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Most species are imperfectly detected during biological surveys, creating uncertainty around their 

abundance or presence at a given location. Decision-makers managing threatened or pest species 

are regularly faced with this uncertainty, and there are a growing number of examples of managers 

dealing with imperfect detection. Wildlife diseases have the potential to drive species to extinction, 

and as such managing species with disease is an important part of conservation. Devil Facial Tumour 

Disease (DFTD) is one such disease that led to the listing of the Tasmanian devil (Sarcophilus harrisii) 

as endangered. Here we report on the successful use of a state-of-the-art removal modelling 

approach undertaken in collaboration with practitioners to inform decision-making and facilitate a 

successful management outcome. We used a Bayesian catch-effort model to estimate population 

size during removal and monitoring of a diseased Tasmanian devil population. We found it was likely 

that the population had been successfully removed, even when accounting for a possible 

introduction of a devil to the site. We then analysed the costs and benefits of declaring the area 

disease-free prior to reintroduction and establishment of a healthy insurance population. The 

actions of management, in carrying out additional monitoring prior to this reintroduction, were 

conservative but prudent given uncertainty and the costs of mistakenly declaring the area disease-

free.  

Introduction 

Confirming the absence of a species is an important and pervasive conservation problem, which is 

made complex when species are not perfectly detected during biological surveys. Developments 

may be approved when ecological surveys fail to detect threatened species (Garrard et al. 2015), 

protection or management can be cut for threatened species incorrectly presumed to be extinct 

(Collar 1998), and campaigns to eradicate introduced pests are halted when individuals are no longer 

detected (Regan et al. 2006; Solow et al. 2008). However, imperfect detection analyses allow 

managers to overcome this problem when making conservation decisions based on data that may 

contain false zeros (Anderson et al. 2016; Chen et al. 2013; Garrard et al. 2008; Moore et al. 2011; 
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Royle et al. 2005). Instead of ad hoc rules, such as waiting a set number of years with no detections 

before declaring a species absent (Hoffmann 2010; Rejmanek & Pitcairn 2002), such decisions can be 

supported by quantitative modelling that allows decision makers to understand and explicitly 

incorporate the risks of falsely assuming absence (Boakes et al. 2015; Regan et al. 2006; Solow et al. 

2008). There are a small number of examples in which analyses of survey effort requirements due to 

imperfect detectability have directly informed pest animal eradication programs (Ramsey et al. 

2009; Ramsey et al. 2011; Rout et al. 2014). There are few published examples in which state-of-the-

art imperfect detection modelling approaches have been used to underpin the management of a 

cryptic wildlife disease (Anderson et al. 2013, 2015). 

Devil Facial Tumour Disease (DFTD) threatens the survival of wild populations of the island endemic 

carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii). DFTD has two genetically distinct 

forms, which are two of only four known naturally occurring transmissible cancers (Pye et al. 2016). 

The disease is assumed to be transmitted through biting and other facial contact, and causes 

tumours on the face or inside the mouth (Lachish et al. 2007; Pearse & Swift 2006). Once tumours 

develop, death typically occurs within months (Lachish et al. 2010). The disease was first detected in 

northeastern Tasmania in 1996 and has since spread across most of the devil’s habitat, resulting in 

an 80% decline in wild populations (Huxtable et al. 2015). In the region where the disease was first 

reported, mean spotlighting sightings declined by 95% from 1993–2013 (Huxtable et al. 2015). The 

Tasmanian devil was listed as endangered by the International Union for the Conservation of Nature 

in 2008 (Hawkins et al. 2008). 

In the face of this disease threat, establishment of both captive and wild-living insurance populations 

of devils is a key management priority (Conservation Breeding Specialist Group 2008). Maintaining 

wild populations on Tasmanian islands (either offshore or landscape-scale fenced areas) will allow 

the devil to retain its ecological functionality, wild behaviour and adaptations, and intrinsic, social, 

economic and political value (Conservation Breeding Specialist Group 2008). Forestier Peninsula, off 
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Tasmania’s east coast, was identified as a potential site for a wild-living insurance population. The 

peninsula is connected to mainland Tasmania in the north-west via a road-bridge spanning the 

Denison Canal, and to Tasman Peninsula by a narrow isthmus in the south. This potential for 

isolation makes the peninsula a good site for maintaining a disease-free devil population. However, 

DFTD was detected within the resident population, making it essential to remove this population 

before introducing devils from a captive disease-free population. 

