g. the SkyMapper Transient Survey; Scalzo et al. 2017,
or the Pan-STARRS1 Survey; Rest et al. 2014) will simplify pho-
tometric calibration and the selection function, reducing associated
uncertainties, and will avoid peculiar velocity biases from coherent
flows. Adopting these changes will benefit future SN Ia-based H0

measurements.
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A P P E N D I X A : D E P E N D E N C E O F
CEPHEID-ONLY FIT

A1 Outlier rejection

We perform fits in two ways: either assuming the outlier rejec-
tion in Riess et al. (2011), or following the rejection method in
Efstathiou (2014). The R11 algorithm rejects Cepheids from each
galaxy (rather than from the global fit), based on their deviation from
the best Leavitt law fit. This rejection does not take into account the
size of the Cepheid uncertainties, so that points with small residuals
but large uncertainties are selectively accepted (E14, section 3.1).
Consequently, a large fraction of the total number of Cepheids is
rejected, including a set of subluminous low-metallicity Cepheids
(later corrected in R16, as discussed in Appendix A4). Moreover,
the intrinsic scatter is overestimated, resulting in a low reduced χ2.

These limitations in the R11 rejection are addressed in the up-
graded algorithm in E14, which rejects a Cepheid from the global fit
if its magnitude deviates from the global fit by more than the quan-

tity T
√

m2
W,err + σ 2

int,C for a threshold T (set to 2.25 or 2.5), where

mW, err and σ int, C are the uncertainty in the individual Cepheid’s
measurement and the intrinsic scatter σ int, C, respectively. This pro-
cess is iterative, with σ int, C recalculated at each step (such that
χ2

c /d.o.f. ∼1) with increments of 0.1, where the sum in χ2
c is al-

ways over only the Cepheids in NGC 4258 and SN hosts (i.e. not
the LMC or MW). The rejection at each iteration is based on the
best fit determined in the previous iteration, i.e. the mean and 1σ

uncertainty of the posterior distribution.
Initially σ int, C is set to 0.3. Then in each iteration we perform the

following steps:

(i) perform a MultiNest fit to all remaining Cepheids, to find
marginalized posterior distributions;

(ii) find and remove outliers based on these parameters;
(iii) compute the new σ int, C for these parameters and the updated

Cepheid sample.

These steps are repeated until convergence, i.e. until no Cepheids
are rejected in the second step.

The variation in fit results from different outlier rejection is pre-
sented in Fig. 1 and Section 4.4. In general, the R11 rejection
results in less negative values of both bW and ZW, attributable to the
aforementioned subluminous and low-metallicity subsample that it
rejects.

The fit is forced to be good for all three rejection algorithms:
σ int, C is engineered to result in χ2/d.o.f.∼1. Thus, the algorithms
cannot be compared statistically; the outlier rejection method has
the drawback of not allowing the uncertainty on σ int, C to be esti-
mated, and the related consequence that we (by construction) cannot
assess goodness of fit. Alternative statistical methods used in recent
SN Ia analysis can surpass these limitations, including Bayesian
hierarchical models (March et al. 2011; Shariff et al. 2016), the
alternate Bayesian framework in Rubin et al. (2015), and Ap-
proximate Bayesian Computation (Jennings, Wolf & Sako 2016).
Notably, these have been applied to determining H0 from the R11
and R16 data sets in Cardona et al. (2017).

A2 Distance anchors

Our equations in Section 3 assume NGC 4258 is the only distance
calibrator. We can generalize these equations to allow for combina-
tions of the three anchor galaxies in R11, adding Cepheids in the

LMC and MW (data described in Section 4.1). As these additional
Cepheids do not have metallicity measurements, we adopt the mean
values from E14 of 12 + log10[O/H] of 8.5 and 8.9 for LMC and
MW Cepheids, respectively. Here, we test the dependence of the
Cepheid parameters on the distance anchor. For Cepheids in the
LMC and MW, the Leavitt law (equation 13) takes the forms:

mW,LMCj = bW(log10 Pj − 1) − 0.4ZW + MW + μLMC (A1)

mW,MWj = bW(log10 Pj − 1) + MW. (A2)

We consider combinations of NGC 4258, LMC, and MW (seven in
total) as distance calibrators. If NGC 4258 is not included, then no
prior for μ4258 is imposed in MultiNest. However, the likelihoodL in
equation (10) still depends on μ4258, which is indirectly constrained
through the other anchors and MW, and hence remains a fit parameter
in �. If the LMC is used as an anchor then it is necessary to include
μLMC as a parameter in �; this always has a (Gaussian) prior set
to reflect the Pietrzyński et al. (2013) measurement from eclipsing
binaries of μLMC = 18.494 ± 0.049. The likelihood L is affected
as a term χ2

LMC (equation A3) is added to equation (20); similarly if
the MW is used as an anchor then χ2

MW (equation A4) is added. We
assume σ int, C = 0.113 and 0.1 for the LMC and MW, respectively,
following E14.

χ2
LMC =

∑
j

(m̂W,LMCj − mW,LMCj,mod)2

m̂2
LMC,errj + σ 2

int,C

(A3)

χ2
MW =

∑
j

(m̂W,MWj − mW,MWj,mod)2

m̂2
MW,errj + σ 2

int,C

. (A4)

A modification to the above is necessary if both the LMC and
MW are used as distance anchors, to account for the calibration
uncertainty between ground-based and HST photometries. We do
this using the covariance matrix CLMC+MWij = (m̂2

Wi + σ 2
int,C)δij +

σ 2
cal with σ cal = 0.04 (R11). Instead of χ2

LMC + χ2
MW, we add the

term

χ2
LMC+MW = (m̂W,MW − mW,MW,mod)CL MC+MW

−1

(m̂W,MW − mW,MW,mod)T (A5)

to the χ2
c term going into L. Here, bolded quantities represent

vectors over all LMC and MW Cepheids.
The results of varying the distance anchor are discussed in Sec-

tion 4.4. Briefly, the inclusion of both the LMC and MW anchors
constrains both bW and ZW more tightly.

A3 Longer period Cepheids

The data include Cepheids with period ranging from ∼10 d, to over
200 d, and Cepheids of all periods are included in Leavitt law fits
in R11 (except for those Cepheids marked ‘low P’ in R11, table
2). Bird, Stanek & Prieto (2009) examine longer period (P > 80 d)
Cepheids and find that these Cepheids obey a flatter Leavitt law, with
a less negative period dependence bW. Accordingly, recent studies
of the Leavitt law (e.g. Freedman et al. 2011; Scowcroft et al. 2011)
have excluded Cepheids with period greater than 60 d. Similarly,
E14 in their re-analysis of the R11 data have imposed the same upper
limit on Cepheid period because of the observed change in slope. It
is pragmatic to follow these examples in only using Cepheids over
a period range where the slope remains constant; however, it is also
useful the full range of periods to accommodate the change in slope
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and for the sake of comparison with R11. Rather than making an
argument to include the P < 60 d cut or not, we perform fits with
and without an upper limit on the period.

E14 reasons that while including longer period Cepheids de-
creases the magnitude of the Leavitt law slope bW, there is little
impact on H0 (Efstathiou 2014, appendix A), so they only include
P < 60 d Cepheids in their fits. Our priors on bW differ slightly
from E14 (discussed in Appendix A4), and we are interested in the
variation of Cepheid parameters with the choice of period cut (as
with distance anchor and rejection algorithm in previous sections),
so we test the dependence of fit results on the inclusion of an upper
limit on period. Results of including longer period Cepheids are
lesser dependence on Cepheid slope and metallicity dependence
(less negative bW and ZW), as described in Section 4.4.

A4 Slope and metallicity priors

We test and discuss the Gaussian priors on bW and ZW described
in E14 (but not mentioned in R11), and explain our choices for our
fits. E14 performs Cepheid fits with and without Gaussian priors
centred at bW = −3.23 and ZW = 0, motivated by expectations of
what the slope and metallicity dependence should be. We test the
same priors in our fits but ultimately decide to not include these
different priors as one of the variables in our fit, for reasons which
follow.

Out of all the Cepheid data, the LMC Cepheids constrain the slope
bW most tightly. Given the relative paucity of data on the Leavitt
law, we always include this information on the Leavitt law in all our
fits, independent of whether the LMC is used as a distance anchor.
For the fits where the LMC is not included as an anchor, we impose
the same Gaussian prior on the slope as in E14: 〈bW〉 = −3.23 and
σbW = 0.10. If the LMC is used as an anchor, there is already a
contribution to the likelihood from these Cepheids, so it is inappro-
priate to re-use this information as a prior. Then, the inclusion of
the prior on bW is prescribed by the distance anchor.

