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Abstract 

The family Paramyxoviridae (paramyxovirus) contains several significant human and animal pathogens. 

Represented within this family are human respiratory syncytial virus (hRSV) and Newcastle disease 

virus (NDV). The former contributes significantly to severe respiratory tract disease in infants, children 

and immunocompromised individuals. At present, highly efficacious therapeutics or safe and effective 

vaccines are not available for hRSV. NDV is the causative agent of Newcastle disease, afflicting a wide 

range of avian species. The desire to study NDV is due not only to the significant economic impact it 

has on the poultry industry worldwide, but also its potential use as an oncolytic agent and vaccine vector 

in humans and animals. Additionally, findings on NDV may be translated to closely related viruses that 

cause disease in humans, such as parainfluenza viruses. 

 

As outlined in Chapter 1 of this thesis, the infectious processes of all members of this family are driven 

by two major membrane glycoproteins whose ectodomains project from the viral envelope: the fusion 

(F) and attachment glycoproteins. The F glycoprotein is responsible for viral entry by means of fusion 

with host cell membranes while the variable attachment glycoproteins, haemagglutinin, haemagglutinin-

neuraminidase (HN) and major surface glycoprotein (G), are involved in viral attachment to host cells. 

Previous studies have shown that altering the glycosylation profile of these proteins can modulate the 

ability of the virus to infect host cells and stimulate the host immune system. As yet, site-specific glycan 

heterogeneity of hRSV and NDV surface glycoproteins has not been defined at a chemical level. As 

described in Chapter 2, reverse-phase liquid chromatography tandem mass spectrometry (MS) strategies 

were implemented to characterise intact glycopeptides from the attachment and F glycoproteins of 

hRSV and NDV. Site-occupancy and monosaccharide compositions at a given site were determined 

using collision-induced dissociation, higher-energy collision dissociation, electron-transfer dissociation 

and electron-transfer dissociation combined with collision dissociation. As described in Chapter 3, a 

spectral processing program was developed called OxoExtract to aid identification of intact 

glycopeptides that were fragmented with higher-energy collision dissociation.  

 

The F and HN proteins of NDV were derived from virions propagated in embryonic eggs. Analyses of 

HN in Chapter 4 revealed high mannose N-linked glycans and complex or hybrid N-linked glycans that 

were variably fucosylated, sialylated and sulfated or phosphorylated. In total 63, 58, and 37 glycans 

were identified at sites N341, N433 and N481, respectively. In addition, a previously undocumented O-

linked glycosylation site was identified in the stalk domain of the protein. Observed glycans from NDV 

F described in Chapter 5 were mainly high mannose, containing variations of five to nine mannose 
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residues across four sites, N85, N191, N366 and N471. There was also evidence of fucosylated complex 

or hybrid glycans at site N191, which is the first site-specific description of such glycans on NDV F. 

Although this work was not completed with virions from naturally infected tissue or cells, the results 

presented herein on NDV HN and F may help elucidate mechanisms of viral glycoprotein synthesis. The 

observation of hybrid or complex glycans on F and HN suggests that at least some protein species are 

transported through the Golgi apparatus. This supports the theory that the two proteins may interact 

before reaching the cell surface. The stalk region of HN is thought to play an important role in triggering 

the F protein to induce fusion. Given the position of the observed O-linked site in the stalk domain of 

HN, it could be postulated that O-linked glycans impact oligomerisation of HN or the interaction 

between HN and F. These results will form the basis for future studies of the distribution of glycan 

structures across glycosylation sites and may increase the understanding of the role glycosylation plays 

in the functionality of HN and F. Furthermore, it will enable comparisons to be made of HN and F from 

other species of NDV and paramyxoviruses. 

 

Soluble forms of hRSV F and G proteins were recombinantly produced in human embryonic kidney 293 

FreeStyle™ cells and analysed with the aforementioned MS strategies. The work in Chapter 6 focussed 

on a homotrimeric form hRSV F, which has been extensively structurally characterised in pursuit of 

drug and vaccine design objectives. It was revealed that all five N-linked sites can be occupied with the 

identification of 20, 19, 7, 24 and 70 different glycans at N-linked sites N27, N70, N116, N126 and 

N500, respectively. Many of the observed N-linked glycans exhibited fragmentation characteristics 

consistent with N-acetylhexosamine units, which could potentially represent GalNAcβ1–4GlcNAc or 

LacdiNAc motifs. These units are not typically observed in mammals and are potentially immunogenic. 

Moreover, O-linked glycosylation of F is described for the first time. This work also demonstrated 

extensive O-linked glycosylation of G in Chapter 7. A total of 28 O-linked sites were identified with 

attached compositions presumed to be Tn, T and mono- and di-sialylated T antigens. Twelve N-linked 

glycans were also identified at site N135 of G. Although the work was not completed with proteins 

derived from virions, the techniques applied herein can be used to investigate native forms of G and F. 

The results also provide the first step in the elucidation of site-specific and compositional differences of 

glycans from F and G produced in different cell lines.  
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Chapter 1: Introduction to the structure and 
function of glycosylation with reference 
to paramyxovirus surface proteins  

1.1 PROTEIN GLYCOSYLATION 

 

Protein glycosylation is a ubiquitous post-translational modification (PTM) whereby 

oligosaccharide structures known as glycans are covalently linked to amino acid side chains (1). It 

confers additional layers of complexity to the structural and functional properties of proteins and 

can have a profound influence on both normal and irregular biological processes (2). In mammals, 

glycosylation has been shown to play a role in cell signalling, inflammation, immune responses and 

several disease states as well as protein activity and folding (3-5). The impact of glycosylation has 

also been highlighted in pharmaceutical and biotech industries where glycans can affect the 

stability, solubility, bioactivity and pharmacokinetic properties of protein therapeutics (6-8). 

Characterising the glycosylation patterns of glycoproteins has therefore become an important aspect 

of biological and biomedical studies.   

 

Glycans are composed of  monosaccharides which are the simplest forms of carbohydrates (9). 

Although other terms such as sugars, carbohydrates and oligosaccharides can be used to describe 

monosaccharide compositions attached to proteins, the term glycan has been chosen as the preferred 

term in this thesis. Commonly observed monosaccharides found in mammals, mannose (Man), 

glucose (Glc), galactose (Gal), fucose (Fuc), N-acetylgalactosamine (GalNAc), N-

acetylglucosamine (GlcNAc) and N-acetylneuraminic acid (NeuAc) are presented in Figure 1-1,  

following the Symbol Nomenclature for Glycans system (10). The isomers Man, Glc and Gal 

contain a six-carbon backbone as do the isomers GalNAc and GlcNAc, but the latter two contain an 

acetylated amino group. Fuc is also a six-carbon monosaccharide but lacks a hydroxyl group at one 

carbon while NeuAc belongs to a family of nine-carbon acidic monosaccharides called sialic acids.  

 

The great diversity observed in glycan structures is due to the non-template driven biosynthetic 

processing of glycans and the branching or non-linear nature of the glycosidic linkages (9). 

Glycosidic linkages can be formed in two different configurations between the anomeric carbon of 

one monosaccharide and a hydroxyl group of another monosaccharide, with the configurations 
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defined as α and β linkages. The anomeric carbons (C) are at C-1 or C-2, depending on the 

monosaccharide and can be attached to several different hydroxyl groups on the other 

monosaccharide. The bond configurations (α and β), anomeric carbon numbers (C-1 or C-2) and 

positions of the hydroxyl groups (defined by the carbon it is attached to) are used to name 

glycosidic linkages (for example, β1-4 or α2-3) (9). The final glycan structures are dependent on 

cell type and the physiological status of the cell (11, 12). The dynamic nature of glycosylation 

means both native and recombinant glycoproteins can be observed as many different glycoforms. 

Glycoforms of a single protein can differ in the glycan structures attached at a specific site (defined 

as microheterogeneity) or in the proportion of sites that are occupied (defined as 

macroheterogeneity) (13). The complex nature of protein glycosylation and subsequent structural 

diversity of glycoproteins present significant challenges when defining the glycosylation profile of 

glycoproteins.  

 

 

 

 

 

 

 

 

The work herein addresses two major types of extracellular glycosylation, namely, N-linked and O-

linked. These types of glycosylation are differentiated by mechanisms of biosynthesis and the 

amino acid side chains to which they are conjugated. These two specific types of glycosylation will 

be discussed in more detail in the following sections.   

 

Figure 1-1. Symbol representation of some common mammalian 
monosaccharides. Monosaccharides that have been designated 
circles or squares are isomeric and represent hexoses and N-
acetylhexosamines, respectively, following the Symbol 
Nomenclature for Glycans system (10). If stereochemistry cannot be 
determined the shape is filled white. 
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1.1.1 N-linked glycosylation 

 

N-linked glycans are predominately conjugated to the side-chain amide nitrogen of a peptide bound 

Asn in the amino acid consensus Asn-Xaa-Ser/Thr (where Xaa is not proline). N-linked glycans 

share a common Manα1–6(Manα1–3)Manβ1–4GlcNAcβ1–4GlcNAcβ1 trimannosylchitobiose core 

(Figure 1-2) which originates from a Glc3Man9GlcNAc2 precursor structure (14). In eukaryotes, 

step-wise production of this precursor structure begins in the cytoplasm while it is attached to a 

dolichyl pyrophosphate carrier in the membrane of the endoplasmic reticulum (ER) (14-16). During 

production, it is flipped into the lumen of the ER and once the structure is complete it is transferred 

en bloc to nascent polypeptides. Subsequent processing of the tetradecasaccharide occurs in the ER 

and Golgi apparatus through the actions of glycosidases and glycosyltransferases (Figure 1-3). The 

degree of glycan processing during glycoprotein biosynthesis places the final N-linked glycan in 

one of three structural categories (16).  

 

The high mannose (or oligomannose) class contains five to nine mannose residues and arises from 

trimming of the Glc3Man9GlcNAc2 precursor to a Man8GlcNAc2 oligosaccharide in the ER or 

subsequent trimming to a Man5GlcNAc2 structure in the cis-Golgi. This Man5GlcNAc2 (or Man5) 

structure (illustrated in Figure 1-2) is the substrate for N-acetylglucosaminyltransferase-I 

(GlcNAcT-I) and a required intermediate for the production of the remaining two categories, hybrid 

or complex glycans (15). During maturation of the glycans GlcNAcT-I adds a GlcNAc residue to 

the common core α1–3 mannose. If the peripheral α-mannose residues are not removed from the 

α1–6 arm of the Man5 structure, a hybrid glycan results (15, 16). Removal of the peripheral α-

mannose residues in the medial-Golgi enables the addition of a GlcNAc to α1–6 arm of 

the common core and results in the precursor for complex biantennary structures. The antennae can 

be extended through the addition of Gal and NeuAc or non-monosaccharide substituents such as 

sulfate (Sulf) or phosphate (Phos) in the trans-Golgi (Figure 1-3) (15, 16). 
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Figure 1-2. Structural categories of N-linked glycans and their common trimannosylchitobiose 
core. The common trimannosylchitobiose core has been identified with commonly used terms for 
some of the constituent monosaccharides. Structures from the three main categories of N-linked 
glycans, high mannose (with a Man5GlcNAc2 structure illustrated),  hybrid and complex have been 
represented. Bisecting GlcNAc, branching and core fucosylation have also been presented.  

  

During processing N-linked glycans can also be fucosylated, typically in a α1–6 linkage on the 

innermost core GlcNAc (Figure 1-2). Hybrid and complex N-linked glycans may also have a 

bisecting GlcNAc residue attached to the core β-linked mannose. Glycosylation site accessibility on 

the folded protein has been found to correlate with more highly processed glycans, glycan 

branching and core fucosylation (17, 18). Thus, the mature glycoproteins can bear a mixture of high 

mannose, hybrid or complex glycans. More recently, an unconventional glycan processing pathway 

has been described, prompted by the growing observation of truncated N-linked structures in 

mammals (19-23). These glycans stem from trimming of hybrid or complex glycans and the 

truncated N-glycans containing one to four mannose residues (Man1-4) are described as 

paucimannose and those without Man residues are described as chitobiose core type glycans (19).  
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Figure 1-3. Processing of N-linked glycans on glycoproteins. Remodelling of the 
Glc3Man9GlcNAc2 structure takes place after it is transferred to a nascent polypeptide chain in the 
ER (top left). During trimming in ER the glycoprotein undergoes folding and oligomeric assembly 
if required, before moving to the Golgi apparatus. Further glycan processing takes place in the cis-, 
medial- and trans-Golgi before secretion of the final glycoprotein. Please refer to the text for a 
description of the pathway. Not all glycan structures and pathways are represented. Figure adapted 
from (1).  

 

1.1.2 O-linked glycosylation 

 

Rather than en bloc transfer of a polysaccharide structure; O-linked glycosylation results from the 

sequential addition of monosaccharides to oxygen, typically from the side chain hydroxyl group of 

Ser and Thr residues. Unlike N-linked glycosylation, there is no amino acid consensus sequence to 

predict the addition of O-linked glycans to Ser and Thr residues (24). Several types of O-linked 

modifications exist, one highly dynamic form typically occurs in the nuclear and cytoplasmic 

compartments of a cell through the addition of β-linked GlcNAc (O-GlcNAc). The core GlcNAc is 
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not normally extended and is associated with intracellular signalling and the regulation of pathways 

in disease states such as diabetes (25). More recently, this type of glycosylation has also been 

observed on extracellular proteins (26).  

 

Alternatively, another type of O-linked glycosylation, generally referred to as mucin-like 

glycosylation, is derived from the ER-Golgi pathway (24). It is initiated by the transfer of GalNAc 

(O-GalNAc) in an α-linkage to acceptor substrates by a large family of polypeptide-N-

acetylgalactosaminyltransferases (ppGalNAcTs) (24). The base GalNAc residue (Tn antigen) is 

built on to form eight different cores, four of which are illustrated in (Figure 1-4). The core-1 

structure (T antigen) is the most common core observed in mucin-like glycosylation and can be 

extended to form long branching structures (24). The addition of NeuAc residues to core-1 forms 

mono- and di-sialylated structures, described as sialyl-T and disialyl-T antigens, respectively. The 

addition of GlcNAc to core-1 forms a core-2 structure which can be elongated with Gal on the 

terminal GlcNAc. The unusual addition of GalNAc to the terminal GlcNAc on a core-2 structure 

forms the less commonly observed LacdiNAc motif (24). Core-3 and core-4 structures are not 

commonly observed but are produced by certain mucin-secreting tissues (24). Mucin-like or dense 

O-GalNAc glycosylation is typically found on regions of glycoproteins that are rich in Ser, Thr and 

Pro and can serve to maintain the conformation of a protein, act a barrier for mucosa and shield 

proteins or cellular surfaces from proteolytic digestion (27-30). However, O-GalNAc glycosylation 

is also found in isolated positions on non-mucinous proteins (31, 32). These isolated O-linked sites 

are predicted to have a range of biological functions including regulating protein cleavage and 

potential involvement in several disease states (31, 33, 34).    

 

 

Figure 1-4. Biosynthesis 
of mucin-like O-linked 
glycans.  
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1.1.3 Viral protein glycosylation  

 

The importance of glycosylation in host-pathogen interactions is well established (29, 35, 36). With 

respect to viral infection, glycosylation of viral surface proteins has been implicated in attachment 

and entry, induction of immune responses and evasion of host-immune responses (37-40). 

Furthermore, viral glycoproteins can be used as targets for vaccines and antiviral therapies (41-44). 

Glycosylation is specific to various organisms, tissues and cell lines (22, 45, 46), as such, 

production of viral proteins in different expression systems can result in substantially different 

glycosylation profiles (47-50). Defining glycosylation of viral surface proteins produced in vivo or 

in vitro is therefore important for the elucidation of host-virus interactions and for the design of 

viral therapeutics. This thesis focuses on characterising site-specific N- and O-linked glycosylation 

of the attachment and fusion (F) proteins from two members of the Paramyxoviridae 

(paramyxovirus) family, human respiratory syncytial virus (hRSV) and Newcastle disease virus 

(NDV). Paramyxoviridae replication occurs in cytoplasm of the host cell and the viruses use 

existing host biosynthetic pathways, including glycosylation pathways, to produce progeny virions 

incorporating glycosylated proteins (51). Glycoproteomic studies of viral proteins can be very 

challenging and adequate quantities of the proteins can be difficult to obtain from natural systems, 

and in some cases, even from in vivo models or from virions propagated in cells lines (49). 

Therefore, studies often involve viral proteins produced from virions in non-natural systems or from 

recombinant methods, as is the case in this thesis.  

 

1.2 PARAMYXOVIRUSES 

 

1.2.1 Taxonomy and global burden 

 

The family Paramyxoviridae, within the order Mononegavirales, is a group of enveloped viruses 

possessing a negative-sense, single-stranded RNA genome. This family of viruses afflicts a diverse 

range of hosts and can be divided into two main subfamilies, Pneumovirinae and Paramyxovirinae 

(51) (Figure 1-5). Within Pneumovirinae there are two significant human pathogens, hRSV and 

human metapneumovirus (hMPV), while Paramyxovirinae contains the human pathogens mumps 

virus (MuV), measles virus (MeV) and human parainfluenza viruses (hPIV 1-4), PIV 5 and the 

zoonotic viruses Hendra (HeV) and Nipah (NiV). Also classified within Paramyxovirinae are 

Sendai virus (SeV) and NDV, causing disease in mouse and bird species, respectively.  
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Collectively, these viruses contribute significant disease and economic burdens worldwide.  

Effective vaccines have been licensed for two human pathogens, MeV and MuV, but outbreaks in 

vaccinated and unvaccinated individuals continue to add to childhood morbidity and mortality rates 

worldwide (52-54). An effective human treatment or vaccine is not available for HeV or NiV, 

which cause severe disease in humans with high case fatality rates (55). A vaccine is available for 

the amplifying host of HeV but measures remain in place to limit human exposure to HeV and NiV 

pending treatments for other livestock and humans (56). Importantly, effective vaccines for hRSV, 

hMPV and hPIV 3, which are substantial contributors to respiratory disease in children and 

immunocompromised individuals, remain elusive (57-59). Besides the serious risk of disease to 

humans, the paramyxoviruses HeV, NiV and NDV, also pose an economic threat through the 

infection of livestock. Outbreaks of these viruses not only result in the death of diseased stock but 

also necessitate the controlled destruction of healthy animals and reduced movement of stock (60, 

61).  

 

 

 

Figure 1-5. Overview of paramyxovirus taxonomy. Not all genera and species have been listed 
and branching does not represent evolutionary distance. The fusion (F) and attachment proteins, 
haemagglutinin (HA), haemagglutinin neuraminidase (HN) or major surface glycoprotein (G) of 
genera of interest have been noted. Adapted from (39). 
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1.2.2 Paramyxovirus structure 

 

Viruses belonging to the paramyxovirus family have six similar proteins (62) (Figure 1-6), two of 

which are known to be glycosylated. These are the surface glycoproteins that project from the lipid 

envelope, known as the F and attachment glycoproteins. The F glycoprotein is common to all 

species discussed above and induces fusion of the host cell membrane and the viral envelope (39, 

63). The attachment glycoprotein belonging to each virus can be one of three protein types; 

haemagglutinin (HA), haemagglutinin neuraminidase (HN) or major surface glycoprotein (G). 

These proteins bind to host cells via specific carbohydrate residues or host cell proteins and may 

also facilitate viral entry (37, 64). The matrix protein is found on the inner surface of the lipid 

bilayer, stabilising the virion structure and directing assembly and budding. Within virions, the 

RNA genome is encapsidated by the nucleocapsid protein, forming a helical nucleocapsid structure. 

The phosphoprotein and large polymerase protein, associate with the nucleocapsid and are 

responsible for polymerase activity (51, 65).  

 

 

 

Figure 1-6. Schematic illustrating the structure of a paramyxovirus. The schematic (not to 
scale) identifies six proteins common to paramyxoviruses. Please refer to the text for a description 
of each protein. The attachment protein represents haemagglutinin (HA), haemagglutinin 
neuraminidase (HN) or major surface glycoprotein (G).  
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1.2.3 Paramyxovirus attachment and fusion surface glycoproteins  

 

The infectious processes of all members of the paramyxovirus family are driven by the attachment 

and F proteins. The protein ectodomains are displayed on the external aspects of the lipid bilayers 

of the viruses, as such; they are also the major antigenic components of the viruses and the main 

target for vaccines and neutralising therapeutics (39). The F protein is a homotrimeric type I integral 

membrane glycoprotein and comparisons of the crystal structures of F from NDV, hPIV3, PIV5 and 

hRSV reveal that they exhibit relatively conserved molecular architecture (63). The F protein is 

produced as a precursor (F0), which is cleaved into an active form by host proteases, resulting in 

disulfide-linked polypeptide chains derived from the amino-terminal (F2) and the carboxyl-terminal 

(F1) domains. Cleavage of F0 into the F2 and F1 subunits releases a hydrophobic peptide or “fusion 

peptide” (FP) that inserts into target membranes after the fusion process has been initiated (66). 

What triggers the F protein and the exact process behind fusion has not been determined and may 

differ for each virus, but F undergoes a conformational change from a metastable prefusion state to 

a stable post-fusion state (67). This fusion process may also produce syncytia if the F protein is 

expressed on the infected cell’s surface (68).   

 

In contrast, the attachment glycoproteins of paramyxoviruses have a diversity of functional 

attributes. Viruses bearing HA can agglutinate red blood cells while those bearing HN additionally 

display neuraminidase (sialidase) activity (51). Viruses expressing G exhibit no haemagglutinating 

or sialidase activities (51). These glycoproteins are oligomeric type II integral membrane proteins 

and comparisons of the atomic structures of HA, HN and G from Paramyxovirinae found the 

secondary and overall structures were highly conserved (63). Within this subfamily the G and HA 

proteins bind to cellular receptors while HN recognises and binds to sialylated glycans (69). After 

receptor binding it is thought the attachment proteins of Paramyxovirinae trigger F and induce 

fusion. Such fusion promotion usually requires expression of F and the stalk domain of the 

homotypic attachment protein (39, 70). Unlike HA, HN and G from Paramyxovirinae the G protein 

from Pneumovirinae is less conserved and there is conflicting evidence as to whether the protein 

binds a specific receptor in vivo and if G is required for infectious processes (71-73).     
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1.3 NEWCASTLE DISEASE VIRUS (NDV) 

 

1.3.1 Significance  

 

The avian paramyxovirus NDV is a model paramyxovirus and the causative agent of Newcastle 

disease (ND). The highly pathogenic nature of ND has resulted in significant economic losses to 

poultry industries worldwide and the disease remains endemic in some countries (74-76). Several 

vaccines are available to control outbreaks, although the inability to treat wild avian populations 

means the virus can persist and new strains of NDV are continually emerging worldwide (61, 77).  

 

Although NDV is not a significant human pathogen, the virus is easily propagated in embryonic 

eggs and previous work specific to NDV has been translated into other enveloped viruses (78).   

Furthermore, therapeutic agents developed for avian viruses can then be translated to closely related 

human pathogens; evident in the development of influenza neuraminidase inhibitors (79). A better 

understanding on the molecular virology of this virus may also be beneficial for treatment of human 

disease. For instance, NDV has been used as an oncolytic agent and vaccine vector for animal and 

human use (43, 80-83) and for the production of NDV-HN virus-like particles and peptide vaccines 

(84-86). 

 

1.3.2 Attachment (HN) and fusion (F) proteins of NDV  

 

The F and HN glycoproteins are presented on the envelope of NDV (Figure 1-7 and Figure 1-8, 

respectively). The levels of virulence of strains seen in NDV, lentogenic (low virulence), mesogenic 

(moderate virulence) and velogenic (highly virulent), are associated with the susceptibility of F0 to 

cleavage into the F2 and F1 disulfide linked chains (78).  Increased cleavage correlates with more 

virulent forms of the virus and the level of cleavage is dictated by the amino acid sequences of the 

cleavage-activation site (87, 88) and cellular distribution of host cell proteases that recognise or 

accommodate particular sequences (77, 89). Further differentiation of virulence is based on whether 

or not HN is expressed with a C-terminal extension (88, 89). In avirulent strains of NDV, such as 

the V4-VAR strain studied in Chapter 4, removal of this extension is required to produce 

biologically active HN. Addition of a C-terminal extension to other strains of NDV that do not 

encode an extension, including highly virulent strains, can reduce pathogenicity (90-92).  
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Figure 1-7. Schematic of NDV F (Strain QLD 66/UniProt ID P33615). The schematic (not to 
scale) identifies the signal peptide (SP), heptad repeats (HR A-C), fusion peptide (FP), 
transmembrane domain (TM) and cytoplasmic tail (CT). N-linked consensus sites (N-X-S/T) are 
marked with vertical lines and the amino acid number of the respective Asn residue. Cleavage of F0 
at the amino-terminal end of FP produces F2 and F1 chains which are linked by a disulfide bond 
(represented by a connected line with the amino acid number of the Cys residues).    

 

To undertake its function of receptor binding, HN recognises and binds to gangliosides and 

sialylated N-linked glycans containing α2–3 and α2–6 sialyl linkages (93). The proximity of the 

virions to host cells then enables fusion of the viral and host cell membranes. Further to its 

attachment function, the stalk domain of NDV HN is also thought to modulate the fusion activity of 

F (70, 94, 95). X-ray crystallography of the stalk domains of NDV HN has revealed a four-helix 

bundle structure (4HB) with an 11-residue repeat forming the hydrophobic core (96, 97). Site-

directed mutagenesis or introduced N-linked sites into the stalk domain of NDV HN both result in 

significantly reduced or blocked fusion (98-100). 

 

 

Figure 1-8. Schematic of NDV HN (Strain QLD 66/UniProt ID P13850). The schematic (not to 
scale) identifies the cytoplasmic tail (CT), transmembrane domain (TM), stalk domain (SD), the 
four-helix bundle (4HB) found in the SD and the globular head domain. N-linked consensus sites 
(N-X-S/T) are marked with vertical lines and the amino acid number of the respective Asn residue. 
Disulfide bonds are represented by connected lines and are derived from (101) with the amino acid 
number of the Cys residues. 
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1.3.3 Glycosylation of NDV HN and F proteins  

 

A mutation study has shown that the N-linked glycosylation site N85 found on F2 of NDV F, is 

highly important for cleavage and fusion activity (102). Sites N191, N366 and N471 also affect the 

functional activity of F whereby mutation of N191 was associated with a small decrease in fusion 

activity and combined mutations of N191 and N471 were found to increase the replication, 

virulence and immunogenicity of viruses (103). Released glycans from NDV F reveal 

predominately high mannose glycosylation of F (104), which has been confirmed at site N85 (105).  

 

With respect to NDV HN, mutation studies predict that four sites are occupied, N119, N341, N433 

and N481 (106, 107). Abolishing these sites can modulate viral replication, transport of HN, protein 

folding and subsequent reactivity with antibodies, and attachment and fusion promotion activity 

(106, 107). Crystal structures of HN have also revealed that sites N341, N433 and N481 are 

occupied, with up two GlcNAc residues identified at each site (91, 108). These residues likely form 

part of the trimannosylchitobiose core while further monosaccharides were likely not observed due 

to the flexibility of glycan chains. It has been shown that N538, which is flanked by two Cys 

residues, is not glycosylated, presumably due to disulfide bond formation (101). Mutation of 

cysteine residues either side of N538 resulted in the addition of glycans as determined by gel 

electrophoresis (109). Site N600 illustrated in Figure 1-8 is found in a limited number of NDV 

strains and is situated in the C-terminal extension that undergoes cleavage to activate HN (88, 89). 

Site N481, and to a lesser extent N341, are required for maturation and proper folding of HN (107), 

while site N119 is thought to mask epitopes recognised by neutralising antibodies (106, 107).  

 

1.4 HUMAN RESPIRATORY SYNCYTIAL VIRUS (HRSV) 

 

1.4.1 Significance  

 

Human respiratory syncytial virus is considered an important cause of acute lower respiratory 

infection in infants, children (110-112) and the elderly and immunocompromised individuals (113). 

Clinical manifestations of severe infection, such as bronchiolitis and pneumonia, can cause 

considerable morbidity and occasional mortality. It is estimated that in 2005 hRSV was responsible 

for between 66,000-199,000 deaths worldwide in children younger than five years (111). There is 
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currently no effective therapeutic or approved vaccine for hRSV and a strong desire exists within 

the scientific and medical communities to develop safe and effective treatments (58, 59, 114).   

 

Several aspects of hRSV infection have hampered the development and application of vaccines and 

antivirals, specifically: the highly pathogenic nature of the virus; the ability of the virus to infect at a 

young age, thus limiting the time-frame to administer vaccines; the ability of the virus to re-infect 

symptomatically throughout life without significant antigenic diversity; and the potential for 

infection to cause enhanced respiratory disease (115, 116). With respect to the latter, considerable 

caution has been applied when developing vaccines and treatments for hRSV since the failure of a 

formalin-inactivated whole virion vaccine in the 1960s (117). After administration of the 

inactivated vaccine to infants, subsequent natural exposure to hRSV resulted in significant 

enhanced lung pathology. Of the recipients who were seronegative for hRSV before vaccination, 

80% required hospitalisation after natural exposure. This enhanced pathology was suggestive of a 

Th2 biased immune response, which is characterised by the production of Th2-type cytokines that 

promote B cell class switching to IgE and induction of eosinophilia and mast cell proliferation and 

degranulation. This Th2 bias has since been documented in clinical and animal models of enhanced 

hRSV disease where there is a predominance of Th2-type cytokines and an excess of lung 

eosinophils and neutrophils (116).  

 

1.4.2 Attachment (G) and fusion (F) proteins of hRSV 

 

Virions of hRSV present the G and F glycoproteins on their envelopes (Figure 1-9 and Figure 

1-10, respectively), which are the main source of epitopes for hRSV antibody responses (118). 

Human RSV isolates are classified into subtypes A and B based on the antigenicity of the G and F 

proteins. The G protein does not follow the same molecular architecture as HA, HN and G from 

Paramyxovirinae and also lacks haemagglutinin and sialidase activity (63). The extracellular 

domain of G is not well conserved within strains of hRSV (119, 120), with the exception of a 

central conserved domain (CCD) containing a cystine noose (121). The G protein of hRSV has been 

implicated in immune evasion (122) and attachment to cell surface glycosaminoglycans (GAG) 

(123, 124) and a chemokine receptor (125). The process of attachment may be reliant on the C-

terminus of the G which can be removed proteolytically in certain cell lines (73). It has been shown 

that G is not essential for hRSV infectivity or replication in cultured cells (72). This dispensability 
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of G may be due to different viral attachment processes between Paramyxovirinae and 

Pneumovirinae, whereby F from hRSV can bind to receptors and facilitate attachment (126).  

 

 

 

Figure 1-9. Schematic of hRSV G (Strain A2/UniProt ID P03423). The schematic (not to scale) 
identifies the cytoplasmic tail (CT), transmembrane (TM), mucin-like domains and heparin-binding 
domain (HBD). N-linked consensus sites (N-X-S/T) are marked with vertical lines and the amino 
acid number of the respective Asn residue. A cystine noose is found between the two mucin-like 
domains and is represented by connected lines according to (121) with the amino acid number of 
the Cys residues.  

 

 

 

Figure 1-10. Schematic of hRSV F (Strain A2/UniProt ID P03420). The schematic (not to scale) 
identifies the signal peptide (SP), fusion peptide (FP), heptad repeats (HR A-C) (131), 
transmembrane domain (TM) and the cytoplasmic tail (CT). N-linked consensus sites (N-X-S/T) are 
marked with vertical lines and the amino acid number of the respective Asn residue. Disulfide 
bonds are represented by connected lines according to (132) with the amino acid number of the Cys 
residues. The furin-like cleavge sites R109 and R136 are denoted by arrows. Cleavage of F0 at the 
amino-terminal end of FP produces the F2 and F1 chains. Additional cleavage at R109 produces 
soluble pep27 (P27).  

  

Another potential explanation for the dispensability of hRSV G is the difference in structural 

rearrangement of the F protein in Pneumovirinae compared to Paramyxovirinae. Cleavage of F0 in 

hRSV by furin-like proteases occurs at two cleavage sites (Figure 1-10); the first site is similar in 

all paramyxoviruses and is found at the amino-terminal end of the fusion peptide with cleavage 
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occurring C-terminal to Arg at amino acid position 136. An additional second cleavage site is found 

at the carboxyl-terminal end of the F2 chain (R109) and cleavage of both sites is a requirement for 

syncytium formation (127, 128). Cleavage at R136 and R109 also results in the loss of a soluble 27 

amino acid peptide, designated pep27 or P27 (128). An interesting study has shown that 

recombinant SeV, expressing the two hRSV F cleavage sites on the SeV F protein, resulted in a 

reduced dependency on HN (129). More recently, one group has suggested that hRSV F is cleaved 

at the amino-terminal site (R109) during transport and expression in host cells, while cleavage at the 

remaining site (R136) occurs after endocytosis which induces the F protein to trigger (130).   

 

1.4.3 Glycosylation of hRSV G and F proteins  

 

The G protein is highly glycosylated, with over half of the mass of the 90 kDa mature form 

attributed to glycosylation, a high proportion of which is O-linked (133-135). The high level of O-

linked glycosylation is thought to be associated with the mucin-like domains found in the 

ectodomain of the protein (115), while N-linked glycosylation (approximately 13 kDa of the mature 

form) may occur at one or more of the four N-linked consensus sites (133, 136). Production of G in 

different cell lines results in distinct migration patterns that can be attributed to changes in the 

glycosylation profile (50, 135). Differential O-linked glycosylation has been noted in G after 

infection of lower respiratory tract primary cells and alveolar epithelial cells, which resulted in 

changes in reactivity of the protein with antibodies (50). The effect of differential glycosylation on 

other functions of G can be seen from a study that produced recombinant hRSV G devoid of O-

linked glycans. Subsequent vaccination reduced lung pathology and Th2 cytokine production in a 

mouse hRSV challenge model (137). Furthermore, removal of a section of the second mucin-like 

domain of hRSV G expressed on a recombinant vaccinia virus reduced the Th2 response in mice 

(138).  

 

With respect to hRSV F, three N-linked sites are thought to be occupied, N27, N70 and N500, with 

the latter site being required for syncytium formation (139). Mutation of site N70 to Gln was seen to 

increase fusion activity while dual mutations N27Q and N70Q decreased fusion activity. A 

significant decrease in fusion activity (90%) was observed after the mutation N500Q. Furthermore, 

the importance of maturation and proper formation of N-linked glycans in infection and subsequent 

syncytia has been reported for hRSV F (135). Prevention of glycan maturation beyond high 

mannose structures resulted in a one hundred-fold reduction in viral infectivity (135). The overall 

importance of glycosylation for hRSV infection has also been shown through treatment of hRSV 
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virions with an exo-sialidase, that removes non-reducing terminal α(2–3,6,8,9) linked NeuAc from 

glycans and resulted in an increase in infectivity (140). Furthermore, treatment of virions with 

specific endoglycosidases, which cleave within glycan structures and remove N-linked or core 1 

and Tn O-linked glycans, significantly decreased viral infectivity (140).  

 

Taken together, the above studies reveal that glycosylation of the attachment and F proteins of 

paramyxoviruses can play important roles in host-pathogen interactions. They highlight the 

importance of characterising site-specific glycan heterogeneity, not only to further elucidate 

potential functional roles of the glycans, but also to ensure accurate glycosylation profiles when 

producing these proteins for therapeutic use. The work presented herein utilised mass spectrometry 

(MS) to characterise the monosaccharide compositions of glycans in a site-specific manner on 

glycoproteins from paramyxoviruses. An overview of MS as a tool to analyse protein glycosylation 

will be discussed in the coming sections.   

 

1.5 MASS SPECTROMETRY AS A TOOL TO ANALYSE GLYCOSYLATION 

 

1.5.1 Methods to analyse protein glycosylation 

 

Glycan heterogeneity and the potential substoichiometric presence of glycoforms make 

characterising glycans a bioanalytical challenge.  A range of tools and techniques can be used 

individually or in combination to characterise protein glycosylation. Some more commonly used 

techniques include lectin or antibody binding to selectively identify glycan structures or glycosidic 

linkages, and staining and visualisation of electrophoretically separated proteins to identify 

glycoproteins or evaluate changes in protein glycosylation (141). Protein glycosylation can be 

altered by enzymatic trimming or removal of glycans, disruption of cellular glycosylation pathways 

or site-directed mutagenesis of proteins to abolish glycosylation sites (141). These techniques 

typically provide a global view of the glycosylation profile of proteins but do not enable 

comprehensive structural information to be elucidated. To obtain such information, glycans can be 

chemically or enzymatically released from glycoproteins and analysed by high performance liquid 

chromatography (HPLC) to deduce structural or compositional information through comparison 

with known glycan standards. However, many proteins have more than one putative site of 

glycosylation and site-specificity is lost with glycan release.  
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Structural characterisation of glycoproteins or glycans may also be achieved using X-ray 

crystallography or nuclear magnetic resonance spectroscopy. However, the inherent flexibility of 

glycan chains and potential glycan heterogeneity can lead to disordered electron density maps or 

incomplete resonance assignments (142). For disordered glycoproteins, small-angle X-ray 

scattering may be used to provide molecular weight (MW) determination or low resolution 

characterisation of protein conformation (143). Another tool that is widely used for the structural 

characterisation of protein glycosylation is MS [reviewed in (19, 144-154)]. Depending on the type 

of analysis implemented, a range of qualitative, quantitative, structural and site-specific information 

can be obtained. Typical analyses involve releasing glycans from the glycoproteins, analysing intact 

glycoproteins or digesting the glycoprotein with proteases before analyses. To adequately describe 

the use of MS for the analysis of protein glycosylation some of the basic concepts of MS will first 

be introduced.       

