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 15 

Narrow-sense heritability (h2) is an important genetic parameter that quantifies the 16 

proportion of phenotypic variance in a trait attributable to the additive genetic variation 17 

generated by all causal variants. Estimation of h2 previously relied on closely related 18 

individuals but recent developments allow the estimation of variance explained by all 19 

SNPs used in a genome-wide association study (GWAS) in conventionally unrelated 20 

individuals, i.e. the SNP-based heritability ( ). In this perspective, we discuss recently 21 

developed methods to estimate  for a complex trait (and genetic correlation between 22 

traits) using individual- or summary-level GWAS data. We discuss the issues that could 23 

influence the accuracy of , definitions, assumptions and interpretations of the models, 24 

and pitfalls of misusing the methods and misinterpreting the models and results. 25  26 Estimation of the variance explained by all SNPs used in a population-based genome-wide 27 association study (GWAS) was initially motivated by the ‘missing heritability’ problem1. The 28 problem was that the estimated variance explained by genome-wide significant (GWS) SNPs 29 discovered in GWAS (denoted ℎ ) was only a fraction of the estimated heritability (ℎ ) from 30 family or twin studies2, where ℎ  was estimated in a multi-SNP model to account for linkage 31 disequilibrium (LD) among SNPs and in an independent sample to avoid overestimation due to 32 the winner’s curse issue3. Taking human height as an example, ℎ  was 5% before 2010 (ref4), 33 which is much smaller than a frequently quoted ℎ  of 80% from family or twin studies5-7. This 34 raised concerns about the cost-effectiveness of GWAS as an experimental design for gene 35 discovery8. Several explanations of the missing heritability were proposed, including a large 36 
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number of common variants of small effect yet to be discovered, rare variants of large effects not 37 tagged by common SNPs on genotyping arrays, and inflation in pedigree-based ℎ  due to shared 38 environmental effects, non-additive genetic variation, and/or epigenetic factors2,9. The missing 39 heritability question also reignited the debate about the ‘common-disease common-variant’ 40 hypothesis10, i.e. whether the proportion of heritability for common disease not explained by 41 GWS loci is due to rare variants of large effect not tagged by the current generation of SNP 42 arrays, or undetected common variants of small effect2,11. It is therefore important to quantify 43 the proportion of variance attributable to all common SNPs (e.g. minor allele frequency, MAF ≥ 44 0.01) used in GWAS. If common SNPs are the major contributor to heritability, then the concern 45 about missing heritability is premature because it depends on experimental sample size of 46 GWAS12.  47  48 

Estimation of the SNP-based heritability – the GREML approach 49 SNP-based heritability (or ℎ ) was initially defined as the proportion of phenotypic variance 50 explained by all SNPs on a genotyping array13, and is therefore dependent of the density of SNP 51 array. The concept has now been expanded to refer to the variance explained by any set of SNPs, 52 e.g. all genetic variants from in-depth whole-genome sequencing (WGS) or imputed from a 53 reference14. Yang et al. used a mixed linear model (MLM) approach to estimate ℎ  in a GWAS 54 data set of unrelated individuals, and demonstrated that common SNPs on a genotyping array 55 explain a large proportion (45%) of variance in height13. Here, “unrelated” means distantly 56 related individuals rather than individuals with no genetic relatedness because even random 57 pairs of individuals drawn from a general population could share distant ancestors. Given the 58 small ℎ  (5%) and relatively large ℎ  (45%), it was concluded that for complex traits like 59 height there are likely a large number of common variants with effect sizes too small to pass the 60 stringent GWS threshold (P < 5e-8) in GWAS even with the sample sizes that were considered 61 large at that time (n = 1,000s to early 10,000s before 2010), consistent with a model of polygenic 62 inheritance. It was subsequently predicted that more genetic variants could be discovered with 63 larger sample sizes, whilst keeping the same experimental design of GWAS. This prediction has 64 been realized by recent studies with n > 100,000 for height, BMI, schizophrenia and many other 65 traits and diseases15-20. Under a polygenic model, the amount of unexplained heritability by GWS 66 loci depends on sample size12. The aforementioned comparison of 5% vs. 80% for height in 2009 67 (ref4) became 16% vs. 80% only five years later15. Given the nearly linear relationship between 68 the number of GWS loci and logarithm of sample size (i.e. log(n)) observed in published GWAS12 69 and the highly polygenic nature of most complex traits21,22, we predict that the shrinking of the 70 gap between ℎ  and ℎ  will be less than linear in log(n) because the variance explained by 71 SNPs discovered in studies with larger sample sizes tend to be smaller.  72 
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 73 The Yang et al. approach was subsequently termed as Genomic Relatedness-matrix (GRM) 74 Restricted Maximum Likelihood (GREML23) and implemented in the GCTA software tool24 (Box 75 