The metallicity priors in E14 are motivated by the observed
strong dependence of the Cepheids’ period on metallicity, in con-
trast with expectations that ZW ∼ 0, based on theoretical consider-
ations and measurements in the LMC (Freedman & Madore 2011;
Efstathiou 2014, section 3.2, and references therein). However, the
R11 sample of Cepheids demonstrates a strong metallicity depen-
dence, with values of ZW around −0.3 or −0.5 for the R11 and E14
rejection algorithms, respectively. The difference between values
for ZW from the two approaches to outlier rejection (detailed in Ap-
pendix A1) can be traced to a sample of low-metallicity Cepheids
that are rejected by cuts in R11 but not E14. This systematic dif-
ference (discussed in E14, section 3.2) arose from the erroneous
extrapolation of metallicity gradients to large radii, and was later
corrected in R16. Including both the LMC and MW as distance
anchors reduces the magnitude of the metallicity dependence ZW.
As we have observed that the R11 Cepheid data do not support the
ZW ∼ 0 priors (weak or strong) in E14, it is most appropriate to
exclude these Gaussian priors in our analysis.

A P P E N D I X B: SU P E R N OVA L I G H T C U RV E S
A N D DATA

B1 SALT2 light-curve fits

For each SN, we use SALT2 to fit SN Ia light curves (i.e. deter-
mine parameters mB, X1, andC in equation 14). The SALT2 model,
based on its precursor SALT (Guy et al. 2005), is described in

Guy et al. (2007) along with details of its training. Two newer
versions, SALT2.2 and SALT2.4, with additional training samples,
have been released with the SNLS and JLA analyses, respectively in
Guy et al. (2010) and Betoule et al. (2014, hereafter B14). Notably
these include SNe from the SDSS-II survey (Sako et al. 2014) and
high-z SNe which have constrained the model better in the rest-
frame ultraviolet region, eliminating the need to exclude U-band
data as in R11.

Primary inputs for the SALT2 light-curve-fitting routine snfit
are photometry in each filter, heliocentric redshifts, and MW ex-
tinction [obtained from Schlegel, Finkbeiner & Davis (1998) dust
maps] for each SN. In addition, zero-points and filter transmissions
for each passband of each instrument are necessary. As CfA3 SNe
are included in the JLA analysis and the SALT2.4 release, we only
need to create LOSS instruments KAIT1–4 and NICKEL. Adding
these instruments involves including the filter transmissions24, and
determining zero-points for BD+17◦470825 using colour transfor-
mations in Ganeshalingam et al. (2010, table 4). Our photome-
try and the instruments used are briefly mentioned in Section 5.1
and Appendix C4; for more details see the survey papers (Hicken
et al. 2009a; Ganeshalingam et al. 2010).

B1.1 Photometry consistency checks

We are able to compare our SALT2 fit results to published values
for a subsample of our SNe Ia, namely some of the CfA3 SNe
which appear in SNLS (Conley et al. 2011, hereafter C11) and JLA
(B14). Hicken et al. (2009b) and Ganeshalingam et al. (2013) also
report SALT2 fits of their samples, albeit with an older version of
SALT2. We thoroughly check for consistency between these results
and find agreement within quoted uncertainties, with no systematic
differences.

Furthermore, we examine both the photometry and light-curve
fits for the 69 SNe in the CfA3–LOSS overlap, taking into account
the different magnitude systems. For the directly comparable pass-
bands (the Bessell-like BVRI filters), the photometry is consistent,
while differences from the SDSS ri filters in Keplercam are in line
with expectations. We also compare results of light-curve fits using
only CfA3 photometry, only LOSS photometry, and both combined
in a single light curve. We find that SALT2 parameters {α, β},
determined from each survey separately, generally average to the
parameters determined from the combined fit (which lie well within
reported uncertainties of from either CfA3 or LOSS). Occasionally
one survey dominates in its influence over the SALT2 parameters;
this occurs equally often with each survey and only when the light-
curve quality is discernibly superior in terms of number of points,
sampling frequency, and size of uncertainties. Furthermore, we test
for systematic offsets in the three SALT2 fit parameters mB, X1, C,
and find none. The comparison of combined lightcurves and their
SALT2 fits supports the consistency of CfA3 and LOSS and favours
neither over the other; thus we concatenate photometry from CfA3
and LOSS instruments to obtain the highest quality light curves
available for these SNe.

24 These filters can be found in the UC Berkeley Filippenko Group’s
Supernova Database (SNDB; Silverman et al. 2012) at http://heracles.
astro.berkeley.edu/sndb/info, maintained by Isaac Shivvers.
25 This is the fundamental SDSS standard star that the Vega-based magnitude
system @VEGA2 in SALT2.4 is calibrated on.
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B2 Malmquist bias correction

In magnitude-limited surveys, intrinsically brighter objects are pref-
erentially detected, leading to Malmquist bias: a skewed estimate
of the absolute magnitude distribution. The Malmquist bias can
be estimated by modelling the selection efficiency (i.e. the rate
of successful detection as a function of magnitude) to match ob-
served distributions (in redshift, stretch, and colour), then simulat-
ing the survey with SNANA (Kessler et al. 2009) to obtain the bias
δμ in distance modulus. This procedure, described in e.g. Scolnic
& Kessler (2016), is outside the scope of this work. Thus, we adopt
the estimate of the bias (for low-z SNe) in Betoule et al. (2014,
section 5.3), which adopts a magnitude-limited selection function,
and uses the difference between the resultant bias and an unbiased
regime as the uncertainty in the correction (the covariance matrix
Cbias in Appendix C1). The targeted discovery of SNe in CfA3 and
LOSS means they should not be magnitude limited; however, as
observed in the JLA low-z sample, the colour distribution grows
more blue with redshift, suggesting that some selection effect is at
play. Using the JLA approximation is justified as our SN sample
is similarly distributed to the low-z sample in JLA, and the bias
correction is inherently approximate and has a miniscule impact on
H0.26

B3 Host galaxy dependence

The dependence of the intrinsic SN Ia brightness on properties of
their host galaxies is well established, with numerous studies finding
that more massive galaxies (correlated with higher metallicity and
lower specific star formation rates) host SNe which are on average
∼0.08 mag brighter (e.g. Sullivan et al. 2010; Lampeitl et al. 2010;
Kelly et al. 2010). To mitigate the systematic error that this effect
introduces to the cosmological analysis, we follow Sullivan et al.
(2011) and subsequent analyses (C11, B14) in adopting two discrete
values for the SN Ia absolute magnitude, using the variable

M∗
B :=

{
MB, host galaxy mass < 1010M�
MB + 
MB, host galaxy mass > 1010M�.

(B1)

We fit for the parameter MB as indicated in Section 3, and fix the
offset 
MB based on analyses in C11, B14, Sullivan et al. (2010),
and Childress et al. (2013), which determine 
MB = −0.08 from
SN Ia samples greater in size and redshift range than ours. We
consider fitting for the magnitude offset using our data, and find
a larger absolute difference 
MB = −0.15 ± 0.07 (with some
degeneracy with M), which is still consistent with the established
value in the literature. Given the large uncertainty on our value, we
adopt the more reliable reference value.

The host galaxy masses for our SNe are obtained from the litera-
ture where available, with 77 from JLA and 71 from a combination
of Sako et al. (2014), Childress et al. (2013), Neill et al. (2009),
and Kelly et al. (2010). The stellar masses of nearby galaxies are all
given in Neill et al. (2009). We were able to derive mass estimates
for 72 of the remaining galaxies using SDSS photometry, following
standard methods in Sullivan et al. (2006) and Smith et al. (2012).
We refer the reader to descriptions therein of the method, which
relies on the ZPEG photometric redshift code (Le Borgne & Rocca-
Volmerange 2002, 2010) based on spectral energy densities from
the PEGASE.2 spectral synthesis code. Where possible, we check for

26 The difference between correcting for Malmquist bias and no correction
is less than 0.01 in H, or ∼0.4 per cent in H0.

Figure B1. Histogram of host galaxy masses of low-z SNe Ia where avail-
able (total off 220 SNe). The dashed line indicates the boundary 1010M�
which splits the absolute SN Ia magnitude (equation B1).

consistency between multiple sources and our estimates. The distri-
bution of the host masses of the CfA3 and LOSS SNe Ia (Fig. B1)
clearly shows that they predominantly exist in more massive galax-
ies, with 241 out of 280 SNe lying in the high-mass bin. This is
a consequence of the targeted nature of these surveys, in contrast
to the magnitude-limited surveys SNLS and SDSS in JLA. Thus,
we assign the remaining 60 SNe with unknown masses to the high-
mass bin with a large associated uncertainty, even though unknown
hosts in JLA are assigned to the low-mass bin (B14, section 5.2).
The propagation of uncertainties in this correction through to SN
parameters is later described in Appendix C5.

B4 Peculiar velocity corrections

Peculiar velocities arise from motion other than from cosmological
expansion, such as dipole or bulk flows, local galaxy infall, and
higher order coherent flows. These perturb the observed redshifts
via the Doppler effect,27 and can impact cosmological analyses.
Hui & Greene (2006) show that neglecting correlations between
peculiar velocity uncertainties at low redshift results in a greatly
underestimated zero-point uncertainty, and degrades the precision
of the dark energy equation of state parameter w. Moreover, cor-
related SN peculiar velocities can bias cosmological results: Davis
et al. (2011) show that neglecting coherent flows result in a shift of

w = 0.02.