 

1.5.2 Mass spectrometry  

 

As an analytical tool, MS provides an elegant means of characterising the compositional and 

structural elements of biological macromolecules. The applications of MS are far-reaching but this 

section will introduce MS concepts that pertain mainly to the analysis of proteins and glycoproteins 

and the techniques implemented in this work.  

 

The fundamental principle behind MS is the production of charged particles or ions, which are 

separated and measured according to their mass-to-charge ratio (m/z) and abundance. Therefore, the 

basic components of a mass spectrometer are the ionisation source which ionises the particles; the 

mass analyser, which separates ions according to m/z; and the detector, which measures and detects 

the ions (155). One technique used to produce gas-phase macromolecular ions is electrospray 

ionisation (156, 157). During this technique, a high voltage is applied to a sample in a volatile 

solvent travelling through a narrow capillary creating an aerosol of charged particles. The charged 

particles are produced within an electric field and are transferred from solution into the gas phase as 

the droplets undergo rounds of solvent evaporation and Coulomb fission, which is typically aided 

by high temperatures and a flow of gas in the source (156). Positive or negative ions are formed 

depending on the electric potential applied at the source (156, 157). In positive ion mode, a 

molecular ion is typically formed from the addition of hydrogen (H) cations or protons (that is H 



 

Chapter 1: Introduction to the structure and function of glycosylation with reference to paramyxovirus surface proteins 19 

which has lost an electron) in a process called protonation. This results in multiply charged species 

[M + nH]n+ which can be separated and detected by the mass spectrometer.  

 

There are several types of mass analysers all with varying degrees of speed, sensitivity, m/z range, 

dynamic range, resolution and mass accuracy (157). The mass resolving power and mass accuracy 

of an instrument are important parameters as they enable closely related m/z values to be separated, 

including the isotopic profile of a molecular ion, and thus charge states and accurate masses to be 

determined (158). A mass analyser that is capable of high resolution and mass accuracy is the 

Orbitrap (159), available on the Orbitrap Fusion™ Tribrid™ mass spectrometer  used in this work 

(160). This instrument also contains quadrupole and linear ion trap (LTQ) mass separation 

technologies in a configuration that allows many different tandem MS (MS/MS) acquisition 

strategies to be implemented. These are discussed in the coming sections.  

 

Tandem MS can be implemented in the common “bottom-up” approach in proteomics, where 

proteins are digested and the resultant peptides are typically separated by reverse-phase-HPLC 

before analyses by MS. During MS precursor scans are conducted to measure the m/z values of 

these peptides, described as precursor ions, before they are selected for fragmentation. Tandem MS 

involves increasing the internal energy of multiply charged precursor cations to induce the 

dissociation of covalent bonds, producing product ions. The m/z values of these product ions are 

also measured.  Tandem MS methods include, but are not limited to, collision-induced dissociation 

(CID) (161), higher-energy collision dissociation (also known as higher-energy C-trap dissociation 

and abbreviated HCD) (162) and electron-transfer dissociation (ETD) (163). During fragmentation 

with CID and HCD, dissociation of the peptide bond (C—N) is induced by vibrational activation 

with neutral gas molecules. This predominantly produces b- and y- series ions (164-166) according 

to nomenclature described in (167-169) (Figure 1-11). The collision energies applied during CID 

and HCD on the Fusion™ Tribrid™ mass spectrometer are both considered low-energy with 

collision energies in the low electron-volt (eV) range rather than keV, however, there may be subtle 

differences in the fragment ions that are produced (165). The CID process is performed in the ion 

trap by resonant excitation of a selected precursor ion; primary fragment ions that do not have the 

same m/z value as the precursor ion are therefore not activated further. During the HCD process, 

which is akin to beam-type CID, ions are emitted into a collision cell where primary fragment ions 

retain kinetic energy and can undergo further fragmentation through multiple collisions (170-172). 

An advantage of the latter approach is that fragment ions are not subject to cut-off at the low m/z 

range, as observed in CID MS/MS spectra from trapping analysers (170, 172).  
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In contrast to collision dissociation, ETD is a non-ergodic fragmentation process that occurs after 

transfer of an electron from a radical anion to a multiply charged peptide cation (163). In the case of 

the Fusion™ Tribrid™ mass spectrometer, radical anions of fluoranthene (m/z 202) are utilised as 

the ETD reagent (173). Several mechanisms have been proposed for the fragmentation patterns 

observed during ETD (163, 174) [reviewed in (175, 176)]. Upon electron capture by a charged 

precursor cation the original authors, describing the closely related electron-capture dissociation, 

predicted that a hydrogen atom is transferred to an amide oxygen from a nearby positively charged 

site (177). An intermediate radical site is formed at the carbonyl carbon which induces cleavage of 

the N—Cα bond resulting in c- and z-ions (Figure 1-11). The c- and z-ions produced in ETD are 

even-electron (prime or “′”) and odd-electron radical species (dot or “·”), respectively. However, 

abstraction of H from the z· radical fragment can also result in radical c-ions and even-electron z-

ions (176). During the ETD process, a multiply protonated precursor ion can accept electrons from 

radical anions producing charge-reduced precursors that fail to dissociate (ETnoD) (174, 178, 179). 

The ETD process also promotes neutral losses such as ammonia and water from the charge reduced 

precursors. Ions that are derived from unreacted precursors, ETnoD and neutral losses are often the 

most intense ions in MS/MS spectra (180).   

 

 

 

Figure 1-11. Fragmentation 
of the peptide backbone 
using collision dissociation 
and ETD. (a) Representation 
of peptide fragmentation 
identifiying fragment ions that 
are predominantly observed 
with CID and HCD (b- and y-
ions), and ETD (c- and z-
ions). (b) Representation of 
fragment ions, b3 and y2 and 
c3 and z2.  Image adapted from 
(181).  
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1.5.3 Mass spectrometry for protein glycosylation   

 

As discussed, the inherent complexity of glycosylation creates significant challenges when 

characterising protein glycosylation. Using MS this challenge can be met in several different ways; 

the glycans can be released and studied, the intact protein can be analysed or the glycoprotein can 

be digested with proteases before analysis. Each strategy has benefits and disadvantages and the 

level at which glycosylation is analysed should be determined by the biological or technical 

question to be answered. 

 

Releasing N-glycans is the most well-documented strategy [reviewed in (182-186)], and typically 

relies on peptide-N4-(N-acetyl-ß-glucosaminyl) asparagine amidase (PNGase F). This enzyme 

cleaves N-linked glycans at the innermost GlcNAc residue and converts the previously glycosylated 

Asn to Asp (187). O-linked glycans are usually released chemically, although these methods are not 

as widely reported (185, 188). The released glycans can be labelled and analysed using a variety of 

different MS methods in positive and negative ion mode (189, 190). A major advantage to releasing 

the glycans is the simple methodology and level of structural information that is acquired (190). 

With certain approaches the structures can also be quantified with reasonable consistency (185, 191, 

192). However, if a protein contains multiple sites of glycosylation, site-specific heterogeneity or 

occupancy cannot be established by analysing released glycans.  

 

The field of intact (top-down) glycoproteomics is continually expanding with technical advances in 

mass spectrometers. A particular advantage of intact MS is that it can quantitatively elucidate 

microheterogeneity and macroheterogeneity of the glycoprotein species (193-196). One drawback 

of this technique is that it typically requires a high level of protein homogeneity, and a small 

number of putative sites of glycosylation.  

 

For the purposes of this work, MS was used to characterise site-specific glycan heterogeneity of 

glycoproteins subsequent to their digestion with proteolytic enzymes (197-201). The resultant 

glycopeptides (peptide + attached glycan) preserve information about site occupancy, the 

monosaccharide composition of the glycan and the site of glycosylation, which can be elucidated 

after MS/MS using CID, HCD and ETD (22, 202-213). At this point it would be appropriate to 

reiterate that particular vertebrate monosaccharides are isomeric (Figure 1-1) (E.g. 
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GalNAc/GlcNAc or Man/Gal/Glc), thus mass spectral analysis of intact glycopeptides cannot 

distinguish between monosaccharide isomers in the attached glycans. Nomenclature has been 

implemented in this work to denote this ambiguity, where deoxyhexosamine (dHex) represents Fuc 

and  N-acetylhexosamine (HexNAc) and hexosamine (Hex) are used to represent GlcNAc/GalNAc 

and Man/Gal/Glc, respectively.  

 

When analysing glycopeptides HCD and CID predominantly break the monosaccharide linkages of 

the attached glycan producing diagnostic glycan oxonium ions and glycopeptide fragment ions 

(peptide with varying degrees of the glycan structure) (Figure 1-12) (203, 204, 214, 215). 

Fragmentation can also result in the production of peptide b- and y-ions but factors such as peptide 

sequence, precursor m/z and the level of dissociation energy can affect sequence coverage (214, 

216). When employing collisional energies, a stepped method can be applied where a precursor is 

fragmented with multiple collision energies (typically low, medium and high) and the fragment ions 

are measured in one MS/MS spectrum. By including the lower and higher energies it may produce 

more glycosidic fragments and peptide fragments, respectively. An important facet of HCD 

fragmentation of N-linked glycopeptides is production of a fragment ion consisting of the peptide 

with the core GlcNAc attached (203). This is referred to as the Y1 ion according to nomenclature 

described in (217). This Y1 ion and other fragment ions such as Y2 (peptide+HexNAc2) and 

Y1+dHex1 can be used to infer the mass of the peptide portion of the fragmented glycopeptide. 

These fragment ions, in combination with peptide sequence ions, can therefore facilitate the 

identification of the peptide moiety. When analysing O-linked glycopeptides HCD often results in 

complete loss of the glycan moiety and an intense ion corresponding to the mass of the peptide (Y0) 

(209). Again, the Y0 ion can be used to infer the mass of the peptide moiety and support the 

identification of the peptide through sequence ions. When analysed using high resolution and mass 

accuracy, the oxonium ions produced from the glycan portion of the glycopeptide can be used to 

identify the components of the glycan (203, 218, 219). In some cases, the relative abundance ratio 

of oxonium derived from HexNAc can indicate the presence of certain linkages of monosaccharides 

(GlcNAc or GalNAc) in a glycan (220-222).  

   

Alternatively, ETD predominately induces fragmentation of the peptide backbone and thus 

preserves labile post-translational modifications such as glycosylation (Figure 1-12) (175, 202, 

205). This is an important factor when two or more glycosylation sites are present on a 

glycopeptide. In some instances glycosidic bond cleavages can occur in ETD fragmentation of N- 

(207) and O-linked (223) glycopeptides. More recently, the combination of collision activation 
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(224-226) with ETD, (termed EThcD or ETciD when combined with HCD or CID, respectively) 

has been used to enhance fragmentation of N-linked (227) and O-linked glycopeptides (221). In 

addition to increasing the relative amounts of c- and z-ions these combined fragmentation methods 

also produce ions that are characteristic of CID/HCD fragmentation of glycopeptides (19). This 

proves beneficial as it provides informative spectra where both peptide and monosaccharide 

constituents can be elucidated along with the site of glycan attachment.  

 

 

 
Within this work the emerging acquisition strategies, HCD-product-dependent (HCD-pd)-ETD 

(with or without supplemental activation) or HCD-pd-CID, were also implemented. These strategies 

used high mass accuracy glycan oxonium ions detected in the first pass Orbitrap HCD scans to 

trigger ‘on-the-fly’ ETD or CID fragmentation of the same precursor ion detected in the Orbitrap or 

ion trap, respectively (227-231). These strategies allow targeted sampling of glycopeptides by 

complementary fragmentation techniques in one MS run without a drastic increase in duty cycle, 

which is the time taken to monitor an analyte. This is important, as a large number glycoforms may 

elute in a narrow retention time window, and a short duty cycle is required to analyse as many of 

the eluting glycoforms as possible.   

 

Prior to MS there are many sample preparation methods that may be implemented. One method 

used to determine site occupancy at the glycopeptide level is achieved by digesting a sample with 

PNGase F before or after proteolytic digestion. As noted, removal of the glycan with PNGase F 

results in the conversion of Asn to Asp. The peptides are then subjected to MS/MS where the mass 

difference (+0.984 Da) can be sequenced to Asn in an N-linked consensus site, thus confirming site 

occupancy (187). A general measure of site occupancy can be achieved by digesting a sample with 

PNGase F and comparing the intensities of non-glycosylated peptides containing an N-linked site 

 

Figure 1-12. Representation of 
tandem MS of glycopeptides. 
Theoretical examples of bond 
cleavages using HCD or CID (a) 
and ETD (b).  
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with the de-glycosylated versions of the same peptide (where Asn is deamidated) (232, 233). 

However, spontaneous deamidation can occur and measures need to be taken to minimise such false 

positive data.    

 

Due to the potential substoichiometric presence of glycopeptides and lower signal strength 

compared to non-glycosylated peptides during MS (232), enrichment strategies are also often 

implemented prior to analyses (234). Enrichment is particularly relevant for complex samples and, 

depending on the approach, can facilitate the isolation of a broad range of glycopeptides (206, 213, 

227, 230) or those carrying certain monosaccharides or substituents (235-239). Hydrophilic 

interaction liquid chromatography is commonly reported in the literature (234) with several 

different types of resins and methods available (240-242). By enriching for glycopeptides, or 

glycoproteins prior to proteolytic digestion, it reduces ion suppression by co-eluting non-

glycosylated peptides. This increases the relative intensities of glycosylated peptides and the 

likelihood of their selection and subsequent detection.     

 

1.5.4 Analysis of data derived from tandem MS of intact glycopeptides  

 

Many excellent data analysis tools have been developed to analyse glycopeptides and peptides from 

complex or single protein samples using different enzyme digestions and MS fragmentation 

techniques [reviewed in (243-248)]. However, the analysis of spectra derived from fragmentation of 

intact glycopeptides remains a substantial challenge and still relies on manual validation of 

assignments made by software (248, 249).  

 

The main aim when analysing glycopeptides is to correctly identify the peptide and glycan portions 

of the glycopeptides and the site of glycan attachment. Many factors come into play when trying to 

confirm the components of a glycopeptide, these include where the sample was derived (e.g. the 

organism, tissue or cells), the complexity of the sample and how the sample was prepared. This 

information can be used to narrow the search space by limiting the number of glycans or certain 

monosaccharides or substitutes, specifying protein sequences and including parameters specific to 

sample preparation. Precursor mass is typically not adequate for confident identification of 

glycopeptides (250) and MS/MS spectra may provide additional information that enables confident 

assignment of the peptide moiety and attached monosaccharides or substituents. Chromatographic 
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retention time can also be used to validate glycopeptide assignments as identical peptides with 

different glycans attached will elute in a narrow retention time range.  

 

As aptly described by Lee and colleagues (249), glycopeptide assignments may be false (both the 

peptide and glycan portions are incorrect), or partially false (either the peptide or glycan portion is 

incorrect). There are several potential pitfalls that may be encountered when identifying 

glycopeptides, involving isobaric or near isobaric modifications or reactions that lead to 

misassignment of either the peptide or glycan moiety or both. Partial false positives that stem from 

incorrect assignment of the glycan portion include the allocation of Fuc2 in place of NeuAc1 

(Δm=1.0204), which can occur if the second peak (13C) is selected in the isotopic distribution of a 

precursor ion rather than the monoisotopic peak (Δm=1.0033). The isobaric monosaccharide pairs 

Hex1NeuAc1 and Fuc1NeuGc1 (where NeuGc = N-glycolyl-neuraminic acid) (Δm=0) may also 

prove problematic. To circumvent such problems HCD MS/MS spectra can be interrogated for 

NeuAc fragment ions, the presence of which indicate Fuc2 or Fuc1NeuGc1 are not components of the 

attached glycan. The former can be further confirmed by manual inspection of the isotopic 

distribution to ensure correct selection of the monoisotopic peak. The latter can be further 

confirmed by inspecting HCD MS/MS spectra for the presence of oxonium ion for NeuGc and Fuc 

(251).    

 

Another isobaric difference that may lead to a false assignment is oxidation of Met (O=15.995 Da), 

which equates to the difference between Hex and dHex (C6O5H10-C6O4H10=15.995 Da). Care 

needs to be taken to ensure the peptide modification is correctly identified to prevent the mass 

difference being transferred to the glycan. Side reactions on peptides or glycans need to be 

considered (252, 253) as do non-covalent dimer formations involving glycopeptides (254). Other 

factors that may also need to be taken into consideration when analysing glycopeptides, include the 

position of putative glycosylation sites in the amino acid sequence and residues surrounding 

potential proteolytic cleavage sites. If the putative glycosylation site is adjacent to a proteolytic 

cleavage site the presence of a glycan at that site may hinder cleavage (255). Furthermore, 

negatively charged residues neighbouring a tryptic cleavage site can reduce the cleavage efficiency 

of trypsin, particularly at lysine bonds (256). This may result in missed cleavages and thus larger 

peptides (and potentially glycopeptides) than expected using in silico digestions.   
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1.6 SIGNIFICANCE AND SCOPE OF THIS WORK 

 

A large body of research surrounds the attachment and F proteins of NDV and hRSV including 

functional, structural and immunological studies. It has been shown that glycosylation of NDV HN 

and F and hRSV F and G proteins can affect protein structure and folding and modulate the ability 

of the viruses to infect host cells and stimulate host immune systems. Moreover, mutation studies 

have identified important glycosylation sites on these proteins, and in some cases, have highlighted 

distinct roles for these sites. However, site-specific glycan heterogeneity has not been defined and 

this remains one of the unexplored areas related to NDV and hRSV surface glycoproteins. The work 

presented herein aims to bridge this gap by providing the first site-specific characterisation of 

glycosylation of these proteins. The findings may help elucidate mechanisms of viral attachment, 

replication and immune evasion within paramyxoviruses. Furthermore, it will enable comparisons 

to be made between native viral proteins and those produced in different expression systems for the 

purposes of vaccine and therapeutic design objectives.  

 

1.7 RESEARCH AIMS 

 

Given the paucity of data defining the specific glycosylation patterns of NDV HN and F and hRSV 

F and G the work presented herein was predominately exploratory in nature. During this study it 

became evident that the glycosylation patterns of each protein were quite varied and required 

specialised sample preparation, MS techniques and data analysis pipelines. Therefore, the overall 

research aims in this project were defined as follows:   

 

1. To assess occupancy and the monosaccharide compositions of glycans at each putative N-

linked glycosylation site of NDV HN and F and hRSV F and G.  

2. To define the monosaccharide compositions of O-linked glycans from hRSV G in a site-

specific manner.  

3. To identify unanticipated O-linked glycans on the attachment and F proteins of NDV and F 

protein of hRSV.    



 

Chapter 2: Common materials and methods 27 

Chapter 2: Common materials and methods  

This section contains general theories and methods that were applied throughout this work. Any 

deviations to these methods have been noted in the relevant Chapters.   

 

2.1 GENERAL REAGENTS  

 

Ammonium bicarbonate (NH4HCO3), dithiothreitol (DTT), iodoacetamide (IAA),  coomassie 

brilliant blue (R250), bromophenol blue and triethylammonium bicarbonate buffer (TEAB) were all 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Tris(hydroxymethyl)aminomethane (Tris) 

UltraPure™ was purchased from Invitrogen (Carlsbad, California, USA). Water was purified by a 

Synergy water purification system (EMD Millipore, MA, USA) and an EZ-2 Plus vacuum 

centrifuge was used (Genevac, Ipswich, England). Lyophilised sequencing grade bovine trypsin and 

endoproteinase Glu-C from Staphylococcus aureus and solubilised PNGase F derived from 

Flavobacterium meningosepticum were purchased from Roche Diagnostics GmbH (Mannheim, 

Germany). Solubilised sequencing grade Sialidase A™ (cleaves α(2–3,6,8,9) linked NeuAc) from 

Arthrobacter ureafaciens and lyophilised Sialidase S™ (cleaves α2–3 linked NeuAc) from 

Streptococcus pneumoniae were purchased from ProZyme, Inc. (San Leandro, CA, USA). Trypsin 

was reconstituted in 1 mM HCl and Glu-C and Sialidase S™ in purified water. The proteolytic 

enzymes were aliquoted into 5 µL quantities and trypsin stored at -80 °C and Glu-C at -20 °C. 

PNGase F was stored at -20 °C and the sialidases at 4 °C.   

 

2.2 REDUCTION AND ALKYLATION  

 

Protein samples were reduced with a freshly prepared solution of 10 mM DTT in 100 mM of 

NH4HCO3 buffer with 1-2% (w/v) SDS in microcentrifuge tubes. After the addition of DTT, the 

microcentrifuge tubes were flushed with N2 and reduction was allowed to proceed at 4°C for 18 h. 

This was followed by further reduction for 2 h at room temperature. This strategy was based on 

previously published protocols which demonstrated complete unfolding of the proteins and largely 

penetrant reduction and alkylation of the hydrophobic regions of HN and other proteins (88, 257, 

258). Cys residues were alkylated using a freshly prepared solution of 25 mM IAA in H2O. After 
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the addition of IAA the microcentrifuge tubes were again flushed with N2 and alkylation was 

allowed to proceed in the dark for 2 h at room temperature.      

 

2.3 SODIUM DODECYL SULFATE-POLYACRYLAMIDE GEL ELECTROPHORESIS 
(SDS-PAGE)  

 

One dimensional SDS-PAGE was carried out using the discontinuous buffer system based on 

Laemmli (259). Unless stated otherwise, gels were handcast using stacking [4% acrylamide, 0.1% 

SDS (w/v), 0.125 mM Tris-HCl, pH 6.8] and resolving [10% acrylamide, 0.1% SDS (w/v), 0.375 

mM Tris-HCl, pH 8.8] gels. Polymerisation proceeded at room temperature for a minimum of 2 h 

before continuing over night at 4°C. Prior to SDS-PAGE, protein samples were mixed with equal 

volumes of reducing sample buffer [62.5 mM Tris-HCl (pH 6.8), 2% (w/v) SDS, 20% (w/v) 

glycerol, 10 mM DTT and 0.01% (w/v) bromophenol blue]. SDS-PAGE was performed using a 

Mini PROTEAN® system (Bio-Rad Laboratories, Hercules, CA, USA) with a Tris-Glycine running 

buffer. After electrophoresis the gels were briefly washed in water, stained with 0.03 % (w/v) CBB 

R-250 in 50/8.75/41.25 methanol/acetic acid/water (v/v/v) for 20 min, destained in the same ratio 

methanol/acetic acid/water (60 min), destained again in 8.75/91.25 acetic acid/water (60 min) then 

finally, equilibrated in water (60 min). If required, bands of interest were excised with a clean 

scalpel blade and peptides or proteins were extracted from the gel by in-gel digestion or 

electroelution, respectively.  

 

2.4 IN-GEL DIGESTION  

 

Bands excised from SDS-PAGE separated proteins were sliced into small fragments (~2 mm cubes) 

and destained twice with 200 mM NH4HCO3 in 50 % (v/v) aqueous CH3CN at 37°C for 45 min then 

dried using a vacuum centrifuge. The gel fragments were rehydrated with 40 mM NH4HCO3 in 10% 

(v/v) aqueous CH3CN containing 0.02 µg/µL trypsin for 1 h at room temperature. Additional 40 

mM NH4HCO3 in 10% (v/v) aqueous CH3CN was added and the samples were incubated at 37°C 

overnight. The supernatant containing the tryptic peptides was removed and the gel fragments were 

further extracted three times with 0.1% (v/v) aqueous trifluoroacetic acid at 37°C for 45 min, the 

supernatants from all extracts were pooled with the original digest supernatant. The samples were 

reduced to ~10 µL in a vacuum centrifuge for MS analysis.  
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2.5 ELECTROELUTION  

 

Intact proteins were harvested from SDS-PAGE bands by electroelution, in this technique excised 

gel pieces are placed in a submerged chamber in an electroelution tank and proteins are drawn from 

the gel using an electric field and concentrated on a dialysis membrane. A buffer of 0.1M 

NH4HCO3 buffer and 0.05% (w/v) SDS was used and 3,500 MWCO Snakeskin™ pleated dialysis 

tubing (Pierce, Rockford, IL, USA). Electroelution was performed at a constant application of 2 W 

of power for 3 h before harvesting then a further 12.5 h before a second harvest.  

 

2.6 METHANOL PRECIPITATION AND IN-SOLUTION TRYPSIN DIGESTION  

 

In order to concentrate proteins and remove any impurities protein samples were subjected to 

methanol precipitation before in-solution digestion with trypsin. The precipitation method followed 

previously published protocols (257, 260). Protein samples were reduced to a volume of less than 

100 µL in a vacuum centrifuge. The protein samples were co-precipitated with an aliquot of trypsin 

(protein to enzyme ratio 100:1) using ten volumes of methanol (-20°C) and incubated at -20°C 

overnight. After overnight precipitation, the samples were centrifuged for 15 min at 16,000 x g, 4°C 

and the supernatant aspirated. The pellets were washed twice more with -20°C methanol (90%) then 

dried and resuspended in 0.1M TEAB. If required, the samples were gently vortex mixed to 

solubilise the proteins. The samples were briefly centrifuged and incubated at 37°C for 2 h.  Finally, 

another aliquot of trypsin was added (protein to enzyme ratio 33:1) and the digests were incubated 

at 37°C for a further 6 h. Co-precipitation enhances the efficiency of trypsin digestion as trypsin can 

work its way out of incompletely solubilised proteins.          

 

2.7  NANO-ULTRA-HIGH PRESSURE LIQUID CHROMATOGRAPHY-TANDEM MS  

 

Mass spectral analyses of samples acidified with aqueous trifluoroacetic acid were performed on an 

Orbitrap Fusion™ Tribrid™ Mass Spectrometer (Thermo Fisher Scientific Inc. Bremen, Germany) 

in positive ion mode. The mass spectrometer was coupled to a nanoACQUITY nano-ultra-high 

pressure liquid chromatography (nUHPLC) system (Waters Corporation, MA, USA), where 
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trapping was performed on a Waters C18 2G Symmetry (100 Å, 5 µm, 180 µm x 20 mm) trap 

column and gradient elution on a Waters C18 BEH (130 Å, 1.7 µm, 75 µm x 200 mm) column in-

line with the trap column. Solvent A was 0.1% (v/v) aqueous formic acid and solvent B was 100% 

(v/v) CH3CN containing 0.1% (v/v) formic acid. Eluates from the analytical column were 

continuously introduced into the mass spectrometer via a Nanospray Flex™ (NG) ion Source 

(Thermo Scientific) fitted with a PicoTip™ emitter (coating P200P, tip 10 ± 1 μm, New Objective, 

MA, USA). The MS methods implemented were specific to the NDV and hRSV glycoproteins and 

have been detailed in the relevant Chapters. All RAW files discussed in this thesis have been 

included in the supplementary files.  

  

2.8 DATA ANALYSIS OF PEPTIDES 

 

Proteome Discoverer (v. 1.4.1.14 or 2.1.0.81, Thermo Scientific) and the search engine Mascot (v. 

2.5.1, Matrix Science Ltd., London, UK) were used to search the RAW data files generated from 

MS analysis of digested NDV and hRSV glycoproteins. The input parameters and databases were 

specific to each protein and have been detailed in the relevant Chapters.  

 

2.9 DATA ANALYSIS OF GLYCOPEPTIDES 

 

At the commencement of this study several software tools were investigated for their ability to 

identify glycopeptides and correctly assign the monosaccharide compositions of the glycan from 

MS/MS spectra using a variety of fragmentation methods (261-264). Byonic (v. 2.0-3) was selected 

due to its capability in handling multiple fragmentation types (CID, HCD, ETD and EThcD) (261, 

265). For searches in Byonic, data from RAW files were converted to either MGF or mzML in 

Proteome Discoverer using a signal-to-noise (S/N) threshold of zero. An in-house spectral 

processing program, OxoExtract, was also developed for the analysis of HCD MS/MS spectra of 

glycopeptides (discussed in Chapter 3). For searches in OxoExtract, data from RAW files were 

converted to mzML in Proteome Discoverer using an S/N threshold of zero.   

 

All glycopeptides assigned by Byonic or OxoExtract were manually validated. The peptide portion 

of the glycopeptide was verified using combinations of glycopeptide fragment ions (Y1 or Y0) with 

peptide b- and y- or c- and z-ions. Glycopeptides were expected to elute within a reasonable 
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retention time window, taking into consideration neutral and charged glycans and modifications to 

peptide moieties such as oxidised Met or deamidated Asn. Diagnostic glycan oxonium ions in a 

spectrum were used to confirm the presence of each monosaccharide or substituent assigned in the 

glycan. For example, HexNAc, Hex, dHex or NeuAc were confirmed through ions such as 

HexNAc1 (m/z 204.0867), HexNAc1Hex1, (m/z 366.1395), HexNAc1Hex1dHex1 (m/z 512.1974) or 

NeuAc1 (m/z 292.1027), respectively. The use of diagnostic glycan oxonium ions in this work is 

discussed in more detail in Chapter 3. If the composition of the glycan could not be unambiguously 

assigned using oxonium ions (applicable mainly to sulfated and phosphorylated glycans) this has 

been noted in the relevant chapters.  

 

2.10 ADDITIONAL DATA ANALYSIS TOOLS  

 

For each glycoprotein analysed a degree of manual searching of spectra was required. Xcalibur 

Qual Browser (v. 3.0.63, Thermo Scientific) was used to search spectra and produce extracted ion 

chromatograms (EICs) for m/z values of interest. Xcalibur Qual Browser was also used to export 

spectra for manual annotation in Adobe Illustrator (Adobe). The MS-Digest and MS-Product 

modules of Protein Prospector (http://prospector.ucsf.edu) were used to calculate the theoretical 

masses of peptides and peptide fragment ions, respectively.  

  

 

 

http://prospector.ucsf.edu/
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Chapter 3: Development of a spectral processing 
program for the analysis of 
glycopeptides using HCD MS/MS  

3.1 SUMMARY 

 

Despite the availability of numerous software tools for the identification of glycopeptides, confident 

assignment of site-specific glycosylation still relies on manual validation of results. Moreover, if a 

sample contains glycans that are not commonly observed, a specific glycan database may need to be 

compiled prior to software searches. Accordingly, identification of glycopeptides can prove time-

consuming. To this end, a spectral processing program called OxoExtract was developed to 

automate site-specific assignment of glycans from a single protein. The purpose of the program was 

two-fold. First, it extracted all MS/MS spectra containing a “query” ion (i.e. a diagnostic glycan 

oxonium ion) and reported useful data such as precursor information and other oxonium ions or 

glycopeptide fragment ions observed in the spectrum. Second, it selected and submitted candidate 

N-linked glycopeptides for searches in GlycoMod to identify the attached N-linked glycan. These 

results were manually validated and used to create a custom glycan database for searches in Byonic.   

 

3.2 INTRODUCTION 

 

Preliminary investigations of NDV HN glycopeptides (discussed in Chapter 4) revealed many of the 

monosaccharide compositions at a given site were not present in glycan databases provided by 

Byonic or in repositories such as UniCarbKB (266). The observed monosaccharide compositions of 

the glycans were highly fucosylated and variably sulphated or phosphorylated. This prompted the 

development of a custom glycan database for NDV HN using the web based application GlycoMod 

(264). A major advantage of GlycoMod is that it searches for all possible monosaccharide 

compositions within a defined mass tolerance rather than relying on glycan databases. When 

analysing glycopeptides in GlycoMod the masses of putatively glycosylated peptides are entered, or 

are computed by GlycoMod if a protein sequence is provided. The user also enters observed 

precursor masses and GlycoMod predicts all possible monosaccharide compositions from a list of 

ten monosaccharides and substituents (for each residue there is an upper limit that is imposed for 
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inclusion in the composition). A large number of matches may result, particularly if all optional 

monosaccharide residues are considered as potential components of the glycan and if there are 

several potential sites of glycosylation in the protein sequence. The output from GlycoMod may be 

limited by refining the search parameters before each search. For example, data from the spectrum 

of a fragmented glycopeptide can be used to infer information such as the peptide mass and 

presence of certain monosaccharides or substituents on the attached glycan. By entering this 

information into GlycoMod it reduces the search space and thus time spent manually reviewing and 

removing false-positive results. OxoExtract is a program developed during the course of this work 

to automate the submission of these peptide and compositional constraints to GlycoMod for N-

linked glycopeptide searches. OxoExtract selects all HCD MS/MS spectra with a specified “query” 

ion and searches them for oxonium and glycopeptide fragment ions. OxoExtract then extracts 

candidate glycopeptides and submits them to GlycoMod, customising the search parameters for 

each spectrum of a putative glycopeptide. Finally, OxoExtract creates a single output file that 

contains data for all spectra with a “query” ion and the results of the GlycoMod searches.  

 

3.3 DEVELOPMENT OF OXOEXTRACT 

 

The rules implemented in OxoExtract were based on glycopeptide fragmentation patterns using 

HCD where the fragment ions were detected in the Orbitrap. Fragmentation of glycopeptides using 

HCD typically results in the production of the Y1 ion and diagnostic glycan oxonium ions, in 

particular the HexNAc oxonium ion (203, 204). Similar fragmentation patterns were observed using 

the Fusion™ Tribrid™ mass spectrometer after manual interpretation of spectra from the analysis 

of NDV HN (discussed in Chapter 4). Therefore, the main principle behind OxoExtract is to isolate 

all spectra containing a “query” m/z value (such as 204.0867 for [HexNAc+H]+). OxoExtract then 

searches those spectra for other oxonium ions and glycopeptide fragment ions including the Y1 ion. 

Observations of other oxonium ions can be used to confidently assign the presence of 

monosaccharides or substituents in assigned glycans (218-220, 238, 251, 267, 268). For example, 

sialylated glycopeptides produce abundant oxonium ions (NeuAc1-H2O and NeuAc1) (218) while 

glycans with terminating Fuc residues may produce ions corresponding to HexNAc1Hex1dHex1 

(268). Such oxonium ions can also be used to prevent misassignment of glycans due to isobaric or 

near isobaric monosaccharide compositions and peptide modifications (discussed in Chapter 1). 

Furthermore, the identification of Y1+dHex can indicate core fucosylation (146, 216). The 

prescribed rules were translated into the OxoExtract Java application by Dr Christine Hoogland.   
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3.3.1 Searching with OxoExtract  

 

The graphical user interface for OxoExtract is shown in Figure 3-1 and identifies all input 

parameters.  

 

 

Figure 3-1. Graphical user interface of OxoExtract  
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When using OxoExtract the first step is to upload an mzML file of HCD MS/MS spectra. The user 

then enters a “query” m/z value along with the mass tolerance to be applied (ppm). For all 

OxoExtract searches completed in this work the “query” ion was [HexNAc+H]+ (204.0867) and a 

±10 ppm mass tolerance was applied. As stated, OxoExtract searches all spectra with a “query” 

oxonium ion for predefined mono- and oligosaccharide oxonium ions. The list of the oxonium ions 

is stored in an Excel spreadsheet within the data folder of OxoExtract which can be modified by the 

user. The oxonium ions used in this work were observed in samples, theoretical or were defined in 

the literature (219, 220, 238, 251, 267-269) and have been represented in Table 3-1. For the 

purposes this work the monoisotopic masses of the oxonium ions were calculated with ChemCalc 

(http://www.chemcalc.org/) (270) using the chemical formula of the ions.  

 

Spectra with the “query” oxonium are also searched for theoretical N-linked and O-linked 

glycopeptide fragment ions derived from an in silico digest of the protein of interest. Protein 

sequences searched by OxoExtract are stored in an Excel spreadsheet within the data folder of 

OxoExtract, which can be modified by the user. Input parameters for the in silico digest include the 

protein sequence, the proteolytic enzyme and the number of allowable missed cleavages (between 

zero and two). A fixed modification of Cys carbamidomethylation and a variable modification of 

oxidised Met can be selected for use in the calculation of theoretical fragment ions. The program 

also requires a maximum charge (between one and five) and m/z range (e.g. 0-2000) to be set for the 

calculation of theoretical fragment ions. For N-linked searches m/z values for Y1, Y2, Y1+dHex 

and peptide b- and y-ions are calculated for all peptides containing the specified N-linked consensus 

sequence (default is N-X-S/T). There is also an option to add the mass of HexNAc1 to peptide y-

series ions for proline. For O-linked searches m/z values are calculated for Y0 and Y1 ions and 

peptide b- and y-ions for all peptides containing Ser or Thr.  

 

When specified, OxoExtract queries GlycoMod with a list of candidate N-linked glycopeptides to 

predict the compositions of the attached glycans. All precursors where fragmentation resulted in the 

production of the “query” oxonium ion and an N-linked Y1 ion are considered candidate 

glycopeptides. The previously entered mass tolerance (ppm) is applied as the mass tolerance for 

GlycoMod searches. For each candidate glycopeptide search (i.e. each spectrum), OxoExtract 

submits the precursor mass [M] and the peptide mass [M] (derived from the peptide portion of the 

theoretical Y1 ion in the spectrum). Pre-programmed rules implemented in OxoExtract define 

inclusion of certain monosaccharides for the GlycoMod searches. OxoExtract stipulates that for 

every search HexNAc and Hex must be components of the N-glycan (equivalent to selecting “Yes” 
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for a monosaccharide in a GlycoMod search). This was implemented as they form the common 

trimannosylchitobiose core. The residues NeuAc and dHex are considered “Possible” components 

of the N-linked glycan if the relevant dHex or NeuAc containing-oxonium ions are present in the 

spectrum of the candidate glycopeptide. The oxonium ions used for inclusion of dHex are listed in 

italics in Table 3-1 under “dHex”. The presence of m/z values for Y1+dHex also triggers the dHex 

to be considered “Possible”. The oxonium ions used for inclusion of NeuAc are listed in italics in 

Table 3-1 under “NeuAc”. The user can modify the list of oxonium ions that trigger inclusion of 

dHex or NeuAc in the search.  If the relevant dHex or NeuAc containing-oxonium ions are not 

present in the spectrum of the candidate glycopeptide, OxoExtract stipulates that they should not be 

considered in the monosaccharide compositions (equivalent to selecting “No” for a monosaccharide 

in a GlycoMod search). The inclusion of residues NeuGc, pentose, Sulf, Phos, ketodeoxynonulonic 

acid (KDN) and hexuronic acid (HexA) as potential components of the N-glycans is defined by the 

user (Options: Yes, Possible, No) (Figure 3-1).  

