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Abstract 

The spread of antibiotic resistance is one major global problem for healthcare systems. One of the 

most relevant mechanisms of resistance involves the expression, by bacteria, of enzymes able to 

degrade the antibiotic molecules. This thesis is focused on the study of a particular class of 

antibiotic-degrading enzymes, the metallo-β-lactamases (MBLs). MBLs are a family of Zn(II)-

dependent enzymes that inactivate most of the commonly used β-lactam antibiotics. In Chapter 1 a 

detailed review of the properties of these enzymes is presented.  

Novel MBLs are continuously discovered and numerous variants of known MBLs emerge, 

largely due to the introduction and frequent misuse of novel antibiotics.  It has also become 

apparent that MBLs are present in microorganisms that are not pathogenic and inhabit environments 

that are not likely to be subjected to significant evolutionary pressures (such as the sharp increase in 

antibiotics).  MBLs from such environmental microorganisms may thus pose a future risk for health 

care, but they may also provide clues about essential factors that enable such enzymes to inactivate 

antibiotics.  In Chapter 2 the discovery of two novel putative MBLs from the marine organisms 

Novosphingobium pentaromativorans and Simiduia agarivorans is described.  In adherence with 

common practice these two enzymes were named Maynooth IMipenemase-1 (MIM-1) and 

Maynooth IMipenemase-2 (MIM-2), respectively.  

In Chapter 3 the biochemical properties of MIM-1 and MIM-2 are discussed and compared 

to those of known MBLs.  From the pH dependence of their catalytic parameters it is evident that 

both enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 

acidic conditions.  Both enzymes require Zn(II) but activity can also be reconstituted with other 

metal ions, including Co(II), Mn(II), Cu(II) and Ca(II).  Importantly, the substrate preference of 

MIM-1 and MIM-2 appears to be influenced by their metal ion composition, which may be a 

relevant factor in determining their precise biological function.  However, with respect to their 

catalytic efficiency towards degrading β-lactam antibiotics MIM-1 and MIM-2 are comparable to 

MBLs from known pathogenic bacteria such as Klebsiella pneumonia or Pseudomonas aeruginosa.  

They are also inhibited by the non-clinical compound D-captopril in a manner characteristic for 

MBLs.  Thus, even though MIM-1 and MIM-2 are currently not associated with antibiotic 

resistance these enzymes, should they ever enter the human population, certainly could pose a 

future threat to health care. 
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Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise 

biological role(s) of MIM-1 and MIM-2 remains to be established.  In Chapter 4 the possibility of 

an alternative function of MIM-1 and MIM-2 will be addressed. Although both protein sequence 

comparisons and homology modelling indicate that these proteins are related to well-known MBLs 

such as AIM-1, the sequence analysis also indicates that MIM-1 and MIM-2 share similarities with 

N-acyl homoserine lactonases (AHLases) and glyoxalase II (GLX-II).  Steady-state kinetic assays 

using a series of lactone substrates confirm that MIM-1 and MIM-2 are indeed efficient lactonases, 

with catalytic efficiencies resembling those of well-known AHLases.  Interestingly, unlike their 

MBL activity the AHLase activity of MIM-1 and MIM-2 is not dependent on the metal ion 

composition with Zn(II), Co(II), Cu(II), Mn(II) and Ca(II) all being able to reconstitute catalytic 

activity (with Co(II) being the most efficient).  However, these enzymes do not turn over S-

lactoylglutathione, a substrate characteristic for GLX-II activity.  Since lactonase activity is linked 

to the process of quorum sensing the bifunctional activity of “non-pathogenic” MBLs such as MIM-

1 and MIM-2 may provide insight into one possible evolutionary pathway for the emergence of 

antibiotic resistance.  

In the preceding chapters MIM-1 and MIM-2 were introduced as novel MBL-like enzymes 

that may provide essential clues about the functional promiscuity that may be inherent to the family 

of β-lactam-hydrolysing enzymes.  It is thus essential to probe the catalytic mechanism of these 

enzymes in detail to gain insight into essential factors that control their reactivity.  In Chapter 5 a 

series of physico-chemical experiments are described (including rapid kinetics and spectroscopic 

techniques) that provide insight into the active site structure and the mechanism of substrate 

turnover.  In brief, while MIM-1 and MIM-2 employ a strategy that is similar to that of other MBLs 

by using a metal ion-activated hydroxide moiety to initiate the hydrolysis of β-lactam substrates 

(such as penicillin, cephalothin or imipenem) no reaction intermediate is observed.  Such an 

intermediate is present in many MBL-characterised reactions and indicates that MIM-1 and MIM-2 

may use a different mechanistic strategy, one where the identity of the rate-limiting step is different 

from that of many (but not all) MBLs. 

 The characterisation of two novel members of the continuously growing family of MBLs 

has provided detailed insight into the structure and function of an antibiotic resistance mechanism 

that is not limited to pathogenic microorganisms.  The similarity of the physico-chemical properties 

between MBLs from pathogenic and non-pathogenic sources may provide clues about evolutionary 

relationships that may underlie the rapid emergence and spread of antibiotic resistance, but it may 

also assist in the development of urgently needed potent and clinically useful inhibitors for this 

group of enzymes.  In Chapter 6 some concluding remarks allude to future directions in this area of 
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research, including a brief description of the crystal structures of both MIM-1 and MIM-2, which 

have been solved by another member of our team as this thesis was being completed.  The hope 

remains that research like the one presented here will, in time, lead to a powerful strategy to combat 

the rise of antibiotic resistance and the grave dangers this brings to global human health.
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Abstract  

The main aim of this mini-review is to illustrate strategies and industrial applications based 

on inteins (INTErnal proteINS), which belong to a class of autocatalytic enzymes that are able 

to per- form a catalytic reaction on a single substrate. However, since practical applications of 

inteins are strongly guided by a detailed understanding of their biological mechanisms and 

functions, the first part of this review will thus briefly discuss the physiological roles of 

inteins, describing what is currently known about their mechanisms of action. In the second 

part, specific biotechnological applications of inteins will be outlined (i.e. their use for (i) the 

purification of recombinant pro- teins, (ii) the cyclization of proteins and (iii) the production 

of seleno-proteins), paying attention to both potential strengths and weaknesses of this 

technology.  
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Abstract Metallo-b-lactamases (MBLs) are a family of metalloenzymes that are capable of 

hydrolyzing b-lactam antibiotics and are an important means by which bacterial pathogens 

use to inactivate antibiotics. A database search of the available amino acid sequences from 

Serratia pro- teamaculans indicates the presence of an unusual MBL. A full length amino acid 

sequence alignment indicates overall homology to B3-type MBLs, but also suggests consider- 

able variations in the active site, notably among residues that are relevant to metal ion 

binding. Steady-state kinetic measurements further indicate functional differences and 

identify two relevant pKa values for catalysis (3.8 for the enzyme–substrate complex and 7.8 

for the free enzyme) and a preference for penams with modest reactivity towards some 

cephalosporins. An analysis of the metal ion content indicates the presence of only one zinc 

ion per active site in the resting enzyme. In contrast, kinetic data suggest that the enzyme may 

operate as a binuclear enzyme, and it is thus proposed that a catalytically active di-Zn2+ 

center is formed only once the substrate is present.  

Electronic supplementary material The online version of this article (doi:10.1007/s00775-013-1035-z) contains supplementary material, which is 

available to authorized users.  
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Abstract Urease is a Ni(II) enzyme present in every domain of life, in charge for nitrogen 

recycling through urea hydrolysis. Its activity requires the presence of two Ni(II) ions in the 

active site. These are delivered by the concerted action of four accessory proteins, named 

UreD, UreF, UreG and UreE. This process requires protein ex- ibility at different levels and 

some disorder-to-order transi- tion events that coordinate the mechanism of protein–pro- tein 

interaction. In particular, UreG, the GTPase in charge of nucleotide hydrolysis required for 

urease activation, presents a signi cant degree of intrinsic disorder, exist- ing as a 

conformational ensemble featuring characteristics that recall a molten globule. Here, the 

folding properties of UreG were explored in Archaea hyperthermophiles, known to generally 

feature signi cantly low level of structural dis- order in their proteome. UreG proteins from 

Methanocal- dococcus jannaschii (Mj) and Metallosphaera sedula (Ms) were structurally and 

functionally analyzed by integrating circular dichroism, NMR, light scattering and enzymatic 

assays. Metal-binding properties were studied using iso- thermal titration calorimetry. The 

results indicate that, as the mesophilic counterparts, both proteins contain a signi - cant 

amount of secondary structure but maintain a exible fold and a low GTPase activity. As 

opposed to other UreGs, secondary structure is lost at high temperatures (68 and 75 °C, 

respectively) with an apparent two-state mechanism. Both proteins bind Zn(II) and Ni(II), 

with af nities two 1 orders of magnitude higher for Zn(II) than for Ni(II). No major modi 



 

 
 

cations of the average conformational ensem- ble are observed, but binding of Zn(II) yields a 

more com- pact dimeric form in MsUreG.  

Keywords Intrinsically disordered enzyme · UreG · Urease · Metal binding · Archaea thermophiles  
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ABSTRACT  

Antibiotic resistance has emerged as a major global threat to human health. Among the 

strategies em- ployed by pathogens to acquire resistance the use of metallo-β-lactamases 

(MBLs), a family of dinuclear metalloenzymes, is among the most potent. MBLs are 

subdivided into three groups (i.e. B1, B2 and B3) with most of the virulence factors belonging 

to the B1 group. The recent discovery of AIM-1, a B3-type MBL, however, has illustrated the 

potential health threat of this group of MBLs. Here, we employed a bioinformatics approach 

to identify and characterize novel B3-type MBLs from Novosphingobium pentaro- mativorans 

and Simiduia agarivorans. These enzymes may not yet pose a direct risk to human health, but 

their structures and function may provide important insight into the design and synthesis of a 

still elusive universal MBL inhibitor.  
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Abstract  

Antibiotic resistance is one of the most significant challenges facing global healthcare. Since 

the 1940s, antibiotics have been used to fight infections, initially with penicillin and 

subsequently with various derivatives including cephalosporins, carbapenams and 

monobactams. A common characteristic of these antibiotics is the four-membered β-lactam 

ring. Alarmingly, in recent years an increasing number of bacteria have become resistant to 

these antibiotics. A major strategy em- ployed by these pathogens is to use Zn(II)-dependent 

enzymes, the metallo-β-lactamases (MBLs), which hydrolyse the β-lactam ring. Clinically 

useful MBL inhibitors are not yet available. Conse- quently, MBLs remain a major threat to 

human health. In this review biochemical properties of MBLs are discussed, focusing in 



 

 
 

particular on the interactions between the enzymes and the func- tionally essential metal ions. 

The precise role(s) of these metal ions is still debated and may differ between different MBLs. 

However, since they are required for catalysis, their binding site may present an alternative 

target for inhibitor design.  
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Ion Binding  
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Abstract  

At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of 

catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved 

in catalysis), the presence of two (or more) closely spaced metal ions gives an additional 

advantage in terms of (i) charge delocalisation, (ii) smaller activation bar- riers, (iii) the 

ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) 

decreased transition-state energies. Among this group of proteins, enzymes that catalyze the 

hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. 

These enzymes are involved in a multitude of biological functions, and an increasing number 

of them gain attention for translational research in medicine and biotechnology. Their 

functional versatility and catalytic proficiency are largely due to the presence of metal ions in 

their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of 

several closely related enzymes with a view to highlighting the functional diversity bestowed 

upon them by their metal ion cofactors.  
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Abstract Metallo-β-lactamases (MBLs) are a family of Zn(II)-dependent enzymes that 

inactivate most of the com- monly used β-lactam antibiotics. They have emerged as a major 

threat to global healthcare. Recently, we identi ed two novel MBL-like proteins, Maynooth 

IMipenemase-1 (MIM-1) and Maynooth IMipenemase-2 (MIM-2), in the marine organisms 

Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Here, we dem- 

onstrate that MIM-1 and MIM-2 have catalytic activities comparable to those of known 

MBLs, but from the pH dependence of their catalytic parameters it is evident that both 

enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 

acidic conditions. Both enzymes require Zn(II) but activity can also be recon- stituted with 

other metal ions including Co(II), Mn(II), Cu(II) and Ca(II). Importantly, the substrate 

preference of MIM-1 and MIM-2 appears to be in uenced by their metal ion composition. 

Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise 

biologi- cal role(s) of MIM-1 and MIM-2 remains to be established. However, due to the 

similarity of at least some of their in vitro functional properties to those of known MBLs, 

MIM-1 and MIM-2 may provide essential structural insight that may guide the design of as of 

yet elusive clinically use- ful MBL inhibitors.  
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Functional promiscuity  

Abstract MIM-1 and MIM-2 are two recently identified metallo-β-lactamases (MBLs) from 

Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Since these 

organisms are non-pathogenic we specu- lated that the biological role(s) of MIM-1 and MIM-

2 may not be related to their MBL activity. Although both se- quence comparison and 

homology modeling indicate that these proteins are homologous to well-known MBLs such as 

AIM-1, the sequence analysis also indicated that MIM-1 and MIM-2 share similarities with N-

acyl homoserine lactonases (AHLases) and glyoxalase II (GLX-II). Steady-state kinetic assays 

using a series of lactone substrates confirm that MIM-1 and MIM-2 are efficient lactonases, 

with catalytic efficiencies resembling those of well-known AHLases. Interestingly, unlike their 

MBL activity the AHLase activity of MIM-1 and MIM-2 is not dependent on the metal ion 

composition with Zn(II), Co(II), Cu(II), Mn(II) and Ca(II) all being able to reconstitute 

catalytic activity (with Co(II) being the most efficient). However, these enzymes do not turn 

over S-lactoylglutathione, a substrate characteristic for GLX-II activity. Since lactonase 

activity is linked to the process of quorum sensing the bifunctional activity of “non-

pathogenic” MBLs such as MIM-1 and MIM-2 may provide insight into one possible 

evolutionary pathway for the emergence of antibiotic resistance.  
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ABSTRACT  

Metallo-β-lactamases (MBLs) are a family of Zn
2+

- dependent enzymes that have contributed 

strongly to the emergence and spread of antibiotic resistance. Novel members as well as 

variants of existing mem- bers of this family are discovered continuously, com- pounding their 

threat to global health care. MBLs are divided into three subgroups, i.e. B1, B2 and B3. The 

recent discovery of an unusual MBL from Serratia proteamaculans (SPR-1) suggests the 

presence of an additional subgroup, i.e. B4. A database search reveals that SPR-1 has only one 

homologue from Cronobacter sakazakii, CSA-1.These two MBLs have a unique active site and 

may employ a mechanism dis- tinct from other MBLs, but reminiscent of some or- 

ganophosphate-degrading hydrolases.  
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1
Department of Chemistry, National University of Ireland-Maynooth, Maynooth, Ireland 

2
School 

of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia 

3
Research School of Chemistry, Australian National University, Canberra, Australia Email:  – 

incorporated as Chapter 1.  

 

Contributor I contributed to the review and writing of the 

review 

Author Manfredi Miraula (Candidate) Wrote the paper (50%) 

Emer K. Phelan, Christopher Selleck, David L. 

Ollis, Gerhard Schenk, Nataša Mitić 
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Abstract 

 

The spread of antibiotic resistance is one major global problem for healthcare systems. One of the 

most relevant mechanisms of resistance involves the expression, by bacteria, of enzymes able to 

degrade the antibiotic molecules. This thesis is focused on the study of a particular class of 

antibiotic-degrading enzymes, the metallo-β-lactamases (MBLs). MBLs are a family of Zn(II)-

dependent enzymes that inactivate most of the commonly used β-lactam antibiotics. In Chapter 1 a 

detailed review of the properties of these enzymes is presented.  

Novel MBLs are continuously discovered and numerous variants of known MBLs emerge, 

largely due to the introduction and frequent misuse of novel antibiotics.  It has also become 

apparent that MBLs are present in microorganisms that are not pathogenic and inhabit environments 

that are not likely to be subjected to significant evolutionary pressures (such as the sharp increase in 

antibiotics).  MBLs from such environmental microorganisms may thus pose a future risk for health 

care, but they may also provide clues about essential factors that enable such enzymes to inactivate 

antibiotics.  In Chapter 2 the discovery of two novel putative MBLs from the marine organisms 

Novosphingobium pentaromativorans and Simiduia agarivorans is described.  In adherence with 

common practice these two enzymes were named Maynooth IMipenemase-1 (MIM-1) and 

Maynooth IMipenemase-2 (MIM-2), respectively.  

In Chapter 3 the biochemical properties of MIM-1 and MIM-2 are discussed and compared 

to those of known MBLs.  From the pH dependence of their catalytic parameters it is evident that 

both enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 

acidic conditions.  Both enzymes require Zn(II) but activity can also be reconstituted with other 

metal ions, including Co(II), Mn(II), Cu(II) and Ca(II).  Importantly, the substrate preference of 

MIM-1 and MIM-2 appears to be influenced by their metal ion composition, which may be a 

relevant factor in determining their precise biological function.  However, with respect to their 

catalytic efficiency towards degrading β-lactam antibiotics MIM-1 and MIM-2 are comparable to 

MBLs from known pathogenic bacteria such as Klebsiella pneumonia or Pseudomonas aeruginosa.  

They are also inhibited by the non-clinical compound D-captopril in a manner characteristic for 

MBLs.  Thus, even though MIM-1 and MIM-2 are currently not associated with antibiotic 

resistance these enzymes, should they ever enter the human population, certainly could pose a 

future threat to health care. 
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Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise 

biological role(s) of MIM-1 and MIM-2 remains to be established.  In Chapter 4 the possibility of 

an alternative function of MIM-1 and MIM-2 will be addressed. Although both protein sequence 

comparisons and homology modelling indicate that these proteins are related to well-known MBLs 

such as AIM-1, the sequence analysis also indicates that MIM-1 and MIM-2 share similarities with 

N-acyl homoserine lactonases (AHLases) and glyoxalase II (GLX-II).  Steady-state kinetic assays 

using a series of lactone substrates confirm that MIM-1 and MIM-2 are indeed efficient lactonases, 

with catalytic efficiencies resembling those of well-known AHLases.  Interestingly, unlike their 

MBL activity the AHLase activity of MIM-1 and MIM-2 is not dependent on the metal ion 

composition with Zn(II), Co(II), Cu(II), Mn(II) and Ca(II) all being able to reconstitute catalytic 

activity (with Co(II) being the most efficient).  However, these enzymes do not turn over S-

lactoylglutathione, a substrate characteristic for GLX-II activity.  Since lactonase activity is linked 

to the process of quorum sensing the bifunctional activity of “non-pathogenic” MBLs such as MIM-

1 and MIM-2 may provide insight into one possible evolutionary pathway for the emergence of 

antibiotic resistance.  

In the preceding chapters MIM-1 and MIM-2 were introduced as novel MBL-like enzymes 

that may provide essential clues about the functional promiscuity that may be inherent to the family 

of β-lactam-hydrolysing enzymes.  It is thus essential to probe the catalytic mechanism of these 

enzymes in detail to gain insight into essential factors that control their reactivity.  In Chapter 5 a 

series of physico-chemical experiments are described (including rapid kinetics and spectroscopic 

techniques) that provide insight into the active site structure and the mechanism of substrate 

turnover.  In brief, while MIM-1 and MIM-2 employ a strategy that is similar to that of other MBLs 

by using a metal ion-activated hydroxide moiety to initiate the hydrolysis of β-lactam substrates 

(such as penicillin, cephalothin or imipenem) no reaction intermediate is observed.  Such an 

intermediate is present in many MBL-characterised reactions and indicates that MIM-1 and MIM-2 

may use a different mechanistic strategy, one where the identity of the rate-limiting step is different 

from that of many (but not all) MBLs. 

 The characterisation of two novel members of the continuously growing family of MBLs 

has provided detailed insight into the structure and function of an antibiotic resistance mechanism 

that is not limited to pathogenic microorganisms.  The similarity of the physico-chemical properties 

between MBLs from pathogenic and non-pathogenic sources may provide clues about evolutionary 

relationships that may underlie the rapid emergence and spread of antibiotic resistance, but it may 

also assist in the development of urgently needed potent and clinically useful inhibitors for this 

group of enzymes.  In Chapter 6 some concluding remarks allude to future directions in this area of 
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research, including a brief description of the crystal structures of both MIM-1 and MIM-2, which 

have been solved by another member of our team as this thesis was being completed.  The hope 

remains that research like the one presented here will, in time, lead to a powerful strategy to combat 

the rise of antibiotic resistance and the grave dangers this brings to global human health. 
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Abstract  

Antibiotic resistance is one of the most significant challenges facing global healthcare. Since 

the 1940s, antibiotics have been used to fight infections, initially with penicillin and 

subsequently with various derivatives including cephalosporins, carbapenams and 

monobactams. A common characteristic of these antibiotics is the four-membered β-lactam 

ring. Alarmingly, in recent years an increasing number of bacteria have become resistant to 
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these antibiotics. A major strategy em- ployed by these pathogens is to use Zn(II)-dependent 

enzymes, the metallo-β-lactamases (MBLs), which hydrolyse the β-lactam ring. Clinically 

useful MBL inhibitors are not yet available. Conse- quently, MBLs remain a major threat to 

human health. In this review biochemical properties of MBLs are discussed, focusing in 

particular on the interactions between the enzymes and the func- tionally essential metal ions. 

The precise role(s) of these metal ions is still debated and may differ between different MBLs. 

However, since they are required for catalysis, their binding site may present an alternative 

target for inhibitor design.  

Keywords  

Antibiotic Resistance, β-Lactam Antibiotics, Metallo-β-Lactamases, Reaction Mechanism, Metal 

Ion Binding  
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Abstract  

At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of 

catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved 

in catalysis), the presence of two (or more) closely spaced metal ions gives an additional 

advantage in terms of (i) charge delocalisation, (ii) smaller activation bar- riers, (iii) the 
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ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) 

decreased transition-state energies. Among this group of proteins, enzymes that catalyze the 

hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. 

These enzymes are involved in a multitude of biological functions, and an increasing number 

of them gain attention for translational research in medicine and biotechnology. Their 

functional versatility and catalytic proficiency are largely due to the presence of metal ions in 

their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of 

several closely related enzymes with a view to highlighting the functional diversity bestowed 

upon them by their metal ion cofactors.  

 

 

 

1.1. Metallohydrolases and the metallo-β-lactamase fold. 

 

The chemistry of life is complex. Many reactions, essential for basic and more advanced 

physiological functions, would not be possible without the support of enzymes. Enzymes are able to 

reduce the activation barrier of a reaction, thus accelerating reaction rates by many orders of 

magnitude. For this fundamental and vital ability, enzymes are both essential and ubiquitous in all 

the kingdoms of life [1, 2].   

 Enzymes are able to catalyze diverse reactions, being involved in a wide range of chemical 

pathways. For example, hydrolases are enzymes that are able to hydrolyze ester or amide bonds in 

specific substrates. Hydrolytic enzymes are involved in many physiological pathways and are 

necessary to recycle metabolites needed by the cells [1-3]. Among them, the binuclear 

metallohydrolases are a family of enzymes that use two metal ions in their catalytically active site 

in order to catalyze the hydrolysis of ester and amide bonds [1, 2, 4] (Figure 1.1.). The main 

ligands involved in metal ion coordination in these enzymes are the imidazole groups of histidine 

the acidic side chains of aspartate and glutamate, and the alcohol groups of tyrosine and serine [1, 2, 

4]. Structurally, the two metal ions are separated by ~3.5 - 4 Å. It is common to find a bridging 

molecule between the two metal ions, generally an hydroxide (i.e., μ-hydroxide), the carboxyl side 

chain of an aspartate or glutamate or a combination of both. Frequently, the μ-hydroxide acts as the 
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nucleophile that initiates the chemical reaction [1, 2, 4]. The environment that is created by a bi-

metallic centre presents numerous advantages in terms of its catalytic potential, including (i) charge 

delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced 

electrostatic activation of substrates, and (v) decreased  

 

Fig

ure 

1.1. 
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ves. A) pig PAP (PDB: 1UTE) [10], B) GpdQ from Enterobacter aerogenes (PDB: 3D03) [11], C) 

OPDA from Agrobacterium radiobacter (PDB: 2D2J) [12] and D) BcII from Bacillus cereus (PDB: 

4C09) [13]. The amino acids involved in the metal binding are showed as sticks. In A) the Fe(II/III) 

and Fe(III) ions are depicted as orange spheres; in B) and C) the two metal ions are represented as 

pink spheres and labelled as α and β because of the promiscuity of these enzymes in respect of their 

metal cofactor requirements; in D) the two zinc ions are shown as grey spheres and the two sites are 

labelled as Zn1 and Zn2. The water molecules are represented as red spheres. The coordination 

involving the amino acids and the metal ions is shown with dashed blue lines, the interactions with 

the terminal water molecule are shown with dashed black lines. The image was generated using 

PyMOL. 
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transition-state energies [2, 4, 5]. 

The binuclear metal centre is associated with a variety of enzymatic structures, serving as 

the catalytic centre for many and diverse functions. Examples of protein folds possessing such a 

binuclear centre are the four-helix bundles (e.g., arginase), TIM barrels (e.g., the organophosphate 

(OP)-degrading enzyme from Agrobacterium radiobacter, OPDA), R/β/β/R folds (e.g., purple acid 

phosphatase, PAP, and the OP-degrading enzyme from Enterobacter aerogenes, GpdQ) and the 

αβ/βα fold (e.g., metallo-β-lactamases, MBLs) [1, 2, 4]. The scope of this chapter is to introduce the 

main features characteristic of MBLs, what is known about their structure to function relationship 

and the role(s) of the metal ion(s) in the catalysis. Over the last twenty years, these enzymes have 

acquired notoriety for their role in antibiotic resistance, a major challenge to current research 

endeavours in medicine and biotechnology [4]. 

