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Experimental Study of Cold Inflow Effect on a Small Natural Draft 

Dry Cooling Tower 

 

Xiaoxiao Li*, Hal Gurgenci, Zhiqiang Guan, Yubiao Sun 

School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, 

Australia 

 

Highlights 

 Detailed experimental data of cold inflow behaviours are presented. 

 The mechanism of cold flow and its effect on cooling tower performance is discussed. 

 A solution is proposed to deal with the problem. 

 

ABSTRACT: The heat rejection rate of natural draft dry cooling tower, as well as the 

operating performance of a power plant, can be affected by numerous ambient factors. The 

cold inflow is an unfavourable air turbulence at the top of the cooling tower and has a 

significant negative effect on the performance of natural draft cooling towers. In the present 

research, results are given for a 20 m high natural draft dry cooling tower experimental 

system tested at different ambient conditions. Several events of cold air incursion into the top 

of the cooling tower are identified and the detailed experimental data are presented. The 

experimental data show that this effect could seriously impair the thermal performance of the 

cooling tower. The water outlet temperature of the cooling tower has increased by as much as 

to 3
°
C in these tests because of the cold inflow effect. The mechanism and the solution are 

discussed based on the experimental data. The findings in this paper can lay an important 

foundation for future small natural draft cooling tower design and operation.  
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Nomenclature 

 

A  Area (m
2
) 

Cp  Specific heat (J kg
-1

 K
-1

) 

d  Diameter (m) 

Fr Froude number 

f Friction factor 

h Heat transfer coefficient (kW/m
2 
 K) 

H  Height, elevation (m) 

K  Flow resistance 

L Length (m) 

    Mass flow rate (kg/s) 

n Number 

Nu Nusselt number 

p  Pressure (Pa) 

Pr Prandtl Number 

Q  Heat transfer rate (kW) 

q  Heat flux (kW m
-2

) 

Re Reynolds Number 

T  Temperature (°C) 

U Overall heat transfer coefficient  

  (kW/m
2 
 K) 

v  Velocity (m s
-1

) 

 

Greek letters  

ρ Density, mean density (kg m
-3

) 

∆ Property difference  

 

Subscripts 

a, w Air side, water side 

bot bottom measurement level 

e  Effective 

i, o  Inside or inlet, outside or outlet 

mid middle measurement level 

t  Tube 

tow Tower 

top top measurement level 

 

 

 

 

1. Introduction 

 

Cooling towers are a core component of thermal power plants [1]. While the wet cooling 

towers use the water evaporation to discharge the heat, dry cooling towers transfer the heat to 

air. The extended surfaces or finned tubes in the water-to-air heat exchangers offer large air 

contact areas. In a natural draft dry cooling tower (NDDCT), the airflow through the heat 

exchanger is created by the density difference between the hot air inside the tower and the 

ambient air outside the tower. This cooling technology can effectively discharge the heat 

without consuming water and virtually with no parasitic power consumption. NDDCTs are 

therefore believed to be the cost effective option for the power plants located in the arid area 

[2, 3]. 

The performance of all air-cooled heat exchangers and cooling towers are affected by the 

changes in ambient conditions [2, 4, 5]. Changes in air temperature, air humidity, crosswinds, 

rain, snow, hail and the solar radiation all affect the performance of NDDCT to a greater and 

less extent. Two ambient factors, the hot ambient temperature and the crosswind, are 

considered most significant for NDDCTs and received a lot of attention in recent years [6-9]. 