 

Often there are multiple matching compositions in the results of GlycoMod searches. The criteria 

for ranking the final N-linked composition that is displayed in the OxoExtract output file are as 

follows: compositions with a common trimannosylchitobiose core are selected over those without a 

core; if more than one match contains the common core then the composition that is listed in 

UniCarbKB is selected and; if no matches or more than one match is listed in UniCarbKB then the 

composition with the lowest Δmass (ppm) value is selected. A link is also provided with the results 

of the individual GlycoMod search and the user can assess other matching compositions for that 

search if needed.    

 

 

 

 

 

 

 

 

 



 

38 Chapter 3: Development of a spectral processing program for the analysis of glycopeptides using HCD MS/MS 

Table 3-1. Oxonium ions investigated in OxoExtract searches of spectra 
 

Oxonium ion  [M+H]+ Oxonium ion  [M+H]+ 

HexNAc: N-acetylhexosamine     

HexNAc1 204.0866 HexNAc2-H2O 389.1555 
HexNAc1-C2H6O3  126.0550 HexNAc2  407.1660 
HexNAc1-CH6O3  138.0550 HexNAc2+H2O  425.1766 
HexNAc1-C2H4O2  144.0655 HexNAc3-H2O 592.2348 
HexNAc1-2H2O  168.0655 HexNAc3 610.2454 
HexNAc1-H2O  186.0761 HexNAc3+H2O 628.2560 
HexNAc1+H2O  222.0972   
    
Hex: Hexose     
Hex1 163.0601 Hex3 487.1657 
Hex1-H2O  145.0495 Hex4 649.5707 
Hex2  325.1129 Hex5  811.2714 
    

HexNAc/Hex      

HexNAc1Hex1-H2O  348.1289 HexNAc1Hex3 690.2451 
HexNAc1Hex1  366.1395 HexNAc2Hex2 731.2717 
HexNAc1Hex1+H2O 384.1500 HexNAc3Hex1 772.2982 
HexNAc1Hex2  528.1923 HexNAc2Hex3 893.3245 
HexNAc2Hex1 569.2188 HexNAc3Hex2  934.3510 
    

dHex: Deoxyhexose    

dHex1 147.0652 HexNAc1Hex1dHex1 512.1974 
dHex2  293.1231 HexNAc2dHex1 553.2239 
Hex1dHex1 309.1180 HexNAc1Hex1dHex2 658.2553 
Hex1dHex1+H2O 327.1286 HexNAc1Hex3dHex1 836.3030 
HexNAc1dHex1 350.1446 HexNAc2Hex2dHex1 877.3296 
    

NeuAc: N-acetylneuraminic acid   

NeuAc1 292.1027 HexNAc1Hex1dHex1NeuAc1 803.2928 
NeuAc1-H2O 274.0921 HexNAc1Hex2NeuAc1 819.2877 
NeuAc1-2H2O  256.0816 HexNAc2Hex1NeuAc1 860.3143 
HexNAc1Hex1NeuAc1  657.2349 HexNAc1Hex1NeuAc2 948.3303 
NeuAc1-2H2O   256.0816 HexNAc1Hex3NeuAc1 981.3405 
Hex1NeuAc1 454.1555 NeuAc + O-acetylation (Ac)   
HexNAc1NeuAc1 495.1821 NeuAc1Ac1 334.1133 
HexNAc1dHex1NeuAc1 641.2400 NeuAc1Ac1-H2O 316.1027 
HexNAc2NeuAc1 698.2614 HexNAc1NeuAc1Ac1 537.1926 
    
Sulf: Sulfate     
Sulf1  80.9641 HexNAc2Sulf1 487.1228 
Hex1Sulf1  243.0169 HexNAc1Hex1dHex1Sulf1  592.1542 
HexNAc1Sulf1 284.0435 HexNAc1Hex1NeuAc1Sulf1  737.1917 
HexNAc1Hex1Sulf1 446.0963   
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Phos: Phosphate    

Phos1 80.9736 HexNAc1Hex1Phos1 446.1058 
Hex1Phos1  243.0264 HexNAc2Phos1  487.1324 
HexNAc1Phos1 284.0530   

    
Pent: Pentose      
Pent1 133.0495 HexNAc1Pent1  336.1289 
Hex1Pent1  295.1024   
    

HexA: Hexuronic acid    

HexA1  177.0394   

    

KDN: Ketodeoxynonulonic acid  

KDN1  251.0761   

    

NeuGc: N-glycolyl-neuraminic acid   

NeuGc1 308.0976 NeuGc + O-acetylation   
NeuGc1-H2O 290.0870 NeuGc1Ac1-H20 332.0976 
HexNAc1NeuGc1   511.1770 NeuGc1Ac1 350.1082 
  HexNAc1NeuGc1Ac1    553.1875 

 

 

3.3.2  Limitations 

 

It is important to note that OxoExtract does not apply a scoring algorithm. As such the program 

should not be used without manual validation. Only two peptide modifications were included in the 

parameters (carbamidomethyl Cys and oxidised Met), thus glycopeptides with other peptide 

modifications need to be investigated manually. Another limitation is that OxoExtract can only be 

used for single protein searches, and is therefore not useful for investigations into complex samples. 

Finally, OxoExtract requires both the “query” oxonium ion and the Y1 ion to be present in a 

spectrum for it to be considered a candidate N-linked glycopeptide. Production and intensities of the 

Y1 ion has been shown to be dependent on the collision energy used, the charge state of the 

precursor ion and the amino acid sequence of the glycopeptide (203). Reliance on the Y1 ion may 

lead to false-negatives (e.g. the Y1 ion is not produced and the glycopeptide is not submitted for 

GlycoMod searches) and false-positives (e.g. a fragment ion matches the Y1 but is not a true Y1 

ion).  
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3.4 DISCUSSION  

 

At the commencement of this work most available software relied on pre-defined glycan databases 

(255, 261, 263, 271-273), in a manner analogous to proteomic software. Software that did not 

require prior knowledge of glycan databases [reviewed in (244)] were not freely available or did not 

suit the MS methods being applied herein. Manual identification of glycopeptides from NDV HN 

(discussed in Chapter 4) revealed monosaccharide compositions that were not present in glycan 

databases. OxoExtract was therefore developed to automate manual searches of N-linked 

glycopeptides in GlycoMod while also permitting a global view of the fragmentation characteristics 

of glycopeptides. The optional feature of searching with GlycoMod reduced the time spent 

identifying glycopeptide candidates and manually validating glycopeptide assignments. By 

specifying peptide masses and monosaccharide residues for each search it reduced the number of 

hits allocated by GlycoMod but did not limit the search to structures not yet defined in glycan 

databases.  

 

In this work, OxoExtract was often used several times to search a single mzML file. The first search 

was typically completed without the GlycoMod feature. Putative glycopeptides were investigated 

using information such as the presence of oxonium ions, retention time and glycopeptide and 

peptide fragment ions. This information was used to build a “glycosylation oxonium ion profile”. 

This profile was then used to set the parameters for further searches using the GlycoMod feature or 

to ascertain if glycan databases in Byonic were appropriate for the sample being analysed. For 

example, the presence or absence of diagnostic oxonium ions for NeuGc (251) was used to include 

or exclude the residue in searches. This helped prevent misassignment of the isobaric 

monosaccharide pairs Hex1NeuAc1 and Fuc1NeuGc1 in subsequent searches using OxoExtract and 

Byonic (249). As another example, the presence of sulfated oxonium ions was used to identify the 

potential substituent on glycans from each sample. Overall, OxoExtract allowed flexible 

interpretation of glycopeptide data, which was used to assign N-linked compositions and compile 

protein-specific glycan databases. These were then combined with the predefined Byonic glycan 

databases ensuring a more complete profile of glycosylation was obtained.  
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Chapter 4: Characterisation of glycosylation of 
Newcastle disease virus haemagglutinin-
neuraminidase (HN) protein 

4.1 SUMMARY  

 

Members of the Avulavirus, Respirovirus and Rubulavirus genera of paramyxoviruses utilise HN 

glycoproteins as their attachment proteins. Previous studies have shown that the N-linked glycans 

present on these proteins can modulate the ability of the virus to infect host cells and stimulate the 

host immune system. However, site-specific heterogeneity of these glycans has not been defined. 

This study concerns characterisation of the monosaccharide compositions attached to HN of the 

Avulavirus NDV which causes ND in a range of avian species. The HN protein was derived from 

egg propagated virions of V4-VAR, an isolate of the avirulent strain QLD/66. Tandem mass 

spectrometry strategies including CID, HCD and ETD were implemented to characterise the 

heterogeneity of glycans. Overall 63, 58, and 37 glycans were identified at Asn residues 341, 433 

and 481, respectively. Sites N433 and N481 were observed to contain high mannose glycans with 

paucimannose glycans also observed at site N481. Sites N341, N433 and N481 contained complex 

or hybrid glycans with many of the glycans containing variations of Fuc and Sulf or Phos. 

Sialyation of complex or hybrid N-linked glycans was additionally observed at N341 and N433. In 

addition, a previously undocumented O-linked glycosylation site was identified on the stalk domain 

of the HN protein. These findings will form the basis for future quantitative glycomic studies of N-

linked glycans from NDV HN and assessment of the functional significance of the O-linked glycan 

in the stalk domain of this protein.  

  

4.2 INTRODUCTION  

 

Highly pathogenic and infectious strains of NDV can result in significant economic losses to the 

poultry industry worldwide (74, 75). Although vaccines are available to control outbreaks it is not 

feasible to effectively vaccinate wild avian populations. Consequently, this provides a niche for the 

virus to propagate and new strains of NDV are continually emerging (61, 77). Effective therapeutic 

agents may be a very useful adjunct to vaccines to control NDV, particularly for protection of elite 
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breeding stocks. In addition to the interest on NDV in relation to avian disease, a better 

understanding of this virus may be beneficial in the context of comparative paramyxoviruses that 

cause human disease. The HN protein possesses haemagglutination and sialidase activity and the 

overall architecture and functions of HN from the Paramyxovirinae subfamily are quite well 

conserved. Thus mechanisms of action identified from NDV HN may translate to other human 

viruses such as hPIV.      

 

As discussed in Chapter 1, mutation studies have shown that sites N119, N341, N433 and N481 

from NDV HN strains are likely to be occupied (106, 107). Furthermore, these studies show that the 

loss of glycosylation sites can affect protein folding and transport of HN, viral replication and 

pathogenesis. Despite the functional importance of the glycans on NDV HN, no in-depth report of 

these glycans has been described. Glycan site-specific heterogeneity of HN from NDV is reported 

for the first time herein. The avirulent isolate of NDV used in this study, herein termed V4-VAR, 

was a variant of the avirulent QLD/66 strain of NDV (274).  The V4-VAR isolate has been used in 

previous studies to provide important structural insights into HN and F proteins from 

paramyxoviruses (101, 275, 276). A total of 63, 58 and 37 different N-linked glycans were 

identified across HN glycosylation sites N341, N433 and N481, respectively. These included high 

mannose and complex or hybrid glycans that were variably fucosylated, sialylated and sulfated or 

phosphorylated. In addition, O-linked glycans were identified on a previously undocumented O-

linked site from the stalk domain of the protein. 

 

4.3 METHODS 

 

4.3.1 Provision of samples  

 

The viral preparation V4-VAR was provided by Professor Jeffrey Gorman from the Protein 

Discovery Centre at QIMR Berghofer. The isolate of NDV used was a variant of the Queensland 

(QLD)/66 strain of NDV (274) propagated and purified in embryonic chicken eggs as previously 

described (88, 277). Briefly, the virus was grown in nine-day-old embryonic eggs and virions were 

isolated by centrifugation using a linear sucrose density gradient.  
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4.3.2 SDS-PAGE separation of V4-VAR virions and electroelution of HN proteins   

 

From stocks of purified V4-VAR virions, approximately 48 µg was reduced and alkylated as per the 

methods described in Chapter 2 except that 50 mM of IAA was used. Reduced and alkylated V4-

VAR viral proteins were subjected to SDS-PAGE followed by staining and de-staining. Bands of 

interest that migrated to ~75 kDa were excised and stored overnight at 4°C until electroelution as 

per the methods described in Chapter 2. Electroelution has previously been shown to be an effective 

technique for recovery of HN proteins in a form compatible with downstream in-solution sample 

handling strategies (88, 257). 

 

4.3.3 Enzymatic digestions of V4-VAR HN proteins  

 

After electroelution the protein samples were methanol precipitated overnight as per the methods 

described in Chapter 2, except that 0.05 µg of trypsin was added before precipitation and a further 

0.1 µg of trypsin was added for the final incubation in 0.1 M TEAB. An aliquot of the V4-VAR HN 

tryptic digest was subject to digestion with 1 µL of 1U/µL recombinant PNGase F at 37°C 

overnight. Resultant peptides were desalted with a C18 ZipTip (10 µL pipette tip with a 0.6 µL 

resin bed; Millipore, MA, USA) using the manufacturers’ guidelines for MS analysis.  

 

4.3.4 Nano-ultra-high pressure liquid chromatography 

 

Approximately 1/10 of the electroeluted and digested sample was injected for each analysis using a 

nUHPLC system as described in Chapter 2. Samples were loaded onto the trap column and washed 

for 5 min at 15 µL/min in 98% solvent A and 2% solvent B. Peptides and glycopeptides were 

subsequently eluted onto the analytical column at flow rate of 0.3 µL/min whilst ramping through a 

sequence of linear gradients from 2% to 40% solvent B in 60 min, to 70% B over 15 min, to 95% B 

in 5 min then holding at 95% B for 5 min. The column was then re-equilibrated with 2% B for 20 

min.   
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4.3.5 Mass spectrometry data acquisition  

 

Data were acquired using a variety of fragmentation strategies (203, 204, 228-231) set out in 

Appendix A. The tryptic V4-VAR sample was run as three separate chromatographic experiments 

(HCD, HCD-pd-ETD and HCD-pd-CID) and the trypsin/PNGase F sample as one chromatographic 

experiment (HCD-pd-ETD). It is important to note that this study was not designed to compare the 

effectiveness of HCD, CID or ETD fragmentation. Different MS acquisition strategies and data 

analysis pipelines were implemented to qualitatively characterise site-specific glycan heterogeneity 

of V4-VAR HN.  

 

4.3.6 Sequence conservation of HN across multiple NDV strains 

 

A multiple sequence alignment was used to assess sequence conservation and the presence of N-

linked consensus sites in HN across strains of NDV. All reviewed NDV HN sequences were 

retrieved from UniProt (fifteen HN sequences retrieved on 12 March 2016) (278). The protein 

sequences were aligned using Clustal Omega (279) available at www.uniprot.org applying the 

default parameters (Gonnet transition matrix, gap opening penalty of six bits and gap extension of 

one bit) (280). 

 

4.3.7 Determining amino acid sequence changes in V4-VAR HN 

 

Proteome Discoverer (v. 1.4.1.14) and the search engine Mascot were used to search spectra from 

the HCD MS/MS analysis of tryptic peptides from V4-VAR. The protein database used contained 

the complete proteome of chicken and reviewed protein sequences from NDV (downloaded from 

www.uniprot.org on 18 April 2016 consisting of 24,094 chicken and 43 NDV protein sequences) 

and 247 common contaminant sequences (281). The following parameters were used for the Mascot 

search: digestion with trypsin; maximum of two missed cleavages; 10 ppm precursor mass 

tolerance; 0.02 Da fragment tolerance; fixed modification of carbamidomethylation of Cys and 

dynamic modifications of mono-oxidised methionine Met and deamidation of Asn and Gln 

residues. Confident peptide-to-spectrum matches (PSMs) were assigned using the Proteome 

Discoverer “Target Decoy PSM Validator” and a PSM false discovery rate (FDR) threshold of 0.05 

was applied. At least two unique peptides were required for confident protein identifications. To 

http://www.uniprot.org/
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confirm the amino acid sequence of HN from V4-VAR, PSMs for NDV HN were manually 

validated. Peptides not identified in the HN sequence by the Mascot search were investigated by 

manual de novo sequencing in Xcalibur Qual Browser.   

 

4.3.8 Assignment of N-linked monosaccharide compositions and glycopeptides to V4-VAR 
HN using HCD fragmentation  

 

Spectra from the HCD MS/MS analysis of tryptic peptides from V4-VAR were analysed with 

OxoExtract. The following parameters were used: digestion with trypsin; maximum of two missed 

cleavages; fixed modification of carbamidomethylation of Cys and a dynamic modification of 

mono-oxidised Met. The protein database queried contained the V4-VAR HN sequence. The 

optional feature of GlycoMod was enabled. In addition to the default monosaccharide parameters 

the substituents Phos and Sulf were considered as possible components of the N-glycans. In 

addition to assigning glycopeptides to V4-VAR HN the observed glycans from the OxoExtract 

search were also used for subsequent searches in Byonic (detailed below).  

 

4.3.9 Assignment of V4-VAR HN glycopeptides using ETD and CID fragmentation  

 

Spectra obtained from ETD and CID fragmentation of trypsin digested V4-VAR HN were 

converted to MGF format and analysed in Byonic. The majority of the ETD and CID scans were 

putative glycopeptides due to the product dependent function. Cleavage specificity was set C-

terminal to Lys and Arg residues allowing a maximum of two missed cleavages, a precursor mass 

tolerance of 10 ppm and a fixed modification of Cys carbamidomethylation. The relevant 

fragmentation type was selected for each search, ETD or CID, with 0.02 Da and 0.6 Da fragment 

ion tolerances applied, respectively. One glycan attached at an N-linked consensus site and one 

mono-oxidised Met were allowed per peptide. The protein database queried contained the V4-VAR 

HN sequence. The N-linked glycan database queried was a combination of the Byonic mammalian 

glycan database (309_Mammalian no sodium) and any additional glycans (73 in total) assigned to 

V4-VAR HN from the OxoExtract search. The default protein false FDR and peptide output options 

were changed to “Show all N-glycopeptides” which is recommended by the manufacturer when 

analysing simple samples. By selecting this parameter all identified N-linked glycopeptides are 

shown irrespective of the assigned Byonic PSM score or FDR. A manual cut-off score of 100 was 

applied for glycopeptides containing N341 and N433, while no cut-off score was applied to 
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glycopeptides containing N481 as the small size of the peptide backbone and poor peptide 

fragmentation likely resulted in lower scores. All glycans assigned by Byonic to ETD or CID 

spectra were confirmed in Xcalibur Qual Browser through relevant oxonium ions from the 

corresponding HCD MS/MS spectrum that triggered the ETD or CID scan of interest.  

 

For all glycopeptides assigned by ETD and CID, the HCD MS/MS spectrum that triggered ETD or 

CID scan of interest was investigated for diagnostic oxonium ions which were used to confirm the 

monosaccharide composition of an assigned N-linked glycan. Glycopeptides identified by ETD 

were accepted if the mass of the attached glycan could be localised to Asn in the N-linked 

consensus (N-X-S/T) with complete sequencing information of the intervening Ser/Thr/Tyr 

residues. When assigning glycopeptides using CID spectra, Byonic did not annotate the majority of 

fragment ions that were derived from fragmentation of the glycan portion of glycopeptides. Manual 

validation of CID was completed with the aid of a glycan calculator created manually in Microsoft 

Excel (Supplementary Table S4-1). To calculate glycopeptide fragment ions the masses of 

theoretical oligosaccharides and glycans were first calculated using “Carbo Calculator” provided by 

IonSource (http://www.ionsource.com/Card/carbo/carbstr.htm). These oligosaccharide and glycan 

masses were added to the mass of peptides containing the N-linked consensus sites and m/z values 

for different charge states were calculated for each theoretical glycan fragment ion. Glycopeptides 

identified by CID were accepted if all monosaccharide residues from the allocated glycan were 

observed at least once in the MS/MS spectrum and all intense peaks (greater than 10% relative 

abundance) could be accounted for. If there wasn’t clear evidence of the peptide portions of the 

assigned glycopeptides (typically an intense ion representing Y1) the assignment was further 

confirmed through manual inspection of the corresponding HCD spectrum.  

 

4.4 RESULTS 

 

4.4.1 Prediction of potential glycosylation sites in V4-VAR HN  

 

The V4-VAR viral preparation used in this study was a variant of the QLD/66 strain of NDV 

(UniProt accession number P13850). As such, the precise amino acid sequence of HN V4-VAR was 

not known before analyses were undertaken which potentially precluded identification of potential 

N-linked glycosylation sites for this protein. To predict potential sites of N-linked glycosylation in 

V4-VAR HN the conservation of potential sites amongst NDV strains was examined by alignment 

http://www.ionsource.com/Card/carbo/carbstr.htm
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of HN sequences. Only reviewed HN sequences from UniProt were used in the alignment and this 

included HN from the QLD/66 strain. Figure 4-1 highlights potential tryptic peptides containing 

each N-linked consensus site from the alignment of the HN strains (the full alignment is presented 

in Appendix B with the names of the strains from each Uniprot Identifier). Figure 4-1 also 

illustrates the position of the N-linked sites in HN. The alignment revealed that five N-linked 

consensus sites were relatively conserved across all strains of NDV. The consensus sites correspond 

to potential glycosylation at N119, N341, N433, N481 and N538 in the sequence of HN from 

QLD/66. Some strains of NDV have one additional N-linked consensus site corresponding to N144, 

N508 or N600. Of the additional potential sites, the sequence of HN from the QLD/66 strain 

contained the consensus site for N600.   

 

 

 

Figure 4-1. Alignment of HN sequences revealing potential tryptic peptides that contain N-
linked consensus sites. Multiple sequence alignment of NDV HN was implemented using fifteen 
annotated NDV HN sequences from the UniProt website. Sequence identifiers are listed on the left 
and the NDV Queensland/66 strain (UniProt entry P13850) is the first identifier. All N-linked 
consensus (N-X-S/T) sites have been highlighted in dark grey. A schematic (not to scale) is 
presented of NDV HN (UniProt ID P13850) identifying the cytoplasmic tail (CT), transmembrane 
(TM), stalk domain (SD) and the globular head domain. 
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4.4.2 Isolation of V4-VAR HN  

 

The HN protein was observed to migrate as a diffuse band corresponding to approximately 75 kDa 

during SDS-PAGE of V4-VAR proteins (Figure 4-2). As the calculated mass of HN is 67,656 Da 

(UniProt entry P13850) the diffuse nature of this band is likely attributable to varying degrees of 

glycosylation of the N-linked sites. Slices corresponding to the 75 kDa regions were excised and 

pooled before the intact proteins were extracted using electroelution. The harvested proteins were 

subsequently subjected to enzymatic digestion followed by MS analysis.  

 

 

 

 

4.4.3 Occupancy status of putative N-linked sites on HN from V4-VAR 

 

The RAW file generated from HCD MS/MS of tryptic peptides from V4-VAR was analysed in 

Xcalibur Qual Browser by producing an EIC within a ±10 ppm window for the theoretical m/z of 

[HexNAc+H]+. Precursors that produced fragmentation ions corresponding to HexNAc were seen to 

elute from six to 55 min interspersed between other apparently non-glycosylated tryptic peptides 

(Figure 4-3a and b). The sequence of HN from QLD/66 was used to calculate theoretical m/z 

values for Y1 ions for tryptic peptides containing each potential N-linked site (N119, N341, N433, 

N481, N538 and N600). An EIC was produced for these theoretical Y1 ions and inspection of 

spectra that additionally yielded abundant fragment ions corresponding to HexNAc revealed 

potentially glycosylated peptides containing sites N481 (481NHTLR485), N341 

(340YNDTcPDEQDYQIQMAK356 and 339RYNDTcPDEQDYQIQMAK356) and N433 

(417GSSYFSPALLYPMIVSNK434) (Figure 4-3c, d and e, respectively) where lowercase “c” 

 

Figure 4-2. SDS-PAGE separation of 
NDV V4-VAR proteins. Lane 1 contains 
the MW markers with the protein masses 
shown in kDa. Lanes 2-5 were each loaded 
with ~12 µg of reduced and alkylated V4-
VAR virion proteins. Bands previously 
identified as NDV HN, fusion F1 chain 
(F1), nucleocapsid (NP) and matrix (M) 
proteins (88) are indicated. Bands from 
each lane containing HN (denoted with an 
arrow) were excised from the gel and 
subject to electroelution.  
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represents Cys carbamidomethylation. Glycopeptide Y1 ions for all three tryptic peptides 

containing sites N341 and N433 were also observed with an additional mass of 16 Da, which was 

later attributed to oxidised Met in the peptide sequence (Figure 4-3d and e, respectively). As 

expected, glycopeptides that contained oxidised peptide species eluted several minutes earlier than 

their non-oxidised counterparts. This initial manual investigation revealed glycosylated tryptic 

peptides containing the N-linked sites N341, N433 and N481 as predicted from the parental 

QLD/66 isolate. Evidence of glycosylation at predicted sites N119, N538 and N600 was not 

observed.  

 

 

 

Figure 4-3. Retention time profiles of putative N-linked glycopeptides from HCD MS/MS 
analysis of NDV V4-VAR HN digested by trypsin. The MS base peak chromatogram (a) depicts 
the retention time profile of peptides and glycopeptides eluted throughout the LC-MS/MS 
experiment. The EIC at the MS/MS level of m/z 204.0867 (b) indicated the presence of putatively 
glycosylated peptides. The EICs at the MS/MS for the calculated Y1 ions of glycopeptides 
containing N-linked sites N481 (481NHTLR485), N341 (340YNDTcPDEQDYQIQMAK356 and 
339RYNDTcPDEQDYQIQMAK356 with and without oxidised Met) and N433 
(417GSSYFSPALLYPMIVSNK434 with and without oxidised Met) delineate the retention times of 
the glycopeptides (c, d and e, respectively).  
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4.4.4 Amino acid sequence changes in V4-VAR HN 

 

The Mascot search of the RAW file generated from HCD MS/MS of tryptic peptides from V4-VAR 

identified 146 proteins (PSM FDR of 0.05, two distinct peptides per protein) (Supplementary Table 

S4-2). Mascot-assigned PSMs resulted in 75% sequence coverage of HN (QLD/66 strain, UniProt 

entry P13850) (Figure 4-4). PSMs containing the potential N-linked sites N433 and N538 were 

detected by the Mascot search while PSMs corresponding to tryptic peptides containing other N-

linked sites of the parental QLD\66 isolate (N119, N341 and N600) were undetected. Theoretical 

m/z values for the potential tryptic peptides containing site N481 in a non-glycosylated form were 

below the m/z scan range set in the MS acquisition parameters.  

 

 

 

Figure 4-4. Protein sequence coverage of HN based on identified peptides from HCD MS/MS 
analysis of V4-VAR HN digested with trypsin. Sequence coverage derived from the Mascot 
search is underlined. Sequence variations from the parental QLD/66 isolate are included in the main 
sequence with the variant amino acid residues of the QLD/66 sequence listed below the variations. 
The amino acid sequence number for Asn residues within N-linked consensus sequences (N-X-S/T) 
from QLD/66 have been noted above the relevant amino acid residue (N119, N341, N433, N481, 
N538 and N600).  
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When considering initial investigations of N-linked site occupancy and the results from the Mascot 

search, four tryptic peptides of the HN sequence were undetected (Q87-R113, I114-K138, I175-

R197 and N600-R605). Theoretical b- and y-ions were calculated for tryptic peptides from these 

undetected sequences using the QLD/66 HN sequence. Manual de novo sequencing identified four 

amino acid sequence variations, R113Q, N115S, N119S and I175M in three of the missing tryptic 

peptides, Q87-R113, I114-K138 and I175-R197. The amino acid sequence variation R113Q 

resulted in one large tryptic peptide Q87-K138. The position of the amino acid variations in the HN 

protein sequence are indicated in Figure 4-4. Spectral evidence for the sequence variations from 

each tryptic peptide Q87-K138 and I175-R197 are presented in Appendix C and D, respectively. 

The observed mutations have been previously documented in virions derived from the QLD/66 

strain (101, 282, 283). Importantly, the N119S mutation abolished one of the six potential N-linked 

glycosylation sites predicted in V4-VAR HN. No evidence of the tryptic peptide N600-R605, which 

contains N-linked site N600, was observed. The results from the initial investigations of N-linked 

site occupancy, Mascot search and manual de novo sequencing were combined to construct an 

amino acid sequence for HN of V4-VAR.  

 

4.4.5 Characterisation of N-linked glycopeptides of V4-VAR HN using HCD 

 

Analysis of the HCD MS/MS file with OxoExtract identified a total of 255 different N-linked 

glycopeptides (Supplementary Table S4-3). These were distributed across seven different peptide 

masses and three N-linked sites (N341, N433 and N481). Representative spectra from manually 

validated glycopeptides containing N341, N433 and N481 can be found in Figure 4-5a, b and c, 

respectively. Glycopeptide Y1 ions (identified as “peptide+HexNAc1” in annotated spectra in this 

thesis) were observed for all three glycopeptides and oxonium ions supported the proposed 

composition of the glycans. In Figure 4-5a fragmentation of a glycopeptide containing N341 

resulted in near complete peptide sequence coverage. The sequence ions b2 and b5 were identified 

with HexNAc1 attached, the former of these indicated glycosylation at N341. In Figure 4-5b 

fragmentation of a glycopeptide containing N433 resulted in significant peptide sequence coverage. 

Sequence ions from the y-series (with the addition of HexNAc1 and HexNAc2) were observed as 

quite intense ions. As can be seen in Figure 4-5c HCD fragmentation of glycopeptides containing 

N481 did not result in significant peptide fragmentation and the only sequence ions (y2 and y3) in 

that spectrum were of low relative abundance (the numbers of b- and y-ions observed for every 

glycopeptide assigned by HCD are presented in Supplementary Table S4-3).    
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Glycans that contained Sulf or Phos, as determined by precursors mass, were confidently assigned 

as sulfated if oxonium ions HexNAc1Sulf1 or HexNAc1Hex1Sulf1 were present. The distinction 

between sulfated and phosphorylated glycopeptides can be made using mass shifts between glycan 

oxonium ions in a single spectrum (238, 267). For all confidently assigned sulfated compositions 

the mass shifts between ions matching the m/z for HexNAc1 and HexNAc1Sulf1 or HexNAc1Hex1 

and HexNAc1Hex1Sulf1 were observed to range between 79.9545 Da and 79.9582 Da (mass 

differences listed in Supplementary Table S4-3). An example is presented in Figure 4-6, where 

sulfation was evident by the oxonium ion at m/z 446.096 (1+) corresponding to HexNAc1Sulf1Hex1 

which was calculated as being 79.957 Da higher than the observed HexNAc1Hex1 at m/z 366.139 

(1+). This confirmed the presence of a Sulf group (79.9568) as opposed to Phos (79.9663). Sulfated 

oxonium ions were only present in 23% of spectra of glycopeptides where the monosaccharide 

compositions contained Sulf or Phos. No phosphate-specific oxonium ions were observed; therefore 

the remaining “Sulf or Phos” monosaccharide compositions were assigned as ambiguous 

(Supplementary Table S4-3).  

 

4.4.6 Characterisation of N-linked glycopeptides of V4-VAR HN using CID and ETD 

 

The ETD search identified 13 different glycopeptides, all of which contained site N481 in the 

peptide sequence 481NHTLR485 (manually validated Byonic results in Supplementary Table S4-4). 

The fragmentation patterns produced by ETD enabled the site of glycan attachment to be localised 

to N481. An example is presented in Figure 4-7 revealing near complete peptide sequence 

coverage. The glycan structure can be assigned to N481 using the c1 ion and losses of 

monosaccharides from the precursor ion (Hex1 and HexNAc1) also help confirm the 

monosaccharide composition of allocated glycan. The peptide sequence information provided by 

ETD was advantageous as HCD produced minimal peptide fragmentation of glycopeptides 

containing N481 (Figure 4-5c). As such, ETD confirmed that the observed Y1 ions from HCD 

spectra of glycopeptides containing N481 were in fact from the predicted N-linked peptide 
481NHTLR485. All 13 glycopeptides assigned using ETD contained glycan structures that were 

neutral. Most precursors were triply charged with precursor (m/z) values between 633 and 1172, 

making them amenable to fragmentation by ETD (284). Due to minimal fragmentation of the 

peptide backbone ETD did not confirm glycan site localisation for glycopeptides containing sites 

N341 and N433. However, the amino acid sequence of peptides containing these sites was 

confirmed by HCD fragmentation and it was assumed N341 and N433 were the sites of attachment.  
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Figure 4-5. HCD fragmentation of N-linked glycopeptides from V4-VAR HN. Each panel has a 
schematic of the peptide fragmentation pattern observed for the respective glycopeptides. 
Lowercase “c” in the schematic respresent Cys carbamidomethylation. Not all ions have been 
labelled in the spectra for ease of interpretation. (a) HCD fragmentation of a precursor at m/z 
1166.457 (3+) containing N341 (aa 340-356). (b) HCD fragmentation of a precursor at m/z 
1345.590 (3+) containing N433 (aa 417-434). (c) HCD fragmentation of a precursor at m/z 795.325 
(3+) containing N481 (aa 481-485) where peptide sequence ion y3 at m/z 389.250 is denoted by “*”.  
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Figure 4-6. HCD fragmentation of a glycopeptide from V4-VAR HN containing site N433 with 
a mono-sulfated glycan attached. HCD fragmentation of a precursor at m/z 1124.714 (4+) 
containing N433 (aa 417-434). A schematic of the peptide fragmentation pattern is shown but not 
all ions have been labelled in the spectra for ease of interpretation. Lowercase “m” in the schematic 
respresents oxidised Met.  

 

 

 

Figure 4-7. ETD sequence coverage of an N-linked glycopeptide containing site N481 from 
V4-VAR. HCD fragmentation of a precursor at m/z 741.308 (3+) containing N481 (aa 481-485). A 
schematic of the fragmentation pattern is shown with the spectrum labelled accordingly.  
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The fragmentation patterns produced by CID enabled identification of 125 different glycopeptides 

containing three N-linked sites (N341, N433 and N481) (Supplementary Table S4-4). 

Fragmentation of glycopeptides using CID provided sequence information for the attached glycan 

moieties that was complementary to that observed in HCD. In particular, CID proved useful for the 

analysis of sulfated or phosphorylated glycopeptides enabling masses of ~80 Da to be identified in 

the peptide+glycan ions in spectra from both mono- and di-sulfated/phosphorylated glycans (Figure 

4-8 and Figure 4-9, respectively). Fragment ions produced by CID were analysed in the ion trap 

and therefore did not enable the distinction between Sulf and Phos to be made, but the masses of 

~80 Da could be used to confirm the glycan contained “Sulf or Phos”. In Figure 4-8 and Figure 4-9 

masses of HexNAc (203), Hex (162) and dHex (146) were observed in the peptide+glycan ions 

confirming the monosaccharide composition of the attached glycan. Sulfation/phosphorylation was 

supported by the fragment ions at m/z 1790.90 and 1830.90 in Figure 4-8. These ions are likely to 

be doubly charged with a mass difference equating to ~80 Da. In Figure 4-9 fragment ions at m/z 

1363 and 1385 reveal losses of dHex and ~80 Da from the precursor, respectively, and masses of 

~80 Da can be observed throughout the peptide+glycan ions.  

 

 

 

Figure 4-8. CID fragmentation of a glycopeptide from V4-VAR HN containing site N433 with 
a mono-sulfated/phosphorylated glycan attached. CID fragmentation of a precursor at m/z 
1391.253 (3+) containing N433 (aa 417-434). A schematic of the fragmentation pattern is shown 
with the spectrum labelled accordingly. Lowercase “m” in the schematic respresent oxidised Met. 
Fragment ions at m/z 1790.90 and 1830.90 in the spectra are denoted by an “*”.  
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Figure 4-9. CID fragmentation of a glycopeptide from V4-VAR HN containing site N433 with 
a di-sulfated/phosphorylated glycan attached. CID fragmentation of a precursor at m/z 1412.573 
(3+) containing N433 (aa 417-434). (a) Reveals the spectrum from m/z 400 to 2000 with a 
schematic of the fragmentation pattern and the spectrum labelled accordingly. (b) Highlights the 
same spectrum at m/z 1500 to 2000.  
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4.4.7 Diversity of N-linked glycosylation of V4-VAR HN 

 

The glycan heterogeneity documented across V4-VAR HN was quite extensive. Combining the 

results from the HCD, ETD and CID searches and then considering each glycan only once at each 

N-linked site, enabled 63, 58 and 37 N-linked glycans to be identified at sites N341, N433 and 

N481, respectively. These included paucimannose (HexNAc2Hex3-4), high mannose and complex or 

hybrid structures that were neutral, sialylated and sulfated or phosphorylated (Figure 4-10). High 

levels of fucosylation were also observed with some glycans containing up to five Fuc residues.    

