
Accepted Manuscript

The effect of stimulus strength on binocular rivalry rate in healthy
individuals: Implications for genetic, clinical and individual
differences studies

Phillip C.F. Law, Steven M. Miller, Trung T. Ngo

PII: S0031-9384(17)30271-8
DOI: doi: 10.1016/j.physbeh.2017.08.023
Reference: PHB 11898

To appear in: Physiology & Behavior

Received date: 1 June 2017
Revised date: 15 August 2017
Accepted date: 26 August 2017

Please cite this article as: Phillip C.F. Law, Steven M. Miller, Trung T. Ngo , The effect of
stimulus strength on binocular rivalry rate in healthy individuals: Implications for genetic,
clinical and individual differences studies. The address for the corresponding author was
captured as affiliation for all authors. Please check if appropriate. Phb(2017), doi: 10.1016/
j.physbeh.2017.08.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/86631502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physbeh.2017.08.023
http://dx.doi.org/10.1016/j.physbeh.2017.08.023
http://dx.doi.org/10.1016/j.physbeh.2017.08.023


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

The effect of stimulus strength on binocular rivalry rate in healthy individuals: Implications 

for genetic, clinical and individual differences studies 

 

Phillip C. F. Lawa*, Steven M. Millera,b, and Trung T. Ngoa,c  

 

a Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and 

The Alfred Hospital, Melbourne, Australia. 

b School of Psychological Sciences, Monash University, Melbourne, Australia. 

c Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 

Australia; Mater Research Institute-UQ, Neurosciences & Cognitive Health Program, Faculty 

of Medicine, University of Queensland, Brisbane, Australia.   

 

*Corresponding author: 

Phillip C. F. Law, Level 4, 607 St Kilda Road, Melbourne, VIC 3004, Australia. 

Email: Phillip.Law@monash.edu 

 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Abstract 

Binocular rivalry (BR) occurs when conflicting images concurrently presented to 

corresponding retinal locations of each eye stochastically alternate in perception. Anomalies 

of BR rate have been examined in a range of clinical psychiatric conditions. In particular, 

slow BR rate has been proposed as an endophenotype for bipolar disorder (BD) to improve 

power in large-scale genome-wide association studies. Examining the validity of BR rate as a 

BD endophenotype however requires large-scale datasets (n=1,000s to 10,000s), a 

standardized testing protocol, and optimization of stimulus parameters to maximize 

separation between BD and healthy groups. Such requirements are indeed relevant to all 

clinical psychiatric BR studies. Here we address the issue of stimulus optimization by 

examining the effect of stimulus parameter variation on BR rate and mixed-percept duration 

(MPD) in healthy individuals. We aimed to identify the stimulus parameters that induced the 

fastest BR rates with the least MPD. Employing a repeated-measures within-subjects design, 

40 healthy adults completed four BR tasks using orthogonally drifting grating stimuli that 

varied in drift speed and aperture size. Pairwise comparisons were performed to determine 

modulation of BR rate and MPD by these stimulus parameters, and individual variation of 

such modulation was also assessed. From amongst the stimulus parameters examined, we 

found that 8 cycles/s drift speed in a 1.5° aperture induced the fastest BR rate without 

increasing MPD, but that BR rate with this stimulus configuration was not substantially 

different to BR rate with stimulus parameters we have used in previous studies (i.e., 4 

cycles/s drift speed in a 1.5° aperture). In addition to contributing to stimulus optimization 

issues, the findings have implications for Levelt’s Proposition IV of binocular rivalry 

dynamics and individual differences in such dynamics. 
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1.  Introduction 

Binocular rivalry (BR) is an intriguing visual phenomenon in which conflicting images 

presented to each eye are perceived in alternation rather than being superimposed. For 

example, simultaneously presenting a vertical grating to one eye, and a horizontal grating to 

the other eye, induces perception of the vertical grating for a few seconds, followed by 

perception of the horizontal grating for a few seconds, and so on (Figure 1). BR and other 

perceptual rivalry types such as ambiguous figures have previously been examined, 

particularly with respect to alternation rate, in the context of clinical psychiatric disorders 

from the early to mid-20th Century (e.g., Cameron, 1936; D’Agata & Gaffuri, 1968; Ewen, 

1931; Eysenck, 1952; Fox, 1965; Friedman, 1964; Hunt & Guilford, 1933; McDougall, 1926; 

Nemor, 1953; Sappenfield & Ripke, 1961). The modern clinical focus on BR emerged with 

reports from Australia that BR rate was slow in the heritable psychiatric condition, bipolar 

disorder (BD), relative to healthy individuals (e.g., Miller et al., 2003; Pettigrew & Miller, 

1998) — a finding that has since been independently replicated in populations from Japan 

(Nagamine et al., 2009), New Zealand (Vierck et al., 2013) and China (Zhu et al., 2013).  

 

 

Figure 1. Binocular rivalry. Presenting dissimilar images simultaneously — such as 

rightward-drifting vertical gratings and downward-drifting horizontal gratings — one to each 

eye (i.e., dichoptic presentation), causes each image to stochastically alternate in perception. 

Mixed or piecemeal percepts (i.e., portions of both eyes’ presented images are simultaneously 
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visible) occur occasionally during the transition between perception of the presented images. 

Arrows adjacent to the presented stimuli denote the direction of grating drift. 

 

 Following Pettigrew and Miller’s (1998) original study on BD, other clinical 

psychiatric conditions have been examined including schizophrenia and major depression 

(Miller et al., 2003; Jia et al., 2015), autism spectrum conditions (Amador-Campos, Aznar-

Casanova, Ortiz-Guerra, Moreno-Sánchez, & Medina-Peña, 2015; Freyberg, Robertson, & 

Baron-Cohen, 2015; Karaminis, Lunghi, Neil, Burr, & Pellicano, 2017; Robertson, Kravitz, 

Freyberg, Baron-Cohen, & Baker, 2013; Robertson, Ratai, & Kanwisher, 2016; Said, Egan, 

Minshew, Behrmann, & Heeger, 2013), attention deficit hyperactivity disorder (Amador-

Campos, Aznar-Casanova, Moreno-Sánchez, Medina-Peña, & Ortiz-Guerra, 2013; Aznar 

Casanova, Amador Campos, Moreno Sánchez, & Supèr, 2013), and generalized social 

anxiety disorder (Anderson et al., 2013). Although others have attempted to use the same 

testing protocol as that of Pettigrew and Miller (1998; e.g., Vierck et al., 2013) so that data 

may be directly compared between clinical studies, other researchers have employed different 

test protocols (e.g., shorter viewing durations, different stimulus characteristics, different 

response options), making comparisons difficult. Such issues become particularly relevant 

when considering potential applications of BR findings in genetic studies of clinical 

psychiatric disorders.  

Pettigrew and Miller (1998) and Miller et al. (2003) demonstrated high sensitivity and 

reliability of the BR rate trait in BD. This earlier work was followed by a large twin study 

demonstrating high heritability of the trait and confirming its high reliability (Miller et al., 

2010; see also Shannon, Patrick, Jiang, Bernat, & He, 2011). This heritability study supported 

the original proposal (Pettigrew & Miller, 1998) that slow BR could be used as an 

endophenotype for BD (reviewed in Ngo, Mitchell, Martin, & Miller, 2011; Ngo, Barsdell, 
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Law, & Miller, 2013). Endophenotypes — or intermediate phenotypes — can enhance power 

in gene-finding studies of complex psychiatric diseases by using the relevant quantitative trait 

to classify a genotype as affected rather than manifestation of the clinical disorder (see 

Gottesman & Gould, 2003; Gould & Gottesman, 2006; Hasler, Drevets, Gould, Gottesman, & 

Manji, 2006; Kendler & Neale, 2010). However, such application requires large-scale studies 

of thousands to tens of thousands (see Flint & Munafò, 2007; Hong & Park, 2012; Klein, 

2007; Martin, Eaves, Kearsey, & Davies, 1978; Wray et al., 2014). Elsewhere we have 

discussed prospects for an online platform of BR testing to address these large sample-size 

requirements (Law et al., 2013). Such a platform not only facilitates the collection of very 

large sample-sizes, but also enables the prospect of standardized BR testing across clinical 

conditions and research centres, for purposes of direct comparison between clinical studies.  

For any such endeavor striving for large-scale, standardized BR testing in clinical 

conditions, the optimal stimulus parameters also require examination. Changing stimulus 

parameters can change the signal strength of the stimulus or its stimulus strength, which can 

in turn modulate BR rate. For example, higher contrast, faster drift speed, and brighter 

luminance are all considered to induce greater stimulus strength (see below). However, the 

sensitivity function of stimulus-strength rate modulations is not always monotonic (e.g., 

Kitterle & Thomas, 1980). In the study by Pettigrew and Miller (1998), a high-strength 

stimulus (i.e., orthogonally drifting gratings of high spatial frequency; 8 cycles/°) induced 

significantly slower BR rate in a group of euthymic subjects with BD relative to healthy 

controls, with wide group separation. The finding was independently replicated using the 

same high-strength stimulus (Vierck et al., 2013) and using an intermediate-strength stimulus 

(Nagamine et al., 2009). Following Pettigrew and Miller’s (1998) original study, a 

subsequent study by Miller et al. (2003) using a low-strength stimulus (i.e., stationary 

gratings of lower spatial frequency; 4 cycles/°) also demonstrated significantly slower BR 
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rate in BD than in healthy individuals, though with less evident group separation. Comparing 

the data in these two studies (i.e., Miller et al., 2003; Pettigrew & Miller, 1998) suggested 

that the greater group separation in the earlier study may have been due to the high-strength 

stimuli producing a faster average BR rate in healthy individuals, while BD subjects 

remained robustly slow whether viewing high- or low-strength stimuli. On this interpretation, 

BD subjects would be relatively insensitive to stimulus-related BR rate modulation compared 

with healthy individuals (discussed in Miller et al., 2003; see also Ngo et al., 2011), and 

therefore viewing of higher-strength stimuli should maximize group separation. However, 

this comparison between the data of Miller et al. (2003) and Pettigrew and Miller (1998) is 

limited by the fact that control subjects were different between the two studies, as were the 

BD subjects. What is needed to directly assess the hypothesis that individuals with BD have 

robustly slow BR rates (i.e., relatively insensitive to stimulus-related BR rate modulation) is 

varying stimulus strength in the same BD and control subjects (i.e., a within-subject design).  