He et al [7] investigated the performance of the NDDCT at different ambient conditions and 

proposed the wetted-medium pre-cooling technology to cool the air when the ambient air is 



  

hot and dry. Fahmy and Nabih [10] investigated the impact of ambient air temperature and 

the heat load variation on the performance of air-cooled heat exchangers in a LNG plant. Li 

et al [11, 12] tested the performance of a 20-m tall NDDCT under different ambient 

conditions and then validated with the numerical model. Kroger et al [2, 13] summarized the 

performance of several industrial cooling towers under windy conditions and discussed the 

effect of heat exchanger arrangement and wind-break walls on the performance of NDDCT 

subjected crosswind. Yang et al [8, 14, 15] discussed the dimensional characteristics of wind 

effects on the performance of indirect dry cooling system with both vertically and 

horizontally arranged heat exchanger bundles. Zhao et al [16, 17] simulated the cooling 

performance of a dry cooling tower with vertical two-pass column radiators under crosswind.  

Phenomena such as low pressure and vortex flow often occur around cooling towers, 

affecting the performance of the cooling tower. Re-entry of hot air back into the tower were 

reported for mechanical cooling towers [18-20]. This strange airflow behaviour is usually due 

to the limited space around the cooling tower. The unfavourable flow interaction occurs and 

result in the recirculation of the hot exhaust air. On the other hand, for natural draft cooling 

towers and chimneys having a relatively slow airflow inside, instability could exist at the top 

of the tower. The instability manifests itself with external cold air intruding into the tower. 

This phenomenon has been reported in chimneys and cooling towers where the air velocity is 

not sufficiently high. Jörg and Scorer [21] demonstrated this phenomenon by simulating the 

cold inflow in a water tank and with some supplementary investigations in air. They 

developed a correlation to predict the cold inflow to a tube based on their experimental result. 

Sparrow et al [22] reported the cold inflow during natural convection in a one-side heated 

open ended vertical channel. The cold air reversals were observed near the top of the channel. 

Modi and Torrance [23] investigated the cold inflow at the exit of buoyant channel flows. 

They discussed the influence of the Reynolds number and Froude number on the structure of 

cold inflow at moderate Reynolds number. According to their research, the cold inflow is 

associated with the premature separation of the wall boundary layer in a buoyant channel 

flow. Fisher and Torrance [24] quantified the cold inflow effect on the chimney–enhanced 

free convection experiments. Their results indicate that the overall heat transfer is 

approximately decreased by 4 percent because of the cold inflow effect. Chu et al. [25-27] 

studied the effect of cold inflow on chimney height of natural draft cooling towers. They also 

proposed the wire mesh to prevent this cold air from sinking into the chimney duct. However, 

all the above researches on the cold inflow effect were based on the lab-scale or numerical 

models. No detailed full-scale experimental data was reported and the cooling tower 

performance hasn’t been connected with the effect of the cold inflow. In fact, very few 

people paid attention to this phenomenon in the recent cooling tower research and it hasn’t 

been mentioned in the recent cooling tower experimental research [20, 28-35].  

 

The authors’ research group has been developing small NDDCT technology for small-scale 

(1-30 MW) concentrating solar thermal (CST) power generation. Existing cooling tower 

designs optimised for large steam power cycles are not optimal for such relatively small 

plants. The NDDCTs for small CST power plant would be shorter and would have slower 

moving air. Therefore, they are more vulnerable to cold inflow. In this research, a real 

renewable power plant size of 20-m NDDCT test system was developed and built at the 

University of Queensland. The performance of this cooling tower was tested at different 



  

ambient conditions and cold air incursion was observed in some of the tests. The 

experimental data of cold air incursion from the top of the cooling tower are presented in this 

paper. The mechanism of the cold inflow effect is explained by considering the negative 

effect of the cold air inflow on natural draft process and the air momentum exchange. A 

possible solution of this effect is proposed which can provide further assistance for future 

small cooling tower design. 

 

2. Experimental System 

 

2.1 Tower structure and the air-cooled heat exchanger 

 

Due to the relatively simple and low cost of the construction, this experimental cooling tower 

is constructed with a lightweight PVC membrane supported by a steel truss. This tower is 20 

m high overall and 12.52 m in diameter at both the heat exchanger level and tower outlet 

level. The tower inlet height is 5 m and the waist diameter is about 9.7 m. 18 air-cooled heat 

exchanger bundles are horizontally installed at the inlet of the cooling tower which covered 

70% of the inlet area of the cooling tower. Fig. 1 shows the overall size of the experimental 

cooling tower and the heat exchanger layout. More details of the heat exchanger bundle can 

be found in literature [12]. 