The structural fold characteristic for MBLs was first identified in 1997 [6, 7]. Enzymes belonging to 

the MBL superfamily share a common three-dimensional structure as well as five conserved 

regions/motifs in their sequences, i.e. Asp84, His116-X-His118-X-Asp120-His121, His196, 

Asp221 and His263 (the standard BBL numbering scheme is used throughout this chapter and 

thesis [8]) [6, 9]. 

Despite their conserved fold, represented by the αβ/βα structure (Figure 1.2.), the primary 

sequences of different MBLs share only low sequence homology. Consequently, the MBLs 

possessing β-lactamase activity are divided into as many as four subgroups, i.e. B1 – B4  [6, 8, 14].  

It is also interesting to point out that while all known MBLs can accommodate two metal ions in 

their active sites, representatives of the B2 subgroup only need one metal ion for catalysis; the 

presence of the second metal ion leads to an inhibited state [6]. These variations may explain why 

MBLs are so effective in (i) inactivating most of the commonly used antibiotics, (ii) adapting 

rapidly to new imposed challenges, and (iii) displaying functional promiscuity. 

Depending on their functions, members of the MBL super family – possessing the 

characteristic αβ/βα fold - can be divided into as many as 17 different  subgroups or classes 

including the β-lactam antibiotics-hydrolysing MBLs (group 1), the glutathione dependent 

glyoxalases II (group 2), the rubredoxin oxidoreductases (group 3), the t-RNA30 processing endo-

ribonuclease tRNAseZ (group 4), members of the b-CASP family (groups 6 and 7), acid 

phosphorylcholine esterase Pce (group 9), N-acyl homoserine lactonases (group 12), alkylsulfatase 

from Pseudomonas aeruginosa SdsA1 (group 13) and the methyl parathion hydrolase (group 15). 

There is currently no structural information for the remaining groups [6]. The proteins belonging to 
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group 1, i.e. the MBLs, are the subject of this thesis and will be introduced in detail in the 

remaining part of this chapter.  
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Figure 1.2. MBL structure. The figure shows the αβ/βα fold, characteristic of the MBL protein 

family. The structures shown are those of three representatives of the three major MBL classes. A) 

NDM-1 from Klebsiella pneumonia (PDB: 3ZR9) [15]; B) CphA from A. hydrophylia (PDB: 

1X8G); C) AIM-1 from P.aeruginosa (PDB: 4AWY). The representation shows the secondary 

structure elements as ribbon. The α-helix are coloured in green, the β sheet in red and the loops in 

grey. The zinc ions are shown as grey sphere; for NDM-1, the second ion occupying the active site 

is cadmium, shown as a yellow sphere. The black lines indicate the flexible loops, believed to play 

an important role in the substrate recognition in the B1- and B3-type MBLs. The image was 

produced using UCF Chimera 10.1. 

 

1.2. The spread of antibiotic resistance and the role of MBLs  

 

The first clinically available β-lactam antibiotic was introduced in 1940, when penicillin was first 

used to cure bacterial infections [16]. Since then, the chemical structure of β-lactam antibiotics 

(Figure 1.3.) has been extensively modified in order to obtain more powerful drugs, able to kill a 

wide range of pathogens. Unfortunately, careless use of antibiotics, combined with horizontal gene 

transfer between different bacterial strains, allowed the genes carrying antibiotic resistances to 

spread widely. In our modern era, we are facing a considerable risk to regress to a time when 

bacterial infections would cause death at high rates.  
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 β-lactam antibiotics have a common core structure, represented by the four-membered β-

lactam ring (Figure 1.3.), and can be divided into four main subgroups: penicillins, cephalosporins, 

monobactams and carbapenems. The β-lactams possess bactericidal activity. They inhibit cell wall 

formation and cause the formation of pores. Due to the difference in osmotic pressure between the 

external medium and the cytosol, they induce cell lysis due to the lack of a perfectly formed cell 

wall [17, 18].  

 Even though medicinal chemists have been working on the design of new and more efficient 

antibiotics, bacteria have continuously evolved ways to escape these antibiotics. Amongst the 

various possible pathways bacteria possess to fight antibiotics, one of the most efficient is the 

expression of hydrolytic enzymes able to hydrolyse most of the commonly used antibiotics. The 

enzymes able to hydrolyse β-lactams are called β-lactamases. These enzymes are able to cleave the 

cyclic amide bond, characteristic of the shared core structure of these antibiotics (Figure 1.3), thus 

inactivating the drug [18]. β-Lactamases are grouped into four subgroups, i.e. A, B, C and D. 

Subgroup B comprises MBLs [6, 18]. 
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Figure 1.3. β-lactam antibiotic core structures. The figure shows the core structure of the four 

major β-lactam classes. The image was generated using ChemDraw Professional 15.0. 

 

As discussed above, MBLs recruit up to two Zn(II) ion to hydrolyze β-lactams. In contrast, 

enzymes belonging to subgroups A, C and D do not require metal ions for their activity. They are 

called serine-β-lactamases (SBLs) and their mechanism employs an active site serine residue to 

initiate β-lactam hydrolysis [6]. Clinically useful inhibitors (e.g. clavulanic acid [19]) for SBLs are 

available, lessening their threat to health care [6, 19]. On the other hand, there are currently no 

clinically useful inhibitors for MBLs, compounding the threat these enzymes pose for global health 

[19, 20]. The scope of this thesis will focus on these enzymes. 
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1.3 Metallo-β-lactamases: a diverse group of enzymes 

 

Based on the sequence similarity, substrate specificity and metal ion requirements, the MBL family 

is further divided into four subgroups. Classes B1, B2 and B3 are well studied [6, 8, 21, 22]. 

Recently, our group identified a fourth subgroup, termed B4. The first member to be identified in 

this subgroup is SPR-1 from Serratia proteomaculans [14, 23], that appears to be in a catalytically 

inactive mono-nuclear form in the resting state, but acquires a second metal ion when a substrate is 

added (substrate-promoted activation) [14, 23]. Insofar, SPR-1 resembles an organophosphate-

degrading bimetallic glycerophosphate diesterase from Enterobacter aerogenes, GpdQ [11, 24, 25]. 

Since the discovery of SPR-1 several additional putative B4-type MBLs have been identified by 

sequence comparisons [14], however no structural information is currently available for any of 

these enzymes. Despite limited overall sequence homology and mechanistic differences the active 

site structures of all MBLs investigated to date reveal a common geometry that facilitates the 

accommodation of two closely spaced metal ions, although B2-type MBLs only require one metal 

ion for activity and B4-type MBLs may require a second metal ion only upon activation by the 

substrate (see above). Figure 1.4. illustrates active sites of representative MBLs from the B1, B2 

and B3 subgroups. Table 1.1. summarises relevant amino acid ligands of the metal ions in the 

different subgroups. 
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Figure 1.4. Active site structure of MBL representatives. The active site structure of B1, B2 and B3 MBLs is show. A) B1 BcII from B. cereus, B) 

B2 CphA from A. hydrophylia, C) B3 AIM-1 from P. aeruginosa. The amino acids involved in the metal binding are shown as sticks. The zinc ions are 

shown as grey spheres, while the water molecules as red spheres. The blue dashed lines are used to show the amino acid to metal cooridinations; the 

Black dashed lines represent the interactions between the metal ions and the amino acids with the water molecules. 

 



Chapter 1: An Introduction to metallo-β-lactamases and their role in the bacterial resistance to antibiotics 
 

 
 

 

 

Table 1.1. Geometries and ligands of the two metal ion binding sites in MBLs from different subclasses. 

Subclass Zn1 Geometry Zn1 Ligands Zn2 Geometry Zn2 Ligands 

B1 Tetrahedral H116, H118, H196 & W1 Trigonal bipyramidal D120, C221, H263 & W1 

B2 Not occupied 
 

Tetrahedral D120, C221, H263 & W1 

B3 Tetrahedral H116, H118, H196 & W1 Trigonal bipyramidal D120, C221, H263, W1 & W2 

B4 Tetrahedral H116, R118, H196 Trigonal bipyramidal D120, Q121/S221, A262 
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Table 1.2. List of MBLs divided by class type. The Table presents a list of the B1-, B2- and B3-type MBL identified until now. The microorganisms 

from which the MBLs were first isolated are reported.  

MBL type Microorganism MBL type Microorganism MBL type Microorganism 

B1 
 

B2 
 

B3 
 

BcII Bacillus cereus CphA Aeromonas hydrophylia L1 Streptomonas maltophilia 

CcrA Bacteroides fragilis 
CphAII 

[26] 
Aquifex aeolicus FEZ-1 [27, 28] Fluoriobacter gormanii 

EBR-1 [29] Empedobacter brevis ImiS [30] Aeromonas sobria GOB-1 [31] Elizabethkingia meningoseptica 

BlaB [32] 
Elizabethkingia 

meningoseptica 
Sfh-I [33] Serratia fonticola AIM-1 Pseudomonas aeruginosa 

NDM-1 Klebsiella pneumoniae 
  

MIM-1 Novosphingobium pentaromativorans 

Acquired-B1 
   

MIM-2 Simiduia agarivorans 

IMP-1 Serratia marcescens 
  

SMB-1 [34] Serratia marcescens 

IMP-2 [35] Acinetobacter ssp 
  

SPR-1 Serratia proteamaculans 

VIM-1 [36] Pseudomonas aeruginosa 
  

CSA-1 Cronobacter sakazaki 
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VIM-2 [37] Pseudomonas aeruginosa 
  

BJP-1 [38, 39] Bradyrhizobium japonicum 

SPM-1 [40] Pseudomonas aeruginosa 
  

CAR-1 [41] Erwinia carotovora 

GIM-1 [42, 43] Pseudomonas aeruginosa 
  

THIN-B [44] Janthinobacterium lividum 

DIM-1 [45] Pseudomonas stutzeri 
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1.4 MBLs in details: B1 and B3 subgroups 

The uncertainties regarding the number of zinc ions required in vivo by MBLs were further 

exacerbated by the first crystal structure obtained for the B1-type BcII from Bacillus cereus [46]. 

Although containing space for two zinc ions to be bound, the structure of BcII revealed an active 

site with only one zinc ion bound to the Zn1 site [46]. Since this structure became available, 

numerous studies have tried to establish the physiological metal composition of BcII, without 

success [47-49]. A factor that contributes to this lack in understanding is the absence of reliable data 

about the metal ion affinities to MBLs. It is apparent that metal binding affinities vary greatly 

depending on the technique used to analyze the binding phenomenon [16] (Table 1.3., Table 1.4., 

Table 1.5. and Table 1.6.). The B1 subclass is the most prevalent and structurally most extensively 

studied class of MBLs [6, 29, 46, 50-55] (Table 1.2.). Members include IMP [54, 56-63], VIM [64-

72] and BcII [14, 18, 48, 73]. More recently, NDM-1 from Klebsiella pneumoniae emerged and 

made global headlines due to its highly pathogenic and dangerous nature because of its ability to 

degrade most commonly used antibiotics [74-79]. Examples of the B2 and B3 subgroups are CphA 

from A. hydrophila [80-86], ImiS from A. veronii bv. Sobria and Sfh-I from S. fonticola [33, 82, 

86], and L1 from S. maltophilia [87-90], FEZ-1 from F. gormanii [27], BJP-1 from B. japonicum 

[38], MIM-1 from N. pentaromativorans [91, 92], MIM-2 from S. agarivorans [91, 92], SMB-1 

from S. marcescens [93], CAR-1 from E. carotovora [41] and THIN-B from J. lividum [44]. The 

recently proposed B4 subgroup is represented by SPR-1 from S. proteamaculans [23] and CSA-1 

from C. sakazaki [14] (Table 1.2.).  

 B1-type MBLs have two peptide loops, L3 and L8, in the vicinity of the metal ion-

containing active site (Fig. 1.2). These loops are believed to be crucial for the determination  

of the substrate specificity of these enzymes [6]. In contrast, MBLs from the B2 subgroup lack the 

extended L3 loop. Instead these enzymes have a kinked α-helix positioned directly above the active 

site cleft [6, 94] (Fig. 1.2). This feature facilitates the formation of a narrow, well-defined substrate 

binding pocket. Consequently, these enzymes display a tighter selectivity for antibiotic substrates 

than other MBLs, hydrolysing only carbapenam substrates with high efficiency [6]. Of the three 

known representatives from this subgroup (Fig. 1.2 and Table 1.2), CphA is the most extensively 

studied [80-85, 95]. MBLs from the B3 subgroup also lack the extended L3 loop. However, they 

have an extra loop, located above the active site, which may also influence the substrate specificity 

of these enzymes. A preference for cephalosporins has been noted for this subgroup [6, 80]. 
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Initially, SPR-1 from S. proteamaculans was also assigned to the B3 subgroup [23]. However, an 

analysis of its active site structure (Fig. 1.4), together with a homology sequence analysis has 

indicated that SPR-1 may represent the prototype of the B4 subgroup of MBLs [14, 23]. Its 

substrate preference is similar to that of the B3-type MBL L1 from S. maltophilia [23]; no 

crystallographic data for SPR-1 is currently available.  

 Differences at the sequence level are not the only characteristic features that distinguish the 

three major subgroups. The metal ion content and the role(s) of the metal ions in catalysis also vary 

between the subgroups [16, 96, 97]. The B1- and B3-type MBLs generally require two zinc ions to 

work optimally, while the MBLs of the B2 subgroup only require one zinc (located in the Zn2 site) 

to be catalytically active (Fig. 1.4). The presence of a second zinc ion (in the Zn1 site) diminishes 

or inhibits enzyme activity [16, 96]. For example, when fluorescence spectroscopy was used to 

monitor the protein fluorescence, the binding constants for the Zn1 and Zn2 sites are 0.62 nM and 

1.5 μM, respectively [48]. However, when the same binding interaction was studied using 

equilibrium dialysis,  

corresponding values of 0.3 and 3 μM were reported [98] (Table 1.3., Table 1.4., Table 1.5. and 

Table 1.6.). Ignoring the variations of the magnitude of reported binding constants (which might be 

explained, at least in parts, by the use of different experimental conditions and/or different 

sensitivity of the technique used) the binding studies appear to be in agreement with the initial 

crystal structure of BcII: the two binding sites are distinct and possess different binding affinities. 

Moreover, it has been shown that the presence of the substrate can greatly enhance the affinity of 

the Zn1 binding site into the picomolar range, but have a modest effect on the affinity of the Zn2 

site for the metal ion [99]. Since the physiological concentration of zinc in cells ranges from the 

femto- to the nanomolar range, the available metal ion binding constants suggest that BcII operates 

as mononuclear enzymes in vivo [99, 100]. The characterisation of an active mono-nuclear form of 

BcII was complicated by the observation that upon the addition of a single equivalent of zinc to 

apo-BcII a mixture of two monometallic species was formed [48, 49, 98, 101]. Nonetheless, when 

the activity was measured under saturating [Zn(II)] condition, it doubled with respect to the 

mononuclear form of the enzyme, indicating that the catalytically optimal form of BcII is binuclear.  

The differences between MBLs are evident even within the same subgroup. In fact, other 

well-studied B1-type MBLs, e.g. CcrA from Bacteroides fragilis, tightly binds two zinc ions [102] 

(Table 1.3., Table 1.4., Table 1.5. and Table 1.6.). Kinetic studies have shown that only the 

binuclear form of CcrA is catalytically active. Previously reported activity of a putative 
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mononuclear form was in fact the activity arising from a mixture of the apo- and binuclear forms of 

the enzyme [103, 104].  

 Similarly to the B1 class, proteins belonging to the B3-type MBLs display optimal activity 

in the bimetallic form (Table 1.3., Table 1.4., Table 1.5. and Table 1.6.). Another  

characteristic shared with the B1 class is their broad substrate specificity. Despite these functional 

similarities, B1- and B3-type MBLs share only minimal overall sequence homology (20% or less) 

[105, 106]. Well-studied representatives of the B3 class are the proteins L1 from Stenotrophomonas 

maltophilia, FEZ-1 from Legionella gormanii and BJP-1 from Bradyrizobium japonicum [28, 39, 

107, 108]. The majority of the currently known B3-type MBLs are believed to act as binuclear 

enzymes in vivo. The reported nanomolar affinities of their Zn1 and Zn2 sites support this 

hypothesis [28, 39, 107]. One notable exception is GOB-18 from Elizabethkingia meningoseptica 

which has maximum activity when only one zinc ion is bound to the Zn2 site [31, 109]. 
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Table 1.3. List of the metal binding constant for the Zn1 and Zn2 sites, obtained using competitive assays. Binding constants for B1-type MBLs. 

Enzyme Substrate 
Kd1 nM Kd1 nM Kd2 µM Kd2 µM 

Zn(II) Cd(II) Zn(II) Cd(II) 

 No 0.6 (± 0.1)[48]  1.50 (± 0.71)[48]  

  No 0.7 μM[110]   890 μM[110]   

BcII WT No 1.8 (± 0.3)[99] 8.3 (± 0.5)[48] 1.8 (± 0.3) μM[99] 5.9 (± 1.0)[48] 

  No     > 80 nM[111]   

  Imipenem 13.6 (± 5) pM[99]   0.8 (± 0.2) μM[99]   

H86S No 5.3 (± 2.3)[48]   0.3 (± 0.1)[48]   

H88S No 0.4 (± 0.1)[48] 3.8 (± 0.3)[48] 1.1 (± 0.2)[48] 1.4 (± 0.1)[48] 

H149S No 3.1 (± 0.1)[48]   0.2[48]   

D90N No 2.0 (± 0.4)[48]   5.0 (± 2.4)[48]   

C168S No 0.6 (± 0.2)[48]   2.3 (± 0.6)[48]   

C168A No ND   ND   

H210S No 0.4 (± 0.1)[48]   2.5 (± 0.5)[48]   

R121C No 3.6 µM[110]   570 µM[110]   

BcII-HS Nitrocefin    18 (± 12) µM[112]   
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BcII-HD Nitrocefin    < 0.2 nM[112]   

BlaB 
No 5.1 (± 1.5) nM[99]   0.007 (± 0.002) µM[99]   

Nitrocefin 1.8 (± 0.2) pM[99]   0.025 (± 0.004) µM[99]   

NDM-1       2 µM[113]   

 

Table 1.4. List of the metal binding constant for the Zn1 and Zn2 sites, obtained using competitive assays (continuation). Binding constants for 

B2- and B3-type MBLs. 

Enzyme Substrate 

Kd1 nM Kd1 nM Kd1 nM Kd1 nM Kd2 µM Kd2 µM Kd2 µM Kd2 µM 

Zn(II) Cd(II) Co(II) Cu(II) Zn(II) Cd(II) Co(II) Cu(II) 

CphA 

WT 

No 7 (± 2) [95] 

pM  

60 (± 10)  

pM[95] 

220 (± 25)  

pM[95] 

620 (± 55)  

pM[95] 

40 (± 6)  µM[95] 82 (± 8)  

µM[95] 

>5  mM[95] 

(pH 6.5) 

<10  µM[95] 

(pH 6.5) 

(pH 6.5) (pH 6.5) (pH 6.5) (pH 6.5) (pH 6.5) (pH 6.5) 

No 6 (± 2)  

pM[95] 

80 (± 72)  

pM[95] 

330 (± 40)  

nM[95] 

550 (± 58)  

nM[95] 

10 (± 3)  µM[95]   4 (± 2)  

µM[95] 

500 (± 48)  

µM[95] 

<20  µM[95] 

(pH 7.5) 

(pH 7.5) (pH 7.5) (pH 7.5) (pH 7.5)  (pH 7.5) (pH 7.5) (pH 7.5) 

Imipenem 1.2 (± 0.2) 

pM[99] 

      1.9 (± 0.3) 

µM[99] 
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L1 WT 

No 2.6 (± 1.0) 

nM[99] 

      0.006 (± 0.002) 

µM[99] 

      

Imipenem 5.7 (± 2.0) 

pM[99] 

      0.12 (± 0.03) 

µM[99] 

      

 

 

 

Table 1.5. Dissociation constants of Co(II) for the Zn1 and Zn2 sites of wild type and mutant BcII, determined using absorption spectroscopy 

[48]. 

Enzyme 
Kd1 µM 

Co(II) 

Kd2 µM 

Co(II) 

BcII WT 0.093 (± 0.015) 66.7 (± 10.0) 

H86S 10.5 (± 1.5) 
 

H88S 9.1 (± 1.1) 
 

H149S 2.7 (± 0.3) 
 

D90N 20.0 (± 3.5) 
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C168S 3.1 (± 0.4) 
 

C168A 1.1 (± 0.1) 
 

H210S 0.35 (± 0.05) 
 

 

Table 1.6.  Second-order association rate constants of wild type BcII for the binding of Zn(II), Co(II) and Cd(II), followed by fluorescence 

spectroscopy [48]. 

 

Zn(II) Co(II) Cd(II) 

κon1 µM-1s-1 κon2 µM-1s-1 κon1 µM-1s-1 κon2 µM-1s-1 κon1 µM-1s-1 κon2 µM-1s-1 

14.1 (± 0.3)                        0.3 (± 0.01)                        26.0 (± 1.3)                      0.5 (± 0.01)                      



Chapter 1: An Introduction to metallo-β-lactamases and their role in the 

bacterial resistance to antibiotics 
 
 

 
 

1.5 MBLs in details: B2 subgroup 

 

B2-type MBLs require only one zinc ion coordinated to the Zn2 site for full catalytic activity [114] 

(Table 1.3., Table 1.4., Table 1.5. and Table 1.6.). When a second metal ion is bound to the Zn1 

site, the activity is inhibited in a noncompetitive manner [115]. In contrast to the broad substrate 

specificity displayed by the B1 and B3 subclasses, the B2-type MBLs are strictly carbapenemase-

specific [115]. Representatives of this group are ImiS from Aeromonas sobria, Sfh-1 from Serratia 

fonticola, and CphA from A. hydrophila [83, 116, 117].  

The requirement for the B2-type MBLs for a mononuclear catalytically competent active 

site was supported by the crystal structure of CphA in complex with the substrate biapenem (Figure 

1.5.). The crystal structure shows only one zinc bound to the Zn2 site [83]. Inhibition studies have 

led to the suggestion that when the Zn1 site is occupied by Zn(II), the catalytically relevant residues 

His118 and His196 are immobilized and the Gly232-Asn233 loop folds into the active site, thus 

occluding the entrance to the substrate [6, 86]. The affinities of the Zn1 and Zn2 sites have been 

investigated by competition experiments, using the chromophoric chelator quin-2; the Zn2 site has a 

very high affinity for zinc (Kd < 10 pM), whereas the inhibitory Zn1 site has a considerably weaker 

affinity (~46 μM) for this metal ion [99, 115]. 
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Figure 1.5 Comparison of the complexes formed with the substrates and B1-, B2- and B3 type 

MBLs (previous page). The figure shows the complex of NDM-1 from K. pneumonia with the 

substrate meropenem (blue) (PDB: 4EYL) [118], CphA from A. hydrophylia with the substrate 

biapenem (orange) (PDB: 1X8I) [83] and L1 from S. maltophilia with the substrate moxalactam 

(yellow) (PDB: 2AIO) [119]. The residues involved in the metal binding are shown coordinating 

the zinc ion present in the Zn2 site (represented as a grey sphere). The substrates are bound to the 

active site and positioned via the metal ion coordination. 

 

1.6 MBLs in details: B4 subgroup 

 

Recently, the discovery of a putative novel MBL from Serratia proteamaculans, SPR-1, further 

highlighted the functional differences within the MBL family. Preliminary spectroscopic and kinetic 

investigation led to the observation that SPR-1 may be mononuclear in its resting state. Only in the 

presence of the substrate the catalytically active binuclear center is formed, providing the platform 

for a substrate-mediated regulatory mechanism [23]. A similar behaviour was observed for the 

organophosphate-degrading enzyme GpdQ, thus suggesting an evolutionary link between 

metalloenzymes with largely different biological functions [2].  

The above discussion illustrates the diversity of various MBLs with respect to their interactions 

with their metal ion cofactors. Not surprisingly, the proposed reaction mechanisms employed by 

MBLs are equally flexible and have been shown to be influenced by a variety of factors including 

the source of the enzyme, the identity of the metal ion(s) bound to the active site and the substrate 

being turned over [22, 47, 56, 83, 108, 120]. However, the proposed models can be generally 

categorized as mono- and binuclear models and their overall features are briefly outlined in the 

following paragraphs.  

1.7 Mono- and binuclear enzymes: two mechanisms, one reaction 

 

The mononuclear reaction model has been proposed using BcII from B. cereus as representative of 

the MBL proteins (Fig. 1.6.). The substrate cefotaxim makes contact in the active site exploiting 

both the hydrogen bond network involving the second ligand sphere residues Asn223 and Lys224, 

and an hydroxide coordinated by the zinc ion (Fig. 1.6.) [46, 121]. This hydroxide is believed to 
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initiate the nucleophilic attack on the β-lactam ring. It is  

oriented and stabilized by residues Asp120, Cys221 and His263, all Zn2 ligands in the B1- and B3-

type MBLs, and Arg121 [48, 73]. The role of these residues is to activate the nucleophile, while the 

metal ion acts as a Lewis acid, increasing the nucleophilicity of the hydroxide. The combination of 

these interactions has been shown, by pH-dependent kinetic studies, to reduce the pKa of the 

nucleophilic water molecule from 15.7 to 5.6 [122]. Upon the nucleophilic attack a penta-coordinate 

transition-state may be formed, supported by computational but no experimental data to date [123]. 