1). GREML shares features with a pedigree-based analysis (part 1 of the Supplementary Note), 76 but GREML is usually applied to a sample of unrelated individuals (note that this is also the usual 77 experimental design for GWAS), and hence ℎ  is unlikely to be confounded by common 78 environmental effects (Fig. 1). For distantly related pairs, the amount of genome shared is small 79 and highly variable, and it is unlikely that those pairs that share slightly more genome than 80 average will also share more common environments in a relatively homogenous population. The 81 use of unrelated individuals also means that ℎ  is unlikely to be contaminated with 82 contributions from non-additive genetic effects since the shared non-additive genetic effects are 83 tiny (of the order of the square of the shared additive effects), whereas this could be a problem 84 in ℎ  estimated from families depending on the study design. In addition, GREML can be applied 85 to family data but the estimate should be interpreted with caution (part 3 of the Supplementary 86 

Note).  87  88 The GREML estimate quantifies directly the proportion of phenotypic variance explained by all 89 SNPs used in GWAS, and therefore provides the upper limit of ℎ  given the same 90 experimental design. The information to estimate ℎ  comes from very small coefficients of 91 genetic relationship between pairs of individuals, but small standard error (SE) of ℎ  (part 4 92 of the Supplementary Note) can be achieved because of the large number of pairwise 93 relationships (e.g., 50 million pairs for a study using 10,000 individuals) although these pairs are 94 not independent. Subsequent work has extended the method to estimate ℎ  in disease data25 95 (part 5 of the Supplementary Note) and genetic correlation ( ) between traits26,27 (part 6 of 96 the Supplementary Note). There are several caveats of estimating ℎ  using data from case-97 control studies (part 5 of the Supplementary Note) and interpreting the estimates on different 98 scales (Fig. 2). 99  100 There are multiple terms and notations that have been used to describe the parameter 101 estimated in GREML, e.g. chip heritability, heritability on chip or SNP heritability. We 102 recommend using the term SNP-based heritability and the notation ℎ . Unlike h2, which is a 103 population-level parameter irrespective of experimental design, ℎ  is a parameter given a set 104 of SNPs. We believe that it is also necessary to use a specific notation ℎ  to represent h2 105 estimated from pedigrees (including twins) because of the potential biases in pedigree-based ℎ  106 due to confounding factors such as common environmental effects. We have shown above that 107 
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ℎ  is per definition smaller than h2 because not all the causal variants, in particular those with 108 low frequency, can be perfectly tagged by SNPs used in GWAS (Fig. 3a; part 1 of the 109 

Supplementary Note). Here, by causal variant we mean a genetic mutation that causes a 110 cascade of events in biological pathways and thereby a consequence in phenotypic change, 111 rather than an associated variant identified from GWAS. In a particular case where ℎ  is 112 defined as the variance explained by all causal variants, then ℎ = ℎ . In reality, however, 113 causal variants are unknown. An unbiased estimate of h2 might be achieved by estimating ℎ  114 from in-depth WGS data assuming that all causal variants have been sequenced and there is no 115 difference in LD between causal and other sequence variants14 (see below for more discussion).  116  117 

Both GWAS and estimation of  by GREML utilize LD 118 GWAS relies, by design, on genotyped common SNPs tagging unknown causal variants in the 119 same chromosomal region. Estimating how much trait variation is tagged when fitting all SNPs 120 simultaneously also utilise LD between SNPs and unobserved causal variants. A sparse SNP 121 array that does not cover common variation in the genome well is less likely to lead to the 122 discovery of trait-associated variants (even with a large sample size) and fitting those SNPs 123 together in a GREML analysis will result in a smaller proportion of phenotypic variance 124 explained than a denser SNP array (Fig. 3a). Since the maximum possible LD correlation 125 between two genetic variants declines as their difference in MAF increases28, genetic variation at 126 rare variants (i.e. MAF < 0.01) is unlikely to be well tagged by common SNPs on genotyping 127 arrays (Fig. 3a). If causal variants are located in genomic regions with a different LD property 128 from the rest of the genome, it can lead to bias in ℎ  (ref14,29,30) (see below for more 129 discussion).  130  131 