Here we report a within-subject study in healthy individuals that aims to determine 

whether viewing higher-strength stimuli — using grating drift speed as the stimulus strength 

factor — can induce faster BR. The predominance of drifting gratings over stationary 

gratings increases with drift speed (Wade et al., 1984), suggesting that changing from 

stationary to drifting stimuli increases stimulus strength (in accordance with Levelt, 1965; see 

below). It is not clear, however, whether the sensitivity function for drift speed is non-

monotonic and whether gratings drifting at 4 cycles/s as used in previous studies (Miller et 

al., 2010; Pettigrew & Miller, 1998; Vierck et al., 2013) are the peak of such a non-

monotonic function. Hence 8 cycles/s gratings are also assessed in the current study to 

examine whether this particular drift speed drives BR rate faster than 4 cycles/s gratings, or 

whether the 4 cycles/s gratings represent a ceiling effect for BR rate. Here we report a 
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comparatively large within-subject BR dataset of healthy individuals (n=40) to directly assess 

and clarify the effect of stimulus strength on BR rate.  

The study protocol also enabled assessment of a secondary aim, i.e., the effect of 

stimulus size on mixed-percept duration (MPD). MPD is the total time spent perceiving 

mixed percepts in a given BR viewing period, and provides a measure of the degree of 

perceptual mixing between each eye’s presented image. BR rate is derived by dividing the 

total number of perceptual alternations by the total BR viewing period, excluding responses 

to mixed percepts. As such, reducing an individual’s total MPD provides more data on which 

to base the calculation of BR rate and thus improves accuracy of the BR rate measure. There 

have been reports that smaller BR stimuli between 0.5° and 2° of visual angle increase 

exclusive percept visibility (O’Shea, Sims, & Govan, 1997; see also Blake, O’Shea, & 

Mueller, 1992; Skerswetat, Formankiewicz, & Waugh, 2016), which corresponds to a shorter 

MPD. The current study thus aimed to examine whether reducing the size of a BR stimulus 

from 1.5° (Miller et al., 2003, 2010) to 1° or 0.5° of visual angle would produce a shorter 

MPD. We did not assess stimuli subtending larger than 1.5° so as to avoid inducing a longer 

MPD. Furthermore, because earlier studies examining the effect of stimulus size on exclusive 

visibility used only small samples (Blake et al., 1992; O’Shea et al., 1997; Skerswetat et al., 

2016; n=3 and 4 and 11, respectively), the current study employed a comparatively large 

dataset (n=40) to clarify the effect of stimulus size modulation on MPD. However, 

interpretation of these MPD data will require caution as the mixed-percept response option 

also included subjects’ erroneous responses (see Methods and Discussion). 

The current experiment is also relevant to the historical literature because stimulus-

related modulation of BR temporal dynamics has been a focus for rivalry researchers since 

Breese (1899; see also Wade & Ngo, 2013), and especially since the seminal four-proposition 

framework of BR dynamics by Levelt (1965). Recently reviewed in detail by Brascamp et al. 
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(2015), these propositions have mostly been examined experimentally by assessing contrast-

modulated dominance duration (i.e., the time a percept maintains exclusive dominance). Such 

experiments involve keeping constant the stimulus strength presented to one eye, while 

manipulating the stimulus strength presented to the other eye (see Levelt’s Proposition III 

discussed in Brascamp et al., 2015). Relevant to the current study, Levelt’s Proposition IV 

holds that increasing the stimulus strength matched between both eyes should induce a faster 

BR rate, and it has indeed been observed using dominance duration as the dependent variable 

and contrast as the stimulus strength factor (e.g., Alexander & Bricker, 1952; Breese, 1899, 

1909; Platonov & Goossens, 2013; van Ee, 2009). Moreover, two earlier reports indicated 

that increasing stimulus strength matched between both eyes up to a certain level — where 

spatial frequency was the stimulus strength factor — produced more BR alternations in a 

given observation period, but the number of alternations decreased beyond that level (Kitterle 

& Thomas, 1980; O’Shea, Parker, & Alais, 2009). There has also been mention in the 

literature, based only on unanalysed data and limited pilot observations, of greater stimulus 

strength (using drift speed) presented to both eyes inducing a faster BR rate (Norman, 

Norman, & Bilotta, 2000). Other than these pilot observations however, to our knowledge no 

study has yet properly examined Levelt’s Proposition IV using drift speed as the stimulus 

strength factor. The experimental protocol of the current study thus enabled direct testing of 

Levelt’s Proposition IV with this stimulus strength factor, albeit within a restricted range of 

drift speeds.  

Finally, compared with typical psychophysics experiments, the relatively large sample 

size in the current study enables, for the first time, assessment of individual differences in 

stimulus-related modulation of BR rate. Individual differences in psychophysical and visual 

functions have been a topic of resurgent interest and enable new means of probing genetic 

and environmental influences on sensory and perceptual systems, as well as neurobiological 
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and pathophysiological mechanisms underlying such influence (e.g., Cappe, Clarke, Mohr, & 

Herzog, 2014; Grzeczkowski, Clarke, Fancis, Mast, & Herzog, 2017; Kanai, Bahrami, & 

Rees, 2010; Kanai & Rees, 2011; Patel, Stuit, & Blake, 2015; Peterzell, 2016; van Loon, 

2013; Wexler, Duyck, & Mamassian, 2015).  

 

 

2.  Methods 

2.1  Participants 

Forty naïve healthy adults aged between 20 and 66 years (mean age=34.4 ± 12.7 years; 21 

males) with normal or corrected-to-normal vision (6/9 or better in both eyes) participated in 

the study. Written, informed consent was obtained in the presence of a witness prior to testing 

according to a protocol approved by the Alfred Human Research Ethics Committee and 

Monash University Human Research Ethics Committee. The research was conducted in 

accordance with the Declaration of Helsinki. Visual acuity was assessed with a Snellen chart 

from a distance of 3 m. Reduced visual acuity decreases an individual’s perceived contrast 

and spatial frequency of the stimulus and thus reduces BR rate (Fahle, 1982; see also Hollins, 

1980). Handedness was assessed using the Edinburgh Handedness Inventory (Oldfield, 

1971). All participants had their medical and psychiatric history screened using a brief 

questionnaire and the Mini International Neuropsychiatric Interview (Sheehan et al., 1998) to 

exclude individuals with a psychiatric disorder (e.g., BD, schizophrenia, major depressive 

disorder), neurological disorder (e.g., epilepsy), brain injury, or visual disorders (e.g., 

strabismus, amblyopia, color vision deficiency). Subjects were also screened to exclude 

individuals with first-degree relatives diagnosed with a psychiatric disorder.  

State, trait, and clinical ratings were examined along with psychometric measures 

prior to the testing session for all subjects. Trait and state anxiety were assessed with the 
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State-Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983; 

mean=33.50 ± 8.59 and 24.25 ± 8.44, respectively). Severity of depressive symptoms was 

assessed with the Montgomery-Åsberg Depression Rating Scale (MÅDRS; Montgomery & 

Åsberg, 1979; mean=1.48 ± 2.61). Subjective mood was assessed with a 10-point self-report 

visual analogue scale (1 = ‘the worst you have ever felt’ to 10 = ‘the best you have ever felt’; 

mean=7.45 ± 1.24).  

 

2.2  Study protocol 

Participants abstained from consuming caffeinated drinks, tobacco, and alcohol for 4 hours 

prior to testing given their known effects on BR rate (Bárány & Halldén, 1947; Donnelly & 

Miller, 1995; George, 1936; McDougall & Smith, 1920; Seedorff, 1956). All participants 

completed BR tasks under the supervision of an experimenter throughout the testing session 

to ensure task compliance (see section 2.3). The BR measures reported in the current study 

were obtained along with eye-movement task measures. The eye-movement tasks were 

completed separately and counterbalanced with the BR tasks across participants to avoid 

potential order effects. Analyses presented in the current study relate only to the BR data. The 

eye-movement data providing evidence for no relationship with BR rate are reported 

elsewhere (Law et al., 2015).  

 

2.3  Binocular rivalry task: Apparatus and experimental protocol 

BR stimuli were generated with custom software programmed using Psychtoolbox-3 

(Brainard, 1997; Pelli, 1997) in conjunction with MATLAB™ (MathWorks Inc., Natick, 

MA, USA). The specific square-wave stimuli were green rightward-drifting vertical and 

downward-drifting horizontal gratings. The stimuli had a spatial frequency of 5.33 cycles/°, 

were isoluminant between the two eyes, and were presented in a circular aperture on a black 
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background (stimulus contrast=0.99). Drift speed was either 4 or 8 cycles/s. The luminance 

of all stimuli (mean=4.8 cd/m2) and the background (0.35 cd/m2) was measured using a LS-

100 luminance meter (Konica Minolta Sensing Americas Inc., Ramsey, NJ, USA) through 

passive polarizer filters. The four BR stimulus conditions were: (i) 4 cycles/s drift speed in an 

aperture subtending 1.5°; (ii) 8 cycles/s drift speed in an aperture subtending 0.5°; (iii) 8 

cycles/s drift speed in an aperture subtending 1°; and (iv) 8 cycles/s drift speed in an aperture 

subtending 1.5°.  

Subjects were instructed to blink naturally and record what they observed passively 

(i.e., not to preferentially respond to any of the percepts or try to influence their perceptions). 

Subjects pressed one raised key (V) on a standard keyboard in response to the left eye’s 

presented image, and an adjacent raised key (B) in response to the right eye’s presented 

image. A third response option (spacebar) was used to indicate response error or the 

perception of either mixed (e.g., checkerboard or mosaic image) or unusual percepts (e.g., 

filled circle or double images). BR testing was conducted in a quiet, dimly illuminated room. 

BR behavioral data collection was run with custom software generated in MATLAB™ 

(MathWorks Inc., Natick, MA, USA) for Windows 7™ on the customized PC (see below).  

After familiarizing subjects with the BR task, the BR testing session comprised five 7-

min blocks (see Figure 2), each comprising four 100-s trials. The blocks were separated by 

110-s rest breaks and the trials 30-s rest breaks. The first few minutes of BR viewing have 

been characterized by increases in BR rate within individuals (Aafjes, Heuting, & Visser, 

1966; Cogan & Goldstein, 1972; Goldstein, 1968; Hodges & Fox, 1965; Hollins, 1980; 

Suzuki & Grabowecky, 2007). However, BR rates stabilize with longer BR viewing periods 

(Miller et al., 2003, 2010), yielding a more accurate measure of an individual’s BR rate. 

