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Abstract Invasive species threaten endangered spe-

cies worldwide and substantial effort is focused on

their control. Eradication projects require critical

resource allocation decisions, as they affect both the

likelihood of success and the overall cost. However,

these complex decisions must often be made within

data-poor environments. Here we develop a mathe-

matical framework to assist in resource allocation for

invasive species control projects and we apply it to the

proposed eradication of the tropical fire ant (Solenop-

sis geminata) from the islands of Ashmore Reef in the

Timor Sea. Our framework contains two models: a

population model and a detection model. Our stochas-

tic population model is used to predict ant abundance

through time and allows us to estimate the probability

of eradication. Using abundance predictions from the

population model, we use the detection model to

predict the probability of ant detection through time.

These models inform key decisions throughout the

project, which include deciding how many baiting

events should take place, deciding whether to invest in

detector dogs and setting surveillance effort to confirm

eradication following control. We find that using a

combination of insect growth regulator and toxins are

required to achieve a high probability of eradication

over 2 years, and we find that using two detector dogs

may be more cost-effective than the use of lure

deployment, provided that they are used across the life

of the project. Our analysis lays a foundation for

making decisions about control and detection through-

out the project and provides specific advice about

resource allocation.
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Introduction

Islands are global biodiversity hotspots (Veitch and

Clout 2002; Dawson et al. 2015) and are often under

threat from invasive species (Courchamp et al. 2003;

Gurevitch and Padilla 2004; Bellard et al. 2016).

Fortunately, invasive species eradications often pro-

ceed on relatively small islands, making eradication

achievable and economical (Pluess et al. 2012; Baker

and Bode 2015; Holmes et al. 2015), with their

isolation mitigating the threat of re-invasion (Veitch

and Clout 2002). An eradication plan must consider

many issues including economic, occupational health

and safety, legislative requirements, and non-target

impacts, as well as ultimately provide an assessment

of the likelihood of eradication success (e.g. Howald

et al. 2007).

Due to the limited resources available for invasive

species management (McCarthy et al. 2012), it is

critical that eradication programs are cost-effective.

Modelling has an important role to play here, in

generating predictions of the outcomes from different

management actions, allowing more informed deci-

sions (e.g. Spring and Cacho 2014). Models explicitly

formalise our best knowledge of the system’s dynam-

ics and allows us to simulate these dynamics forward

through time, allowing us to assess and compare

different management strategies (Krug et al. 2010).

This process helps make decisions more transparent

and reproducible—something that conservation biol-

ogists are increasingly advocating (Gregory and Long

2009; Blomquist et al. 2010; Donlan et al. 2014).

Models have been widely implemented in various

conservation biology contexts; however, modelling to

assist in the early planning stages of an eradication

program is uncommon. Eradications have potential for

undesirable impacts, either as a direct consequence of

an action (e.g. non-target mortality) or indirect, e.g.

ecological change mediated by success (e.g. predator

release) (Zavaleta et al. 2001; Buckley and Han 2014).

When this happens, models are often developed to

retrospectively identify causal factors (Courchamp

et al. 1999; Bergstrom et al. 2009). Modelling has also

been employed to quantify the probability of success,

or alternatively, where eradication has not succeeded,

to help management understand what went wrong

(Ramsey et al. 2009, 2011; Rout et al. 2014a). Other

types of analyses include optimising monitoring effort

spatially (Hauser and McCarthy 2009; Epanchin-Niell

et al. 2012; Guillera-Arroita et al. 2014), balancing

quarantine, control and monitoring (Moore et al. 2010;

Rout et al. 2011), and modelling to assess the best

order to eradicate multiple invasive species (Raymond

et al. 2011; Bode et al. 2015). With few exceptions,

these approaches focus on a single aspect of an

eradication project and such analyses are often com-

pleted when projects are already well progressed.

In this paper we introduce a modelling framework

that can be implemented at the beginning of an

eradication project to guide resource allocation and

estimate project success. This modelling approach

predicts species abundance and detectability, allowing

us to estimate the efficacy of control efforts and

compare and optimise different detection methods.

We apply it to the proposed eradication of the invasive

tropical fire ant (Solenopsis geminata) from the islands

of the Ashmore Reef Commonwealth Marine Reserve

in the Timor Sea. The tropical fire ant, a highly

successful tramp ant native to the Americas (Fig. 1)

now displays a pantropical distribution (Holway et al.