 

 

 

 

 

 

 

Figure 4-10. Qualitative differences 
in glycans identified at sites N341, 
N433 and N481 of V4-VAR HN. 
Glycans have been grouped into 
paucimannose, high mannose and 
hybrid or complex. The latter group 
has been separated into those with 
neutral glycans  or those containing 
NeuAc or Sulf/Phos. The light grey 
and dark grey areas of the histogram 
represent the number of glycan with 
and without fucose, respectively.  
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4.4.8 Assignment of the monosaccharide compositions of O-linked glycans from HN of 
NDV isolates 

 

During initial investigations of NDV V4-HN evidence of an O-linked glycopeptide was observed 

(data not included) but with poor fragmentation. To investigate potential O-linked glycosylation of 

HN from V4-VAR the tryptic digest was subjected to PNGase F digestion followed by MS analysis 

using an HCD-pd-ETD strategy. Xcalibur Qual Browser was used to analyse the RAW file and 

produce an EIC for the theoretical m/z of [HexNAc+H]+. Manual inspection of HCD spectra 

yielding fragment signals corresponding to HexNAc identified an O-linked glycopeptide 

(66AEEKITSALGSNQVVDR83) with two sialylated glycoforms (HexNex1Hex1NeuAc1 and 

HexNAc1Hex1NeuAc2) (Figure 4-11a and b, respectively). The glycopeptide Y0 ions (identified as 

“peptide” in annotated spectra in this thesis) were observed for both glycopeptides and represent the 

complete loss of the glycan moiety. Oxonium ions for HexNAc, Hex and NeuAc supported the 

proposed monosaccharide compositions of the glycans. In Figure 4-11a near complete peptide 

sequence coverage was obtained confirming the amino acid sequence. The glycosylated peptide 

contained three potential sites of O-linked glycosylation T71, S72 and S76. The site of attachment 

of the O-linked glycans from V4-VAR could not be identified in the pd-ETD spectra, as there was 

little or no dissociation of the precursor ions. However, a preliminary study using a different NDV 

isolate propagated from the QLD/66 strain (herein termed V4-QLD) identified an additional 

glycoform (HexNAc1Hex1). Fragmentation of this glycoform using HCD (Figure 4-12a) revealed 

near complete peptide sequence coverage and oxonium ions supported the proposed 

monosaccharide composition of the glycan. Fragmentation of this glycoform using ETD (Figure 

4-12b) revealed that S76 was not the site of glycosylation through ions c10, c11, z7 and z8. The c6 ion 

(denoted with a “*” in Figure 4-12b) indicated that the site of glycosylation was T71.  
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Figure 4-11. HCD fragmentation of two O-linked glycoforms of the same peptide sequence 
from V4-VAR HN. Each panel has a schematic of the peptide fragmentation pattern observed for 
the respective glycopeptides (aa 66-83). Potential sites of O-linked glycosylation are denoted in 
bold. Not all ions have been labelled in the spectra for ease of interpretation. (a) HCD fragmentation 
of the precursor ion at m/z 863.404 (3+). (b) HCD fragmentation of the precursor ion at m/z 960.437 
(3+).  
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Figure 4-12. HCD and ETD fragmentation of an O-linked glycopeptide from HN of the V4-
QLD isolate. Each panel has a schematic of the peptide fragmentation pattern observed for the 
glycopeptide and the likely site of O-linked glycosylation is denoted in bold. Not all ions have been 
labelled in the spectra for ease of interpretation. Fragmentation of the same precursor ion at m/z 
766.372 (3+) (aa 66-83) using (a) HCD fragmentation and (b) ETD fragmentation.   

 

4.5 DISCUSSION 

 
The sequence of HN from the QLD/66 isolate contains six potential sites of N-linked glycosylation, 

five of which are relatively conserved across strains of NDV (N119, N341, N433, N481 and N538) 

(Figure 4-1). The sixth site in QLD/66 (N600) is found in the carboxy-terminal region of the 

protein, which is not well conserved and is proteolytically removed during maturation of this virus 
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(88, 285). Analysis of NDV V4-VAR, a variant of QLD/66, revealed that HN sites N341, N433 and 

N481 were conserved in this isolate and were used for the addition of N-linked glycans (Figure 

4-13). Occupancy of these sites is consistent with X-ray crystallography studies of HN from other 

strains of NDV, where up two GlcNAc residues were identified at each site (91, 108). Other studies 

also indicated that sites N341, N433 and N481 are occupied involving mutation of individual N-X-

S/T consensus sites, which increased the migration of NDV HN compared to wild type during gel 

electrophoresis (106, 107). These mutation studies also identified site N119 as occupied but 

analysis of HN from V4-VAR revealed the natural mutation Asn119Ser (Figure 4-13). As such, 

this site no longer includes the consensus motif N-X-S/T required for N-linked glycosylation and 

implies that it is not biologically essential.  

 

 

 

Figure 4-13. Glycosylation profile of V4-VAR HN. Schematic (not to scale) of NDV V4-VAR 
HN identifying the cytoplasmic tail (CT), transmembrane (TM), stalk domain (SD), four-helix 
bundle (4HB) and the globular head domain. Disulfide bonds are represented by connected lines 
and are derived from (101). N-linked consensus sites (N-X-S/T) are marked with a vertical line and 
the amino acid number of the observed glycosylated residue. Of the sites that were identified as 
occupied, N341, N433 and N481, the type of N-linked structures and additional monosaccharides 
contributing to the glycans have been listed. The potential N-linked site N119 in V4-VAR was 
mutated to serine thus precluding N-linked glycosylation at this site. Sites N538 was observed 
without glycosylation and occupancy at site N600 could not be determined. The region in the stalk 
domain where the O-linked site was observed  has also been indicated.  

 

Sites N538 and N600 were not identified as occupied in this analysis of HN from V4-VAR. It is 

noteworthy that complete tryptic digestion (i.e. no missed cleavages) of the HN protein would yield 

peptides bearing sites N538 and N600 that are small and hydrophilic. Such peptides, or potentially 

glycosylated versions of these peptides, may not have been retained on the reverse-phase 

chromatography material used in this study. However, a non-glycosylated peptide containing the 

potential N-linked site N538 was detected. Observation of this peptide confirmed that the N-linked 
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consensus site was conserved in V4-VAR HN. This is consistent with previous work using V4-

VAR that revealed that N538, which is flanked by two Cys residues (sequence 
531CFKVVKTNKTYC542), is not glycosylated due to disulfide bond formation (101). Lack of 

glycosylation of N538 has also previously been demonstrated through mutation studies in other 

strains (106). In contrast to site N538, a tryptic peptide containing the potential N-linked site N600 

was not observed during the analysis of V4-VAR. Electroeluted V4-VAR HN was also digested 

with endoproteinase Lys-C (from Lysobacter enzymogenes) and analysed by MS (data not 

included). Digestion with Lys-C could have produced the theoretical peptide 
600NQTEYRRELESYAASWP616. Using manual de novo and database searching with Mascot and 

Byonic, peptides containing N600 were still not detected. Unfortunately in the MS analysis of HN 

digested with trypsin then PNGase F, the m/z values (550-1500) were set to increase the likelihood 

of detecting the O-linked site. Thus the theoretical m/z values for the potential tryptic peptides 

containing site N600 were below the m/z scan range set. Site N600 resides within a 45 aa C-

terminal extension which undergoes post-translational processing and is likely to be very low in 

comparative stoichiometric abundance relative to all other peptides (88, 286). Accordingly, 

substantial cleavage of this extension site may be the reason a peptide or glycopeptide bearing this 

site was not identified. As such, potential occupancy at site N600 was not established.  

 

The N-linked glycan heterogeneity documented across V4-VAR HN was quite extensive with the 

identification of paucimannose and high mannose compositions and complex or hybrid structures 

that were variably fucosylated, sialylated and sulfated or phosphorylated. Paucimannose structures 

have not been widely reported on vertebrate proteins, however, over the last few years a number of 

studies have begun to highlight their presence in vertebrate tissue and cells (19-23), including 

proteins produced in embryonic eggs (287). The remaining glycan types (high mannose and 

complex or hybrid) and observed monosaccharides and substituents have been previously 

documented on proteins or glycans produced in embryonic eggs (47, 48, 288, 289). During viral 

replication viruses can utilise host-cell protein synthesis pathways and glycosylation machinery to 

produce the components required for progeny virions. Differential glycosylation of viral proteins 

can be seen across strains, cell culture and viral replication pathways (290, 291). As discussed in the 

introduction, the types of N-linked structures observed at each N-linked site and variations in 

monosaccharide compositions of the glycans reflect the degree of glycan processing during 

biosynthesis. Paramyxoviridae replication occurs in cytoplasm of the host cell where HN is 

transported to the infected cell surface after maturation in the Golgi complex (51). The present 

results indicate that such transport applies to V4-VAR HN as glycans containing multiple Fuc 
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residues, NeuAc and Sulf or Phos were detected on HN (1). The identification of high mannose 

structures (Man5-9GlcNAc2) at sites N481 and N341 indicate that these glycans escaped glycosyl 

trimming in the ER and Golgi to some extent. Thus, site N481 and to an extent N341 may be 

partially shielded from glycosylation machinery after protein folding occurs in the ER. Site N481 

has previously been shown to contain mainly high mannose or hybrid structures through 

endoglycosidase H (Endo H) digestion of HN from transfected Cos-7 cells (106). Thus minimal 

processing of glycans attached at site N481 may be observed on HN from other strains and when 

using different protein production methods. Site N481 and to a lesser extent N341, are required for 

maturation and proper folding of HN (107). This suggests that these sites containing the high 

mannose glycans are buried within the structure during the folding process and remain there to an 

extent. In contrast, the higher level of fucosylation seen at site N433 (all glycans contained Fuc) and 

lack of high mannose glycans may indicate that it remains fully exposed to glycosylation machinery 

during glycoprotein synthesis. Finally, the diversity of glycans seen at each site may also imply 

different conformers of HN as suggested in 3D crystal structures (108, 292). Such differential 

glycosylation has been reported for NDV HN, where a form of HN containing intermolecular 

disulfide bonds was thought to contain high mannose, hybrid and complex glycan structures, while 

a form without intermolecular disulfide bonds contained primarily high mannose or hybrid 

structures (293).  

  

The HN protein of NDV facilitates attachment to the host cells via interactions with sialylated 

cellular structures (69, 93). To undertake its function of receptor binding HN recognises and binds 

to gangliosides and sialylated N-linked glycans containing NeuAc in α2–3 and α2–6 linkages (93, 

294). On the other hand, the protein also exhibits sialidase activity which allows the virus to cleave 

itself from already infected host cells and from budding progeny virions, thus preventing non-

productive interactions with sialylated structures (62). The sialidase activity of HN is specific for 

NeuAc residues in a α2–3 linkage and to lesser extent residues in a α2–8 linkage (295), while 

leaving α2–6 linked NeuAc intact (296). Given the receptor binding and sialidase activity of HN it 

is interesting that sialylated glycans were observed in this study. Two N-linked sites (N341 and 

N433) contained a sialylated N-linked glycan (Hex3HexNAc3dhex3NeuAc1 + Man3GlcNAc2). 

Additionally, two O-linked glycans were observed that contained sialic acid (Hex1NAcHex1NeuAc1 

and HexNAc1Hex1NeuAc2). The presence of NeuAc on the surface of NDV virions could induce 

HN-mediated self-aggregation which would be detrimental for pathogenesis. O-linked glycans do 

not seem to be a cellular receptor for NDV (294), as such the sialylated O-linked glycan observed 

on HN may not induce such self-aggregation. However, sialylated N-linked glycans have been 
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shown to be a receptor for HN. Qualitatively, the number of N-linked glycans observed with 

sialylation was quite low (one glycan at two N-linked sites). The presence of low levels of NeuAc 

on NDV virions has been previously described (297) where it was suggested that some NeuAc 

content was associated with HN. Comparison with a neuraminidase-deficient mutant of NDV 

suggested NeuAc was also associated with the F protein in the mutant virions (297). These results 

indicate that HN may remove NeuAc from progeny virions. It has been shown that cells from 

embryonic chicken eggs are able to produce sialylated N-linked glycans with both α2–3 and α2–6 

linked NeuAc (47). Given that host cell glycosylation machinery includes sialyltransferases, NDV 

virion glycoproteins may contain both α2–3 and α2–6 linked NeuAc on N-glycans. Thus, the low 

level of NeuAc on V4-VAR may be predominantly α2–6 linked as the sialidase activity of NDV 

HN is not specific for this linkage.  

 

It has also been shown that cells from embryonic chicken eggs produce N-linked glycans that are 

sulfated (47). Interestingly, an analysis of released glycans from HN and F derived from Sendai 

virions propagated in eggs revealed acidic glycans that were not removed after sialidase digestion 

(298). Sulfated glycans have also been observed on the HA glycoprotein derived from influenza 

virions propagated in eggs (48, 288, 289). Given the observation of sulfation on other viral proteins 

produced in embryonic eggs and the presence of sulfated oxonium in the analysis of V4-VAR it is 

likely that glycans that were assigned ambiguously as “sulfated or phosphorylated” are in fact 

sulfated. Nevertheless, as sulfation was unable to be confirmed for all glycans caution was applied 

while representing the data.  

 

The present study revealed that the stalk domain of HN from V4-VAR bore O-linked glycosylation 

(Figure 4-11). A preliminary analysis of NDV virions derived from another isolate of the strain 

QLD/66 indicated the O-linked glycans are attached at T71 (Figure 4-12). The peptide identified as 

O-linked (66AEEKITSALGSNQVVDR83) contains an internal Lys at position K69, which should 

have been cleaved by trypsin. Conversely, HCD MS/MS analysis of tryptic V4-VAR identified a 

peptide that was cleaved by trypsin (70ITSALGSNQVVDR83) with no evidence of glycosylation. 

This indicated that steric hindrance from an O-linked glycan possibly impeded tryptic cleavage at 

K69. It also revealed that the O-linked site is not always glycosylated.  

 

Sequence alignments of HN reveal that T71 and the neighbouring S72 are highly conserved 

between NDV strains (299, 300). X-ray crystallography of the stalk domains of NDV (residues 
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D79-N115) and PIV5 HN has revealed a 4HB with an 11-residue (i, i + 3, i + 4, i + 4) repeat 

forming the hydrophobic core (96, 97). The identified O-linked site (T71) is positioned N-

terminally to the 11-residue repeats of NDV HN. Sequence alignment of HN from NDV, PIV5 and 

hPIV (serotypes 1-4) based on the 11-residue repeat, reveals a conserved Thr in PIV5 (T62) and 

hPIV1 (T88) that align with the NDV O-linked site (T71) (96).  

 

The stalk region of HN from the Paramyxovirinae subfamily is thought to play an important role in 

triggering the F protein to induce fusion (94, 95, 301). Introduced N-linked sites or site-directed 

mutagenesis of residues in the in the stalk domain of NDV HN resulted in significantly reduced or 

blocked fusion as judged by content-mixing assays (98-100). This inhibition of fusion also occurred 

when N-linked sites were introduced into the PIV5 stalk domain (97). Interestingly, introduction of 

an N-linked site at position K69 of NDV HN and S60 of PIV5 HN (two residues N-terminal to the 

conserved NDV T71 and PIV5 T62) blocked fusion while maintaining the structure and other 

functionalities of HN (97, 99). Dual mutation of sites N119 and N341, the former of which lies in 

the stalk domain of HN, have been shown to increase fusogenicity in vitro (106, 107). As noted by 

the authors of these studies, it is likely that the removal of these N-linked glycans increases 

oligomerisation of HN or allows greater non-covalent bonding of the HN stalk region with F, 

triggering F and increasing fusogenicity. Increased virulence was not translated in vivo, leading the 

authors to conclude that increased fusion resulted in an enhanced host immune response and faster 

clearance of the virus. Given the position of the O-linked site in the stalk domain of HN and that the 

introduction of N-linked sites into the stalk domain decreases fusion, while the removal of N-linked 

sites increases fusion, it could be postulated that glycosylation of T71 impacts on oligomerisation of 

HN or the interaction between HN and F and affects fusion kinetics.  

 

Although T71 is highly conserved between NDV strains, genome sequencing of an avirulent 

Australian strain of NDV (I-2) revealed a sequence variation of T71A (283). Strain NDV I-2 is able 

to produce haemagglutinin-inhibition antibodies in chickens, elicit cytopathic changes in cultured 

chicken embryo kidney cells and spread and propagate in in the organs of chickens (302-304). Thus 

the removal of T71 is not deleterious for antibody production, HN expression and immunogenicity. 

Further experimental investigations are required to determine the biological significance of the O-

linked site. The NDV I-2 strain provides a natural mutant of T71 and it would be of interest to 

analyse this strain to determine if, in the absence of T71, S72 is glycosylated. It would also be of 

interest to determine if the conserved T71 is glycosylated in more virulent strains of NDV and T62 

or T88 of PIV5 and hPIV1, respectively.  
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The present report is the first to characterise site-specific glycan heterogeneity of HN from 

paramyxoviruses. To achieve this NDV HN derived from virions propagated in embryonic eggs was 

analysed by MS. Overall the characterisation of N-linked glycosylation from NDV HN agreed with 

previous findings with respect to site occupancy and observation of high mannose glycans attached 

at site N481. The complex nature of the glycans indicates Golgi processing in accordance with 

reports. In addition, O-linked glycoforms were identified on a previously undocumented O-linked 

glycopeptide from the stalk domain of the protein. These findings will provide the basis for further 

research to increase the understanding of the role glycosylation plays in the functionality of HN and 

will enable comparisons to be made of HN from other species of NDV and paramyxoviruses. 
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Chapter 5: Characterisation of glycosylation of 
Newcastle disease virus fusion (F) 
protein    

5.1 SUMMARY  

 

To enable a more complete insight into the glycosylation of NDV surface glycoproteins, the F 

protein of the avirulent V4-VAR strain was also analysed by MS. The F protein was derived from 

the same egg propagated virions used to produce HN in Chapter 4. In stark contrast to the high 

number of monosaccharide compositions observed at N-linked sites of HN, which included high 

mannose and hybrid or complex types, the N-linked sites from F contained predominately high 

mannose glycans. Of the six predicted N-linked sites of NDV F, the high mannose compositions 

were observed at sites N85, N191, N366 and N471. Four complex or hybrid compositions with 

variable fucosylation were also observed at site N191. The observation of fucosylated complex or 

hybrid compositions at N191 confirms predictions that some NDV F species are transported 

through the late-Golgi during processing. The work herein provides the first comprehensive site-

specific description of N-linked glycans from NDV F and provides a comparison for future studies 

into site-specific glycosylation of F from virulent strains of NDV and from other paramyxoviruses.     

 

5.2 INTRODUCTION  

  

The F proteins of paramyxoviruses are essential for viral infectivity and mediating fusion between 

viral and host cell membranes, or infected and uninfected cell membranes. The fusogenic property 

of NDV F relies on cleavage of the F0 precursor into two disulfide linked subunits (F1 and F2) (305) 

and, at minimum, expression of stalk domain of HN (70). As discussed in the Chapter 1, strains of 

NDV are categorised by their level of virulence (lentogenic, mesogenic and velogenic), which is 

defined by the degree of pathology observed during infection. Lentogenic strains cause mild 

respiratory infection while mesogenic strains produce respiratory and neurological disease with 

occasional mortality (74). Velogenic strains are further classified into viscerotropic or neurotropic, 

distinguished by fatal infection with intestinal haemorrhagic lesions and high mortality with 

neurological signs, respectively (74). The F protein plays an important role in NDV pathology as 

the level of virulence typically correlates with cleavability of F0 into the F1 and F2 subunits, 
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whereby increased cleavage results in increased virulence. Cleavage is dictated by the amino acid 

sequence of the cleavage-activation site (87). Monobasic and polybasic cleavage sites render the F0 

protein susceptible to cleavage by host cell proteases, which can be limited to specific cells of the 

respiratory and digestive tract, or proteases distributed throughout several systems, respectively (77, 

89, 306). Recently it was shown that clinically diseased wild bird populations encoding polybasic 

residues at the cleavage site were able to transmit ND to vaccinated domesticated chickens (76). 

However, monobasic and polybasic residues at the cleavage sites of NDV F are not the sole 

determinant of virulence. Expression of a 45 aa C-terminal extension on HN (90, 91) and regions of 

the stalk and head domain of HN have been implicated in lowered virulence (307). Furthermore, it 

has been shown that elimination of an N-linked consensus site in the F2 subunit of NDV F 

significantly reduces cleavage of F0 (102), while eliminating two sites in the F1 subunit increases 

virulence (103). These mutation studies highlight the need for site-specific characterisation of NDV 

F glycosylation, particularly as it has also been revealed that specific glycosylation sites play a role 

in cell surface expression and fusion (102, 103).  

 

The F0 protein of NDV V4-VAR contains six putative sites of N-linked glycosylation (275), the 

first site, N85, resides on F2 and the remaining five sites are found on F1, N191, N366, N447, N471 

and N541. These six N-linked sites on NDV F are highly conserved amongst strains (308). Site-

specific glycosylation of NDV V4-VAR at site N85 has already been described, with the 

observation of high mannose compositions (105). Analyses of glycans released from the F protein 

of an avirulent strain of NDV produced in Madin-Darby bovine kidney (MDBK) cells revealed 

primarily high mannose structures (Man5-9) (104). Interestingly, the work presented herein also 

identified predominantly high mannose glycans which were assigned to sites N85, N191, N366 and 

N471. Further processing of attached glycans was observed at site N191, with the identification of 

complex or hybrid glycans with variable fucosylation. Occupancy at site N447 could not be 

determined in this work and evidence of glycosylation was not observed at site N541, however, 

peptides containing N541 were observed without glycosylation indicating this site may not be 

glycosylated.   
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5.3 METHODS 

 

5.3.1 Sample preparation 

 

The viral preparation was provided by Professor Jeffrey Gorman from the Protein Discovery Centre 

at QIMR Berghofer and the terminology used for the preparation, V4-VAR, follows that which was 

described in Chapter 4. The isolate of NDV used was a variant of the Queensland (QLD)/66 strain 

of NDV (274) propagated and purified in embryonic chicken eggs as previously described (88, 

277). From stocks of purified V4-VAR virions, approximately 72 µg, in 48 µg  and 24 µg aliquots, 

were reduced and alkylated as per the methods described in Chapter 2 except that 50 mM of IAA 

was used. Targeted analyses were conducted to characterise glycopeptides from the F1 or F2 region 

of the protein and these are described in each section below.   

 

5.3.2 SDS-PAGE separation of V4-VAR virions and electroelution of F1 proteins   

 

Approximately 48 µg of reduced and alkylated V4-VAR viral proteins were subjected to SDS-

PAGE followed by staining and de-staining as per the methods described in Chapter 2. Bands of 

interest corresponding to F1 were excised and stored overnight at 4°C until electroelution as per the 

methods described in Chapter 2.   

 

5.3.3 Enzymatic digestions of V4-VAR F1 proteins  

 

Following electroelution, approximately half of the harvested V4-VAR F1 proteins were methanol 

precipitated overnight without trypsin as per the methods described in Chapter 2. The dried pellet 

was stored at -80 °C then resuspended in 50 mM NH4HCO3 before digestion with 0.1 µg of trypsin 

at 37°C overnight. An aliquot (~1/4) of the V4-VAR F1 tryptic digest was further digested with 1 

µL of 1U/µL recombinant PNGase F (hereafter referred to as trypsin/PNGase F). An aliquot (~1/4) 

of the V4-VAR F1 tryptic digest was also further digested with 0.1 µg of Glu-C (hereafter referred 

to as trypsin/Glu-C). Both additional digests were incubated at 37°C overnight. Resultant peptides 

from the trypsin/PNGase F digest were desalted with a C18 ZipTip (10 µL pipette tip with a 0.6 µL 

resin bed; Millipore, MA, USA) using the manufacturers’ guidelines for MS analysis.     
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5.3.4 SDS-PAGE separation of V4-VAR virions and in-gel digestion of F1 and F2 proteins   

 

Approximately 24 µg of reduced and alkylated V4-VAR viral proteins were methanol precipitated 

overnight without trypsin. These proteins were subjected to SDS-PAGE separation as per the 

methods described in Chapter 2 except that a gradient gel was used (4-20% precast polyacrylamide 

gel, Mini-PROTEAN® TGX™, BioRad Laboratories). Bands of interest corresponding to F1 and F2 

were excised and subjected to in-gel digestion with trypsin as per the methods in Chapter 2.  

 

5.3.5 Nano-ultra-high pressure liquid chromatography 

 

Approximately 1/8 of the original electroeluted sample and half the in-gel digested samples were 

injected for each analysis using a nUHPLC system as described in Chapter 2. Samples were loaded 

onto the trap column and washed for 5 min at 15 µL/min in 98% solvent A and 2% solvent B. 

Peptides and glycopeptides were subsequently eluted onto the analytical column at flow rate of 0.3 

µL/min whilst ramping through a sequence of linear gradients from 2% to 40% solvent B in 60 min, 

to 70% B over 15 min, to 95% B in 5 min then holding at 95% B for 5 min. The column was then 

re-equilibrated with 2% B for 20 min.   

 

5.3.6 Mass spectrometry data acquisition  

 

Survey scans of peptide and glycopeptide precursors from m/z 300 to 2000 were acquired in the 

Orbitrap at a resolution of 120K (full width at half-maximum, FWHM) at m/z 200 using an 

automatic gain control (AGC) target of 400,000 and maximum injection time of 50 ms. For internal 

mass calibration the lock mass option was enabled using the polycyclodimethylsiloxane ion at m/z 

445.1200 (310). The most intense precursors within m/z 600-1800 (trypsin and trypsin/Glu-C 

digests of F1 and in-gel digestions of F1 and F2) or m/z 300 to 1800 (trypsin/PNGase F digest of F1) 

were selected for fragmentation by HCD. Precursors with intensities over 5,000 counts (charges 2-

6) were isolated with a mass selecting quadrupole using an isolation window of m/z 2. Precursors 

were fragmented in the ion routing multipole, using a stepped method of ±5% around a normalised 

collision energy (NCE) of 25%. Previously selected ions within a ±10 ppm window were 

dynamically excluded for 15 s. Fragment ions were acquired in the Orbitrap at a resolution of 30K 
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using an AGC target of 50,000 and maximum injection time of 100 ms. If fragment ions were 

produced within the top 20 ions corresponding to 204.0867 (HexNAc), 163.0601 (Hex) or 292.1027 

(NeuAc) within a ±10 ppm window, the precursor ions were re-isolated and subjected to ETciD 

with 25% supplemental activation. Fragment ions produced by ETciD were acquired in the Orbitrap 

at a resolution of 60K using an AGC target of 100,000 and maximum injection time of 250 ms with 

2 microscans.   

 

In total five chromatographic runs (one run for each sample) were performed using a HCD-pd-

ETciD method. These were conducted with the electroeluted F1 sample that was digested with 

trypsin, trypsin/Glu-C and trypsin/PNGase F and the in-gel tryptic digests of F1 and F2.   

 

5.3.7 Data processing of non-glycosylated and deglycosylated peptides from V4-VAR F  

 

Proteome Discoverer (v2.1.0.81) and the search engine Mascot were used to search HCD MS/MS 

spectra from all RAW files. The protein database contained the sequence for V4-VAR F (275). 

Cleavage specificity was set as semi-tryptic for the samples digested with trypsin. For the 

trypsin/Glu-C sample cleavage specificity was set as both trypsin and Glu-C with the latter allowing 

cleavage at Glu and Asp residues. A maximum of two missed cleavages were allowed for each 

search. Mass tolerances of 10 ppm and 0.02 Da were applied to precursor and fragment ions, 

respectively. Carbamidomethylation of Cys was set as a fixed modification and dynamic 

modifications included mono-oxidised Met, deamidation of Asn and Gln residues and conversion of 

N-terminal Gln to pyroglutamate. The “Fixed Value PSM Validator” node was used and a cut-off 

score of 30 was applied to all PSMs.    

 

In addition to the Mascot searches, a mzML file of HCD spectra from the trypsin/PNGase F sample 

was also analysed with Byonic. This was completed to investigate possible amino acid 

modifications not included in the Mascot search. A wild card search was conducted allowing -40 or 

+100 mass tolerance (Da) on all amino acid residues. Cleavage specificity was set C-terminal to 

Lys and Arg residues allowing ragged cleavage at the C-terminus of peptides and a maximum of 

two missed cleavages. Mass tolerances of 10 ppm and 0.02 Da were applied to precursor and 

fragment ions, respectively. Carbamidomethylation of Cys was set as a fixed modification and two 

dynamic modifications were allowed per peptide, including mono-oxidised Met, deamidation of 
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Asn and Gln residues and conversion of N-terminal Gln to pyroglutamate. The automatic peptide 

score cut-off was disabled for the wild-card search.    

 

5.3.8 Oxonium ion profile and preliminary investigations of glycopeptides from V4-VAR F 

 

Spectra from the analyses of tryptic peptides from electroeluted NDV F1 and in-gel digested F2 

were analysed with OxoExtract. The following parameters were used: digestion with trypsin; 

maximum of two missed cleavages; a fixed modification of carbamidomethylation of Cys and a 

dynamic modification of mono-oxidised Met. The protein database queried contained the sequence 

of V4-VAR F0 (275). The optional feature of GlycoMod was enabled. In addition to the default 

monosaccharide parameters the substituents Phos and Sulf were considered as possible components 

of the N-glycans. The observed oxonium ion profile and monosaccharide compositions of the 

glycans were typical high mannose and hybrid or complex structures. As such, a NDV V4-VAR F 

custom glycan database was not required.   

 

5.3.9 Assignment of glycopeptides from V4-VAR F 

 

For searches in Byonic HCD and ETciD spectra from RAW files were converted separately into 

mzML files. Cleavage specificity was set C-terminal to Lys and Arg residues for the trypsin 

digested samples with additional cleavage at Glu and Asp for the trypsin/Glu-C sample. A 

maximum of two missed cleavages were allowed. Mass tolerances of 10 ppm and 0.02 Da were 

applied to precursor and fragment ions, respectively. A fixed modification Carbamidomethylation 

of Cys was allowed. Two common dynamic modifications were allowed per peptide from mono-

oxidised Met, deamidation of Asn and Gln residues and conversion of N-terminal Gln to 

pyroglutamate. A maximum of two glycans were permitted to be attached to one peptide at N-

linked consensus sites. The protein database queried contained the sequence for V4-VAR F0 (275). 

The N-linked glycan database queried was the Byonic mammalian database (309_Mammalian no 

sodium) with all glycans containing NeuGc removed. The precursor off-set option was enabled 

(narrow), which allowed Byonic to consider that the true monoisotopic mass may not have been 

assigned to a precursor (i.e. it could consider precursors with a difference of 1 Da from the observed 

mass of a precursor). The default protein FDR and peptide output options were changed to “Show 

all N-glycopeptides” which is recommended by the manufacturer when analysing simple samples.  
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Once a list of glycopeptides had been compiled for site N191 using the results from the 

electroeluted F1 sample digested with trypsin, the Xtract feature within Xcalibur Qual Browser was 

used to deconvolute MS precursor spectra of the eluting glycopeptides. Spectra were summed 

across the elution period (~1 min) for all glycoforms and deconvoluted from multiply charged 

signals to protonated monoisotopic masses. Precursors were included if they fell within the m/z 

range of 800 to 1600, had a minimum S/N threshold of two and a maximum charge state of five.  

 

5.4 RESULTS 

 

5.4.1 Isolation of V4-VAR F1 and F2 

 

The F1 subunit of V4-VAR F0 was observed to migrate just above the 50 kDa MW marker after 

SDS-PAGE separation using a 10% resolving gel (Figure 5-1) and 4-20% gradient gel (Figure 

5-2). The calculated mass of V4-VAR F0 is 58,844 Da, while the masses of F1 and F2 are 46,691 

and 8,910 Da with the signal peptide removed from F2 (275). Slices corresponding to the region of 

interest for F1 were excised and pooled before the intact proteins or peptides were extracted using 

electroelution (Figure 5-1) or in-gel digestion (Figure 5-2), respectively. The F2 subunit was 

observed to migrate between the 10 and 15 kDa MW markers (Figure 5-2).  Slices corresponding to 

region of interest for F2 were excised and subject to in-gel digestion. 

 

5.4.2 Identification of non-glycosylated and deglycosylated peptides from V4-VAR F  

 

Mascot-assigned PSMs from the analyses of electroeluted V4-VAR F1 digested with trypsin, 

trypsin/PNGase F and trypsin/Glu-C and the tryptic in-gel digests of F1 and F2 have been included 

in Supplementary Tables S5-1 to S5-5, respectively. Sequence coverage of F1 was comparable 

between the electroeluted sample and the in-gel digested sample. The trypsin/Glu-C digest did not 

enable any further sequence coverage of F1 to be obtained. The overall sequence coverage from the 

Mascot searches has been presented in Figure 5-3a and the positions of the potential six N-linked 

sites on V4-VAR F0 are illustrated in Figure 5-3b. 
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Figure 5-1. SDS-PAGE separation of 
V4-VAR proteins using a 4% stacking 
and 10% resolving gel. Lane 1 contains 
the MW markers with the protein masses 
shown in kDa. Lanes 2 to 5 were each 
loaded with ~12 µg of reduced and 
alkylated V4-VAR virion proteins. Bands 
previously identified as NDV HN, F1, 
(F1) nucleocapsid (NP) and matrix (M) 
proteins (88) are indicated. Bands from 
each lane containing F1 (denoted with an 
arrow) were excised from the gel and 
subject to electroelution. 

 Figure 5-2. SDS-PAGE separation of 
V4-VAR proteins using a 4-20% 
gradient gel.  Lane 1 contains the MW 
markers with the protein masses shown in 
kDa. Lanes 2 and 3 were each loaded 
with ~12 µg of reduced and alkylated V4-
VAR virion proteins. Bands previously 
identified as NDV HN, F1, nucleocapsid 
(NP) and matrix (M) and F2 proteins (88) 
are indicated. Bands from each lane 
containing F1 and F2 (denoted with 
arrows) were excised from the gel and 
subject to in-gel digestion. 

 

The Mascot search results of electroeluted F1 digested with trypsin and trypsin/Glu-C and the in-gel 

tryptic digest of F1 revealed PSMs containing the N-linked site N541. In these searches PSMs 

corresponding to peptides containing the remaining four sites in F1 were not identified. Several of 

the PSMs containing N541 from the trypsin and trypsin/Glu-C digests of F1 identified the potential 

site of N-glycan attachment as being deamidated. The assigned spectra were manually investigated 

to confirm deamidation of N541 and rule out modification of other residues in the peptide sequence 
535TLLWLGNNTLDQMR548.  

 

The Mascot search of the trypsin/PNGase F digest of F1 identified PSMs containing N191 and 

N366 (Figure 5-3a) where Asn residues within the N-linked consensus sites were deamidated. As 

observed in the trypsin and trypsin/Glu-C digests of F1 the Mascot search of the trypsin/PNGase F 

digest also revealed PSMs where N541 was deamidated. Peptides containing sites N447 and N471, 

which reside on one theoretical peptide (N47-K480), were not observed in the search of the 
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trypsin/PNGase F digest of F1. The Byonic wild card search of the trypsin/PNGase F sample did not 

enable additional peptide sequence coverage to be obtained.     

 

The Mascot search of the in-gel tryptic digest of F2 revealed PSMs from the F2 subunit but did not 

identify peptides containing N85 (Figure 5-3a). Interestingly, the search results also revealed a 

PSM with the amino acid sequence 102IQESVTTSGGGKQG115 that contained a semi-tryptic 

cleavage event at the C-terminus of the peptide (Figure 5-3a). This peptide is positioned N-terminal 

to the cleavage site that separates the F2 and F1 subunits. The observation of this peptide conforms 

with previous observations where the C-terminus of F2 from the parental QLD/66 strain was 

identified as “GKQG” due to carboxypeptidase B-like trimming after cleavage of F0 (88).   

 

5.4.3 Identification of glycopeptides from V4-VAR F 

 

The results of the Byonic HCD searches of the trypsin and trypsin/Glu-C digestions of F1 and in-gel 

digestions of F1 and F2  are presented in Supplementary Table S5-6 (all results for F1) and 

Supplementary Table S5-7 (results for F2) with annotated spectra in Supplementary Figures S5-1 to 

S5-4), respectively. The Byonic searches of ETciD spectra did not yield any results and have not 

been included in the supplementary data.  

 

The monosaccharide compositions of the glycans observed at each N-linked site of V4-VAR have 

been represented in (Figure 5-3b). Eight glycans were observed at N191 from the F1 subunit, four 

high mannose structures (Man5-8) and four hybrid or complex glycans including two fucosylated 

glycans. A representative spectrum of HCD fragmentation of a glycopeptide containing N191 is 

presented in Figure 5-4. The oxonium ion at m/z 512.197, corresponding to HexNAc1Hex1dHex1, 

confirms the presence of Fuc in the glycan. The relative abundances of the different glycoforms 

observed at N191 are presented in Figure 5-5 and reveals that the fucosylated species are of lower 

relative abundance compared to the high mannose species. It should be noted that the signal 

intensities of glycopeptides can vary due to signal suppression from co-eluting non-glycosylated 

peptides and differences in the monosaccharide compositions (232). As such, the summed and 

deconvoluted spectrum in Figure 5-5 provides a general indication of the relative abundance of the 

glycoforms. Three glycans could be assigned to N366 (Man6-8) and one glycan could be assigned to 

N471 (Man9) (Figure 5-6 and Figure 5-7, respectively). Glycopeptides containing N447 and N541 
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were not detected. In the F2 subunit four glycans were assigned to N85 (Man5-8) and representative 

spectrum is presented in Figure 5-8.        