Therefore, the first block served to adequately stabilize BR rates for the remaining four test 

blocks and familiarize the subject with the task to diminish the effects of any response errors. 
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To avoid potential order effects, the four BR stimulus conditions were counterbalanced 

across four subgroups of subjects (n=10 each). Each subgroup was run on a different BR 

stimulus condition for Blocks 1–2. For Blocks 3–5, participants within each subgroup 

completed the remaining (respective) three BR stimulus conditions, which were 

counterbalanced across participants within the subgroup. Therefore, each of the 40 

participants completed all four BR stimulus conditions.  

 

 

Figure 2. Binocular rivalry testing protocol. Each block comprised 7 min of rivalry viewing 

across four 100-s trials, with rest breaks interspersed between the blocks and trials (2 min and 

30s, respectively). Each of the 40 subjects completed all four stimulus conditions (grey 

blocks). Four subgroups (n=10) were each run on a different stimulus condition in blocks 1–

2, followed by the remaining (respective) three stimulus conditions in test blocks 3–5 in 

counterbalanced order across subjects within each subgroup. Therefore, each of the 40 

participants completed all four BR stimulus conditions. 

 

All BR stimuli were dichoptically presented on a specialized 19-inch dual-screen 

liquid crystal display monitor (True3Di™; Sharper Technology Inc., Palo Alto, CA, USA; 

60Hz frame rate, 1,280×1,024 pixel resolution). Each screen was directly behind one of two 

linear polarizers oriented at right angles to each other, and a half-silvered mirror (beam-

combiner) oriented at a 45˚ angle was between the polarizers. To induce BR, conflicting 

images of a BR stimulus were independently and simultaneously presented at corresponding 
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central positions on separate screens that projected each image in orthogonal planes (angles) 

of polarization. One image is transmitted through the half-silvered mirror while the adjacent 

image is reflected off the mirror, resulting in an interleaved (superimposed) stimulus of two 

orthogonally polarized images when naturally viewed (see Law et al., 2013). Subjects viewed 

the polarized stimulus through passive linear polarizer filters at eye level from a distance of 3 

m, resulting in the presentation of conflicting images to corresponding retinal locations of 

both eyes. Each polarizer filter was tuned to a distinct plane of polarization that enabled the 

exclusive presentation of one image to one eye while blocking its presentation to the other 

eye. The result is that simultaneously, the left eye always viewed vertical gratings and the 

right eye always viewed horizontal gratings. The True3Di™ monitor used to present BR 

stimuli was connected to a customized PC (Vostro 460 mini-tower; Dell Inc., Round Rock, 

TX, USA). This PC was fitted with a Gigabyte™ ATI Radeon HD 6850 video card, 8GB 

RAM, and Cooler Master™ eXtreme Power Plus 700W power supply unit. These 

modifications were to enable adequate processing capacity by the PC as it was concurrently 

connected to both the True3Di™ monitor for BR stimuli presentation and a 24-inch single-

screen liquid crystal display monitor (P2412H; Dell Inc., Round Rock, TX, USA; 60Hz 

frame rate, 1,280×1,024 pixel resolution) for displaying the trial-based BR data collection 

protocol. 

The passive linear polarizer method for dichoptic viewing has negligible crosstalk 

and, when viewed with the head in neutral position, there is minimal ghosting (i.e., the 

subjective perceptual consequence of crosstalk, whereby there is faint perception in one eye 

of the other eye’s intended image; see Law et al., 2013). To ensure BR viewing was not 

influenced by the effects of ghosting, subjects were instructed to (i) not tilt or rotate their 

head, and (ii) view the BR stimulus through the centre of the polarizer filters.  
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2.4  Data analysis 

Analysis of participants’ BR data employed custom software developed in MATLAB™ 

(MathWorks Inc., Natick, MA, USA). BR rate was calculated by dividing the total number of 

perceptual alternations by the total time of BR viewing (expressed in Hz), excluding mixed or 

unusual percepts and erroneous responses (i.e., incorrectly pressed key responses) which 

were indicated by pressing the spacebar. Along with BR rate, MPD was assessed, however 

MPD is only an approximation of the total time spent perceiving mixed percepts because the 

spacebar response was also used to indicate response error and unusual percepts. Pressing of 

the spacebar not only initiated onset of a recorded MPD interval, it was also designated by 

the data analysis program to disregard the immediately previous recorded response to a 

perceived image (in case the spacebar had been pressed to indicate a previously erroneous 

response). Notwithstanding the necessary cautious interpretation due to the conflation of 

MPD with response errors, in a given observation period, a relatively short MPD corresponds 

to a relatively greater amount of data being collected for calculating BR rate, thus reflecting a 

more representative and accurate measure of an individual’s true BR rate.  

Predominance is the prevailing dominance of one image over the other in a given 

observation period, and was calculated by dividing the total time spent perceiving the vertical 

grating by the total time spent perceiving the horizontal grating (in seconds). The resulting 

ratio value was log-transformed (PRlog) to account for the disproportionate numerical 

representation in predominance (i.e., any value >1 for one image cf. values between 0 and 1 

for the other image). As such, where there is no perceptual predominance, PRlog equals zero, 

whereas PRlog values less than zero or greater than zero indicate a perceptual predilection 

towards the horizontal grating or vertical grating, respectively. Individuals’ BR rate, total 

MPD, and PRlog were calculated for each trial. For each individual, the mean BR rate, total 

MPD, and mean PRlog were calculated for all trials. The stabilization block was excluded 
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from analysis. Statistical analyses were performed with PASW Statistics 17 and R (version 

3.2.5; R Core Team, 2016). 

 

3.  Results 

3.1  Stimulus-strength modulation of binocular rivalry rate  

BR rate was compared between the stimulus conditions to examine stimulus-strength 

modulation effects. Normality was violated for the distributions of BR rate (Shapiro-Wilk 

test; p<0.05). A Friedman test with BR rate as the dependent variable and stimulus conditions 

as the independent variable showed a significant difference in BR rate across the stimulus 

conditions (p=3.40×10-10). Pairwise comparisons showed that BR rate for a 1.5° aperture 

stimulus was significantly faster at 8 cycles/s than at 4 cycles/s (p=3.43×10-3; Bonferroni‐

adjusted α: 0.05/6 Wilcoxon signed rank tests=8.33×10-3; see Table 1 and Figure 3a). In 

contrast, BR rate for a 0.5° stimulus was significantly slower compared with 1° and 1.5° 

stimuli drifting at 8 cycles/s (p=3.70×10-6), and compared with a 1.5° stimulus drifting at 4 

cycles/s (p=1.32×10-5). There was no significant difference in BR rate between a 1° aperture 

stimulus drifting at 8 cycles/s and a 1.5° stimulus drifting at 4 or 8 cycles/s (p≥5.91×10-2). 

The results for these comparisons remained non-significant at a less conservative α of 0.05. 

 

Table 1.  

Binocular rivalry (BR) rate, mixed-percept duration (MPD) and log-transformed 

predominance ratio (PRlog) for all stimulus conditions. 

 Median ± MAD 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

BR rate (Hz) 0.47 ± 0.12 0.40 ± 0.11 0.48 ± 0.11 0.52 ± 0.10 

MPD (s) 62.81 ± 41.17 110.17 ± 49.61 71.37 ± 33.46 60.23 ± 35.41 

PRlog  0.09 ± 0.12 0.11 ± 0.13 0.02 ± 0.16 0.09 ± 0.17 

 Mean ± SD 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 
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BR rate (Hz) 0.53 ± 0.22 0.43 ± 0.16 0.54 ± 0.23 0.57 ± 0.24 

MPD (s) 72.12 ± 53.09 123.05 ± 72.59 87.03 ± 73.98 74.34 ± 69.35 

PRlog  0.08 ± 0.23 0.14 ± 0.45 0.01 ± 0.31 0.13 ± 0.28 

c/s: cycles/second. °: degrees. MAD: median absolute deviation. SD: standard deviation. Hz: hertz.  

s: seconds. 
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Figure 3. Column scatter plots showing (a) binocular rivalry (BR) rate and (b) mixed-percept 

duration (MPD) for the four stimulus conditions. Each solid black dot on the scatter plots 

represents an individual data point within the respective stimulus condition. Dashed 

horizontal lines denote the group median value (in accordance with non-parametric statistics) 

with the numerical value shown above each line. Horizontal brackets above a pair of column 

scatter plots denote a significant statistical difference between the two stimulus conditions for 

the corresponding BR measure, p<8.33×10-3 (Bonferroni-adjusted α of 0.05/6 Wilcoxon 

signed rank tests). * denotes a significant statistical difference between a particular stimulus 

condition and all the other stimulus conditions in the respective scatter plot, p<8.33×10-3 

(Bonferroni-adjusted α of 0.05/6 Wilcoxon signed rank tests). s: seconds. c/s: cycles/second. 

Stimuli drifting at 8 c/s in a 1.5° aperture produced the fastest BR rate and the shortest MPD 

(see Discussion).  

 

3.2  Individual variation in stimulus-strength modulation of binocular rivalry rate 

To examine the individual variation in stimulus-strength modulation of BR rate, an 

individual’s ratio of BR rates (r-BR) was calculated by dividing BR rate for 8 cycles/s by that 

for 4 cycles/s (in a 1.5° aperture). The resulting value was log-transformed (r-BRlog) to 

account for the disproportionate numerical representation in BR rate, i.e., any value >1 for 

one direction of stimulus-strength modulation whereas values are between 0 and 1 for the 

other direction. As such, where there is no stimulus-strength modulation of an individual’s 

BR rate, r-BRlog equals zero, whereas r-BRlog less than zero or greater than zero indicates a 

slower or faster BR rate with faster drift speed, respectively. Increasing drift speed from 4 to 

8 cycles/s in a 1.5° aperture was found to induce a faster BR rate in a majority of individuals 

(70% r-BRlog > 0; see Figure 4). However, it is also evident that several individuals showed 
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exactly the reverse effect of a slower BR rate as drift speed increased (27.5% r-BRlog < 0), 

while one individual showed no modulation of BR rate (r-BRlog = 0). 

 

 

Figure 4. Individual variation in stimulus-strength modulation of binocular rivalry (BR) rate. 

The log-transformed ratio of BR rates (r-BRlog) is indicated on the ordinate (y axis), with each 

data point of r-BRlog presented in ascending order on the abscissa (x axis). r-BRlog is 

calculated by dividing BR rate for 8 cycles/s by that for 4 cycles/s (in a 1.5° aperture 

stimulus) and log-transforming the resulting ratio value. A r-BRlog value of zero denotes no 

stimulus-strength modulation of BR rate, whereas r-BRlog values less than zero or greater 

than zero denote a slower or faster BR rate with greater stimulus strength, respectively. 