Thus, an effort to quantify the uncertainty induced by corre-
lated motions is an essential part of any modern SN Ia cosmo-
logical analysis. Approaches to this include the addition of large
(300–400 km s−1) uncertainties in redshifts to account for peculiar
velocities (Ganeshalingam et al. 2013; Hicken et al. 2009b), and
attempts to correct for peculiar velocities. The latter first appeared
in SNLS (C11), which corrects redshifts on an SN-by-SN basis for
the (line-of-sight) peculiar velocity at the location of the SN, as
determined from a velocity field.

27 An SN’s peculiar motion changes not only its redshift but also its observed
luminosity (Hui & Greene 2006; Davis et al. 2011) as it experiences rela-
tivistic beaming. This in turn induces a deviation in the supernova’s peak
magnitude; however this is approximately an order of magnitude smaller
than the change in redshift.

MNRAS 471, 2254–2285 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/471/2/2254/3892357
by Consolidation Plus QUEEN user
on 10 May 2018



2278 B. R. Zhang et al.

C11 uses the velocity field in Hudson et al. (2004), derived
from the galaxy density field from the IRAS PSCz redshift survey
(Branchini et al. 1999). While B14 adopt the same correction, we
apply the same method using updated density and velocity fields
from the 2M++ redshift compilation.28 In each case, the velocity
field is derived from the respective density fields under a linear
biasing approximation.29

In correcting SN redshifts for peculiar velocities, the aim is to
isolate the redshift due purely to expansion. The several redshifts
of interest are: the heliocentric redshift zh, the CMB frame red-
shift zcmb, and the cosmological redshift z̄. The latter two differ
in that z̄ is corrected for peculiar velocities from coherent flows;
it is intended to reflect a velocity derived only from the expan-
sion of space and therefore this is the redshift that should be used
in v(z) in Hubble’s law. The peculiar motions to consider in con-
verting zh to z̄ are the motions of the Solar system (vpec

� ), and of

the SN (vpec
SN ), both relative to the CMB. Many SNe at low red-

shifts share some of the Local Group’s motion; by converting to
a heliocentric frame (i.e. correcting for the Sun’s motion relative
to the CMB) we are also overcorrecting for the motion of nearby
SNe, necessitating the second correction. For an SN at position n
from the Sun, these redshifts and velocity are related by30 (Davis
et al. 2011)

1 + zh = (1 + z̄)(1 + z
pec
� )(1 + z

pec
SN )

≈ (1 + z̄)(1 − v
pec
� · n/c + v

pec
SN · n/c). (B3)

For our analysis of the low-z SNe Ia, we use z̄ derived in this way
as the CMB-frame redshift. Unless otherwise specified, this is the
redshift meant by z.

The exact form of the luminosity distance introduced in equa-
tion (2) actually requires both the heliocentric and cosmological
redshifts:

DL(zh, z̄) = (1 + zh)D(z̄). (B4)

This is because the factors affecting the (1 + zh) pre-factor (redshift-
ing and beaming) depend on the total relative velocities, whereas the
cosmological distance only depends on z̄, the redshift due to expan-
sion (Calcino & Davis 2017, appendix A). The difference resulting
from using z̄ for both is negligible so we do not differentiate in our
analysis. Calcino & Davis (2017, sections 4.2 and 4.3) quantify the
effect of possible redshift systematic errors on the derivation of H0

and find that a systematic redshift error as small as ∼2.6 × 10−4

can result in a ∼0.3 per cent bias in H0.
The peculiar velocity corrections we make here are reliant on

predicted velocity fields, which are intrinsically approximate. We
discuss and quantify these uncertainties in Appendix C6, and prop-
agate them to the SN fit parameters. Moreover, we ensure that our
corrections do not bias our results: if the results of our SN-only fit

28 Carrick et al. (2015); data available at http://cosmicflows.iap.fr/.
29 That is, the mass density and galaxy number density are proportional via
the linear bias factor b, i.e. δg = bδ. In this regime, peculiar velocities are
proportional to gravitational attraction:

v = β∗

4π

∫ Rmax

0
δg(r ′)

(r ′ − r)

|r ′ − r|3 d3r ′ + U, (B2)

where U represents a residual dipole (in 2M++ this is the dipole of the Local
Group), with β∗ = f (�M)

b
= 0.43 (Carrick et al. 2015) where f (�M) =

�0.55
M for �CDM (Wang & Steinhardt 1998).

30 The minus sign in front of v
pec
� arises because we have defined it is the

motion of the Sun relative to the CMB, rather than the other way around.

Figure B2. Histograms of the X1, C distributions with alternate cuts on their
values and uncertainties (Section 5.3). These show that constraints on un-
certainties in X1 and C remove the slowest declining SNe, and that imposing
a stricter cut on the colour affects the C distribution asymmetrically.

Figure B3. Histograms of the X1, C distributions with alternate cuts on the
light-curve goodness of fit χ2/d.o.f. (Section 5.3). The SN Ia distributions
with these cuts and the default cut appear similar.

(Section 5.4) varied significantly with the introduction of the cor-
rection, then this effect would need to be explored and quantified. In
this scenario, the impact of performing a velocity correction would
greater than the uncertainty contribution in Cpecvel (Appendix C6).
However, we find a negligible effect on the zero-point M (less than
10 per cent of the statistical uncertainty) in the SN-only fit when pe-
culiar velocity corrections are omitted. Consequently, the velocity
correction cannot bias H0 (as H = MB − M).

B5 Histograms for SN cuts

We include in Figs B2–B4, the stretch and colour distributions of
our low-z SNe Ia with various alternate cuts relative to the default,
all described in Section 5.3. We observe that the X1 distribution
changes marginally with stricter cuts on σX1 and a higher low-
redshift cut. Naturally, the C distribution is affected by a stricter
cut on C. Otherwise, there is no significant impact on the stretch
and colour distributions from alternate cuts, and in particular no
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Figure B4. Normalized histograms of the X1, C distributions with a higher
low-redshift cut of z > 0.0233. The proportion of higher X1 (slower declin-
ing) SNe is marginally higher with the z > 0.0233 cut, but otherwise the
relative distributions appear very similar.

evidence that the variation observed in Fig. 2 in Section 5.5 arises
from such biases.

APPENDIX C : C OMPUTING SUPERNOVA
SYSTEMATICS

This section is devoted to the construction of the SN Ia covariance
matrices. We break down systematic and statistical terms that con-
tribute to the error budget, and describe their propagation to the SN
magnitudes.

C1 Overview of covariance matrices

Each covariance matrix tracks uncertainties in the vector η = {mBi,
X1i, Ci}1 ≤ i ≤ N, which contain the SALT2 quantities for all N = 280
low-z SNe. These matrices sum to the 3N × 3N matrix Cη which
encompasses all covariances in η, and are independent of α and
β. For fitting the low-z SN data, we require covariances in SN
magnitudes in the form of Cm†

B
(equation 22), which is derived

from Cη by conjugation with the N × 3N matrix A (with Aij =
δ3i,j + αδ3i+1,j + βδ3i+2,j):

C
m
†
B

= ACηAT + diag
(

5σz
z log 10

)2
(C1)

+diag(σ 2
lens) + diag(σ 2

int,SN). (C2)

The remaining terms are diagonal uncertainties, which affect each
SN individually, ascribed to uncorrelated uncertainties in redshift
due to peculiar velocity uncertainties (distinct from the uncertainty
in their corrections, described in Appendix C6), and perturbances
in SN Ia magnitudes caused by gravitational lensing and intrinsic
scatter. We adopt the values for these used in C11 and B14, of
cσ z = 150 km s−1, σ lens = 0.055z, and σ int, SN = 0.12.

To understand Cη, we first separate it into statistical and system-
atic components, and later explain the distinction in Appendix C2.
The contributions to Csys, we consider are from uncertainties in the
following sources: peculiar velocity corrections, MW extinction,
host galaxy mass dependence, photometric calibration, Malmquist

bias correction, and light-curve model.31 For the nearby SNe (i.e.
those in galaxies containing Cepheids), we only include Cdiag and
Chost. The host mass correction has the potential to shift the mag-
nitude scale by up to ∼0.08 mag, and is important in the context
of the dependence of SN Ia magnitude on host galaxy properties
(Appendix C5). The other correction terms, for Malmquist bias and
peculiar velocities, are redshift-dependent effects hence irrelevant
for this sample. The remaining covariance matrices are not tied to
the corrections in Appendices B2–B4, and are more precise than
warranted, given the inhomogeneity and larger uncertainties in these
data, so we neglect them .

Cη = Cstat + Csys;

Csys = Cbias + Ccal + Cdust + Chost + Cmodel + Cpecvel. (C3)

We follow standard techniques to compute each covariance matrix,
which is to enfold partial derivatives of SN parameters with respect
to each systematic, with the typical size of systematics:

Csysij =
∑

k

(
∂ηi

∂k

) (
∂ηj

∂k

)
(
k)2. (C4)

Here, the sum is over all systematics k, each of size 
k. Equation
(41) is applied directly to compute Cdust and Ccal. These calcula-
tions are intrinsically approximate, yet even as estimates they are
invaluable for gauging the contribution of each systematic term af-
fecting SNe Ia, and affirming that we sufficiently account for each
effect. Section 6.3.3 presents our assessment of these uncertainties.