We aimed to support decisions about the monitoring effort and duration required to confirm devil 

absence at a sufficiently high level of confidence to commence reintroduction of healthy devils.  We 

developed a Bayesian catch-effort model of the devil population on Forestier peninsula, 

implemented in an add-on to Excel, which provided a simple and accessible interface through which 

managers could interactively assess the effect of different levels of monitoring on uncertainty about 

whether the devil population had been completely removed. This assisted managers in deciding 

whether to conduct an additional second camera trapping session in 2015, before devil 

reintroduction. We formally assessed the cost-effectiveness of additional monitoring given its cost, 

and the risk and cost of introducing healthy devils when potentially diseased devils may persist on 

the peninsula. This analysis supported management decisions that ultimately led to the introduction 

of 39 healthy captive-bred devils in November 2015. 

 

Methods 

Data collection 

Trapping and removal of devils occurred from 10 May to 5 June 2012. Devils were trapped using PVC 

pipe traps and standard methods (Hawkins et al. 2006). All trapped devils were removed from the 

site and assessed by a veterinarian. Individuals confirmed as DFTD positive were euthanized except 

females with pouch young, the latter received close monitoring and veterinary care in captive 



 

 

 
This article is protected by copyright. All rights reserved. 
 

5 

facilities and were euthanized once their young were able to survive independently or their welfare 

was severely compromised. Devils with no symptoms of DFTD were placed into captive quarantine 

and absorbed into the Tasmanian devil insurance metapopulation. 

One infrared camera survey was carried out prior to trapping and removal in 2012, and six surveys 

conducted afterwards in 2012, 2014 and 2015 (Table 1). Surveys used either Pixcontroller DigitalEye 

12.1 megapixel Trailmaster or Reconyx HC500 HyperFire™ remote cameras programmed to take one 

image on detecting movement, with a 30 second delay before subsequent triggers/images. Cameras 

were mounted at between 0.5 and 1.5m height targeting a ground bait (Bennett’s wallaby or 

brushtail possum shot locally under crop protection permits) 1.5 to 3m away with a lure (consisting 

of oats, sardines in oil, dried liver treats, fish oil and mutton-bird oil) aerially suspended above. 

 

Modelling 

We developed a Bayesian catch-effort model (Chee & Wintle 2010; Ramsey et al. 2009; Ramsey et al. 

2011; Rout et al. 2014) to estimate population size during and after removal and monitoring, and to 

allow us to plan future monitoring intensity (see Supporting Information for model schematic). 

The number of devils present on day t+1 was calculated as: 

          , 

where nt is the number of devils removed each day by pipe trapping. We modelled this as a binomial 

process: 

             , 

where pt is the probability of catching and removing a devil on day t. This is a function of the density 

of pipe traps set that day: 
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            (1) 

where a is the effectiveness of pipe trapping, and gt is the number of active traps per km2 on day t. 

This exponential function is derived from search theory (Frost & Stone 2001), assuming encounters 

between devils and traps are random and independent with all individuals having the same 

probability of capture. 

Devils have not been individually identified in camera footage, therefore camera data cannot tell us 

the number of individuals seen each day. It instead tells us the number of cameras each day that 

sighted at least one devil (mt), which we modelled as a binomial process: 

             , 

where ct is the number of active cameras on day t, and rt is the probability of an active camera 

detecting at least one devil: 

      
    

 .  (2) 

where b is the daily effectiveness of camera monitoring and A is the area across which the cameras 

are distributed (see Supporting Information for derivation). 