2002). First detected at Ashmore Reef in 1992

(Hodgson et al. 2014), recent work has demonstrated

that, as a generalist scavenger and predator, tropical

fire ants have caused seabird and turtle nest failures

(Hodgson et al. 2014; Hodgson and Clarke 2014).

Elsewhere tropical fire ants have impacted native

invertebrate communities, soil seed banks and ecosys-

tem functions (Holway et al. 2002; Lach and Thomas

2008; Plentovich et al. 2009). Due to the impacts, a

pilot control program has been completed to assess

tropical fire ant control and detection at Ashmore

Reef. The aim of this study is to use available data to

inform resource allocation across the project as best

we can. Specifically, we seek to understand how

different bait types and deployment strategies affect

project success, optimise search effort when detecting

remaining colonies and predict whether canine detec-

tion could be more cost effective than lure detection.

Methods

Ashmore Reef and the tropical fire ant

Ashmore Reef includes four low lying cays dominated

by seasonal grasses and herbs that provide important

nesting areas for seabirds and turtles (Clarke et al.

2011). The tropical fire ant has a near-continuous
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distribution above the high tide line on all islands. A

pilot ant control program principally involved seven

discrete baiting events on Middle Island during 2011

and 2012, using both insect growth regulator (IGR)

and toxin (Hodgson and Clarke 2014). Ant abundance

was measured on Middle Island, using lures, on eight

occasions, before, during and after treatments. We use

‘ant activity’—the number of ants present on a lure

after approximately 30 min—as a measure of abun-

dance. Ideally we would keep track of the number of

queens in the population, as eradication is complete

only when there are no queens remaining. However,

tropical fire ant colonies can have multiple queens and

there is no efficient method to measure the number of

queens. Hence, ant activity is the best available metric

of tropical fire ant abundance in this case. The

untreated East Island was monitored on four occasions

during the same period. Detectability trials were also

conducted to assess how frequently a lure would detect

the presence of an ant colony. Eighty lure locations

were established (without prior knowledge of colony

location) and these were deployed and recovered each

morning over six consecutive days. Any non-detection

was confirmed by a visual search of the area within

10 m of the lure.

The eradication plan advises aerial baiting (deliv-

ered by helicopter) as the main suppression method for

tropical fire ants. There are two bait classes under

consideration: insect growth regulator (IGR) and

toxin. IGRs are targeted to the tropical fire ant, but

only suppress colony growth, without causing direct

mortality (Hoffmann 2011). Toxins are effective at

suppressing the tropical fire ant, but also affect other

species. Following the baiting phase, there will be a

surveillance phase, to determine if the eradication is

successful. Lures are the standard method to detect

tropical fire ants; however, trained detector dogs have

shown promise in detecting invasive species (Brooks

et al. 2003; Lin et al. 2011).

Model framework

Our framework is based around two models: a

population model and a detection model (Fig. 2).

The population model predicts the ant abundance in

the future and the likelihood that a proposed control

schedule will eradicate ants. An important part of

invasive species eradications is confirming the

absence of the species: the surveillance phase, which

happens following the control phase. Therefore, we

use a detection model to estimate the probability of

detecting ants during a survey. In this monitoring

phase, species can either be absent or present. If

present, the population model estimates abundance,

which the detection model uses to estimate the

probability of detection. This allows us to calculate

the probability of failing to detect the species, even

though it is present (false negative). The probability of

a false negative is insufficient to estimate the proba-

bility of eradication. However, using it in conjunction

with a prior estimate of absence (from the population

model) it allows us to quantify the probability of

eradication, which we detail later.

Population model

We model tropical fire ant abundance, n(t), using a

stochastic difference equation:

Fig. 1 a Indicative natural distribution of tropical fire ant (green shading) relative to the location of Ashmore Reef (black circle).

bAshmore Reef, showing the position and relative size of individual islands (red shading). All islands are occupied by tropical fire ants
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n tþ 1ð Þ ¼ n tð Þ þ 1

52
b tð Þ 1� uIGR tð Þð Þn tð Þ � dnn tð Þ½

� uT tð Þn tð Þ � dddn tð Þ2þzt
ffiffiffiffiffiffiffiffi

n tð Þ
p

i

;

ð1Þ

where t is time, measured in weeks (hence the factor of

1/52, as each of the other rate parameters are in years).