 

 

Figure 5-3. Protein sequence coverage and glycans of NDV V4-VAR F0 based on peptides and 
glycopeptides identified from HCD MS/MS analyses. (a) Amino acid sequence of NDV V4-VAR 
F0 (275), where the F2/F1 cleavage site is indicated by an arrow and disulfide bonds are represented 
by connected lines. The sequences of the signal peptide and transmembrane domain are shown in 
clear boxes with a predicted site of Cys palmitoylation highlighted in green in the transmembrane 
domain. The six N-linked consensus sites are in bold font with the amino acid number of the 
predicted site of glycosylation above each site. Potential cleavage sites for trypsin and Glu-C are 
indicated by a line above and below the relevant residues, respectively. Sequence coverage derived 
from the Mascot searches of F1 and F2 digested with trypsin are highlighted in light grey. Additional 
sequence coverage obtained from the trypsin/PNGase F digest of F1 is highlighted in dark grey. An 
asterix “*” below a residue indicates semi-tryptic cleavage. (b) A schematic (not to scale) of NDV 
V4-VAR F0 presents the signal peptide (SP), heptad repeats (HR A-C), fusion peptide (FP), 
transmembrane domain (TM) and cytoplasmic tail (CT) (275, 276). Cleavage of F0 at the amino-
terminal end of FP produces F2 and F1 chains which are linked by a disulfide bond, represented by a 
connected line with the amino acid number of the Cys residues [assigned from (275, 276)]. N-
linked consensus sites (N-X-S/T) are marked with vertical lines and the amino acid number of the 
respective Asn residue. If glycans were assigned to an N-linked site, the monosaccharide 
compositions of the attached glycans have been indicated. High mannose glycoforms have been 
labelled Man5-8 while the remaining glycans have been labelled with the number of each 
monosaccharide residue.  
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Figure 5-4. HCD spectrum of an N-linked glycopeptide from V4-VAR F1 containing site N191. 
HCD fragmentation the precursor ion at m/z 1070.110 (3+). The spectrum was obtained from the 
analysis of electroeluted F1 digested with trypsin. The panel has a schematic of the peptide 
fragmentation pattern observed for the glycopeptide (aa 182-192).    

 

 

Figure 5-5. Glycoforms of an N-linked glycopeptide from V4-VAR F1 containing site N191. 
Spectra for the glycopeptide containing N191 (aa 182-192) was obtained from the analysis of 
electroeluted F1 digested with trypsin. Precursor MS spectra were summed and deconvoluted into 
singly protonated precursor masses. High mannose glycoforms have been labelled Man5-8 while the 
remaining glycans have been labelled with the number of each monosaccharide residue.    
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Figure 5-6. HCD spectrum of an N-linked glycopeptide from V4-VAR F1 containing site N366. 
HCD fragmentation the precursor ion at m/z 1443.267 (3+) is presented. The spectrum was obtained 
after in-gel digestion of F1 with trypsin. The panel has a schematic of the peptide fragmentation 
pattern observed for the glycopeptide (aa 350-374). Lowercase “m” and lowercase “c” in the 
peptide sequence represent oxidised Met and carbamidomethylation of Cys, respectively. Not all 
peptide ions from the schematic have labelled in the spectrum for ease of interpretation.  

   

 

 

Figure 5-7. HCD spectrum of an N-linked glycopeptide from V4-VAR F1 containing site N471. 
HCD fragmentation the precursor ion at m/z 1065.770 (3+) is presented. The spectrum was obtained 
from the analysis of electroeluted F1 digested with trypsin then Glu-C. The panel has a schematic of 
the peptide fragmentation pattern observed for the glycopeptide (aa 467-479). Not all peptide ions 
from the schematic have labelled in the spectrum for ease of interpretation.     
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Figure 5-8. HCD spectrum of an N-linked glycopeptide from V4-VAR F2 containing site N85. 
HCD fragmentation the precursor ion at m/z 1156.482 (3+) is presented. The spectrum was obtained 
after in-gel digestion of F2 with trypsin. The panel has a schematic of the peptide fragmentation 
pattern observed for the glycopeptide (aa 79-86).   

 

5.5 DISCUSSION 

 

To assess the types of glycans present on F from NDV, virion proteins from the V4-VAR isolate 

were separated and by SDS-PAGE and F was digested before analysis by MS. Two fragmentation 

methods, HCD and ETciD, were employed in a product-dependent manner. However, only HCD 

fragmentation enabled identification of glycopeptides from F of NDV. It has been demonstrated that 

ETD is not effective for the fragmentation of peptides with precursor charge states less than two or 

where precursor m/z values are greater than 850 (284). The precursor m/z values for all 

glycopeptides identified from V4-VAR F exceeded 850 and those identified from N85 were 

predominately doubly protonated, thus they were not amenable to fragmentation by ETD. 

Supplemental collisional activation of non-dissociated peptide precursors has been shown to induce 

fragmentation of [M+2H]2+ ions (225), however ETD fragmentation with 25% supplemental 

activation did not induce dissociation of glycopeptide ions from NDV F. Using HCD it was 

revealed that four sites were occupied N85, N191, N366 and N471 with high mannose glycans 

(Figure 5-3b). Hybrid or complex glycans were also observed at N191 with variable fucosylation. 

This study also demonstrated that site N541 is likely not glycosylated while occupancy at site N447 

could not be determined.  
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Early investigations into the synthesis and processing of NDV F predicted that the protein is 

modified and transported through the ER-Golgi pathway (89, 311). It was later shown that NDV F 

and HN likely interact in the ER (312) prior to cleavage of F0 in the trans-Golgi (313). Transport of 

viral glycoproteins through the ER-Golgi pathway can be monitored by Endo-H digestion (106, 

135, 314), an enzyme that removes high mannose and hybrid glycans (315). As the N-linked 

glycans on the protein mature in the medial- and trans-Golgi, they become resistant to Endo-H 

digestion, which can be monitored by gel electrophoresis. However, as previous studies (104, 105), 

and the work herein reveal, the glycans present on NDV F are mainly high mannose. As such, 

monitoring transport of NDV F through the ER-Golgi pathway using Endo H has not proved useful 

as the protein does not become resistant to the enzyme (313). Studies using 3H labelled Fuc 

predicted that F1 from avirulent and virulent strains of NDV produced in MDBK and chicken 

embryo cells, respectively, contained low levels of Fuc (313, 316). These predictions were based on 

the expected electrophoretic mobility of F1 during gel electrophoresis of virion proteins, thus the 

incorporation of Fuc could not be unequivocally assigned to F. The results presented herein 

reinforce those above, revealing that some species of the F protein of NDV V4-VAR are transported 

through the trans-Golgi through the presence of fucosylated hybrid or complex structures at site 

N191. 

 

Interestingly, analyses of glycans released from virion derived F proteins of other paramyxoviruses 

revealed vastly different glycan profiles to NDV F. Released glycans of F derived from Sendai virus 

(SeV) propagated in embryonic chicken eggs revealed that 75% of the structures contained charged 

residues (298). Glycans of F from Simian virus 5 (SV5 now classified as PIV 5) produced in 

MDBK cells were observed to be complex type glycans (309). It is predicted that the F protein of 

hRSV produced in Human epithelial type 2 (HEp-2) cells contains predominately complex type 

glycans (135, 314). It had been postulated that the high mannose glycans observed from NDV F 

produced in MDBK cells was cell-line specific (104). However, the results herein confirm that 

NDV F produced in embryonic eggs also presents with mainly high mannose glycans.  

 

As discussed in Chapter 1, the F proteins of paramyxoviruses are all trimeric type I integral 

membrane proteins, thus the N- and C- terminal domains are conserved in addition to sequences of 

functional importance such as the fusion peptide and F2/F1 cleavage sites.  In addition to these 

features, comparisons of the amino acid sequences of F proteins revealed conservation of Cys 

residues and heptad repeats A and B (305, 317). Furthermore, the overall architecture of F is 

conserved between paramyxoviruses (63). Interestingly, there is general conservation of N-linked 
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sites within a single genus, but not always between genera of paramyxoviruses (317). The 

functional roles of N-linked sites on F proteins from paramyxoviruses have been investigated 

through site-directed mutation studies of F from NDV (102, 103), PIV5 (318), SeV (319), MeV 

(320, 321), Canine distemper virus (CDV) (321), NiV (322), HeV (323) and hRSV (139) (Figure 

5-9). Most N-linked consensus sites were predicted to be occupied with the exception of a site in the 

cytoplasmic domain NDV, one from the F1 subunit of CDV and one from the F2 subunit of NiV and 

HeV (Figure 5-9). 

 

 

 

Figure 5-9. Position of N-linked sites from F proteins of paramyxoviruses. Schematic 
representations (not to scale) of F proteins from different members of the paramyxovirus family. 
The genus to which each virus belongs has been included in brackets. General conserved regions 
are represented on the top schematic of NDV, identifying the signal peptide (SP), fusion peptide 
(FP), heptad repeats (HRA and HRB), transmembrane domain (TM) and cytoplasmic domain. The 
soluble peptide (P27) that is lost from hRSV F0 has been represented on the schematic of hRSV 
(bottom). The position of N-linked sites on each protein are denoted by an “*” and are derived from 
the studies that have been referenced in the text. If an N-linked site was predicted to be unoccupied 
an “N” has been placed next to it.   
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These functional studies revealed the importance of specific sites for some viruses but most 

highlighted the cumulative effects of eliminating N-linked sites in the F proteins. Furthermore, there 

were no clear conserved roles for N-linked sites between viruses. For example, elimination of the 

N-linked consensus site in HRB of NDV and hRSV did not significantly affect cleavage, transport 

or expression of F (103, 139). Contrastingly, mutation of the N-linked site in HRB of SV5 

significantly reduced cleavage and transport of F (318) and moderately reduced expression of NiV 

and HeV F (322, 323). For HeV and NiV of the Henipavirus genus, the N-linked consensus site N-

terminal to HRB is required for folding and processing of F (322, 323). Conversely, elimination of 

sites in similar regions of NDV and SeV did not affect folding and processing of the respective 

proteins (102, 103, 319). Although the number, location and function of N-linked sites are 

seemingly not conserved between paramyxoviruses, Messling and Cattaneo predicted roles for N-

linked sites based on their position in regions of the tertiary structure of F (321). Using the crystal 

structure of F from NDV V4-VAR (276) (Figure 5-10) and predicted structures of CDV, SV5 and 

SeV F, the authors assigned folding and transport roles to N-linked sites in the stalk and neck 

regions, while those sites in the head region were expected to control fusion.  

 

More recently, the crystal structures of F from a virulent strain of NDV (Australia-Victoria/Aus 

Vic) (324), hPIV3 (325) and hRSV (326) have been solved in a similar conformation to NDV V4-

VAR (Figure 5-10). As yet, the roles of N-linked sites from F of hPIV3 have not been elucidated. 

Using the stalk, neck and head theory, it could be predicted that N359 is involved in fusion control, 

while either N238 or N446 may be involved in folding and transport (Figure 5-10). Comparisons of 

the structures in Figure 5-10 also reveal that N27 at the N-terminus of hRSV F2 is positioned in the 

head region of the F protein. This aligns with the previous predictions by Messling and Cattaneo 

that N-linked sites from CDV and MeV, which are also positioned at the N-terminus of F2 (Figure 

5-9), are situated in the head region of the respective F proteins. However, a functional study of the 

F protein from hRSV revealed elimination of N500 significantly altered fusion activity while 

elimination of N27 had little impact on fusion (139), which is at odds with the stalk, neck and head 

theory.  

             



  

Chapter 5: Characterisation of glycosylation of Newcastle disease virus fusion (F) protein 83 

 

Figure 5-10. Position of N-linked sites on the crystal structures of F proteins from paramyxoviruses. Cartoon representation of F proteins from 
hPIV3, RSV F, NDV Australia Victoria/32 (Aus Vic) and NDV V4-VAR (RCSB PDB identifiers 1ZTM, 3RRR, 3MAW and 1G5G, respectively). The 
structures have been represented in their monomeric form to enable easier comparisons. The F2 and F1 subunits have been identified in pink and blue, 
respectively. The fusion peptide has been identified in orange and is only present on hRSV F. N-linked sites are represented by green spheres. General 
regions of the F proteins are represented on the NDV proteins with the stalk, neck and head domains represented on NDV V4-VAR. All images were 
created PyMOL (version 1.3).  
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Over the last several years it has been postulated that the F proteins of paramyxoviruses undergo a 

transition from a metastable prefusion state to a stable post-fusion state (39, 63, 64, 70, 327). To 

date, the crystal structures of F in a prefusion conformation have been solved for PIV5 (325), hRSV 

(328) and HeV (329). These conformational differences in F may account for the different roles 

observed for N-linked sites that reside in the same stalk, neck and head regions of the previously 

solved structures. The variable roles observed for N-linked sites in F proteins from paramyxoviruses 

may also be due to the expression systems used in each mutation study or the type of mutation 

introduced to eliminate each N-linked site. Furthermore, post-translation and functional differences 

between the F proteins may account for differential glycosylation or function. For example, the F0 

precursors from HeV, NiV and SeV are not cleaved by furin-like proteases during transport through 

the trans-Golgi, but rather by cathepsin L and trypsin-like proteases (55, 319). Moreover, the crystal 

structure of F from HeV reveals that the conformation of the fusion peptide adjacent to the cleavage 

site differs to PIV5, likely due to substrate requirements of the enzymes that cleave each protein 

(329). There is also a greater reliance on the attachment proteins of Paramyxovirinae for fusion 

promotion than in the Pneumovirinae subfamily (37). Even within Paramyxovirinae different 

models of fusion activation are predicted (39, 55). These differences may necessitate divergent roles 

for N-linked sites on the respective F proteins, highlighting the need for site-specific investigations 

into occupancy and glycan heterogeneity of F from each virus.  

 

This study represents a step towards defining site-specific glycan heterogeneity of F proteins from 

paramyxoviruses. Using F derived from V4-VAR virions it was demonstrated that site N85 of the 

F2 subunit was occupied. The assignment of  high mannose compositions (Man5-8) conforms with 

previous observations of high mannose glycans at N85 of V4-VAR F (105). The presence of high 

mannose glycans indicates that accessibility to N85 by glycosidases and glycosyltransferases is 

hindered during transport of F through the ER and Golgi. Interestingly, peptides containing N85 

were only observed in a glycosylated form signifying high occupancy at this site. Elimination of the 

N-linked consensus site containing N85 has been shown to impair folding of F, significantly reduce 

cleavage of F0 and reduce surface expression and fusion activity (102). Site N85 is situated nine 

residues downstream from a Cys residue that is involved in the disulfide bond linking the F2 and F1 

subunits. Furthermore, N85 is in close proximity to the F2/F1 cleavage site. Thus glycosylation of 

N85 may act to hold F0 in a conformation that enables proper disulfide bond formation and allows 

proteases to access the cleavage site. However, a later study revealed deletion of N85 did not 

significantly affect cleavage, surface expression or the fusion properties of F (103). The two studies 

used different expression systems and the latter work did not compare reduced and unreduced 
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samples, relying on apparent MW to draw conclusions on cleavage. This may account for the 

differences observed between the two studies.       

 

The results herein also demonstrated that site N191, N366 and N471 of the F1 subunit are occupied. 

Peptides containing N191, N366 and N471 were not observed without glycosylation indicating that, 

like N85, these sites may also be highly occupied. Previous studies have predicted glycosylation at 

these sites on NDV F, but elimination of each individual consensus site did not significantly alter 

folding, F0 cleavage or surface expression of F (102, 103). Mutation of site N191 was associated 

with decreased fusion, although the effects were not as pronounced as those observed for N85 

(102). Interestingly, combined mutations of N471 found in HRB and N191 found in HRA (Figure 

5-10) increased replication, virulence and immunogenicity of NDV in chickens (103). In 

paramyxoviruses both HRA and HRB play pivotal roles in the rearrangement of F into an 

intermediate then post-fusion conformation. They facilitate the insertion of the fusion peptide into 

host cell membranes and associate to form a stable six-helix bundle in the post fusion conformation 

of F (67). As discussed, the additional processing of glycans observed at site N191, albeit at low 

levels, indicates the F protein is transported through the medial- and trans-Golgi. The higher degree 

of processing at site N191 indicates that this region of HRA may remain more accessible to 

glycosidases and glycosyltransferases than other regions of V4-VAR F containing N-linked sites. 

Site N471 was the only site identified with a Man9 structure indicating that HRB may be highly 

shielded during processing of V4-VAR F.  

 

Unfortunately, occupancy of N447 could not be established in this work as peptides or 

glycopeptides containing this site were not observed. Site N447 and N471 were both positioned on 

a large theoretical tryptic peptide (aa 447-480 in Figure 5-3a) with a calculated mass of 3,586 Da. 

During the analyses of V4-VAR F1 this peptide was not detected. Site N447 is also situated directly 

C-terminal to a trypsin cleavage site at position K446. It was predicted that potential glycosylation 

of N447 may hinder trypsin sterically (255). This would produce an even larger theoretical tryptic 

peptide containing N447 and N471 (aa 436-480 in Figure 5-3a) with a calculated mass of 4,825 Da. 

To avoid potentially large tryptic peptides and to yield separate peptides containing N447 and 

N471, preliminary work investigated the use of Glu-C to produce the theoretical peptides 
442ATYQKNISIQD452 and 467LGNVNNSISNALD479, respectively. However, digestion of V4-VAR 

F1 with Glu-C did not result in detection of these theoretical peptides (data not shown). For this 

reason V4-VAR F1 was first digested with trypsin followed by PNGase F or Glu-C to investigate 

occupancy and heterogeneity at N447 and N471.  
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Interestingly, Mascot searches of all digests of F1 identified peptides directly N-terminal to N447. 

This revealed that trypsin was able to cleave C-terminal to K446. Therefore, it is not clear why the 

theoretical tryptic peptide containing N447 and N471 (aa 447-480) was not detected after PNGase F 

treatment. It may be due the large size of the peptide (3,586 Da) or modifications that were not 

included in the search parameters. To investigate the latter possibility a wild card search was 

conducted with Byonic, but this did not yield any results. To assess if stepped collision energy was 

insufficient for the fragmentation of the potentially deglycosylated peptide, manual searching was 

undertaken in Xcalibur for both precursor and fragment ions with varying levels of deamidation. 

Again this search did not yield any results. Subsequent digestion of F1 tryptic peptides with Glu-C 

also did not enable detection of glycopeptides containing N447. This may be due to the small size 

of the theoretical peptide 446KNISIQD452. There are conflicting reports on occupancy at N447 using 

site-directed mutagenesis combined with gel-electrophoresis (13,14). However, the crystal structure 

of NDV V4-VAR F revealed up to three residues (GlcNAc2Man1) at N447 in trimers of F, indicting 

this site can be occupied.    

 

Glycosylation of N541 was not observed in this work, however peptides containing N541 were 

observed without glycosylation suggesting this site is not occupied. As the site of N-glycan 

attachment (N541) was deamidated in the trypsin digested sample, PNGase F digestion could not be 

used to infer occupancy. Site N541 resides within the cytoplasmic domain of V4-VAR F, therefore 

it is not expected to be glycosylated as transfer of N-linked oligosaccharides occurs in the lumen of 

the ER (14). Mutation studies have also predicted that N541 is not glycosylated (13,14).  

 

Overall this study provides an interesting insight into glycosylation of NDV F as it reveals that sites 

N85, N191, N366 and N471 may generally remain inaccessible to glycosyltransferases irrespective 

of the cell line or tissue used to propagate avirulent NDV virions. This study also demonstrated that 

species of V4-VAR F are transported through the late Golgi by the presence of fucosylated hybrid 

or complex glycans at site N191. The high mannose profile of NDV F differs to F derived from 

virions of other paramyxoviruses. This suggests that despite overall conservation of the tertiary and 

quaternary structures of F proteins between paramyxoviruses, NDV F may have a different 

structural arrangement during transport of the protein through the ER and Golgi pathway. Crystal 

structures of NDV F in a prefusion conformation or uncleaved form may help to shed light on any 

potential differences in arrangement. It would also be of interest to determine if the high mannose 

profile observed on V4-VAR is present on more virulent strains of NDV F. As N-linked sites are 
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highly conserved amongst NDV strains, variations in glycosylation profiles may indicate different 

conformations of F between virulent and avirulent strains. 
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Chapter 6: Characterisation of glycosylation of 
human respiratory syncytial virus fusion 
(F) protein  

6.1 SUMMARY  

 

Human respiratory syncytial virus is recognised as a serious human pathogen that contributes 

significantly to the burden of respiratory disease worldwide. Despite this burden effective vaccines 

and treatments for hRSV remain elusive. The F protein of hRSV is a major target for the 

development of therapies against this pathogen. Substantial structural detail has been described for 

hRSV F. However, there is a paucity of data describing the glycosylation profile of this protein. 

Mass spectrometry techniques were applied herein to a soluble recombinant trimeric form of F (sF) 

produced in human embryonic kidney cells, providing the first site-specific characterisation of 

glycans from F. Implementation of HCD-pd-EThcD methods enabled the identification of 20, 19, 7, 

24 and 70 glycans at N-linked sites N27, N70, N116, N126 and N500, respectively. The use of 

stepped HCD collision energies and EThcD provided specific advantages for the identification of 

glycopeptides from sF. Stepped HCD enabled confident identification of glycopeptides containing 

sites N27 while EThcD was able to distinguish that the isomeric peptide sequence containing N126 

was 124KTNVTLSK131 rather than 125TNVTLSKK132.  Both fragmentation methods facilitated the 

identification of sulfated glycopeptides. Some of the attached glycans were present in fucosylated, 

sulfated and/or sialylated forms as evident from the observation of specific oxonium ions. Many of 

the observed N-linked glycans exhibited fragmentation characteristics consistent with diHexNAc 

units, which could potentially represent the GalNAcβ1–4GlcNAc or LacdiNAc motif. These 

antenna are not typically observed in mammals and are potentially immunogenic. Moreover, O-

linked glycosylation of the protein is described for the first time, with a glycan attached at T100. 

These findings form the basis for future functional and comparative studies of the glycan structures 

and occupancy of N- and O-linked sites from the native F protein. These findings may also have 

implications for future studies into viral infectivity and the design of therapeutic agents. 
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6.2 INTRODUCTION  

 

Infection by hRSV is a significant contributor to acute lower respiratory disease in children, the 

elderly and immunocompromised individuals (110-113). Although hRSV virions present two major 

glycoproteins on the viral membrane the F protein remains the major target of vaccines and 

neutralising therapeutics (118). The F protein mediates membrane fusion and is essential for viral 

replication while G may be dispensable in certain cell cultures (72, 126). Like other members of the 

paramyxovirus family hRSV F0 is cleaved into an active form by furin-like host proteases in the 

trans-Golgi (330), resulting in disulfide linked polypeptide chains F2 and F1. Despite structural 

conservation of F throughout the paramyxovirus family (63), hRSV F differs through the presence 

of a second cleavage site in F0 which results in the loss of the soluble pep27 (128).  

 

Another post-translational modification hRSV F undergoes following biosynthesis is the addition of 

N-linked glycans in the ER (140). These N-linked glycans are further processed in the Golgi 

complex during the maturation of hRSV F proteins (135, 314). As discussed in Chapter 1 of this 

thesis, N-linked structures may contain elongated antennas. The most common antenna is formed 

after the addition of Gal to a terminal GlcNAc in a beta-linkage (Galβ1–4GlcNAc) also referred to 

as LacNAc (15). On a restricted number of mammalian glycoproteins unique beta-linked GalNAc 

(GalNAcβ1–4GlcNAc) or LacdiNAc motifs have been observed (331) (Figure 6-1). The antennas 

can be decorated with a number of different monosaccharides and substituents including NeuAc, 

Sulf and Phos. The F protein of hRSV contains five highly conserved N-linked consensus sites; 

N27, N70, N116, N126 and N500. Sites N27 and N70 reside in F2, N116 and N126 in the pep27 

region of F2 and N500 in F1. The Long strain of RSV, a strain of subtype A, contains an additional 

N-linked site N120, also located in pep27. Despite this conservation, lack of glycosylation at these 

sites does not affect proteolytic cleavage of F or cell surface presentation (139, 330). Of the five N-

linked sites, three are thought to be occupied N27, N70 and N500, with N500 being required for 

syncytium formation (139). Mutation of site N70 was seen to increase fusion activity while dual 

mutation of N27 and N70 decreased fusion activity. Furthermore, the importance of maturation and 

proper formation of N-linked glycans in infection and subsequent syncytia formation has been 

reported for the hRSV F protein (135).    

 

Elucidation of the monosaccharide compositions of glycans at each N-linked site of hRSV F may 

provide a basis for experiments to determine the role N-linked glycosylation plays in the infectivity 

of the virus. Application of MS methods herein to a soluble recombinant trimeric form of RSV F 
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(sF), which has been extensively structurally characterised in pursuit of drug and vaccine design 

objectives (332), permitted the first site-specific analysis of glycan heterogeneity for hRSV F. A 

total of 20, 19, 7, 24 and 70 glycans were identified at N-linked sites N27, N70, N116, N126 and 

N500, respectively. Many of the observed glycans exhibited characteristics of diHexNAc units, 

which could potentially be LacdiNAc motifs. These are not typically observed on mammalian 

glycans and presence of these units on hRSV F or sF may have far-reaching implications for 

biological studies and the design of vaccines or anti-viral therapies targeting hRSV F. Finally, the 

observation of O-linked glycosylation of hRSV sF is detailed for the first time. Two O-linked 

glycans were observed in the F2 subunit of sF where the site of attachment of HexNAc1Hex1 could 

be narrowed down to T100 and the site of attachment of HexNAc1Hex1NeuAc2 was localised to 

S99 or T100. 

 

 
 

6.3 METHODS 

 

6.3.1 Provision of samples  

 

Recombinant sF was kindly provided by Professor Mark. E. Peeples from Nationwide Children’s 

Hospital (Columbus, OH, USA). The gene sequence of sF was based on hRSV strain A2 and 

contains the following introduced amino acid mutations S155C, S290C, S190F and V207L. The 

carboxyl-terminal region of the protein containing the transmembrane and cytoplasmic domains 

have been removed and replaced with a trimerization motif, thrombin site, six His-tag and a 

StreptagII. The two Ser-to-Cys mutations have been shown to induce a disulfide bond that stabilises 

Figure 6-1. Example of a complex 
N-linked glycan with LacNAc and 
LacdiNAc antennae. The N-linked 
trimannosylchitobiose core has been 
identified in a dotted box. Core 
fucosylation is represented. The 
common LacNAc extension and less 
common LacdiNAc extension have 
also been illustrated.  
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sF in a trimeric prefusion form, the structure and stability of which has been extensively 

characterised (332). The protein was engineered to maintain an antigenic site (Ø) which is targeted 

by potent neutralising antibodies. The protein was produced in human embryonic kidney (HEK) 

293 FreeStyle™ cells and was and was purified by immobilised metal ion chromatography on a 

nickel column followed by size exclusion chromatography. It was then concentrated by 

centrifugation in an Amicon Ultra-30K Filter (Millipore).  

 

6.3.2 Sample preparation and enzymatic digestions of sF 

 

Approximately 50 µg of purified sF was reduced and alkylated before proteins were methanol 

precipitated with trypsin as per the methods described in Chapter 2. An aliquot (5 µg) of the hRSV 

sF tryptic digest was also subjected to digestion with 1U of PNGase F in 60 mM NH4HCO3 at 37°C 

overnight. Resultant peptides were desalted with a C18 ZipTip (10 µL pipette tip with a 0.6 µL 

resin bed; Millipore, MA, USA) using the manufacturers’ guidelines for MS analysis.  

    

6.3.3 Nano-ultra-high pressure liquid chromatography 

 

Approximately 200 ng of digested sF was injected for each analysis using a nUHPLC system as 

described in Chapter 2. Samples were loaded onto the trap column and washed for 3 min at 5 

µL/min in 99.5% solvent A and 0.5% solvent B. Peptides and glycopeptides were subsequently 

eluted onto the analytical column and separated at flow rate of 0.3 µL/min. The analytical column 

was held at 1% solvent B for 3 min before ramping through a sequence of linear gradients up to 

40% solvent B in 60 min, to 70% B over 15 min, to 95% B in 5 min and then holding at 95% B for 

5 min. The column was then re-equilibrated with 0.5% B for 20 min.  

 

6.3.4 Mass spectrometry data acquisition  

 

Survey scans of peptide and glycopeptide precursors from m/z 300 to 2000 were acquired in the 

Orbitrap at 120K resolution (FWHM) at m/z 200 using an AGC target of 400,000 and maximum 

injection time of 50 ms. For internal mass calibration the lock mass option was enabled using the 

polycyclodimethylsiloxane ion at m/z 445.1200 (310). The most intense precursors (m/z 300 to 

1800) with charges 2-6 and intensities over 5,000 counts were selected for fragmentation by HCD. 
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Precursor ion isolation was performed with a mass selecting quadrupole using an isolation window 

of m/z 2. Precursors were fragmented in the ion routing multipole, using either a NCE of 30% or, in 

a separate chromatographic run, a stepped method of ±5% around a NCE of 25% (hereafter denoted 

as 25±5%). Previously selected ions within a ±10 ppm window were dynamically excluded for 15 s. 

Fragment ions were acquired in the Orbitrap at a resolution of 30K using an AGC target of 50,000 

and maximum injection time of 100 ms. If fragment ions were produced within the top 20 ions 

corresponding to 204.0867 (HexNAc), 163.0601 (Hex) or 292.1027 (NeuAc) within a ±10 ppm 

window the precursors ions were re-isolated and subjected to EThcD using supplemental activation 

with a NCE 15%. Fragment ions produced by EThcD were acquired in the Orbitrap at a resolution 

of 60K using an AGC target of 200,000 and maximum injection time of 250 ms with 2 microscans. 

The trypsin digest of sF was analysed using both HCD NCE of 30% and HCD NCE of 25±5% 

protocols. The trypsin digest that was additionally digested with PNGase F was analysed using the 

HCD NCE of 25±5% protocol  

 

6.3.5 Data processing of non-glycosylated and deglycosylated peptides from sF 

 

Proteome Discoverer (v2.1.0.81) and the search engine Mascot were used to search HCD MS/MS 

spectra from the RAW files of the analyses of sF. The protein database contained the sequence for 

sF. Cleavage specificity was set as semi-tryptic with a maximum of two missed cleavages. Mass 

tolerances of 10 ppm and 0.02 Da were applied to precursor and fragment ions, respectively. 

Carbamidomethylation of Cys was set as a fixed modification and dynamic modifications included 

mono-oxidised Met, deamidation of Asn and Gln residues, conversion of N-terminal Gln to 

pyroglutamate and loss of ammonia from N-terminal carbamidomethyl Cys residues. The “Fixed 

Value PSM Validator” node of Proteome Discover was used and a cut-off score of 30 was applied 

to all PSMs.     

 

6.3.6 Assignment of the monosaccharide compositions of N-linked glycans from sF   

 

Spectra from the HCD MS/MS analysis of tryptic peptides from sF were analysed with OxoExtract. 

The following parameters were used: digestion with trypsin; maximum of two missed cleavages; 

fixed modification of carbamidomethylation of Cys and a dynamic modification of mono-oxidised 

Met. The protein database queried contained the sF sequence with the signal peptide removed. The 

optional feature of GlycoMod was enabled. In addition to the default monosaccharide parameters 



 

94  Chapter 6: Characterisation of glycosylation of human respiratory syncytial virus fusion (F) protein 

the substituents Phos and Sulf were considered as possible components of the N-glycans. For 

peptide modifications that were not available in OxoExtract (conversion of N-terminal Gln to 

pyroglutamate and loss of ammonia from N-terminal carbamidomethyl Cys residues) the mass of 

the peptide was inferred manually from the glycopeptide Y1 ion and the monosaccharide 

compositions were allocated after manual searches in GlycoMod. The observed compositions from 

the OxoExtract search were used for subsequent searches in Byonic (detailed below).  

 

6.3.7 Assignment of N-linked and O-linked glycopeptides from sF 

 

Byonic was used to analyse HCD and EThcD mzML files separately with Byonic using a protein 

database that contained the sequence for sF with the signal peptide removed. Cleavage specificity 

was set C-terminal to Lys and Arg residues allowing a maximum of two missed cleavages. Mass 

tolerances of 10 ppm and 0.02 Da were applied to precursor and fragment ions, respectively. A 

fixed modification Carbamidomethylation of Cys was allowed. Two dynamic modifications were 

allowed per peptide and these included mono-oxidised Met, deamidation of Asn and Gln residues, 

conversion of N-terminal Gln to pyroglutamate and loss of ammonia from N-terminal 

carbamidomethyl Cys residues. One glycan attached at an N-linked consensus site was allowed per 

peptide. The N-linked glycan database queried was a combination of the Byonic mammalian 

database (309_Mammalian no sodium) with all glycans containing NeuGc removed and any 

additional glycans (32 monosaccharide compositions in total) assigned in the OxoExtract search. 

The default protein false FDR and peptide output options were changed to “Show all N-

glycopeptides” as recommended by the manufacturer when analysing simple samples. After manual 

inspection of the Byonic results a cut-off score of 100 was chosen for glycopeptides fragmented by 

HCD. For glycopeptides fragmented by EThcD a cut-off score of 100 was applied for those 

containing sites N27 and N500. No cut-off score was applied for glycopeptides containing N70, 

N116 and N126 due to low scores assigned by Byonic which was likely due to the small length of 

the peptide portions of the corresponding glycopeptides. To confirm glycopeptide assignments by 

EThcD the identification of at least three z- or c-ions was required. For O-linked searches the 

enzyme specificity was changed to semi-specific with ragged cleavage allowed at the C-terminus of 

glycopeptides. One O-linked glycan was allowed per peptide attached at Ser or Thr residues and the 

glycan database queried was the common O-glycan database which contained six common mucin-

type glycans (HexNAc1, HexNAc2, HexNAc1Hex1, HexNAc2Hex1, HexNAc1Hex1NeuAc1 and 

HexNAc1Hex1NeuAc2).  
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6.4 RESULTS 

 

6.4.1 Identification of N-linked sites of sF 

 

A schematic of sF is represented in Figure 6-2 revealing the positions of the five N-linked 

consensus sites in the protein. Four sites, N27, N70, N116 and N126, are positioned in the F2 

subunit, with the latter two in the pep27 region of F2. The remaining site, N500, is positioned in the 

F1 subunit. The two sites of furin-like cleavage at R136 and R109 are identified in the insert. In the 

present study trypsin was used to digest sF and predicted theoretical peptides containing sites N27, 

N70 and N500 are shown in Figure 6-2. Theoretical tryptic peptides containing sites N116 

(114FMNYTLNNAK123) and N126 (125TNVTLSK131) can be deduced from the amino acid sequence 

of pep27. Allowing one missed cleavage, or one non-canonical internal trypsin cleavage site, in 

peptides containing N126 resulted in the isomeric peptides 124KTNVTLSK131 and 
125TNVTLSKK132.     

 

 

 

Figure 6-2. Schematic of hRSV sF. The signal peptide (SP), heptad repeats (HRA, HRB and 
HRC), pep27 (P27), fusion peptide (FP) and the replaced (RD) transmembrane and cytoplasmic 
domains are identified. The N-linked sites are marked with a vertical line with the amino acid 
number of the respective Asn residue. Theoretical tryptic peptides containing N-linked sites N27, 
N70 and N500 are shown with the N-linked consensus sites underlined. An insert reveals the two 
furin-like cleavage sites (denoted by arrows) that lead to the production of the F2 and F1 subunits 
after cleavage at R136, and pep 27 after cleavage at both R109 and R136. The two N-linked 
consensus sites within pep27 (N116 and N126) have been underlined. 
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6.4.2 Identification of non-glycosylated and deglycosylated peptides from sF using HCD 
fragmentation 

 

Mascot searches were performed on the analyses of trypsin digested sF using 30% and stepped 

HCD and trypsin/PNGase F digested sF using stepped HCD (Supplementary Tables S6-1 to S6-3, 

respectively). Greater than 80% sequence coverage was observed in each search (Appendix E).  In 

the samples that were digested with trypsin alone, PSMs containing N27 were not observed while 

PSMs containing N70, N116, N126 and N500 were observed (Supplementary Tables S6-1 and S6-

2).   

 

In the PNGase F digested sample, PSMs were observed that corresponded to sequences containing 

N27, N116, N126 and N500 where Asn residues in N-linked consensus sites were deamidated 

(Supplementary Table S6-3). A tryptic peptide containing N70 was not observed in this sample. The 

peptide 69cNGTDAK75, where lowercase “c” represents carbamidomethyl Cys, may be susceptible 

to NH3 elimination from the N-terminal S-carbamoylmethylcysteine (333). As such, the variable 

modification “pyro-carbamidomethyl” was included in the parameters of the Mascot searches. 

However, peptides containing N70 that had undergone such a reaction were also not identified. The 

peptide 69cNGTDAK75 was hydrophilic and eluted quite early in the trypsin digested sample that 

was not subjected to a C18 ZipTip clean-up protocol before MS. As the trypsin/PNGase F digest 

was subjected to a C18 ZipTip clean-up protocol before MS, the potentially deglycosylated versions 

of this peptide may have been lost during this procedure.   

 

Interestingly, the amino acid sequence 88NAVTELQLLMQSTPATNNRARR109, which includes the 

furin cleavage site (R109), was observed with semi-tryptic cleavages at the C-terminal end of the 

tryptic peptides (e.g. 88NAVTELQLLMQSTPATNNRA107 and 88NAVTELQLLMQSTPATNN105). 

Trypsin cleaves predominantly C-terminal to Lys and Arg residues (334), therefore the “semi-

tryptic” cleavages may originate from trimming by carboxypeptidases (88).  

