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Abstract 

We present an agent-based method which makes use of reinforcement learning in order to estimate the efficiency of a Port 
Community System. We have evaluated the method using two weeks of observations of import containers at the Port of Brisbane 
as a case study. Three scenarios are examined. The first scenario evaluates the observed container delivery by individual shipping 
lines and estimates the consignments allocated to the various road carriers based on optimizing the individual shipper’s total 
logistics cost. The second scenario implies that, in the optimum case, all agents (shipping lines and road carriers) communicate 
and cooperate through a single portal. The objective of cooperation is in sharing vehicles and creating tours to deliver shipments 
to several importers in order to reduce total logistics costs, while physical and time window constraints are also considered. The 
third scenario allows for some agents to occasionally decide to act based on individual costs instead of total combined logistics 
costs. The results of this study indicate an increase in the efficiency of the whole logistics process through cooperation, and the 
study provides a prototype of a Port Community System to support logistics decisions. 
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1. Introduction 

While billions of dollars are spent on infrastructure to move freight more efficiently, the complexity of the freight 
market and the lack of collaboration between the various agents in this market often lead to sub-optimal use of that 
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infrastructure. Freight agents mostly aim for profitable and safe operations, and they share or interact with the same 
infrastructure. These agents include shippers, carriers, terminal operators, and logistics solution providers such as 
freight forwarders. Yet, due to data confidentiality and competition among freight actors, there is poor information 
sharing, contributing to the sub-optimal use of infrastructure.  

 Ports are the primary interface in the import-export industry and play an important role in driving economic 
growth. Currently, many port authorities play a minimalist role as a landlord, only providing the necessary 
infrastructure to shippers and carriers in the port. Individual freight agents (e.g. shipping lines) optimize their own 
logistics process while not coordinating with other shipping lines, which may result in more truck movements than 
necessary and incurring higher transport costs. In this context, freight agents may be aided by the exchange of 
information concerning road traffic conditions, real-time availability of drivers and carriers, and opportunities for 
bundling of shipments into fewer vehicles. In the literature, this information exchange has been called a “Port 
Community System (PCS)”, formally defined as a holistic, geographically bounded information hub in a global 
supply chain that primarily serves the interest of a heterogeneous collective of port-related companies1. 

The PCS helps port authorities take the lead by providing a logistics solution to private actors, encouraging them 
to share information that may lead to lower logistics costs, to faster delivery/pickup in the import/export chain, and 
to higher customer satisfaction. Bringing all users together enhances the efficiency of the physical flow of freight, 
drives economic growth, and as a secondary result, assists in reducing externalities such as pollution, congestion, 
and land use impacts. For example, the PCS helps transport yards and container parks to predict and plan future 
shipments and helps carriers to better plan for their fleets. The benefits of the PCS have been seen in several 
examples (see Srour, van Oosterhout 1), namely the Port of Rotterdam (Portbase), the Port of Hamburg (DIVA: 
Dynamic Information on Traffic Volumes), the Port of Antwerp (CCS Dakosy), the Port of Valencia, and the Port of 
Singapore (Portnet Trade Exchange). 

The purpose of this study is to develop a multi-agent-based simulation model to examine an application of the 
PCS, allowing shipping lines to coordinate the delivery of import containers for shipment bundling and routing 
decisions. According to Malone and Crowston 2, coordination means managing the interdependencies among 
activities. Coordination here explicitly is defined as the ability to bundle shipments and to share vehicles for 
delivering containers to various destinations. 

A multi-agent-based simulation consists of several agents who are interacting in an environment. This modeling 
technique captures the explicit decision making of various actors, representing their management of resource and 
time constraints and their reaction to various policies. Agent-based models have been adopted in several domains, 
such as the interactions of economic agents in financial markets (e.g., Xu and Chi 3, Bonabeau 4 and Taghawi-Nejad 
5), supply chain management for single firms, and the activities in fleet management including scheduling, 
dispatching or terminal management (e.g., Bouzid 6, Burckert, Funk 7, Henesey 8 and Dong and Li 9). For freight 
transport systems, this approach seems very suitable to illustrate competition and interaction among agents. 
INTERLOG (Liedtke 10) and TAPAS-Z ((Holmgren, Dahl 11) are examples of agent-based freight transport models 
at the regional level. 

 In addition to simulating the current situation, agent-based methods can be applied to examine various policies 
by changing the environment and observing how agents behave in the new environment. For example, Taniguchi, 
Yamada 12 developed a multi-agent-based model (including shippers, carriers, and administrators) on a small test 
network to study the effects of road pricing on shippers’ and carriers’ strategies. Abdul-Mageed 13 examined a 
coordinated truck assignment system for five trucking companies, comparing direct competition with cooperation by 
sharing vehicles. Results showed that the coordinated assignment system improved the transport process in terms of 
decreasing the number of empty trips and the number of late arrivals.  