 

Fig. 1. Cooling tower configuration and heat exchanger layout 

 



  

2.2 Heater unit and instrumentation 

 

The heat input of the experimental tower is supported by a diesel-fired non-condensing boiler. 

By controlling the mass flow rate of the diesel and the pressure of the combustion room, the 

heat output of the heater can be controlled to be 400 kW, 600 kW and 840 kW. 

In order to get the performance of the cooling tower in real conditions, an extensive 

instrumentation and data acquisition system were installed for the experimental system. For 

the air side properties, 4 layers of testing sensors are installed at different locations of the 

cooling tower, as shown in Fig. 2. Each layer owns 9 temperature and humidity sensors. For 

the waterside measurement, each heat exchanger bundle is installed with one temperature 

sensor at the bundle inlet and another at the bundle outlet. The overall mass flow rate of the 

hot water is controlled by a variable speed pump and monitored by a mass flowmeter. The 

overall water inlet and outlet temperatures are measured by two temperature sensors at the 

inlet and outlet of the cooling tower. Environmental factors such as the wind speed, wind 

direction, solar irradiation are collected by a separate weather station located nearby the 

cooling tower.  

 

 

Fig. 2. Air temperature sensor layout 

Table 1 provides a list of the sensors used in the experimental system. All the sensors used in 

this study were calibrated before the test was started. The uncertainty analysis of the 

measurements is carried out based on the Type A evaluation of standard uncertainty [36]. The 

data acquisition system was designed using the National Instrument CRIO real time data 

logging and analysis system. This system uses 3 remote base stations that communicate via 

fiber optic with a dedicated PC. All the sensor data are recorded once every 1 s.  

 



  

 

 

Table 1: The sensor specs of the experimental system 

Sensors/instruments Supplier Measuring range Uncertainty/ 

accuracy 

Quantities of 

the sensor 

Air temperature Thermistor 0-150°C ±0.2°C 36 

Air humidity Vaisala 0-100% RH ±5% 36 
Water temperature TC Direct 0-90°C ±0.5°C 38 

Water mass flow Krohne 0-20 kg/s ±0.46 kg/s 1 

Crosswind velocity Vaisala 0-60 m/s ±3% 2 
Wind direction Vaisala - ±3% 2 

 

3. Experimental data of the cold air inflow  

 

3.1 General performance of the cooling tower  

 

For a NDDCT, the driving force of the heat exchange process is the temperature difference 

between the hot water and the ambient air; the cold air through the heat exchanger is driven 

by the density difference between the hot air inside the tower and the cold air outside the 

cooling tower. Thus the ambient temperature has a great influence on the performance of the 

cooling tower. Fig. 3 shows the general performance of this cooling tower at different 

ambient temperature. The heat rejection rate in this test is controlled to be 840 kW and the 

total water mass flow rate is 15 kg/s. As shown in Fig. 3, in general, the overall inlet and 

outlet water temperature increase with the increase of the ambient temperature. The average 

water temperature difference is unchanged because the cooling tower is running with constant 

heat load. The overall cooling tower water outlet temperature increased from 25°C to 37°C 

when the ambient temperature ranges from 11°C to 28°C.  

 



  

 Fig. 3. General performance of the cooling tower at different ambient temperatures 

 

3.2 Effect of the cold air inflow 

 

For the NDDCT worked in the above test ambient conditions, the performance of the tower is 

influenced by several factors simultaneously. Thus the water inlet and the outlet temperatures 

experienced several oscillations during the test. In phase A, B and C shown in Fig. 3, the 

performance of the cooling tower suffered several large turbulent disruption. The hot water 

outlet temperature increases up to 3°C compared with the steady state performance.  