Interpretation and misinterpretation of the GREML model 132 There are several circumstances where the principle of GREML is misinterpreted and the 133 method is misapplied, and this could potentially lead to misleading or confusing inference. 134 GREML is based on a random-effect model (Box 1). If the number of SNPs (m) is smaller than 135 sample size (n), this model is similar to a linear regression analysis (fixed-effect model) in terms 136 of estimating ℎ  (note that the adjusted R2 from multiple regression is an unbiased estimate of 137 variance explained in a fixed-effect model). Such a hypothetical experiment would not rely on 138 selecting SNPs to be individually genome-wide significant nor would it rely on assumptions 139 about the genetic architecture. In either a linear regression or random-effect model, the effect 140 sizes of SNPs are fitted jointly (therefore accounting for LD among SNPs), i.e. the effect of any 141 SNP is interpreted as the effect size of this SNP conditioning on the joint effects of all other SNPs. 142 In GWAS, m is normally larger than n, in which case there is no unique solution to the fixed-effect 143 
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model, a well-known over-fitting problem in statistics. In a random-effect model, there is an 144 additional assumption that the joint SNP effects = { , , ⋯ , } follow a normal distribution 145 with mean 0 and variance  (see Box 1 for notations) so that the model parameters are 146 estimable even when m is larger than n, where  is interpreted as per-SNP genetic variance 147 when all SNPs are fitted jointly, hence accounting for LD31. Therefore,  is not consistent across 148 models having different numbers of SNPs. There is a misunderstanding that GREML does not 149 account for LD because it does not have a covariance matrix for u (ref32). This is incorrect. In fact, 150 the LD correlations among SNPs have been modeled by fitting the SNP genotype matrix W, 151 similar to that in linear regression analysis31. Since  is the variance of a SNP effect 152 conditioning on the joint effects of all other SNPs and wij is the standardised SNP genotype, the 153 additive genetic variance captured by all SNPs is ( ) =  (Box 1).  154  155 In part 8 of the Supplementary Note we list five scenarios where GREML (or the GCTA tool) is 156 misused, resulting in potentially misleading results. In addition, there is often a question about 157 whether the SNPs included in GREML analysis need to be pruned for LD. As discussed above, 158 GREML accounts for LD so that LD pruning is not necessary (but see later for discussion of bias 159 due to the non-random distribution of causal variants with respect to LD). LD pruning using a 160 high r2 threshold might increase the estimate but the likelihood of the model is not improved 161 (Fig. 3b). We need to be cautious about interpreting the GREML estimate from pruned SNPs 162 because of the change in MAF spectrum of SNPs by LD pruning (Fig. 3c). Changing the set of 163 SNPs means that the underlying parameter being estimated (i.e. ℎ  for a set of LD- pruned 164 SNPs) is different from the original parameter (i.e. ℎ  for all SNPs).  165  166 