The rate-limiting step is proposed to be the proton donation, from another Zn(II)-bound water 

molecule to the cyclic amide ring nitrogen [88] (Fig. 1.6.).  
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Figure 1.6. Mononuclear mechanism of β-lactam hydrolysis. Proposed reaction mechanism for 

mononuclear MBLs. The reaction is based on the crystal structure of mono-zinc BcII from B. 

cereus. 
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The reaction between cefotaxime and the enzyme CcrA from B. fragilis served as a model to probe 

the binuclear mechanism employed by MBLs. The major difference between the mono- and 

binuclear mechanisms resides in the lower activation barrier required by the latter to perform the 

reaction (Figure 1.7.). 

When the second zinc is involved, the catalytic mechanism follows a quicker and more efficient 

single-step reaction [123-126]. Both Zn(II) ions in the active site coordinate the nucleophilic 

hydroxide. The presence of the second zinc decreases the electrostatic interaction between the water 

molecule and the substrate but, on the other hand, is compensated by the double-Lewis acid 

activation (Fig. 1.7.). Interestingly, it appears that the binuclear mechanism can occur in two 

alternative routes, one involving a tetrahedral reaction intermediate (e.g. NDM-1, L1, CcrA [127, 

128]), and one involving no intermediate (e.g. Bla2). Furthermore, the B3-type MBL AIM-1 can 

utilize either route, although it is not yet understood what factors control the selection of the 

pathway [129]. 
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Figure 1.7. Dinuclear mechanism of β-lactam hydrolysis. Proposed reaction mechanism for dinuclear MBLs. The reaction is based on the crystal 

structure of di-zinc CcrA from B. fragilis. 
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In conclusion, the higher reaction rates and efficiencies observed for the binuclear systems can be 

explained by the lower activation barrier for the nucleophilic attack on the amide ring carbonyl 

group, and the more efficient protonation mechanism for the leaving product (Fig. 1.7.) [123]. 

When looking at the entire MBL family, their rapid evolution can be partially explained by the 

evolutionary pressure to which these enzymes were subjected. Indeed, the uncontrolled usage of 

new antibiotics would have greatly accelerated this process, facilitating the appearance of many 

varieties of MBLs. Novel MBL-like proteins are frequently discovered that already contain an 

inherent ability to degrade a broad range of antibiotics via different mechanisms, using alterations 

of the same three-dimensional scaffold, with different metal ion requirements and different 

substrate-coordinating residues [21, 47, 98, 109, 117, 123, 130]. It is possible that MBLs emerged 

from a range of progenitor enzymes that may have rather diverse and unrelated functions. This may 

explain why some MBLs are strictly mono-metallic, others are mono- and bimetallic and yet 

another group could be activated by converting a monometallic centre into a bimetallic one (see the 

discussion in the previous sections). The observed mechanistic versatility of the various members of 

the MBL family may also be a major, if not the major reason why it has been proven so difficult to 

establish clinically useful universal MBL inhibitors as drug leads to combat antibiotic resistance  

[20]. Developing an understanding of the factors that contribute to the mechanistic diversity among 

the MBLs is thus an important task in order to design new drugs to stop the spread of antibiotic 

resistance.  

 

 

1.8 Conclusions 

 

MBLs have emerged as a major threat to global health. They inactivate an increasing number of 

commonly used antibiotics and spread easily among various pathogens on mobile genetic elements. 

Crystal structures for several MBLs have been determined and an extensive amount of information 

about their biochemical properties has been accumulated. Some potent in vitro inhibitors of MBLs 

have also been detected. However, to date none of the available MBL inhibitors are of clinical use. 

The search for universal and clinically applicable MBL antagonists is still very much at the 

beginning.  
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This search is complicated further by the fact that MBLs are able to mutate rapidly and thus 

evade inhibition. This large mutational space is illustrated by the small degree of sequence and 

structure conservation in the substrate binding pockets of various MBLs; accordingly, their 

substrate preference and response to potential inhibitors can vary considerably. Thus, new strategies 

to comprehensively inhibit MBLs are needed. The main common aspect of their function is their 

requirement for metal ions, one (in the Zn2 site) for B2-type MBLs, and mostly two in the 

remaining ones (see discussion above). It is thus surprising that the precise role(s) of metal ions in 

the catalytic mechanism of MBLs, and in particular their binding interactions in the active sites are 

still obscure. It appears unlikely that the metal ion binding site can afford a large mutational degree 

of freedom - metal ion affinities are expected to be severely affected by most changes in their 

coordination environment. Hence, it is possible to propose that universal MBL inhibitors that may 

retain their effect long-term should target the metal ion binding site. It is thus essential to 

investigate and compare metal binding interactions among different MBLs under experimentally 

well-defined and conserved conditions. A detailed characterisation of comparative metal ion  

affinities in various MBLs will provide essential information to design and develop compounds that 

effectively interfere with metal ion binding in these enzymes. Such compounds are not expected to 

be affected by mutations as significantly as molecules that compete with substrates, and hence they 

may prove to be highly useful as clinical chemotherapeutics in the fight against antibiotic 

resistance.  

This thesis and the research project behind it started from the belief that understanding the 

role of the metallic centre for MBL function(s) is crucial to design strategies to effectively inhibit 

their catalytic action. In order to fully comprehend the role(s) of the metal ions in the mechanisms 

employed by MBLs two major questions need to be addressed: (i) how many metal ions bind under 

resting conditions, (ii) how many metal ions are required to achieve maximal activity and can this 

change depending on the substrate or other experimental or environmental (i.e. physiological) 

conditions, including changes in pH or temperature?  

The aim of this thesis is to address these questions, focusing on two recently discovered 

MBL-like proteins isolated from non-pathogenic, marine bacteria (see Chapter 2). In my studies I 

deliberately focused on two MBL-like proteins that already have the capability to degrade 

antibiotics without having experienced evolutionary pressures to do so. These enzymes may thus 

provide clues about intrinsic factors that constitute the minimal requirements for enzymes to have 

MBL-like activities. The two proteins were identified by a sequence homology search and are from 
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now on referred to as Maynooth IMipenemases 1 and 2, i.e. MIM-1 and MIM-2. 
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ABSTRACT  

Antibiotic resistance has emerged as a major global threat to human health. Among the 

strategies em- ployed by pathogens to acquire resistance the use of metallo-β-lactamases 

(MBLs), a family of dinuclear metalloenzymes, is among the most potent. MBLs are 

subdivided into three groups (i.e. B1, B2 and B3) with most of the virulence factors belonging 

to the B1 group. The recent discovery of AIM-1, a B3-type MBL, however, has illustrated the 
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potential health threat of this group of MBLs. Here, we employed a bioinformatics approach 

to identify and characterize novel B3-type MBLs from Novosphingobium pentaro- mativorans 

and Simiduia agarivorans. These enzymes may not yet pose a direct risk to human health, but 

their structures and function may provide important insight into the design and synthesis of a 

still elusive universal MBL inhibitor.  

Keywords: Antibiotic Resistance; β-Lactam Antibiotics; Metallo-β-Lactamases; Sequence 

Homology; Novosphingobium Pentaromativorans; Simiduia Agarivorans 

2.1 Introduction  

 

The introduction of β-lactam antibiotics (Fig. 1.2. - Chapter 1) in the 1940s has been considered as 

a breakthrough, if not the most significant breakthrough in the history of medicine. However, after 

only a few years penicillin resistance was observed in Staphylococcus aureus and meanwhile a 

large and increasing number of pathogens have acquired resistance to the most commonly used 

antibiotics [131, 132], triggering some experts to link antibiotic resistance to terrorism in terms of 

its global impact (http://www.bbc.co.uk/news/health-21737844). As outlined in Chapter 1, one of 

the most frightening forms of antibiotic resistance occurs through the action of MBLs, enzymes 

which are capable of breaking down most widely used β-lactam antibiotics [18, 132, 133]. The 

common features of MBLs were described in Chapter 1 [6, 18, 132, 134]. Most of the known MBL 

virulence factors belong to subgroup B1 and include BcII from B. cereus [46], CcrA from B. 

fragilis [102], as well as IMP-1 and SPM-1, both initially identified in P. aeruginosa [56, 135] 

(Table 1.2.). The recently identified NDM-1 (“New Delhi Imipenemase-1”) has acquired particular 

notoriety as it induces resistance to virtually all known β-lactam antibiotics [113]. Subgroup B2 

enzymes share only ~11% sequence homology with B1-type MBLs, hydrolyse exclusively 

carbapenems (e.g. meropenem and imipenem) and require only one metal ion for catalysis [18, 95] 

(see Chapter 1, section 1.5, for more detailed information) [82, 116, 136]. Subgroup B3 is more 

closely related to B1-type MBLs rather than B2-type MBLs, requiring two bound metal ions for 

catalysis (Fig. 1.4. and Fig 1.5 in Chapter 1). The most studied representative is the tetrameric L1 

from S. maltophilia [107]. Other members include FEZ-1 from L. gormanii [28], GOB-1 from E. 

meningoseptica (of which to date 18 variants have been reported) [137] and SMB-1 from S. 

marcesens [34], the most recently identified MBL, which has a higher hydrolytic activity against a 

wide range of β-lactams than other B3-type MBLs [34]. Of clinical relevance in particular is the 
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enzyme AIM-1 from P. aeruginosa, which has been identified recently in a multi-drug resistant 

pathogen in a hospital in Adelaide, Australia (hence, the nomenclature of “Adelaide Imipenemase-

1”—AIM-1) [138].  

Despite rather modest homology across their full length amino acid sequences MBLs share 

considerable similarities in their active site structures [18]. For more details regarding the metal ion 

compositions of the different subgroups refer to Chapter 1 (Fig. 1.4., and Table 1.1.). As stated in 

the introductory chapter, the standard MBL numbering will be applied throughout the thesis [6, 139, 

140]. In light of the rapid spread of antibiotic resistance and the increasing emergence of novel 

virulence factors (exemplified by NDM-1 and AIM-1), it is essential to identify novel putative 

MBLs, ideally before they become a threat to health care. Furthermore, novel MBLs may also 

provide essential insight into the structure and/or functional aspects relevant to the design and 

synthesis of universal inhibitors that may be clinically useful to combat antibiotic resistance. This 

chapter is focused on the discovery of two novel putative MBLs. specifically, a bioinformatics 

approach was employed to identify novel B3-type MBLs from Novosphingobium 

pentaromativorans and Simiduia agarivorans, two marine microorganisms that would have had 

minimal direct contact with the human population [141, 142]. These enzymes may not yet pose a 

direct risk to human health, but their structures and function may provide important insight into the 

design and synthesis of a still elusive universal MBL inhibitor.  

2.2 Materials and Methods  

 

2.2.1 Selection of the Query Sequence and Protein Database Search Using BLAST  

 

The B3-type AIM-1 from P. aeruginosa was used as a query sequence for the protein database 

search. The protein sequence of AIM-1 was obtained from the Protein Data Bank (PDB; accession 

code: 4AWY), and the Basic Local Alignment Search Tool (BLAST; 

http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to identify homologues. The two most promising 

candidates, from Novosphingobium pentaromativorans and Simiduia agarivorans, were selected for 

multiple sequence comparisons including known B3-type MBLs.  

2.2.2 Multiple Sequence Alignments  
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Multiple sequence alignments including the novel B3-type MBLs and well known members of this 

group of enzymes (i.e. AIM-1 [138], L1 [107] and SMB-1 [34]) were carried out using ClustalW2, 

a multiple sequence alignment program, available via The European Bioinformatics Institute 

website (http://www.ebi.ac.uk /Tools/msa/clustalw2/).  

 

2.3. Results and Discussion  

 

2.3.1. Protein Database Search, Nomenclature and Classification of Novel MBLs  

 

Using the BLAST search engine with AIM-1 as the query two promising candidate sequences were 

retrieved, i.e. MBL-like sequences from N. pentaromativorans (accession code: ZP_09194167.1) 

and S. agarivorans (ac- cession code: YP_006917856.1). These microorganisms are both Gram-

negative.  

 

N. pentaromativorans is a poly-cyclic aromatic hydrocarbon-degrading bacterium [141], while S. 

agarivorans is a heterotrophic marine bacterium [142]. None of these organisms poses a direct 

current threat to human health, however, the observation that they harbour a potential MBL may not 

only foreshadow a future problem as they may represent a genetic “pool” for future modifications 

of MBLs that may enhance both their reactivity and evasiveness towards inhibition. It is thus 

essential to investigate the properties of these novel MBL-like proteins and compare them with 

those of well-known MBLs (e.g. AIM-1, L1 or SMB-1).  

As a step towards their characterization, the sequences of the N. pentaromativorans and S. 

agarivorans MBL-like proteins were compared with those of well-characterized MBLs from the B3 

subgroup, i.e. AIM-1 [138], L1 [107] and SMB-1 [34]. The results from pairwise sequence 

comparisons are summarized in Table 2.1. Not surprisingly, the two sequences are most closely 

related to AIM-1. The MBL-like protein from N. pentaromativorans shares 53% sequence identity 

and 65% homology (including conserved amino acid substitutions) with AIM-1. The sequence 

identity/homology to the other two well characterized B3-type MBLs, L1 and SMB-1, is smaller 

(38%/54% and 41%/58%, respectively) but still strongly indicative that the N. pentaromativorans 

protein is indeed a B3-type MBL. In comparison, pairwise sequence comparisons with the B1-type 
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NDM-1 and B2-type CphA indicate only 26%/39% and 23%/42%, respectively. A similar 

conclusion can be drawn for the MBL-like sequence from S. agarivorans. Its similarity/homology 

with AIM-1 (47%/64%) is less than that of the N. pentaromativorans MBL, but it appears to be 

more closely related to SMB-1 instead (Table 2.1.). The two MBL-like proteins share 47%/63% 

identity/homology in a direct pairwise sequence comparison. In summary, these pairwise 

comparisons strongly support the classification of these novel proteins sequences from N. 

pentaromativorans and S. agarivorans as MBLs from the B3 subgroup. In accordance with 

frequently applied nomenclature procedures (e.g. “Adelaide IMipenemase-1” or AIM-1) the MBL-

like sequences from N. pentaromativorans and S. agarivorans are labeled here “Maynooth 

IMipenemase-1” (MIM-1) and “Maynooth IMipenemase- 2” (MIM-2), respectively. 

 

Table 2.1. Pairwaise sequence comparison between MBL-like sequences from N. 

pentaromativorans (MIM-1) and S. agarivorans (MIM-2) and selected MBLs from the B1 

(NDM-1), B2 (CphA) and B3 (AIM-1, L1, SMB-1) subgroups. 

 MBL Identity (%) Homology (%) 

MIM-1 

AIM-1 53 65 

L1 38 54 

SMB-1 41 58 

NDM-1 26 39 

CphA 23 42 

MIM-2 

MIM-1 47 63 

AIM-1 47 64 

L1 33 51 

SMB-1 43 63 

NDM-1 37 59 

CphA 24 44 

 

2.3.2. Important Amino Acid Residues  
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The above discussion demonstrated that the MBL-like sequences in the genomes of N. 

pentaromativorans and S. agarivorans are likely members of the B3 subgroup in the MBL family. 

However, in order to substantiate this interpretation, it is essential to ascertain whether amino acid 

residues that are essential for MBL function are conserved in the amino acid sequences of MIM-1 

and MIM-2. The most relevant amino acid residues with respect to MBL function are those that 

form the metal binding site. Other residues in the proximity of the metal ion binding sites may be 

important for substrate or inhibitor binding or both. In order to evaluate the functionality of MIM-1 

and MIM-2 a multiple sequence alignment between these sequences and the structurally well-

characterized AIM-1 [138], L1 [107] and SMB-1 [34] was carried out (Figure 2.1.). 

Importantly, the six amino acids that form the metal ion binding site are also invariant in both 

MIMs (i.e. His116, His118 and His196 in the Zn1 site and Asp120, His121 and His263 in the Zn2 

site; see also Fig. 2.1.). Other amino acid side chains that were identified as important in MBL 

function are well conserved, including those in positions 221 (Ser) and 223 (Ser/Thr) that line the 

pocket where the β-lactam substrate may bind [18]. Tyr228, a residue that aids the polarization of 

the β-lactam carbonyl oxygen as a means to increase the susceptibility of the carbonyl bond for a 

nucleophilic attack by the “bridging” hydroxide is conserved in all MBLs compared here except 

AIM-1 (Fig. 2.1.). Conserved is also Trp39, another residue that has been shown to play an 

important role in substrate binding [143]. Furthermore, in AIM-1 and to a large extent SMB-1 (but 

not L1) the structure of the enzyme is stabilized by the presence of three disulphide bridges (i.e. the 

pairs Cys32-Cys66, Cys208-Cys213 and Cys256-Cys290 [34, 138]). These six cysteine residues are 

conserved in both MIM-1 and MIM-2, suggesting that these enzymes possess a similar overall fold 

as AIM-1 and SMB-1.  

Some observed sequence variations may, however, deserve mentioning here as they may be 

significant for differences in substrate preference, inhibitor binding and/or catalysis (see also 

Chapters 3 and 4). The region between residues 152 and 164 forms a flexible loop that may clamp 

down on the bound substrate and thus assist catalysis [18]. In this loop, the degree of sequence 

conservation is low (Fig. 2.1.) which may indicate variations in substrate selection, catalytic 

efficiency and possibly also interactions with potential enzyme inhibitors.  
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Figure 2.1. Multiple sequence alignment between known (AIM-1, L1 and SMB-1) and 

putative (MIM-1 and MIM-2) B3-type MBLs. Amino acid side chains involved in Zn2+ 

binding are shown in yellow. Other relevant residues are also indicated in colour and described in 

the text. 

           39                 66 

AIM-1  DDAGWNDPAMPLKVYGNTWYVGTCGISALLVTSDAGHILVDAATPQAGPQILANIRALGFR 

L1     VDASWLQPMAPLQIADHTWQIGTEDLTALLVQTPDGAVLLDGGMPQMASHLLDNMKARGVT 

SMB-1  QDRDWSSPQQPFTIYGNTHYVGTGGISAVLLSSPQGHILVDGTTEKGAQVVAANIRAMGFK 

MIM-1  GREGWSHPAPPAHIYGNTWYVGTCGIASILVTSDDGHVLIDSGPADAAPLVLANIRKLGFD 

MIM-2  DWDAWDKPGPPFRVLGNTYYVGTCGIAAILITGDAGHVLIDSGTDRGAVIVRDNIARLGFS 

           *  *  *  :  .*  :**  ::::*:    *: *:*.     .  :  * :  *. 

 

               116 -  121                     152          164   

AIM-1  PEDVRAIVFSHEHFDHAGSLAELQKATGAPVYARAPAIDTLKRGLPDRTDPQFEVAEPVA 

L1     PRDLRLILLSHAHADHAGPVAELKRRTGAKVAANAESAVLLARG--GSDDLHFGDGITYP 

SMB-1  LSDVKYILSTHSHEDHAGGISAMQKLTGATVLAGAANVDTLRTGVSPKSDPQFGSLSNFP 

MIM-1  PADVRWILTSHEHHDHAGSIAELQKATGAQIAAVASARQVLESGKPSADDPQSGLIEGFP 

MIM-2  LSDVKILLHSHEHIDHVGGMASLQSLSGATLYASPAAAAVMRNGTAGEDDPQAGALASFP 

         *:: :: :* * **.* :: ::  :** : *       :  *     * : 

 

                                  196         208   213     221/223 

AIM-1  PVANIVTLADDGVVSVGPLALTAVASPGHTPGGTSWTWRSCEG-DDCRQMVYADSLTAIS 

L1     PANADRIVMDGEVITVGGIVFTAHFMAGHTPGSTAWTWTDTRN-GKPVRIAYADSLS--- 

SMB-1  GSAKVRAVADGELVKLGPLAVKAHATPGHTEGGITWTWQSCEQ-GKCKDVVFADSLTAVS 

MIM-1  PVHVARVLVDGDSVTLGRLALTVRETPAHSPGSASWTWQACDEAFTCRMIAYADSATTIS 

MIM-2  VARVGGLVNDGDQIALGNLRLTAYATPGHTPGALSWQWRACEE-DRCTTLVYADSLSPVS 

              : *   : :* : ...    .*: *. :* *           :.:*** : 

  

         228                        256    263    

AIM-1  DDVFRYSDDAAHPGYLAAFRNTLARVAALDCDILVTPHP 

L1     APGYQLQGNPRYPHLIEDYRRSFATVRALPCDVLLTPHP 

SMB-1  ADSYRFSD---HPEVVASLRGSFEAVEKLSCDIAIAAHP 

MIM-1  ADDYRFSD---HPDRIARIRTGLSRIAQLPCDILVTPHP 

MIM-2  AEGYRFNA---HPEYLQAYRLGLATLADLECDLLLTPHP 

          :: . :*  :   *  :  :  * **: :: ** 

 

 

 



Chapter 2: Identification and preliminary characterization of novel B3-type metallo-β-

lactamases.  

 
 

 
 

While there is currently no clinically useful MBL inhibitor available, mercaptoacetates 

(MCRs) are known to be potent in vitro inhibitors of some MBLs [144]. A recent crystallographic 

study with SMB-1 has shown that MCR interacts with active site residues Ser221 and Thr223 and 

has a Ki = 9.4 ± 0.4 μM (Fig. 2.1.) [34]. MIM-1 and AIM-1 have a sequence identical to that of 

SMB-1 in this so-called “MCR binding” region, whereas L1 and MIM- 2 have a Ser instead of Thr. 

Although this represents a conserved substitution, it may nonetheless be of significance as the 

different sizes of these side chains may affect the modes of substrate/inhibitor binding. Of particular 

interest may also be the residue in position 162, occupied by the bulky and nonpolar Phe residue in 

AIM-1, L1 and SMB-1, but by the small and polar Ser in MIM-1 and the small and nonpolar Ala in 

MIM-2. This residue lies within the flexible loop mentioned in the previous paragraph and may thus 

play an essential role in substrate and inhibitor binding.  

It is essential to characterize the properties of these novel B3-type MBLs to determine which of 

these variations are functionally relevant and in particular which of those may affect the mode and 

magnitude of inhibition by known inhibitors (such as MCR). Ultimately, it is anticipated that the 

functional and structural comparison of a multitude of related MBLs will identify residues that are 

suitable targets to develop universally applicable inhibitors that may be resistant to frequent 

mutational changes characteristic of this family of enzymes. Consequently, the following chapters 

focus on the enzymatic characterization of MIM-1 and MIM-2. 

 

 

 

 

2.4. Conclusion  

The main finding of this study is the identification of two novel MBLs from N. pentaromativorans 

(MIM-1) and S. agarivorans (MIM-2) that belong to the B3 sub-group of this family of enzymes. 

Both proteins containing the amino acid ligands necessary to bind two zinc ions in their active sites 

and various residues in the vicinity of the catalytic centre are invariant or highly conserved, 

indicating that MIM-1 and MIM-2 should be efficient catalysts for the hydrolysis of β-lactam 

antibiotics. While MIM-1 and MIM-2 are not expected to represent an immediate threat to human 

health, they may harbour information that is crucial for 1) our understanding of the reaction 

mechanism(s) that MBLs may employ; and 2) the development of universal MBL inhibitors that are 
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resistant to frequent mutational variations observed among members of this family of enzymes. This 

study is an initial step towards the characterization of these novel MBLs. Their recombinant 

expression and purification, as well as their catalytic and structural characterization are described in 

the chapters that follow.  
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Abstract Metallo-β-lactamases (MBLs) are a family of Zn(II)-dependent enzymes that 

inactivate most of the com- monly used β-lactam antibiotics. They have emerged as a major 

threat to global healthcare. Recently, we identi ed two novel MBL-like proteins, Maynooth 

IMipenemase-1 (MIM-1) and Maynooth IMipenemase-2 (MIM-2), in the marine organisms 

Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Here, we dem- 

onstrate that MIM-1 and MIM-2 have catalytic activities comparable to those of known 

MBLs, but from the pH dependence of their catalytic parameters it is evident that both 

enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 

acidic conditions. Both enzymes require Zn(II) but activity can also be recon- stituted with 

other metal ions including Co(II), Mn(II), Cu(II) and Ca(II). Importantly, the substrate 

preference of MIM-1 and MIM-2 appears to be in uenced by their metal ion composition. 

Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise 

biologi- cal role(s) of MIM-1 and MIM-2 remains to be established. However, due to the 

similarity of at least some of their in vitro functional properties to those of known MBLs, 

MIM-1 and MIM-2 may provide essential structural insight that may guide the design of as of 

yet elusive clinically use- ful MBL inhibitors.  
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Catalysis  

 

3.1 Introduction  

As discussed in Chapter 1, one of, if not the most poignant problem for current global healthcare, is 

the rise of antibiotic-resistant microorganisms. In brief, since the 1940s antibiotics have been used 

to fight infections, initially with the β-lactam-based penicillin, and subsequently with various of its 

derivatives, including cephalosporins, cephamycins, carbapenems and monobactams (Figure 1.2 – 

Chapter 1). These compounds share a common core structure represented by the four-membered β-

lactam ring. A major defence strategy employed by pathogens is to enzymatically hydrolyse this β-

lactam ring, thus inactivating the antibiotics [19, 132, 145]. Two main enzyme groups have evolved 

for this purpose, the serine β-lactamases (SBLs) and the metallo-β-lactamases (MBLs). Clinically 

useful inhibitors are currently only available for SBLs [19, 20]; MBLs consequently remain a major 

threat to human health. In addition, the ability of MBLs to spread easily between species, mainly 

through horizontal gene transfer, further exacerbates the risk of generating multi-drug resistant 

pathogens [146-148].  