We first digress to discuss the statistical term Cstat, then address
the construction of each systematic in turn. We describe our calcula-
tions of the first four systematics from first principles. Computations
of the bias and model uncertainties, as well as the non-diagonal part
of Cstat require estimates of the sample’s selection function (as
discussed in Appendix B2), thorough end-to-end simulations with
several light-curve models, and in-depth deconstruction and analy-
sis of the SALT2 model. These have been performed in section 5.3
of B14, Mosher et al. (2014), and Guy et al. (2010, Appendix A3),
respectively. We obtain our best estimate of these matrices for our
low-z SN Ia sample, and refer the reader to the aforementioned
references for details.

C2 Statistical uncertainties

The distinction between statistical and systematic errors blurs, as
many uncertainties have sources for which both descriptors are
appropriate. We adopt the separation used in C11, which defines
statistical uncertainties as those that can be reduced by increasing
the size of some data set. In this case the data sets are the measured
low-z SNe, and the training set used to define the SALT2 parameters
(Guy et al. 2010, updated in B14). We separate these two terms into
matrices Cstat,diag and Cstat,model respectively.32

The matrix Cstat,diag arises from uncertainties in the measurement
of light curves, constructed directly from correlated uncertainties
in mB, X1, C (a 3 × 3 covariance matrix for each SN) reported
in SALT2 outputs. These terms are uncorrelated between different
SNe, so Cstat,diag is tridiagonal (i.e. only a diagonal strip of width 3
is non-zero).

31 This is equation (11) of B14 without the contamination term CnonIa,
which only concerns higher redshift SNe.
32 In B14, these two terms are combined as Cstat, while C11 sums Cstat,diag

and the three diagonal terms in our equation (C1) to their Dstat.
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Table C1. Systematics in κ .

Instrument Filters ZP index λeff index

MegaCam griz 0–3 50–53
Standard UBVRI 4–8 54–58
KeplerCam UsBVria 9–13 59–63
4Shooter2 UsBVRI 14–18 64–68
Swope ugriBV 19–24 69–74
SDSS ugriz 25–29 75–79
KAIT1-4 BVRI 30–45 80–95
NICKEL BVRI 46–49 96–99

Note. aUs indicates the standard Landolt U passband, derived from Bessell
(1990) (see Section 5.1).

The latter matrix Cstat,model contains the uncertainty in the SALT2
model from the finiteness of the training sample, which could theo-
retically be decreased by training SALT2 on more SNe. Its calcula-
tion requires propagating statistical uncertainties in the light-curve
model through to SN fit parameters η, as described in Guy et al.
(2010, Appendix A3) and implemented in the snpca package.33

We use the code salt2_stat from this package to directly com-
pute Cstat,model.

C3 Milky Way extinction

The calculation of our first systematic covariance matrix directly
follows equation (41). This contains the uncertainty in η due to the
uncertainty in the MW extinction. The sole systematic k is the uncer-
tainty in the E(B − V) value from dust maps (Schlegel et al. 1998);
we follow the conservative estimate in B14 of a 20 per cent rela-
tive uncertainty. Perturbing the value of the extinction (encoded in
the dust keyword @MWEBV in SALT2 inputs) and refitting light
curves give the partial derivatives in equation (C3):

Cdustij =
(

∂ηi

∂E(B − V )

) (
∂ηj

∂E(B − V )

)
(0.2 × E(B − V ))2.

(C5)

We verify that the partial derivatives of SN parameters η with respect
to MW extinction are independent of the size of perturbation over
a satisfactory range, and that our resultant Cdust is identical to the
same matrix reported in B14 for the 60 SNe Ia in common.

C4 Calibration

B14 and C11 emphasize the significant contribution of uncertain-
ties in the calibration of individual surveys to the total error budget.
We follow the methods therein and in Betoule et al. (2013) to repro-
duce the calibration covariance matrix relevant to our SN sample
and the instruments used to observe them. Computing the cali-
bration matrix Ccal relies on the same principle as in Appendix C3,
but over multiple systematics. Calibration uncertainties are grouped
into two types of systematics: uncertainties in the magnitude zero-
point (shifting the overall flux scale) and in the effective wavelength
(shifting the transmission function in wavelength space), for each
filter. These are contained in the vector κ and enumerated in Ta-
ble C1.

The instruments and passbands to consider in κ are those used
for observing the low-z SNe: 4Shooter2 and Keplercam for CfA3,
and KAIT1–4 and NICKEL for LOSS, and those involved in the

33 Private SNLS communication.

training of SALT2 (i.e. used to observe the SNe in the training
sample). The latter, and sizes of systematics in these passbands,
are given in B14, table 5. It is necessary to include these training
instruments and passbands as they influence measured magnitudes
of training SNe hence the SALT2 model.

We directly consider the covariance matrix of calibration sys-
tematics Cκ i j = 〈σκi

σκj
〉, which captures the correlations between

systematics in different instruments and passbands. Then, equation
(41) is equivalent to Ccal = JCκJT where Jij = ∂ηi

∂κj
is the Jaco-

bian matrix, encoding partial derivatives of SN parameters. Then
finding Ccal amounts to constructing Cκ , and calculating J from
first principles. For the LOSS instruments, we achieve the latter by
either perturbing an element of κ (i.e. shift the zero-point of effec-
tive wavelength). For the other instruments, which were involved in
training SALT2, we change to a different SALT2 model altogether
i.e. one that was trained with the systematic shift in question ap-
plied. Each SN light curve is fitted again to find the difference, and
the resultant Jacobian is smoothed in accordance with footnote 9 of
B14.

To find Cκ , we start with the same matrix from JLA and re-
index it according to Table C1, appending the LOSS instruments
and removing HST instruments NICMOS and ACSWF (which do
not contribute to the SALT2 training sample). We approximate the
elements of Cκ for LOSS instruments as diagonal: this is exact
for the λeff elements, and a good approximation for the zero-point.
Using Ganeshalingam et al. (2010) as a guide, we take the zero-
point and λeff uncertainties to be 0.03 mag and 10 Å , respectively.
As LOSS observations (with KAIT1–4 and NICKEL) of SNe Ia
were not used for SALT2 training, only SNe in the sample with
LOSS measurements have non-zero partial derivatives with respect
to these instruments.

C5 Host galaxy mass

The SN Ia magnitude zero-point MB is corrected for the magnitude
offset 
M between high and low host galaxy (stellar) mass bins,
as described in Appendix B3. The uncertainty in this correction
is propagated to SN parameters in Chost. As in B14, we treat the
systematic associated with this correction as having two compo-
nents: from potentially having attributed an individual SN to the
wrong host mass bin, and from the arbitrariness of the 1010M� cut.
Both effects are discrete, so the computation of Chost differs from
those of Cdust and Ccal which take partial derivatives with respect
to continuous quantities.

Our calculation follows identically the method in B14. As dis-
cussed in Appendix B3, our data do not justify fitting for 
M, and
instead we adopt a fixed value from literature. Only SN magnitudes
are affected: the only indices of non-zero components of Chost cor-
respond to the mB components of η, but for compatibility for the
other matrices we make Chost the same size (3N × 3N). The vectors
Hh and Hl are indicator functions of (the magnitudes of) the SNe
with masses within an order of magnitude higher and lower, re-
spectively, than the mass boundary 1010M�, while B is an indicator
function for the SNe whose host mass estimates and uncertainties in
combination imply that they could be assigned to either bin. Then,
the covariance matrix for the host mass correction is:

Chost = 
2
M (HhHT

h + Hl HT
l + diag(B)). (C6)

For the overlap of our SNe with B14, results are very similar, with
differences arising only from SNe with masses newly obtained or
updated (Appendix B3).
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C6 Peculiar velocities

As described in Appendix B4, we have corrected individual SN red-
shifts for peculiar motion, using the 2M++ velocity field correc-
tions. However, there is intrinsic uncertainty in these models, with
variation between velocity fields generated from different galaxy
density fields, and in some cases limited agreement between pre-
dicted and measured velocities (Springob et al. 2014; Scrimgeour
et al. 2016).

Thus, the significant contribution in the correction model itself
must be taken into account. Below, we adopt the approach in C11
and B14, which is to use the uncertainty in the velocity field to
inform Cpecvel, the contribution to Cη from peculiar velocities. We
emphasize that this is distinct from the diagonal term σ z in equation
(C1).

For a given density field δg, the velocity field derived through
equation (B2) can be parametrized by β∗, the ratio of the growth
rate of density perturbations to the linear bias factor. In C11, β∗ is
the systematic which encompasses the uncertainty in the peculiar
velocity model; that is, Cpecvel is derived through equation (41) with
k = β∗. As this treatment of uncertainty lies within only one density
field and model (that is, it does not account fully for velocities de-
rived from different realizations/measurements of galaxy densities)
we are conservative in using it; like C11 we perturb β∗ by five times
its uncertainty.34 Likewise, we adopt β∗ = 0.43 ± 0.02 (Carrick

34 Pike & Hudson (2005) find β∗ = 0.49 ± 0.04 so C11 vary β∗ between
0.3 and 0.7.

et al. 2015) in the correction. To compute Cpecvel, we measure the
shift in zcmb when β∗ is set to 0.33 or 0.53 instead. The resultant dif-
ference in zcmb is propagated to mB using the derivative of equation
(15):

σmB = 5

log 10

(
1

z
+ f ′(z)

f (z)

)
σzcmb . (C7)

This has no impact on the stretch and colour of SNe, so only the mB

elements of Cη have non-zero entries from Cpecvel.