 

Figs. 4-6 presents the detailed air temperature distribution inside the cooling tower during 

phase A defined in Fig. 3. The timing of these figures are relative to the start of Phase A. The 

numbers for each line present the location of the air temperature sensors as defined in Fig. 2. 

According to the experimental data, the air temperature inside the cooling tower suffered 

several obvious turbulent during the test time. At about 140 s, 400 s, 700 s, and 1600 s, the air 

temperature of all the three levels inside the cooling tower experienced several significant 

decreases. The air temperature suffered the greatest decrease between 600 s to 800 s. As 

shown in Figs. 4-6, from 600 s to 700 s, the air temperature of the top and the middle levels 

slightly increased, while the air temperature at bottom layer remained relatively stable. At 

about 700 s, most of the air temperature of the top level started to decrease, then followed the 

middle layer at about 729s and the bottom level at about 740 s. The timing of the air 

temperature variation indicated the cold air was coming from the top of the cooling tower and 

then penetrated to the bottom layer of the cooling tower.  

 



  

 

Fig. 4. Air temperature distribution at the top level: Phase A 

 

Fig. 5. Air temperature distribution at the middle level: Phase A 



  

 

Fig. 6. Air temperature distribution at the bottom level: Phase A 

Fig. 7 presents the detailed tower performance during the Phase A in Fig. 3. Fig. 7 (a) shows 

general performance of the cooling tower and the average air temperature of the three 

measurement levels inside the cooling tower. Fig. 7 (b) gives the detailed information of the 

crosswind. As can be seen in this figure, water temperature and the air temperatures at all 3 

levels are relatively stable at the beginning of the test. The average air temperature at the top 

level and the middle level are almost the same. However, the air temperatures of all three 

layers inside the cooling tower slightly decreased at about 140 s. After that, there is a slight 

temperature difference between the top and the middle. At about 400 s and 700 s, the average 

air temperatures of all three levels significantly decreased again and caused an increase of the 

temperature gap between the middle and the top layers, which lasted until the end of the test. 

During the test time, the water outlet temperature increased at 140 s, 400 s, 700 s, and 1600 s, 

which can be perfectly matched against the timing of the cold air incursion. Thus we 

conclude that the cold inflow from the top is the main reason why the water outlet 

temperature increased periodically during the test. The similar phenomenon can also be found 

in Phases B and C in Fig. 3.  

 



  

 

 

Fig. 7. The detailed performance of the cooling tower suffering cold air inflow:  

(a) Tower performance (b) Wind condition 

Fig. 8 gives another long time test data of the general performance of the cooling tower. In 

this test, the water mass flow rate was 7.25 kg/s with 840 kW heat input into the system. The 

cooling tower suffered a number of cold air incursions in this period as marked in Fig. 8. As 

in Fig. 7, the cold air incursion led to a reduction of the air temperature inside the cooling 

tower and a significant temperature gap between the middle and the top levels of the cooling 

tower. To keep the heat rejection constant, the hot water temperature had to be increased by 

the control system to compensate for the negative effect of the cold air inflow.  

 



  

 

 

Fig. 8. The performance of the cooling tower suffering cold inflow:  

(a) Tower performance (b) Wind condition 

 

An interesting observation about the experimental data plotted in Fig. 7 and 8 is that the 

effect of cold inflow becomes less significant with the increase of the crosswind. As shown in 

Fig. 7, at about 600 s and 1800 s, the wind speed is significantly higher than the rest of the 

interval. The air temperature inside the tower is the highest in this period. Similarly, in the 

11000 s to 14000 s in Fig. 8, where the crosswind speed is the highest during the test, the 

effect of cold air incursion is reduced. This region is marked by the shaded rectangle in Fig. 8. 

The air temperature in the middle of the cooling tower equals to the air temperature of the top 



  

and the performance of the cooling tower is the best during this test interval. That’s why 

water temperatures decreased a little even with the increase of the ambient temperature.  