Increasing stimulus strength, through increasing the drift speed from 4 to 8 cycles/s in a 1.5° 

aperture stimulus, produced a faster BR rate (i.e., a r-BRlog>0; Levelt’s Proposition IV) in a 

majority of healthy individuals (n=28 or 70%). However, several individuals (n=11 or 27.5%) 
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exhibited a reverse effect, i.e., a slower BR rate as drift speed increased (i.e., r-BRlog<0), and 

one individual showed no modulation of BR rate (r-BRlog=0). 

 

3.3  Covariance of binocular rivalry rate between stimuli 

Spearman’s ρ correlations were performed to assess the similarity (or covariance) of 

individuals’ BR rates between all stimulus conditions. There was a pattern of significant, high 

positive correlations in BR rate between all stimulus conditions (ρ=0.79–0.91, p≤1.04×10-9, 

one-tailed; Bonferroni‐adjusted α: 0.05/6 Spearman’s ρ tests=8.33×10-3) — indicating that 

individuals’ BR rates strongly covaried across the stimulus conditions. In addition, a 

significant high intraclass correlation indicated low variance (or high clustering) in BR rate 

within each stimulus condition (r=0.95, p=8.70×10-37; average measures, two-way mixed 

model). These findings indicate that the observed differences in BR rate between the stimulus 

conditions can be attributed to the manipulation of stimulus strength factors.  

 

3.4  Stimulus-strength modulation of mixed-percept duration 

MPD was compared between the stimulus conditions to examine stimulus-strength 

modulation effects on this BR measure. Normality was violated for the distributions of MPD 

(Shapiro-Wilk test; p<0.05). A Friedman test with MPD as the dependent variable and 

stimulus conditions as the independent variable showed a significant difference in MPD 

across the stimulus conditions (p=8.61×10-6). Pairwise comparisons showed that MPD for an 

8 cycles/s stimulus was significantly shorter in a 1.5° than a 1° aperture (p=4.23×10-3; 

Bonferroni‐adjusted α: 0.05/6 Wilcoxon signed rank tests=8.33×10-3; see Table 1 and Figure 

3b). MPD for the 8 cycles/s 0.5° stimulus was also significantly longer compared with all 

other stimuli (p≤1.87×10-4). However, there was no significant difference in MPD between 
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the 4 cycles/s 1.5° stimulus and 8 cycles/s stimulus in a 1° or 1.5° aperture (p≥0.28). These 

comparative results remained non-significant at a less conservative α of 0.05.  

 

3.5  Covariance of mixed-percept duration between stimuli 

Spearman’s ρ correlations were performed to assess the covariance of individuals’ MPDs 

between all stimulus conditions. There was a pattern of significant, moderate-to-high positive 

correlations in MPD between all stimulus conditions (ρ=0.51–0.91, p≤3.87×10-4, one-tailed; 

Bonferroni‐adjusted α: 0.05/6 Spearman’s ρ tests=8.33×10-3). This result indicates that 

individuals’ MPDs moderately to strongly covaried across these stimulus conditions, except 

between the 8 cycles/s 0.5° and 4 cycles/s 1.5° stimuli (p=1.44×10-2, one-tailed). In addition, 

a significant high intraclass correlation indicated low variance (or high clustering) in MPD 

within each stimulus condition (r=0.89, p=1.26×10-21; average measures, two-way mixed 

model). These findings indicate that the observed differences in MPD between the stimulus 

conditions may be attributed to differences in stimulus parameters, however the findings need 

to be interpreted with caution due to conflation of the MPD response option with reporting of 

errors. 

 

3.6  Predominance 

PRlog was compared between the stimulus conditions to examine stimulus-strength 

modulation effects. Normality was violated for the distributions of PRlog (Shapiro-Wilk test; 

p<0.05). A Friedman test with PRlog as the dependent variable and stimulus conditions as the 

independent variable showed no significant difference in PRlog across the stimulus conditions 

(p=0.31). A one-sample Wilcoxon signed rank test was performed on PRlog for each stimulus 

condition to assess the perceptual predilection towards one or the other image. PRlog was 

significantly greater than zero indicating perceptual bias towards the vertical grating for the 8 
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cycles/s 0.5° stimulus (p=5.97×10-3; Bonferroni-adjusted α: 0.05/4 Wilcoxon signed rank 

tests=1.25×10-2), but not for the remaining stimuli (p≤1.55×10-2).  

 Spearman’s ρ correlations were performed to assess the covariance of individuals’ 

PRlog between all stimulus conditions. There was a pattern of significant, moderate 

correlations in PRlog between all stimulus conditions (ρ=0.38–0.66, p≤7.32×10-3, one-tailed; 

Bonferroni‐adjusted α: 0.05/6 Spearman’s ρ tests=8.33×10-3). This result indicates that 

individuals’ PRlog moderately to strongly covaried across the stimulus conditions, except 

between the 8 cycles/s 0.5° and 4 cycles/s 1.5° stimuli (p=0.11, one-tailed). In addition, a 

significant moderate intraclass correlation indicated low variance (or high clustering) in PRlog 

within each stimulus condition (r=0.69, p=1.08×10-6; average measures, two-way mixed 

model). These findings indicate that individuals’ PRlog values were homogeneously clustered 

across the stimulus conditions. 

 

3.7  Association between binocular rivalry measures, psychometric measures and age  

Spearman’s ρ correlations were performed between BR rate, MPD and PRlog for each 

stimulus condition, to examine the relationship between these measures. No significant 

correlation was found between BR rate and either MPD or PRlog across all stimulus 

conditions (p≥0.30, two-tailed; Bonferroni‐adjusted α: 0.05/4 Spearman’s ρ tests=1.25×10-2; 

see Table 2). However, there was a significant, moderate positive correlation between MPD 

and PRlog for the 4 cycles/s 1.5° stimulus (ρ=0.42; p=6.68×10-3), but not for the remaining 

stimuli (p≥0.35). 

The association between each BR measure, psychometric measures and age was 

assessed to examine the relationship between BR and subject factors. Spearman’s ρ 

correlations were performed for age and each of the four psychometric measures (i.e., STAI-

state, STAI-trait, MÅDRS, subjective mood rating) to assess their association with BR rate, 
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MPD and PRlog. No significant correlation was found between age or any psychometric 

measure with (i) BR rate (p≥2.94×10-2, one-tailed; two-tailed for subjective mood; 

Bonferroni‐adjusted α: 0.05/20 Spearman’s ρ tests=2.50×10-3; see Table 3), (ii) MPD 

(p≥0.16, two-tailed) and (iii) PRlog (p≥0.10, two-tailed). At a less conservative α of 0.05, 

significant modest correlations were found between BR rate and age, STAI-trait and MÅDRS 

scores for select stimulus conditions (p≤4.77×10-2). 

 

Table 2.  

Spearman’s ρ between binocular rivalry (BR) rate, mixed-percept duration (MPD), and log-

transformed predominance ratio (PRlog) for all stimulus conditions. 

  BR rate 

 

 
4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ p ρ p ρ p ρ p 

MPD 

4 c/s 1.5° aperture  0.17 0.30  0.10 0.54  0.13 0.43  0.14 0.40 

8 c/s 0.5° aperture -0.01 0.95  0.06 0.72  0.01 0.97 -0.03 0.86 

8 c/s 1° aperture  0.18 0.27  0.08 0.61  0.06 0.69  0.08 0.62 

8 c/s 1.5° aperture  0.21 0.20  0.16 0.33  0.14 0.38  0.16 0.34 

PRlog 

 

4 c/s 1.5° aperture  0.16 0.31  0.10 0.55  0.25 0.13  0.13 0.42 

8 c/s 0.5° aperture -0.16 0.32 -0.16 0.34 -0.13 0.43 -0.21 0.20 

8 c/s 1° aperture -0.03 0.84  0.04 0.82  0.12 0.47  0.06 0.70 

8 c/s 1.5° aperture -0.06 0.71 -0.13 0.42  0.00 0.99  0.06 0.71 

  MPD 

  
 

4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ p ρ p ρ p ρ p 

PRlog 

 

4 c/s 1.5° aperture 0.42 6.68×10
-3
  0.03 0.86  0.39 1.27×10

-2
 0.35 2.68×10

-2
 

8 c/s 0.5° aperture 0.09 0.60 -0.15 0.35 -0.12 0.47 -0.05 0.79 

8 c/s 1° aperture 0.26 0.10 -0.14 0.38 -0.01 0.97  0.13 0.42 

8 c/s 1.5° aperture 0.23 0.16 -0.26 0.11  0.15 0.37  0.11 0.51 

c/s: cycles/second. °: degrees. ρ: Spearman’s ρ. p: p value (two-tailed).  
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Table 3.  

Spearman’s ρ between binocular rivalry (BR) rate, mixed-percept duration (MPD) and log-

transformed predominance ratio (PRlog) for age and psychometric measures across all 

stimulus conditions. 

 
BR rate 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ P ρ p ρ p ρ p 

Age 
a
 -0.16 0.16 -0.25 5.96×10

-2
 -0.30 2.94×10

-2
 -0.30 3.25×10

-2
 

STAI-state 
a
 0.16 0.16 0.09 0.29 0.11 0.25 0.14 0.20 

STAI-trait 
a
 0.27 4.62×10

-2
 0.15 0.18 0.16 0.17 0.22 8.76×10

-2
 

MÅDRS 
a
 0.05 0.39 0.10 0.27 0.17 0.14 0.27 4.77×10

-2
 

Subjective mood  -0.06 0.70 0.05 0.75 -0.01 0.97 -0.02 0.90 

 
MPD 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ P ρ p ρ p ρ p 

Age -0.10 0.54 0.05 0.75 -0.05 0.78 -0.05 0.75 

STAI-state 0.10 0.54 0.01 0.95 0.07 0.68 0.17 0.29 

STAI-trait 0.20 0.22 0.03 0.87 0.09 0.58 0.23 0.16 

MÅDRS 0.03 0.87 0.09 0.58 0.05 0.78 0.07 0.66 

Subjective mood 0.08 0.63 -0.18 0.27 -0.10 0.55 0.01 0.95 

 
PRlog 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ P ρ p ρ p ρ p 

Age -0.08 0.64 0.10 0.54 -0.17 0.30 0.01 0.93 

STAI-state 0.19 0.25 -0.26 0.11 0.04 0.82 -0.15 0.34 

STAI-trait 0.20 0.22 -0.16 0.33 0.04 0.81 -0.14 0.38 

MÅDRS -0.09 0.60 -0.16 0.32 0.13 0.42 -0.05 0.76 

Subjective mood -0.15 0.37 0.27 0.10 0.18 0.28 0.19 0.24 

c/s: cycles/second. °: degrees. MPD: mixed percept duration. PRlog: log-transformed predominance ratio. 
STAI: State-Trait Anxiety Inventory. MÅDRS: Montgomery-Åsberg Depression Rating Scale. ρ: Spearman’s 
ρ. p: p value.

 a
 one‐tailed (two-tailed for all other measures).  