The first term is the population growth rate, influenced

by the birth rate, b(t), and the effect of insect growth

regulators, uIGR tð Þ, which takes values between 0 and

1. The second term is the natural death rate, dn. The

third term is the rate of decline of ant abundance due to

the effect of toxin, uT(t). The fourth term models the

effect of density dependence through the parameter

ddd, and the fifth term models demographic stochas-

ticity through zt, which is a normally distributed

random variable with mean l = 0 and standard

deviation r = 1(May 2001). This equation is kept as

simple as possible due to data limitations. The birth

and death rates are separated, rather than using the net

growth rate, because IGRs directly affect the birth rate,

not the death rate. The birth rate of Solenopsis spp. is

known to vary seasonally (Porter 1988), and we use a

sine function to model this:

b tð Þ ¼ B 1þM sin 2p
t� S

52

� �� �

; ð2Þ

where B is the average birth rate over 1 year, M is the

magnitude of the variation in birth rate and S defines

the time of year when the birth rate is greatest. The

birth rate must be positive, i.e. b(t) C 0, and M is a

magnitude, so must be non-negative. These conditions

dictate that B C 0 and 0 B M B 1.

The parameters uIGR; uT ; ddd;B;M and S were fit to

data (see Supplementary Information Table A.1) using

Markov chain Monte Carlo (MCMC) in Python using

least squares (full details in Supporting Information

A). Due to the relatively small dataset available, we

used other sources to set values for as many param-

eters as possible to minimise the chance of overfitting.

While we are still fitting more parameters than

preferred (given the data), there is no clear way to

further simplify our model. We assume that IGR

affects the population continuously for a fixed 4-week

time interval, which is the application frequency in the

eradication plan (Hodgson et al. 2014). The effect of

the toxin does not last as long as the effect of the IGR,

but its effect length is uncertain. Hence, we fitted our

model with the toxin effect length of 1, 2 and 3 weeks

separately.Weuse dn = 11.2 as the natural death rate of

ants (Asano and Cassill 2011). We do not vary dn
because the fitting procedure is essentially estimating

the quantities b(t) - dn and b(t)uIGR(t); altering dn
would simply cause a change in the value of b(t) and

uIGR(t), without actually changing the model dynamics.

Detection model

The monitoring phase of the eradication, which aims

to confirm the absence of ants, is implemented at the

end of the baiting phase, both in the model and on-

ground. The detection model estimates the probability

that a lattice of lures will detect an ant colony. To

calculate this, we first need to know the probability, p,

that a lure will successfully detect a nearby colony.We

believe that the likelihood of detecting a colony is

primarily dependent on the ant abundance, n(t). We

use an exponential distribution to estimate the

Fig. 2 A framework for optimising invasive species’ eradica-

tion and detection. This framework describes how decisions

about the control actions and surveillance effort are used by

models to estimate the probability of eradication. The green

boxes (control and surveillance schedules) are management

decisions. Surveillance decisions would typically (but not

necessarily) be delayed until the control phase is nearing

completion. The red boxes represent models that make

predictions and estimates about and of the future state of the

system. The population model predicts the abundance through

time and also gives an estimate of the probability of eradication.

The detection model uses the abundance prediction to estimate

the future ant detectability. This, combined with the surveillance

schedule gives the probability that the surveillance will detect

the species. Finally, this detection probability is combined with

the population model’s estimate of probability of eradication to

give an updated belief of the probability of eradication

C. M. Baker et al.
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probability that a lure detected the presence of the

tropical fire ant (McCarthy et al. 2013):

p ¼ 1� e�a�n tð Þb : ð3Þ

Model fitting was undertaken using maximum

likelihood estimation. There were 80 sites and 6 trials

at each site in the detection trial (see Supplementary

Information Section B.1 for details), so, assuming that

each trial is independent, a binomial likelihood

function is the most natural choice. We use bootstrap-

ping to estimate errors for a and b (Efron and

Tibshirani 1994). This is done by generating 1000

samples of the 80 sites (with repetition), and finding

the values of a and b that maximise Eq. (3). This

results in 1000 estimates for each parameter, for which

we report the standard deviation (see Supplementary

Information Table B.3).