APPENDI X D : FULL TABLES OF FI T R E S ULTS

This appendix supplements Sections 4 and 6 with full tables of the
Cepheid and global fits, and the averaged results for {
μi} from
the global fit.

D1 Results of Cepheid-only fit

D2 Full results for {�μi}

D3 Full results of global fit
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Table D1. Results of the Cepheid-only fits described in Section 4.3 from each combination of distance anchor, rejection, and period cut for
each Cepheid fit. The best-fitting Cepheid parameters {bW, ZW, MW} are given, as well as the number of Cepheids remaining after rejection
and intrinsic scatter.

Rejection Distance anchor P < 60d NCepheids σ int, C bW ZW MW

T = 2.25 n4258 Y 439 0.17 −3.23 (0.07) −0.54 (0.13) −6.03 (0.07)
T = 2.5 n4258 Y 463 0.27 −3.22 (0.08) −0.49 (0.14) −6.06 (0.07)
R11 n4258 Y 379 0.21 −3.18 (0.07) −0.32 (0.14) −6.05 (0.08)
T = 2.25 LMC Y 439 0.17 −3.24 (0.05) −0.54 (0.13) −6.16 (0.07)
T = 2.5 LMC Y 464 0.27 −3.24 (0.05) −0.50 (0.14) −6.14 (0.08)
R11 LMC Y 379 0.21 −3.22 (0.05) −0.32 (0.14) −6.07 (0.07)
T = 2.25 MW Y 439 0.17 −3.24 (0.07) −0.54 (0.13) −5.83 (0.05)
T = 2.5 MW Y 463 0.27 −3.24 (0.07) −0.49 (0.15) −5.83 (0.05)
R11 MW Y 379 0.21 −3.20 (0.07) −0.32 (0.15) −5.82 (0.05)
T = 2.25 n4258+LMC Y 439 0.18 −3.23 (0.05) −0.46 (0.11) −6.10 (0.05)
T = 2.5 n4258+LMC Y 466 0.28 −3.23 (0.05) −0.42 (0.12) −6.10 (0.05)
R11 n4258+LMC Y 379 0.21 −3.22 (0.05) −0.29 (0.12) −6.05 (0.05)
T = 2.25 n4258+MW Y 437 0.17 −3.31 (0.06) −0.50 (0.12) −5.89 (0.04)
T = 2.5 n4258+MW Y 464 0.27 −3.30 (0.07) −0.46 (0.14) −5.90 (0.04)
R11 n4258+MW Y 379 0.21 −3.26 (0.06) −0.30 (0.14) −5.89 (0.04)
T = 2.25 LMC+MW Y 435 0.16 −3.27 (0.05) −0.12 (0.10) −5.91 (0.05)
T = 2.5 LMC+MW Y 464 0.28 −3.27 (0.05) −0.15 (0.11) −5.92 (0.06)
R11 LMC+MW Y 379 0.21 −3.25 (0.05) −0.08 (0.11) −5.90 (0.06)
T = 2.25 n4258+LMC+MW Y 434 0.16 −3.28 (0.05) −0.17 (0.10) −5.95 (0.04)
T = 2.5 n4258+LMC+MW Y 463 0.27 −3.28 (0.05) −0.19 (0.10) −5.96 (0.04)
R11 n4258+LMC+MW Y 379 0.21 −3.26 (0.05) −0.12 (0.11) −5.94 (0.04)
T = 2.25 n4258 N 521 0.2 −3.04 (0.05) −0.42 (0.12) −6.10 (0.07)
T = 2.5 n4258 N 540 0.26 −3.06 (0.06) −0.32 (0.13) −6.11 (0.07)
R11 n4258 N 444 0.21 −3.09 (0.06) −0.21 (0.13) −6.08 (0.07)
T = 2.25 LMC N 523 0.21 −3.11 (0.04) −0.39 (0.12) −6.12 (0.07)
T = 2.5 LMC N 544 0.28 −3.12 (0.04) −0.26 (0.13) −6.06 (0.07)
R11 LMC N 444 0.21 −3.13 (0.04) −0.20 (0.13) −6.04 (0.07)
T = 2.25 MW N 521 0.2 −3.07 (0.05) −0.42 (0.12) −5.80 (0.05)
T = 2.5 MW N 539 0.26 −3.09 (0.05) −0.30 (0.13) −5.81 (0.05)
R11 MW N 444 0.21 −3.12 (0.06) −0.20 (0.13) −5.81 (0.05)
T = 2.25 n4258+LMC N 523 0.21 −3.11 (0.04) −0.37 (0.11) −6.09 (0.05)
T = 2.5 n4258+LMC N 539 0.26 −3.12 (0.04) −0.30 (0.11) −6.08 (0.05)
R11 n4258+LMC N 444 0.21 −3.13 (0.04) −0.21 (0.12) −6.05 (0.05)
T = 2.25 n4258+MW N 520 0.2 −3.16 (0.05) −0.40 (0.12) −5.89 (0.04)
T = 2.5 n4258+MW N 538 0.26 −3.16 (0.05) −0.29 (0.13) −5.90 (0.04)
R11 n4258+MW N 444 0.21 −3.17 (0.06) −0.17 (0.13) −5.89 (0.04)
T = 2.25 LMC+MW N 519 0.2 −3.14 (0.04) −0.05 (0.10) −5.89 (0.05)
T = 2.5 LMC+MW N 546 0.29 −3.14 (0.04) −0.01 (0.10) −5.89 (0.06)
R11 LMC+MW N 444 0.21 −3.16 (0.04) −0.01 (0.10) −5.88 (0.05)
T = 2.25 n4258+LMC+MW N 517 0.19 −3.15 (0.04) −0.09 (0.09) −5.95 (0.04)
T = 2.5 n4258+LMC+MW N 544 0.28 −3.16 (0.04) −0.08 (0.10) −5.96 (0.04)
R11 n4258+LMC+MW N 444 0.21 −3.17 (0.04) −0.04 (0.10) −5.94 (0.04)
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Table D2. Global fit results for distance modulus offsets {
μi} for the eight galaxies.

Cepheid rejection Distance anchor P < 60d 
μ4536 
μ4639 
μ3370 
μ3982 
μ3021 
μ1309 
μ5584 
μ4038

2.25 n4258+LMC+MW Y 1.56 (0.05) 2.34 (0.07) 2.77 (0.06) 2.43 (0.07) 2.86 (0.09) 3.30 (0.07) 2.37 (0.05) 2.31 (0.09)
2.5 n4258+LMC+MW Y 1.58 (0.06) 2.41 (0.08) 2.79 (0.06) 2.47 (0.09) 2.89 (0.09) 3.30 (0.08) 2.36 (0.06) 2.35 (0.10)
R11 n4258+LMC+MW Y 1.54 (0.06) 2.35 (0.08) 2.78 (0.06) 2.43 (0.08) 2.86 (0.09) 3.18 (0.08) 2.37 (0.06) 2.32 (0.10)
2.5 n4258+LMC Y 1.59 (0.06) 2.44 (0.08) 2.79 (0.07) 2.49 (0.09) 2.89 (0.09) 3.31 (0.08) 2.38 (0.06) 2.39 (0.10)
2.25 n4258+MW Y 1.52 (0.05) 2.37 (0.07) 2.73 (0.06) 2.34 (0.08) 2.87 (0.09) 3.26 (0.07) 2.33 (0.06) 2.32 (0.09)
R11 LMC+MW Y 1.56 (0.06) 2.37 (0.08) 2.80 (0.06) 2.45 (0.08) 2.88 (0.09) 3.20 (0.08) 2.38 (0.06) 2.33 (0.10)
2.25 n4258 Y 1.56 (0.06) 2.39 (0.07) 2.74 (0.06) 2.35 (0.08) 2.88 (0.09) 3.26 (0.07) 2.35 (0.06) 2.34 (0.09)
2.25 LMC Y 1.56 (0.06) 2.39 (0.07) 2.75 (0.06) 2.35 (0.08) 2.89 (0.09) 3.27 (0.07) 2.35 (0.06) 2.34 (0.09)
R11 MW Y 1.53 (0.06) 2.36 (0.08) 2.76 (0.07) 2.39 (0.09) 2.85 (0.10) 3.17 (0.08) 2.36 (0.06) 2.33 (0.10)
2.25 n4258+LMC+MW N 1.64 (0.05) 2.31 (0.07) 2.76 (0.05) 2.39 (0.07) 2.81 (0.08) 3.27 (0.06) 2.40 (0.05) 2.30 (0.07)
2.5 n4258+LMC+MW N 1.62 (0.06) 2.41 (0.08) 2.79 (0.06) 2.44 (0.08) 2.89 (0.09) 3.30 (0.07) 2.41 (0.05) 2.35 (0.08)
R11 n4258+LMC+MW N 1.57 (0.06) 2.34 (0.08) 2.78 (0.06) 2.41 (0.08) 2.87 (0.09) 3.21 (0.07) 2.39 (0.05) 2.32 (0.08)
2.25 n4258+MW N 1.58 (0.05) 2.35 (0.07) 2.72 (0.05) 2.32 (0.08) 2.87 (0.08) 3.24 (0.07) 2.38 (0.05) 2.32 (0.07)
2.25 LMC+MW N 1.67 (0.05) 2.34 (0.07) 2.79 (0.05) 2.42 (0.07) 2.84 (0.08) 3.30 (0.07) 2.43 (0.05) 2.32 (0.07)
R11 LMC+MW N 1.59 (0.06) 2.36 (0.08) 2.80 (0.06) 2.43 (0.08) 2.89 (0.09) 3.22 (0.07) 2.41 (0.05) 2.33 (0.08)
2.25 n4258 N 1.64 (0.05) 2.37 (0.07) 2.73 (0.05) 2.34 (0.08) 2.89 (0.08) 3.25 (0.07) 2.38 (0.05) 2.32 (0.07)
2.5 n4258 N 1.61 (0.06) 2.41 (0.08) 2.77 (0.06) 2.40 (0.08) 2.88 (0.09) 3.27 (0.07) 2.40 (0.06) 2.34 (0.08)
R11 n4258 N 1.55 (0.06) 2.34 (0.08) 2.75 (0.06) 2.37 (0.08) 2.85 (0.09) 3.18 (0.07) 2.37 (0.06) 2.31 (0.08)
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Table D3. Results of all global fits described in Section 6.1, from each combination of Cepheid fit and SN cut. The SN parameters {α, β}, the Cepheid
parameters {bW, ZW, MW}, and the zero-points {H, MB, and μ4258} are displayed. The indicative fits from which statistical uncertainties for parameters are
retrieved are bolded.