The model inputs were daily data on the number of devils trapped and removed (nt), the density of 

active pipe traps (gt), the number of cameras with one or more detections (mt), and the number of 

active cameras each day (ct). We generated posterior distributions for daily population size (Nt), the 

effectiveness of pipe trapping (a) and the effectiveness of camera trapping (b) using Markov chain 

Monte Carlo (MCMC) sampling. We developed a program in Python that used the package pymc 

(Anand et al. 2010) for the Monte Carlo sampling and we used py2exe package to compile the 

program to an executable. Having the program as an executable allowed it to be used on any 

computer running Microsoft Windows, meaning managers could run simulations to assist in the 
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planning process. This compiled executable is available at [removed as contains identifying 

information]. It does not require a python installation to run. 

At the start of 2012 we used vague prior distributions for the effectiveness of pipe trapping (a ~ U(0, 

1000)), the effectiveness of camera monitoring (b ~ U(0, 1000)), and the initial population size of 

devils on Forestier Peninsula (N0 ~ U(0, 500)). A maximum of 500 devils on the 190km2 peninsula 

implies a density of 2.63 devils/km2, which is very high given known densities of devils in suitable 

unmodified habitat are between 0.3-0.7/km2 (Jones unpublished data, cited in Jones et al. 2004). For 

each MCMC simulation we ran 1 chain for 10,000 iterations with a thinning rate of 10 and a burn-in 

of 1,000. We checked for convergence by visually inspecting chains on test data. We were unable to 

include trace plots in the final executable due to conflicts between python packages. However, 

repeatedly running the analysis on the same data gave consistent results, indicating that the chains 

were converging. 

 

Immigration, reproduction, and a possible introduction 

Forestier Peninsula is connected to Tasman Peninsula in the south by a 125m wide isthmus, and to 

the Tasmanian mainland (and DFTD-infected devil populations) in the north by a two-lane bridge 

spanning a canal that runs through an 800m wide isthmus. These entry points allow some 

movement by devils onto the peninsula, however barriers to devil movement have been installed to 

isolate Forestier Peninsula from diseased populations to the north.  

This potential immigration is hard to estimate, so we examined a range of possibilities by creating 

two probability distributions for the rate of immigration (Supporting Information): one that devil 

managers considered realistic (B~(n = 30, p = 0.05)) and one they considered high (B~(n = 50, p = 

0.1)). The expected number of entries per year under realistic immigration is np = 1.5, while the 

expected number under high immigration is np = 5. 
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Tasmanian devils are synchronous annual breeders, with recruitment into the population effectively 

occurring around the beginning of each year when juveniles become independent (Pemberton 

1990). In our model we assumed reproduction after immigration each year. We used an annual 

growth rate of = 1.29, the estimated growth rate of an island population of devils below carrying 

capacity (Conservation Breeding Specialist Group 2008). We expressed this as a binomial distribution 

where one devil has probability p of becoming two devils (B ~ (n = N, p = 0.29), where N is the 

population size before reproduction). 

We multiplied these two binomial distributions to obtain distributions for the possible devil 

population size after one year  and two years  of immigration and reproduction, given a starting 

population of zero devils (Supporting Information). To use these distributions as priors for 

population size in our model, we converted them from discrete binomial distributions to continous 

gamma distributions. We did this conversion using the ‘fit’ function in scipy, which uses maximum 

likelihood. 

In May 2015 managers received reports that a nearby landholder had translocated a devil from a 

DFTD-infected population to the Forestier Peninsula. The accuracy of the report was uncertain, with 

managers estimating a probability of 0.4 the translocation had occurred. To incorporate a scenario 

where one year of immigration and reproduction precedes this uncertain introduction, we took the 

distributions after one year of immigration and reproduction and calculated the expected 

distribution under each outcome given a probability of p = 0.4 that the introduction occurred and p = 

0.6 that it did not (Supporting Information). Managers undertook 36 days of camera trapping in 

May-June 2015 immediately following news of this potential introduction (Table 1).  