The task to develop universally and clinically useful MBL inhibitors is exacerbated by the 

continuous emergence of novel MBLs, exemplified by the broad-spectrum enzyme NDM-1 [75, 

113], and the frequent tolerance of a particular MBL to mutations as illustrated by the multiple 

variants of enzymes such as the NDM, IMP or VIM groups [58, 68]. Furthermore, the discovery of 

genes encoding MBL-like proteins in microorganisms that are not pathogenic and/or have not been 

exposed to the human population (e.g., the MBL-like proteins identified in microorganisms in the 

frozen Alaskan tundra [149]) may harbour clues about functionally essential elements that 

contribute to MBL activity. Identifying such elements may thus provide an alternative avenue to 

developing potent MBL inhibitors. In a recent study (see Chapter 2), we thus attempted to identify 

novel putative MBLs from non-pathogenic hosts and identified MIM-1 from N. pentaromativorans 

and MIM-2 from S. agarivorans [91]. Little is known about these microorganisms, but both are 
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Gram-negative bacteria found in marine environments [141, 142]. N. pentaromativorans is a poly-

cyclic aromatic hydrocarbon-degrading bacterium, while S. agarivorans is a heterotrophic 

bacterium; neither of these organisms is pathogenic [141, 142]. This Chapter will demonstrate the 

propensity of these enzymes to act as efficient MBLs and also how different metal ion compositions 

may affect the substrate preference of these enzymes, and thus potentially also their biological 

function(s). 

 

3.2 Materials and Methods  

 

3.2.1 Materials  

 

The sequences encoding MIM-1 and MIM-2 were cloned into the commercial vector pJ411 – the 

gene encoding MIM-1 and MIM-2 genes were commercially synthetized and bought as an 

expression vector from the company DNA 2.0. All chemicals were of analytical or equivalent 

grade. Escherichia coli BL21 (DE3) pLysS cells (Agilent) were used for recombinant expression of 

the proteins. All chemicals were purchased from Sigma-Aldrich unless stated otherwise.  

 

3.2.2 Protein expression and purification  

 

Recombinant MIM-1 and MIM-2 were expressed using Luria–Bertani (LB) medium supplemented 

with 0.2 mM Zn(II) and 1 % glucose. The cultures were grown at 37 °C until an optical density 

(OD600) of 0.4–0.5 was reached, and then cooled to 18 °C (MIM-1) or 25 °C (MIM-2) prior to 

induction with 0.2 mM isopropyl β-d-1-thiogalactopyranoside (IPTG). The cultures were further 

incubated for 48 h (MIM-1) and 18 h (MIM-2), respectively. The purification protocols for MIM-1 

and MIM-2 are similar. The cells were harvested by centrifugation at 5000g for 20 min at 4 °C. The 

resulting pellet was resuspended in 15–20 mL of buffer containing 20 mM Tris (HCl; pH 7.0) and 

0.15 mM ZnCl2. To improve the lysis step, lysozyme (1 mg/mL) was added to the resuspended 

cells, followed by incubation at room temperature for 30 min. Subsequently, DNAse (20 μg/mL) 

and MgCl2 (5 mM) were added and the mixture was kept on ice for 20 min. The cells were then 
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disrupted using five rounds of sonication (60% of the maximal output power for 30 s in each 

round). The procedure was carried out on ice to avoid overheating of the cells. The lysate was 

centrifuged at 20,000g for 30 min and 4 °C, and then filtered through a 0.22 μm membrane 

(Millipore) to remove remaining debris. The supernatant was loaded onto a HiTrap Q FF 5 mL 

column (GE Healthcare), pre-equilibrated with 20 mM Tris (HCl; pH 7.0) and 0.15 mM ZnCl2. 

Proteins were eluted using a linear gradient from 0 to 0.5 M NaCl. MIM-1 eluted between 55 and 

175 mM of NaCl, while MIM-2 eluted between 35 and 135 mM of NaCl. The fractions possessing 

ampicillinase activity were pooled and loaded onto a HiPrep 16/60 Sephacryl S-200 HR column 

(GE Health- care), pre-equilibrated with 50 mM Hepes (pH 7.5) containing 0.2 M NaCl and 0.15 

mM ZnCl2. Both proteins eluted as single peaks. SDS-PAGE analysis indicated that the purity of 

the enzymes is >95 % (Figure 3.1. SDS-PAGE). The protein concentrations were estimated using 

theoretical (calculated) extinction coefficients (ε280 = 36,815 M−1cm−1 for MIM-1 and 41,285 

M−1cm−1 for MIM-2), calculated from the sequence using the ProtParam webtool 

(http://web.expasy.org/ protparam/).  

 

Figure 3.1. SDS-PAGE of MIM-1 and MIM-2. Lane 1a was loaded with the total protein fraction, 

2a and 3a were loaded with the sample eluted after the anion exchange and after the size exclusion, 

respectively after MIM-1 purification. Lane 1b contains the total protein fraction, 2b and 3b contain 

the sample collected during MIM-2 purification after the anion exchange and the size exclusion, 

respectively.  M denotes the molecular weight markers. 
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Both proteins are stable at 4 °C for at least two months (stored at a concentration of 10–20 mg/mL). 

To assess the molecular weight and the oligomeric state of the proteins in solution, MIM-1 and 

MIM-2 (2 mg/mL) were loaded onto a gel filtration column, HiPrep 16/60 Sephacryl S-200 HR 

(GE Healthcare), pre-equilibrated with 50 mM Hepes (pH 7.5), 0.2 M NaCl, 0.15 mM ZnCl2. The 

calibration curve (Figure 3.2.) was obtained using the Low Molecular Weight standards kit (GE 

Healthcare).  

 

3.2.3 Steady-state kinetics and substrate specificity of Zn-containing MIM-1 and MIM-2  

 

The β-lactamase activity of the proteins towards different substrates was measured 

spectrophotometrically by monitoring the depletion of these substrates (ampicillin, penicillin G, 

biapenem, meropenem, imipenem, cefuroxime and cefoxitin) for 60 s at 25 °C and at the 

appropriate wavelengths. Relevant extinction coefficients and wavelengths are listed in Table 3.1. 

Reactions were performed as a continuous assay in 50 mM HEPES (pH 7.5), 50 mM NaCl; rates 

were determined from the initial linear portion of the reaction progress curves. All the 

measurements were carried out using a Varian Cary 50-BIO spectrophotometer connected to a 

Peltier Thermostat system. The reactions were carried out without the addition of extra zinc to the 

buffer.  

 

Table 3.1. Wavelengths and the corresponding extinction coefficients of the substrates used in 

this study. 

Antibiotic ɛ (M-1cm-1) ʎ (nm) 

Biapenem 7600 293 

Meropenem 6500 300 

Imipenem 9000 300 

Ampicillin 820 235 

PenicillinG 936 235 

Cephalothin 6500 260 
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Cefoxitin 7700 260 

Cefuroxime -7600 260 

 

 

3.2.4 Kinetic data analysis  

 

Kinetic rate data (velocities) were analysed by non-linear regression using GraphPad (Prism) and t 

to either the Michaelis–Menten equation (Eq. 1) or an equation accounting for the observed 

substrate inhibition (Eq. 2). In these equations Vmax and Km are the maximum velocity and 

Michaelis constant, respectively, and Ki is the dissociation constant describing substrate binding to 

an inhibitory site [150]. The inhibitory effect of D-captopril on the MIM-1- or MIM-2-catalyzed 

hydrolysis of ampicillin was assessed with inhibitor concentrations ranging from 0 to 20 μM. The 

inhibition constant (Kic, describing a competitive mode of binding) was obtained by analyzing the 

data with Eq. 3 [150]. The same experimental conditions were used to evaluate the catalytic 

parameters of metal ion derivatives of both MIM-1 and MIM-2, using Chelex-treated 50 mM Hepes 

buffer (pH 7.5), 50 mM NaCl, in the presence of CoCl2, MnCl2, CuCl2 or CaCl2 at  concentrations 

of 50 μM.  

 

                    (1) 

 

           (2) 

 

           (3) 
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3.2.5 pH dependence of catalytic parameters  

 

pH-rate profiles were determined using substrates representing three of the major β-lactam groups. 

The assays were conducted using a multi-component buffer system containing 50 mM sodium 

acetate, 50 mM MES, 50 mM TES, 50 mM CHES and 50 mM CAPS, in addition to 50 mM NaCl 

and 50 μM ZnCl2. The pH dependence of the catalytic parameters was evaluated from rate 

measurements that were conducted at various pH values between 4.0 and 10.0. The enzymes were 

stable over the entire pH range studied; auto-hydrolysis of the substrates was taken into account at 

each pH. The data were fitted using Graph Pad (Prism) and the appropriate equations derived for 

mono- or diprotic systems (i.e., Eqs. 4, 5), respectively) [150].  

 

            (4) 

 

         (5) 

 

In these equations, “a” represents the pH-independent maximum value of the catalytic parameter 

(i.e., kcat or kcat/Km), while Ka represents relevant acid dissociation constants; c is a fitting 

parameter.  

3.2.6 Preparation of the metal ion-free apoproteins  

 

A protein sample (MIM-1 or MIM-2) was diluted in Chelex-treated metal ion-free buffer containing 

50 mM Hepes (pH 7.5) and 50 mM NaCl, to a final concentration of 0.5–1 mg/mL, and then 

incubated in the presence of 150 mM EDTA at 4 °C for 48 h. The solution was then loaded onto an 

Econo-Pac 10DG (Bio-Rad) gel filtration column that was pre-treated with a chelating solution 

containing 5 mM EDTA, 5 mM 1,10-phenanthroline, 5 mM 2,6-pyridine dicarboxylic acid, 5 mM 

8-hydroxyquinoline- 5-sulfonic acid, and 5 mM 2-mercaptoethanol, and then equilibrated with the 

Chelex-treated buffer prior to use. The residual enzyme activity of the collected apoenzyme was 
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measured using ampicillin as the substrate and was found to be less than 1% of the maximum 

activity of the holo-enzyme, and atomic absorption measurements indicated that the metal ion 

content was below the detection limits of the apparatus. The addition of an excess of zinc restored at 

least 90% of the maximum activity.  

 

3.2.7 Estimation of metal ion binding affinities using reconstitution assays  

 

An estimate for the binding affinities of various metal ions (M = CoCl2, MnCl2, CuCl2, CaCl2 or 

ZnCl2) to MIM-1 and MIM-2 was obtained by recording catalytic activities as a function of added 

metal ion concentrations. The assay buffer containing 50 mM Hepes (pH 7.5) and 50 mM NaCl was 

again treated with Chelex-100 to avoid any metal ion contaminations. Assays were carried out both 

in the absence and presence of 1 mM β-mercaptoethanol in order to evaluate if a possible oxidation 

of Co(II) or Mn(II) may affect the activity of MIM-1 and MIM-2. Over several days the activities 

for each sample remained stable and β-mercaptoethanol did not lead to any measurable difference in 

catalytic rates. The concentration of the apoenzyme was kept constant at 10 nM while the substrate 

concentration (i.e., ampicillin, biapenem and cefuroxime) was kept constant at two-fold the Km to 

avoid the effect of substrate inhibition. The metal ion concentration was gradually increased from 0 

to 100 μM. The addition of M(II) to the apo forms of MIM-1 and MIM-2 demonstrated saturation- 

type behaviour similar to that described by the Michaelis-Menten equation (Eq. 1). The data were 

analysed as previously reported [11].  

 

3.3 Results and Discussion  

 

3.3.1 Overexpression and purification of MIM-1 and MIM-2  

 

The genes harbouring the coding sequence of MIM-1 and MIM-2 were used to transform E. coli 

BL21 (DE3) pLysS cells. The expression vector (pJ411) uses a T7 promoter, and contains the 

kanamycin gene for the selection of transformants. To optimize the yield of pure protein, the 

expressions were carried out at low temperatures, 18 or 25 °C for MIM-1 and MIM-2, respectively. 
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The established purification protocol employs two chromatographic steps, anion exchange followed 

by size exclusion. Routinely, purifications yielded approximately 15 mg of MIM-1 and 6.5 mg of 

MIM-2 per liter of cell culture with high purity (>95 %) as visualized by SDS-PAGE analysis (Fig. 

3.1. - note that the calculated molecular weights for MIM-1 and MIM-2 based on their sequence are 

30 and 29 kDa, respectively). To assess the oligomeric state of MIM-1 and MIM-2, size-exclusion 

chromatography with appropriate molecular weight markers was used. For MIM-1, a dimeric 

species is prevalent (~54 kDa), while MIM-2 appears to be monomeric (~27 kDa); (Fig. 3.2.). 

While the majority of known MBLs are also monomeric, the L1 enzyme from S. maltophilia is 

tetrameric [88]. 
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Figure 3.2. Equilibration curve (top panel) and elution profiles (bottom panel) of MIM-1 

(blue) and MIM-2 (red). The equilibration curve was determined using the commercially available 

Low Molecular Weight kit (Sigma-Aldrich) on a size exclusion column HiPrep 16/60 Sephacryl S-

200 HR column (GE Healthcare). MIM-1 elutes as a major peak with a corresponding weight 

consistent with the dimeric form of the protein (54 kDa). MIM-2 elutes as a major peak 

corresponding to a molecular weight of 27 kDa, consistent with the monomeric form of the enzyme. 
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3.3.2 Kinetic parameters of MIM-1 and MIM-2  

 

The aim of this work was to determine whether MIM-1 and MIM-2 are effectively able to hydrolyse 

β-lactam antibiotics. Thus, the catalytic efficiency of the two enzymes were studied towards 

different substrates representing three major groups of β-lactam antibiotics (i.e., penicillins, 

cephalosporins and carbapenems). For all the substrates used, both MIM-1 and MIM-2 showed 

considerable reactivity but at sufficiently high concentrations substrate inhibition was also observed 

(Figure 3.3. A). To obtain relevant kinetic parameters (kcat, Km, kcat/Km and Ki, the substrate 

inhibition constant), the catalytic rates were fitted using an equation that also incorporates an 

uncompetitive, inhibitory binding mode for the substrate (Eq. 2) [150]. For comparison, the rates 

measured at low substrate concentrations were analysed separately using the Michaelis–Menten 

equation (Eq. 1). The experimental data and corresponding fits are shown in Figure 3.3.A and 

Figure 3.3.B for MIM-1 and MIM-2, respectively. The relevant kinetic parameters are summarized 

in Tables 3.2. A and B. Corresponding parameters of well-known B3-type MBLs (i.e., L1 [107] 

and AIM-1 [138]), as well as those of the B1- and B2-type–type MBLs BcII [112, 151] and CphA 

[81], respectively, are also listed for comparative purposes (Table 3.2.C). Both MIM-1 and MIM-2 

are potent MBLs with catalytic parameters comparable to those of well-known virulent MBLs; both 

are in particular efficient penicillinases. Furthermore, similar to MBLs such as CcrA from B. 

fragilis, high concentrations of substrate lead to a reduction of the catalytic rate (deviation from 

Michaelis–Menten-type behaviour) [152]. 
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Figure 3.3. (A). Catalytic activity of MIM-1 towards the antibiotic penicillins (top), penems 

(middle) and cephalosporins (bottom). For each antibiotic, the data were analysed using the 

Michaelis–Menten model (for low substrate concentrations only; inset) and an equation that also 

incorporates an uncompetitive, inhibitory binding site for the substrate (main figure). 
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Figure 3.3. (B). Catalytic activity of MIM-2 towards the antibiotic penicillins (top), penems 

(middle) and cephalosporins (bottom). For each antibiotic, the data were analyzed using the 

Michaelis–Menten model (for low substrate concentrations only; inset) and an equation that also 

incorporates an uncompetitive, inhibitory binding site for the substrate (main figure).
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Table 3.2. Steady-state catalytic constants obtained for MIM-1 and MIM-2 incorporating (A) or neglecting the effect of substrate inhibition 

(B). For comparison, kinetics corresponding parameters for the well-studied MBLs L1 [39], AIM-1 [40], BcII [41, 42] and CphA [22] were 

included (C). 

  MIM-1 MIM-2 

Subsrate kcat (s
-1)  KM (μM) kcat (s

-1) /KM (s
-1M-

1) 

KI (μM) kcat (s
-1)  KM (μM) kcat (s

-1) /KM (s
-1M-1) KI (μM) 

Ampicillin 1995 ± 80.5 1011 ± 495 1.9 * 106 350.4 ± 190.5 701.3 ± 25.4 691.8 ± 31.1 1.06 * 106 402.8 ± 196.5 

Penicillin G 237.4 ± 55.6 167.2 ± 65.0 4.4 * 106 494.5 ± 201.6 244.9 ± 72.8 200.9 ± 10.4 1.2 * 106 766.7 ± 390.1 

Biapenem 143.1 ± 57.2 193.2 ± 57.2 7.4 * 105 95.3 ± 31.7 5.3 ± 0.3 84.1 ± 16.2 6.3 * 104 122.8 ± 87.6 

Imipenem 97.2 ± 74.3 123.6 ± 10.6 7.8 * 105 161.6 ± 14.8 6.9 ± 3.9 236.6 ± 16.4 2.9 * 104 73.6 ± 43.5 

Meropenem 53.9 ± 18.8 455.8 ± 19.4 1.1 * 105 248.6 ± 17.6 1.6 ± 0.2 28.2 ± 9.2 6.7 * 104 385.0 ± 118 

Cefuroxime 60.4 ± 13.1 55.6 ± 3.6 1.0 * 106 108.7 ± 35.7 98.1 ± 4.4 186.1 ± 10.5 5.2 * 105 71.7 ± 47.6 

Cefoxitin 1.8 ± 0.4 36.1 ± 1.4 4.9 * 104 100.3 ± 36.4 39.6 ± 11.9 81.3 ± 33.3 4.5 * 105 77 ± 33.9 
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Table 3.2. (B). 

Subsrate 

MIM-1 MIM-2 

kcat (s
-1)  KM (μM) kcat (s

-1) /KM (s
-1M-1) kcat (s

-1)  KM (μM) kcat (s
-1) /KM (s

-1M-1) 

Ampicillin 663.6 ± 42.7 226 ± 35.6 2.9 * 106 226.8 ± 6.5 141.6 ± 13.2 1.6 * 106 

Penicillin G 124.3 ± 3.9 50.7 ± 7.5 2.4 * 106 121.4 ± 2.1 36.4 ± 3.3 3.3 * 106 

Biapenem 52.6 ± 2.9 53.0 ± 7.1 9.9 * 105 5.3 ± 0.3 84.1 ± 16.2 6.3 * 104 

Imipenem 21.8 ± 1.7 186.7 ± 37.7 1.1 * 105 1.8 ± 0.1 34.2 ± 7.4 5.2 * 104 

Meropenem 20.7 ± 1.0 121.6 ± 17.4 1.7 * 105 1.2 ± 0.1 14.6 ± 2.2 8.2 * 104 

Cefuroxime 27.9 ± 0.8 15.0 ± 1.8 1.8 * 106 37.1 ± 2.3 53.4 ± 8.1 6.9 * 105 

Cefoxitin 1.0 ± 0.1 14.6 ± 2.2 6.8 * 104 17.2 ± 1.1 25.3 ± 4.7 6.8 * 105 
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Table 3.2. (C). 

AIM-1 L1 BcII CphA 

Substrate  kcat 

(s-1) 

KM (µM) kcat/KM  

(s-1M-1) 

kcat  

(s-1) 

KM (µM) kcat/KM  

(s-1M-1) 

kcat  

(s-1) 

KM (µM) kcat/KM  

(s-1M-1) 

kcat  

(s-1) 

KM (µM) kcat/KM  

(s-1M-1) 

Ampicillin 150 ± 5 24 ± 3 6.2 * 106 580 ± 20 300 ± 15 1.9*106 NA NA 8.2 * 104 >0.01 2500 >4 

Penicillin G 590 ± 31 110 ± 21 5.3 * 106 410 ± 20 300 ± 15 5.5*106 NA NA NA NA 700 100 

Biapenem NA NA NA 64 ± 4 75 ± 11 8.5 * 105 NA NA NA 300 166 1.8 * 106 

Imipenem 2200 ± 50 410 ± 16 5.3 ± 106 NA NA NA 279 687 1.4 * 105 1200 340 3.5 * 106 

Meropenem 760 ± 16 41 ± 4 1.8 * 107 NA NA NA NA NA NA NA NA NA 

Cefuroxime 170 ± 5 35 ± 4 4.8 * 106 53 ± 9 130 ± 40 4.0 * 105 NA NA NA NA NA NA 

Cefoxitin 52 ± 1 22 ± 2 2.4 * 105 2.2 ± 0.1 3.3 ± 0.4 6,6 * 105 122 ± 22 175 ± 43 6.9 * 105 NA NA NA 
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Due to the structural similarities between MBLs and some binuclear phosphatases such as the 

enzyme methyl parathion hydrolase [153] I tested if MIM-1 and MIM-2 may be able to hydrolyze 

generic phosphate ester substrates such as p-nitrophenyl phosphate (pNPP), bis(4-nitrophenyl) 

phosphate (bpNPP) or paraoxon, but no quantifiable amount of product was formed in these 

reactions.  

To further validate the association of MIM-1 and MIM-2 with the MBL family, I analyzed the 

inhibitory effect of D-captopril, a well-known in vitro MBL inhibitor, but also an angiotensin-

converting enzyme (ACE) inhibitor used to treat hypertension and some heart-related diseases [20, 

62, 154, 155]. The experimental data were consistent with a competitive mode of inhibition and 

fitted to Eq. 3 (Figure 3.4.). The inhibition constants (Kic) for both enzymes are approximately 6.0 

μM, comparable to those reported for other MBLs (Table 3.3.) [20]. 
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Figure 3.4. Inhibition by D-captopril. Steady-state assays with the inhibitor were measured with the substrate ampicillin for MIM-1 (left) and MIM-2 

(right). 

 

Table 3.3. Inhibition of MBLs by D-captopril. Competitive inhibition constants (Kic in μM) for MIM-1 and MIM-2 are compared to corresponding 

values for BcII, CphA and L1 

Inhibition by D-captopril 

MIM-1  MIM-2 BcII CphA L1 

8.8±0.9 7.4±0.8 45±5 72±6 20 
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3.3.3 Mechanism of action of MIM-1 and MIM-2  

 

The study of the effect(s) of pH on the catalytic properties of an enzyme-mediated reaction can 

provide essential clues about the molecular details of this reaction, but it can also highlight 

functional variations between different enzymes. Thus, steady-state assays as described above were 

carried out with MIM-1 and MIM-2 at a number of pH values, using representative substrates from 

three major groups of β-lactam antibiotics (Figure 3.5.). It is evident that the effect of the pH varies 

considerably when the two proteins are compared. As an example, the turnover numbers (i.e., kcat 

values) for each substrate tested are enhanced at high pH values in MIM-1-catalyzed reactions, but 

MIM-2 prefers a lower pH (i.e., an increase of pH leads to a reduction of the catalytic rate). In terms 

of the catalytic efficiency (kcat/Km), however, a higher pH appears to be preferred for both 

enzymes. Differences are also observed when the catalytic parameters measured with different 

substrates are compared. For instance, for MIM-1, the slope of the pH profile for the reaction with 

ampicillin is considerably smaller than 1, whereas for the other substrates it is approximating unity, 

suggesting that the rate-limiting steps in the reactions with different substrates may vary (i.e., in the 

reaction with ampicillin the relevant protonation equilibria are not fully rate limiting [156]). 

Nonetheless, the data presented in Fig. 3.5. can be fitted to equations derived for mono- or diprotic 

systems (i.e., Eqs. 4, 5, respectively) and relevant pKa values are summarized in Table 3.4.  

The pH dependence of kcat provides information about catalytically relevant protonation equilibria 

for the enzyme–substrate (ES or Michaelis) complex [150]. The assignment of particular residues to 

experimentally determined protonation equilibria is generally a difficult task and fraught with 

ambiguities. However, from a direct comparison between substrates and enzymes, some essential 

insights may be gained (note that only biapenem has a pKa value that lies within the pH range 

relevant to MIM-1 and MIM-2 [157, 158]; see also Table 3.5.). 
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Figure 3.5. Effect of pH in the hydrolysis of ampicillin (green), biapenem (red) and 

cefuroxime (blue) for MIM-1 (left panel) and MIM-2 (right panel). For each substrate, the top 

panel shows the pH dependence of kcat and the bottom panel shows the pH dependence of kcat/Km. 

 

 

Table 3.4. pKa values for the hydrolysis of ampicillin, biapenem and cefuroxime by MIM-1 

and MIM-2. 

 
MIM-1 MIM-2 

 

Ampicillin Biapenem Cefuroxime Ampicillin Biapenem Cefuroxime 

pKes1 7.7 ± 0.7 4.2 ± 0.5 4.7 ± 0.8 - - - 

pKes2 
  

9.5 ± 0.7 9.6 ± 0.3 7.9 ± 0.6 7.3 ± 0.2 

pKe1 6.4 ± 0.5 4.5 ± 0.2 4.6 ± 0.5 5.6 ± 0.2 5.1 ± 0.1 8.5 ± 0.4 

pKe2 

  
10.1 ± 0.5 9.6 ± 0.1 - - 
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Table 3.5. pKa values for the β-lactams used to study the pH dependence of MIM-1 and MIM-

2 [156, 157]  

 

Antibiotic pKa 

Ampicillin 2.5-3.0 

Biapenem ~4.3 

Cefuroxime 2.0-2.5 

 

For MIM-1 pKes1 values determined for the reaction with biapenem and cefuroxime (~4.5) are 

similar, indicating that the relevant protonation equilibria are likely to be associated with the 

enzyme in both reactions, not the substrate. While a pKa of ~4.5 is consistent with the 

deprotonation of a metal ion-bridging water molecule, leading to the formation of a μ-hydroxide 

(the proposed nucleophile in MBL-catalysed reactions [16, 18, 22, 96]), currently it cannot be 

excluded that a water molecule terminally coordinated to only one of the metal ions may be 

associated with pKes1, provided it is activated by the presence of negatively charged residues (e.g, 

carboxylate groups). In contrast, pKes1 recorded for the reaction with ampicillin is three orders of 

magnitude more alkaline, lying in the region anticipated for the pKa of a water molecule bound to 

only one of the metal ions in the active site, independent of the presence of “activating” negative 

charges or hydrogen bonds [159]. Thus, while an assignment of pKa values may ultimately need to 

be substantiated through site-directed mutagenesis studies it is evident that within the same active 

site different substrates are turned over in distinctly different ways. This is further corroborated by 

the observation that pKes2 is only observed for the reaction with cefuroxime.  