Cepheid Distance P < 60d SN cut α β H MB bW ZW MW μ4258

rejection anchor

2.25 All Y Default 0.165 (0.010) 3.09 (0.11) −15.714 (0.094) −18.955 (0.089) −3.28 (0.05) −0.19 (0.10) −5.95 (0.04) 29.36 (0.04)
2.25 All Y Higher χ2 0.167 (0.010) 3.14 (0.11) −15.706 (0.092) −18.952 (0.087) −3.28 (0.05) −0.19 (0.10) −5.95 (0.04) 29.36 (0.04)
2.25 All Y z > 0.0233 0.162 (0.012) 2.77 (0.13) −15.705 (0.093) −18.954 (0.087) −3.28 (0.05) −0.20 (0.10) −5.95 (0.04) 29.36 (0.04)
2.25 All Y Lower χ2 0.158 (0.010) 3.06 (0.12) −15.702 (0.092) −18.953 (0.087) −3.28 (0.05) −0.19 (0.09) −5.95 (0.04) 29.36 (0.04)
2.25 All Y Stricter C 0.156 (0.011) 2.99 (0.14) −15.717 (0.092) −18.956 (0.087) −3.28 (0.05) −0.20 (0.10) −5.95 (0.04) 29.36 (0.05)
2.25 All Y Stricter σX1 0.171 (0.010) 3.11 (0.11) −15.706 (0.093) −18.950 (0.088) −3.28 (0.05) −0.19 (0.09) −5.95 (0.04) 29.36 (0.04)
2.5 All Y Default 0.165 (0.010) 3.09 (0.10) −15.722 (0.095) −18.964 (0.090) −3.28 (0.05) −0.22 (0.10) −5.96 (0.04) 29.35 (0.05)
2.5 All Y Higher χ2 0.166 (0.010) 3.14 (0.11) −15.722 (0.094) −18.967 (0.089) −3.28 (0.05) −0.21 (0.10) −5.96 (0.04) 29.35 (0.05)
2.5 All Y z > 0.0233 0.162 (0.012) 2.77 (0.13) −15.722 (0.096) −18.971 (0.091) −3.28 (0.05) −0.21 (0.10) −5.97 (0.04) 29.35 (0.05)
2.5 All Y Lower χ2 0.158 (0.010) 3.06 (0.12) −15.717 (0.094) −18.968 (0.089) −3.29 (0.05) −0.21 (0.10) −5.96 (0.04) 29.35 (0.04)
2.5 All Y Stricter C 0.156 (0.011) 2.99 (0.14) −15.729 (0.095) −18.968 (0.090) −3.28 (0.05) −0.21 (0.10) −5.96 (0.04) 29.35 (0.05)
2.5 All Y Stricter σX1 0.171 (0.010) 3.11 (0.11) −15.720 (0.094) −18.964 (0.090) −3.28 (0.05) −0.21 (0.10) −5.96 (0.04) 29.35 (0.04)
R11 All Y Default 0.165 (0.010) 3.08 (0.11) −15.688 (0.096) −18.930 (0.091) −3.26 (0.05) −0.14 (0.10) −5.95 (0.05) 29.35 (0.05)
R11 All Y Higher χ2 0.167 (0.010) 3.13 (0.10) −15.684 (0.095) −18.929 (0.090) −3.26 (0.05) −0.14 (0.11) −5.95 (0.04) 29.35 (0.05)
R11 All Y z > 0.0233 0.162 (0.013) 2.76 (0.13) −15.684 (0.094) −18.933 (0.089) −3.26 (0.05) −0.14 (0.11) −5.95 (0.05) 29.35 (0.04)
R11 All Y Lower χ2 0.158 (0.010) 3.06 (0.12) −15.682 (0.093) −18.934 (0.088) −3.26 (0.05) −0.14 (0.10) −5.95 (0.05) 29.35 (0.05)
R11 All Y Stricter C 0.156 (0.011) 2.97 (0.14) −15.696 (0.094) −18.935 (0.089) −3.26 (0.05) −0.14 (0.10) −5.95 (0.04) 29.35 (0.04)
R11 All Y Stricter σX1 0.172 (0.011) 3.11 (0.11) −15.685 (0.094) −18.929 (0.090) −3.26 (0.05) −0.14 (0.11) −5.95 (0.04) 29.35 (0.04)
2.25 All N Default 0.164 (0.010) 3.09 (0.11) -15.689 (0.093) -18.929 (0.088) -3.18 (0.04) -0.11 (0.09) -5.95 (0.04) 29.34 (0.04)
2.25 All N Higher χ2 0.166 (0.010) 3.13 (0.10) −15.683 (0.092) −18.928 (0.088) −3.17 (0.04) −0.11 (0.09) −5.95 (0.04) 29.34 (0.04)
2.25 All N z > 0.0233 0.160 (0.012) 2.76 (0.13) −15.684 (0.091) −18.933 (0.086) −3.17 (0.04) −0.11 (0.09) −5.95 (0.04) 29.34 (0.04)
2.25 All N Lower χ2 0.158 (0.010) 3.06 (0.12) −15.678 (0.092) −18.929 (0.088) −3.17 (0.04) −0.11 (0.09) −5.95 (0.04) 29.34 (0.04)
2.25 All N Stricter C 0.155 (0.011) 2.98 (0.15) −15.691 (0.093) −18.929 (0.088) −3.17 (0.04) −0.11 (0.09) −5.95 (0.04) 29.34 (0.04)
2.25 All N Stricter σX1 0.170 (0.010) 3.11 (0.11) −15.683 (0.093) −18.926 (0.088) −3.17 (0.04) −0.11 (0.09) −5.95 (0.04) 29.34 (0.04)
2.5 All N Default 0.165 (0.010) 3.09 (0.11) −15.710 (0.093) −18.951 (0.089) −3.20 (0.04) −0.09 (0.10) −5.96 (0.04) 29.33 (0.04)
2.5 All N Higher χ2 0.166 (0.010) 3.14 (0.11) −15.707 (0.093) −18.952 (0.089) −3.20 (0.04) −0.09 (0.10) −5.96 (0.04) 29.33 (0.04)
2.5 All N z > 0.0233 0.161 (0.012) 2.76 (0.13) −15.707 (0.094) −18.955 (0.089) −3.20 (0.04) −0.10 (0.10) −5.96 (0.04) 29.33 (0.04)
2.5 All N Lower χ2 0.158 (0.010) 3.06 (0.12) −15.702 (0.093) −18.953 (0.089) −3.20 (0.04) −0.09 (0.10) −5.96 (0.04) 29.33 (0.04)
2.5 All N Stricter C 0.156 (0.011) 2.98 (0.14) −15.715 (0.095) −18.953 (0.090) −3.20 (0.04) −0.10 (0.10) −5.96 (0.04) 29.33 (0.04)
2.5 All N Stricter σX1 0.171 (0.010) 3.11 (0.11) −15.706 (0.092) −18.950 (0.088) −3.20 (0.04) −0.10 (0.10) −5.96 (0.04) 29.33 (0.04)