This study examines the impacts of the PCS on an inland container transport system in which shipping lines 
learn whether to act individually or to cooperate in order to deliver import containers, while maintaining the 
objective to minimize logistics costs. The total logistics costs consider time-based and distance-based operational 
costs, the capacity and fixed cost of vehicles, the road network operating constraints for larger trucks, and the fixed 
time windows for importers. This study contributes to the literature by implementing a reinforcement learning 
algorithm in a joint routing and vehicle type decision-making process through the PCS. Accordingly, three scenarios 
have been tested. In the first scenario, the choices of vehicle type and delivery routing are optimized individually by 
shipping lines. In the second scenario, all deliveries are managed by the PCS. In the third scenario, each shipping 



 Irannezhad, Hickman, Prato/ Procedia Computer Science 00 (2017) 000–000 3 

line decides whether to cooperate with others through the PCS or to act individually. Shipping lines learn the 
optimal strategy through a Q-learning algorithm, which is a type of off-policy reinforcement learning method. In Q-
learning, agent behaviors can be defined using a simulation system, allowing agents to perform independent actions 
but also to learn through experience to obtain specific objectives. 

2. Methods 

2.1. Model specification 

A multi-agent-based system consists of agents and the environment where the agents are in interaction with each 
other. Each agent’s actions follow predefined rules. Given the fragmentation of the container transport industry, a 
multitude of actors collaborate within a transport system, and significant time and budget are allocated to this 
interaction, as shown in Fig. 1.a. Some of the actors provide physical transport, located in either the port or the 
hinterland (e.g., stevedores, carrier companies, distribution centers, container parks), while others provide logistics 
services (e.g., freight forwarders, shippers). 

  

Fig. 1. Communication between individual port-related freight agents (a) without the PCS and (b) with the PCS 

The agents in this model consist of importers, shipping lines, and road carriers. Importers/exporters, as the 
owners of shipments, have a given number of containers, the time-windows of delivery for those containers, and 
their origin/destination locations. There are two types of road freight vehicles, including semi-trailers and B-double 
trailers, which have different capacity and cost attributes. Shipping lines, as the main logistics providers, collect and 
distribute the import/export containers within the prerequisite time-windows and choose an optimum vehicle and 
route. The environment consists of discrete states of the freight market (shipments to be delivered daily) and a 
physical road network in which B-doubles are not allowed to operate on some road segments. 

In the first scenario (the current situation, shown in Fig. 1.a.), the simulation outcome is achieved with individual 
shipping lines acting independently, while in the second scenario the simulation outcome is the result of full 
cooperation of all shipping lines to deliver their shipments through the PCS (shown in Fig.1.b). Notably, in the third 
scenario, in each of 50 discrete simulations (steps), each shipping line is given the opportunity to explore and exploit 
these two options (individual vs. cooperative delivery plans) for 14 days (with 1 day exhibiting 1 “state” of the 
environment) by learning through an off-policy reinforcement learning (RL) algorithm called Q-learning. 

An RL algorithm is a computational method in which an agent is trained to take the optimal action through a 
learning process. The agent takes action based on a predefined policy, predicts a value for that action, experiences 
the actual outcome for every state (day), and then compares this prediction (expected) to the experience (observed). 
Q-learning is the most salient RL algorithm, and it is defined as14:  



4 Irannezhad, Hickman, Prato/ Procedia Computer Science 00 (2017) 000–000 

 1 1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a             (1) 

where: 
Q(st, at): Value of taking action at in state st. 
rt+1: Reward from the environment in step t+1. 
α: The learning rate, a value between 0 and 1, where a higher value represents faster learning. 
γ: The discount factor, a value between 0 and 1, where a smaller value represents a more short-sighted agent, with 

the extreme 0 standing for an agent who only considers the current rewards.  
max Qa (st+1,a): The maximum reward that is expected to be achieved in the following state, if action a is chosen. 

In this model, the action-value function Q(st,at) is defined as the savings in the total logistics cost for action at 
compared to other actions, where the logistics cost are a summation of the cost due to time-windows violations, the 
operational costs attributed to travel time and distance, and the fixed costs of a road carrier. Travel time and distance 
are determined based on the result of the optimum routing in every state st (the environment on day t), where the 
optimum routing is obtained from the solution to the “capacitated vehicle routing problem with time-windows” 
(CVRPTW). The CVRPTW model is a combinatorial optimization problem which determines the optimal set of 
routes for a fleet of vehicles to traverse in order to deliver containers to a given set of customers considering vehicle 
capacities, delivery time windows, driver work rules, and network constraints for some vehicles. Accordingly, the 
optimum vehicle type is chosen within the solution to the CVRPTW. The algorithm for solving the CVRPTW is as 
follows: 

 

Fig. 2. Q-learning algorithm of shipping lines  

Python code was developed to implement the algorithm, calling the geo-processing tools of ArcGIS to solve the 
CVRPTW. It should be noted that, since each shipping line decides individually which action to take, the predicted 
value of action max Qa(st+1, a) will not necessarily match what will be experienced in every episode (rt+1).  