For MIM-2, we will focus our attention solely on the pH dependence of the kcat values as they 

demonstrate the most significant variation in comparison to MIM-1 (Fig. 3.5.); the pH dependence 

of kcat/Km ratios is different for the three substrates but upon formation of the catalytically relevant 

Michaelis (ES) complex a similar behaviour is observed for each substrate. Only pKes2 is observed 

in MIM-2, contrasting sharply the corresponding data of MIM-1. As discussed above, pKa values in 

the range between 7.5 and 9.5 are consistent with terminally coordinated water molecules [159]. 
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Thus, the pH profiles for MIM-2 do not provide any information about the potential reactive 

nucleophile (i.e., a bridging or terminally bound hydroxide), but they do indicate that the three 

substrates may bind in a similar mode in the catalytically relevant complex. The fact that in MIM-2 

the nucleophile is not apparent in the pH profile (in contrast to MIM-1) indicates that the two 

enzymes have different rate-limiting steps.  

The data in the preceding paragraph demonstrate a functional plasticity that appears to be very 

common among MBLs and MBL-like enzymes [16, 18, 22, 96], and which may be a major 

contributor to these enzymes’ ability to adapt rapidly to new environmental challenges (e.g., the use 

of novel antibiotics, or the introduction of inhibitors). MIM-1 and MIM-2, despite originating from 

non-pathogenic microorganisms, thus share the same functional diversity and/or flexibility as 

known MBLs.  

3.3.4 The role of the metal ions in the reactions catalyzed by MIM-1 and MIM-2 

 

The catalytically relevant in vivo metal ion for all known MBLs is Zn(II) [16, 18, 22, 96], but their 

contribution to the mechanism varies from one MBL subgroup to another (see Chapter 1, section 

1.7, for detailed information regarding the MBL mechanism). Metal ion replacement studies 

[including Mn(II), Co(II), Cd(II) and Cu(II)] were employed for several MBLs to probe the 

catalytic roles of the metal ions [16]. For MIM-1 and MIM-2, the native metal ion composition is 

not known. The enzymes were expressed and purified in medium and buffers that were 

supplemented with Zn(II), and metal ion analyses of these enzymes indicate the presence of two 

Zn(II) ions per active site in their fully active state. In an attempt (1) to probe the catalytic role(s) of 

the metal ions, but also (2) to address the likely in vivo metal ion composition of MIM-1 and MIM-

2, the metal ion-free apo forms of the two enzymes were generated by incubation with the metal ion 

chelator EDTA. The removal of the metal ions did not result in structural damage of the enzymes as 

could be demonstrated by reconstitution of the catalytic activity upon addition of an excess of 

Zn(II). On average, between 90 and 95 % of the activity of the holoenzyme could be recovered; 

maximum activity was reached within 2 min after the addition of the metal ion to the apoenzyme.  

Using the same batch of apoenzyme, derivatives were generated by adding Co(II), Mn(II), Cu(II) 

and Ca(II) and their catalytic parameters (Table 3.6.) were determined at pH 7.5 for representative 

substrates from three major β-lactam groups (i.e., ampicillin, biapenem and cefuroxime). Although 

not shown here it should be noted that substrate inhibition similar to that observed for the Zn(II) 
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derivatives of MIM-1 and MIM-2 was observed (Fig. 3.3 A and B). The metal ion derivatives are 

far more selective with respect to substrates they can hydrolyse when compared to the Zn(II) form 

of the enzymes. For instance, with respect to ampicillin, only Zn(II) can reconstitute activity in 

MIM-2, while for MIM-1 Ca(II) is also reasonably effective. For cefuroxime, only marginal 

activities were measurable for the Co(II) and Ca(II) derivatives. In contrast, all metal ion derivatives 

are active towards biapenem although, by and large, Zn(II) appears to be the most effective metal 

ion. The exception is Cu(II), which renders MIM-2 significantly more reactive than its Zn(II) 

counterpart (with kcat values of 75 vs. 5 s−1, respectively). Furthermore, although Zn(II) is overall 

the most efficient metal ion in reconstituting activity, in the other derivatives, substrate affinities are 

mostly enhanced (i.e., reduced Km values).  

While the data in Table 3.6. indicate that with respect to the β-lactamase activity of MIM-1 and 

MIM-2, Zn(II) is the preferred metal ion, they also demonstrate that substrate preference is affected 

by the metal ion composition, and thus alternative in vivo functions may be possible for these 

enzymes. A similar behaviour was observed previously for the B3-type MBL L1 from S. 

maltophilia, where the substrate specificity for the Ni(II) and Cu(II) derivatives of that enzyme 

varies distinctly from that of the Zn(II) derivative [160]. 

Here, a particularly intriguing observation was that Ca(II) was rather proficient in reconstituting 

ampicillinase activity in MIM-1 (Table 3.6.). While Ca(II) is known to bind tightly to regulatory 

proteins such as calmodulin (Kd for Ca(II) as low as 0.1 μM) [161] or α-lactoalbumin (Kd 3–6 nM) 

[162], it is rarely associated with hydrolytic metalloenzymes. A notable exception is the cyclic 

nucleotide diesterase Rv0805 from Mycobacterium tuberculosis; in this enzyme Ca(II) does not 

only regulate catalytic activity but it is also the most optimal metal ion [163]. The significance of 

Ca(II) in a variety of metabolic functions (e.g., signal transduction, muscle contraction, fertilization, 

as well as maintaining the potential difference of the cellular membrane [164, 165]), together with 

its abundance in most cells, raises the possibility that at least MIM-1 may play a role in N. 

pentaromativorans that is not related to its in vitro MBL activity. 
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Table 3.6. Catalytic parameters for the hydrolysis of ampicillin, biapenem and cefuroxime by the Co(II), Mn(II), Cu(II) and Ca(II) derivatives 

of MIM-1 and MIM-2. 

MIM-1 

  Ampicillin Biapenem Cefuroxime 

 kcat (s
-1) KM (µM) kcat/KM (s

-1M-1) kcat (s
-1) KM (µM) kcat/KM (s

-1M-1) kcat (s
-1) KM (µM) kcat/KM (s

-1M-1) 

Co(II) NA NA NA 28.33 ± 2.2 103.2 ± 16.21 2.6 * 106 4.0 ± 0.4 9.43 ± 3.6 4.2 * 105 

Mn(II) NA NA NA 4.6 ± 0.9 268.2 ± 85.9 1.7 * 104 NA NA NA 

Cu(II) NA NA NA 103.1 ± 18.3 211.7 ± 73.2 4.6 * 105 NA NA NA 

Ca(II) 53.0 ± 7.8 261.2 ± 91.9 2.0 * 105 8.6 ± 0.3 20.9 ± 3.8 4.1 * 105 3.3 ± 0.1 7.8 ± 1.4 4.6 * 105 

MIM-2 

 kcat (s
-1) KM (µM) kcat/KM (s

-1M-1) kcat (s
-1) KM (µM) kcat/KM (s

-1M-1) kcat (s
-1) KM (µM) kcat/KM (s

-1M-1) 

              

Co(II) NA NA NA 1.2 ± 0.1 25.8 ± 7.9 4.6 * 104 1.1 ± 0.3 36.3 ± 2.39 3.0 * 104 

Mn(II) NA NA NA 1.7 ± 0.2 43.4 ± 15.9 3.7 * 104 NA NA NA 

Cu(II) NA NA NA 75.4 ± 7.2 164.2 ± 34.2 4.5 * 105 NA NA NA 

Ca(II) NA NA NA 0.8 ± 0.1 11.4 ± 8.6 7.2 * 104 1.6 ± 0.4 62.7 ± 23.2 2.5 * 104 
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To be physiologically relevant, the binding affinity of a metal ion for a particular protein ought to 

be within a range that is similar to the concentration of that metal ion within a cell. The 

concentrations of metal ions vary greatly from one metal ion to another, and they can change 

throughout the life cycle of a cell. Reported concentrations for Zn(II), Mn(II), Cu(II) and Ca(II) are 

covering a range from pico- to micro- molar, while Co(II) is a trace element [166]. We obtained an 

estimate of the binding affinities of MIM-1 and MIM-2 for the biologically potentially relevant 

metal ions [i.e., Zn(II), Mn(II), Cu(II) and Ca(II)] by measuring their catalytic activities towards 

biapenem degradation as a function of added metal ion concentrations. Although unlikely to be 

physiologically relevant, Co(II) was included in the comparison as it may provide a useful 

spectroscopic probe for future mechanistic studies. As exemplified in Figure 3.6., the reactivation 

of the apo forms of MIM-1 and MIM-2 upon titrating increasing amounts of the metal ions resulted 

in a saturation-type behaviour for the catalytic activity, reminiscent of Michaelis–Menten-type 

kinetics (to avoid substrate inhibition the substrate concentration was two-fold the respective Km). 

Since the reconstitution experiments were conducted under pseudo-first-order kinetics and the metal 

ion concentrations far exceeded those of the enzymes, no accurate estimate of the stoichiometry of 

metal ion binding can be obtained—instead atomic absorption measurements of fully reconstituted 

enzyme samples, following a gel filtration step to remove excess metal ions, indicated a 

stoichiometry of ~2 in each case. An approximation of the affinities of the catalytically required 

metal ions (Table 3.7) can be estimated from a fit to the data in Fig. 3.6. using a hyperbolic 

function related to the Michaelis–Menten equation. 
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Figure 3.6. Analysis of the titration curve of apo-MIM-1 and apo-MIM-2 in the presence of 

increasing concentrations of zinc. The reactivation of the enzyme is followed by the hydrolysis of 

ampicillin. In the case of Zn(II) Kd values are 0.2 and 1.7 μM for MIM-1 and MIM-2, respectively.  

 

Table 3.7. Binding affinity constants for the metal derivatives of MIM-1 and MIM-2. 

MIM-1 MIM-2 

kobs (µM) kobs (µM) 

Zn(II) Co(II) Mn(II) Cu(II) Zn(II) Co(II) Mn(II) Cu(II) 

204 ± 72 

(nM) 

4.3 ± 

0.8  

662 ± 251 

(nM) 

10.3 ± 

2.8 

1.7 ± 

0.4 

12.14 ± 

4.1  

NA 108 ± 

93.8  

 

Overall, MIM-1 has a higher affinity for all the metal ions under investigation, and Zn(II) is the 

most tightly bound metal ion in both enzymes. Based on these affinity data and the catalytic 

parameters summarized in Table 3.6., it is thus likely that MIM-2 is solely a Zn(II)-dependent 

enzyme. However, the binding affinities of Mn(II) and Ca(II), and potentially Cu(II) are within a 

reasonable range to be biologically relevant, thus supporting the above speculation that at least 

MIM-1 may adopt biological roles independent of its MBL activity. 
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3.4 Conclusions.  

In this chapter I presented data that confirm that the putative proteins MIM-1 and MIM-2, 

associated with non-pathogenic microorganisms, are indeed efficient in vitro MBLs. The catalytic 

parameters of MIM-1 and MIM-2 are comparable with those reported for clinically relevant MBLs, 

thus confirming the potential of these proteins as novel enzymatic agents, able to confer efficient 

resistance toward β-lactam antibiotics. The observed mechanistic plasticity of MIM-1 and MIM-2 is 

characteristic for MBLs, but the efficient use of Ca(II) as catalytically competent metal ion by 

MIM-1 has not been observed before. This leads to the hypothesis that at least MIM-1 may have 

biological functions unrelated to its MBL activity. The search for alternative substrates (i.e., 

substrates other than β-lactam antibiotics) is thus of importance and will be described in the next 

chapter. Especially the observation that different metal ion compositions may affect the selection of 

substrates (and thus the function of the enzymes), together with a possible association between 

some MBLs [167] with proteins involved in biofilm production may provide insight into a 

previously unexplored link between two major factors that contribute to antibiotic resistance. 

Although the establishment of the precise biological function(s) of MIM-1 and MIM-2 awaits 

further investigations, it is anticipated that a characterization of factors that lead to functional 

variations between closely related enzymes may guide future strategies for the development of leads 

(i.e., clinically useful MBL inhibitors) to combat the spread of antibiotic resistance.  
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Functional promiscuity  

Abstract MIM-1 and MIM-2 are two recently identified metallo-β-lactamases (MBLs) from 

Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Since these 

organisms are non-pathogenic we specu- lated that the biological role(s) of MIM-1 and MIM-

2 may not be related to their MBL activity. Although both se- quence comparison and 

homology modeling indicate that these proteins are homologous to well-known MBLs such as 

AIM-1, the sequence analysis also indicated that MIM-1 and MIM-2 share similarities with N-

acyl homoserine lactonases (AHLases) and glyoxalase II (GLX-II). Steady-state kinetic assays 

using a series of lactone substrates confirm that MIM-1 and MIM-2 are efficient lactonases, 

with catalytic efficiencies resembling those of well-known AHLases. Interestingly, unlike their 

MBL activity the AHLase activity of MIM-1 and MIM-2 is not dependent on the metal ion 

composition with Zn(II), Co(II), Cu(II), Mn(II) and Ca(II) all being able to reconstitute 

catalytic activity (with Co(II) being the most efficient). However, these enzymes do not turn 

over S-lactoylglutathione, a substrate characteristic for GLX-II activity. Since lactonase 

activity is linked to the process of quorum sensing the bifunctional activity of “non-

pathogenic” MBLs such as MIM-1 and MIM-2 may provide insight into one possible 

evolutionary pathway for the emergence of antibiotic resistance.  
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4.1 Introduction 

Antibiotic resistance is a major problem for modern health care systems across the globe. A major 

strategy employed by pathogens to acquire resistance to commonly used antibiotics involves the use 

of enzymes that inactivate these compounds. Of particular concern are the metallo-β-lactamases 

(MBLs), a large group of enzymes that are highly efficient in inactivating the majority of the 

available β-lactam-based antibiotics (e.g. penicillins, cephalosporins, carbapenems; refer to Fig. 1.3. 

in Chapter 1 for β-lactam core structures). Not only are these enzymes highly efficient catalysts, but 

there is also currently no clinically useful inhibitor available [16, 18, 20, 96, 132]. Novel MBLs are 

frequently discovered (e.g. NDM-1 or AIM-1 [113, 138]) and horizontal gene transfer further 

exacerbates the problem of a rapid spread of MBLs among pathogenic bacteria [146-148]. MBLs 

belong to a large group of metal ion-dependent hydrolytic enzymes (i.e. metallohydrolases) that 

include, among others, amino-peptidases, pesticide-degrading enzymes and numerous phosphatases 

[2, 4, 96]. The identity of the metal ions used by metallohydrolases varies considerably. For 

instance, urease has a specific requirement for two Ni(II) ions [168], while purple acid phosphatases 

(PAPs) contain a heterovalent Fe(III)-M(II) centre, where M = Fe, Zn or Mn [4, 96, 169]. 

Interestingly, in animal PAPs the divalent metal ion is exclusively Fe, which can easily and 

reversibly be oxidized, leading to the speculation that this enzyme may also act as a Fenton catalyst 

in vivo [170]. Other metallohydrolases such as a glycerophosphate diesterase (GpdQ) from 

Enterobacter aerogenes or an organophosphate (OP)-degrading enzyme from Agrobacterium 

radiobacter (OPDA) are highly promiscuous with respect to metal ions they can utilize for their 

catalytic functions [11, 24, 25, 171-174] (refer to Chapter 1 for more details regarding 

metallohydrolases). In contrast, the in vivo metal ion associated with MBLs is exclusively Zn(II), 

but in vitro assays have demonstrated that other divalent metal ions such as Co(II), Mn(II) or Ca(II) 

can reconstitute full or partial catalytic activity [89, 92, 175]. The crystal structures of several 

MBLs have been reported [16, 54, 77, 86, 138] (Fig. 4.1.); interestingly, the fold characteristic for 

MBLs is also used by metalloenzymes with rather different functions, including the 

organophosphate-pesticide degrading enzyme methyl parathion hydrolase [153, 176] and enzymes 
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involved in quorum quenching (QQ) [9, 177].  

QQ is used by bacteria to regulate quorum sensing (QS) networks [177-181]. QS is defined as an 

effect on a population of unicellular organisms that triggers them to act as a multicellular organism 

when their cellular density reaches a characteristic threshold [177-180, 182]. Bacteria use QS to 

promote processes such as bioluminescence, the formation of biofilms and the expression of 

virulence-related genes [177-180, 182]. There are various signalling molecules used by bacteria to 

communicate among each other, but N-acyl homoserine lactones (AHLs) are the most studied and 

prevalent QS mediators [177-181, 183, 184]. Common AHLs contain a characteristic five-

membered lactone ring in their core and are distinguished based on the identity of their alkyl chains 

(Fig. 4.2.). The length of the aliphatic chain is a determining factor for the substrate preference of 

enzymes that are capable of inactivating AHLs [177-181, 183, 184]. 
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Figure 4.1. Metallo-β-lactamase fold and active site geometries. In (A) the overall structure of the B3 MBL AIM-1 from P. aeruginosa (top; PDB: 

4AWY) displaying the αβ/βα fold characteristic to the MBL protein family, and the corresponding active site structure (bottom) are shown. The zinc 

ions are represented as grey spheres, (B)-(E): The active sites of AiiB (2R2D), GLXII from A. thaliana (2Q4D), MIM-1 and MIM-2, respectively, are 

shown for comparison. The residues are depicted as sticks, the water molecules as red spheres, the zinc and iron ions as grey and orange spheres. The 

residues are numbered according to individual protein amino acid sequences as well as the MBL numbering scheme (in bracket). 
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Figure 4.2. Substrates (A), (C) and reaction mechanisms (B). Core structures of the substrates used and the mechanism of action of metallo--

lactamaeses and N-acyl homoserine lactonases. 

 

 

 

 



Chapter 4: Promiscuous metallo-β-lactamases: MIM-1 and MIM-2 may play an essential role 

in quorum sensing networks 

 

 
 

Two distinct enzymatic mechanisms are known to inactivate AHLs, one involving the hydrolysis of 

the lactone ring, catalysed by AHLases, and the other one using AHL acylases to hydrolyse the 

amide bond of the substrate [178, 180, 181, 184]. Only AHLases have the characteristic MBL fold 

and contain a di-metallic center in their active site; the reaction catalysed by these enzymes 

resembles that of MBLs and involves ring opening (Fig. 4.2 B) [177, 180].  

In Chapter 3 I focused on the “MBL-like” properties of MIM-1 from Novosphingobium 

pentaromativorans and MIM-2 from Simiduia agarivorans [91, 92]. Both enzymes are Zn(II)-

dependent and have a preference for β-lactam substrates from the penam group (e.g. penicillin G, 

ampicillin). Interestingly, while catalytic activity could be reconstituted with other divalent metal 

ions the substrate preference was affected by the identity of the metal ion. For example, while 

penams are the preferred substrate for the Zn(II) derivative of both MIM-1 and MIM-2 their Cu(II) 

derivatives displayed no measurable activity towards these reactants. In contrast, the reactivity 

towards biapenem, a β-lactam substrate from the carbapenem group, is only mildly reduced for 

MIM-1 and significantly enhanced for MIM-2 upon the replacement of Zn(II) by Cu(II) [92]. 

Furthermore, modest activity could also be reconstituted for most substrates tested in the presence 

of Ca(II), not a metal ion commonly found in the active sites of metallohydrolases. Neither N. 

pentaromativorans nor S. agarivorans are known pathogens. While it cannot be ruled out that these 

organisms may have evolved MBL-like enzymes due to antibiotic pollution in their habitats, it is 

possible that the biologically relevant substrate(s) and thus the corresponding in vivo functions of 

MIM-1 and MIM-2 are unrelated to their in vitro MBL activity. In this Chapter the plasticity of the 

MBL fold will be investigated. Bioinformatics tools as well as kinetic assays were used to highlight 

the functional promiscuity of MIM-1 and MIM-2 and their ability to operate as bi-functional 

enzymes. The outcomes discussed in this Chapter may be of relevance for medicinal chemistry as 

they demonstrate that some promiscuous enzymes may have the capability to link the inactivation 

of chemotherapeutics (i.e. antibiotics) to processes such as QS (and in particular its association with 

biofilm formation), thus compounding the challenge associated with antibiotic resistance.  

 

4.2 Materials and methods  

4.2.1 Materials  

The sequences encoding MIM-1 and MIM-2 were cloned into the commercial vector pJ411 (DNA 

2.0). All chemicals were of analytical grade. Escherichia coli BL21 (DE3) pLysS cells (Agilent) 

were used for recombinant expression of the proteins. All chemicals were purchased from Sigma-
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Aldrich unless stated otherwise.  

 

4.2.2 Database search, sequence alignments and phylogenetic analysis  

A BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi), using the amino acid sequences of MIM-

1 and MIM-2 as templates, was used to identify homologs of these enzymes. The search was 

conducted within the non-redundant protein database. Proteins of interest were compared in a 

multiple sequence alignment using the free software Jalview2 on the Muscle server [185-188]; the 

alignment was edited using ESPript 3.0 (http://espript.ibcp.fr/ESPript/ESPript/index.php) [189]. 

The phylogenetic analysis was carried out using the MEGA 6 software package [190]. The 

phylogenetic tree was built using the Maximum Likelihood model (1000 iterations were used to test 

the goodness of the analysis). The tree was then edited using the software FigTree, available online 

(http://tree.bio.ed.ac.uk/software/figtree/).  

4.2.3 Structural homology modelling and docking  

The protein sequences of both MIM-1 and MIM-2 were used to build homology structural models 

using the comparative structural building tool MODELER in the EasyModeller v4.0 graphical 

environment [191].  

The models were built using the structure of the MBL AIM-1 from Pseudomonas aeruginosa as 

template (PDB: 4AWY; [138]). The structural alignments were conducted using the Swiss PDB 

Viewer software (http:// spdbv.vital-it.ch), using the annotated MBL structures of AIM-1 and L1 

from Stenotrophomonas maltophilia (PDB: 2FM6 for the native form; 2FU8 for the inhibitor (D-

captopril)-bound form [192]), the AHLase AiiA from Bacillus thuringensis (PDB: 2A7M for the 

native form [193]; 3DHA and 3DHB for the complex with the substrate C6-HSL [194, 195]), and 

GLX-II from both Homo sapiens (PDB: 1QH3; [196]) and Arabidopsis thaliana (PDB: 2Q42; 

[197]). The root mean square (rms) deviations for structural superimpositions were obtained using 

the free software SuperPose [198]. The images were edited using the software PyMOL and USCF 

Chimera 1.9 (http://www.cgl.ucsf.edu/chimera) [199]. The structure of the inhibitor D-captopril was 

generated using the software Avogadro. This inhibitor was then docked into the active sites of the 

MIM-1 and MIM-2 models using AUTODOCK 4.0 [200].  

 

4.2.4 Protein expression and purification 

The protocols for the expression and purification of recombinant MIM-1 and MIM-2 were 
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previously optimized [92]. In brief, following expression the soluble fraction of the cell lysate was 

loaded onto a HiTrap Q FF 5 mL column (GE Healthcare). The enzymes were eluted with a NaCl 

gradient and loaded onto a HiPrep 16/60 Sephacryl S-200 HR column (GE Healthcare). Fractions 

containing MBL activity were pooled and stored at 4 °C in 50 mM Hepes (pH 7.5) containing 0.2 

M NaCl and 0.15 mM ZnCl2. The protein concentrations were estimated using theoretical 

extinction coefficients (ε280 = 36,815 M− 1 cm− 1 for MIM-1 and 41,285 M−1 cm−1 for MIM-2), 

calculated using the ProtParam tool (http://web.expasy.org/protparam/). Metal ion derivatives of 

MIM-1 and MIM-2 were prepared as described elsewhere [92].  

 

4.2.5 Enzymatic assays and data analysis  

The MBL activity of MIM-1 and MIM-2 was reported previously [92]. Here, the activity of these 

enzymes towards various AHLs and S-lactoylglutathione, a GLX-II substrate, was assessed. In 

order to increase the solubility of the AHL substrates solvents such as methanol need to be added 

into the assay mixture. Thus, in initial assays the sensitivity of MIM-1 and MIM-2 towards 

methanol was tested by following the MBL activity of the enzymes as a function of the solvent 

concentration. Meropenem was used as the substrate. The assays were carried out in 50 mM HEPES 

buffer, pH 7.5, 10 mM NaCl, with an enzyme concentration of 15 nM.  

The AHLase activity assay employed a protocol previously described for enzymes such as carbonic 

anhydrase or haloalkane dehalogenase [201-206], and follows AHL hydrolysis by measuring the 

protons released during the reaction. The increase in the proton concentration is evaluated 

spectrophotometrically using an appropriate pH indicator. Here, we used Phenol Red in HEPES 

buffer to investigate the reaction between pH 7.4 and 7.6. The assay was recorded at 25 °C and 557 

nm using 100–150 nM of enzyme in 1 mM HEPES, pH 7.5, 0.1 M NaCl2 and 0.2 mM Phenol Red. 