 

Table 2 gives the experimental data of the cold air inflow effect on the performance of the 

cooling tower. ∆T air is the average air temperature change of the 27 temperature sensors 

inside the cooling tower during cold air inflow while ∆T water is the average water outlet 

temperature change compared with the steady state performance. Before the cold incursion 

occurs, there are intervals in which the general performance of the cooling tower is stable in 

short time (around 2-3 minutes) with the water temperatures staying unchanged. The average 

value calculated based on these intervals is defined as the steady state performance. The 

numerical values were computed for cold inflow events observed in the experimental traces 

given in Fig. 3. The approach temperature is selected to evaluate the effect of the cold inflow. 

The approach temperature is defined as  

                                                                   (1) 

The lower approach temperature means the hot fluid temperature can be better matched with 

the cold fluid and the thermal performance is better. As can be seen in the table, the approach 

temperature is increased with the increase of ∆Tair. This indicates the performance of the 

cooling tower is worse with more cold air getting into the cooling tower from the top. 

 

Table 2 Cold air incursion effect on the performance of the cooling tower 

Measure points 1 2 3 4 5 6 

∆T, air (°C) 0 0.71 1.01 1.25 1.52 2.13 

∆T, water (°C) 0 1.81 2.27 2.30 2.59 2.99 

Approach (°C) 15.10 16.81 17.37 17.40 17.69 18.09 

 

 

4. Discussion 

 

4.1 Mechanism of the cold air incursion on tower performance 

 

In a NDDCT, the air is forced through the heat exchanger by the density difference between 

the ambient air and the hot air inside the cooling tower. With the cold inflow at the top of the 

cooling tower, the air density difference is decreased making the driving force of the airflow 

smaller. So the performance of the cooling tower is negatively affected by the cold air inflow.  

Eq. (2) is the draft equation of NDDCT, the right side of this equation presents the driving 

force of the air flow while the left side represents the total flow resistance [2]. 

     
                                                                   (2) 

In this equation,       is the total loss coefficient of the cooling tower,    is the average air 

velocity inside the cooling tower,    is the mean air density before and after the air pass 



  

through heat exchanger,        is the density of the ambient air and         is the average air 

density inside the cooling tower. The average air densities are calculated by the air 

temperatures, which are computed using the average value measured by each temperature 

sensor. 

  

The air mass flow rate inside the cooling tower can be expressed by the following equation: 

                                                                     (3) 

and the air density can be calculated by  

  
 

  
 

(4) 

Assume      is constant, and by substituting Eq. (3) and Eq. (4) to Eq. (2), find  

   
 

   
  

       
          

    

       
          

  
 

 
  
  
  
  
 
  

      
 

      
   

  
      
 

      
 

 

(5) 

where    
 ,         

   and       
   are the air mass flow rate, air density inside the cooling tower 

and the average air temperature inside the cooling tower under the cold air incursion 

condition. 

For the air-cooled heat exchanger, the energy balance equation is given by 

                                                                (6) 

and  

      
                   

    
         
         

 
 

(7) 

The overall heat transfer coefficient of the air-cooled heat exchanger can be calculated by Eq. 

(8) 

   
 

 
    

 
          
      

 
 

    

 

(8) 

where ha is the air side heat transfer coefficient, Aa is the total air side heat transfer area, kt is 

the thermal conductivity of the tube, Lt is the length of the tube, hw is the water side heat 

transfer coefficient, Aw is the water side heat transfer area 

 

The following equations were proposed by Kroger [2] to calculate the waterside heat transfer 

coefficient in the heat exchanger: 
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(10) 

where    is the friction factor inside the tube and can be expressed by the following equation: 

                
   

   
  

   

   
          

(11) 

The air side heat transfer coefficient is provided by the heat exchanger manufacture and 

refined by the experiment data [12],  

 

              
                                               (12) 

where Rea is the Reynolds number of air. The characteristic length of Rea is the equivalent 

circular diameter of the airflow passage, which is 0.017 m for this particular heat exchanger 

 

Based on above equations, the effect of the cold air inflow on the natural draft process can be 

calculated using the following process; 

1) Input the ambient condition, get the air temperature change from the experimental 

data. 