R11 All N Default 0.165 (0.010) 3.09 (0.11) −15.682 (0.095) −18.923 (0.090) −3.21 (0.04) −0.06 (0.10) −5.94 (0.04) 29.34 (0.04)
R11 All N Higher χ2 0.167 (0.010) 3.13 (0.11) −15.677 (0.095) −18.923 (0.090) −3.21 (0.04) −0.05 (0.10) −5.94 (0.04) 29.34 (0.04)
R11 All N z > 0.0233 0.162 (0.013) 2.76 (0.13) −15.678 (0.094) −18.927 (0.089) −3.21 (0.04) −0.06 (0.10) −5.94 (0.04) 29.34 (0.05)
R11 All N Lower χ2 0.158 (0.010) 3.06 (0.12) −15.674 (0.092) −18.926 (0.087) −3.21 (0.04) −0.05 (0.10) −5.94 (0.04) 29.34 (0.04)
R11 All N Stricter C 0.156 (0.011) 2.97 (0.15) −15.687 (0.094) −18.925 (0.089) −3.21 (0.04) −0.06 (0.10) −5.94 (0.04) 29.34 (0.04)
R11 All N Stricter σX1 0.171 (0.011) 3.11 (0.11) −15.679 (0.095) −18.923 (0.090) −3.21 (0.04) −0.06 (0.10) −5.94 (0.04) 29.34 (0.04)
2.5 n4258+LMC Y Default 0.165 (0.010) 3.09 (0.11) −15.818 (0.097) −19.059 (0.093) −3.23 (0.05) −0.45 (0.12) −6.11 (0.06) 29.43 (0.05)
2.5 n4258+LMC Y Higher χ2 0.167 (0.010) 3.14 (0.11) −15.814 (0.097) −19.059 (0.092) −3.23 (0.05) −0.45 (0.12) −6.11 (0.06) 29.43 (0.05)
2.5 n4258+LMC Y z > 0.0233 0.162 (0.013) 2.77 (0.13) −15.816 (0.096) −19.065 (0.091) −3.23 (0.05) −0.45 (0.12) −6.11 (0.05) 29.43 (0.05)
2.5 n4258+LMC Y Lower χ2 0.158 (0.010) 3.06 (0.12) −15.810 (0.096) −19.061 (0.091) −3.23 (0.05) −0.45 (0.12) −6.11 (0.05) 29.43 (0.05)
2.5 n4258+LMC Y Stricter C 0.156 (0.011) 2.99 (0.15) −15.822 (0.098) −19.060 (0.092) −3.23 (0.05) −0.45 (0.12) −6.11 (0.05) 29.43 (0.05)
2.5 n4258+LMC Y Stricter σX1 0.171 (0.011) 3.11 (0.11) −15.816 (0.098) −19.060 (0.093) −3.23 (0.05) −0.45 (0.12) −6.11 (0.05) 29.43 (0.05)
2.25 n4258+MW Y Default 0.165 (0.010) 3.08 (0.11) −15.650 (0.097) −18.891 (0.092) −3.31 (0.06) −0.52 (0.12) −5.89 (0.04) 29.32 (0.04)
2.25 n4258+MW Y Higher χ2 0.167 (0.010) 3.13 (0.10) −15.646 (0.097) −18.892 (0.092) −3.31 (0.06) −0.52 (0.12) −5.89 (0.04) 29.32 (0.04)
2.25 n4258+MW Y z > 0.0233 0.162 (0.013) 2.76 (0.13) −15.645 (0.098) −18.893 (0.093) −3.31 (0.06) −0.52 (0.12) −5.89 (0.04) 29.32 (0.04)
2.25 n4258+MW Y Lower χ2 0.159 (0.010) 3.06 (0.12) −15.642 (0.095) −18.893 (0.091) −3.31 (0.06) −0.52 (0.12) −5.89 (0.04) 29.32 (0.04)
2.25 n4258+MW Y Stricter C 0.157 (0.011) 2.97 (0.15) −15.654 (0.098) −18.893 (0.094) −3.31 (0.06) −0.51 (0.12) −5.89 (0.04) 29.32 (0.04)
2.25 n4258+MW Y Stricter σX1 0.172 (0.010) 3.11 (0.11) −15.646 (0.097) −18.890 (0.092) −3.31 (0.06) −0.52 (0.12) −5.89 (0.04) 29.32 (0.04)
2.25 n4258+MW N Default 0.165 (0.010) 3.08 (0.11) −15.617 (0.093) −18.858 (0.089) −3.16 (0.05) −0.40 (0.11) −5.89 (0.04) 29.29 (0.04)
2.25 n4258+MW N Higher χ2 0.167 (0.010) 3.13 (0.10) −15.613 (0.093) −18.859 (0.089) −3.16 (0.05) −0.41 (0.12) −5.89 (0.04) 29.29 (0.04)
2.25 n4258+MW N z > 0.0233 0.162 (0.012) 2.75 (0.13) −15.612 (0.094) −18.861 (0.089) −3.16 (0.05) −0.41 (0.11) −5.89 (0.04) 29.29 (0.04)
2.25 n4258+MW N Lower χ2 0.158 (0.010) 3.05 (0.12) −15.609 (0.095) −18.861 (0.090) −3.16 (0.05) −0.40 (0.11) −5.89 (0.04) 29.29 (0.04)
2.25 n4258+MW N Stricter C 0.156 (0.011) 2.96 (0.14) −15.621 (0.095) −18.859 (0.090) −3.16 (0.05) −0.41 (0.11) −5.89 (0.04) 29.28 (0.04)
2.25 n4258+MW N Stricter σX1 0.172 (0.010) 3.10 (0.11) −15.610 (0.096) −18.854 (0.091) −3.16 (0.05) −0.41 (0.11) −5.89 (0.04) 29.28 (0.04)
R11 LMC+MW Y Default 0.165 (0.010) 3.09 (0.11) −15.646 (0.102) −18.887 (0.098) −3.25 (0.05) −0.11 (0.11) −5.91 (0.06) 29.29 (0.07)
R11 LMC+MW Y Higher χ2 0.167 (0.010) 3.14 (0.11) −15.640 (0.101) −18.886 (0.097) −3.25 (0.05) −0.11 (0.11) −5.91 (0.06) 29.29 (0.07)
R11 LMC+MW Y z > 0.0233 0.162 (0.012) 2.76 (0.13) −15.641 (0.102) −18.890 (0.097) −3.25 (0.05) −0.11 (0.11) −5.91 (0.06) 29.29 (0.07)
R11 LMC+MW Y Lower χ2 0.158 (0.010) 3.06 (0.12) −15.640 (0.102) −18.891 (0.098) −3.25 (0.05) −0.11 (0.11) −5.91 (0.06) 29.29 (0.07)
R11 LMC+MW Y Stricter C 0.156 (0.011) 2.97 (0.14) −15.654 (0.101) −18.893 (0.097) −3.25 (0.05) −0.11 (0.11) −5.91 (0.06) 29.29 (0.07)
R11 LMC+MW Y Stricter σX1 0.171 (0.011) 3.11 (0.11) −15.644 (0.102) −18.888 (0.098) −3.25 (0.05) −0.11 (0.11) −5.91 (0.06) 29.29 (0.07)
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Table D3 – continued