After incubation of this mixture for 2 min the reaction was initiated by adding substrate. For each 

substrate concentration the rate of the non-enzymatic AHL hydrolysis (i.e. autohydrolysis) was 

subtracted from that of the enzyme-catalysed reaction. The net rate (i.e. the absorbance change 

(ΔAbs) per second) was then plotted against the substrate concentration fitted to the Michaelis–

Menten equation to obtain relevant catalytic parameters (Vmax and Km). The Vmax value was used 

to calculate the corresponding kcat value using Eq. 6:  

 

        (6) 
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In Eq. 6 [Enz]T is the total enzyme concentration in the assay and the value of θ is obtained 

experimentally by titrating a Phenol Red solution in HEPES buffer with a standard solution of HCl 

0.1 M. The assay was typically conducted using the same Phenol Red concentration used in the 

enzymatic assay. The HCl dependency was studied using a 10 mM stock solution of HCl. In our 

measurements the value of θ was 0.003 Abs units/μM.  

Glyoxylase activity was measured using S-lactoylglutathione (SLG; 10 mM stock solution) in a 1 

mL cuvette containing 20 mM 3-(N-morpholino)propanesulfonic acid (MOPS), pH 7.4. Both a 

continuous assay (at 240 nm) and a coupled one were employed to detect activity. In the coupled 

assay the hydrolysis of SLG was monitored by adding 20 μM 5,5′-dithiobis-2-nitrobenzoate 

(DTNB), and following the increase in absorbance at 412 nm. When SLG is hydrolysed by GLX-II 

activity it releases D-lactic acid and reduced glutathione, which reduces DTNB to the yellow 

product 5-thio-2-nitrobenzoic acid (TNB) [206].  

Metal ion derivatives of MIM-1 and MIM-2 were also assayed as described above. The assay 

mixtures were supplemented with 50 μM of the respective divalent metal ion (i.e. Co(II), Mn(II), 

Cu(II) or Ca(II)). Negative controls containing only 50 μM metals ions in the reaction mixture were 

carried out to confirm that the substrates are not hydrolysed in the absence of enzymes. 

 

4.3 Results and discussion  

4.3.1 Sequence and phylogenetic analysis  

MIM-1 and MIM-2 were initially identified in a homology database search using the MBL AIM-1 

as probe [91] (see Chapter 2 for more details). This MBL shares approximately 50% sequence 

identity with MIM-1 and MIM-2 and all the amino acid residues that are involved in binding the 

two essential Zn(II) ions in the active site are invariant in each of the three proteins (Fig. 4.3.). It 

was thus plausible to assume that MIM-1 and MIM-2 may act as MBLs. Indeed, catalytic assays 

with a range of β-lactam substrates (Fig. 1.3.) demonstrated that both enzymes are potent MBLs in 

vitro [92] (see Chapter 3 for further details). In an attempt to address possible alternative biological 

roles the sequence database was searched using both MIM-1 and MIM-2 as probes. 

Not surprisingly, the closest homologs retrieved were MBLs (data not shown). These were followed 

by glyoxalase II (GLX-II; [206]) from A. thaliana (~45% similarity) and several AHLases including 

AttM [214-216] from Azhorizobium caulinodans and AhlK [212] from Klebsiella pneumoniae, with 

up to ~40% sequence similarity to both MIM-1 and MIM-2 (Table 4.1.). As mentioned above 
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AHLases play an intricate role in the QS network while GLX-II is involved in detoxification 

pathways. Known structures of GLX-II and AHLase indicate that they possess the αβ/βα fold 

characteristic of MBLs and can also accommodate two metal ions in their active sites (Fig. 4.1.). 

Although the overall sequence identity between MIM-1 and MIM-2 and GLX-II and various 

AHLases is, by and large, below 30%, essential amino acids are well conserved as illustrated in the 

multiple sequence alignment in Fig.4.3. 
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Figure 4.3. Multiple Sequence Alignment of B3 MBLs with AHL representatives (previous 

page). The sequences of AIM-1, MIM-1 and MIM-2 are aligned with N-acyl homoserine lactone 

representatives, AiiA from Bacillus sp. (240B1 [207] ), AidC from Chryseobacterium sp. StRB126 

[208], AiiB from A. tumefaciens  [205], MomL from Muricauda olearia [209], AttM-Af from 

Agrobacterium fabrum str. C58 [210] , AhlK from Klebsiella pneumonia [211], AhlD from 

Arthrobacter sp. IBN110 [212] , QlcA from uncultured bacterium [213] . Above the alignment, 

secondary structure elements are drawn using AIM-1 as template. Highly conserved residues are 

highlighted in red; conserved regions are coloured in yellow. The residues involved in the metal 

binding are indicated by a black diamond; the residues known to be critical for lactonase activity 

and which are conserved in MIM-1 and MIM-2 are indicated by a grey star. Residue D115 is 

involved in metal binding and plays a critical role in lactone hydrolysis. The numbering scheme 

follows the canonical MBL numbering of AIM-1 (PDB: 4AWY) [138, 139]. 

 

The six residues involved in coordination of the two metal ions in the active site of AIM-1 (i.e. 

His116, His118 and His196 for metal site 1 and Asp120, His121 and His263 for metal site 2, Fig. 

4.1.) are invariant in MIM-1, MIM-2 and AHLases. In contrast to MBLs, but similar to the majority 

of binuclear metallohydrolases [2, 96, 138], AHLases and GLX-II have an aspartate ligand that 

bridges the two metal ions (Asp213 and Asp131 in Fig. 4.1. B and C, respectively). In GLX-II this 

bridging aspartate (i.e. Asp131) replaces one of the three histidine ligands but Site 2 is identical to 

that of AIM-1 and AHLases.  Both MIM-1 and MIM-2, like the majority of known MBLs [217], 

possess a putative signal peptide that may facilitate their transfer into the periplasmic space. The 

presence of such a signal peptide is not common among the currently known AHLases, with MomL 

from Muricauda olearia being the only exception [208]. In summary, the sequence comparison 

revealed that MIM-1 and MIM-2 are closer related to MBLs than AHLases or GLX-II as illustrated 

in a phylogenetic analysis (Fig. 4.4.).  

 

Table 4.1. Sequence identities and similarities of AIM-1, MIM-1 and MIM-2 with 

representative AHLases and the GLX-II from A. thaliana (GLXII-At). The sequence similarity 

percentage was obtained using the PAM250 matrix available in the free web tool SIAS.  The 

following AHLases were used in the comparison: AiiA from Bacillus sp 240B1 [218], AidC from 

Chryseobacterium sp. StRB126 [208], AttM from Agrobacterium tumefaciens [219], AiiB from 

Agrobacterium tumefaciens [205], MomL from Muricauda olearia [209],AttM from 
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Agrobacterium fabrum [219], AhlK from Klebsiella pneumoniae [211], Attb from Agrobacterium 

fabrum [210], AhlD from Arthrobacter sp.IBN110 [212], QlcA from uncultured bacteria [213] and 

GLX-II from Arabidopsis thaliana [220]. 

 
Identity (%) Similarity (%) 

 
AIM-1 MIM-1 MIM-2 AIM-1 MIM-1 MIM-2 

AiiA 29% 29% 31% 39% 41% 39% 

AidC 30% 29% 31% 35% 37% 39% 

AttM-

At 
29% 30% 30% 40% 41% 40% 

AiiB-At 15% 16% 17% 38% 41% 40% 

MomL 25% 24% 29% 36% 36% 39% 

AttM 23% 23% 27% 32% 33% 34% 

AhlK 15% 16% 17% 39% 41% 41% 

AttB-

Af 
29% 30% 32% 37% 38% 38% 

AhlD 26% 29% 31% 35% 39% 40% 

QlcA 16% 18% 19% 25% 27% 28% 

GLXII-

At 
29% 28% 31% 39% 37% 39% 



Chapter 4: Promiscuous metallo-β-lactamases: MIM-1 and MIM-2 may play an essential role 

in quorum sensing networks 

 
 

 
 

 

 

Figure 4.4. Phylogenetic analysis of MIM-1, MIM-2 and AHLs. The phylogenetic tree relates 

the B3 AIM-1, MIM-1 and MIM-2 with well-known AHLs. The analysis was conducted using the 

Neighbor-joining tree model, based on the amino acid sequences, using the software MUSCLE 

(2000 bootstrap replicates). Bootstrap coefficient below 50% are not shown. Scale bar, 0.9 amino 

acid substitution per amino acid position.  

 

4.3.2 Structural models of MIM-1 and MIM-2 

Crystals suitable for X-ray diffraction studies of MIM-1 and MIM-2 are currently not yet available. 

Hence, in the absence of experimental structural information homology models of the two proteins 

were generated using the crystal structure of their closest homolog, AIM-1 (PDB: 4AWY), as 

template (Fig. 4.1.). The entire α carbon backbones of the MIM- 1 and MIM-2 models 

superimposed with rms values of 0.43 Å and 0.36 Å with the AIM-1 structure, respectively. The 

models are shown in Fig. 4.5. A similar approach using either a AHLase or GLX-II structure did 

not result in plausible models (data not shown). The most significant deviations occur at the N-

terminus, where only MIM-1 possesses an elongated tail which may be a reflection of its homo-

dimeric nature, in contrast to MIM-2 and AIM-1, which are monomeric proteins [92]. In Fig. 4.1. 

the active sites of MIM-1 and MIM-2 are shown, each with two Zn(II) ions. The modelled water 

molecule (W) bridges the two metal ions and is believed to be the hydrolysis- initiating nucleophile 
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in most MBLs [16, 18, 96].  

The main reason for generating homology models of MIM-1 and MIM-2 was to probe the 

possibility if their active sites are able to accommodate diverse substrates that may account for 

different biological functions. For calibration D-captopril was docked into the active sites of the two 

enzymes since a crystal structure of this molecule bound to the active site of the MBL L1 from S. 

maltophilia is known [192]. D-Captopril is a potent non-clinical, competitive inhibitor of MBLs 

with inhibition constants in the low micromolar range [16, 23, 92, 96, 221].  

We have shown previously that this compound binds to MIM-1 and MIM-2 in a mode and with an 

affinity similar to that observed for MBLs; the recorded competitive inhibition constants (Kic 

values) are ~6 μM for both enzymes [92] (refer to Chapter 3 for details regarding the inhibition 

studies). In the models of MIM-1 and MIM-2 the best docking scores were obtained when D-

captopril bound to the metal centers in a bidentate mode as shown in Fig. 4.6. A and Fig. 4.7. A. 

Although this best fit disagrees with the mode of binding observed in the crystal structure of the 

MBL L1 (where the thiol group of D-captopril bridges the two metal ions [192]) it is in good 

agreement with the computational data reported for the MBL BcII from Bacillus subtilis. In the next 

phase of modeling, since kinetic measurements indicated that penicillin G is the most efficient 

substrate for both MIM-1 and MIM-2 [92], this substrate was also docked into the active sites of 

these enzymes (Fig. 4.6. B and Fig. 4.7. B). While no comparison to experimental structures can be 

made for these substrate-bound complexes the positioning of the scissile β-lactam bond in the 

vicinity of the metal ion-bridging water molecule (see arrow in Fig. 4.6. B and Fig. 4.7. B) is in 

good agreement with currently accepted models for the reaction mechanism whereby the bridging 

water/hydroxide attacks the carbonyl carbon atom of the β-lactam ring to initiate ring opening [16, 

18]. The docked mode of binding also resembles that observed for the complex of the MBL NDM-1 

with hydrolyzed ampicillin [77]. 

The docking studies provide some confidence that reasonable insight may be gained for enzyme–

substrate interactions relevant to MIM-1 and MIM-2. Thus, the AHL substrate C6-L-HSL (Fig. 4.2. 

A) and S-(2-hydroxyacyl)lglutathione (Fig. 4.2. C) were also docked into the active sites of MIM-1 

and MIM-2. Both enzymes bind the lactone in a similar fashion, with the two oxygen atoms of the 

lactone ring coordinating each to one of the metal ions in the active site (Figs 4.6. C and 4.7. C). 

This mode of binding is consistent with the structural complex of AiiA from B. thuringensis with 

hydrolyzed N-hexanoyl-L-homoserine lactone [194, 195]. No consistent binding modes were 

obtained when S-lactoylglutathione was docked into the active sites of these enzymes, irrespective 
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of the protonation state of the substrates carboxyl group. Docking thus suggests that MIM-1 and 

MIM-2 may act as AHLases but not as glyoxylases.  
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Figure 4.5. MIM-1 and MIM-2 structural models. The homology model was built using AIM-1 

(PDB: 4AWY) as template. Both MIM-1 (A) and MIM-2 (B) show the characteristic αβ/βα fold, 

common to the MBL superfamily. The loops believed to play a major role in the contact with the 

substrates are coloured in red; the zinc in the active sites are coloured in light grey (A) and grey (B).  

In C and D are shown the amino acids involved in the metal binding and the active site cleft 

formation. The amino acids are drawn as ball and sticks, the zinc ions are depicted as grey spheres 

and the putative bridging water molecule present in the active site is shown as a red sphere. 
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Figure 4.6. MIM-1 structural model dockings. The figure shows the model of MIM-1 docked 

with the D-captopril (A), with the penicillin G (B) and with N-hexanoyl homoserine lactone (C6-L-

HSL) (C), using the software AUTODOCK 4.2. It is showing the detail of the active site, with the 

two zinc ions (grey spheres), the amino acids involved in the metal binding (represented as green 

ball and sticks) and the D-captopril (orange), penicillinG (cyano) and C6-L-HSL (magenta) 

interacting with the active site. The image was made using USCF Chimera 1.9. 
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Figure 4.7. MIM-2 structural model dockings. The figure shows the model of MIM-2 docked 

with the D-captopril (A), with the penicillin G (B) and with N-hexanoyl homoserine lactone (C6-L-

HSL) (C), using the software AUTODOCK 4.2. It is showing the detail of the active site, with the 

two zinc ions (grey spheres), the amino acids involved in the metal binding (represented as green 

ball and sticks) and the D-captopril (orange), penicillinG (cyano) and C6-L-HSL (magenta) 

interacting with the active site. The image was made using USCF Chimera 1.9. 
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4.3.3 N-acyl homoserine lactonase activities of MIM-1 and MIM-2.  

Both the sequence and homology model analysis have indicated that MIM-1 and MIM-2 may act 

primarily as MBLs, but the possibility of alternative functions, especially as AHLases, could not be 

ruled out conclusively. Thus, both GLX-II and AHLase activity were tested by using either S-D-

lactoylglutathione or a range of acyl-homoserine lactones, respectively, as substrates. Consistent 

with the docking studies no GLX-II activity was measurable for either enzyme but both are efficient 

AHLases. Since the alkyl chains of the lactone substrates lower their solubility in an aqueous 

environment the effect of methanol on enzyme stability was initially tested by recording the MBL 

activity of MIM-1 and MIM-2 as a function of added methanol. MIM-1 activity was not 

significantly altered using methanol concentrations up to 20% in the assay mixtures (Fig. 4.8.). In 

contrast, MIM-2 is less stable in the presence of this solvent, losing almost half its activity at a 

methanol concentration of 10% (Fig. 4.8.). Thus, the AHLase assays were conducted in the 

presence of 20% or 5% methanol in the reaction mixture for MIM-1 and MIM-2, respectively.  

MIM-1

0 100 200 300
0

50

100

150

200

Meropenem (mM)

k
c
a
t 
(s

-1
)

0

5%

10%

20%

MIM-2 

0 100 200 300 400
0

20

40

60

Meropenem (mM)

k
c
a
t 
(s

-1
)

0

5%

10%

 

Figure 4.8. Methanol Inhibition of MIM-1 (left panel) and MIM-2 (right panel). The inhibition 

by methanol was tested following the hydrolysis of meropenem.  

 

The alkyl chain lengths for the various N-acyl homoserine lactone substrates tested ranged from C4 

to C12 (Fig. 4.2 A). Data were measured using the native Zn(II)-bound forms of MIM-1 and MIM-

2, as well as several metal ion derivatives including Co(II), Cu(II), Mn(II) and Ca(II). In Fig. 4.9. 

and Fig. 4.10 experimental data for the various derivatives of MIM-1 and MIM-2 are shown for the 

reaction with the HSL substrate.  

Relevant kinetic parameters (i.e. kcat, Km and kcat/Km) are listed in Tables 4.2 and 4.3. 

For the Zn(II)-derivatives of MIM-1 and MIM-2 kcat values range between ~0.5 s−1 to ~3.5 s−1, 
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and ~0.5 s−1 to ~8 s−1, respectively, without an apparent trend connected to the length of the alkyl 

chain (Table 4.2.). Similarly, the corresponding Km values do not appear to be directly linked to 

the alkyl side chain, and values range from ~ 1 μM to ~ 200 μM. For both MIM-1 and MIM-2 the 

most efficiently hydrolysed AHL substrate is C10-3oxo-DL-HSL, with kcat/Km values of 2.5 × 106 

s−1/M and 8.0 × 105 s−1/M, respectively. By and large, the catalytic efficiency of MIM-1 and 

MIM-2 towards the various AHL substrates is favourable to that of well-established AHLases such 

as AiiA from Bacillus sp. 240B1, AiiB from A. tumefaciens or AidC from Chryseobacterium sp. 

StRB126 (Table 4.3.). The more recently discovered AHLase MomL from M. olearia [219] has 

higher kcat values than the remaining enzymes, but its affinity for the tested substrates is generally 

weaker than in MIM-1 or MIM-2.  
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Figure 4.9. Kinetic parameters analysis of the N-acyl homoserine lactonase activities of MIM-

1. Michaelis-Menten kinetic data for the Zn(II)- (circle), Co(II)- (square), Cu(II)- (triangle), Mn(II)- 

(inverted triangle) and Ca(II)- (diamond) substituted MIM-1 for the hydrolysis of various HSL 

substrates are shown. 
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Figure 4.10. Kinetic parameters analysis of the N-acyl homoserine lactonase activities of 

MIM-2. Michaelis-Menten data for the Zn(II)- (circle), Co(II)- (square), Cu(II)- (triangle), Mn(II)- 

(inverted triangle) and Ca(II)- (diamond) substituted MIM-2 for the hydrolysis of various HSL 

substrates are shown. 
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The catalytic data strongly suggest that MIM-1 and MIM-2 are bifunctional enzymes, with both 

being very efficient AHLases and MBLs. However, they are not the first AHLases that may display 

functional promiscuity. The enzymes SsoPox from Sulfolobus solfataricus [222] and OPH from 

Rhodococcus erythropolis and R. ruber [223] were initially identified as organophosphate (OP)-

degrading hydrolases, but both possess AHLase activity as well (Table 4.3.). 

 

 



Chapter 4: Promiscuous metallo-β-lactamases: MIM-1 and MIM-2 may play an essential role in quorum sensing networks  

 
 

Table 4.2 A. Comparison of the lactonase activities of metal ion-derivatives of MIM-1. The kinetic parameters of Zn(II)-, Co(II)-, Cu(II)-, Mn(II)- 

or Ca(II)-substituted MIM-1 are compared.  The activity assays were conducted in the presence of excess of M(II) and in the presence of different N-

acyl homoserine lactones (Fig. 1B). 

 

 

 

 

Table 4.2. Comparison of the lactonase activities of metal ion-derivatives of MIM-2. The kinetic parameters of Zn(II)-, Co(II)-, Cu(II)-, Mn(II)- or 

Ca(II)-substituted MIM-2 are compared.  The activity assays were conducted in the presence of excess of M(II) and in the presence of different N-acyl 

homoserine lactones (Fig. 1B). 
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Table 4.3. Comparison of lactonase activities (next page). The kinetic parameters for the N-acyl homoserine lactonase activities found for MIM-1 

and MIM-2, in the presence of different substrates, are compared with those reported for AiiB from Agrobacterium tumefaciens [205], AiiA from 

Bacillus sp 240B1 [218], MomL from Muricauda olearia [209], AidC from Chryseobacterium sp. StRB126 [208], SsoPox from Sulfolobus 

solfataricus [222] and OPH from Brevundimonas diminuta [223].  

 

 
AiiA[218] AiiB[205] AidC[208] 

Substrate kcat  (s
-1) Km  (µM) kcat/Km(s-1/M) kcat  (s

-1) Km  (µM) kcat/Km(s-1/M) kcat  (s
-1) Km  (µM) kcat/Km(s-1/M) 

C12-30x0-DL-HSL NA NA NA NA NA NA NA NA NA 

C12-DL-HSL NA NA NA NA NA NA NA NA NA 

C10-3oxo-DL-HSL NA NA NA NA NA NA 1.97 ± 0.11 72 ± 5.3 2.7*104 
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C10-DL-HSL NA NA NA 0.28 ± 0.08 110 ± 50 1.5*103 NA NA NA 

C8-3oxo-DL-HSL NA NA NA 3.7 ± 0.1 2.5 ± 0.3 (mM) 1.5*103 2.12 ± 0.24 64 ± 3.7 3,3*104 

C8-DL-HSL NA NA NA 10.3 ± 0.2 1.0 ± 0.1 (mM) 1.0*104 2.01 ± 0.31 64 ± 4.9 3,1*104 

C7-DL-HSL NA NA NA NA NA NA NA NA NA 

C6-3oxo-DL-HSL NA NA NA 11.0 ± 0.4 4.6 ± 0.5 (mM) 2.4*103 2.35 ± 0.29 46 ± 2.1 5.1*104 

C6-DL-HSL 91 ± 3 5.6 ± 0.6 (mM) 1.6*104 24.8 ± 0.9 1.6 ± 0.2 (mM) 1.6*104 2.31 ± 0.16 55.0 ± 4.3 4.2*104 

C4-DL-HSL NA NA NA 5.8 ± 0.3 15 ± 1 (mM) 3.9*102 NA NA NA 

 

 

MomL[209] SsoPox[222] OPH[223] 

Substrate kcat  (s
-1) Km  (µM) kcat/Km(s-1/M) kcat  (s

-1) Km  (µM) kcat/Km(s-1/M) kcat  (s
-1) Km  (µM) kcat/Km(s-1/M) 

C12-30x0-DL-HSL NA NA NA 0.95 ± 0.03 170 ± 2 5.5*103 1.83 ± 0.05 101 ± 7 1.8*104 

C12-DL-HSL NA NA NA NA NA NA NA NA NA 

C10-3oxo-DL-HSL 224 ± 12 440 ± 100 5.1*105 1.5 ± 0.2 50 ± 0.1 3.0*105 2.67 ± 0.03 184 ± 4 1.4*104 

C10-DL-HSL NA NA NA NA NA NA NA NA NA 

C8-3oxo-DL-HSL 218 ± 14 490 ± 110 4.5*105 
   

4.66 ± 0.03 608 ± 8 7.6*103 

C8-DL-HSL 158 ± 17 440 ± 160 3.6*105 2.0 ± 0.3 93 ± 27 2.1*104 NA NA NA 

C7-DL-HSL NA NA NA NA NA NA NA NA NA 

C6-3oxo-DL-HSL 293 ± 17 950 ± 160 3.1*105 0.52 ± 0.05 5.6 ± 0.9 (mM) 18 ± 7 NA NA NA 

C6-DL-HSL 226 ± 8 790 ± 80 2.9*105 NA NA NA 3.17 ± 0.02 526 ± 9 6.3*103 

C4-DL-HSL 135 ± 5 850 ± 90 1.6*105 NA NA 5.5*103 2.62 ± 0.02 412 ± 6 6.3*103 
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Furthermore, OP-degrading activity has previously also been associated with the MBL structural 

fold; the enzyme methyl parathion hydrolase (MPH) from Pseudomonas sp. WBC-3 has the overall 

fold characteristic of MBLs but it is a highly efficient OP hydrolase without any measurable MBL 

activity [153, 176]. Functional promiscuity is thus not unprecedented among metallohydrolases, 

further exemplified by the enzyme purple acid phosphatase, which may act as a phosphatase in 

some tissue types or organisms, but as a peroxidase elsewhere [169]. Changes in the metal ion 

composition in the active site may contribute to observed functional changes in that enzyme [224, 

225]. Since we previously demonstrated that metal ion replacements lead to changes in the substrate 

preference of both MIM-1 and MIM-2 [92] we probed the effect of such replacements on the 

catalytic parameters of the AHLase activity of these two enzymes (Table 4.2.). The effects of these 

substitutions are more subtle than observed for the MBL activity of these enzymes. Each of the 

metal ions tested is capable of reconstituting AHLase activity, with Co(II) being the most effective 

metal ion for most substrates and Ca(II) the worst. Co(II) was also found to be the most effective 

metal ion for other AHLases, including AiiB from A. tumefaciens, AiiA from B. thuringensis and 

MomL from M. olearia [204, 208, 209, 218].  
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4.4 Conclusion. 