Bias due to non-random distribution of causal variants with respect to LD 167 We have mentioned above that ℎ  using WGS data could be a biased estimate of h2 if the LD 168 property of causal variants is different from that of the other variants14,29,30,34. The unbiasedness 169 of GREML to estimate h2 using WGS data depends on the ratio of  (mean LD r2 between 170 causal and non-causal variants) to  (mean LD r2 between non-causal variants)14. Note that 171 because r2 is a function of MAF, difference in MAF spectrum between causal and non-causal 172 variants will lead to a difference in LD (i.e. MAF-mediated LD bias), resulting in a bias in ℎ . 173 One solution is to stratify SNPs by MAF (i.e. MAF-stratified GREML, GREML-MS)14,33,35, which 174 reduced bias in the estimate due to MAF-mediated LD bias. However, a more general approach is 175 to not rely on a specific model of the interplay between allele frequency, effect size and LD, but 176 instead stratify SNPs by MAF and LD jointly and estimating genetic variance with MAF-LD 177 subsets. This approach, termed GREML-LDMS, appears to provide unbiased estimates of h2 as 178 
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well as the contributions of common and rare variants to h2 in simulations based on WGS data 179 regardless of the underlying genetic architecture and distribution of causal variants with respect 180 to MAF and LD14,36. We recommend the use of GREML-LDMS to estimate ℎ  in imputed data 181 (part 9 of the Supplementary Note). The applications of GREML-LDMS to WGS data sets with 182 rich phenotypes in the future will be able to provide nearly unbiased estimates of h2 in unrelated 183 individuals and quantify the variance explained by all rare variants for a range of complex traits. 184 However, large sample sizes are required to estimate ℎ  with useful precision because 185 var(ℎ ) depends on sample size and variant density37 (part 4 of the Supplementary Note), 186 e.g., a sample size of ~33,000 is needed to get an SE of 0.02 for WGS data. 187  188 Speed et al.29 proposed a method called LDAK to correct for the LD bias. The basic idea is to 189 weight each SNP by a factor inversely proportional to its LD with SNPs nearby. This weighting 190 strategy can introduce MAF bias because it gives more weights to SNPs with lower MAF 191 (supplementary figure 2 of Yang et al.14) as LD is a function of MAF28. The LDAK model implicitly 192 assumed that variance explained by a rare variant (e.g. 0.001 < MAF < 0.01) is more than 10 193 times larger than that by a common variant (e.g. 0.1 < MAF < 0.5) (based on the LDAK weights 194 calculated from a sequenced reference set14). This an unrealistic model because it predicts that 195 we would have orders of magnitude higher power to detect rare variants than common variants, 196 a prediction not consistent with empirical results, e.g., human height15,38, schizophrenia17,39 and 197 type 2 diabetes 40. The LDAK-induced MAF bias can be substantial especially when there is a 198 large number of rare variants (e.g. in a WGS data set), leading to an inflated estimate of h2SNP 199 (ref14).  200  201 The LDAK model has recently been changed substantially41. Two new parameters have been 202 added: one is a weighting according to MAF and the other is a weighting according to imputation 203 accuracy. Although it is not the justification for these two new parameters, both give more 204 weight to common variants than the original LDAK model41. The revised LDAK model is now 205 more similar to GREML-LDMS14, but not identical, since Speed et al.41 estimate a higher SNP 206 heritability from their empirical analyses on a range of traits. In simulation studies to compare 207 the methods, the results depend on the model used to simulate the data. Unfortunately we 208 cannot be sure which is the correct model for any given trait. GREML-LDMS makes fewer 209 assumptions about the relationship between causal variants, LD and MAF and thereby appears 210 to be more robust than the revised LDAK method36, although at the expense of estimating more 211 parameters. On balance, we conclude that this topic merits further investigation36, since the 212 relationship between local LD, locus heterozygosity and additive genetic variance for complex 213 traits has not yet been resolved, and indeed may differ across the genome and between traits.  214 
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 215 

Assumptions about relationship between effect sizes and allele frequencies  216 Under an evolutionarily neutral model, the proportion of variance in a polygenic trait explained 217 by all variants in a MAF bin is linearly proportional to the width of the MAF bin14 (variance 218 explained by a rare variant, on average, is tiny but there are a large number of them). Therefore, 219 a significant deviation of the observed variance explained in a MAF bin from the expected value 220 is evidence that the trait has been under natural selection14,42. In GCTA-GREML, we standardise 221 the SNP genotypes and assume the effect size per standardised genotype (ui) follows a normal 222 distribution. This implicitly assumes larger per-allele effect (bi) for a SNP with lower MAF, 223 consistent with a model of purifying selection where variants with larger effect sizes tend to be 224 under higher selection and therefore are more likely to be at lower frequencies (e.g. MAF < 0.1). 225 There is an option in GCTA to run GREML assuming that effect size is independent of MAF 226 (neutral model). However, the difference between the two models is trivial in GREML-MS 227 analysis14. Moreover, GREML-MS allows the data to reveal the relationship between variance 228 explained and MAF. One of the important extensions of GREML in the future is to estimate 229 directly from the data a parameter to quantify the relationship between bi and allele frequency 230 whilst fitting a mixture distribution to the joint effects of SNPs43 (part 10 of the Supplementary 231 