 

3.8  Power analysis 

Power analysis indicated that, assuming a power of 0.80 and a conservative Bonferroni‐

adjusted α of 8.33×10-3 (0.05/6 Wilcoxon signed rank tests; two-tailed), the current study’s 

sample size of 40 would be sufficient to detect a significant difference in BR rate, MPD and 

PRlog between stimulus conditions with a minimum true effect size of 0.60 (Gpower; Faul & 

Erfelder, 1992). Likewise, assuming a power of 0.80 and a conservative Bonferroni‐adjusted 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

α of 1.25×10-2 (0.05/4 Spearman’s ρ tests; two-tailed), the current study’s sample size of 40 

would be sufficient to detect a significant correlation between BR rate, MPD and PRlog with a 

minimum true effect size of 0.49. For age and psychometric measures, assuming a power of 

0.80 and a conservative Bonferroni‐adjusted α of 2.50×10-3 (0.05/20 Spearman’s ρ tests), the 

current study’s sample size of 40 would be sufficient to detect a significant correlation 

between BR rate and MPD/PRlog with a minimum true effect size of 0.52 (one-tailed) and 

0.55 (two-tailed), respectively. 

 

4.  Discussion 

The current study represents the largest BR dataset examining the effect of stimulus strength 

on BR rate, with drift speed as the stimulus strength factor. It is also the largest BR dataset to 

examine the effect of stimulus aperture size on MPD. Each individual’s BR rate and MPD 

was determined for different grating stimuli that varied in drift speed and aperture size. The 

current study found that viewing higher-strength stimuli in both eyes (i.e., 8 cycles/s drift 

speed in 1° or 1.5° aperture) induced a significantly faster BR rate. In addition, viewing 

larger stimuli (i.e., 1.5° aperture) drifting at either 4 or 8 cycles/s produced a relatively 

shorter total MPD, supporting the use of a 1.5° stimulus in generating a more accurate and 

representative measure of an individual’s BR rate. Overall, the findings indicate that of the 

stimuli assessed in this study, the 8 cycles/s 1.5° aperture stimulus induced the fastest and 

most accurate BR rate in healthy individuals.  

However, it is important to note that in the current study, the 4 cycles/s 1.5° aperture 

stimulus produced a mean BR rate of 0.53 Hz (i.e., a switch every 1.89 s, n=40, mean 

age=34.4 years). This finding is comparable to previous studies using this stimulus type in 

healthy adolescents (Miller et al., 2010; 0.54 Hz or a switch every 1.85 s, n=722, mean 

age=14.1 years) and healthy adults (Pettigrew & Miller, 1998; 0.60 Hz or a switch every 1.67 
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s, n=49, age range=19–55 years; Vierck et al., 2013; 0.53 Hz or a switch every 1.89 s, n=24, 

mean age=32.3 years). In the current study, the mean BR rate of the 8 cycles/s 1.5° stimulus 

(i.e., 0.57 Hz or a switch every 1.75 s), although significantly faster according to statistical 

analysis, is only marginally different from the rate for the 4 cycles/s 1.5° stimulus, and only 

marginally different from the rates for 4 cycles/s 1.5° stimuli used in previous studies (Miller 

et al., 2010; Pettigrew & Miller, 1998; Vierck et al., 2013). Although there are only small 

differences in BR rate between these high-strength drifting BR stimuli in the current study 

(i.e., 4 and 8 cycles/s), and the high-strength drifting BR stimuli in previous studies, they all 

induced markedly faster BR rates than those induced by stationary grating stimuli. These 

stationary stimuli entailed: (i) a 2° aperture and spatial frequency of 2 cycles/° in a recent 

large sample (Bosten et al., 2015; 0.28 Hz or a switch every 3.57 s, n=1,051, age range=16–

40 years; stimulus luminance of 39 cd/m2), and (ii) a 1.5° aperture and a spatial frequency of 

4 cycles/° (Miller et al., 2003; 0.40 Hz or a switch every 2.50 s, n=30, age range=27–63 

years). However, it is worth noting that Bosten et al. did not exclude responses to mixed 

percepts, which would have the effect of yielding an apparently slower BR rate. Nonetheless, 

given large BR rate differences between drifting and stationary stimuli used across all these 

studies — but only small BR rate differences between the two high-strength stimuli used in 

the current study — it is unlikely that further increasing drift speed above 8 cycles/s will 

induce faster BR rates with any meaningful relevance for large-scale BR studies (see below).  

It is also noteworthy that the spatial frequency of gratings drifting at 4 cycles/s in the 

current study is lower than that of the same drift speed in previous studies (Miller et al., 2010; 

Pettigrew & Miller, 1998), yet the resulting BR rate obtained in the current study was similar 

to that obtained in the previous studies. This observation suggests that the reduction in spatial 

frequency in the current study to 5.33 cycles/° (cf. 8 cycles/° in the previous studies) is 

unlikely to affect BR rate to any great degree. In the current study we did not vary spatial 
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frequency to examine this issue directly. Such studies have been performed however, albeit 

involving small sample sizes and stationary gratings, showing the sensitivity function for 

spatial frequency to be non-monotonic and peaking at approximately 4 cycles/° (Kitterle & 

Thomas, 1980; O’Shea et al., 1997). With respect to all stimulus parameters, it remains 

possible that additional modulation of BR rate (and MPD) might become evident if a wider 

range of such parameters (e.g., spatial frequency) and a wider range of values within each 

parameter (e.g., drift speeds, aperture sizes) were tested than those in the current study. 

Further work with multiple stimulus parameter combinations and variations could clarify 

their effect on BR temporal dynamics (e.g., Skerswetat et al., 2016). The implications of the 

current BR rate findings for future endophenoptype studies are discussed further below.  

Returning to MPD, the results also show that increasing the aperture size of an 8 

cycles/s stimulus from 1° to 1.5° significantly reduced the total MPD in a given observation 

period, with MPD not differing significantly between 4 and 8 cycles/s stimuli in a 1.5° 

aperture. This finding is in contrast to reports that increasing stimulus aperture size decreases 

exclusive visibility (i.e., increases MPD; Blake et al., 1992; O’Shea et al., 1997; Skerswetat 

et al., 2016). However, the stimuli assessed in the current study subtended 0.5°, 1° and 1.5°, 

thus varying across a much narrower range than that in O’Shea et al. (1997; i.e., stimuli 

subtended between 0.5° and 8°). In O’Shea et al., regarding the data for stimulus aperture 

sizes similar to that used in the current study (i.e., 0.5°, 1° and 2° in their study cf. 0.5°, 1° 

and 1.5° in the current study), as well as spatial frequency similar to that in the current study 

(i.e., 4 cycles/° in their study cf. 5.33 cycles/° in the current study), it was evident from their 

two subjects for whom data were reported in full, that MPD (by way of assessing exclusive 

percept visibility) exhibited either of the following patterns: (i) it increased with aperture size 

in one subject (in contrast to the present findings); or (ii) it increased minimally with aperture 

size in the other subject. Importantly, the current study used a much larger sample size of 40 
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than the few subjects used in earlier studies (Blake et al., 1992; O’Shea et al., 1997; 

Skerswetat et al., 2016; n=3 and 4 and 11, respectively). It should also be noted that the 

current study used drifting gratings rather than stationary gratings used in those earlier 

studies. One way to further probe these discrepant findings therefore, is to repeat the current 

experiment using both drifting and stationary stimuli in a large sample of healthy individuals.  

It is also important to note that the MPD findings of the current study should be 

interpreted with caution due to conflation of the MPD response option with reporting of 

erroneous responses. This response protocol raises the possibility that rather than MPD per se 

varying according to stimulus size, it may be that the erroneous response rate varies in this 

way. That is, a higher erroneous response rate for the smallest aperture size could also 

explain the apparent MPD finding for that size. Even if this scenario was the case however, it 

would still be true that the smallest aperture size yielded a less accurate measure of an 

individual’s true BR rate (be it through extra errors with this size, a longer MPD, or both of 

these factors).    

Regarding other measures collected in the current study, it was found that although 

there was a significant perceptual bias towards the left-eye’s presented image for all but one 

of the stimuli (i.e., 8 cycles/s 0.5° stimulus), this predominance was not significantly 

correlated with BR rate (i.e., predominance can vary while BR rate remains constant). 

Individuals’ BR rates and MPDs were also not associated with each other. In addition, each 

BR measure (BR rate, MPD, PRlog) was not associated with age, state anxiety, trait anxiety, 

severity of depressive symptoms, and subjective mood, for any stimulus condition. The 

present findings are consistent with reports of no significant association between BR rate and 

state anxiety (Anderson et al., 2013). However, the findings conflict with reports that slower 

BR rate is associated with increasing age (Bosten et al., 2015; Jalavisto, 1964; Ukai et al., 

2003) and lower trait anxiety (Anderson et al., 2013; though noting the low correlation in that 
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study; see also Nagamine et al., 2007). Nonetheless the results from the current study are in 

the same direction as these previously reported findings.  

Potential explanations for these discrepant results are worth mentioning. For example, 

in regard to BR rate, it is possible that more statistical power from a larger sample size could 

reveal significant correlations with age and psychometric measures. In addition, the 

experimental protocol of the current study enabled stabilization of an individual’s BR rate, 

which was not the case in other studies that examined BR rate in relation to age (Bosten et al., 

2015; Jalavisto, 1964; Ukai et al., 2003). The current study also determined BR rate using 

longer observation periods of seven minutes (post-stabilization). This protocol difference 

meant that a greater amount of individual BR data was collected in the current study 

compared with previous studies showing the relationship between BR rate and age/anxiety 

(except Nagamine et al., 2007, in which the same amount of data was collected). It is also 

worth noting that the complexity of BR stimuli was different between the current study and 

that of Anderson et al. (2013; i.e., orthogonal gratings cf. house-face images, respectively).  