Cepheid Distance P < 60d SN cut α β H MB bW ZW MW μ4258

rejection anchor

2.25 LMC+MW N Default 0.164 (0.010) 3.09 (0.10) −15.634 (0.098) −18.875 (0.094) −3.16 (0.04) −0.07 (0.09) −5.90 (0.05) 29.26 (0.06)
2.25 LMC+MW N Higher χ2 0.166 (0.010) 3.14 (0.10) −15.630 (0.099) −18.874 (0.095) −3.16 (0.04) −0.07 (0.10) −5.90 (0.05) 29.26 (0.06)
2.25 LMC+MW N z > 0.0233 0.161 (0.012) 2.76 (0.13) −15.631 (0.098) −18.879 (0.093) −3.16 (0.04) −0.07 (0.09) −5.90 (0.05) 29.26 (0.06)
2.25 LMC+MW N Lower χ2 0.158 (0.010) 3.06 (0.12) −15.624 (0.101) −18.875 (0.097) −3.16 (0.04) −0.07 (0.10) −5.90 (0.06) 29.26 (0.07)
2.25 LMC+MW N Stricter C 0.155 (0.011) 2.98 (0.14) −15.637 (0.099) −18.875 (0.095) −3.16 (0.04) −0.07 (0.10) −5.90 (0.05) 29.26 (0.06)
2.25 LMC+MW N Stricter σX1 0.170 (0.010) 3.11 (0.11) −15.629 (0.100) −18.873 (0.096) −3.16 (0.04) −0.07 (0.10) −5.90 (0.06) 29.26 (0.07)
R11 LMC+MW N Default 0.165 (0.010) 3.08 (0.11) −15.626 (0.102) −18.867 (0.097) −3.20 (0.04) −0.02 (0.10) −5.89 (0.06) 29.26 (0.07)
R11 LMC+MW N Higher χ2 0.167 (0.010) 3.13 (0.10) −15.620 (0.101) −18.866 (0.097) −3.20 (0.04) −0.03 (0.10) −5.89 (0.06) 29.26 (0.07)
R11 LMC+MW N z > 0.0233 0.162 (0.012) 2.76 (0.13) −15.623 (0.102) −18.872 (0.098) −3.20 (0.04) −0.03 (0.10) −5.89 (0.06) 29.26 (0.07)
R11 LMC+MW N Lower χ2 0.158 (0.010) 3.05 (0.12) −15.618 (0.100) −18.869 (0.095) −3.20 (0.05) −0.02 (0.10) −5.89 (0.06) 29.26 (0.07)
R11 LMC+MW N Stricter C 0.156 (0.011) 2.97 (0.15) −15.630 (0.103) −18.869 (0.098) −3.20 (0.05) −0.03 (0.10) −5.89 (0.06) 29.26 (0.07)
R11 LMC+MW N Stricter σX1 0.171 (0.010) 3.10 (0.11) −15.621 (0.103) −18.865 (0.098) −3.20 (0.04) −0.02 (0.10) −5.89 (0.06) 29.26 (0.07)
2.25 n4258 Y Default 0.165 (0.010) 3.08 (0.11) −15.747 (0.109) −18.989 (0.104) −3.23 (0.07) −0.55 (0.12) −6.03 (0.07) 29.40 (0.06)
2.25 n4258 Y Higher χ2 0.167 (0.010) 3.13 (0.11) −15.740 (0.108) −18.985 (0.104) −3.23 (0.07) −0.55 (0.12) −6.03 (0.07) 29.40 (0.06)
2.25 n4258 Y z > 0.0233 0.162 (0.013) 2.76 (0.13) −15.744 (0.107) −18.993 (0.102) −3.23 (0.07) −0.55 (0.12) −6.04 (0.07) 29.41 (0.06)
2.25 n4258 Y Lower χ2 0.158 (0.010) 3.05 (0.12) −15.737 (0.110) −18.989 (0.105) −3.23 (0.07) −0.55 (0.12) −6.03 (0.07) 29.40 (0.06)
2.25 n4258 Y Stricter C 0.157 (0.011) 2.97 (0.15) −15.752 (0.109) −18.990 (0.105) −3.23 (0.07) −0.55 (0.12) −6.04 (0.07) 29.41 (0.06)
2.25 n4258 Y Stricter σX1 0.172 (0.011) 3.10 (0.11) −15.741 (0.108) −18.985 (0.104) −3.23 (0.07) −0.55 (0.12) −6.03 (0.07) 29.40 (0.06)
2.25 n4258 N Default 0.165 (0.010) 3.08 (0.11) −15.754 (0.107) −18.995 (0.104) −3.04 (0.05) −0.44 (0.11) −6.10 (0.07) 29.40 (0.06)
2.25 n4258 N Higher χ2 0.167 (0.010) 3.13 (0.11) −15.747 (0.107) −18.992 (0.103) −3.04 (0.05) −0.43 (0.11) −6.10 (0.07) 29.40 (0.06)
2.25 n4258 N z > 0.0233 0.162 (0.013) 2.75 (0.13) −15.750 (0.106) −18.999 (0.102) −3.04 (0.05) −0.44 (0.11) −6.10 (0.07) 29.40 (0.06)
2.25 n4258 N Lower χ2 0.158 (0.010) 3.05 (0.12) −15.747 (0.105) −18.998 (0.102) −3.04 (0.05) −0.43 (0.11) −6.10 (0.07) 29.41 (0.06)
2.25 n4258 N Stricter C 0.156 (0.011) 2.96 (0.15) −15.759 (0.107) −18.998 (0.103) −3.04 (0.05) −0.44 (0.11) −6.10 (0.07) 29.40 (0.06)
2.25 n4258 N Stricter σX1 0.171 (0.010) 3.10 (0.11) −15.748 (0.106) −18.992 (0.102) −3.04 (0.05) −0.44 (0.11) −6.10 (0.07) 29.40 (0.06)
2.5 n4258 N Default 0.165 (0.010) 3.08 (0.11) −15.775 (0.107) −19.017 (0.103) −3.06 (0.06) −0.33 (0.13) −6.12 (0.07) 29.41 (0.06)
2.5 n4258 N Higher χ2 0.166 (0.010) 3.13 (0.10) −15.769 (0.108) −19.015 (0.104) −3.06 (0.06) −0.34 (0.13) −6.11 (0.07) 29.40 (0.06)
2.5 n4258 N z > 0.0233 0.162 (0.012) 2.76 (0.13) −15.768 (0.108) −19.017 (0.104) −3.06 (0.06) −0.34 (0.13) −6.11 (0.07) 29.40 (0.06)
2.5 n4258 N Lower χ2 0.158 (0.010) 3.05 (0.12) −15.762 (0.108) −19.013 (0.104) −3.06 (0.06) −0.33 (0.13) −6.11 (0.07) 29.40 (0.06)
2.5 n4258 N Stricter C 0.156 (0.011) 2.97 (0.15) −15.779 (0.110) −19.017 (0.106) −3.06 (0.06) −0.34 (0.13) −6.11 (0.07) 29.40 (0.06)
2.5 n4258 N Stricter σX1 0.172 (0.010) 3.10 (0.11) −15.770 (0.107) −19.014 (0.103) −3.06 (0.06) −0.34 (0.13) −6.11 (0.07) 29.40 (0.06)
R11 n4258 N Default 0.165 (0.010) 3.08 (0.11) −15.728 (0.109) −18.969 (0.105) −3.09 (0.06) −0.23 (0.13) −6.08 (0.07) 29.40 (0.06)
R11 n4258 N Higher χ2 0.167 (0.010) 3.13 (0.10) −15.725 (0.107) −18.971 (0.103) −3.09 (0.06) −0.23 (0.13) −6.08 (0.07) 29.40 (0.06)
R11 n4258 N z > 0.0233 0.162 (0.013) 2.75 (0.13) −15.723 (0.109) −18.971 (0.104) −3.09 (0.06) −0.24 (0.13) −6.08 (0.07) 29.40 (0.06)
R11 n4258 N Lower χ2 0.159 (0.010) 3.05 (0.12) −15.718 (0.110) −18.970 (0.106) −3.09 (0.06) −0.23 (0.13) −6.07 (0.07) 29.40 (0.06)
R11 n4258 N Stricter C 0.156 (0.011) 2.97 (0.14) −15.733 (0.110) −18.972 (0.106) −3.09 (0.06) −0.23 (0.13) −6.08 (0.07) 29.40 (0.06)
R11 n4258 N Stricter σX1 0.171 (0.011) 3.10 (0.11) −15.723 (0.109) −18.967 (0.105) −3.09 (0.06) −0.23 (0.13) −6.08 (0.07) 29.41 (0.06)
2.25 LMC Y Default 0.165 (0.010) 3.08 (0.11) −15.880 (0.104) −19.122 (0.100) −3.24 (0.05) −0.55 (0.12) −6.16 (0.07) 29.54 (0.07)
2.25 LMC Y Higher χ2 0.167 (0.010) 3.13 (0.11) −15.873 (0.102) −19.119 (0.098) −3.24 (0.05) −0.55 (0.12) −6.16 (0.07) 29.54 (0.07)
2.25 LMC Y z > 0.0233 0.162 (0.013) 2.76 (0.13) −15.878 (0.104) −19.127 (0.098) −3.24 (0.05) −0.56 (0.12) −6.16 (0.07) 29.54 (0.07)
2.25 LMC Y Lower χ2 0.159 (0.010) 3.05 (0.12) −15.869 (0.105) −19.121 (0.101) −3.24 (0.05) −0.55 (0.12) −6.16 (0.07) 29.54 (0.07)
2.25 LMC Y Stricter C 0.157 (0.011) 2.97 (0.15) −15.884 (0.103) −19.123 (0.099) −3.24 (0.05) −0.55 (0.12) −6.16 (0.07) 29.53 (0.07)
2.25 LMC Y Stricter σX1 0.172 (0.011) 3.10 (0.11) −15.876 (0.103) −19.119 (0.099) −3.24 (0.05) −0.55 (0.12) −6.16 (0.07) 29.53 (0.07)
R11 MW Y Default 0.165 (0.010) 3.08 (0.11) −15.515 (0.111) −18.757 (0.106) −3.21 (0.07) −0.35 (0.14) −5.83 (0.05) 29.19 (0.07)
R11 MW Y Higher χ2 0.167 (0.010) 3.13 (0.11) −15.513 (0.112) −18.758 (0.108) −3.21 (0.07) −0.35 (0.14) −5.83 (0.05) 29.19 (0.07)
R11 MW Y z > 0.0233 0.162 (0.013) 2.75 (0.14) −15.511 (0.111) −18.760 (0.106) −3.20 (0.07) −0.36 (0.14) −5.83 (0.05) 29.19 (0.07)
R11 MW Y Lower χ2 0.158 (0.010) 3.06 (0.12) −15.508 (0.111) −18.760 (0.107) −3.21 (0.07) −0.35 (0.14) −5.83 (0.05) 29.19 (0.07)
R11 MW Y Stricter C 0.156 (0.011) 2.97 (0.15) −15.521 (0.112) −18.759 (0.107) −3.21 (0.07) −0.35 (0.14) −5.83 (0.05) 29.19 (0.07)
R11 MW Y Stricter σX1 0.171 (0.011) 3.10 (0.11) −15.513 (0.110) −18.757 (0.106) −3.21 (0.07) −0.35 (0.14) −5.83 (0.05) 29.19 (0.07)
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