Note).  232  233 

Comparison with HE regression 234 As described in Box 1, the GREML analysis is based on an MLM that is equivalent to fitting the 235 additive genetic values of all individuals, i.e. = +  with var( ) = ( ) + . The 236 variance components in this model are usually estimated using the REML approach. However, 237 the REML algorithm is computationally intensive (part 11 of the Supplementary Note). 238 Alternatively, ( ) can be estimated from Haseman-Elston (HE) regression37,44, i.e. 239 = + + , where = ( ). The performance of GREML has been compared 240 using extensive simulations in Golan et al.45 in ascertained case-control studies where GREML 241 estimates can be biased especially when /  is small and disease prevalence is low.  We also 242 performed simulation to compare the two methods with an emphasis on the SE under a 243 polygenic model (part 12 of the Supplementary Note). HE regression is computationally much 244 more efficient but slightly less powerful than REML as the SE of ℎ  from HE regression is 245 larger than that from REML (Supplementary Table 1 and part 12 of the Supplementary Note). 246 The small difference in SE between the methods might not be important when the sample size 247 becomes very large. For example, given ℎ  > 0.1, whether the SE is 0.01 (REML) or 0.015 (HE 248 regression) does not make any difference in making statistical inference whether ℎ = 0. HE 249 
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regression can also be used to estimate multiple genetic components, e.g. multiple sets of SNPs 250 stratified by MAF or chromosomes (Fig. 4), or to estimate genetic correlations between traits 251 (Supplementary Table 2). These analyses have been implemented in the latest version of GCTA 252 (GCTA-HE) (URLs). In addition, phenotype correlation – genotype correlation (PCGC) regression 253 is an implementation of HE regression designed for disease data to attenuate the biases in 254 ascertained case-control studies22,45 (URLs).  255  256 

Non-additive genetic variation 257 The GREML approach has been extended to estimate dominance genetic variance tagged by 258 SNPs in unrelated individuals based on a classical quantitative genetics model46. Similar to the 259 additive GREML method, the dominance GREML model fits the additive and dominance effects of 260 all SNPs as two sets of random effects in an MLM. This is an orthogonal model because the 261 additive and dominance genotype variables and thereby the additive and dominance GRMs are 262 independent. On average across 79 quantitative traits, additive genetic variation explained ~15% 263 of the phenotypic variance and dominance genetic variation explained ~3% of variance46. The 264 ratio of additive to dominance variance is consistent with what is expected from theory47. The 265 method can be further extended to estimate genetic variance attributable to epistasis48 based on 266 the classical quantitative genetics model49, = + + + + + , where  and 267  are the additive and dominance genetic values of an individual, and ,  and  are the 268 additive-by-additive, additive-by-dominance, and dominance-by-dominance epistatic genetic 269 values respectively. However, the sample size will need to be very large to get a precise estimate 270 of epistatic variance because the variance in epistatic genetic relationship between unrelated 271 individuals is very small. For instance, the genetic relationship for  is  which has a 272 variance of 2[var( )]  (ref49). For HapMap3 SNPs, var ≈ 2.0 × 10  so that the variance 273 in genetic relationship for  is ~1.0 × 10 , meaning that we will need over a million 274 unrelated individuals to estimate the variance explained by  with an SE < 0.05 (> 4 million 275 unrelated individuals to get SE < 0.01). The variance in dominance genetic relationship is 276 smaller than additive genetic relationship. Therefore, it will be even more difficult to estimate 277 variance for  or . 278  279 