 

6.4.3 The use of different HCD collision energies to identify glycopeptides from sF   

 

The two HCD NCEs of 30% and 25±5% were investigated for identification of glycopeptides from 

sF. Performance of two separate chromatographic experiments using 30% NCE or 25±5% NCE 

provided a general qualitative comparison of the two methods. The manually validated Byonic 
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search results for glycopeptides fragmented by HCD with a NCE of 30% and 25±5% are presented 

in Supplementary Table S6-4 and S6-5, respectively. It was revealed that 25±5% NCE permitted 

more confident assignment of the peptide mass from glycopeptides containing N27 compared to 

30% NCE. The N-terminal amino acid sequences of peptides containing N27 were not derived from 

cleavage by trypsin but rather from removal of the signal peptide. The Mascot search of the 

trypsin/PNGase F digest identified several different N-terminal sequences and modifications of 

peptides containing N27 which included 24SGQNITEEFYQSTcSAVSK42, 
26QNITEEFYQSTcSAVSK42 and 26qNITEEFYQSTcSAVSK42, where lower case “q” represents 

conversion of N-terminal Gln to pyroglutamate. Fragmentation of glycopeptides containing N27 

with 30% and 25±5% NCE produced peptide sequence ions of low relative abundance 

predominantly from the C-terminal region of the peptide (Figure 6-3a and Figure 6-3b, 

respectively). Both glycopeptide assignments were given high scores of ~554 by Byonic, however, 

25±5% NCE also produced glycopeptide Y1 ions with varying degrees of the peptide with 

monosaccharides attached (Figure 6-3b). Production of the Y1 ion was critical for the identification 

of the peptide portions of glycopeptides containing N27 as the putative site of glycosylation was 

also at the N-terminal region of the peptides. As peptide sequence ions were not observed from this 

region of the glycopeptides, the peptide mass could have been incorrectly assigned and the mass 

difference taken or added to the glycan. Of particular concern was the mass difference between N-

terminal Gln and its conversion to pyroglutamate (-17.027 Da). This mass shift could be mistaken 

for the difference between Hex1dHex1 and NeuAc1 (-17.015 Da) in the glycan. Thus, production of 

glycopeptide Y1 ions using 25±5% enabled confident assignment of glycopeptides containing N27.  

 

Comparison of 30% and 25±5% NCE also revealed that peptide sequence ions were of low relative 

abundance for glycopeptides containing sites N70, N116, N126 and N500 (Supplementary Figure 

S6-1a-d, respectively). Finally, 25±5% NCE yielded more informative spectra for sulfated 

glycopeptides than 30% NCE. This arose through the production of sulfated oxonium ions in 94% 

and 68% of spectra of sulfated glycopeptides recorded with 25±5% and 30% NCE, respectively. 

The production of sulfated oxonium ions enabled the distinction between sulfation and 

phosphorylation of glycopeptides to be made, as illustrated in the following section. Given that the 

higher dissociation energy did not significantly improve the relative abundance of peptide b- and y-

ion and yielded less sulfated oxonium ions a 25±%5 NCE was used for the subsequent analyses of 

N-linked glycopeptides from hRSV sF. 
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Figure 6-3. Comparison of 30% HCD and stepped HCD for the identification of glycopeptides 
containing site N27. (A) HCD fragmentation of precursor ion at m/z 1140.474 (3+) using a NCE of 
30% with a Byonic score of 553.6 for the glycopeptide assignment. (B) HCD fragmentation of 
precursor ion at m/z 1140.474 (3+) using a NCE of 25±5% with a Byonic score of 553.7 for the 
glycopeptide. Each panel has a schematic of the peptide fragmentation pattern observed for the 
glycopeptide and the spectra are labelled accordingly. Lowercase “q” and lowercase “c” in the 
peptide sequence represent pyroglutamate and carbamidomethylation of Cys, respectively. Not all 
ions have been labelled in the spectra for ease of interpretation.   
 

6.4.4 Stepped HCD and EThcD fragmentation of N-linked glycopeptides from sF  

 

The use of stepped HCD with a NCE of 25±5% and EThcD were investigated for the identification 

of glycopeptides from sF. The manually validated Byonic search results for glycopeptides 

fragmented using a stepped HCD and EThcD are presented in Supplementary Table S6-5. In total 
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156 non-redundant glycopeptides were observed that contained one of the five N-linked sites. 

Annotated HCD and EThcD spectra for all accepted glycopeptides are presented in Supplementary 

Figure S6-2 and S6-3, respectively. Of these glycopeptides, 93 were assigned by both HCD and 

EThcD while 56 were assigned solely by HCD and seven were assigned solely by EThcD (Figure 

6-4a). When assessing the value of HCD and EThcD for the assignment of hRSV sF glycopeptides 

containing each N-linked site (Figure 6-4b) it was observed that HCD performed substantially 

better for the assignment of glycopeptides containing sites N27 and N500. At these sites no 

glycopeptides were identified solely by EThcD, while large proportions were uniquely identified by 

HCD. Alternatively, EThcD uniquely identified glycopeptides that contained N70, N116 and N126 

although a larger proportion of glycopeptides at N70 were uniquely identified by HCD.  

 

Despite EThcD fragmentation resulting in fewer glycopeptide assignments a closer look at the 

spectra revealed that in many instances EThcD produced considerably more intense peptide 

fragment ions as evident in the HCD-pd-EThcD spectra presented in Figure 6-5 to 6-9, for N-

linked sites N27, N70, N116, N126 and N500, respectively. Furthermore, EThcD resulted in greater 

sequence coverage of the peptide portion of the glycopeptides containing N70, N116, N126 and 

N500 (Figures 6-6 to 6-9). Importantly, EThcD confirmed that the isomeric peptide sequences 

containing N126, was 124KTNVTLSK131 rather than 125TNVTLSKK132 (Figure 6-8).  

 

  

Figure 6-4. Glycopeptides observed from the 
analysis of trypsin digested hRSV sF using HCD 
and EThcD fragmentation. (a) Venn diagram 
illustrating the distribution glycopeptides identified by 
HCD or EThcD fragmentation. (b) Histogramic 
representation of glycopeptides identified at each N-
linked site using HCD and / or EThcD fragmentation. 
The peptide amino acid sequences from observed 
glycopeptides containing each site have been listed.   
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Figure 6-5. HCD and EThcD spectra of an N-linked glycopeptide from hRSV sF containing 
site N27. (a) HCD fragmentation (NCE of 25±5%) with a Byonic score of 552.6 for the 
glycopeptide assignment and (b) EThcD fragmentation of the same precursor ion at m/z 1262.188 
(3+)  with a Byonic score of 137.9 for the glycopeptide assignment. Each panel has a schematic of 
the peptide fragmentation pattern observed for the glycopeptide and peptide sequence ions that have 
not been labelled in the spectra are denoted with an “*”. Lowercase “q” and lowercase “c” in the 
peptide sequence represent pyroglutamate and carbamidomethylation of Cys, respectively.  
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Figure 6-6. HCD and EThcD spectra of an N-linked glycopeptide from hRSV sF containing 
site N70. (a) HCD fragmentation (NCE of 25±5%) with a Byonic score of 228.7 for the 
glycopeptide assignment and (b) EThcD fragmentation of the same precursor ion at m/z 921.363 
(3+) with a Byonic score of 101.8 for the glycopeptide assignment. Each panel has a schematic of 
the peptide fragmentation pattern observed for the glycopeptide and the spectra are labelled 
accordingly. Lowercase “c” in the peptide sequence represents carbamidomethylation of Cys. The 
‘′’ symbol next to labelled z-ions indicates abstraction of hydrogen (z + H) by the fragment ion. The 
addition of a dot ‘·’ symbol with the ‘′’ symbol indicates both the radical and z + H ions were 
observed for the fragment ion as judged by the isotopic distributions described in (176). The 
remaining z-ions are considered to be typical radical ions as the isotopic distribution of the fragment 
ions did not enable confirmation of z + H ions. 
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Figure 6-7. HCD and EThcD spectra of an N-linked glycopeptide from hRSV sF containing 
site N116.  (a) HCD fragmentation (NCE of 25±5%) with a Byonic score of 254.7 for the 
glycopeptide assignment and (b) EThcD fragmentation of the same precursor ion at m/z 1119.796 
(3+) with a Byonic score of 60.2 for the glycopeptide assignment. Each panel has a schematic of the 
peptide fragmentation pattern observed for the glycopeptide and the spectra are labelled accordingly. 
Labelling of radical and even-electron z-ions follows that set out in Figure 6-6. 
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Figure 6-8. HCD and EThcD spectra of an N-linked glycopeptide from hRSV sF containing 
site N126. (a) HCD fragmentation (NCE of 25±5%) with a Byonic score of 203.6 for the 
glycopeptide assignment and (b) EThcD fragmentation of the same precursor ion at m/z 779.027 
(3+) with a Byonic score of 34.6 for the glycopeptide assignment. Each panel has a schematic of 
the peptide fragmentation pattern observed for the glycopeptide and the spectra are labelled 
accordingly. Labelling of radical and even-electron z-ions follows that set out in Figure 6-6. The 
radical fragment was not observed for z2.    
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Figure 6-9. HCD and EThcD spectra of an N-linked glycopeptide from hRSV sF containing 
site N500. (a) HCD fragmentation (NCE of 25±5%) with a Byonic score of 466.9 for the 
glycopeptide assignment and (b) EThcD fragmentation of the same precursor ion at m/z 944.089 
(3+) with a Byonic score of 239.4 for the glycopeptide assignment. Each panel has a schematic of 
the peptide fragmentation pattern observed for the glycopeptide and the spectra are labelled 
accordingly.  Peptide sequence ions that have not been labelled in the spectra are denoted with an 
“*”. Labelling of radical and even-electron z-ions follows that set out in Figure 6-6.   
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Both HCD and EThcD were beneficial for the analysis of sulfated glycopeptides, producing sulfated 

oxonium ions in 94% of HCD and 100% of EThcD MS/MS spectra (Figure 6-10) assigned by 

precursor mass to sulfated or phosphorylated glycopeptides. In a single spectrum, calculation of the 

mass difference of 79.954-79.958 Da between sulfated oxonium ions and their non-sulfated 

equivalents confirmed the presence of Sulf over Phos which have theoretical differences of 79.957 

Da and 79.966, respectively (238, 267). This is illustrated in Figure 6-10a where the difference 

between HexNAc1 at m/z of 204.087 and HexNAc1Sulf1 at m/z of 284.043 equated to 79.956 Da 

and in Figure 6-10b where the mass shift between HexNAc2 at m/z of 407.165 and HexNAc2Sulf1 

at m/z of 487.122 (represented by Δ) equated to 79.957 Da.     

 

 

Figure 6-10. HCD and EThcD spectra of a sulfated N-linked glycopeptide from hRSV sF 
containing site N500. (a) HCD fragmentation with a Byonic score of 456.0 for the glycopeptide 
assignment and (b) EThcD fragmentation of the same precursor ion at m/z 1024.745 (3+) with a 
Byonic score of 159.1 for the glycopeptide assignment. Each panel has a schematic of the peptide 
fragmentation pattern observed for the glycopeptide and the spectra are labelled accordingly. 
Peptide sequence ions that have not been labelled in the spectra are denoted with an “*”. In the 
spectra the ion marked with a “Δ” at m/z 487.122 corresponds to the sulfated oxonium ion 
HexNAc2Sulf1. Labelling of radical and even-electron z-ions follows that set out in Figure 6-6.    
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6.4.5 Modification of the peptide potion of glycopeptides containing N70 

 

The peptide portion of glycopeptides containing N70 (69cNGTDAK75) were also observed with a 

peptide modification that was presumed to be the formation of pyro-carbamidomethyl due to 

ammonia loss from the N-terminal carbamidomethyl Cys residues (333). This modification is 

commonly observed on peptides (335) and results in an increased retention time in reversed-phase 

chromatography systems for peptides (336). Fragmentation of glycopeptides presumed to contain 

pyro-carbamidomethyl Cys with HCD, produced Y1 ions that were 17.027 Da less than the 

expected Y1 ion. Furthermore, glycopeptides presumed to contain pyro-carbamidomethyl Cys 

eluted several minutes later than glycopeptides that contained carbamidomethyl Cys (Appendix F), 

consistent with previous observations of increased retention time of glycopeptides containing pyro-

carbamidomethyl Cys (337). Fragmentation of one of these later eluting glycopeptides with EThcD 

confirmed that the C-terminal amino acids (GTDAK) were not modified (Figure 6-11) while the 

presence of the Y0 and Y1 ions at m/z of 748.2952 and 951.370, respectively, indicated that the loss 

of ammonia was from the peptide. Given that Asn was already modified with an N-linked glycan 

the loss of 17.027 Da was likely associated with the N-terminal carbamidomethyl Cys residue.  

 

 

 

Figure 6-11. EThcD spectrum of an N-linked glycopeptide from hRSV sF containing site N70 
with the peptide modification pyro-carbamidomethyl Cys . EThcD fragmentation of a precursor 
ion at m/z 915.6874 (3+). The panel has a schematic of the peptide fragmentation pattern observed 
for the glycopeptide and the spectrum is labelled accordingly. Within the amino acid sequence 
“c(pyro)” represents pyro-carbamidomethyl. Labelling of radical and even-electron z-ions follows 
that set out in Figure 6-6.    
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6.4.6 Qualitative distribution of the monosaccharide compositions at N-linked sites of sF      

 

Considering each monosaccharide compositions only once at each N-linked site resulted in 20, 19, 

7, 24 and 70 glycans identified at N27, N70, N116, N126 and N500, respectively (Supplementary 

Table S6-6). All glycans were classified as hybrid or complex except for two compositions, one 

paucimannose and one high mannose, identified at N500. All assigned hybrid or complex glycans 

contained at least one dHex residue. Ions corresponding to peptide+HexNAc1dHex1, indicating core 

fucosylation, were observed in HCD spectra for all hybrid or complex glycopeptides containing 

N70, N116, N126 and N500 (Figures 6-6 to 6-9). The production of peptide+HexNAc1dHex1 ions 

was less consistent for glycopeptides containing N27 but core fucosylation was apparent in 75% of 

spectra of assigned glycopeptides.   

 

Inspection of the monosaccharide compositions of glycans observed across hRSV sF indicated that 

some contained diHexNAc extensions with variable sulfation, fucosylation or sialylation, rather 

than the more common HexNAc1Hex1 extensions (Figure 6-1). This was evident through the 

observation of abundant oxonium ions for HexNAc2 at m/z of 407.166 in HCD and EThcD spectra 

of sF glycopeptides (Figure 6-5 to 6-8). The HEK cell line used in the present study is known to 

express β1–4–N-acetylgalactosaminyltransferases (β4GalNAc–Ts) that are responsible for the 

LacdiNAc motif (338). In this study, glycans exhibiting intense HexNAc2 ions also contained a 

higher number of HexNAc residues than Hex after the N-linked trimannosylchitobiose core, which 

is consistent with the addition of LacdiNAc. In addition to HexNAc2 ions, fragmentation of sF 

glycopeptide containing these unusual monosaccharide compositions exhibited the diagnostic 

oxonium ions HexNAc2dHex1 at m/z of 553.224 and HexNAc2NeuAc1 at m/z of 698.261 (Figure 

6-6 and Figure 6-7), all of which have been identified previously in MS/MS spectra of 

glycopeptides with LacdiNAc extensions (339, 340). Despite these observations being consistent 

with LacdiNAc motifs, MS of intact glycopeptides does not enable the linkages of the glycan 

residues to be determined, thus, these observations can only be represented as evidence of 

diHexNAc extensions on hRSV sF. The production and intensities of the sulfated oxonium ion 

HexNAc2Sulf1 were variable in spectra where monosaccharide compositions indicated diHexNAc 

additions, as illustrated by a low abundant ion at m/z 487.122 (represented by Δ) in a HCD 

spectrum in Figure 6-10a and the presence of a more intense ion at m/z 487.122 (represented by Δ) 

in an EThcD spectrum of the same precursor in Figure 6-10b. As illustrated in Figure 6-12 the 

relative abundances of HexNAc2 ions were low in MS/MS spectra of glycopeptides where the 

monosaccharide compositions indicated typical LacNAc antenna. Some compositions exhibited the 

HexNAc2 ions with varying relative abundances such as those glycopeptides where the attached 
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glycans contained HexNAc3dHex1, HexNAc3dHex2 and Hex1HexNAc3dHex1 after the 

trimannosylchitobiose core (Figure 6-12 denoted by an “*” next to the composition). The diverse 

fragmentation patterns observed may be indicative of different glycan structures with the same 

monosaccharide composition. For example, those with low abundant HexNAc2 ions may have 

bisecting GlcNAc or typical LacNAc antennas while those with relatively intense HexNAc2 ions 

may contain terminal diHexNAc residues. For N-linked sites N27, N70, N116, N126 and N500 the 

percentage of assigned spectra where the relative abundance of the HexNAc2 ion was greater than 

10% was 65%, 75%, 100%, 86% and 54%, respectively.  

 

6.4.7 Detection of O-linked glycopeptides from sF 

 

Byonic searches of data obtained from trypsin digested sF using HCD NCEs of 30% and 25±5% 

identified two potential O-linked glycopeptides (Supplementary Table S6-7). The monosaccharide 

compositions corresponding to HexNAc1Hex1NeuAc2 and HexNA1Hex1 were attached to the 

peptide, 88NAVTELQLLMQSTPATNNR106, which is situated at the C-terminal region of F2 and N-

terminal to the furin-like cleavage site R109. Fragmentation of the sialylated glycoform with HCD 

produced the glycopeptide Y0 ion which represents the complete loss of the glycan moiety (Figure 

6-13). Near complete peptide sequence coverage was obtained and the oxonium ions observed in 

Figure 6-13a supported the proposed monosaccharide compositions. Using EThcD the site of 

attachment of the sialylated glycan was narrowed down to S99 or T100 through the presence of c8 

and z5 peptide ions (Figure 6-13b). Furthermore, the production of an ion at m/z 948.329 in Figure 

6-13b, which corresponds to HexNAc1Hex1NeuAc2, confirmed the composition of the O-linked 

glycan. Using EThcD the site of attachment of the glycan HexNAc1Hex1 was localised to T100 

though the presence of peptide ions z5, z7 and c12 denoted with “*” in Figure 6-14. The O-linked 

Byonic search allowed ragged cleavage at the C-terminus of peptides to accommodate 

glycopeptides containing 88NAVTELQLLMQSTPATNNR106 that may have undergone carboxyl-

trimming after furin-like cleavage, as was observed in the Mascot searches. The Byonic search did 

not identify O-linked glycopeptides where the peptide portion was formed from a semi-tryptic 

cleavage. 
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Figure 6-12. Relative abundances of [HexNAc2+H]+ ions identified in MS/MS spectra of all hRSV sF  glycopeptides assigned a hybrid or 
complex glycan by monosaccharide composition. Fragmentation was achieved with 25%±5 NCE. The abundance of the [HexNAc2+H]+ ion is 
relative to the most intense ion in the MS/MS spectrum. The dotted line represents 10% relative abundance. The non-redundant compositions listed 
on the x-axis represent monosaccharide residues deduced after the trimannosylchitobiose core for each glycan. Multiple data points for each 
monosaccharide composition reflect the multiple glycopeptides identified with that composition. 
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Figure 6-13. HCD and EThcD spectra of a hRSV sF O-linked glycopeptide with 
HexNAc1Hex1NeuAc2 attached at either S99 or T100. (a) HCD fragmentation using a NCE of 
25±5%) and (b) EThcD fragmentation of the same precursor ion at m/z 1016.804 (3+).  Each panel 
has a schematic of the peptide fragmentation pattern observed for the glycopeptide. Not all ions 
have been labelled in the spectra for ease of interpretation.  
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Figure 6-14. EThcD fragmentaion of a hRSV sF O-linked glycopeptide with HexNA1Hex1 
attached at T100. EThcD fragmentation of a precursor ion at m/z 822.741(3+) is presented. A 
schematic of the peptide fragmentation pattern is shown. Not all ions have been labelled in the 
spectra for ease of interpretation. Labelling of radical and even-electron z-ions follows that set out 
in Figure 6-6.  

 

6.5 DISCUSSION 

 

The F protein of hRSV plays an integral role viral infectivity and spread (124, 341) and is a major 

target for vaccines (58, 114), small molecule antiviral agents and neutralising antibodies (118, 342). 

The F protein has been characterised structurally (326, 328), however, details regarding the 

monosaccharide compositions of glycans have not been reported. The methods adopted in this study 

enabled the first site-specific assessment of glycosylation of hRSV F. The recombinant hRSV F 

protein analysed in the present study, sF, has been extensively structurally characterized in pursuit 

of drug and vaccine design objectives (332). This study demonstrated that stepped HCD and EThcD 

provided data that enabled characterisation of glycopeptides from sF. Using Byonic, stepped HCD 

enabled the identification of more glycopeptides containing sites N27 and N500 than EThcD. 

However, EThcD provided valuable peptide fragmentation information for glycopeptides 

containing all N-linked sites and typically produced more intense peptide ions. Furthermore, only 

EThcD was able to distinguish that the potential isomeric peptide sequence containing N126 was 
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124KTNVTLSK131 rather than 125TNVTLSKK132. Importantly these analyses also enabled the 

identification of N-terminal modifications of glycopeptides containing N27 and N70 produced after 

removal of the signal peptide and proteolytic cleavage with trypsin, respectively. Such 

modifications may need to be considered in future analyses of virion derived hRSV F.  

 

Stepped HCD and EThcD also facilitated the identification of sulfated glycopeptides, through the 

production of sulfated oxonium ions, albeit at lower relative abundances than other oxonium ions. 

As described in Chapter 4 for NDV HN, this enabled the distinction between Sulf and Phos to be 

made based on the accuracy of the mass differences between sulfated and non-sulfated oxonium 

ions (238, 267). Typically Sulf substituents on glycans have been identified in negative ion mode 

after the glycans have been released from a protein and analysed with or without derivatisation 

(343). However, site-specificity is lost when releasing the glycan. In positive ion mode, ion-pairing 

reagents can be used to stabilise labile Sulf substituents on glycopeptides before direct infusion into 

the mass spectrometer (344). The use of lower dissociation energies in positive ion mode has been 

used for the characterisation of enriched O-linked glycopeptides containing sulfated 

glycosaminoglycan chains (238, 267). The present study complements this research by showing that 

stepped HCD and EThcD can be used to produce sulfated oxonium ions from N-linked 

glycopeptides in positive ion mode under typical LC-MS conditions.        

         

The observation of non-glycosylated peptides containing N70, N116, N126 and N500 in the trypsin 

digest of sF suggests these N-linked sites are not always occupied. Conversely, peptides containing 

N27 were only observed in the trypsin/PNGase F digest, suggesting site N27 is highly occupied. 

Site directed mutagenesis of hRSV F indicated only sites N27, N70 and N500 were occupied (139) 

while other work suggests that N116 or N126 in pep27 may be glycosylated (128). The work 

presented herein reveals that sites N116 and N126 can be occupied.  Furthermore, presence of 

mature glycans at N116 and N126 indicates trans-Golgi processing which aligns with predictions in 

the literature that furin-like cleavage and potential removal of pep27 takes place in the late Golgi 

(314, 330).  

 

Of significance is the observation of diagnostic diHexNAc oxonium in the analyses of sF, which 

have been described previously in spectra of glycopeptides with LacdiNAc extensions (339, 340). 

Glycans with LacdiNAc extensions have been identified in kidney derived cell lines such as the 

HEK293 cells used in this work (345, 346), however, further studies are required to determine the 



  

Chapter 6: Characterisation of glycosylation of human respiratory syncytial virus fusion (F) protein 113 

linkages of the diHexNAc residues observed on the glycans of hRSV sF. The unique LacdiNAc 

terminal modification has only been identified on a relatively small number of mammalian proteins, 

with variable sulfation, α1–3 fucosylation and α2–6 sialyation (339, 345-353). These include native 

proteins secreted from the stomach (Trefoil factor 2) (339, 345), salivary glands (carbonic 

anhydrase VI / CA6) (346), placenta (human chorionic gonadotropin / hCG) (348), anterior 

pituitary (luteinizing hormone, thyroid stimulating hormone and prolactin-like hormones) (347, 

349-351), monolayer of the cerebellum (tenascin-R) (352), kidneys and neurons in the brain 

(sorting protein-related receptor / SORL1/LR11) (353). The functional importance of LacdiNAc 

extensions is not well established, but the modification has been implicated in regulating serum 

concentrations of hormones, cell recognition and contraceptive and immunosuppressive activities 

(331, 345, 354). The two enzymes responsible for LacdiNAc motifs, β4GalNAc-T3 and -T4, are 

expressed in limited tissues and cell lines (338). The human β4GalNAc-Ts and β1–4–

galactosyltransferases (β4Gal-T) responsible for LacdiNAc and LacNAc additions, respectively, are 

thought to be within the same range of protein expression in HEK293 cells (345) (deduced from the 

Model Organism Protein Expression database). Despite this, β4GalNAc additions are not highly 

represented in glycoproteomic and glycomic studies of proteins from HEK293 cell lines, with 

sulfated β4GalNAc motifs particularly underrepresented (23, 345, 355).  

 

Unlike β4Gal-Ts, the catalytic efficiencies of β4GalNAc-Ts are dependent on the protein, indicating 

that specific protein recognition determinants drive LacdiNAc addition (356). Native mammalian 

proteins that contain glycans with LacdiNAc also show a similar glycosylation profile when 

produced in kidney cell lines (345-347). Several studies suggest that protein sequences proximal to 

putative N-linked sites act as cis-regulatory elements for β4-specific GalNAc-transferases (345, 

346, 351, 353). One such study identified the 19 amino acid peptide LRRFIEQKITKRKKEKYMP 

displaying an alpha-helical structure at carboxyl-terminus of CA6 (346). This 19-residue peptide 

promoted LacdiNAc extensions on CA6. Furthermore, the addition of the 19-residue peptide to the 

C-terminus of a protein not previously modified with LacdiNAc directed β4GalNAc-T3 and -T4 

activity. Moreover, the recognition determinant PLRSKK situated N-terminal to two N-linked 

glycosylation sites in the alpha subunit of hCG was shown to promote β4GalNAc-T activity (348). 

Additional investigations have revealed that specific amino acid residues, particularly the basic 

residues highlighted in bold within the sequences QKITKRKKEKYMP and PLRSKK, are 

important for the induction of β4GalNAc-T3 and -T4 activity (351). In addition, two basic 

sequences, KPLRRKR and KTVFKRR, the former of which is a furin cleavage site, mediate 

GalNAc additions on SorLA/LR11 (353).    
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The presence of diHexNAc motifs on paramyxovirus fusion proteins has not been described 

previously. As discussed in Chapter 5, glycans released from Sendai F proteins derived from virions 

propagated in chicken eggs revealed high mannose and complex glycans with LacNAc additions 

(298), while glycans released from NDV F isolated from virions propagated in MDBK cells 

revealed high mannose structures only (104). Unlike the F protein of other paramyxoviruses and 

other viral type I fusion proteins hRSV F is cleaved at two sites by furin-like proteases. This is of 

particular interest, as cleavage of hRSV F at R109 and R136 would result in C-terminal regions of 

F2 and pep27 that have clusters of basic residues. In particular, cleavage at R136 occurs at the C-

terminus of the highly basic sequence (123KKTNVTLSKKRKRR136). The propensity of these C-

terminal regions, before or after cleavage, to form alpha helices has not been defined in 

crystallography studies. It has been suggested that cleavage of F0 into F1 and F2 subunits occurs 

simultaneously with maturation of the glycans and trimerisation of the F protein in the medial-Golgi 

(314, 357). If the timing of this cleavage is accurate the C-terminal region of F2 containing pep27 

(123KKTNVTLSKKRKRR136) may indeed act as a cis-regulatory element for β4GalNAc-T in the 

trans-Golgi and promote GalNAc additions at the N-linked sites N70, N116 and N126. This was 

particularly evident at N116 where all compositions observed exhibited characteristics of 

diHexNAc additions. It has been suggested that cis-regulatory elements can induce β4GalNAc-T 

activity on distant N-linked sites and this may be dependent on the quaternary structure of the 

protein and the proximity of the glycan substrates to the regulatory element (356). This may explain 

why diHexNAc units were observed at site N27 and N500, as they are not directly adjacent to the 

two furin-like cleavage sites (104).  

 

Although LacdiNAc motifs have been observed on human glycoproteins the number and location of 

these glycoproteins is quite limited and expression of such glycans in the lungs may elicit different 

cellular or immune responses. Interestingly, LacdiNAc motifs have been well established as 

immunogenic components of helminths and are thought to be responsible for the Th2 bias with 

eosinophilic granulomas observed in schistosomiasis (358). This type of immune response is also 

observed in enhanced hRSV disease (116). Antibodies to LacdiNAc and fucosylated LacdiNAc 

have been identified in sera from humans, monkeys and mice infected with Schistosoma mansoni, 

one of the parasites responsible for schistosomiasis (359, 360). The glycans on these helminths are 

thought to interact with Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-

integrin (DC-SIGN), a C-type lectin that is expressed on macrophages and dendritic cells (358). 
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Moreover, monoclonal antibodies to fucosylated LacdiNAc inhibited binding of DC-SIGN to the 

LacdiNAc antigen expressed from eggs of Schistosoma mansoni (361).  

 

Given the immunogenic properties of LacdiNAc glycans it would be of interest to determine if 

tissues naturally infected by hRSV express β4GalNAc-Ts. Glycomic characterisation of human 

bronchial and lung tissue has revealed high mannose or complex-type glycans bearing LacNAc 

extensions (38, 362). Although glycans bearing LacdiNAc were not detected in bronchial and lung 

tissue, β4GalNAc-T3 is expressed in tracheal tissue, albeit at low levels compared to other tissues 

such as those derived from ovaries, stomach and brain (338). The transferases β4GalNAc-T3 and -

T4 were not expressed or were expressed at very low level in adult lung. However, β4GalNAc-T4 

was highly expressed in foetal lung and was expressed in lung squamous and lung adenocarcinoma 

cell lines at levels equal to or greater than β4GalNAc-T3 and -T4 in HEK293 cells (338). Of interest 

is the high level of expression of β4GalNAc-T4 in foetal lung tissue compared to adult, as the 

highest incidence of serious hRSV disease occurs in infants under six months of age (363). 

Structural predictions show N70 is positioned within a major antigenic site (Ø) in the prefusion 

form of the protein (118, 332) (Figure 6-15). As such, antibodies against the glycans at this site 

might neutralise the virus effectively. Qualitatively, approximately 75% of the glycopeptides 

assigned to N70 exhibited fragmentation patterns of diHexNAc units, thus the glycans at this site 

may modulate immune responses to hRSV. Furthermore, if β4GalNAc-Ts are expressed in the 

lungs of infants, as potentially indicated by high expression of β4GalNAc-T4 in foetal lung tissue 

(338), but not of children or adults, this may result in distinct antigenic forms of hRSV virions 

circulating. Also of interest, is that the first attempt at an inactivated hRSV vaccine resulted in 

significant enhanced lung pathology in infants upon infection with wild type hRSV. The vaccine 

was developed after repeated passage of the virus through two kidney cell cultures before 

intramuscular administration (117). Although purely conjectural, it is possible that production of 

vaccines or therapeutics or natural infection with hRSV produces these immune stimulating glycan 

ligands on F and these may contribute to priming Th2 immune responses. 
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Figure 6-15. Crystal structures of hRSV F in prefusion and post-fusion conformations 
revealing a major antigenic site (Ø) in the prefusion form. Cartoon representation of monomers 
of hRSV F where the F2 and F1 subunits have been identified in pink and blue, respectively, with 
the exception of the fusion peptide (orange) and antigenic Ø site (yellow). N-linked sites are 
represented by green spheres. (a) Prefusion conformation of hRSV F (RCSB PDB identifier 
4MMU) revealing F2 (aa 26-107) and F1 subunits (aa 137-509). The Ø sites are formed at the apex 
of a trimer and are composed of two sequences from the monomer, one from F1 (aa 196-210) and 
one from F2 (aa 62-69) (118). Within the structure N70 sits directly adjacent to the Ø site at the 
apex. (b) Post-fusion conformation of RSV F (RCSB PDB identifier 3RRR) revealing F2 (aa 26-98) 
and F1 subunits (AA147-519). The Ø site is no longer formed after structural rearrangement of F. 
All images were created PyMOL (version 1.3).    

 

The novel identification of two O-linked glycans on sF was unexpected as hRSV F is thought to be 

subjected only to N-linked glycosylation (140). The site of attachment, T100, could be confirmed 

for the HexNAc1Hex1 O-linked glycan, but could not be distinguished between S99 and T100 for 

the HexNAc1Hex1NeuAc2 O-linked glycan. The proximity of S99 and T100 to the furin cleavage 

site (R109) is interesting as O-GalNAc glycosylation has been implicated in the regulation of 

proprotein convertases (33), a family of  proteolytic enzymes, including furin, utilised by enveloped 

viruses in host cells (364). As cleavage of the furin like-sites and O-linked glycosylation are thought 
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to occur in the later stages of protein processing in the Golgi it is difficult to speculate on a potential 

role of the O-linked site. Furthermore, the importance of O-linked glycosylation sites observed on 

recombinantly produced viral proteins is unclear. For example, there is conflicting evidence as to 

whether O-linked glycans observed on recombinantly produced human immunodeficiency virus 

gp120  are also present on virally produced gp120 (365, 366).  To add to this, it may prove difficult 

to detect glycoforms on F at O-linked sites in this region of the protein due to carboxyl-trimming. 

As noted, the potential O-linked sites reside within a tryptic peptide that is directly N-terminal to 

the R109 furin cleavage site. In the present study, peptides containing the O-linked sites were 

observed in non-glycosylated forms with multiple C-terminal semi-tryptic cleavages. This is likely 

due to carboxyl-trimming of F2 as indicated in the crystal structure of hRSV sF where the C-

terminus of F2 was identified as A107 rather than R109 (332). The use of alternative proteolytic 

enzymes may be necessary to avoid “diluting” potential signals from glycopeptides containing S99 

and T100 due to carboxyl-trimming.  

 

The present study provides as template for future analyses of glycopeptides derived from native 

hRSV F, highlighting potential pitfalls of using higher dissociation energies for detection of 

glycopeptides containing N27, and the benefits of using stepped NCEs and EThcD for the 

identification of glycopeptides containing all five sites. Furthermore, the identification of 

diHexNAc extensions that may be potential LacdiNAc antennas on N-linked glycans invokes 

several hypotheses and potential avenues for future studies. A hypothesis has been put forward that 

the basic residues proximal to the two furin-like cleavage sites of F act as cis-regulatory elements 

and induce the transferases responsible for LacdiNAc additions. These extensions may modulate 

immune responses upon infection with hRSV or after administration of therapeutics containing 

hRSV F. The novel observation of an O-linked glycan on hRSV sF also provides a basis for future 

functional and biological studies. Finally, the results presented herein may be used to compare 

glycosylation of hRSV F proteins produced recombinantly in different cell lines, virally, or those 

isolated from virions derived by natural infection.    
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Chapter 7: Characterisation of glycosylation of 
human respiratory syncytial virus 
attachment surface glycoprotein (G) 

7.1 SUMMARY  

 

Both N- and O-linked glycosylation of hRSV G is well documented with a considerable portion of 

the mass of G credited to O-linked glycosylation. Moreover, glycosylation of hRSV G has been 

implicated in viral infection, immune evasion and modulation of host immune responses. However, 

site-specific glycosylation of hRSV G and the contribution of such glycans to infectivity remain to 

be elucidated. Recently, advances in mass spectrometry-based technologies have enabled 

characterisation of glycans on heavily glycosylated proteins in a site-specific manner. Such 

technologies have been applied herein to a recombinant soluble form of hRSV G attached to the N-

terminus of HA from measles virus (MeV). Both HCD and EThcD methods were employed to 

address the lack of site-specific detail pertaining to hRSV G. A total of 28 O-linked sites were 

identified on hRSV G. The O-linked glycans observed were small glycans with the compositions 

presumed to be Tn, T and mono- and di-sialylated T antigens. PNGase F digestion revealed that N-

linked sites N85, N135 and N237 may be occupied, however this could not be confirmed for sites 

N85 and N237 through the observation of attached monosaccharide compositions. Twelve N-linked 

compositions were localised to site N135 and represented hybrid or complex-type compositions 

with core fucosylation. Interestingly, O-linked glycans were also observed on HA from MeV, which 

has not been previously described as O-glycosylated. The present study also highlights the benefits 

of EThcD, which enabled up to five O-liked glycans to be assigned to one peptide sequence in a 

site-specific manner. The combination of Glu-C and trypsin digestions proved useful by increasing 

the number of glycopeptides detected, particularly form the C-terminal region of the protein. This 

work is the first to describe site-specific O-linked and N-linked glycosylation of hRSV G. The 

techniques applied in herein can be used to investigate native forms G while the results provide the 

first step in the elucidation of site-specific and compositional differences of glycans from hRSV G 

produced in different cell lines.  
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7.2 INTRODUCTION  

 

Like the other attachment proteins of paramyxoviruses hRSV G is a type II integral membrane 

protein containing cytoplasmic and transmembrane domains at the amino-terminal region of the 

protein. However, the G protein of hRSV does not follow the same molecular architecture as the 

other attachment glycoproteins from Paramyxovirinae (63). Overall G is not well conserved with 

the exception of the amino-terminal domains and a CCD which is flanked by two mucin like 

domains (120). The CCD contains four Cys residues which are disulfide-linked to form a cystine 

noose (121, 367). The two downstream Cys residues form a highly conserved CX3C motif that may 

bind to the chemokine receptor CX3CR1 in human airway epithelial cells (125, 368, 369). Surface 

GAG have also been described as a receptor for hRSV G with one site of attachment directly C-

terminal to the CCD, described as the heparin-binding domain (HBD) (73, 123, 124, 370). Despite 

the attachment function of G, the protein is not essential for viral infectivity or replication in 

cultured cells (72, 370).  However, it is required for efficient infection in-vivo and for infection of 

primary well-differentiated human airway epithelial cells (73). A recent comparison of hRSV 

strains predicted that the two mucin-like domains are intrinsically disordered (371). Within these 

mucin-like domains it is expected that 25-40 of the potential O-linked sites are utilised (115, 118). 

The extracellular domain of hRSV G, consisting of the mucin-like domains and CCD, can also be 

produced as a soluble form and may act as an antibody decoy or to supress host antiviral immune 

responses (122, 372).  