2.2. Data 

The case study focuses on container shipments entering the Port of Brisbane (Australia). The dataset was 
provided by the Port of Brisbane Import/Export Logistics Chain Study15 and includes details of individual container 
movements: identification number, timestamps of arrival and departure, postcodes of origin and destination, weight 
of shipment, and size of container. This study focuses on the movements of full containers in import chains (1942 
records) which are mainly destined into the suburbs of Brisbane. There are 137 agents (shipping lines) who 
delivered 1942 containers to 248 postcodes. The road network consists of 18,890 links and 22,700 nodes, from 
which only 5338 links allow B-doubles to operate. 

Step 1: Initialize Q (s0, a0) for each agent (137 shipping lines), where a0 = individual action, s0 = all shipments to be delivered in first day, 
      Q (s0 , a0) = savings in total transport cost for all shipments for the first day, comparing each shipping line acting independently to all 
shipping lines cooperating  
Repeat for each episode (50 simulations) until st is terminal: 

Step 2: Initialize state st (st = 1..14 days) 
Step 3: Choose at (independence or cooperation) using an action-taking policy. We use ε = 0.2 which means 20% of the actions involve a 

random action and 80% of the actions the optimum action is taken. The optimum action is the action which has delivered the 
highest Q-value in the last 5 episodes. 

Step 4: Observe the next state (st+1 = all shipments in next day) and associated savings in total logistics cost (rt+1) resulting from action at 

Step 5: Update action-value function by  1 1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a      where α= 0.7, γ = 0.3 

Step 6: Move to the next state 
1t ts s  ; 
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3. Results 

The principal measures of performance for the three scenarios, and the results, are shown in Table 1. The 
comparison between these measures confirms the benefits of cooperation through a PCS, in line with the literature13. 
The analysis of the results reveals that, in cooperation, the number of visits in each tour increases by using larger 
vehicles, while the total distance traveled and consequently the total logistics cost decrease. 

Table 1. Results 

 Scenario 1:  

Individual action 

Scenario 2:  

Full cooperation 

Scenario 3: Q-learning result in 50th episode  

Cooperating agents Individual agents Sum 

Total logistics costs ($) 2,238,925 1,947,616 1,603,323 367,158 1,970,481 

Time-based operating costs ($) 311,864 260,587 209,341 57,689 267,030 

Distance-based operating costs ($) 1,926,725 1,686,863 1,393,836 309,390 1,703,226 

Number of trips by B-doubles 253 591 466 40 506 

Number of trips by semi-trailers 1,174 747 550 296 846 

Total number of trips 1,427 1,338 1016 336 1,352 

Total travel time (hr) 3,448 2,929 2,406 558 2,964 

Total distance (km) 159,343 135,222 111,143 25,770 136,913 

Figure 2 indicates the Q-value function for ten major shipping lines (expressed by their name’s acronym) who 
operate through the Port of Brisbane. Interestingly, the savings in logistics costs in cooperation are generally higher 
for shipping lines who have fewer shipments to deliver, while cooperation sometimes imposes a higher logistics cost 
upon the major shipping lines. This is  why some shipping lines would prefer individual action over cooperation in 
the proposed RL algorithm, and leads to less total improvement compared to the full cooperation approach. 

 

Fig. 2. Q-values for top ten shipping lines during 50 episodes (α = 0.7, γ =0.3, ε=0.2) 

4. Discussion and conclusions 

This paper provides insight into the benefits of adopting the PCS for private actors in terms of increasing 
efficiency, profit, and infrastructure utilization. The agent-based model developed in this study is based on the 
notion that freight markets are not usually in a stable equilibrium, as simplistically assumed in traditional modeling 
approaches16, because agents are highly heterogeneous and should have a degree of freedom to choose non-optimum 
actions. The results prove that the cooperation between shipping lines in sharing vehicles through the PCS can 
decrease the total travel distance and total logistics cost as well as improve the vehicle utilization. Further avenues 
for research are foreseen based on the limitations of this study: 

 Postcodes were the only information about the container destinations, and we assumed the same destinations 
for all containers sharing the same postcode. 
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 Travel time is assumed to be a function of only distance, while in reality it is a function of traffic volumes 
that vary dynamically by time of day. 

 There is no information on time windows (working hours of agents and/or desirable receiving time for 
specific containers), nor of the costs of time window violations or late delivery. Thus, in this study, time 
windows for customers were assumed to be the observed destination timestamp plus or minus a 30 min 
threshold. 

 The parameters used in the Q-learning algorithm should be chosen (or calibrated) based on the actual agent 
behavior. Calibration and sensitivity analysis for the parameter values (alpha, gamma, and epsilon) will be 
included in the future studies. 

There are also a number of additional strategies to consider with the PCS. First, by taking into account the empty 
container and export chain, we can better plan to balance the empty and full container movements by having more 
efficient container movement in the hinterland. Second, by adding the truck mass restrictions on the road network, 
and also the dynamic travel time of links, routing will better match reality. Third, the probability of choosing each 
action (ε) can be obtained through developing a discrete choice model, using parameters from previous studies, 
developing a sample case–study, or developing a game (e.g. SMUrFS17). Last, about half of the import containers 
were stored at transport yards for several hours or days. By including the costs of storage and handling at transport 
yards, the choice of using transport yards can also be modeled jointly with vehicle type and routing. 
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