Estimating  and rg from GWAS summary data 280 We have discussed above the MLM-based approaches to estimate ℎ  using individual-level 281 GWAS data. There are other methods that are able to estimate ℎ  from GWAS summary data 282 (estimated SNP effects and their standard errors for all SNPs analyzed in a study)50. For example, 283 the AVENGEME method that uses maximum likelihood to estimate the genetic variance of a trait, 284 the proportion of genetic variants affecting the trait, and the genetic covariance (and therefore 285 
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genetic correlation) between traits from the test-statistic for association between phenotype 286 and polygenic risk score (PRS)51,52.  We can also estimate ℎ  directly from summary data 287 utilizing the deviation of the observed χ2 test-statistic for a SNP from its expected value under 288 the null hypothesis of no association56 (part 13 of the Supplementary Note). This is the basic 289 principle of the recently developed LD score regression approach (LDSC)53. This approach 290 requires only the summary-level data from GWAS because LD scores can be estimated from a 291 reference sample (e.g. the 1000 Genomes). LDSC has been extended to estimate rg between traits 292 using summary data54, which allows the traits measured on different samples regardless 293 whether there is an overlap between samples (and the proportion of sample overlap is 294 estimated), and to partition ℎ  by functional annotation55. This method provides great 295 flexibility for researchers to estimate rg between any two GWAS data sets. Both GREML and 296 LDSC aim at estimating the variance explained by all SNPs used in GWAS. However, there are 297 distinct differences between the two methods. LDSC is orders of magnitude faster than GREML, 298 and the computing time for LDSC does not scale up with sample size. LDSC only requires 299 summary-level data, which allows the re-analysis of summary data available from published 300 meta-analyses. There are also limitations for LDSC. LDSC is not applicable to estimate the 301 variance explained by rare variants (e.g. MAF < 0.01) using either imputed or WGS data36 nor the 302 variance explained by SNPs in small genomic regions (although the latter has been overcome by 303 the HESS method developed recently56), and is more sensitive to genetic architecture of the trait 304 (Supplementary Table 3). Result from a previous study shows that ℎ  from LDSC are 305 consistently smaller than those from GREML in the same data set57, which is likely due to the 306 errors in LD scores estimated from the reference (by default LDSC uses LD score from HapMap3 307 SNPs in 1000 Genomes). We therefore advise using LD scores from the data used to generate the 308 GWAS summary statistics. While this may not be possible for published summary statistics, it 309 should be possible for large cohorts such as the UK Biobank. It is noteworthy that LDSC will 310 suffer bias in a similar way as GREML if causal variants are non-randomly distributed with 311 respect to LD. The estimate of  from bivariate LDSC is consistent with that from bivariate 312 GREML but the Jackknife SE of ̂  from LDSC is larger than that expected from the approximation 313 theory37,54,57. 314  315 

Summary 316 We have provided a perspective of the methods for estimating SNP-based heritability in 317 unrelated individuals using GWAS data. We emphasized that the GREML approach accounts for 318 LD when estimating ℎ  and actually utilizes LD to tag causal variants if they are not observed. 319 We discussed the concepts and assumptions of the methods and scenarios under which the 320 estimates could be biased, the methods could be misused and the results could be 321 
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misinterpreted. We further discussed the extensions and applications of the methods in large 322 data sets in the future (Box 2). These future directions could expand our understanding of the 323 genetic architecture for human complex traits and inform the design of future experiments to 324 fully dissect genetic variation and genetic correlations. 325  326 

URLs 327 GCTA: http://cnsgenomics.com/software/gcta/ 328 GCTA-HE: http://cnsgenomics.com/software/gcta/he.html 329 PCGC: https://www.hsph.harvard.edu/alkes-price/software/ 330 LDSC: https://github.com/bulik/ldsc 331 
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Box 1. Statistical model used in the GREML approach to estimate  477 The statistical model used by GREML can be described in its simplest form as 478  = +   479 where y is an × 1 vector of standardised phenotypes with n the sample size, = { } is an 480 ×  standardised SNP genotype matrix with m the number of SNPs, = { } is an × 1 481 vector of the additive effects of all variants when fitted jointly in the model,  ~ (0, ) with I 482 an identity matrix, and e is a vector of residuals, ~ (0, ). An equivalent model is 483  = +   484 where  ~ (0, ( )) with ( ) the additive genetic variance captured by SNPs, 485 

( ) = , = / , and ℎ  = ( )/[ ( ) + ]. The parameters to be estimated 486 are ( ) (or ) and . The matrix A describes the variance-covariance structure of the 487 random effects g, and is assumed to be known in the estimation process. In practice, A is called 488 the SNP-derived genetic (or genomic) relationship matrix (GRM) and is estimated from the SNP 489 data. The estimate of ( ) from GREML can be described as the estimated variance explained 490 by all the SNPs ( ) or equivalently as the estimated genetic variance by contrasting the 491 phenotypic similarity between unrelated individuals to their SNP-derived genetic 492 similarity13,58,59. 493  494 

495 
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Box 2. Future applications of SNP-based heritability to large datasets 496 The methods for estimating ℎ  can be extended and applied to large data sets in the future. 497 These future directions include  498 i) Applications of GREML-LDMS or similar approaches (that account for bias in ℎ  due to LD 499 bias) to in-depth WGS data to obtain nearly unbiased estimates of h2 for a range of complex 500 traits and quantify the variance attributable to all rare variants;  501 ii) Methods that provide an unbiased estimate of h2 from identity-by-descent information 502 inferred from SNP array data60;  503 iii) Methods to estimate ℎ  from pedigree data accounting for common environmental effects 504 and assortative mating;  505 iv) Fast Bayesian MLM approaches based on flexible models that are applicable to WGS data to 506 estimate the distribution of effect sizes of all variants;  507 v) Methods to estimate ℎ  free of assumptions about the relationship between per-allele effect 508 and allele frequency43.  509 