MIM-1 and MIM-2 are two enzymes that demonstrate the plasticity of the MBL fold, a fold that 

promotes a range of seemingly unrelated functions. For instance, the organophosphate pesticide-

degrading MPH uses this fold but has no MBL activity [176]. Our study into possible biological 

functions of MIM-1 and MIM-2 was triggered by the observation that both enzymes are very 

efficient lactamases in vitro despite residing in organisms that are not likely to have been subjected 

to evolutionary pressures associated with the increasing use of β-lactam-based antibiotics since 

World War II [92]. Indeed, at the primary sequence level the closest homologs of MIM-1 and MIM-

2 are known MBLs associated with the pathogenic effect of antibiotic resistance (Fig. 4.1., 4.3., 

4.4.), but considerable similarity was also apparent to other enzymes of the family of dinuclear 

metallohydrolases, in particular glyoxalases and AHLases (Table 4.1.). Structural models of MIM-

1 and MIM-2 indicated that their active sites can accommodate two metal ions using ligands 

identical to those used by some MBLs such as AIM- 1, FEZ-1 or L1 [27, 138, 192], but these 

models did not provide conclusive information about preferred substrates, an outcome that was not 

surprising considering the structural plasticity of the MBL fold. However, kinetic measurements 

ruled out that MIM-1 and MIM-2 may act as glyoxalases. In contrast, both enzymes are very 

efficient AHLases with catalytic parameters rivalling or even exceeding those of well-characterized 

lactonases (Table 4.3.). This bifunctional behaviour of MIM- 1 and MIM-2 is thus another 

illustration of the versatility of the MBL fold, but it also poses an interesting conundrum with 

respect to the biological function(s) of these enzymes – based on their in vitro catalytic efficiencies 

it is not evident if they act preferably as MBLs or AHLases. Insofar, MIM-1 and MIM-2 are 

different from known MBLs, for which generally only one preferred function is reported. Similarly, 

we are not aware of any studies linking AHLases to MBL activity, nor their inhibition by 

established MBL inhibitors such as D-captopril [177, 180]. Of interest was also the observation that 

the metal ion composition of MIM-1 and MIM-2 affects only their substrate preference for their 

MBL but not their AHLase activity (Table 4.2.). While the in vivo metal ion composition of these 

enzymes remains uncertain it is possible that they may alter their function as a consequence of the 

identity of the metal ions bound in their active sites. In this context, it is interesting that MIM-1 and 

MIM-2 are active in presence of Ca(II), the concentration of which may potentially be regulated by 

their host organisms. This question may only be addressed when more information about the 

cellular metabolism of N. pentaromativorans or S. agarivorans becomes available. However, 

irrespective of the role(s) of MIM-1 or MIM-2 in their host organisms these enzymes are attractive 
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targets to investigate structural factors that dictate substrate preference and concomitant functions of 

enzymes that possess the versatile MBL fold. As an essential step towards gaining functional 

insight our group is currently optimizing protocols to obtain crystals of a quality sufficient for X- 

ray diffraction studies. Ultimately, MIM-1 and MIM-2 may hold important clues about structural 

factors that may be exploited to develop potent inhibitors as leads for novel chemotherapeutics to 

combat antibiotic resistance. The link between antibiotic resistance and QS may also be of 

relevance in future drug development strategies – enzymes such as MIM-1 and MIM-2 may, in 

principle, be a threat to health care due to their strong potential to degrade commonly used 

antibiotics, but they are also capable of preventing biofilm formation due to their ability to cleave 

AHLs. Since biofilms are frequently associated with antibiotic resistance [132, 180] MIM-1 and 

MIM-2 are bifunctional enzymes that possess activities with opposing effects with respect to 

antibiotic resistance. The question to address in future studies is if these two activities may be 

controlled and/or modulated separately. 
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Chapter 5: Active site geometry and reaction 

mechanism of MIM-1 and MIM-2 

 

 

5.1 Introduction 

 

In the previous chapters the enzymatic properties of two novel MBL-like enzymes from 

environmental microorganisms, i.e. MIM-1 from N. pentaromativorans and MIM-2 from S. 

agarivorans, were discussed in detail. Specifically, the two enzymes were identified due to their 

sequence homology to MBLs from subgroup B3 (see Chapter 2) and their proficiency in 

hydrolysing a range of relevant β-lactam antibiotics (see Chapter 3). The reaction mechanism 

employed by MBLs has been studied extensively using a range of techniques from chemical 

kinetics and spectroscopy. Variations are observed when different substrates were employed, as 

illustrated by the effects of pH on enzyme catalysis (e.g. Fig. 3.5 in Chapter 3).  Furthermore, it has 

emerged that in some MBLs (e.g. the B1 representative NDM-1 and the B3-representative L1) the 

rate-limiting step in the reaction with the model substrate nitrocefin (Fig. 5.1) is the decay of an 

anionic tetrahedral reaction intermediate formed upon the nucleophilic attack, while in other MBLs 

(e.g. the B1 representative Bla2) no reaction intermediate is observed [120, 226, 227].  

Interestingly, the B3-representative AIM-1 appears to be capable of adopting two alternative 

mechanistic strategies, one where a reaction intermediate is observed and one where no 

intermediate is apparent [129]. In this chapter the reaction mechanism of MIM-1 and MIM-2 is 

probed using an approach similar to that described in the studies of NDM-1, L1, Bla2 and AIM-1. 

Specifically, the substrate nitrocefin was used to facilitate a direct comparison of catalytic 

parameters.  
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Figure 5.1. Nitrocefin core structure. Due to the presence of the dinitro phenol functional group 

this cephalosporin derivative has a characteristic yellow colour, facilitating a simple colourimetric 

assay to monitor catalysis. 

 

5.2 Materials and Methods 

 

5.2.1. Materials  

 All chemicals were of analytical grade.  E. coli BL21 (DE3) pLysS cells (Agilent) were 

used for recombinant expression of the proteins.  All chemicals were purchased from Sigma-

Aldrich unless stated otherwise. 

 

5.2.2. Protein expression and purification 

 The protocols for the expression and purification of recombinant MIM-1 and MIM-2 were 

previously described (see Chapter 3).  In brief, the expression of the recombinant enzymes was 

induced with 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG).  The cells were harvested 

by centrifugation and pellets were resuspended in ~20 mL of buffer containing 20 mM Tris (HCl; 

pH 7.0) and 0.15 mM ZnCl2.  The cells were then disrupted using five rounds of sonication (60% 

of the maximal output power for 30 seconds in each round).  The supernatant was loaded onto a 

HiTrap Q FF 5 mL column (GE Healthcare), pre-equilibrated with 20 mM Tris (HCl; pH 7.0) and 

0.15 mM ZnCl2.  Proteins were eluted using a linear gradient from 0 to 0.5 M NaCl.  MIM-1 

eluted between 55 mM and 175 mM of NaCl, while MIM-2 eluted between 35 mM and 135 mM 

of NaCl.  Relevant fractions with MBL activity were pooled and loaded onto a HiPrep 16/60 
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Sephacryl S-200 HR column (GE Healthcare), pre-equilibrated with 50 mM Hepes (pH 7.5), 

containing 0.2 M NaCl and 0.15 mM ZnCl2.  The purity of the protein samples was confirmed by 

SDS-PAGE analysis.  The protein concentrations were estimated using theoretical extinction 

coefficients (ε280 = 36,815 M-1cm-1 for MIM-1 and 41,285 M-1cm-1 for MIM-2), calculated using 

the ProtParam tool (http://web.expasy.org/protparam/).  

Metal ion derivatives of MIM-1 and MIM-2 were prepared as described in Chapters 3 and 4. 

 

5.2.3. Enzymatic assays and data analysis  

 

 Steady-state kinetic assays were conducted with the Zn(II)-, Co(II)- and Ca(II)-derivatives 

of MIM-1 and MIM-2, following the hydrolysis of the cephalosporin derivative nitrocefin (Fig. 5.1) 

at 390 nm. The substrate conversion rate was calculated using an extinction coefficient ε390 = 

11 500 M–1cm–1. All the measurements were conducted in 20 mM TRIS, pH 7.0, in the presence of 

[M(II)] = 200 μM (where M = Zn, Co or Ca), at 25° C with a Shimadzu UV-2550 

spectrophotometer, using a 1 cm path length quartz cuvette. The final protein concentration in the 

assays was 20 nM.  

 Stopped-flow measurements were carried out using an Applied Photophysics SXPRO-20 

spectrophotometer equipped with a photodiode array and fluorometer detector.  Absorbance and 

fluorescence measurements were performed with a final concentration of enzyme and substrate (i.e. 

nitrocefin) 30 μM and 20 μM, respectively.  The excitation and emission wavelengths used in the 

fluorescence experiments were 295 nm and 330 nm, respectively.  The wavelength range for the 

absorbance measurements was from 300 nm to 700 nm.  The path lengths used were 1 cm or 0.2 cm 

for absorbance or fluorescence experiments, respectively, while the respective slit widths were 4 

mm and 2 mm. Reaction progress curves at 390 nm (i.e. substrate decay) and 485 nm (i.e. product 

formation) were generated from the diode array absorption measurements by converting the 

experimental data to concentration values using the following respective extinction coefficients: 

11 500 M–1cm–1 and 17 400 M–1cm–1 [228, 229]. Rate constants kobs for substrate decay and product 

formation were obtained by fitting the data to first-order exponentials of the following form 

(Equation 5.1):  

 

           Eq. 5.1 

http://web.expasy.org/protparam/
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where [M]t and [M]0 represent the concentration of the substrate or the product at time t or at the 

beginning of the reaction, respectively; b is a fitting parameter and t is the time in seconds.  

The data were also modelled using FITSIM software in order to obtain an estimate of individual 

microscopic rate constants [120, 230, 231]. The model used to fit the experimental data is shown in 

Fig. 5.2 and assumes reversibility (characterised by forward and reverse rate constants) at every 

step of the reaction. A similar model was previously employed to characterise the catalytic turnover 

of Bla2 and AIM-1 [120, 129]. 

 

 

Figure 5.2. Schematic representation of the catalytic mechanism for the reaction of MIM-1 

and MIM-2 with the -lactam substrate nitrocefin. The model assumes three fully reversible 

steps for the mechanism.  

5.2.5. Magnetic circular dichroism  

 

The Co(II)-derivatives of MIM-1 and MIM-2 were dissolved in a 60%/40% (v/v) mixture of 

glycerol/buffer (20 mM TRIS, pH 7.0) and filled in a 0.62 cm path length nickel-plated copper 

sample cell with quartz windows. The MCD system used a JASCO J815 spectropolarimeter and an 

Oxford Instruments SM4000 cryostat/magnet. Data were collected at increments of 0.5 Tesla (T) 

from 0 to 7.0 T and at a temperature of 1.4 K. Each spectrum was corrected for any natural CD by 

subtracting the zero-field spectrum of the sample. Even when there is no sample present the 

instrument baseline exhibits a small deviation from zero that is both field- and wavelength-

dependent [232]. Therefore, each spectrum was also corrected by subtraction of a spectrum 

recorded at the same magnetic field but with no sample present. The resultant spectra were fitted to 

the minimum number of Gaussian peaks to achieve a satisfactory composite spectrum using the 

GRAMS AI software and analysed as described elsewhere [232]. 
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5.2.6. Electron paramagnetic resonance  

 

 Low-temperature EPR spectra were obtained on a Bruker Elexsys EMX EPR spectrometer 

equipped with an Oxford Instruments ESR900 liquid helium flow cryostat. The spectra were 

recorded at 9.64 GHz (B0⊥B1) or 9.38 GHz (B0∥B1) using a Bruker DM4116 dual-mode cavity, with 

10 G (1 mT) magnetic field modulation (100 kHz), with a constant/conversion time of 42 ms and a 

receiver gain at 1 × 104.  Spin Hamiltonian parameters were estimated from computer simulations 

carried out using XSophe (Bruker Biospin), assuming H0 = βB0gŜ/ħ+ ŜDŜ, where S = 3/2, D >> 

βgBS/ħ, and where D > 0 implies the MS = ±1/2 Kramers doublet lies lowest and all observed EPR 

transitions are from this doublet, and D < 0 implies the MS = ±3/2 Kramers doublet lie lowest and 

all observed EPR transitions are from this doublet.  

 

5.2.7. 1H Paramagnetic NMR 

 

1H NMR spectra were collected on a Bruker Avance 500 spectrometer operating at 500.13 MHz, 

298 K, magnetic field of 11.7 T, recycle delay (AQ) of 41 ms, and sweep width of 400 ppm. Proton 

chemical shifts were calibrated by assigning the H2O signal the value of 4.70 ppm. A modified pre-

saturation pulse sequence was used to suppress the proton signals originating from solvent. The 

presaturation pulse was as short as possible (500 ms) to avoid saturation of solvent-exchangeable 

proton signals. The concentration of NMR samples was generally in the range of 1.0-1.2 mM. 

Samples in D2O were prepared by performing three or more dilution/concentration cycles in a 

Centricon-10 column. 

 

5.3. Results and Discussion 

 

5.3.2 Characterisation of the steady-state catalytic parameters for the hydrolysis of nitrocefin 

 

In order to compare catalytic parameters of MIM-1 and MIM-2 with corresponding parameters 

from well-known MBLs (e.g. AIM-1, NDM-1 [128] and Bla2 [120]) the steady-state parameters 
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for the turnover of the substrate nitrocefin needed to be established.  Relevant experimental data 

and catalytic parameters for the Zn(II)-, Co(II)- and Ca(II)-derivatives of both enzymes are shown 

in Fig. 5.3 and Table 5.1.  

 

Table 5.2. Kinetic parameter obtained for MIM-1 and MIM-2 for the hydrolysis of nitrocefin 

in the presence of Zn(II), Co(II) and Ca(II). 

 MIM-1 MIM-2 

 kcat (s-1) Km (µM) kcat/Km (s-1/M) kcat (s-1) Km (µM) kcat/Km(s-1/M) 

Zn(II) 899 ± 53 73 ± 10 1.2*107 1073 ± 48 49 ± 6 2.1*107 

Co(II) 57 ± 2 64 ± 6 8.9*105 12 ± 0.5 47 ± 5 2.5*105 

Ca(II) 3 ± 0.1 44 ± 6 6.8*104 17 ± 0.7 48 ± 6 3.4*105 

 

For both enzymes and every metal ion derivative tested the data reveal Michaelis-Menten-type 

saturation behaviour; no substrate inhibition as observed with other substrates (see Chapter 3) was 

evident.  This indicates that nitrocefin only has one binding site in the vicinity of the active centre, 

possibly preventing binding of a second substrate molecule to an inhibitory site due to its large size 

(compare Figs 5.1 and Fig. 1.3).  Interestingly, nitrocefin appears to bind with similar affinity to 

both enzymes, irrespective of the metal ion composition, based on the relatively conserved Km 

values (ranging from ~40 to ~70 μM).  However, great variations are observed with respect to the 

kcat when different metal ion derivatives are compared (Table 5.1).  With a kcat in the range of 

~1000 s-1 for both native, Zn(II)-containing enzymes nitrocefin is turned over considerably faster 

than other cephalosporin substrates (i.e. cefuroxime and cefoxitin; see Table 3.2 in Chapter 3).  

However, the Co(II)- and Ca(II)-derivatives are far less reactive than their Zn(II)-counterparts; 

indeed, nitrocefin is turned over at a rate similar to that recorded for other cephalosporin substrates.  

Thus, while metal ion replacements do not appear to affect substrate binding significantly, they 

have a profound influence on the catalytic steps that follow initial substrate binding.  In order to 

shed light into those steps the reactions were probed under single turnover conditions using 

stopped-flow techniques. 
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Figure 5.3. Rate vs [nitrocefin] profiles of metal ion derivatives of MIM-1 and MIM-2. The 

data were analysed by fits to the Michaelis-Menten equation as described in Chapter 3.  

5.3.3 Rapid single-turnover kinetics experiments 

 

The hydrolysis of nitrocefin by metal ion derivatives of MIM-1 and MIM-2 was recorded 

with a photodiode array detector in the range between 300 and 700 nm (Figure 5.4) and shows the 

disappearance of the substrate at 390 nm and the emergence of the ring-opened product at 485 nm. 

For each derivative the reaction is completed after ~0.6 ms. In Figure 5.5 the time courses of the 
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concentration change for the substrate and product are shown. It should be pointed out that only in 

the case of the Co(II)- and Ca(II)-derivatives of MIM-1 and MIM-2 an intermediate was 

observable, however at insignificant concentrations and with an half-life not consistent with the 

substrate depletion. This could indicate that, in the presence of different metal ions the proteins 

hydrolyse the substrate through a different mechanism, exploiting the acyl-enzyme intermediate 

observed in the case of other well-known MBLs [120]. However, further investigation is needed to 

support this hypothesis.  This observation indicates that MIM-1 and MIM-2 are likely to operate 

like the MBLs Bla2 and AIM-1, but different to NDM-1 or L1 (where a reaction intermediate was 

observable; see Section 5.1).  
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Figure 5.4. Stopped-flow spectroscopy of the Zn(II)-, Co(II)- and Ca(II)-derivatives of MIM-1 

and MIM-2. The hydrolysis of 30 µM nitrocefin by 20 µM MIM-1 and MIM-2 was followed in 20 

mM TRIS, pH 7.0, at 25 °C. Absorbance spectra from 300 to 775 nm were recorded ~1.28 ms after 

mixing (deadtime of the instrument). The reaction was complete after ~0.6 s. The absorbance 

decreased at 390 nm (substrate), and increased at 485 nm (product). 
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Figure 5.5. Time course of concentration changes in single turnover experiments with MIM-1 

and MIM-2. Concentrations for substrate (circle void dots) and product (square void dots). The 

absorbances were converted to concentration units as described in Materials and Methods. The 

experimental data were fitted to a first-order exponential. The fitted lines are shown as blue 

(substrate) and red (product) lines. 

 

The data in Fig. 5.5 were analysed by fitting the time course of substrate decay and product 

formation to an exponential (Eq. 5.1), resulting in first-order rate constants kobs (Table 5.2).  For 
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both enzymes, independent of their metal ion composition, similar kobs values in the order of ~5 - 8 

s-1 were recorded.  

 

Table 5.2. Estimated first-order rate constants (s-1) obtained for the Zn(II)-, Co(II)- and 

Ca(II)-derivatives of MIM-1 and MIM-2 for the hydrolysis of nitrocefin.  

 
MIM-1 MIM-2 

 
kobs (s-1) kobs (s-1) 

 
Substrate (390 nm) Product (485 nm) Substrate (390 nm) Product (485 nm) 

Zn(II) 6.6 ± 0.1 6.9 ± 0.1 4.9 ± 0.1 5.0 ± 0.1 

Co(II) 4.3 ± 0.1 5.5 ± 0.1 4.2 ± 0.1 5.4 ± 0.1 

Ca(II) 6.2 ± 0.1 7.5 ± 0.1 4.5 ± 0.1 8.3 ± 0.1 

 

 

 

Figure 5.6. Schematic representation of a possible catalytic mechanism for the reaction of 

MIM-1 and MIM-2 with the -lactam substrate nitrocefin.  

 

The data pose a significant conundrum in the interpretation of the mechanism.  In the single 

turnover experiments product is formed at a rate of ~5 s-1 while the kcat measured under steady-state 

conditions (see Fig. 5.3 and Table 5.1), in particular for the native Zn(II)-derivatives of MIM-1 and 

MIM-2, are in the order of ~1000 s-1.  It needs to be pointed out that while both the steady-state and 

single turnover experiments measure the same process  

(i.e. the emergence of hydrolysed nitrocefin) differences might be expected if the regeneration of 

the active site for the next catalytic cycle requires the presence of substrate.  In other words, in a 

single turnover experiment the release of product from the EP complex (Fig. 5.6) might be slow but 

in the presence of excess substrate the product gets easily displaced by this reactant due to its higher 

affinity.  This would imply that substrate binding is rather rapid but that the regeneration of the 

active site to its resting state might be considerably slower as, ultimately, in the final catalytic cycle 

no substrate remains available to promote product expulsion. 
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 In an attempt to probe this hypothesis the stopped-flow single turnover experiments were 

carried out in fluorescence mode (Fig. 5.7). The underlying idea behind this approach is that MBLs 

have a conserved tryptophan residue (i.e. Trp93 in NDM-1, Trp38 in L1 and Trp38 in AIM-1) [129] 

in the vicinity of the active site. Its perturbation, promoted by the binding of the substrate, is 

anticipated to result in changes in the intrinsic fluorescence properties of the enzymes. Indeed, 

stopped-flow fluorescence measurements with NDM-1, L1 and AIM-1 have demonstrated that their 

interaction with the substrate nitrocefin leads to an initial rapid quench in fluorescence, followed by 

a slower regain [129, 143, 227]. In MIM-1 and MIM-2 the corresponding tryptophan residue is also 

conserved (Trp86 and Trp33, respectively).  For each metal ion derivative of both enzymes a very 

rapid quench in fluorescence is observed, followed by a slower regain, thus matching the behaviour 

reported for other MBLs (Fig. 5.7).  The rate of the fluorescence decay could not be accurately 

estimated as the process was complete close to the dead time of the instrument (thus, a rate 

exceeding 500 s-1 is a reasonable estimate).  In contrast, reliable estimates for the rate constants for 

the fluorescence regain could be obtained from fitting the experimental data to single exponential 

functions.  Relevant parameters are listed in Table 5.3.  Interestingly, these rates are in reasonable 

agreement with the rates of product formation recorded in single turnover experiments (see above). 

The rates, for all the metal derivatives both for MIM-1 and MIM-2, are in the order of ~5 s-1, in 

agreement with the observed rates for NDM-1 and L-1 but in contrast to what has been recently 

observed for AIM-1, in which the regain in fluorescence is greater by one order of magnitude [129]. 

 

 

Figure 5.7. Fluorescence progression curve for MIM-1 (left) and MIM-2 (right) at 280 nm. 

The Figure shows the experimental data points for the Zn(II) (void squares), Co(II) (void triangles) 

and Ca(II) (void inverted triangles) derivatives. The experimental data points were fitted to a first-
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order exponential and the resulting fits are shown as blue (for the Zn(II)), red (for the Co(II)) and 

green (for the Ca(II)). 

 

Table 5.3. Estimated first-order rate constants (s-1) obtained for MIM-1 and MIM-2, in the 

presence of Zn(II), Co(II) and Ca(II), during the hydrolysis of nitrocefin, followed by 

fluorescence measurements. 

MIM-1 MIM-2 

kobs (s-1) kobs (s-1) 

Zn(II) Co(II) Ca(II) Zn(II) Co(II) Ca(II) 

2.1 ± 0.1 1.4 ± 0.3 4.2 ± 0.5 2.6 ± 0.1 2.6 ± 0.2 7.1 ± 0.3 

 

 

 

 

In summary, the combined kinetic data provide insight into how metal ions may influence 

the catalytic turnover. It was already demonstrated in Chapter 3 that a change in the metal ion 

composition may affect the substrate specificity of both MIM-1 and MIM-2 (see Table 3.6), an 

observation that suggested that different metal ions may lead to subtle conformational (i.e. 

structural) variations that affect substrate binding.  Here, it was demonstrated that the mechanism of 

a single catalytic turnover may be conserved, independent of the metal ion composition (Figs 5.3 – 

5.7).  However, with respect to the steady-state rate constant measured under pseudo-first order 

conditions there is a great difference between the three metal ion derivatives tested (Fig. 5.2 and 

Table 5.1).  Zn(II), the native metal ion, is by far the most efficient promoter of catalysis, likely due 

to the increased lability of the enzyme-product complex in the presence of this metal ion.  This 

interpretation opens a novel, not previously recognised possibility for the design of a strategy to 

combat antibiotic resistance.  If it was possible to develop antibiotics that, albeit hydrolysed, remain 

tightly bound to the metal centre, they may inactivate the enzymes sufficiently to have a significant 

detrimental effect on pathogenic virulence. 

Extensive kinetic data for different metal ion derivatives as described in this Chapter are 

currently not available for other MBLs.  Hence, it is not yet possible to generalise the above 

hypothesis.  But based on the similarities of available catalytic parameters (as described in Chapters 

3 and 5) it appears likely that the active sites of MIM-1 and MIM-2 share extensive homology with 

those of other MBLs.  In order to substantiate this assumption spectroscopic studies were carried 
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out, using the Co(II)-derivatives of both MIM-1 and MIM-2.  Co(II) was used as it is a suitable 

spectroscopic probe for methods such as electron paramagnetic resonance (EPR) and magnetic 

circular dichroism (MCD).  Furthermore, comparable data are available for a range of MBLs, 

including NDM-1, L1, Bla2 and AIM-1 [120, 129, 227, 229]. 

5.3.3. Spectroscopic characterization of the active site structures of MIM-1 and MIM-2 

 

 MCD has been demonstrated to be a useful probe for the active site geometry and the 

reaction mechanism of a range of binuclear metallohydrolases, including aminopeptidases, 

organophosphate-degrading enzymes and corresponding biomimetic complexes [11, 24, 25, 97, 

172, 174, 232, 233].  Recently, this method was also applied to study the active site of the MBL 

AIM-1 [129].  Corresponding data were collected for the Co(II)-derivatives of MIM-1 and MIM-2 

(Fig. 5.8).  For MIM-1, in the resting state, the MCD spectrum could be fit to no fewer than five 

transitions between ~460 and ~560 nm.  These d-d transitions are very similar to those observed for 

AIM-1 and were thus assigned to two six-coordinate Co(II) species [129].  Similarly, the spectrum 

of resting MIM-2 could be resolved into a minimum of five transitions, although they were shifted 

to higher energy (spanning ~420 to 520 nm).  While it is currently unknown why there is a stronger 

ligand effect on the d orbital splitting in MIM-2 when compared to MIM-1 and AIM-1, this 

observation is indicative of structural variations between these enzymes (e.g. differences in bond 

lengths and angles, etc).  However, common to all three enzymes is that there are two six-

coordinate Co(II) ions in the active site. 

Importantly, the addition of the inhibitor D-captopril did not affect the position of the transitions in 

either sample, again in agreement with a similar observation recently reported for AIM-1 [129].  

Considering the relatively tight binding of this inhibitor to both MIM-1 and MIM-2 (see Chapter 3) 

and also available crystal structures that show D-captopril bound to the metal centres of the MBLs 

L1 and AIM-1 the lack of any spectral changes was surprising [129, 192]. 
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Figure 5.8. MCD spectra of MIM-1 (A) and MIM-2 (B). Data were measured at 7 T and 1.4 K in 

the absence and presence of the inhibitor D-captopril.  The raw spectral data were resolved into 

individual transitions by fitting the minimum number of Gaussians. 
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However, in AIM-1 the crystal structure of the AIM-1-D-captopril complex indicates that 

the thiol group of the inhibitor displaces the bridging water molecule, thus coordinating to both 

metal ions.  Nonetheless, corresponding MCD data did not reveal significant spectral changes.  This 

was interpreted in terms of D-captopril (i) either not binding to the metal ions at all in solution (in 

contrast to the solid state arrangement), or (ii) coordinating via its carboxyl group to one or both 

metal ions, a coordination ligand and mode that would be expected to have a considerably weaker 

effect on the ligand field than a thiol group.  The same interpretation thus appears plausible for 

MIM-1 and MIM-2. 