In addition to having implications for large-scale studies of BR rate as a BD 

endophenotype, the present main finding of higher strength stimuli in both eyes inducing 

faster BR rate confirms Levelt’s (1965) Proposition IV of BR dynamics for the first time 

using drift speed as the stimulus strength factor. An interesting additional question regarding 

Levelt’s Proposition IV is whether individual variation in (matched-eye) stimulus-related 

modulation of BR rate is exhibited. The current study found that a majority of healthy 

individuals reported stimulus-related modulation of BR rate consistent with Levelt’s 

Proposition IV, but also that a sizable proportion of the large sample (n=11 of 40) reported 

the reverse effect (i.e., a slower BR rate with greater stimulus strength presented to both 

eyes). This individual variation observation underscores the importance of attending to 

individual variation in psychophysical BR studies — by using larger sample sizes than those 
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traditionally used — as well as in other visual, sensory, behavioral and computational 

neuroscience studies.  

Investigation of slow BR rate as an endophenotype for BD, and of BR anomalies in 

other clinical conditions, requires large-scale studies, standardized test protocols, and optimal 

stimuli for maximal group separation. The current study has shown that high‐strength 1.5° 

aperture BR stimuli with 8 cycles/s drift speed induced a significantly faster and more 

accurate BR rate in healthy individuals. However, the findings also show that BR stimuli 

drifting at 4 cycles/s, as used in previous studies (see above), induce BR rates only minimally 

slower than stimuli drifting at 8 cycles/s. For this reason, it cannot yet be recommended to 

change to the faster drift speed for endophenotype studies until there has been direct 

assessment of this stimulus strength issue in a BD cohort.  

As further research emerges on important issues of stimulus optimization and BR test 

platforms suitable for very large-scale studies, the field may also move toward standardized 

BR testing protocols across clinical conditions and research centres. Achieving this goal will 

enable comparisons to be made between clinical BR studies and thereby shed light on 

commonalities and differences between underling pathophysiologies. Explicitly addressing 

issues of individual differences in BR dynamics may also provide clues to understanding the 

neurobiology of both BR and its anomalies across a spectrum of brain disorders.    

 

 

 

ACKNOWLEDGEMENTS 

We thank all volunteers who participated in the study. TTN was supported by National 

Health and Medical Research Council [grant number 490976]. SMM received support from 

National Health and Medical Research Council, the Defence Health Foundation, a 2012 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation, USA) 

[grant number 19163], and Monash Institute of Medical Engineering. 

 

DISCLOSURES 

The authors of this paper do not have any commercial associations that might pose a conflict 

of interest in connection with this manuscript. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

5.  References 

Aafjes, M., Heuting, J. E., & Visser, P. (1966). Individual and interindividual differences in 

binocular retinal rivalry in man. Psychophysiology, 3, 18–22. doi: 10.1111/j.1469-

8986.1966.tb02674.x 

Alexander, L. T., & Bricker, P. D. (1952). Figure-ground contrast and binocular rivalry. 

Journal of Experimental Psychology, 44, 452–454. doi: 10.1037/h0053965 

Amador-Campos, J. A., Aznar-Casanova, J. A., Moreno-Sánchez, M., Medina-Peña, A., & 

Ortiz-Guerra, J. J. (2013). Psychometric properties of a test for ADHD based on 

binocular rivalry. Spanish Journal of Psychology, 16, 1–8. doi: 10.1017/sjp.2013.34 

Amador-Campos, J. A., Aznar-Casanova, J. A., Ortiz-Guerra, J. J., Moreno-Sánchez, M., & 

Medina-Peña, A. (2015). Assessing attention deficit by binocular rivalry. Journal of 

Attention Disorders, 19, 1064–1073. doi: 10.1177/1087054713482686 

Anderson, E. C., Dryman, M. T., Worthington, J., Hoge, E. A., Fischer, L. E., Pollack, M. H., 

. . . Simon, N. M. (2013). Smiles may go unseen in generalized social anxiety 

disorder: Evidence from binocular rivalry for reduced visual consciousness of positive 

facial expressions. Journal of Anxiety Disorders, 27, 619–626. doi: 

10.1016/j.janxdis.2013.07.004 

Aznar Casanova, J. A., Amador Campos, J. A., Moreno Sánchez, M., & Supèr, H. (2013). 

Onset time of binocular rivalry and duration of inter-dominance periods as 

psychophysical markers of ADHD. Perception, 42, 16–27. doi: 10.1068/p7203 

Bárány, E. H., & Halldén, U. (1947). The influence of some central nervous depressants on 

the reciprocal inhibition between the two retinae as manifested in retinal rivalry. Acta 

Physiologica Scandinavica, 13, 296–316. doi: 10.1111/j.1748-1716.1947.tb00427.x 

Baum, A. E., Akula, N., Cabanero, M., Cardona, I., Corona, W., Klemens, B., . . . McMahon, 

F. J. (2008). A genome-wide association study implicates diacylglycerol kinase eta 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

(DGKH) and several other genes in the etiology of bipolar disorder. Molecular 

Psychiatry, 13, 197–207. doi: 10.1038/sj.mp.4002012 

Blake, R., O’Shea, R. P., & Mueller, T. J. (1992). Spatial zones of binocular rivalry in central 

and peripheral vision. Visual Neuroscience, 8, 469–478. doi: 

10.1017/S0952523800004971 

Bosten, J. M., Goodbourn, P. T., Lawrance-Owen, A. J., Bargary, G., Hogg, R. E., & Mollon, 

J. D. (2015). A population study of binocular function. Vision Research, 110, 34–50. 

doi: 10.1016/j.visres.2015.02.017 

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi: 

10.1163/156856897X00357 

Brascamp, J. W., Klink, P. C., & Levelt, W. J. M. (2015). The ‘laws’ of binocular rivalry: 50 

years of Levelt’s propositions. Vision Research, 109, 20–37. doi: 

10.1016/j.visres.2015.02.019 

Breese, B. B. (1899). On inhibition. The Psychological Review: Monograph Supplements, 3, 

1–65. doi: 10.1037/h0092990 

Breese, B. B. (1909). Binocular rivalry. Psychological Review, 16, 410–415. doi: 

10.1037/h0075805 

Cameron, D. E. (1936). Studies in depression. Journal of Mental Science, 82, 148–161. doi: 

10.1192/bjp.82.337.148 

Cappe, C., Clarke, A., Mohr, C., & Herzog, M. H. (2014). Is there a common factor for 

vision? Journal of Vision, 14, 1–11. doi: 10.1167/14.8.4 

Cogan, R., & Goldstein, A. G. (1972). Reporting of fragmentations in the binocular rivalry of 

contours. American Journal of Psychology, 85, 569–584. doi: 10.2307/1421719 

Cullen, K. R., & Lim, K. O. (2014). Toward understanding the functional relevance of white 

matter deficits in bipolar disorder. JAMA Psychiatry, 71, 362–364. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

D’Agata, G., & Gaffuri, G. (1968). La percezione del cambiamento di prospettiva di una 

figura ambigua nella schizophrenia. Neuropsichiatrica, 2, 357–363. 

Donnelly, M., & Miller, R. J. (1995). Ingested ethanol and binocular rivalry. Investigative 

Ophthalmology & Visual Science, 36, 1548–1554.  

Ewen, J. H. (1931). The psychological estimation of the effects of certain drugs upon the 

syntonic and schizophrenic psychoses: With a brief inquiry into a physiological basis 

of temperament. Journal of Mental Science, 77, 742–766. doi:10.1192/bjp.77.319.742  

Eysenck, H. J. (1952). Cyclothymia and schizothymia as a dimension of personality. 

Experimental Journal of Personality, 20, 345–384. doi: 10.1111/j.1467-

6494.1952.tb01115.x 

Fahle, M. (1982). Binocular rivalry: Suppression depends on orientation and spatial 

frequency. Vision Research, 22, 787–800. doi: 10.1016/0042-6989(82)90010-4 

Faul, F., & Erfelder, E. (1992). GPower: A priori-, post hoc-, and compromise power 

analyses for MS-DOS [Computer program]. Bonn, Germany: Bonn University. 

Ferreira, M. A., O‘Donovan, M. C., Meng, Y. A., Jones, I. R., Ruderfer, D. M., Jones, L., . . . 

Craddock, N. (2008). Collaborative genome-wide association analysis supports a role 

for ANK3 and CACNA1C in bipolar disorder. Nature Genetics, 40, 1056–1058.  

Flint, J., & Munafò, M. R. (2007). The endophenotype concept in psychiatric genetics. 

Psychological Medicine, 37, 163–180. doi: 10.1017/S0033291706008750 

Fox, R. (1965). Rate of binocular rivalry alternation in psychotic and nonpsychotic patients. 

Journal of Abnormal Psychology, 70, 34 –37. doi: 10.1037/h0021684 

Freyberg, J., Robertson, C. E., & Baron-Cohen, S. (2015). Reduced perceptual exclusivity 

during object and grating rivalry in autism. Journal of Vision, 15, 1–12. doi: 

10.1167/15.13.11 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Friedman, A. S. (1964). Minimal effects of severe depression on cognitive functioning. 

Journal of Abnormal and Social Psychology, 69, 237–243. doi: 10.1037/h0048608 

George, R. W. (1936). The significance of the fluctuations experienced in observing 

ambiguous figures and in binocular rivalry. Journal of General Psychology, 15, 39–

61. doi: 10.1080/00221309.1936.9917904 

Goldstein, A. G. (1968). Retinal rivalry and Troxler’s effect: A correlation. Perception & 

Psychophysics, 4, 261–263. doi: 10.3758/BF03210511 

Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: 

Etymology and strategic intentions. The American Journal of Psychiatry, 160, 636–

645. doi: 10.1176/appi.ajp.160.4.636 

Gould, T. D., & Gottesman, I. I. (2006). Psychiatric endophenotypes and the development of 

valid animal models. Genes, Brain and Behavior, 5, 113–119. doi: 10.1111/j.1601-

183X.2005.00186.x 

Grzeczkowski, L., Clarke, A. M., Fancis, G., Mast, F. W., & Herzog, M. H. (2017). About 

individual differences in vision. Vision Research. doi: 10.1016/j.visres.2016.10.006 

Hasler, G., Drevets, W. C., Gould, T. D., Gottesman, I. I., & Manji, H. K. (2006). Toward 

constructing an endophenotype strategy for bipolar disorders. Biological Psychiatry, 

60, 93–105. doi: 10.1016/j.biopsych.2005.11.006 

Hiber, D. P., Westlye, L. T., Doan, N. T., Jahanshad, N., Cheung, J. W., Ching, C. R. K., . . . 

Andreassen, O. A. (2017). Cortical abnormalities in bipolar disorder: an MRI analysis 

of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Molecular 

Psychiatry, 1–11. doi: 10.1038/mp.2017.73 

Hodges, W. F., & Fox, R. (1965). Effect of arousal and intelligence on binocular rivalry rate. 