 

Informing decision-making 
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Following the session of monitoring in May-June 2015, we assessed whether additional monitoring 

was needed to confirm absence. We calculated the net expected cost of additional monitoring, 

which incorporates the risk and consequences of ceasing monitoring prematurely and mistakenly 

assuming devils have been successfully removed. The net expected cost of conducting d days of 

additional monitoring is (Regan et al. 2006): 

               [          ]  ,  (3) 

where Cm is the cost of a day of monitoring, [1 - Pr(E|d)] is the probability devils are still present 

despite d days of monitoring without detection, and Cp is the cost of declaring absence prematurely 

and introducing healthy devils to the peninsula when diseased devils are still present. The 

probability that no devils remain (Pr(E|d)) was taken from the posterior distribution for the 

estimated number of devils remaining on day t,(Nt), given past daily detection and removal data plus 

the proposed additional monitoring assuming no further detections. We assessed additional 

monitoring in blocks of 14 days, as this was the standard duration of deployment without refreshing 

lures and servicing cameras. We tested two monitoring intensities: a low intensity strategy deploying 

28 cameras costs AU$6,000 for the first 14 day block and AU$3000 for each subsequent block, while 

a high intensity strategy of deploying 58 cameras costs AU$8,800 for the first 14 day block and 

AU$4,400 for each subsequent block.  

 

Results 

At the densities of traps used and given the conditions at the time, pipe trapping and camera 

monitoring were both highly effective (Table 2, also Supporting Information). Estimates of 

effectiveness remained relatively constant from 2012 to 2015, regardless of the assumed 

immigration rate (Table 2).  
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A total of 35 devils were removed from the peninsula in 2012, with all removals occurring within the 

first 12 of 27 trapping days (Fig. 1a). The probability no devils remained reached 1 (accurate to 2 

decimal places) before the end of the trapping period (Fig. 1b). The probability that no devils 

remained returned to 1 by the end of 2014 monitoring, and by the end of the first 2015 monitoring 

session, regardless of the assumed immigration rate (Table 2). 

We estimated the cost of declaring absence prematurely (Cp) as the cost of having to re-do the 

depopulation program and translocation on Forestier peninsula (Supporting Information), but then 

explored the optimal monitoring decisions for a wide range of Cp. Given the baseline estimate of Cp = 

AU$676,470, it was not cost-effective to carry out an additional 14-day block of monitoring in 2015, 

regardless of the assumed immigration rate or monitoring intensity (Fig. 2). However, it could be 

optimal if the cost of declaring absence prematurely were much higher, > AU$1.80 million under a 

realistic immigration rate or > AU$1.35 million under a high immigration rate (Fig. 3).  

 

Discussion 

Managers used the results from this analysis to plan the best time to reintroduce disease-free devils 

to Forestier Peninsula. These results were assessed as part of an overarching, qualitative risk 

assessment that considered the assumptions inherent in the model, the limitations of methods used 

to generate the field data, the risk of reinfection, and the broader context of Tasmanian Devil 

management,  

Our population model has several assumptions that could affect population estimates. Use of a 

binomial process for camera trap detections could lead to an overestimation of the number of devils 

remaining (see Supporting Information), which would be conservative. However, the model also 

assumed that all devils are detectable (given enough effort) at all population densities, an 

assumption that could lead to underestimation of the number remaining. The use of a single 
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monitoring method (infrared cameras) since June 2012 rather than multiple independent detection 

methods, makes this assumption particularly relevant. We also assumed immigration was a one-off 

event occurring at the beginning of the year, discounting the possibility that immigration may have 

occurred during or after the first monitoring session in 2015.  

Several logistical considerations influenced the decision of when to conduct the reintroduction, 

including the fact that funding and personnel were available for the reintroduction in the near future 

but could not be guaranteed beyond that. Timing was also relevant in terms of the supply of healthy 

devils to reintroduce, as immediate translocation of some devils from their captive breeding facilities 

was required to maintain ongoing breeding capacity for the Tasmanian devil insurance meta-

population. Prolonging the project for further monitoring could also divert resources from other 

devil conservation management activities.  