2) Use the equation 2-5 to get the mass flow rate ratio    
      and combine    

      with 

equations 6-12 to get the performance of the heat exchanger performance under the 

cold air inflow 

3) Output    
  

 

Fig. 9 gives the comparison between the experimental data and the above analyse. The blue 

line in the figure is the linear correlation produced from the experimental data represented by 

the discrete points while the red line is the modelling result using the above simulation 

method. As can be seen in this figure, there is an obvious gap between the experimental data 

and the modelling prediction. The above numerical modelling underestimated the effect of 

cold air inflow, which indicates there might be another reason which could negatively affect 

the heat exchange process. 



  

 

Fig. 9. Cold incursion effect comparison  

According to the experimental data of section 3, the cold air comes in at the top and then 

penetrates into the bottom layers. While doing so, it meets the hot air rising to the top. When 

two fluid streams collide, a flow resistance is formed due to the momentum exchange 

between them. This further decreases the air mass flow rate through the heat exchanger, 

consequently the thermal performance of the cooling tower. In Fig. 9, the large       indicates 

a large cold air mass flow rate while the small       does the opposite. When       is small, 

the mass flow rate of the cold air from the top is small. The effect of the momentum 

exchange on the air mass flow rate through the heat exchanger is small. Increase of the water 

temperature is mainly due to the decreased natural draft effect. That’s why the blue line and 

the red line are very close when       is small. With the increase of the cold air mass flow 

rate from the top of the cooling tower, a large       is formed as well as a greater flow 

resistance for the air through the heat exchanger. Thus in high       condition, the cold air 

inflow decreased the natural draft effect and at the same time formed another flow resistance 

for the hot air. These two factors work together to influence the performance of the cooling 

tower. 

 



  

 

Fig. 10. Single process of the cold air incursion 

Fig. 10 presents a single process of the cold air incursion. As shown in this figure, this effect 

can be divided into 3 stages. At the first stage, the cold air begins to get in the cooling tower 

from the top of the tower. The average air temperatures inside the cooling tower start to 

decrease, so as the natural draft effect. Due to the decrease of the driving force for the air 

flow and an extra flow resistance caused by the air momentum exchange, less air is sucked 

into the cooling tower, which makes the situation worse. Thus the air temperature inside the 

cooling tower keeps decreasing while hot water temperature keeps increasing in this stage. 

This is however a self-correcting process. The increased hot water temperature improves the 

driving force. The second stage in Fig. 10 represents this reversal, when the air temperature 

inside the cooling tower reaches the minimum. The cooling tower suffers the minimum 

natural draft effect and the air mass flow rate is the smallest during this interval. In the third 

stage, because of the increased hot water temperature, the average air temperature inside the 

cooling tower starts to increase again and improves the natural draft effect. The performance 

of the cooling tower is becoming better in this stage. With more moving air go through the 

heat exchanger, the water temperature decreases and finally the steady state is reached again. 

 

4.2 Reason and solution 

 

As demonstrated by Jörg and Scorer [21], if the buoyant fluid in an open topped vessel is in a 

uniform environment, the surrounding fluid will flow in and replace the buoyant fluid unless 

the upward velocity is large enough. That’s why the cold inflow was observed at the top of 

the cooling towers and chimneys with relatively slow moving air. The driving force of the 

cold inflow is the density gradient between the heated air and the unheated ambient air. For 

cooling tower running in the steady state, the total pressure inside the top of the cooling tower 



  

is equal to the total pressure outside the cooling tower if the upward velocity inside the 

cooling tower is uniform. However, as shown in Fig. 2, the flow passage at the top of the 

Gatton tower is divergent. According to Sparrow’s [37] research about flow separation, when 

fluids flow through in a diverging passage, the flow regime may change and the fluids may 

not be able to follow the contour of the bounding walls. This effect may form a low speed 

zone near the divergent wall boundary layer at the upper part of Gatton tower and makes the 

inside total pressure smaller than the outside, result in the cold inflow.  