It has been established that ants are capable of

finding a lure within a certain distance of the colony—

the detection radius dr—which is 3–4 m (Bellio 2007).

For a lattice of lures to detect a single colony, at least

one lure must detect presence of ants. Hence, the

probability that ants are not detected (event �D), given
that there are ants present (event A) is

P �DjAð Þ ¼
X

j

P l ¼ jð Þ 1� pð Þj; ð4Þ

where P(l = j) is the probability that there are j lures

within the detection radius of the colony (as the position

of the colony is unknown) and (1 - p)j is the probability

that all j lures fail to detect the colony. We calculate

P(l = j) numerically for a given lattice of lures by

considering all possible locations for a colony (see

Supplementary Information Section B.2). The proba-

bility of detecting a colony increases as effort (number

of lures) increases and the shape of this relationship is

shown in Supplementary Information Figure B.5. This

probability is conditional on the presence of ants. To get

a probability of eradication, we use Bayes rule:

P �Aj �Dð Þ ¼ 1� P Aj �Dð Þ

¼ 1� P �DjAð ÞP Að Þ
Pð �Dj �AÞP �Að Þ þ P �DjAð ÞP Að Þ

: ð5Þ

The probability of not detecting ants given that

there are no ants is set to 1 (P �Dj �Að Þ ¼ 1Þ, while P(A)
and Pð �AÞ are estimated from the population model,

Eq. (1), and P �DjAð Þ is estimated from Eq. (4).

Labour optimisation

Prior to any trips to Ashmore Reef Commonwealth

Marine Reserve to check for the presence of ants, the

number of staff deploying lures, or the number of

detector dogs to purchase and train, must be decided.

Having fewer staff reduces training and transport

costs, but increases the time taken to complete the

task, meaning high total overhead costs (e.g. cost of

having a boat at Ashmore Reef). We estimate all the

relevant costs (Supplementary Information Table B.4)

and solve, in general, for the number of staff to hire

and dogs to train (see Supplementary Information

Section C):

L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

overhead costs� amount of work

marginal travel costþ start � up cost
numberofuses

s

: ð6Þ

Here, L* is the optimal amount of labour to use,

which minimises the total costs. The overhead cost

is the incurred cost per day when there are ongoing

activities (e.g. the daily cost of having a boat at

Ashmore Reef). The amount of work is the number

of days that it would take one person to complete

the task (e.g. the time it would take one person to

deploy lures across all islands at Ashmore Reef).

The marginal travel cost is the extra travel cost

incurred when adding an extra person (e.g. the daily

wage of one staff member, multiplied by the travel

time). The start-up cost is the cost that must be paid

to increase the number of staff (e.g. training costs).

Finally, the number of uses is the number of times

the activity will be repeated (e.g. number of trips to

Ashmore Reef). In general, Eq. (6) will not return

an integer and the total cost of the two closest whole

numbers (either side of L*) should be checked to see

which is lowest.

Canine versus lure detection

There is no direct comparison of canine detection and

lure detection for the tropical fire ant, so we estimate

the costs of each method as a comparison. As the

canine detection rate is uncertain, we repeat this

analysis for canine detection probabilities ranging

from 0.8 to 0.98 (Lin et al. 2011). The lure spacing is

chosen, using Eq. (4), such that the detection proba-

bility matches the canine detection probability, and the

Modelling tropical fire ant (Solenopsis geminata) dynamics
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number of staff is chosen using Eq. (6) to minimise the

lure deployment cost. This is repeated for four values

of canine detection probability and three values of the

lure detection radius (3, 3.5 and 4 m).

Optimising monitoring effort

We take an economic approach to optimise the

monitoring effort for achieving eradication (Regan

et al. 2006; Rout et al. 2009a, b). This is done by

minimising the total expected costs of the detection

events and any subsequent work (see Supplementary

Information Section D). The expected costs are the

cost of the detection events themselves, along with any

‘failure cost’ associated with incorrectly declaring

eradication:

cost ¼ detection costþ P Aj �Dð Þ � failure cost; ð7Þ

where PðAj �DÞ is the probability that the eradication

failed even though no tropical fire ants were detected.