Considering all these factors, managers chose to carry out a second monitoring session in October-

November 2015, after which the probability that no devils remained was exactly 1 under both a 

realistic and high immigration scenario (Supporting Information). A ‘devil-proof’ fence was then 

erected across the 800m wide isthmus connecting Forestier Peninsula to mainland Tasmania to 

reduce the risk of immigration of diseased devils onto the peninsula. On 18 November 2015, 39 

adult, captive-bred, DFTD-free Tasmanian devils were reintroduced to the Forestier Peninsula, and 

on 25 February 2016 an additional ten juvenile devils were translocated. These devils are being 

managed as part of the Tasmanian devil insurance meta-population by the Zoo and Aquarium 

Association and the Save the Tasmanian Devil Program, with a sustainable population target of 150 

devils on the Forestier Peninsula. 

Overall, the removal modelling and risk optimization analysis provided valuable support to managers 

of the ‘Save the Tasmanian Devil’ program by insuring that risks of program failure due to the 

persistence of diseased devils in the insurance population location were sufficiently low, given the 

monitoring and removal effort that had taken place. Ceasing monitoring prematurely would have 
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wide-ranging consequences that are much more difficult to express as a monetary cost and so were 

not included in our formal cost-effectiveness analysis. Exposing healthy captive-bred devils to a fatal 

disease would be a tragic outcome for all involved. The failure of the depopulation project would 

come at a high reputational and political cost to the Program, which could lead to a loss of financial 

support. Managers chose to implement a second monitoring session in 2015, despite the fact that 

our analyses indicated a second monitoring session was not cost-effective given the estimated cost 

of ceasing monitoring prematurely (Cp = AU$676,470). Nonetheless, the extra round of monitoring 

was cost-effective if the costs of premature release of healthy devils were assumed to be 

approximately twice the baseline amount. Taking into account uncertainty in the model predictions, 

and the intangible costs mentioned above, the extra season of monitoring was prudent and 

defensible and could accommodate the logistical limitations for the reintroduction. Ultimately, our 

modelling and analysis informed an adaptive decision making framework for the Save the Tasmanian 

Devil Program that also incorporates social, political, economic and operational opportunities. 

Imperfect detection is pervasive in species management, and if ignored can lead to erroneous 

assumptions and adverse outcomes (Kéry et al. 2006; Solow et al. 2008). Population estimation and 

modelling can better inform decision-making, while risk optimisation ensures that the costs and 

benefits of management decisions are considered. While built expressly for the purposes of this 

program, our Excel tool is freely available and could be applied to any population removal program 

that uses a single removal method and a single monitoring method, subject to the model 

assumptions. In addition to disease management, this could include pest eradication programmes 

(Ramsey et al. 2009; Ramsey et al. 2011; Rout et al. 2014), and capturing a wildlife population for 

captive breeding or translocation. 

 

Policy recommendations and conclusions 
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Trade-offs are implicit in any decision to cease monitoring. Analyses such as those presented here 

help make these trade-offs explicit, and enable decision-makers to assess whether they are 

acceptable. However, these analyses are still relatively technical, requiring a high level of statistical 

competency to implement and correctly interpret. It is not the case that managers can, for the most 

part, be expected to adopt these methods directly from the scientific literature. If conservation 

scientists wish to see these approaches used in management, they must invest the necessary effort 

to facilitate application (Artellaz et al. 2010). This project, like most projects in which state-of-the-art 

statistical approaches are successfully applied in conservation, required a long-lasting, consistent 

engagement between researchers and practitioners (Whitehead et al. 2016). This engagement 

occurred with little face-to-face contact between researchers and managers (who are based in 

different states), and despite differences in work schedules, competing priorities, and regular travel 

and field work commitments. The development of the excel interface was key to overcoming these 

barriers and was therefore crucial to the success of this project. Having an accessible interface 

allowed managers to quickly update their assessments to respond to new information as it arrived, 

(for example, during a field work session) rather than sending data to researchers and waiting to 

receive results. The interface was used in this way by managers to inform the duration of both 

monitoring surveys in 2015. This was enabled by a non-trivial investment of time and money by 

researchers to develop, tailor and make this tool available for use by managers, and due to the 

willingness of Program staff to engage with researchers to secure best practice approaches, and 

consistent effort on behalf of managers to ensure that the tools were exactly right for their needs 