In continuum mechanics, the Froude number (Fr) is a dimensionless number defined as the 

ratio of the flow inertia to the external field which can be expressed as  

                                                                    (13) 

where v is a characteristic flow velocity, g is in general a characteristic external field, and l is 

a characteristic length.  

In cooling tower area, the previous research has proposed a densimetric Froude number based 

on the tower outlet diameter [2]. 

 

   
              

(14) 

where    is the ambient air density at the elevation of the tower outlet and   is the density of 

the air leaving the tower 

 

According to the research by Lucas and Richter [38] and Richter [39], the air flow at the 

tower outlet tends to become increasingly more unstable with the increase of the 1/FrD. Cold 

air inflow is entrained by plume for 3.05 < 1/FrD < 6 while the cold air penetrated to the heat 

exchanger level occurs when 1/FrD > 7. For this experimental cooling tower, the air velocity 

at the tower outlet is about 0.7 m/s when the ambient temperature is 30°C and the hot water 

inlet temperature is 55°C. Under this operation condition, the value of 1/FrD for Gatton tower 

is about 10. For a large industrial-scale cooling tower (58 m x 83 m x 120 m, top diameter x 

bottom diameter x height) operated at the same condition [2], the air velocity at the tower 

outlet is around 3 m/s. The value of 1/FrD in big tower is 3.8 times smaller than Gatton tower, 

result in a better resistance on the cold air incursion. That is probably why this behaviour 

didn’t get enough attention in the past because past cooling practice and analysis were limited 

to towers much taller. 

For conventional big cooling towers at heights of up to more than 100 m and with a relatively 

great wind load at the top structure, the reinforced concrete columns are used to support the 

tower. The structural strength and stability of the tower shell are the first concern for the 

geometry design of the cooling tower [40]. On the other hand, for a small cooling tower 

contains a mass of slowly moving air that is slightly buoyant relative to the surrounding air. 

The tower performance is susceptible to the turbulence at the top of the cooling tower. So the 

influence of the cold air inflow should be given extra attention in the small cooling tower 

design. The outlet diameter of the cooling tower has a significant influence on the behaviour 

of cold air inflow. Decrease of the tower outlet diameter could accelerate the air outlet 



  

velocity and therefore decrease the value of 1/FrD exponentially. A converging tower outlet is 

recommended for small cooling tower since this shape can overcome the problem of the cold 

air inflow by accelerate the air speed at the upper part of the cooling tower and avoid the 

effect of flow separation. However, the convergence shouldn’t be too excessive because the 

dynamic loss increases with the decrease of the tower outlet diameter. 

 

5. Conclusion 

 

In this research, the performance of a 20-m NDDCT (real size cooling tower for small 

renewable power plants) was tested in different ambient conditions and the phenomenon of 

the cold air incursion from the top of the cooling tower was observed. The detailed 

experimental data of the ambient condition, air temperature distribution inside the cooling 

tower and the variation of the hot water temperature are presented.  

Repeated cold air incursion events were observed that cause a significant decrease of the air 

temperature inside the cooling tower. The water outlet temperature can be increased up to 

3°C as a result of these events. Further analysis of the cold inflow mechanism shows that this 

process operates by decreasing the driving force and also forming an extra flow resistance for 

the airflow through the heat exchanger. The performance depression of the cooling tower is 

inversely correlated by a densimetric Froude Number based on the tower outlet diameter. 

This phenomenon has been observed even in tall towers in the past but the effect was not 

significant and did not receive much attention. Our results show that cold inflow phenomenon 

should be paid extra attention in small cooling tower design. One measure identified in the 

paper to mitigate this effect is to use a converging tower outlet for small NDDCTs. 
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