We use the projected cost of the eradication project as

the failure cost, which is $AUD 2.32 million (Hodgson

et al. 2014). The value of P Aj �Dð Þ and the detection

cost both depend on the amount of effort put into

detection. We obtain the optimal detection effort by

solving for the amount of detection effort which

minimises the total cost, Eq. (7). We note that we

solve for the optimal detection effort over two

surveillance events when seeking to declare eradica-

tion, rather than looking at ongoing surveillance at the

site (see Regan et al. 2006).

The optimal lure spacing to demonstrate eradi-

cation success, found by minimising Eq. (7),

depends on the prior probability of eradication, the

expected detectability of ants, the cost associated

with failure and the detection radius, dr. The upper

limit on lure spacing is determined by ensuring any

potential colony location would be within the

detection radius of at least one lure (lure spacing

�
ffiffiffi

3
p

dr for a triangular lattice, or
ffiffiffi

2
p

dr for a square

lattice, see Supplementary Information Figure B.6).

The optimal lure spacing also relies on the prior belief

of eradication success. At the conclusion of the control

phase it will be possible to use the population model to

estimate this prior. However, the baiting regime is not

finalised, so we model a range of prior beliefs, and we

calculate the optimal lure spacing for three values of

the detection radius.

Results

Population model and the probability

of eradication success

Our population model showed a good fit to the pilot

data (Fig. 3), parameter estimates are given in

Table 1. The tropical fire ant abundance at Ashmore

Reef varies seasonally, with ant abundance peaking

towards the end of the wet season (April). We then

simulate the probability of eradication using different

baiting strategies (Fig. 4). For each scenario we draw

1000 parameter samples and run the stochastic pop-

ulation model 100 times. For each simulation we begin

by simulating the population dynamics for 2 years to

remove any effect of the initial condition. We then

allow baiting to take place. This occurs monthly

throughout the dry season months (we allow 5 possible

baiting events) across 2 years—which accommodates

a maximum of 10 applications (IGR and toxin can be

applied simultaneously). As there are four islands at

Ashmore Reef, and ants must be removed from all

islands simultaneously, the plot is the probability of

removal from a single island raised to the power of

four. These simulations were run for 1000 parameter

sets. This model shows that eradication is only likely if

a combination of IGR and toxin is applied across the

planned ten baiting events. Using IGRs exclusively

has a 0% probability of success, while using only toxin

has at best a 30% probability of eradication. Ten

applications of IGR and five applications of toxin

results in greater than 80% probability of eradication,

and additional applications further increases this

probability.

We conduct a sensitivity analysis to see how

sensitive the estimated probability of eradication is

to the parameters. We do this for three baiting

strategies: 4, 5 and 6 applications of IGR and toxin.

For each strategy we first run the model 100,000 times

using the median parameter estimates. Then we adjust

each parameter up and down, one at a time, to the 25th

and 75th percentile value for that parameter from the

posterior distributions. For each case (one parameter

adjusted up or down and the remaining at their median

values) we run the population model 100,000 times.

The change in the probability of eradication for each

parameter and number of baiting events is given in

Fig. 5. Across all baiting regimes, the probability of

eradication is most sensitive to the baiting

C. M. Baker et al.
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effectiveness parameters uIGR and uT. The next most

important parameter is the average birth rate, R,

particularly as the number of baiting events increases.

Relative cost of canine and lure detection

The total cost for lure and canine detection, over a

range of parameters and number of detection events, is

given in Fig. 6. (Although there are currently only two

planned surveillance events, there may be other

instances of detection events throughout the project.)

The total cost increases linearly as the number of total

detection events increases. We identified three detec-

tor dogs as the optimal team size (see Supplementary

Information Section C.1). However, during any ves-

sel-based visit to Ashmore Reef there is a work plan

that imposes a minimum stay of 7 days (Hodgson et al.

2014). With this constraint, the optimal team size

reduces to two detector dogs. The high start-up costs,

but low ongoing costs, of canine detection mean that

purchasing dogs is only justifiable if they will be used

repeatedly (Fig. 6). With 10 detection events, canine

detection is at least as cost effective as lure detection

over the range of parameters considered.