(Hogg et al. 2016). This highlights the importance of genuine commitment of researchers and 

managers to conservation outcomes in order for research to be relevant and managers to gain the 

benefits of recent scientific advancements.  
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Tables 

Table 1: Details of Tasmanian devil trapping and monitoring sessions on Forestier Peninsula 

Session Dates Session type 
No. camera 

stations 

Area 

(km2) 

No. active trap 

nights 

22 Feb - 20 March 

2012 

Survey: Pre-

removal 

28 190 593 

10 May – 5 June 2012 Trapping: Removal N/A 190 3572 

12 June - 4 July 2012 Survey: Post-

removal 

28 190 495 

2-23 Aug 2012 Survey: Post-

removal 

45 45 796 

10 March - 7 April 

2014 

Survey: Post-

removal 

28 190 785 

15 Aug - 07 Dec 2014 Survey: Post-

removal 

113 190 2901 

7 May - 11 June 2015 Survey: Post-

removal 

31 190 978 

19 Oct - 10 Nov 2015 Survey: Post-

removal 

28 190 1152 

 

Table 2: Results of catch-effort model 
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 Posterior distribution for 
effectiveness of pipe 
trapping (a) 

 

Posterior distribution for 
effectiveness of camera 
monitoring (b) 

Probability that 
no devils remain  
(2 decimal 
places) 

 

After 2012 removals 
and monitoring  

 

 

 μ = 61.98, 95% credible 
interval (CI) = 44.58-
82.20. 

 

μ = 138.73, 95% CI = 
115.00-164.67. 

 

1.00 

After 2014 monitoring    

Assuming realistic 
immigration rate 

 

 μ = 61.67, 95% CI = 
44.00-82.27. 

 μ = 138.27, 95% CI = 
114.65-164.08. 

1.00 

Assuming high 
immigration rate 

 

 μ = 62.40, 95% CI = 
45.69-81.68. 

 μ = 138.93, 95% CI = 
115.31-164.71. 

1.00 

After first 2015 monitoring session 

Assuming realistic 
immigration rate 

 

 μ = 61.95, 95% CI = 
44.53-82.21. 

 μ = 138.53, 95% CI = 
115.93-163.11. 

1.00 

Assuming high 
immigration rate 

 μ = 62.62, 95% CI = 
46.06-81.68. 

 μ = 137.81, 95% CI = 
113.62-164.29. 

1.00 

The mean probability of catching a devil  is virtually identical for all posterior distributions for the 

effectiveness of pipe trapping, and the mean probability of detection by a camera  is virtually 

identical for all posterior distributions for the effectiveness of camera monitoring (Supporting 

Information). 

 

Figure captions 

Figure 1: 2012 removal and monitoring of Tasmanian devils on Forestier Peninsula, showing a) pre-

removal monitoring data, b) removal data and post-removal monitoring data, and c) population 

estimates from our model. Estimated population size is shown in grey (solid = mean, dotted = 95% 
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credible interval), while the probability no devils remain is shown in black. Population estimates 

could not be calculated for the period before removals occurred, as some removals are required to 

calibrate the model. 

a) 

 

b) 

 

c) 

 

Figure 2: The net expected cost of conducting additional monitoring and the associated probability 

that no devils remain, under a) a realistic immigration rate, and b) a high immigration rate. Shown 

for monitoring intensities of 28 cameras (dotted line and square markers) and 58 cameras (solid line 
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and crosses). Calculated with equation 3, using the baseline estimate for the cost of stopping 

monitoring prematurely, Cp = AU$676,470. 

a) 

 

b) 

 

Figure 3: The optimal number of days of additional monitoring and associated net expected cost as a 

function of the cost of stopping monitoring prematurely (when devils are still present), under a) a 

realistic immigration rate, and b) a high immigration rate. Shown for monitoring intensities of 28 
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cameras (black) and 58 cameras (grey). Our baseline estimate for the cost of stopping monitoring 

prematurely was Cp = AU$676,470. 

a) 

 

b) 

 