Perceptual and Motor Skills, 20, 71–75.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Hollins, M. (1980). The effect of contrast on the completeness of binocular rivalry 

suppression. Perception & Psychophysics, 27, 550–556. doi: 10.3758/BF03198684 

Hong, E. P., & Park, J. W. (2012). Sample size and statistical power calculation in genetic 

association studies. Genomics & Infomatrics, 10, 117–122. doi: 

10.5808/GI.2012.10.2.117 

Hunt, J., & Guilford, J. P. (1933). Fluctuation of an ambiguous figure in dementia praecox 

and in manic-depressive patients. Journal of Abnormal and Social Psychology, 27, 

443–452. doi: 10.1037/h0071060 

Ivleva, E. I., Morris, D. W., Moates, A. F., Suppes, T., Thaker, G. K., & Tamminga, C. A. 

(2010). Genetics and intermediate phenotypes of the schizophrenia — Bipolar 

disorder boundary. Neuroscience and Biobehavioral Reviews, 34, 897–921. doi: 

10.1016/j.neubiorev.2009.11.022  

Jalavisto, E. (1964). The phenomenon of retinal rivalry in the aged. Gerontologia Clinica, 9, 

1–8. doi: 10.1159/000211230 

Jia, T., Ye, X., Wei, Q., Xie, W., Cai, C., Mu, J., . . . Wang, K. (2015). Difference in the 

binocular rivalry rate between depressive episodes and remission. Physiology & 

Behavior, 151, 272–278. doi: 10.1016/j.physbeh.2015.08.007 

Kanai, R., Bahrami, B., & Rees, G. (2010). Human parietal cortex structure predicts 

individual differences in perceptual rivalry. Current Biology, 20, 1626–1630. doi: 

10.1016/j.cub.2010.07.027 

Kanai, R., & Rees, G. (2011). The structural basis of interindividual differences in human 

behaviour and cognition. Nature Reviews Neuroscience, 12, 231–242. doi: 

10.1038/nrn3000 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Karaminis, T., Lunghi, C., Neil, L., Burr, D., & Pellicano, E. (2017). Binocular rivalry in 

children on the autism spectrum. Autism Research, 10, 1096–1106. doi: 

10.1002/aur.1749 

Kendler, K. S., & Neale, M. C. (2010). Endophenotype: A conceptual analysis. Molecular 

Psychiatry, 15, 789–797. doi: 10.1038/mp.2010.8 

Kitterle, F. L., & Thomas, J. (1980). The effects of spatial frequency, orientation, and color 

upon binocular rivalry and monocular pattern alternation. Bulletin of the Psychonomic 

Society, 16, 405–407. doi: 10.3758/BF03329581 

Klein, R. J. (2007). Power analysis for genome-wide association studies. BMC Genetics, 8, 

117–122. doi: 10.1186/1471-2156-8-58 

Law, P. C. F., Paton, B. K., Riddiford, J. A., Gurvich, C. T., Ngo, T. T., & Miller, S. M. 

(2015). No relationship between binocular rivalry rate and eye-movement profiles in 

healthy individuals: A Bayes factor analysis. Perception, 44, 643–661. doi: 

10.1177/0301006615594267 

Law, P. C. F., Paton, B. K., Thomson, R. H., Liu, G. B., Miller, S. M., & Ngo, T. T. (2013). 

Dichoptic viewing methods for binocular rivalry research: Prospects for large-scale 

clinical and genetic studies. Twin Research and Human Genetics, 16, 1033–1078. doi: 

10.1017/thg.2013.76 

Levelt, W. (1965). On binocular rivalry. Soesterberg, The Netherlands: Institute for 

Perception RVO-TNO.  

McDougall, W. (1926). Outline of abnormal psychology. New York: Charles Scribner’s 

Sons. doi: 10.1086/207638 

McDougall, W., & Smith, M. (1920). The effects of alcohol and some other drugs during 

normal and fatigued conditions. London: HMS Office. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Martin, N. G., Eaves, L. J., Kearsey, M. J., & Davies, P. (1977). The power of the classical 

twin study. Heredity, 40, 97–116. doi: 10.1038/hdy.1977.9 

Miller, S. M. (2016). Vestibular neuromodulation: stimulating the neural crossroads of 

psychiatric illness. Bipolar Disorders, 18, 1–5. doi: 10.1111/bdi.12427 

Miller, S. M., Gynther, B. D., Heslop, K. R., Liu, G. B., Mitchell, P. B., Ngo, T. T., . . . 

Geffen, L. B. (2003). Slow binocular rivalry in bipolar disorder. Psychological 

Medicine, 33, 683–692. doi: 10.1017/S0033291703007475 

Miller, S. M., Hansell, N. K., Ngo, T. T., Liu, G. B., Pettigrew, J. D., Martin, N. G., & 

Wright, M. J. (2010). Genetic contribution to individual variation in binocular rivalry 

rate. Proceedings of the National Academy of Sciences USA, 107, 2664–2668. doi: 

10.1073/pnas.0912149107 

Miller, S. M., Liu, G. B., Ngo, T. T., Hooper, G., Riek, S., Carson, R. G., & Pettigrew, J. D. 

(2000). Interhemispheric switching mediates perceptual rivalry. Current Biology, 10, 

383–392. doi: 10.1016/S0960-9822(00)00416-4 

Montgomery, S. A., & Åsberg, M. (1979). A new depression scale designed to be sensitive to 

change. British Journal of Psychiatry, 134, 382–389. doi: 10.1192/bjp.134.4.382 

Mühleisen, T. W., Leber, M., Schulze, T. G., Strohmaier, J., Degenhardt, F., Treutlein, J., . . . 

Cichon, S. (2014). Genome-wide association study reveals two new risk loci for 

bipolar disorder. Nature Communications, 5, 1–8. doi: 10.1038/ncomms4339 

Nagamine, M., Yoshino, A., Miyazaki, M., Takahashi, Y., & Nomura, S. (2009). Difference 

in binocular rivalry rate between patients with bipolar I and bipolar II disorders. 

Bipolar Disorders, 11, 539–546. doi: 10.1111/j.1399-5618.2009.00719.x 

Nagamine, M., Yoshino, A., Yamazaki, M., Obara, M., Sato, S., Takahashi, Y., & Nomura, 

S. (2007). Accelerated binocular rivalry with anxious personality. Physiology & 

Behavior, 91, 161–165. doi: 10.1016/j.physbeh.2007.02.016 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Nemor, N. (1953). The alternation of an ambiguous figure in paretics and schizophrenics. 

Journal of Abnormal and Social Psychology, 48, 445–447. doi: 10.1037/h0055080 

Ngo, T. T., Barsdell, W. N., Law, P. C. F., & Miller, S. M. (2013). Binocular rivalry, brain 

stimulation and bipolar disorder. In S. M. Miller (Ed.), The constitution of visual 

consciousness: Lessons from binocular rivalry (Vol. 90, pp. 211–252). Amsterdam, 

The Netherlands: John Benjamins Publishing Company. doi: 10.1075/aicr.90.09ngo 

Ngo, T. T., Mitchell, P. B., Martin, N. G., & Miller, S. M. (2011). Psychiatric and genetic 

studies of binocular rivalry: An endophenotype for bipolar disorder? Acta 

Neuropsychiatrica, 23, 37–42. doi: 10.1111/j.1601-5215.2010.00510.x 

Norman, H. F., Norman, J. F., & Bilotta, J. (2000). The temporal course of suppression 

during binocular rivalry. Perception, 29, 831–841. doi: 10.1068/p3085 

O'Shea, R., Parker, A., & Alais, D. (2009). Monocular rivalry exhibits three hallmarks of 

binocular rivalry: Evidence for common processes. Vision Research, 49, 671–681. 

doi: 10.1016/j.visres.2009.01.020 

O’Shea, R. P., Sims, A. J. H., & Govan, D. G. (1997). The effect of spatial frequency and 

field size on the spread of exclusive visibility in binocular rivalry. Vision Research, 

37, 175–183. doi: 10.1016/S0042-6989(96)00113-7 

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. 

Neuropsychologia, 9, 97–113. doi: 10.1016/0028-3932(71)90067-4 

Patel, V., Stuit, S., & Blake, R. (2015). Individual differences in temporal dynamics of 

binocular rivalry and of stimulus rivalry. Psychonomic Bulletin and Review, 22, 476–

482. doi: 10.3758/s13423-014-0695-1 

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming 

numbers into movies. Spatial Vision, 10, 437–442. doi: 10.1163/156856897X00366 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Peterzell, D. H. (2016). Discovering sensory processes using individual differences: A review 

and factor analytic manifesto. Electronic Imaging, Human Vision and Electronic 

Imaging, 1–11. doi: 10.2352/ISSN.2470-1173.2016.16HVEI-112 

Pettigrew, J. D., & Miller, S. M. (1998). A ‘sticky’ interhemispheric switch in bipolar 

disorder? Proceedings of the Royal Society of London B: Biological Sciences, 265, 

2141–2148. doi: 10.1098/rspb.1998.0551 

Platonov, A., & Goossens, J. (2013). Influence of contrast and coherence on the temporal 

dynamics of binocular motion rivalry. PloS ONE, 8, 1–12. doi:    

10.1371/journal.pone.0071931 

R Core Team (2016). R: A language and environment for statistical computing [Computer 

program]. Vienna, Austria.  

Robertson, C. E., Kravitz, D. J., Freyberg, J., Baron-Cohen, S., & Baker, C. I. (2013). Slower 

rate of binocular rivalry in autism. Journal of Neuroscience, 33, 16983–16991. doi: 

10.1523/jneurosci.0448-13.2013 

Robertson, C. E., Ratai, E.-M., & Kanwisher, N. (2016). Reduced GABAergic action in the 

autistic brain. Current Biology, 26, 80–85. doi: 10.1016/j.cub.2015.11.019 

Said, C. P., Egan, R. D., Minshew, N. J., Behrmann, M., & Heeger, D. J. (2013). Normal 

binocular rivalry in autism: Implications for the excitation/inhibition imbalance 

hypothesis. Vision Research, 77, 59–66. doi: 10.1016/j.visres.2012.11.002 

Sappenfield, B. R., & Ripke, R. J. (1961). Validities of three visual tests for differentiating 

organics from schizophrenics and normals. Journal of Clinical Psychology, 17, 276–

278. doi: 10.1002/1097-4679(196107)17:3<276::AID-JCLP2270170316>3.0.CO;2-N 

Sarrazin, S., Poupon, C., Linke J., Wessa, M., Phillips, M., Delavest, M., . . . Houenou, J. 