IGR TIGR IGR TT B

Fig. 3 Population model fit to the tropical fire ant abundance

data during the pilot control period 2011–2012 on East Island

(orange, squares) and Middle Island (purple, diamonds). The

solid lines are the average of the stochastic model and shaded

areas show the range of trajectories. The solid dots are ant

abundance derived from each island-wide survey using a lattice

of lures. For Middle Island only, the dashed lines are the baiting

events. Baiting event 1, 3 and 5 involved insect growth regulator

(IGR), baiting event 2, 4 and 7 involved toxins (T) and baiting

event 6 involved a combination of IGR and toxin (B)

Table 1 Population model parameter estimates for tropical

fire ant dynamics, detection and eradication at Ashmore

Reef (Eqs. (1) and (2)). The model fit was done separately for

each value of toxin effect time. The model fit was done

separately for each value of toxin effect time

Toxin time = 1 Toxin time = 2 Toxin time = 3

Mean 95% credible interval Mean 95% credible interval Mean 95% credible interval

B 14.17 (14.01, 14.32) 18.29 (17.48, 18.98) 20 (19.05, 20.92)

M 0.2764 (0.2604, 0.2927) 0.3055 (0.2833, 0.3279) 0.3353 (0.3102, 0.3605)

ddd 0.03488 (0.02982, 0.04059) 0.1650 (0.1405, 0.1871) 0.2170 (0.1863, 0.2471)

S -25.15 (-25.36, -24.83) -22.73 (-23.25, - 22.20) -22.35 (-22.94, -21.73)

uIGR 0.7203 (0.6298, 0.8125) 0.6063 (0.5291, 0.6855) 0.5336 (0.4516, 0.6157)

uT 38.83 (36.69, 39.93) 39.34 (38.02, 39.96) 38.70 (36.43, 39.92)

Fig. 4 The probability of tropical fire ant eradication across all

islands at Ashmore Reef when the number of baiting events

involving toxin and IGR are varied. Colours indicate different

eradication probabilities
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Optimising detection through the spacing of lures

The higher the failure cost, the more effort needs to go

into ant detection, thus decreasing the lure spacing.

Each other quantity works to increase lure spacing. A

large detection radius or high ant detectability makes

detection easier, meaning less effort needs to go into

detection. Finally, the higher the prior probability of

eradication the less effort should go into detection

(Fig. 7). We find that the larger the prior probability of

eradication, the lower the required surveillance effort.

The optimal lure spacing is different for the two

surveillance events because if ants are present, their

abundance, and thus their detectability, will increase

through time.

Discussion

Our framework uses two distinct but dependent

models, a population model and a detection model,

to help inform decisions for an eradication project. In

this paper we have applied it to the proposed

eradication of tropical fire ants from Ashmore Reef

Commonwealth Marine Reserve, increasing the

understanding of how different baiting schedules

affect the probability of eradication; demonstrating

that purchasing and training two detector dogs would

result in lower detection costs, if they are used

sufficiently often; and developing a method to opti-

mise the spacing of lures when confirming eradication.

As this work was completed at a very preliminary

stage of the project, we have less data than is ideal,

particularly for the population model, and we simpli-

fied the model as much as possible to avoid overfitting.

However, the sensitivity analysis does indicate that

more must be completed to better understand the

relative effects of IGR and toxin. Despite these

limitations, our data are typical of that available to

managers overseeing eradication programs prior to

commencement. It is envisaged that as the program

progresses, more data will become available which

can be used to test and refine the models. For example,

following any baiting, follow up surveys will take

place to monitor the decline in ant abundance. This

would then feed into our population model to improve

estimates of population dynamics, along with bait

efficacy. In that sense, our results provide project

management guidance, but should not be considered a

final product—rather the product is the model itself.

Importantly, this analysis sets a foundation for future

work on the islands and will allow the models to be

updated and improved in an adaptive management

framework (Allen et al. 2011).

Detection and monitoring for invasive species

management has received considerable research atten-

tion. Much of this focuses on optimising surveillance

effort to detect new invaders before they become

established (Brown et al. 2004; Barrett et al. 2009;

Davidovitch et al. 2009; Jarrad et al. 2010, 2011;

Stringer et al. 2011; Whittle et al. 2013) and how to

balance these monitoring costs with quarantine and

control costs (Moore et al. 2010; Rout et al.