 

Importantly, glycosylation of hRSV G can modulate viral activity through changes in infectivity, 

reactivity to antibodies and induction of Th2 responses (50, 137, 138, 140). Studies using 

endoglycosidases, inhibitors of protein transport or glycosylation and gel electrophoresis have 

estimated that over half of the MW of the mature form of G can be attributed to glycosylation (133-

136, 140, 373). Most of this additional mass is thought to be associated with O-linked glycosylation 

in the STP-rich mucin-like domains (133, 136, 140, 373). Glycosylation at one or more of the four 

conserved N-linked sites with complex-type glycans has also been predicted (133, 136, 140, 373). 

Infection of different cell lines with hRSV has revealed distinct migration patterns of G and 

differential binding of G to carbohydrate-specific lectins and antibodies, highlighting the 

importance of elucidating cell-specific differences in glycans and site-occupancy of hRSV G (50, 

373).  
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Despite the numerous studies investigating glycosylation of hRSV G, to date, no study has defined 

site-specific glycosylation of G. This remains an important aim given recent publications on 

herpesviruses which revealed conservation of O-linked sites on homologous proteins between 

viruses and importantly, conservation of sites between viral proteins produced in-vitro and from a 

clinical specimen (374). Clusters of O-linked sites were also seen to occupy regions of functional 

importance such as sites of proteolytic cleavage, protein-protein interactions, immune evasion and 

interactions with GAG (374). Furthermore, O-linked sites observed on recombinantly produced 

HeV G (375) have recently been shown to have functional properties (376). Mutation of individual 

O-linked sites on both HeV and NiV G proteins altered interactions with F proteins, fusion activity 

and induced conformational changes in G (376). It should be noted that although the HeV, NiV and 

hRSV attachment glycoproteins are all termed “G”, the HeV and NiV attachment proteins resemble 

that of other members of the Paramyxovirinae subfamily with respect to secondary structure and 

three-dimensional arrangement (63). Furthermore, the predicted level of O-linked glycosylation is 

much greater for hRSV G (133, 375, 377). Therefore, the roles defined for the O-linked sites of 

HeV and NiV G may differ to those observed for hRSV G.  

 

Taken together, the above studies highlight the importance of defining site-specific glycosylation of 

hRSV G. The type of O-linked glycosylation expected on hRSV, that is mucin-like glycosylation, is 

initiated by transfer of GalNAc to Ser or Thr residues in the Golgi by a large family ppGalNAcTs 

(24). The Tn antigen described in (Figure 1-4) is built on to form one of eight different cores. The 

core monosaccharides can also be extended, forming long branching structures that often contain 

Gal, NeuAc and Fuc residues (378). As described in Chapter 6 for N-linked glycans, GalNAc can 

also be added to terminal GlcNAc on a core-2 structures to form O-linked LacdiNAc motifs, which 

have been described on a limited number of proteins (379). Sites that are modified by O-linked 

glycosylation and the compositions of attached glycans are less random than once thought, with 

diverse acceptor substrate specificities between ppGalNAcTs (378, 380). Dense O-GalNAc 

glycosylation serves many functions, including promotion of extended conformations of proteins, 

shielding proteins or cellular surfaces from proteolysis and modulating immune responses (378, 

381).    

 

As mucins contain a high number of O-linked sites, many of which can be clustered, analysing 

these glycoproteins can be quite challenging. Typically, MS studies employ low-energy electron 

based fragmentation techniques such as ETD to enable site-specific location of the labile O-linked 

modifications (374, 382-384). However, multiple glycans attached to one peptide, extended O-
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glycans or sialylated structures can result in less efficient fragmentation of the glycopeptides (381, 

382, 385). To assess site-specific glycosylation of hRSV G a recombinant soluble form of G (sG) 

conjugated to the N-terminal region of HA from MeV was analysed. Multiple enzyme digestions 

were conducted to increase the likelihood of detecting O-linked and N-linked glycopeptides from 

sG. These included digestion with trypsin and Glu-C to increase amino acid coverage of sG and the 

identification of glycosylated peptides. Additionally, N-linked glycans were removed with PNGase 

F to assess occupancy at N-linked sites and to identify O-linked sites on glycopeptides containing 

N-linked consensus sites. Finally, sialidase treatments were employed to investigate the linkage of 

sialic acid residues present on sG and to increase the likelihood of assigning N- and O-linked sites 

after removal of sialic acid residues. Digested sG samples were analysed by MS using HCD and 

EThcD fragmentation. Overall 28 O-linked sites were unambiguously assigned to Ser or Thr 

residues in the mucin-like domains of hRSV G. The compositions of O-glycans observed indicated 

typical mucin-like glycosylation with the structure proposed to be Tn, T, sialyl-T and disialyl-T 

antigens. Furthermore, N-linked sites N85, N135 and N237 were deemed to be occupied after 

digestion with PNGase F and occupancy was further confirmed at N135 after the identification of 

twelve N-linked compositions attached at the site. Three O-linked sites were unambiguously 

assigned to MeV HA with some O-linked compositions indicative of Core-2 glycans with 

LacdiNAc additions.         

 

7.3 METHODS  

 

7.3.1 Provision of samples  

 

Recombinant soluble hRSV G, described herein as sG, was kindly provided by Professor Mark. E. 

Peeples from Nationwide Children’s hospital (Columbus, OH, USA). In the construct used to 

express sG, the amino-terminal cytoplasmic and transmembrane domains of hRSV G were replaced 

with the amino-terminal coding region of MeV HA (hereafter described as MeV-HA) followed 

downstream by a furin cleavage site, a six-His tag and a factor Xa site. The final C-terminal 

sequence of sG contained the extracellular domain of hRSV G (hereafter described as hRSV-G). 

Construction of sG is described in (386), for the purposes of this work the proteins were expressed 

in HEK293F cells and purified using wheat germ agglutinin.    
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7.3.2 Sample preparation and enzymatic digestions of sG 

  

Approximately 150 µg of purified sG was reduced and alkylated before aliquots were methanol 

precipitated with and without trypsin as per the methods described in Chapter 2. To increase the 

likelihood of identifying peptides and glycopeptides from sG and in order to investigate the 

potential linkages of NeuAc on sG aliquots of the trypsin digest were subjected to different enzyme 

digestions. An aliquot (5 µg) of the trypsin digested sG was further digested with 1U of PNGase F 

(hereafter referred to as trypsin/PNGase F) in 10 µL of 50 mM NH4HCO3. An aliquot (5 µg) of the 

trypsin digested proteins was also further digested with Glu-C using a final ratio of protein: enzyme, 

40:1 (w/w) (hereafter referred to as trypsin/Glu-C) in 10 µL of 50 mM NH4HCO3. Aliquots (2.5 µg) 

of the trypsin digest were brought to a volume of ~15 µL with H2O and heated at 95 ˚C for 5 min to 

deactivate trypsin before sialidase digestion (32). The aliquots were treated with 5 mU of Sialidase-

A or Sialidase-S (hereafter referred to as trypsin/Sialidase-A or -S) in 50 mM sodium phosphate 

(pH 6.0). The trypsin/PNGase F, trypsin/Glu-C, trypsin/Sialidase-S and trypsin/Sialidase-A 

digestions were all allowed to proceed for 16 h at 37°C. Resultant peptides and glycopeptides from 

the trypsin/PNGase F, trypsin/Sialidase-S and trypsin/Sialidase-A digestions were desalted with a 

C18 ZipTip (10 µL pipette tip with a 0.6 µL resin bed; Millipore, MA, USA) using the 

manufacturers’ guidelines for MS analysis.    

 

7.3.3 SDS-PAGE separation of intact sG treated with sialidase 

 

Methanol precipitated intact sG was also treated with Sialidase-A or Sialidase-S. For each treatment 

3.5 µg of sG was digested with 10 mU of sialidase in 50 mM sodium phosphate (pH 6.0). Samples 

were also prepared for sG (3.5 µg) with no enzyme, Sialidase-A (10 mU) with no protein and 

Sialidase-S (10 mU) with no protein in the same buffer. All samples were incubated for 16 h at 

37°C before separation by SDS-PAGE.  Intact sG samples were subjected to SDS-PAGE followed 

by staining and de-staining as per the methods described in Chapter 2.  

 

7.3.4 Nano-ultra-high pressure liquid chromatography  

 

Approximately 200 ng of digested sG was injected for each analysis using a nUHPLC system as 

described in Chapter 2. Samples were loaded onto the trap column and washed for 3 min at 5 
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µL/min in 99% solvent A and 1% solvent B. Peptides and glycopeptides were subsequently eluted 

onto the analytical column and separated at flow rate of 0.3 µL/min ramping through a sequence of 

linear gradients from 1% to 2% solvent B in 5 min, to 30% B over 85 min, to 50% B over 30 min, 

to 95% B in 5 min and then holding at 95% B for 5 min. The column was then re-equilibrated with 

1% B for 20 min.    

 

7.3.5 Mass spectrometry data acquisition  

 

Survey scans of precursor ions from m/z 350 to 1800 were acquired in the Orbitrap at 120K 

resolution (FWHM) at m/z 200 using an AGC target of 400,000 and maximum injection time of 50 

ms. For internal mass calibration the lock mass option was enabled using the 

polycyclodimethylsiloxane ion at m/z 445.1200 (310). The precursor selection priority for 

fragmentation by HCD-MS/MS was set to highest charge, within a range of 2-8, then highest 

intensity over 5,000 counts. Precursor ion isolation was performed with a mass selecting quadrupole 

using an isolation window of m/z 2. Precursors were fragmented in the ion routing multipole, using 

a NCE of 30%. Previously selected ions within a ±10 ppm window were dynamically excluded for 

25 s. Fragment ions were acquired in the Orbitrap at a resolution of 30K using an AGC target of 

50,000 and maximum injection time of 60 ms. If fragment ions were produced corresponding to 

204.0867 (HexNAc), 138.0550 (HexNAc fragment) or 292.1027 (NeuAc) within a ±10 ppm 

window the precursors ions were re-isolated and subjected to EThcD using supplemental activation 

with a NCE of 15%. Fragment ions produced by EThcD were acquired in the Orbitrap at a 

resolution of 60K using an AGC target of 200,000 and maximum injection time of 250 ms.  In total 

five chromatographic runs were performed (one per sample) using a HCD-pd-EThcD method. 

These were conducted with the trypsin, trypsin/PNGase F, trypsin/Glu-C, trypsin/Sialidase-S and 

trypsin/Sialidase-A digests.    

 

7.3.6 Data processing of non-glycosylated and deglycosylated peptides from sG  

 

Proteome Discoverer (v2.1.0.81) and the search engine Mascot were used to search HCD MS/MS 

spectra from the RAW files of analyses of sG. The protein database contained the sequence for sG. 

Cleavage specificity was set as semi-tryptic (trypsin and trypsin/PNGase F samples) or trypsin 

combined with Glu-C (trypsin/Glu-C sample). A maximum of two missed cleavages were allowed.  

Mass tolerances of 10 ppm and 0.02 Da were applied to precursor and fragment ions, respectively. 
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Carbamidomethylation of Cys was set as a fixed modification and dynamic modifications included 

mono-oxidised Met, deamidation of Asn and Gln residues and conversion of N-terminal Gln to 

pyroglutamate. The “Fixed Value PSM Validator” node was used and a cut-off score of 30 was 

applied to all PSMs.     

 

7.3.7 Glycan oxonium ion profiles of glycopeptides from sG 

 

To assess the potential monosaccharide compositions of glycans present on sG, the HCD mzML 

files for the trypsin, trypsin/PNGase, trypsin/Sialidase-A and trypsin/Glu-C digests were analysed 

with OxoExtract without the N-linked GlycoMod function. The following parameters were used: 

digestion with trypsin or trypsin/Glu-C; maximum of two missed cleavages; fixed modification of 

carbamidomethylation of Cys and a dynamic modification of mono-oxidised Met. The protein 

database queried contained the sG sequence. The oxonium ion profiles were investigated for 

potential monosaccharides and O-glycans that weren’t included in the Byonic O-glycan databases. 

Sulfate containing oxonium ions were observed and potential compositions were investigated 

manually in GlycoMod. For searches in GlycoMod the peptide masses were inferred from the 

theoretical glycopeptide Y0 ion matched in OxoExtract and all monosaccharide residues were 

considered possible components of a glycan. As a final check, the OxoExtract search results of the 

trypsin/PNGase F analysis were investigated for O-linked compositions. If more than 100 

glycopeptide Y0 ions were observed with the HexNAc ion in spectra from the file, those with more 

than five peptide b- or y-ions present in a spectrum were investigated. The peptide masses of these 

putatively O-linked glycopeptides were subtracted from the precursor mass. The mass differences, 

which were predicted to be the masses of O-linked glycans, were investigated manually in 

GlycoMod using the “Free Oligosaccharide” option. For this GlycoMod search all monosaccharide 

residues were considered possible components of a glycan.    

 

7.3.8 Assignment of glycopeptides from sG  

 

Analysing O-linked glycosylation is a computationally intensive task, particularly for sG due to the 

high content of Ser (total 33) and Thr (total 56) residues, many of which are clustered together in 

the mucin-like domains of hRSV-G. For this reason Byonic searches were conducted with eight 

different sets of parameters each targeting different digests of sG, compositions of glycans and 

number of glycosylation sites allowed per glycopeptide. For the Byonic searches mzML files from 
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the analyses of the digests with trypsin (abbreviated Tryp in Table 7-1), Tryp/PNGase F, Tryp/Glu-

C and Tryp/Sialidase-A were used (Table 7-1). The HCD and EThcD spectra were searched 

separately. Mass tolerances of 10 ppm and 0.02 Da were applied to precursor and fragment ions, 

respectively. Cleavage specificity and the maximum number of missed cleavages allowed for each 

search are presented in Table 7-1.  Carbamidomethylation of Cys residues was considered a fixed 

modification for all searches. The numbers of variable “common” or “rare” modifications allowed 

per peptide are presented in Table 7-1. Variable peptide modifications were set as “common” while 

variable glycan modifications were set as “rare” or additionally “common” (Table 7-1). The protein 

database queried contained the sG sequence.   

 

For initial Byonic searches, corresponding to numbers 1 and 2 in Table 7-1, a large O-linked glycan 

database was used containing 80 O-linked glycans. This glycan database was a combination of the 

Byonic database “70 human O-linked” with ten sulfated O-linked glycans identified in the 

GlycoMod searches. These two initial searches allowed two O-linked glycans per peptide. Once the 

typical O-linked glycans present on sG had been established, the numbers of O-linked glycans in 

the databases were reduced and an increased number of O-glycans were allowed per glycopeptide. 

For searches corresponding to numbers 3 and 4 from Table 7-1 the O-linked databases contained 

HexNAc1, HexNAc2, HexNAc1Hex1, HexNAc2Hex1, HexNAc1Hex1dHex1 (5 O-linked) or 

additionally HexNAc1Hex1NeuAc1 and HexNAc1Hex1NeuAc2 (7 O-linked). These two searches 

allowed a total of four O-linked glycans per peptide. Search number 5 from Table 7-1 allowed 

ragged cleavage at the C-terminus of peptides and was used to investigate O-linked glycopeptides 

containing the C-terminus of hRSV-G. This search allowed two O-linked glycans per peptide from 

a small glycan database (7 O-linked). Search numbers 6-8 from Table 7-1 investigated N-linked 

glycosylation and the N-glycan database queried was a combination of the Byonic mammalian 

database (309_Mammalian no sodium) with all glycans containing NeuGc removed. Search number 

6 investigated N-linked glycosylation alone while searches 7 and 8 were used to investigate 

glycopeptides with both N- and O-linked glycosylation.       
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Table 7-1. Byonic parameters for searches of O-linked and N-linked glycopeptides from hRSV sG  
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7.4 RESULTS 

 

7.4.1 Linkages of sialic acid on glycans from sG 

 

Purified sG was detected as a major band at ~100 kDa and a minor band at ~50 kDa after separation 

by SDS-PAGE (Figure 7-1a, Lane 2). The mass of sG is calculated to be ~40 kDa, thus the 

observed apparent mass at ~100 kDa suggests that sG is highly glycosylated or may form dimers. 

Treatment of sG with Sialidase-S and Sialidase-A decreased the rate of electrophoretic mobility 

compared to the untreated sample (Figure 7-1a, Lanes 3 and 4, respectively). Sialidase-S cleaves 

α2–3 linked NeuAc while Sialidase-A cleaves α(2–3,6,8,9) linked NeuAc. Inspection of the bands 

produced after treatment of sG with the sialidases (Figure 7-1a, Lanes 3 and 4) revealed that the 

shift in migration was similar for both treatments. This suggests that the NeuAc present on sG is 

α2–3 linked as treatment with a α(2–3,6,8,9) specific sialidase did not change the migration profile 

significantly. However, at the glycopeptide level EICs of the intensities of the NeuAc oxonium ion 

NeuAc-H2O, suggested that putatively sialylated glycopeptides were still present after Sialidase-S 

treatment and that the remaining NeuAc residues were removed after treatment with Sialidase-A 

treatment (Figure 7-1b). 

 

 

 

Figure 7-1. Sialidase treatment of 
intact sG and glycopeptides of sG. 
(a) SDS-PAGE of sG untreated (Lane 
2) and treated with Sialidase-S and 
Sialidase-A (Lanes 3 and 4, 
respectively). To identify the 
contribution of bands by Sialidase-S 
and Sialidase-A these enzymes were 
run without sG (Lanes 6 and 7, 
respectively). (b) EICs of m/z 
274.0921 after HCD MS/MS analysis 
of trypsin digested sG untreated 
(top), treated with Sialidase-S 
(middle) and Sialidase-A (bottom).   
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7.4.2 Identification of non-glycosylated and deglycosylated peptides from sG 

 

The sequence of sG (Figure 7-2a) contains the first 102 residues from the N-terminal region of 

MeV HA (UniProt identifier P08362). As described in the methods, this region is followed by a 

furin cleavage site, six-His tag, a factor Xa site and the extracellular domain of hRSV G. The 

hRSV-G domain starts with Ala at amino acid position 63 of G from the hRSV A2 strain (UniProt 

identifier P03423). To enable easy comparisons of the results described herein with those in the 

literature, the amino acid numbering relating to the hRSV-G portion of sG is described to that of G 

from hRSV strain A2.  

 

The search engine Mascot was used to assign PSMs from the trypsin, trypsin/PNGase F and 

trypsin/Glu-C digests of sG (Supplementary Tables S7-1 to S7-3, respectively). Analysis of trypsin 

digested sG revealed PSMs from the N-terminal region beginning at S48 of MeV-HA with almost 

complete sequence coverage of the remaining downstream regions of MeV-HA and the His-tag and 

cleavage sites (Figure 7-2a). The Mascot search of the trypsin digest also identified peptides from 

the hRSV-G region that were predominately from the first mucin-like domain, the CCD and the 

HBD. The identification of the peptide hRSV-G 134KNTTTTQTQPSKPTTK149 from the Mascot 

search of the trypsin/PNGase F digest, resulted in almost complete sequence coverage of the first 

mucin-like domain. Only one peptide from the second mucin-like domain, hRSV-G 
213KDPKPQTTK221, was identified by Mascot searches (Figure 7-2a). No additional sequence 

coverage was obtained from the second mucin-like domain after the analysis of the trypsin/Glu-C 

digested sample, which was completed with the aim of identifying the peptides 258LTSQME263, 

264TFHSTSSE271, 272GNPSPSQVSTTSE284 and 285YSPSQPSSPPNTPR297. The lack of peptide 

coverage from the second mucin-like domain suggested this region was highly glycosylated.     
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Figure 7-2. Amino acid sequence coverage and N- and O-linked glycosylation of sG. (a) Amino 
acid sequence of sG. Potential cleavage sites for trypsin and Glu-C are indicated by a line below 
and above the relevant residues, respectively. Sequence coverage derived from the Mascot search of 
sG digested with trypsin is highlighted in light grey. Additional sequence coverage obtained from 
the trypsin/PNGase F digest is highlighted in dark grey. Residues circled in red were 
unambiguously assigned as O-linked. Areas of the protein not detected by Mascot or Byonic 
searches are shown with a clear box. (b) Schematic of sG (not to scale) identifying the MeV-HA 
region (green), the His-tag and cleavage sites (blue) and the hRSV-G region containing the mucin-
like domains (pink) and heparin-binding domain (HBD/purple). Disulfide bonds are represented by 
connected lines with the amino acid number of the Cys residues which are derived from (121). The 
N- and O-linked sites are marked with a vertical line and the amino acid number of the expected or 
observed glycosylated residues. If an O-linked site is marked with an “*” the site of glycosylation 
was not confidently assigned between two or more residues. The N-linked site N135 was confirmed 
as occupied after 12 N-linked compositions were sequenced to N135. Sites N85 and N237 were 
considered to be occupied after PNGase F digestion of tryptic peptides resulted in the identification 
of peptides or glycopeptides where Asn in the N-linked consensus site was deamidated. (c) 
Compositions of O-linked glycans observed at each residue.  

 

7.4.3 Glycan oxonium ion profiles of glycopeptides from sG 

 

Sulfated oxonium ions were observed in the all three samples and could be assigned to limited 

peptides from the MeV-HA region. Ten sulfated O-glycans were added to the Byonic O-glycan 

database after manual searches using GlycoMod. It was noted that oxonium ions for Fuc 

(HexNAc1dHex1, Hex1dHex1, HexNAc1Hex1dHex1) were mainly present in the trypsin and 

trypsin/sialidase-A samples but not the trypsin/PNGase F sample. Furthermore, Fuc oxonium ions 

were predominately observed in spectra that also contained Y1 ions for N-linked glycopeptides, 

indicating the monosaccharide residue was associated with N-linked glycans. Oxonium ions for Fuc 

in the trypsin/PNGase F sample could be assigned to limited peptides from the MV-HA and hRSV-

G regions of sG suggesting the residue was not highly present on O-linked glycans. The NeuAc 

oxonium ion NeuAc-H2O at m/z 274.0921 was observed in 20% of MS/MS scans with the HexNAc 

ion in the trypsin digested sample and 0.1% of scans in the trypsin/sialidase-A sample, indicating 

NeuAc was removed with the sialidase treatment.   
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7.4.4 Assignment of O-linked glycopeptides from sG 

 

To assess O-linked glycosylation of sG a number of enzymatic digests and Byonic searches were 

completed. The fragmentation methods HCD and EThcD were combined in a product dependant 

manner to provide complementary fragmentation data for the assigned glycopeptides. A summary 

of the results of all Byonic searches for glycopeptides were combined and the approximate locations 

of each site of glycosylation on sG have been annotated in Figure 7-2b with observed O-linked 

monosaccharide compositions listed in Figure 7-2c. The results of the Byonic and manual searches 

of the trypsin, trypsin/PNGase F, trypsin/Glu-C and trypsin/Sialidase-A samples are provided in 

Supplementary Table S7-4 with annotated spectra in Supplementary Figures S7-1 to S7-4, 

respectively. The results presented in Table S7-4 include information regarding the sample and MS 

analysis, the Byonic search, the sites of attachment, monosaccharide compositions of the glycans 

and the outcome of manual validation of each glycopeptide.   

 

Within the MeV-HA portion of sG, O-linked glycans were unambiguously assigned to three sites, 

T81, S83 and T93 (Figure 7-2b). Several of the O-linked compositions assigned to the MeV-HA 

region were not typical of core-1 (T antigen) glycans which contain the base unit HexNAc1Hex1. 

The unusual compositions assigned to the MeV-HA region contained three HexNAc residues, such 

HexNAc3Hex1 at MeV-HA T81 and HexNAc3Hex1dHex1, HexNAc3Hex1Sulf1 and 

HexNAc3Hex1NeuAc1Sulf1 at MeV-HA T93 (Figure 7-2c). Confirmation of sulfation was derived 

from diagnostic oxonium ions in either the HCD or EThcD scans of the glycopeptides. The peptide 
90DVLTPLFK97 from the MeV-HA region has only one potential site of O-linked glycosylation, 

T93, thus fragmentation of this peptide verified the above O-linked compositions could be attached 

at one site (Figure 7-3). Production of the diagnostic oxonium ions HexNAc1dHex1 at m/z 350.145, 

HexNAc1Hex1 at m/z 366.139 and HexNAc2 at m/z 407.166 in Figure 7-3 further verified the 

allocated HexNAc3Hex1dHex1 O-linked composition.    
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Figure 7-3. HCD fragmentation of an O-linked glycopeptide form the MeV-HA region of sG. 
HCD fragmentation of a precursor ion at m/z 945.452 (2+). The spectrum was obtained after trypsin 
digestion of sG followed by PNGase F digestion. The panel has a schematic of the peptide 
fragmentation pattern observed for the glycopeptide (MeV-HA aa 90-97). Not all ions have been 
labelled on the spectrum for ease of interpretation.  

  

Within the hRSV-G portion of sG O-glycans were unambiguously assigned to 28 sites (Figure 

7-2b). Although the sites of attachment T259, S260, S267 and T268 at the C-terminus of hRSV-G 

are labelled ambiguous in Figure 7-2b, these residues were observed on two separate peptides 
258LTSQME263 and 264TFHSTSSE271 and thus represent at least two more sites that are occupied. 

The majority of O-linked compositions observed in the hRSV-G portion were typical of mucin-like 

glycosylation (Figure 7-2c) with the most plausible structures being the Tn antigen and T antigen 

with additional levels of sialyation. Taken together with the results of the sialidase treatments the 

observation of compositions HexNAc1Hex1NeuAc1 and HexNAc1Hex1NeuAc2 suggest 

monosialylated core-1 (NeuAcα2–3Galβ1–3GalNAcα1-) and disialylated core-1 (NeuAcα2–

3Galβ1–3(NeuAcα2–6)GalNAcα1-) O-linked glycopeptides. Up to five O-linked glycans were 

assigned to the peptide sequence 124STLQSTTVK132 in the first mucin-like domain of hRSV-G 

(Figure 7-4). Fragmentation of the glycopeptide using EThcD enabled HexNAc1 to be sequenced to 

sites S124, T125, S128, T129 and T130.  
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Figure 7-4. EThcD fragmentation of a hRSV-sG glycopeptide with five O-linked glycans 
attached. HCD fragmentation of a precursor ion at m/z 660.6484 (3+) is presented. The spectrum 
was obtained after trypsin digestion of sG followed by PNGase F digestion. The panel has a 
schematic of the peptide fragmentation pattern observed for the glycopeptide (hRSV-G aa 124-132) 
and the spectrum is labelled accordingly.  

 

Up to three glycans could be assigned to single glycopeptides in the second mucin-like domain 

(Supplementary Table S7-4). Two sites from the hRSV-G region, T72 and T203, were assigned 

fucosylated O-linked glycans (Figure 7-2c). The former site was also assigned an O-linked glycan 

with three HexNAc residues attached (Figure 7-5). In Figure 7-5, which reveals the EThcD 

fragmentation pattern of a glycopeptide containing 69VTPTTAIIQDATSQIK84, the production of 

the oxonium ion HexNAc3dHex1 at m/z 772.299 verified the allocated HexNAc3Hex1 O-linked 

composition. The c3 peptide sequence ion at m/z 314.207, which was observed in a radical and 

prime form, confirmed the glycan was not attached at T70. The z12 peptide sequence ion at m/z 

1171.643 confirmed the O-linked glycan was attached at T72.     
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Figure 7-5. EThcD fragmentation of a hRSV-sG glycopeptide with an O-linked composition 
containing three HexNAc residues localised to T72. EThcD fragmentation of a precursor ion at 
m/z 820.078 (3+) is presented. The spectrum was obtained after trypsin digestion of sG followed by 
PNGase F digestion. The panel has a schematic of the peptide fragmentation pattern observed for 
the glycopeptide (hRSV-G aa 69-84) and the spectrum is labelled accordingly. The addition of a dot 
‘·’ symbol with the ‘′’ symbol indicates both the radical and z + H ions were observed for the 
fragment ion as judged by the isotopic distributions described in (176). The remaining z-ions are 
considered to be typical radical ions as the isotopic distribution of the fragment ions did not enable 
confirmation of z + H ions. 

   

7.4.5 Occupancy at N-linked sites of sG  

 

The sG protein contains four potential sites of N-linked glycosylation (Figure 7-2). The only N-

linked site observed without glycosylation was site N85 in the results from Mascot searches of the 

trypsin and trypsin/Glu-C digests. Sites N85 and N135 were observed in a deamidated form in the 

Mascot search results of the trypsin/PNGase F digest. Sites N135 and N237 were observed in a 

deamidated form within O-linked glycopeptides after Byonic searches of the trypsin/PNGase F 

digest (Table 7-2 and Figure 7-6). Byonic searches enabled N-glycans to be localised to N135 but 

not to N-linked sites N85, N237 and N251 (Table 7-2). Byonic searches did not enable the 

identification of glycopeptides with both N-glycan and O-linked attached.  
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Table 7-2. Occupancy of N-linked sites from sG 

 

Observation in Mascot or Byonic Searches  N85 N135 N237 N251 

Unoccupied  
Yes 

Not 
observed 

Not 
observed 

Not 
observed 

Occupied: Determined by PNGase F (no attached O-linked) 
Yes Yes 

Not 
observed 

Not 
observed 

Occupied: Determined by PNGase F (attached O-linked) Not 
observed 

Yes Yes 
Not 

observed 

Occupied: Determined by N-glycans (no attached O-linked) Not 
observed 

Yes 
Not 

observed 
Not 

observed 

Occupied: Determined by N-glycans (attached O-linked) Not 
observed 

No 
Not 

observed 
Not 

observed 

 

 

 

 

Figure 7-6. EThcD fragmentation of a hRSV-sG O-linked glycopeptide containing N-linked 
site N237 in a deamidated form. EThcD fragmentation of a precursor ion at m/z 719.100 (4+) is 
presented. The spectrum was obtained after trypsin digestion of sG followed by PNGase F 
digestion. The panel has a schematic of the peptide fragmentation pattern observed for the 
glycopeptide (hRSV-G aa 222-240). Not all ions have been labelled on the spectrum for ease of 
interpretation. Lower case “n” in the schematic represents deamidation of Asn.   
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7.4.6 Monosaccharide compositions assigned to N-linked sites of sG  

 

As described above N-glycans could only be localised to N135 of sG (Table 7-2). The Byonic 

searches identified twelve N-linked glycans (Figure 7-7). The site attachment at N135 in Figure 

7-7 was confirmed through the presence of peptide sequence ions c2, c3, z14 and z15 at m/z 247.176, 

1805.754, 752.392 and 1531.682, respectively. The HCD fragmentation patterns of the N-linked 

glycans attached at N135 indicated they all contained core fucosylation. Three of the N-linked 

compositions attached at N135 contained NeuAc. Interestingly, three of the N-linked compositions 

observed at site N135 also displayed fragmentation characteristics of diHexNAc similar to those 

seen in Chapter 6 for hRSV sF.  

 

 

 

 

Figure 7-7. EThcD fragmentation of a hRSV-sG glycopeptide containing an N-linked glycan 
at site N135. EThcD fragmentation of a precursor ion at m/z 827.636 (4+) is presented. The 
spectrum was obtained  after trypsin digestion of sG. The panel has a schematic of the peptide 
fragmentation pattern observed for the glycopeptide (hRSV-G aa 133-149) and the spectrum is 
labelled accordingly. 
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7.5 DISCUSSION 

  

Purified sG was detected as a major band at ~100 kDa and a minor band at ~50 kDa after separation 

by SDS-PAGE. The apparent masses observed are greater than the calculated mass of sG which is 

~40 kDa. The electrophoretic mobility of hRSV G produced virally typically corresponds to a mass 

of ~90 kDa despite a calculated mass of ~32 kDa (136). This mass difference is attributed primarily 

to O-linked glycosylation (~50% ) and a smaller portion to N-linked glycosylation (~15%) (133). 

The presence of two bands of sG is consistent with previous observations from hRSV G (73, 133, 

386, 387). It has been hypothesised that the different species arise from dimer formation, 

differential glycosylation or significant cleavage of hRSV G (73, 133, 386, 387). Treatment of sG 

with Sialidase-S and Sialidase-A decreased the migration of both the 100 and 50 kDa bands, an 

effect that has been observed previously for hRSV G (373). It is probable that the increase in 

apparent MW was due to a reduction in the intrinsic negative charge of the protein after removal of 

the anionic NeuAc residues. Before removal, the terminating NeuAc residues on sG may have acted 

in the same manner as SDS, increasing the migration of the protein towards the anode (388).  

  

Together, the results of the N-linked, O-linked and Mascot searches reveal that within the pool of 

sG proteins some species may be minimally modified by O-linked glycosylation in the first mucin-

like domain. However, the identification of a glycopeptide (124STLQSTTVK132) from the initial 

mucin-like domain with five occupied O-linked sites reveals that within the pool of sG this region 

can also be heavily O-linked glycosylated. Glycosylation of the conserved central region containing 

four Cys residues, specifically peptide hRSV-G 167VFNFVPCSICSNNPTCWAICK187, was not 

observed. This conforms with observations that the Cys residues form a noose which may prevent 

ppGalNAcTs from modifying Ser and Thr residues in this region (121). In contrast to the first 

mucin-like domain of hRSV-G, only one peptide from the second mucin-like domain was observed 

without glycosylation (213KDPKPQTTK221). This suggests that the C-terminal region of hRSV-G is 

highly glycosylated.       

 

The Mascot search of tryptic sG identified peptides containing N85 that were present without 

glycosylation, thus N85 is not always glycosylated. Subsequent treatment of the tryptic peptides 

with PNGase F produced peptides containing sites N85 and N135 where Asn residues were 

deamidated. This suggests N85 and N135 are modified by N-linked glycosylation, the latter of 

which was confirmed after sequencing N-linked glycans to N135 using EThcD. Peptides and O-
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linked glycopeptides containing N135 were only observed after PNGase F treatment and all 

identified peptides contained Asn residues within the N-linked consensus site that were deamidated. 

This suggests that N135 is substantially occupied or alternatively, that in the absence of N-linked 

glycosylation a high level of O-linked glycosylation in this region impedes detection and 

identification of potential glycopeptides by MS. Peptides containing N237 were only observed with 

O-linked glycosylation and only after PNGase F digestion, again all identified peptides contained 

Asn residues within the N-linked consensus site that were deamidated. These results conform with 

those seen in the Mascot searches where minimal sequence coverage was obtained from the second 

mucin-like domain, revealing that this region of the protein is likely to be highly O-linked 

glycosylated. The inability to identify O-linked glycopeptides containing N237 without PNGase F 

digestion suggests that like N135, site N237 may be highly occupied or highly O-linked 

glycosylated in the absence of N-linked glycosylation. It also suggests deamidation of Asn was not 

spontaneous and represents occupancy at N237. It was predicted that the trypsin/Glu-C digestion 

would produce the theoretical peptide 241TNIITTLLTSNTTGNPE257 which would enable peptides 

or glycopeptides containing N251 to be detected. Unfortunately this was not the case, and may be 

due to a high level of glycosylation in this region. For future studies, combining the proteolytic 

digestions trypsin/Glu-C with PNGase F may enable identification of deglycosylated versions of 

peptides or O-linked glycopeptides containing N251.  

 

To date, O-linked glycosylation of MeV HA has not been described. Interestingly, the presence of 

basic residues such as oligo-His tags are thought to induce GalNAc O-linked glycosylation on sites 

adjacent to such tags (345). Given the proximity of the glycosylated MeV-HA residues to a basic 

region of sG containing the furin cleavage site (KKRKRR) and the six-His tag, it is possible O-

linked glycosylation of MeV-HA was a result of a peptide recognition motif in sG. Some of the O-

linked compositions observed in the MeV-HA region were indicative of core-2 glycans with 

LacdiNAc motifs (379). The potential extended core-2 glycans from MeV-HA contained three 

HexNAc residues and one Hex residue and were variably fucosylated, sialylated and sulfated. 

Interestingly, an envelope protein (E2) of hepatitis C virus (HCV) was produced in HEK293 cells 

and O-linked compositions with three HexNAc residues were observed with variable sulfation and 

sialyation (384). The authors surmised that the compositions represented new core-2 configurations. 

A His-tag was present at the C-terminal region of E2 but the unusual compositions were observed at 

sites throughout the N-terminal region as well. Thus, it remains to be seen if virally produced MeV 

HA is O-linked glycosylated or, if singly, or in combination, the furin cleavage site, 6-His tag or 

mucin-like domains of sG induced O-linked glycosylation of MeV-HA.      
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The overall importance of O-linked glycosylation for the infectivity of hRSV has been indicated 

through several studies. Interestingly, removal of O-linked glycans from hRSV virions significantly 

decreased viral titers, revealing that O-linked glycosylation is required for infection (140). Notably, 

removal of the O-linked glycans with O-glycosidase did not produce a large shift in the apparent 

MW of G, suggesting only specific accessible residues were important. To this end, the potential 

roles of O-linked sites observed in the present work will be discussed. However, it should be 

emphasised that other O-linked sites may be occupied and may not have been identified in this 

study for several reasons. These include, but are not limited to, hydrophilic glycopeptides not being 

retained on the LC-column and glycopeptides with dense areas of glycosylation or large glycans 

failing to produce adequate signal or fragment ions.  

 

Glycosylation of G may play an important role in priming a pathogenic host immune response as 

hRSV G produced without O-linked glycosylation or missing regions C-terminal to the CCD 

reduced Th2 responses in mice (137, 138). Further analyses revealed specific residues 
93KPGKKTTTKPT203 were responsible for inducing lung eosinophilia but were not required for 

induction or protective immunity (138). There are four potential sites of O-linked attachment 

highlighted in bold within these eleven residues 93KPGKKTTTKPT203, three of which were 

confirmed as occupied in the present study corresponding to T199, T200 and T203. These residues 

are situated directly C-terminal to the HBD, which has been described as a region of G that binds 

GAG (73, 123, 124, 370). It has been shown that removal of a cluster of O-linked sites that sit 

proximal to a GAG-binding domain on the gC attachment protein of herpes simplex virus (HSV) 

type 1, affects binding of the virus to GAG and reduces the production of new viral particles (389). 