 510 

511 
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Figure Legends 512 

 513 

Figure 1. Interpretation of estimated genetic variance depends on ascertainment of the 514 

sample. Shown in red are pedigree-based heritability estimate (ℎ ) for height from 2,824 515 pairs of full siblings in the UK Biobank (UKB) data 61 (“5k related” on the left; sibling correlation 516 = 0.520), ℎ  from a GREML analysis of 35,000 unrelated UKB individuals using all the 517 genotyped SNPs (“35k unrelated” on the right), and the estimates in between from GREML 518 analyses in a mixed sample of unrelated and close relatives (part 2 of the Supplementary Note). 519 The difference between ℎ  and ℎ  demonstrates the genetic variation (due to rare variants 520 in particular) not tagged by genotyped SNPs and/or confounding in ℎ  from common 521 environmental effects and non-additive genetic variation. Shown in green are the results from 522 the same analyses as above for a simulated phenotype based on a common environmental model 523 without genetic effect (part 2 of the Supplementary Note). Error bars indicate the standard 524 errors of the estimates. 525 

 526 

Figure 2.  Relationship between SNP-heritability on the liability scale ( ( )) and SNP-527 

heritability estimated from case-control samples. The figures show that the same estimate of 528 ℎ ( ) a) 0.1, b) 0.2, c) 0.4, d) 0.6 on the liability scale can correspond to a wide range of SNP 529 heritability estimates from case-control samples on the observed 0-1 scale (part 5 of the 530 

Supplementary Note), depending on the proportion of cases in the sample (P) and the assumed 531 lifetime risk of disease (K) used to transform the estimates to the liability scale. For each plotted 532 line the minimum value assumes a population sample with P = K. In real-application we advise 533 investigating the sensitivity of estimates of ℎ ( ) to choice of K, but we find that the impact is 534 small when K < 0.05. As shown in the bottom panels of the figure, for a rare disease with high 535 ℎ ( ), ℎ ( ) is expected to be larger than 1 because of the non-linear relationship between 536 genetic variance and phenotypic variance on the observed 0-1 scale. 537  538 

Figure 3. Estimation of genetic variance depends on ascertainment of SNPs and genetic 539 

architecture. In panel (a), shown are the estimates of ℎ  using SNPs on six different SNP 540 panels for a simulated traits under two scenarios: 1) causal variants are random with both 541 common and rare variants (red) and 2) causal variants are rare (green) (see part 7 of the 542 

Supplementary Note for details of the simulation). The six SNP panels are Affymetrix 6.0 array 543 (affy6), Affymetrix Axiom array (affyAxiom), HapMap 3 project (HM3), Illumina OmniExpress 544 (illu1M), Illumina Omni2.5 (illu2M) and Illumina CoreExome (illuCoreE). In panel (b), we show 545 the effect of LD pruning on ℎ  and the likelihood ratio test (LRT) statistic. LD pruning was 546 
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performed based on HM3 SNPs in PLINK (--indep-pairwise 50 5 r2) with the LD r2 threshold 547 shown on the x-axis. The last column with r2 threshold of 1 represents the result without LD 548 pruning (i.e. all HM3 SNPs). The GREML analyses were performed using common SNPs on HM3. 549 Shown in panel (c) is the distribution of MAF of HM3 variants after LD pruning with different r2 550 thresholds (no pruning for r2 threshold of 1.0). 551  552 

Figure 4. Multiple component GREML or HE regression for sets of SNPs stratified by MAF. 553 Results are ℎ  with its SE (error bar) in each MAF group averaged over 200 simulation 554 replicates using ~11,500 unrelated individuals (SNP-based relatedness < 0.05) and ~550,000 555 genotyped SNPs after standard quality controls. In each simulation replicate, 1,000 SNPs were 556 selected at random as causal variants with their effects sampled from a standard normal 557 distribution with mean 0 and variance 1. The true heritability was 0.5 (roughly 0.1 per MAF bin).  558 The SE of the estimate from HE regression was calculated using the Jackknife approach where 559 one individual was left out at a time.  560 
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