The electronic structure and in particular the effect of D-captopril binding was also investigated by 

paramagnetic 1H NMR spectroscopy. The spectra acquired for MIM-1 and MIM-2 do not show any 

of the complexity reported for other well-characterized MBLs that show numerous hyperfine-

shifted resonances between 170 to -80 ppm [227, 234, 235]. For instance, the spectra of MIM-1 and 

MIM-2 are missing the downfield signals at ~-40 ppm, previously assigned to secondary metal 

interactions with proton ligands [227, 234, 235]. However, both MIM-1 and MIM-2 display a 

distinct feature at 45 ppm that has also been observed in other MBLs and which was assigned to 

Co(II)-coordinated NH groups (Figure 5.9) [120] [236-238]. It was previously proposed, for MBLs 

from the B1 subgroup, that the peak at ~45 ppm may be assigned to the NH protons of the His 

ligands in the Zn1 site (i.e. His116, His118 and His196) [120], residues that are conserved in MIM-

1 and MIM-2 (Figure 1.4 and Figure 4.5). In addition MIM-1 also has a resonance at 120 ppm, 

which, based on metal ion replacement studies, was previously assigned to the NH proton of the 

only histidine ligand in the Zn2 site of the B1 MBL NDM-1 [227]. 
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Figure 5.9. 500 MHz 1H NMR spectra of Co(II) MIM-1 (A) and MIM-2 (B). The spectra were 

acquired in 90% D2O. 

 

MIM-1 has two histidine ligands in that site (i.e. His121 and His263) and hence either or both may 

contribute to the observed resonance.  MIM-2 has ligands identical to those of MIM-1 in that site 

and a similar NMR signal would thus be expected. It is currently not known why the resonance is 

absent but it is yet another demonstration that the family of MBLs may display extensive structural 

flexibility even within the constraints of highly conserved active site residues.  This interpretation is 

further supported when the effect of captopril binding is investigated by paramagnetic 1H NMR 

spectroscopy (Figure 5.9). For MIM-1, in agreement with the MCD data, the presence of D-

captopril does not affect the spectrum significantly.  In contrast, the presence of the inhibitor has a 

more significant effect on the NMR spectrum of MIM-2. The feature at 45 ppm is still present but a 

faint resonance at ~120 ppm is now also visible, suggesting that the Zn2 site has been perturbed by 

its interaction with D-captopril. Thus, it appears likely that this inhibitor, despite binding with 

similar affinity to MIM-1 and MIM-2 (based on the similarity of the respective Ki values; Chapter 

3) and the fact that all of the metal ion-coordinating ligands are conserved in the two enzymes, may 

bind in a different orientation. 

In order to gain a better understanding of inhibitor binding the interaction between the metal centres 

of MIM-1 and MIM-2 and D-captopril was further analysed by electron paramagnetic resonance 

(Figure 5.10). 
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Figure 5.10. Continuous wave EPR spectra recorded at 20 K in normal perpendicular mode 

at 9.64 GHz.  Data were recorded in absence and presence of D- captopril for MIM-1 and MIM-2. 

 

 For both MIM-1 and MIM-2 the general features of the spectra are characteristic of a 

bimetallic Co(II) system with five or six ligands (the spectral data for Co(II) systems are not 

sensitive enough to distinguish between five or six ligands in the coordination environment of the 

metal centres) [120, 226].  The spectra were simulated using the software XSophe (Bruker Biospin) 

by Assoc. Prof. Jeffrey Harmer (Centre of Advanced Imaging; University of Queensland), using the 

parameters listed in Figure 5.11.    

For MIM2 the addition of D-captopril leads to a small shift in the peak positions (Figure 

5.10), which are indicative of some minor perturbation of the metal ion centre(s).  However, the 

shifts are too small to be interpreted accurately by data simulations but do suggest that D-captopril 

interacts weakly with the active site. 

For MIM1 the low field signals (i.e. below 250 mT; Figure 5.10) are essentially identical in 

the absence or presence of the inhibitor. However, in the region between 260 - 350 mT there is a 
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significant change. The sharp signal at 332 mT, g =2.0715, and the hyperfine coupling down to 

about 260 mT, is probably from a metal-centred radical. Figure 5.12 shows the power dependence 

of this signal at 20 K. The lack of signal saturation is indicative of a metal-centred radical, not an 

organic radical molecule. Furthermore, the hyperfine resonances in the 260 – 350 mT region could 

be due to two low spin Co(II) species as there would be eight resonances from the metal centre 

along the gz direction. However, the spectrum is not resolved well enough to make an unambiguous 

assignment, but its formation presumably only after addition of D-captopril suggests that D-

captopril binds closely (directly) to the paramagnetic centre and this interaction perturbs the 

electronic structure. 
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Figure 5.11. Simulation of the EPR spectra collected for resting MIM-1 (left) and MIM-2 (right).  The spectra were simulated using XSophe 

(Bruker Biospin), assuming H0 = βB0gŜ/ħ+ ŜDŜ, where S = 3/2, D >> βgBS/ħ, and where D > 0 implies the MS = ±1/2 Kramers doublet lies lowest 

and all observed EPR transitions are from this doublet, and D < 0 implies the MS = ±3/2 Kramers doublet lie lowest and all observed EPR transitions 

are from this doublet.  For MIM-1 gx, gy and gz = 2.30, 2.30 and 2.20, respectively, with corresponding linewidths of 1.2, 0.5 and 0.35.  For MIM-2 the 

corresponding values are gx, gy and gz = 2.30, 2.30 and 2.29, respectively, with corresponding linewidths of 1.14, 0.8 and 0.55. 

 

 



Chapter 5: Active site geometry and reaction mechanism of MIM-1 and MIM-2 
 
 

 
 

151 

 

Figure 5.12. Power saturation of EPR signals for MIM-1.  Data were measured at microwave powers ranging from 10 db to 50 db for MIM-1 in the 

presence of D-captopril at 20 K. The spectra on the right are showing a close-up focusing on the region between 260 – 350 mT. 
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In summary, EPR data agree, by and large, with MCD and NMR data and suggest that D-captopril 

binding may not affect the immediate first coordination sphere significantly. It is possible that this 

inhibitor binds either only to one of the metal ions or none directly, or it coordinates via its carboxyl 

group, not its thiol sulfur, as observed in crystal structures of several MBLs.  It is important to point 

out that the spectroscopic studies, especially the EPR-related ones, are still preliminary, but as far as 

comparisons with other MBLs are possible MIM-1 and MIM-2 behave similar to those enzymes. 

Further high-resolution pulse EPR experiments (e.g. ENDOR and HYSCORE) aimed at measuring 

small hyperfine interactions between the paramagnetic metal centre and the magnetic nuclei of the 

D-captopril (i.e. 2H and 1H nuclei) not resolved in the CW EPR spectra may reveal the position and 

binding of D-captopril, but are presently beyond the scope of this work. 

 

5.4 Conclusion 

 

Previous studies probing the effect of pH on the catalytic reaction of MIM-1 and MIM-2 with a 

range of substrates indicated that while there are some variations in terms of preferred pH the 

overall mechanism involving a metal ion-bound nucleophile to initiate the hydrolysis of the β-

lactam bond appears to remain conserved (see Chapter 3). 

Nitrocefin, a cephalosporin, is a substrate frequently used to probe the mechanism of 

catalysis of MBLs. Interestingly, while nitrocefin is an excellent substrate for both MIM-1 and 

MIM-2 no substrate inhibition is observed.  This is in contrast to the behaviour of all other 

substrates tested previously, including cephalosporins (see Fig. 3.2 in Chapter 3). While substrate 

inhibition was interpreted in terms of the presence of an alternative binding site for these reactants, 

nitrocefin may only be able to bind to one site.  Indeed, the Km values of MIM-1 and MIM-2 for 

nitrocefin are of similar magnitude as those of other cephalosporins (compare Tables 5.1 and 3.2), 

indicating that within the active site nitrocefin binds in a manner similar to that of other substrates. 

This interpretation is also consistent with a recently reported similar observation for the B3-type 

MBL AIM-1, where substrate inhibition is common except for nitrocefin [129]. 

  Monitoring the progress of a single catalytic turnover by stopped-flow absorbance 

measurements leads to an apparent discrepancy with the catalytic rate obtained from steady-state 

measurements under pseudo first-order conditions.  In fact, the rate of product formation appears to 

be approximately 200-fold slower in a single turnover experiment (~5 s-1 vs ~1000 s-1; Tables 

5.1 and 5.2).  In fact, under single turnover conditions the reactions monitored with various metal 

ion derivatives of both MIM-1 and MIM-2 are very similar, suggesting a conserved mechanism.  A 
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plausible explanation for the discrepancy observed for the reaction rates monitored under the two 

different conditions is that in the absence of excess substrate the product remains bound to the 

active site.  However, in the presence of excess substrate, due to its higher affinity when compared 

to that of the product, the substrate displaces the product and maintains a rapid catalytic rate. 

 This interpretation may also apply to MBLs such as AIM-1 and Bla2 [120, 129] but not to 

enzymes such as NDM-1 or L1 where single turnover and steady state assays result in similar 

catalytic rates [226, 227], and demonstrates the mechanistic flexibility of MBLs, despite largely 

conserved active site geometries.  Indeed, although no crystal structures of MIM-1 and MIM-2 were 

available before finalising this thesis, spectroscopic data indicated that these enzymes have active 

sites similar to those of other MBLs (Figs 1.4 and 1.5).  

 In summary, while MIM-1 and MIM-2, two MBLs from non-pathogenic environmental 

microorganisms, clearly possess all the features characteristic for this class of enzymes they also 

demonstrate the flexibility of MBLs to perform their reactions.  Of particular relevance for the 

design of potent inhibitors is that product release may be exploited to slow down the catalytic rate 

sufficiently to be of clinical relevance.  In particular, an inhibitor designed to mimic the features of 

the enzyme-product complex rather than the enzyme-substrate complex may prove to be a potent 

agent in combating antibiotic resistance.  In order to strengthen this hypothesis, crystal structures of 

MIM-1 and MIM-2 in complex with products may be essential.  Efforts towards this goal are 

currently in progress in our group and will be briefly outlined in the final chapter of this thesis. 
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Chapter 6: Concluding Remarks and Future Directions 

 

 The successful treatment of common bacterial infections has been alarmingly undermined 

by the emergence of antibiotic resistance in an ever-increasing number of pathogens.  Sustained 

periods of the haphazard application of antibiotics and global mobility have contributed 

significantly to this global health concern.  The prophylactic use of antibiotics in the agricultural 

industry (supplemented in feed stocks and water sources) is another major contributor to the 

evolution of antibiotic resistance [239, 240]. Since antibiotic resistance determinants are frequently 

located on transposable genetic elements, the chance of a horizontal gene transfer connected to 

urban and environmental microorganisms is a clear and real danger [241-243]. In particular, soil 

environments have been identified as an important reservoir of a diversity of antibiotic resistant 

determinants found in uncultured bacteria [244]. Moreover, some soil microorganisms have been 

shown to contain a wealth of antibiotic resistance genes independent of anthropogenic influence  

[149]. These instances of antibiotic resistance in the absence of human intervention offer invaluable 

and rare insights into the origin and evolution of antibiotic resistance prior to the medicinal use of 

antibiotics, insights which may assist future efforts to counteract or prevent antibiotic resistance 

[244, 245]. As discussed in Chapter 1, -lactamases are a family of enzymes that have acquired 

considerable notoriety due to their ability to hydrolyse most commonly used -lactam-based 

antibiotics such as penicillins, cephalosporins and carbapenems.  In particular, class B, the so-called 

MBLs, are of concern since no clinically useful inhibitors are available. In this context MIM-1 and 

MIM-2, both identified in some environmental marine-based microorganisms, harbor tremendous 

potential to lead research in both the understanding of a powerful antibiotic resistance mechanism 

and the development of potent drug leads to combat its spread. 

An important step towards realizing the potential that MIM-1 and MIM-2 may provide for research 

in the antibiotic resistance area is the elucidation of their three dimensional structures by X-ray 

crystallography.  I initiated crystallization trials during my candidature, establishing experimental 

conditions that led to crystal formations.  None of these crystals were, however, of a quality 

sufficient for diffraction, but they formed a reasonable starting point for further optimisations.  

Another doctoral student in our group, Mr. Christopher Selleck, recently obtained crystals for both 

enzymes that diffract to resolution of ~2.0 Å (Figure 6.1; C. Selleck, unpublished data).   
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Figure 6.1. Crystals grown for MIM-1 (left) and MIM-2 (right) using the hanging drop 

method.  X-ray diffraction data were collected at the Australian Synchrotron in Melbourne at 

resolutions of 2.3 and 1.8 Å, respectively, for MIM-1 and MIM-2.  The structures were solved by 

molecular replacement and model refinement is currently in progress. 

 

The structures of MIM-1 and MIM-2 were readily solved by molecular replacement using the 

coordinates of the B3-type MBL AIM-1 as a template.  Refinements of these structures are 

currently still in progress, but with respect to their overall structure and metal ion binding sites in 

their catalytic centre they are very similar to other MBLs, as anticipated.  Figure 6.2 shows the 

relevant illustration for MIM-2.  It will be interesting to analyse the outer coordination spheres of 

the enzymes as this is the location where the degree of homology observed between different MBLs 

is lower than in the direct coordination sphere.  It is thus anticipated that variations in terms of 

substrate specificity (see Chapters 3 and 4) and mechanism (see Chapter 5) are reflected in 

structural changes in this outer sphere. 
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Figure 6.2. Partially refined crystal structure of MIM-2 (left).  The red spheres indicate the two 

Zn(II) binding sites in the active centre.  This active site is illustrated on the right, also showing the 

electron density map around the two metal ions (shown as grey spheres).  A total of three water 

molecules (red spheres) complete the first coordination sphere, two terminally bound to either of the 

metal ions (W2 and W3), and one bridging the Zn(II) ions (W1).  W1 is the likely hydrolysis-

initiating nucleophile in the catalytic cycle of MBLs. 

 

Figure 6.3. Thiol derivatives and corresponding inhibition constants (Ki values), determined 

for the B1-type MBL IMP-1. 

 

Our group and others have developed an arsenal of in vitro MBL inhibitors, including a range of 

thiols (Figure 6.3), ketones, alcohols, dicarboxylic acids, sulfates, hydroxamates, tetrazoles and 

sulfonamides [20].  While some of those compounds are potent inhibitors for members of one 

subgroup of MBLs, to my knowledge no “universal” inhibitor that affects representatives of ? in a 

similar manner has yet been developed.  Insofar, the observed plasticity in the active site of MIM-1 

and MIM-2 may render these enzymes as ideal targets to improve existing inhibitor leads, 

especially with a view to developing the first universally useful MBL inhibitor.  Time will tell. 
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Annex: 1 Inteins—A Focus on the Biotechnological  Applications of Splicing-

Promoting Proteins  

 

American Journal of Molecular Biology, 2015, 5, 42-56  

Published Online April 2015 in SciRes. http://www.scirp.org/journal/ajmb 

http://dx.doi.org/10.4236/ajmb.2015.52005  

Inteins—A Focus on the Biotechnological Applications of Splicing-Promoting Proteins  

Manfredi Miraula1,2*, Charmaine Enculescu2, Gerhard Schenk2, Nataša Mitić1  
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Abstract  

The main aim of this mini-review is to illustrate strategies and industrial applications based 

on inteins (INTErnal proteINS), which belong to a class of autocatalytic enzymes that are able 

to per- form a catalytic reaction on a single substrate. However, since practical applications of 

inteins are strongly guided by a detailed understanding of their biological mechanisms and 

functions, the first part of this review will thus briefly discuss the physiological roles of 

inteins, describing what is currently known about their mechanisms of action. In the second 

part, specific biotechnological applications of inteins will be outlined (i.e. their use for (i) the 

purification of recombinant pro- teins, (ii) the cyclization of proteins and (iii) the production 

of seleno-proteins), paying attention to both potential strengths and weaknesses of this 

technology.  
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Annex: 2 Identification and characterization of an unusual metallo-β-lactamase 

from Serratia proteamaculans 

 

J Biol Inorg Chem (2013) 18:855–863 DOI 10.1007/s00775-013-1035-z  

ORIGINAL PAPER  

Identification and characterization of an unusual metallo-b-lactamase from Serratia proteamaculans  
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Ollis • Ross P. McGeary • Gerhard Schenk • Natasˇa Mitic ́  
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Abstract Metallo-b-lactamases (MBLs) are a family of metalloenzymes that are capable of 

hydrolyzing b-lactam antibiotics and are an important means by which bacterial pathogens 

use to inactivate antibiotics. A database search of the available amino acid sequences from 

Serratia pro- teamaculans indicates the presence of an unusual MBL. A full length amino acid 

sequence alignment indicates overall homology to B3-type MBLs, but also suggests consider- 

able variations in the active site, notably among residues that are relevant to metal ion 

binding. Steady-state kinetic measurements further indicate functional differences and 

identify two relevant pKa values for catalysis (3.8 for the enzyme–substrate complex and 7.8 

for the free enzyme) and a preference for penams with modest reactivity towards some 

cephalosporins. An analysis of the metal ion content indicates the presence of only one zinc 

ion per active site in the resting enzyme. In contrast, kinetic data suggest that the enzyme may 

operate as a binuclear enzyme, and it is thus proposed that a catalytically active di-Zn2+ 

center is formed only once the substrate is present.  
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Annex: 3 Intrinsic disorder and metal binding in UreG proteins from Archae 

hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) 

dependent urease 
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Abstract Urease is a Ni(II) enzyme present in every domain of life, in charge for nitrogen 

recycling through urea hydrolysis. Its activity requires the presence of two Ni(II) ions in the 

active site. These are delivered by the concerted action of four accessory proteins, named 

UreD, UreF, UreG and UreE. This process requires protein ex- ibility at different levels and 

some disorder-to-order transi- tion events that coordinate the mechanism of protein–pro- tein 

interaction. In particular, UreG, the GTPase in charge of nucleotide hydrolysis required for 

urease activation, presents a signi cant degree of intrinsic disorder, exist- ing as a 

conformational ensemble featuring characteristics that recall a molten globule. Here, the 

folding properties of UreG were explored in Archaea hyperthermophiles, known to generally 

feature signi cantly low level of structural dis- order in their proteome. UreG proteins from 

Methanocal- dococcus jannaschii (Mj) and Metallosphaera sedula (Ms) were structurally and 

functionally analyzed by integrating circular dichroism, NMR, light scattering and enzymatic 

assays. Metal-binding properties were studied using iso- thermal titration calorimetry. The 

results indicate that, as the mesophilic counterparts, both proteins contain a signi - cant 

amount of secondary structure but maintain a exible fold and a low GTPase activity. As 

opposed to other UreGs, secondary structure is lost at high temperatures (68 and 75 °C, 

respectively) with an apparent two-state mechanism. Both proteins bind Zn(II) and Ni(II), 
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with af nities two 1 orders of magnitude higher for Zn(II) than for Ni(II). No major modi 

cations of the average conformational ensem- ble are observed, but binding of Zn(II) yields a 

more com- pact dimeric form in MsUreG.  

Keywords Intrinsically disordered enzyme · UreG · Urease · Metal binding · Archaea thermophiles  
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ABSTRACT  

Antibiotic resistance has emerged as a major global threat to human health. Among the 

strategies em- ployed by pathogens to acquire resistance the use of metallo-β-lactamases 
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(MBLs), a family of dinuclear metalloenzymes, is among the most potent. MBLs are 

subdivided into three groups (i.e. B1, B2 and B3) with most of the virulence factors belonging 

to the B1 group. The recent discovery of AIM-1, a B3-type MBL, however, has illustrated the 

potential health threat of this group of MBLs. Here, we employed a bioinformatics approach 

to identify and characterize novel B3-type MBLs from Novosphingobium pentaro- mativorans 

and Simiduia agarivorans. These enzymes may not yet pose a direct risk to human health, but 

their structures and function may provide important insight into the design and synthesis of a 

still elusive universal MBL inhibitor.  

Keywords: Antibiotic Resistance; β-Lactam Antibiotics; Metallo-β-Lactamases; Sequence 

Homology; Novosphingobium Pentaromativorans; Simiduia Agarivorans  
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Abstract  

Antibiotic resistance is one of the most significant challenges facing global healthcare. Since 

the 1940s, antibiotics have been used to fight infections, initially with penicillin and 

subsequently with various derivatives including cephalosporins, carbapenams and 

monobactams. A common characteristic of these antibiotics is the four-membered β-lactam 

ring. Alarmingly, in recent years an increasing number of bacteria have become resistant to 

these antibiotics. A major strategy em- ployed by these pathogens is to use Zn(II)-dependent 

enzymes, the metallo-β-lactamases (MBLs), which hydrolyse the β-lactam ring. Clinically 

useful MBL inhibitors are not yet available. Conse- quently, MBLs remain a major threat to 

human health. In this review biochemical properties of MBLs are discussed, focusing in 

particular on the interactions between the enzymes and the func- tionally essential metal ions. 

The precise role(s) of these metal ions is still debated and may differ between different MBLs. 

However, since they are required for catalysis, their binding site may present an alternative 

target for inhibitor design.  

Keywords  

Antibiotic Resistance, β-Lactam Antibiotics, Metallo-β-Lactamases, Reaction Mechanism, Metal 

Ion Binding  
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Abstract  

At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of 

catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved 

in catalysis), the presence of two (or more) closely spaced metal ions gives an additional 

advantage in terms of (i) charge delocalisation, (ii) smaller activation bar- riers, (iii) the 

ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) 

decreased transition-state energies. Among this group of proteins, enzymes that catalyze the 

hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. 

These enzymes are involved in a multitude of biological functions, and an increasing number 

of them gain attention for translational research in medicine and biotechnology. Their 

functional versatility and catalytic proficiency are largely due to the presence of metal ions in 

their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of 

several closely related enzymes with a view to highlighting the functional diversity bestowed 

upon them by their metal ion cofactors.  
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Abstract Metallo-β-lactamases (MBLs) are a family of Zn(II)-dependent enzymes that 

inactivate most of the com- monly used β-lactam antibiotics. They have emerged as a major 

threat to global healthcare. Recently, we identi ed two novel MBL-like proteins, Maynooth 

IMipenemase-1 (MIM-1) and Maynooth IMipenemase-2 (MIM-2), in the marine organisms 

Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Here, we dem- 

onstrate that MIM-1 and MIM-2 have catalytic activities comparable to those of known 

MBLs, but from the pH dependence of their catalytic parameters it is evident that both 

enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 

acidic conditions. Both enzymes require Zn(II) but activity can also be recon- stituted with 

other metal ions including Co(II), Mn(II), Cu(II) and Ca(II). Importantly, the substrate 

preference of MIM-1 and MIM-2 appears to be in uenced by their metal ion composition. 

Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise 

biologi- cal role(s) of MIM-1 and MIM-2 remains to be established. However, due to the 

similarity of at least some of their in vitro functional properties to those of known MBLs, 

MIM-1 and MIM-2 may provide essential structural insight that may guide the design of as of 

yet elusive clinically use- ful MBL inhibitors.  
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Electronic supplementary material The online version of this article (doi:10.1007/s00775-015-
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Functional promiscuity  

Abstract MIM-1 and MIM-2 are two recently identified metallo-β-lactamases (MBLs) from 

Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Since these 

organisms are non-pathogenic we specu- lated that the biological role(s) of MIM-1 and MIM-

2 may not be related to their MBL activity. Although both se- quence comparison and 

homology modeling indicate that these proteins are homologous to well-known MBLs such as 

AIM-1, the sequence analysis also indicated that MIM-1 and MIM-2 share similarities with N-

acyl homoserine lactonases (AHLases) and glyoxalase II (GLX-II). Steady-state kinetic assays 

using a series of lactone substrates confirm that MIM-1 and MIM-2 are efficient lactonases, 

with catalytic efficiencies resembling those of well-known AHLases. Interestingly, unlike their 
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MBL activity the AHLase activity of MIM-1 and MIM-2 is not dependent on the metal ion 

composition with Zn(II), Co(II), Cu(II), Mn(II) and Ca(II) all being able to reconstitute 

catalytic activity (with Co(II) being the most efficient). However, these enzymes do not turn 

over S-lactoylglutathione, a substrate characteristic for GLX-II activity. Since lactonase 

activity is linked to the process of quorum sensing the bifunctional activity of “non-

pathogenic” MBLs such as MIM-1 and MIM-2 may provide insight into one possible 

evolutionary pathway for the emergence of antibiotic resistance.  
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ABSTRACT  

Metallo-β-lactamases (MBLs) are a family of Zn
2+

- dependent enzymes that have contributed 

strongly to the emergence and spread of antibiotic resistance. Novel members as well as 

variants of existing mem- bers of this family are discovered continuously, com- pounding their 

threat to global health care. MBLs are divided into three subgroups, i.e. B1, B2 and B3. The 

recent discovery of an unusual MBL from Serratia proteamaculans (SPR-1) suggests the 

presence of an additional subgroup, i.e. B4. A database search re- veals that SPR-1 has only 

one homologue from Cro- nobacter sakazakii, CSA-1.These two MBLs have a unique active 

site and may employ a mechanism dis- tinct from other MBLs, but reminiscent of some or- 

ganophosphate-degrading hydrolases.  

KEYWORDS  

Antibiotic Resistance; β-Lactam Antibiotics; Metallo-β-Lactamases; Sequence Homology; 

Serratia proteamaculans; Cronobacter sakazakii  
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