2011, 2014b). This differs from the monitoring

Fig. 5 Sensitivity analysis for the population model. The

horizontal dashed line shows the probability of eradication

with all parameters at their median values. The vertical bars

show the variation to the probability of eradication caused by

altering that parameter to the 25th or 75th percentile
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problem in this paper, where we seek to set monitoring

effort to confirm eradication (see Ramsey et al.

2009, 2011; Rout et al. 2014a). Our model of ant

detection assumes that lures are placed in a regular

arrangement. Even though irregular placement can be

effective, when deploying in high-densities, regular

placement is more effective (Berec et al. 2014). There

are improvements that could be made to ant detection

in the future, including leaving lures out for longer

(Ward and Stanley 2013), using unmanned aerial

vehicles (Lei et al. 2015) and canine detection (Brooks

et al. 2003; Lin et al. 2011). In this paper we found

Fig. 6 Comparison of the costs of lure detection and canine

detection. Results are presented at a range of detection radii (dr)
and dog detection probabilities with the cost-effectiveness of

each method dependent on the number of detection events. The

shaded blue regions (top right of each plot) show where canine

detection is cheaper, and the red, region (lower left of each plot)

shows when lure detection is cheaper. The solid black line

dividing these areas depicts when the costs of the two methods

are equal. These results are for low ant abundance (n ¼ 1); see

Supplementary Information Section C.3 for results with higher

abundances

Fig. 7 The optimal lure spacing to determine eradication

success, with the constraint that all locations on each island at

Ashmore Reef must be within the detection radius of a lure.

Each plot is for a different detection radius, and the blue stars

and black circles show the optimal lure spacing for the first and

second surveillance event respectively. In these plots the ant

abundance is 1 for surveillance event 1 and 21.2 for surveillance

event 2, in line with the population model

Modelling tropical fire ant (Solenopsis geminata) dynamics

123



conditions under which canine detection may outper-

form lure detection, but other strategies and methods

may also warrant consideration. We also note that the

value of canine detection probability that we used, 0.9,

is conservative, and dogs may prove economically

superior with fewer detection events. We also expect

low ant abundance once control commences, which

hinders lure detection in the model. However, pro-

vided that there are enough detection events, then

detector dogs are more cost-effective over time frames

typical of such projects. Although we do not focus on

post-eradication monitoring for the reinvasion of

tropical fire ants, or other species, it is an important

aspect of island management that will need to be

addressed upon successful removal of tropical fire ants

and could be included in this modelling framework at a

later stage.

Invasive species eradications often deliver impor-

tant positive conservation outcomes (Jones et al. 2016;

McCreless et al. 2016; Doherty et al. 2016). Ant

eradications are becoming more frequent with time

and eradication of infestations on larger islands are

becoming successful (Hoffmann et al. 2016). These

projects are expensive, with project costs regularly in

the millions of dollars (Holmes et al. 2015). Our

framework is applicable for many other island erad-

ications where it could be used to help reduce costs and

improve outcomes. Our models are also applicable

elsewhere, for example our detection model can be

applied in other situations where lures are used, and

our method to calculate the optimal number of dogs

and staff (see Supplementary Information Sections C.1

and C.2) can be applied elsewhere to find the optimal

investment in labour. Ideally the framework could be

used to optimise invasive species control decisions

and surveillance investment from the outset. This

requires costs and values to be ascribed to every aspect

of the project, which is not always straightforward. In

the context of Ashmore Reef, this would include

placing a value on the impacts of toxin on non-target

species. Currently, these impacts are not fully under-

stood and deciding the acceptable damage to native

flora and fauna in the process of eradication is complex

and controversial (Lampert et al. 2014). Some of this

falls under political decisions; while our models can

predict the outcome of various baiting regimes, it is up

to management to decide what non-target impacts are

acceptable. The best way to proceed is to develop

potential scenarios at collaborative workshops with

scientists and managers, which would then be anal-

ysed carefully. Nevertheless, developing interacting

models for population control and detection with pilot

data can provide material benefits to eradication

programs. Contributions include outputs that provide

clear justification for decisions and the laying of a

foundation for adaptive management, and identifica-

tion of future priorities with respect to ongoing data

collection and modelling.

Acknowledgements We thank Kirsti Abbott, Shane Baylis,

Michael Bode, Jake Ferguson, Ben Hoffmann, Michael
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