(2014). A multicenter tractography study of deep white matter tracts in bipolar I 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

disorder: Psychotic features and interhemispheric disconnectivity. JAMA Psychiatry, 

71, 388–396. 

Seedorff, H. H. (1956). Effect of alcohol on the motor fusion reserves and stereopsis as well 

as on the tendency to nystagmus. Acta Ophthalmologica, 34, 273–280. doi: 

10.1111/j.1755-3768.1956.tb03361.x 

Shannon, R. W., Patrick, C. J., Jiang, Y., Bernat, E., & He, S. (2011). Genes contribute to the 

switching dynamics of bistable perception. Journal of Vision, 11, 1–7. doi: 

10.1167/11.3.8 

Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., . . . 

Dunbar, G. (1998). The Mini International Neuropsychiatric Interview (M.I.N.I.): The 

development and validation of a structured diagnostic psychiatric interview. Journal 

of Clinical Psychiatry, 59, 22–33.  

Skerswetat, J., Formankiewicz, M. A., & Waugh, S. J. (2016). Very few exclusive percepts 

for contrast-modulated stimuli during binocular rivalry. Vision Research, 121, 10–22. 

doi: 10.1016/j.visres.2016.01.002 

Sklar, P., Smoller, J. W., Fan, J., Ferreira, M. A. R., Perlis, R. H., Chambert, K., . . . Purcell, 

S. M. (2008). Whole-genome association study of bipolar disorder. Molecular 

Psychiatry, 13, 558–569. doi: 10.1038/sj.mp.4002151 

Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual 

for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press. 

Suzuki, S., & Grabowecky, M. (2007). Long-term speeding in perceptual switches mediated 

by attention-dependent plasticity in cortical visual processing. Neuron, 56, 741–753. 

doi: 10.1016/j.neuron.2007.09.028 

Ukai, K., Ando, H., & Kuze, J. (2003). Binocular rivalry alternation rate declines with age. 

Perceptual and Motor Skills, 97, 393–397. doi: 10.2466/pms.2003.97.2.393 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

van Ee, R. (2009). Stochastic variations in sensory awareness are driven by noisy neuronal 

adaptation: Evidence from serial correlations in perceptual bistability. Journal of the 

Optical Society of America A, 26, 2612–2622. doi: 10.1364/JOSAA.26.002612 

van Loon, A. M., Knapen, T., Scholte, H. S., St. John-Saaltink, E., Donner, T. H., & Lamme, 

V. A. F. (2013). GABA shapes the dynamics of bistable perception. Current Biology, 

23, 823–827. doi: 10.1016/j.cub.2013.03.067 

Vierck, E., Porter, R. J., Luty, S. E., Moor, S., Crowe, M. T., Carter, J. D., . . . Joyce, P. R. 

(2013). Further evidence for slow binocular rivalry rate as a trait marker for bipolar 

disorder. Australian & New Zealand Journal of Psychiatry, 47, 371–379. doi: 

10.1177/0004867412474105 

Wade, N. J., & Ngo, T. T. (2013). Early views on binocular rivalry. In S. M. Miller (Ed.), The 

constitution of visual consciousness: Lessons from binocular rivalry (Vol. 90, pp. 77–

108). Amsterdam, The Netherlands: John Benjamins Publishing Company. doi: 

10.1075/aicr.90.04wad 

Wellcome Trust Case Control Consortium. (2007). Genome-wide association study of 14,000 

cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678. 

doi: 10.1038/nature05911 

Wexler, M., Duyck, M., & Mamassian, P. (2015). Persistent states in vision break 

universality and time invariance. Proceedings of the National Academy of Sciences 

USA, 112, 14990–14995. doi: 10.1073/pnas.1508847112 

Wray, N. R., Lee, S. H., Mehta, D., Vinkhuyzen, A. A. E., Dudbridge, F., &Middeldorp, C. 

M. (2014). Research Review: Polygenic methods and their application to psychiatric 

traits. Journal of Child Psychology and Psychiatry, 55, 1068–1087. doi: 

10.1111/jcpp.12295 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Zhu, R., Ye, X., Zhou, X., Yang, J., Yue, Y., & Wang, K. (2013). Applications of the 

binocular rivalry paradigm in patients with bipolar disorder. Chinese Journal of 

Nervous and Mental Diseases, 8, 449–452. doi: 10.3936/j.issn.1002-

0152.2013.08.001 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Table 1.  

Binocular rivalry (BR) rate, mixed-percept duration (MPD) and log-transformed 

predominance ratio (PRlog) for all stimulus conditions. 

 Median ± MAD 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

BR rate (Hz) 0.47 ± 0.12 0.40 ± 0.11 0.48 ± 0.11 0.52 ± 0.10 

MPD (s) 62.81 ± 41.17 110.17 ± 49.61 71.37 ± 33.46 60.23 ± 35.41 

PRlog  0.09 ± 0.12 0.11 ± 0.13 0.02 ± 0.16 0.09 ± 0.17 

 Mean ± SD 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

BR rate (Hz) 0.53 ± 0.22 0.43 ± 0.16 0.54 ± 0.23 0.57 ± 0.24 

MPD (s) 72.12 ± 53.09 123.05 ± 72.59 87.03 ± 73.98 74.34 ± 69.35 

PRlog  0.08 ± 0.23 0.14 ± 0.45 0.01 ± 0.31 0.13 ± 0.28 

c/s: cycles/second. °: degrees. MAD: median absolute deviation. SD: standard deviation. Hz: hertz.  

s: seconds. 
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Table 2.  

Spearman’s ρ between binocular rivalry (BR) rate, mixed-percept duration (MPD), and log-

transformed predominance ratio (PRlog) for all stimulus conditions. 

  BR rate 

 

 
4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ p ρ p ρ p ρ p 

MPD 

4 c/s 1.5° aperture  0.17 0.30  0.10 0.54  0.13 0.43  0.14 0.40 

8 c/s 0.5° aperture -0.01 0.95  0.06 0.72  0.01 0.97 -0.03 0.86 

8 c/s 1° aperture  0.18 0.27  0.08 0.61  0.06 0.69  0.08 0.62 

8 c/s 1.5° aperture  0.21 0.20  0.16 0.33  0.14 0.38  0.16 0.34 

PRlog 
 

4 c/s 1.5° aperture  0.16 0.31  0.10 0.55  0.25 0.13  0.13 0.42 

8 c/s 0.5° aperture -0.16 0.32 -0.16 0.34 -0.13 0.43 -0.21 0.20 

8 c/s 1° aperture -0.03 0.84  0.04 0.82  0.12 0.47  0.06 0.70 

8 c/s 1.5° aperture -0.06 0.71 -0.13 0.42  0.00 0.99  0.06 0.71 

  MPD 

  
 

4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ p ρ p ρ p ρ p 

PRlog 
 

4 c/s 1.5° aperture 0.42 6.68×10
-3
  0.03 0.86  0.39 1.27×10

-2
 0.35 2.68×10

-2
 

8 c/s 0.5° aperture 0.09 0.60 -0.15 0.35 -0.12 0.47 -0.05 0.79 

8 c/s 1° aperture 0.26 0.10 -0.14 0.38 -0.01 0.97  0.13 0.42 

8 c/s 1.5° aperture 0.23 0.16 -0.26 0.11  0.15 0.37  0.11 0.51 

c/s: cycles/second. °: degrees. ρ: Spearman’s ρ. p: p value (two-tailed). 
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Table 3.  

Spearman’s ρ between binocular rivalry (BR) rate, mixed-percept duration (MPD) and log-

transformed predominance ratio (PRlog) for age and psychometric measures across all 

stimulus conditions. 

 
BR rate 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ P ρ p ρ p ρ p 

Age 
a
 -0.16 0.16 -0.25 5.96×10

-2
 -0.30 2.94×10

-2
 -0.30 3.25×10

-2
 

STAI-state 
a
 0.16 0.16 0.09 0.29 0.11 0.25 0.14 0.20 

STAI-trait 
a
 0.27 4.62×10

-2
 0.15 0.18 0.16 0.17 0.22 8.76×10

-2
 

MÅDRS 
a
 0.05 0.39 0.10 0.27 0.17 0.14 0.27 4.77×10

-2
 

Subjective mood  -0.06 0.70 0.05 0.75 -0.01 0.97 -0.02 0.90 

 
MPD 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ P ρ p ρ p ρ p 

Age -0.10 0.54 0.05 0.75 -0.05 0.78 -0.05 0.75 

STAI-state 0.10 0.54 0.01 0.95 0.07 0.68 0.17 0.29 

STAI-trait 0.20 0.22 0.03 0.87 0.09 0.58 0.23 0.16 

MÅDRS 0.03 0.87 0.09 0.58 0.05 0.78 0.07 0.66 

Subjective mood 0.08 0.63 -0.18 0.27 -0.10 0.55 0.01 0.95 

 
PRlog 

 4 c/s 1.5° aperture 8 c/s 0.5° aperture 8 c/s 1° aperture 8 c/s 1.5° aperture 

 ρ P ρ p ρ p ρ p 

Age -0.08 0.64 0.10 0.54 -0.17 0.30 0.01 0.93 

STAI-state 0.19 0.25 -0.26 0.11 0.04 0.82 -0.15 0.34 

STAI-trait 0.20 0.22 -0.16 0.33 0.04 0.81 -0.14 0.38 

MÅDRS -0.09 0.60 -0.16 0.32 0.13 0.42 -0.05 0.76 

Subjective mood -0.15 0.37 0.27 0.10 0.18 0.28 0.19 0.24 

c/s: cycles/second. °: degrees. MPD: mixed percept duration. PRlog: log-transformed predominance ratio. 
STAI: State-Trait Anxiety Inventory. MÅDRS: Montgomery-Åsberg Depression Rating Scale. ρ: Spearman’s 
ρ. p: p value.

 a
 one‐tailed (two-tailed for all other measures).  
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Highlight 

 Binocular rivalry stimuli — rightward-drifting vertical gratings and downward-drifting 

horizontal gratings — drifting at 8 cycles/s in a 1.5° aperture induced the fastest BR rate 

without increasing mixed-percept duration. 

 Binocular rivalry rate with this stimulus configuration was not substantially different to 

BR rate with stimulus parameters we have used in previous studies (i.e., 4 cycles/s drift 

speed in a 1.5° aperture).  

 The individual variation observation underscores the importance of attending to 

individual variation in psychophysical BR studies — by using larger sample sizes than 

those traditionally used. 
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