In view of the above studies, it could be postulated that T199, T200 and T203 of hRSV G serve 

dual roles, potentially modulating immune responses and also promoting binding to GAG.  

 

Further downstream to the HDB two residues have been implicated as a cleavage site for 

cathepsin L between residues K209 and T210 (386). In the present study T210 and T211 were also 

observed to be occupied. A comprehensive analysis of O-linked sites in herpesviruses revealed 

clusters of O-linked sites in areas susceptible to proteolytic cleavage, prompting the authors to 

conclude that the O-linked sites served to protect the proteins from proteolytic cleavage. Cleavage 

of hRSV G, presumed to be between K209 and T210, results in less infectious virions and 

compromises the attachment function of G (386). Accordingly, the O-linked sites T210 and T211 

may play a role in protecting hRSV G from proteolytic cleavage.   
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In addition to specific sites of O-linked glycosylation, the types of O-linked glycans present on 

hRSV-G are also of interest. Threonine at position 72 of hRSV-G displayed interesting O-linked 

glycans. It was one of two sites from hRSV-G where the O-glycans were observed to contain 

fucosylated glycans and was the only site from hRSV-G that was identified with an O-glycan 

containing three HexNAc residues. The reason behind this differential glycosylation at T72 is not 

known, it may reflect altered glycosylation due to its proximity to the basic His-tags and cleavage 

sites. However, the compositions assigned to T72 and the surrounding residues were typical of the 

mucin-like glycosylation observed at other sites of hRSV-G. To my knowledge, T72, or this region 

of G, has not been implicated in any specific mechanistic or biological actions of hRSV G. The 

remaining site from hRSV-G that contained a fucosylated glycan, T203, has been implicated in an 

area of G that modulates immune activities, as described above. The differential glycosylation 

observed at T203 may indicate that this particular site plays an important role in the eleven residues 
93KPGKKTTTKPT203 thought to induce lung eosinophilia.      

  

The remaining O-linked glycans from the hRSV-G portion of sG were mainly truncated glycans 

presumed to be Tn and T antigens with a small number of sialyl- and disialyl-T antigens. It should 

be noted that purification by wheat germ agglutinin may have biased the type of glycans observed 

in this study. Recombinant HeV G produced in a HEK293 cell line contained O-glycans that were 

mainly T and sialyl-T antigens (375). Conversely, HCV E2 produced in HEK293 cells contained 

mainly sialyl-T antigens and sialylated and sulfated core-2 compositions (384). The work presented 

herein and the studies on HeV and HCV reveal that recombinant viral proteins produced in 

HEK293 cells display considerably different O-linked glycan profiles. Moreover, the MeV-HA 

region of sG displayed potential core-2 structures with sulfated substituents revealing that regions 

of the same protein can be differentially O-glycosylated during production. Truncated glycans, 

particularly the Tn and T antigens that was observed on hRSV-G have been implicated in a range of 

aberrant immune responses, including cancer (390). The importance of specific types of O-linked 

glycosylation in host immune responses has also been defined for viruses. Extended O-linked 

glycans on HSV induced an innate immune response at the mucosal surface that is independent of 

the typical antiviral interferon response (391). This mechanism is initiated during the early stages of 

infection and involves stimulation of the chemokines CXCL9 and CXCL10 and recruitment of 

neutrophils. Removal of N-linked glycans from HSV virions did not reduce CXCL10 expression, 

however, removal of O-linked glycans or propagation of virions in a cell line that produces 

truncated O-glycans decreased CXCL10 expression. Consequently, if the truncated O-glycans 



 

142 Chapter 7: Characterisation of glycosylation of human respiratory syncytial virus attachment surface glycoprotein (G) 

observed on hRSV-G are present on hRSV G in vivo it may enable the virus to evade early antiviral 

activity at the mucosal surface.   

 

The type of glycosylation observed on sG may differ to that of virally produced G in respiratory 

tissue. Inoculation of human airway epithelium with hRSV produced a form of G that migrated with 

an apparent mass of 180 kDa (73). This may be due to the different repertoire and expression levels 

of O-linked transferases in the respiratory tract compared to other tissues or cell lines.  For example, 

bronchial tissue is known to secrete mucins with the less common core-3 and core-4 O-glycans 

(24). However, G produced virally in tracheal biopsies displayed a similar migration pattern to that 

of infected HEp-2 cells (~90 kDa) (50). Furthermore, lectin binding studies have shown that viral G 

produced in HEp-2 cells and colon carcinoma cell lines contains unsubstituted GalNAc and Gal-

GalNAc residues (50, 373) with the additional observation of α2–6 linked NeuAc in HEp-2 cells 

(50). Irrespective of the differences in O-linked glycosylation seen between different cell lines and 

tissues, the work presented herein reveals that specific residues on hRSV-G can act as substrates for 

GalNAc transferases and thus may be occupied during viral infection. This provides a foundation 

for future studies such as those on HeV, where O-linked sites identified on recombinant HeV G 

were later confirmed to play roles in the activities of HeV and NiV attachment proteins (375, 376).  

 

The present study provides a template for future analyses of glycopeptides derived from hRSV G 

particularly highlighting the benefits of EThcD and in some instances HCD, combined with 

multiple enzymatic digestions. This work provides an insight into the type of glycosylation present 

on hRSV G when produced in a kidney cell line, providing the first step in the elucidation of site-

specific and compositional differences of glycans from hRSV G produced in different cell lines. 

Sites T72 and T203 were observed to contain some monosaccharide compositions that did not 

correspond to the typical Tn, T and mono- and di-sialylated T antigens and may therefore be of 

interest in future mutation studies.       
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Chapter 8: Discussion and conclusions  

8.1 SUMMARY 

  

Paramyxoviruses are an important viral family and glycosylation of the surface attachment and F 

proteins of these viruses has been shown to greatly affect viral replication, infectivity and 

immunogenicity. Within this family, NDV and hRSV contribute to the significant economical and 

health burdens of paramyxoviruses worldwide. While the functional, structural and immunological 

properties of the attachment and F proteins of NDV and hRSV have been explored, there is a 

paucity of data investigating site-specific glycosylation of these proteins. This body of research 

therefore seeks to provide the first insight into glycan heterogeneity at N- and O-linked sites of the 

attachment and F proteins of NDV and hRSV. An overview of the prominent findings from this 

study are presented below in the context of analysing viral glycoproteins by mass spectrometry and 

how the described glycosylation patterns of the attachment and F proteins may modulate viral 

replication and infectivity with potential implications for vaccine or therapeutic design.     

    

8.2 GLYCOSYLATION OF NDV HN AND F 

 

8.2.1 Overview of the results with reference to current literature  

 

In the analysis of glycans from HN, each fragmentation method, HCD, ETD and CID, provided 

valuable information. However, in the analysis of NDV F, fragmentation with HCD was useful for 

glycopeptide identification while glycopeptides of F did not readily dissociate using ETciD. As set 

out in the introduction, HCD can facilitate glycopeptide identification by generating glycopeptide 

Y1 ions and low mass diagnostic oxonium ions at high mass accuracy when analysed in the 

Orbitrap. The former can be used to predict the peptide moiety of a glycopeptide, while the latter 

can be used to identify specific monosaccharide residues and substituents in the attached glycan. 

Confirming the composition of the attached glycan was particularly important for glycopeptides 

from HN as they contained a high number of Fuc residues, thus inspection of HCD spectra for 

diagnostic oxonium ions was instrumental in confirming that Fuc residues were not erroneously 

assigned in the place of NeuAc. In some instances the oxonium ions also enabled sulfation to be 
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confirmed on HN glycopeptides. Fragmentation with HCD also provided valuable peptide sequence 

information for HN glycopeptides containing N341 and N433; however, ETD was required to 

confidently assign the peptide portion of glycopeptides containing N481. Compared to HCD, 

fragmentation of HN glycopeptides with CID enabled more peptide+glycan ions to be identified, 

including masses of ~80 Da for Sulf or Phos substituents. However, manual validation of 

glycopeptides assigned by Byonic using CID spectra proved time-consuming. This was due to 

several factors; firstly, trap analysers provide low resolution and mass accuracy data and an inherent 

drawback is cut-off at the low m/z range. Consequently, each assigned monosaccharide composition 

was manually validated by interrogating spectra for diagnostic oxonium ions from the HCD 

spectrum that triggered the CID spectrum of interest. Secondly, Byonic did not annotate the 

majority of fragment ions from HN glycopeptides assigned by CID due to the usual composition of 

the glycans. Unassigned fragment ions were therefore manually identified for each glycopeptide 

assignment. In summary, although CID fragmentation was informative, the benefits were lessened 

by the high degree of manual interpretation required in the assignment of glycopeptides from HN. 

Thus for future analyses of HN glycopeptides, HCD and ETD may be preferred fragmentation 

methods, particularly for high-throughput or larger comparative analyses. For future analyses of 

NDV F fragmentation with HCD may prove beneficial.      

 

There are also several interesting structural observations that may be taken from this work on NDV 

HN and F. Analysis of HN revealed some unusual glycans, such as paucimannose or complex or 

hybrid glycans with high levels of fucosylation that were variably sulfated or phosphorylated. Many 

of the fucosylated and sulfated or phosphorylated compositions were not present in UniCarbKB at 

the time the analyses were undertaken. As such, this research contributes novel results of glycans 

produced in embryonic eggs. (47, 287, 298). The observation of Sulf on NDV HN glycans is likely 

due to propagation methods. Glycans from human influenza HA produced in embryonic eggs have 

been observed to contain Sulf (48, 288, 289). Furthermore, paucimannose compositions (287) and 

Fuc residues have also been observed on glycans from human influenza HA propagated in 

embryonic eggs (288). The higher degree of fucosylation reported herein on NDV HN compared to 

influenza HA may be due to differences in protein structure or analytical and data analysis methods.   

 

Differential glycosylation due to protein structure was particularly evident in the present work. The 

HN and F proteins were both derived from virions of NDV V4-VAR but in contrast to HN, the 

glycosylation profile of F was limited to high mannose glycans with a small degree of fucosylation 

at site N191. This high mannose profile has previously been described for NDV F, after release of 
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the glycans from another avirulent strain produced in MDBK cells (104). The glycosylation profile 

of NDV F differs to F proteins derived from virions of other paramyxoviruses which revealed 

predominantly complex-types after release of the glycans (135, 298, 309). As highlighted in 

Chapter 5, the functional roles of N-linked sites on F proteins also differ between paramyxoviruses 

despite general conservation of sites between some viruses and conservation of the overall 

architecture of F proteins in crystal structures. Thus, homology modelling of the F proteins may 

need to consider occupancy and heterogeneity at glycosylation sites. This highlights the need to 

investigate site-specific glycosylation of F proteins from the different paramyxoviruses, which has 

been examined for the first time in this work. The high mannose profile observed for NDV F 

compared to other paramyxoviruses indicates a different structural arrangement of NDV F during 

transport of the protein through the ER and Golgi. Hypothetically, such conformational differences 

may arise from interactions of F and the relevant attachment proteins during protein synthesis and 

processing. Alternatively, the high mannose profile of NDV F may be restricted to avirulent strains, 

which remains to be elucidated in future research.  

 

Another important result from the work on NDV was the observation of an O-linked site in the stalk 

domain of HN. Although site-specificity of the O-linked glycans was not determined on HN from 

the V4-VAR isolate, T71 was identified as the likely site of attachment in preliminary studies of the 

second isolate, V4-QLD. This secondary confirmation of O-linked glycosylation revealed that the 

site is not limited to V4-VAR and indicated it may be present in other strains. In paramyxoviruses, 

the stalk domain of HN has been shown to modulate the fusion properties of F (63). Structural 

alignment of the stalk regions reveal T71 is conserved in between NDV HN and PIV5 (T62) and 

hPIV1 (T88). This finding will form the basis for future assessments of occupancy and the 

functional significance of the O-linked site in HN from more virulent stains of NDV and other 

paramyxoviruses such as PIV5 and hPIV1.  

  

8.2.2 Limitations of the work  

 

A limitation of this work is that the virions were not from naturally infected tissue or cells and thus 

may not accurately reflect glycosylation of the native proteins. Furthermore, only the 

monosaccharide compositions of the glycans were obtained, which is limitation of the methods and 

LC-MS/MS strategies applied. Another potential limitation in the analysis of NDV HN was the 

coverage of peptides or glycopeptides containing N-linked sites N538 and N600. Specifically, the 
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use of orthogonal proteases and PNGase F could have been implemented to elucidate occupancy at 

N538 and N600. However, N538 has previously been shown not to be glycosylated by analysis of 

peptides from a digest of HN from NDV-V4 VAR (101). Furthermore, the carboxy-terminal region 

of HN from NDV-V4 VAR undergoes substantial trimming (88, 285) and this may be the reason 

peptides or glycopeptides containing N600 were not detected. Peptides or glycopeptides containing 

N-linked site N447 from NDV F were also not detected and site occupancy therefore could not be 

confirmed. There are conflicting reports of occupancy at this site in other strains of NDV (102, 

103), but site occupancy has been confirmed in a crystallography study of F from NDV V4-VAR 

(276).    

 

8.2.3 Future directions    

 

In order to address the unanswered issues in this work regarding coverage of N538 and N600, HN 

could be digested with alternative enzymes. Specifically, N538 coverage may be increased if an 

Arg-C digestion is followed with Glu-C. This may produce theoretical peptides terminating in R557 

and E547, respectively (517VSSSSTKAAYTTSTCFKVVKTNKTYCLSIAE547ISNTLFGEFR557). 

For detection of peptides containing N600, PNGase F treatment before or after Lys-C digestion may 

prove useful producing the theoretical peptide 600nQTEYRRELESYAASWP616 or taking into 

consideration a missed cleavage at K599 588DDIVSPIFCDAKnQTEYRRELESYAASWP616, where 

lower case “n” represents deamidated Asn. To assess occupancy at N447 of F the intact protein 

could be digested with PNGase F to increase the likelihood of proteolytic digestion with Glu-C and 

potentially produce the peptide 442ATYQKnISIQD452.  

 

Given the position of the O-linked site in the stalk domain of HN it would be of interest to 

investigate the presence of the O-linked site on HN from other strains of NDV, particularly in 

viruses with different levels of pathogenicity. Furthermore, given the conservation of T71 between 

NDV HN and PIV5 and hPIV1 it would also be of interest to investigate O-linked glycosylation in 

the latter viruses. If the O-linked site is observed in other strains of NDV or in other viruses, 

mutation studies could be completed to investigate potential functionality. Lastly, given the 

disparity of glycosylation profiles between NDV V4-VAR F and those available for F from other 

paramyxoviruses, it would be of interest to analyse site-specific glycosylation of virion derived F 

from other viruses and from more virulent strains of NDV.   
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8.3 GLYCOSYLATION OF HRSV SF AND SG   

 

8.3.1 Overview of the results with reference to current literature  

 

Biochemical analyses of hRSV glycoproteins are generally performed on recombinant forms due to 

the inherent difficulties in propagating hRSV virions. Importantly, the present results provide a 

template for future analyses of G and F by mass spectrometry using more limited quantities of these 

proteins derived from virions. This applies to the use of EThcD in determining site-specific O-

linked glycosylation of hRSV G and Glu-C digestions to enable the detection of O-linked sites in 

the C-terminal region of the protein. With respect to hRSV F, the benefit of stepped HCD and 

EThcD for identifying the peptide and glycan portions of glycopeptides from F may prove useful in 

future studies. Furthermore, the identification of N-terminal peptide modifications of glycopeptides 

containing N27 and N70 of F will enable more tailored search parameters to be applied. 

  

In addition to the technical aspects of characterising glycopeptides derived from hRSV F and G, the 

present research provides some intriguing structural insights that may have biological implications.  

Firstly, it confirmed that sites N27, N70 and N500 are occupied (139) and revealed that sites N116 

and N126 in pep27 may also be occupied. Furthermore, the work herein confirmed that the N-

linked glycans present on hRSV F are predominantly mature glycans (135, 314) as only low levels 

of high mannose glycans were observed. Importantly, O-linked glycosylation of hRSV F was 

detected for the first time with confirmation of an O-linked glycan at T100. The O-linked site is 

positioned N-terminal to the R109 furin-like cleavage site, and could theoretically mediate furin-

like cleavage, as observed for O-linked sites of other proteins (33, 364). As cleavage of the furin 

like-sites and O-linked glycosylation are thought to occur in the later stages of protein processing in 

the Golgi, it is difficult to speculate on the timing of O-glycan addition versus furin cleavage. In the 

crystal structure of sF the peptide containing the O-linked site is buried inside the trimeric structure 

with the fusion peptide and therefore may not be accessible to ppGalNAcTs (332). Furthermore, it 

has been shown that trimerisation of sF takes place in the Golgi, only after pep27 is removed (357). 

Thus the O-linked glycans may prevent cleavage and incorporation of sF monomers into the trimer. 

Alternatively, the O-linked glycans may represent subsequent modifications of monomers that were 

not cleaved and were thus not incorporated into the trimer. 
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Also of interest are the potential biological implications of the types of N-linked glycans identified 

on sF and at site N135 of sG. If the glycans with diHexNAc units are shown to be LacdiNAc motifs 

there are several avenues of research that could be investigated. Terminal sulfated GalNAc is 

recognised by liver mannose receptors which mediate the rapid uptake of hormone glycoproteins 

expressing N-linked sulfated LacdiNAc antennas (392). Given that kidney cell lines are commonly 

used for the propagation of virions and the production of recombinant viral proteins and vaccines 

(48, 291, 383, 393), it raises the question of serum clearance of hRSV F and G therapeutics 

produced in kidney cell lines or other cell lines expressing β4GalNAc-Ts. Another question that 

could be raised is the potential antigenic or immune stimulating properties of LacdiNAc extensions 

on sF and sG or hRSV virions. If β4GalNAc-Ts are not expressed in the lungs of infants, children 

or adults how does the propagation of proteins or virions in cell lines that do express β4GalNAc-Ts, 

including commonly used Vero, HEK and lung adenocarcinoma cell lines, affect immunological 

responses in vitro and in vivo? This question is particularly relevant to the first inactivated hRSV 

vaccine, where virions were propagated in kidney cell lines and administration of the vaccine 

resulted in enhanced hRSV disease upon infection with wild type hRSV (117). Conversely, if 

β4GalNAc-Ts are expressed in the lungs of infants, as potentially indicated by high expression of 

β4GalNAc-T4 in foetal lung tissue (338), but not of children or adults, this may result in distinct 

antigenic forms of hRSV virions circulating. In this respect, site N70 may play an important role 

given its position within a major antigenic site (Ø) in the prefusion form of the protein (332).    

 

As discussed in Chapter 6 LacdiNAc antennas can induce aberrant immune responses such as the 

Th2 bias observed in schistosomiasis (358), an immune response also observed in enhanced hRSV 

disease (116). Interestingly, LacdiNAc glycans present on glycodelin, a human endometrial protein, 

have been implicated in the potent immunosuppressive activities of the protein (354). Modulation of 

immune activity was thought to be mediated through suppression of human natural killer (NK) cell 

activity (394). Clinical studies of infants with severe hRSV infection identified low levels of NK 

cells in the blood and lung tissue (395, 396). Low levels of NK cells have also been shown to 

regulate hRSV-specific Th2 responses in a mouse model of hRSV infection (397).   

 

Another interesting observation from current research is the overlap in glycan ligands and receptors 

between hRSV surface glycoproteins and selectins. Selectins (L-, P- and E-) are cell adhesion 

molecules that promote slow rolling and tethering of leukocytes to the endothelium so they can exit 

the blood and move to sites of inflammation. They play a role in inflammatory processes by binding 

to each other or ligands expressed on endothelial cells or leukocytes and inducing signalling 
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pathways (398, 399). Of particular interest is the role they play in inflammatory lung disease and 

the accumulation of neutrophils, eosinophils and other leucocytes in the lungs (399, 400). During 

hRSV-induced bronchiolitis in infants, L-selectin undergoes release or “shedding” from neutrophils, 

the predominant leukocyte in the airways during hRSV infection (401). More recently it has been 

shown that L-selectin is required for effector T cell migration to viral infected lungs and induction 

of protective immunity (402). Interestingly, L-selectin produced in HEK293F cells contained 

glycans with the same extensions presumed to be on sF in this study, that is sulfated and fucosylated 

LacdiNAc extensions (403). It has been postulated that the LacdiNAc extensions on L-selectin may 

be used to mediate self-binding (404). Sialylated, fucosylated and sulfated glycans, in particular 

those with Sialyl Lewis X (SLeX) structures, are ligands for selectins (405) (Figure 8-1). 

Fucosylated LacdiNAc has been identified as a potent inhibitor of E-selectin with a greater binding 

affinity then SLeX (406). The similar conformation of SLeX and fucosylated LacdiNAc (Figure 8-1) 

is thought to be the reason E-selectin can bind both ligands. Interestingly, L-selectins have higher 

affinities for sulfated oligosaccharides (405) and sulfated derivatives of sLeX have been observed to 

induce “shedding” of L-selectin from leukocytes (407). Hypothetically, if hRSV virions or airway 

epithelial cells infected with hRSV express F or G with LacdiNAc extensions, this may influence 

selectin-mediated processes such as neutrophil migration and promotion of T-cell protective 

immunity in the lungs.   

 

 

Figure 8-1. Comparison of Lewisx antigens with LacdiNAc equivalents.  

 

In addition to LacdiNAc extensions, interactions with selectins may be mediated by hRSV G, as the 

mucin-like glycosylation described on G is also observed on major selectin ligands which mediate 

trafficking of leukocytes to sites of inflammation (398). It has also been shown that hRSV G can 

bind directly to L-selectin (408). Furthermore, L-selectin binds nucleolin expressed by myeloid 
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lineage and haematopoietic progenitor cells (409). Interestingly, nucleolin has also been established 

as a receptor for the F protein of hRSV (126). Finally, virions of hRSV have been shown to have 

similar receptor binding characteristics to L-selectin (408). Fucoidan, an inhibitor of L-selectin, 

blocked hRSV infection of Hep2 cells, as did soluble L-selectin and the pan-selectin antagonist 

TBC1269 (408). Thus the binding affinities of F and G from hRSV may influence L-selectin-

mediated processes.  

 

Taken together, the above research regarding immune modulators, glycan ligands and the results 

obtained from the analyses of sF and sG invoke several hypotheses and potential avenues for 

research. A hypothetical paradigm of hRSV infection in the lungs has been presented, where the 

protein sequences of G and F promote the addition of immunogenic LacdiNAc glycan epitopes by 

β4GalNAc-Ts. Expression of these transferases in humans may change with age resulting in distinct 

antigenic forms of hRSV. The presence of these immune stimulating glycans on F or G in vaccines, 

therapeutics or natural infection with hRSV may also contribute to priming aberrant immune 

responses.  

 

8.3.2 Limitations of the work  

 

A limitation of this work is that the proteins were not from naturally infected tissue or cells and, as 

noted in section 8.2.2, only the monosaccharide compositions of the glycans were obtained. 

Therefore, linkages were not confirmed for N-glycan compositions from sF and sG that exhibited 

characteristics consistent with LacdiNAc extensions. Furthermore, releasing the N-glycans for 

quantification would provide important information about the overall level of diHexNAc 

glycosylation on sF and sG. With respect to sG peptides containing N-linked site N251 were not 

detected. This meant both occupancy at N251 and occupancy at the seven potential O-linked sites 

within the peptide    (241TNIITTLLTSNTTGNPE257) could not be determined. Finally, two regions 

of the C-terminus of hRSV-G were not observed (272GNPSPSQVSTTSE284 and 
285YPSQPSSPPNTPRQ298).  
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8.3.3  Future directions    

 

For future studies, combining the proteolytic digestions (trypsin and Glu-C) with PNGase F may 

enable identification of peptides or O-linked glycopeptides containing N251 of G by producing the 

theoretical peptide 241TNIITTLLTSnTTGNPE257 (where lower case “n” represents deamidated 

Asn). Furthermore, analyses of the C-terminal regions of sG may benefit from the use of Glu-C 

digestion alone. This would result in significantly fewer “MS amenable” glycopeptides and peptides 

being produced from the CCD, HBD and regions downstream to these. Analysis of the trypsin/Glu-

C digestion revealed glycopeptides and peptides from these regions dominated MS spectra at 

retention times when the C-terminal Glu-C glycopeptides were eluting (258LTSQME263 and 
264TFHSTSSE271). By using Glu-C digestion alone it may effectively enrich for the C-terminal 

glycopeptides and enable detection of the remaining regions that were not observed 

(272GNPSPSQVSTTSE284 and 285YPSQPSSPPNTPRQ298).  

 

Based on observations in this work, future avenues of research may include investigations into the 

linkages of the diHexNAc units observed on hRSV sF and virions produced in cells that express 

β4GalNAc-Ts and those that do not. This could be achieved through enzyme treatments and 

antibody or lectin binding studies to determine linkage. Glycoproteomics or glycomics may also be 

used to confirm the results. These experiments could be followed by immunological studies where 

virions produced in these cell lines are applied to animal models to see if there are differences in 

immune responses. Furthermore, it would be of interest to determine if the two furin sties act as a 

cis-regulatory element for β4 specific GalNAc-Ts. This could be achieved by analysing site-specific 

glycosylation of hRSV sF proteins where both or one of the furin cleavage consensus sites have 

been removed (106RARR109 and/or 131KKRKRR136). Additionally, sequences could be removed 

that contain the furin cleavage consensus site and surrounding basic residues 

(123KKTNVTLSKKRKRR136). If removal of these sequences does change the glycosylation profile 

of hRSV sF mutating individual amino acids within these sequences may highlight important 

residues for induction of β4-specific GalNAc-transferases. Moreover, if removal of the basic 

residues from sF changes the glycan profile qualitatively it would be important to quantify the 

difference at both at the glycopeptide and released glycan level. Finally, to comprehensively assess 

and quantify the N-linked glycans present on hRSV sG the glycans could be released and analysed. 

Ultimately, it would be advantageous to analyse hRSV F and G produced from virions expressed in 

cell lines derived from human airway epithelial cell lines or infected respiratory tissue and compare 

the results to the work herein. 
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8.4 CONCLUDING REMARKS     

 

Protein glycosylation is highly heterogeneous and determining macroheterogeneity and 

microheterogeneity in a pool of proteins remains a challenge. Currently, the analysis of 

glycoproteomic data is time consuming and requires manual validation of all glycopeptide 

assignments. As bioinformatic tools evolve to include the rules and observations from manual 

validations of glycoproteomic results, studies will be applied in a more high-throughput manner 

with less user input. Furthermore, advances in LC-MS/MS technologies, with increases in speed, 

sensitivity, m/z range, dynamic range, resolution and mass accuracy will enable studies to be 

completed on more complex glycoproteomes. However, determining how individual 

monosaccharide motifs, glycans or types glycans influence protein function within a population of 

proteins, remains a substantial challenge. Accordingly, although this work provides a technical 

template for the study of NDV and hRSV surface glycoproteins in a site-specific manner, simply 

applying these to virions from naturally infected cells or tissues may not fully elucidate the 

functional role of glycans given the inherent complexity of glycosylation. Nevertheless, this work 

represents a step towards defining the role of glycosylation from paramyxovirus attachment and 

fusion proteins, and as tools and techniques develop, it may help decrease the burden of these 

viruses.      
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Appendices  

Appendix A 

Parameters used for analysis of NDV V4-VAR HN tryptic peptides and glycopeptides  

Ms Parameters V4-VAR tryptic sample: 
Orbitrap (OT) HCD 

V4-VAR tryptic sample: OT 
HCD-pd-OT ETD 

V4-VAR tryptic sample: 
OT HCD-pd-IT CID 

V4-VAR tryptic/PNGase F sample: OT 
HCD-pd-OT ETD 

Polarity  Positive  Positive Positive Positive 
MS1 Detector Type Orbitrap Orbitrap Orbitrap Orbitrap 
MS1 Resolution at 200 (m/z) 120K 120K 120K 120K 
MS1 Scan Range (m/z) 400-1500 380-2000 400-1800 400-1800 
MS1 ACG Target 400,000 200,000 200,000 200,000 
MS1 Injection Time (ms) 50 50 50 50 
MS2 Precursor Selection Criteria Most intense Highest charge, lowest m/z Most intense Highest charge, lowest m/z 
MS2 Precursor Intensity Threshold 5000 5,000 5,000 5,000 
MS2 Precursor  Scan Range Selection 400-1500 380-1800 400-1500 550-1500 
MS2 Precursor Charge State Selection 2-7 2-8 2-7 3-7 
Exclude After (n times) 1 1 1 2 
Exclusion Duration (s) 25 20 20 20 
MS2 Precursor Isolation Window (m/z) 1.6 2 3 3 
MS2 Detector Type Orbitrap Orbitrap Orbitrap Orbitrap 
MS2 Resolution 60K 30K 60K 60K 
MS2 AGC Target 50,000 50,000 100,000 100,000 
MS2 Maximum Injection Time 60 60 120 120 
MS2 Activation Type HCD HCD HCD HCD 
MS2 Normalised Collision Energy (CE) 30% 30% 35% 30% 
Product Dependant (pd) Ion Trigger (m/z) 138.0545, 
204.0867, 366.1396 & 366.1396  N/A Within top 20 product ions Within top 20 product ions Within top 30 product ions including 

292.1027 
pd-MS2 Detection N/A Orbitrap Ion trap Orbitrap 
pd-MS2 Resolution N/A 60K N/A 60K 
pd-MS2 ACG Target N/A 100,000 10,000 100,000 
pd-MS2 Maximum Injection Time (Ms) N/A 250 150 150 
pd-MS2 Activation Type N/A ETD CID ETD 

pd- MS2 Fragmentation Parameters N/A Charge dependant ETD with one 
microscan 30% NCE Charge dependant ETD with two 

microscans 
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Appendix B 

NDV HN sequence alignment 

Multiple sequence alignment of NDV HN was implemented using fifteen annotated NDV HN sequences from the 

UniProt website. A list of the Uniprot entries is provided in the table below. Within the sequence alignment sequence 

identifiers are listed on the left and the NDV Queensland/66 strain (UniProt entry P13850) is the first identifier. All N-

linked consensus (N-X-S/T) sites have been highlighted in yellow.   

 

Uniprot 
Entry  Entry Name Isolate name 

Length 
(amino 
acids) 

P13850 HN_NDVQ Newcastle disease virus (strain Queensland/66) (NDV) 616 

P12558 HN_NDVU Newcastle disease virus (strain Chicken/Northern Ireland/Ulster/67) (NDV) 616 

P12555 HN_NDVD Newcastle disease virus (strain D26/76) (NDV) 616 

Q9Q2W5 HN_NDVK Newcastle disease virus (strain Kansas) (NDV) 577 

P32884 HN_NDVB Newcastle disease virus (strain Beaudette C/45) (NDV) 577 

P35743 HN_NDVL Newcastle disease virus (strain Chicken/United States/LaSota/46) (NDV) 577 

P12559 HN_NDVH4 Newcastle disease virus (strain B1-Hitchner/47) (NDV) 577 

P12553 HN_NDVTG Newcastle disease virus (strain Chicken/United States(TX)/GB/48) (NDV)  577 

Q91UL0 HN_NDVB1 Newcastle disease virus (strain Chicken/United States/B1/48) (NDV) 577 

P12556 HN_NDVI Newcastle disease virus (strain Italien/45) (NDV) 571 

P35742 HN_NDVJ Newcastle disease virus (strain Iba/85) (NDV) 571 

P35741 HN_NDVH3 Newcastle disease virus (strain Her/33) (NDV) 571 

P35740 HN_NDVC Newcastle disease virus (strain Chi/85) (NDV) 571 

P12557 HN_NDVM Newcastle disease virus (strain Miyadera/51) (NDV) 571 

P12554 HN_NDVA Newcastle disease virus (strain Chicken/Australia-Victoria/32) (NDV) 570 

 

  

http://www.uniprot.org/uniprot/P13850
http://www.uniprot.org/uniprot/P12558
http://www.uniprot.org/uniprot/P12555
http://www.uniprot.org/uniprot/Q9Q2W5
http://www.uniprot.org/uniprot/P32884
http://www.uniprot.org/uniprot/P35743
http://www.uniprot.org/uniprot/P12559
http://www.uniprot.org/uniprot/P12553
http://www.uniprot.org/uniprot/Q91UL0
http://www.uniprot.org/uniprot/P12556
http://www.uniprot.org/uniprot/P35742
http://www.uniprot.org/uniprot/P35741
http://www.uniprot.org/uniprot/P35740
http://www.uniprot.org/uniprot/P12557
http://www.uniprot.org/uniprot/P12554
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SP|P13850|HN_NDVQ  MDRAVSQVALENDEREAKNTWRLVFRIAILLSTVVTLAISAAALAYSMEASTPSDLVGIP 60 
SP|P12558|HN_NDVU  MDRAVSQVALENDEREAKNTWRLVFRIAILLLTVVTLAISAAALAYSMEASTPSDLIGIP 60 
SP|P12555|HN_NDVD  MDRAVSQVALENDEREAKNTWRLVFRIAILLLTVVTLAISAAALAYSMEASTPSDLVGIP 60 
SP|Q91UL0|HN_NDVB1 MDRAVSQVALENDEREAKNTWRLIFRIAILFLTVVTLAISVASLLYSMGASTPSDLVGIP 60 
SP|Q9Q2W5|HN_NDVK  MDRAVSQVALENDEREAKNTWRLIFRIAILLLTVVTLATSVASLVYSMGASTPSDLVGIP 60 
SP|P35743|HN_NDVL  MDRAVSQVALENDEREAKNTWRLIFRIAILFLTVVTLAISVASLLYSMGASTPSDLVGIP 60 
SP|P32884|HN_NDVB  MDRAVSQVALENDEREAKNTWRLIFRIAILLLTVVTLATSVASLVYSMGASTPSDLVGIP 60 
SP|P12553|HN_NDVTG MDRAVSQVALENDEREAKNTWRLIFRIAILLLTVVTLATSVASLVYSMGASTPSDLVGIP 60 
SP|P12559|HN_NDVH4 MDRAVSQVALENDEREAKNTWRLIFRIAILFLTVVTLAISVASLLYSMGASTPSDLVGIP 60 
SP|P35741|HN_NDVH3 MDRAVSRVALENEEREAKNTWRFVFRIAILLLIVITLAISAAALVYSMEASTPGDLVGIP 60 
SP|P35742|HN_NDVJ  MDRAVSRVVLENEEREAKNTWRFVFRIAVLLLIVMTLAISAAALVYSMGASTPRDLASIS 60 
SP|P12557|HN_NDVM  MDRTVNQVALENDEREAKNTWRLVFRIATLLLIVMTLAFSAAALAYSMEASTPGDLVGIP 60 
SP|P12556|HN_NDVI  MDRAVGRVALENEEREAKNTWRFVFRIAIFLLIVITLAISAAALVYSMEASTPGDLVGIP 60 
SP|P35740|HN_NDVC  MDRAVNRVVLENEEREAKNTWRLVFRIAVLLLMVMTLAISAAALVYSMGASTPRDLAGIS 60 
SP|P12554|HN_NDVA  MNRAVCQVALENDEREAKNTWRLVFRIAILLLTVMTLAISAAALAYSMEASTPGDLVSIP 60 
                   *:*:* :*.***:*********::**** ::  *:*** *.*:* *** **** ** .*  
 
SP|P13850|HN_NDVQ  TAISRAEEKITSALGSNQDVVDRIYKQVALESPLALLNTESTIMNAITSLSYRINGAANS 120 
SP|P12558|HN_NDVU  TAISRAEEKITSALGSNQDVVDRIYKQVALESPLALLNTESTIMNAITSLSYQINGAANS 120 
SP|P12555|HN_NDVD  TAISRTEEKITSALGSNQDVVDRIYKQVALESPLALLNTESTIMNAITSLSYQINGAANS 120 
SP|Q91UL0|HN_NDVB1 TRISRAEEKITSTLGSNQDVVDRIYKQVALESPLALLNTETTIMNAITSLSYQINGAANN 120 
SP|Q9Q2W5|HN_NDVK  TRISRAEEKITSALGSNQDVVDRIYKQVALESPLALLNTETTIMNAITSLSYQINGAANN 120 
SP|P35743|HN_NDVL  TRISRAEEKITSTLGSNQDVVDRIYKQVALESPLALLKTETTIMNAITSLSYQINGAANN 120 
SP|P32884|HN_NDVB  TRISRAEEKITSALGSNQDVVDRIYKQVALESPLALLNTETTIMNAITSLSYQINGAANN 120 
SP|P12553|HN_NDVTG TRISRAEEKITSALGSNQDVVDRIYKQVALESPLALLNTETTIMNAITSLSYQINGAANN 120 
SP|P12559|HN_NDVH4 TRISRAEEKITSTLGSNQDVVDRIYKQVALESPLALLNTETTIMNAITSLSYQINGAANN 120 
SP|P35741|HN_NDVH3 TVISRAEEKITSALSSNQDVVDRIYKQVALESPLALLNTESVIMNAITSLSYQINGAANN 120 
SP|P35742|HN_NDVJ  TAISKMEDKITSSLSSNQDVVDRIYKQVALESPLALLNTESIIMNAITSLSYQINGAANN 120 
SP|P12557|HN_NDVM  TAISRAEEKITSALGSNQDVVDRIYKQVALESPLALLNTESIIMNAITSLSYQINGAANN 120 
SP|P12556|HN_NDVI  TVISRAEEKITSALSSNQDVVDRIYKQVALESPLALLNTESVIMNAITSLSYQINGAANN 120 
SP|P35740|HN_NDVC  TVISKTEDKVTSLLSSKQDVIDRIYKQVALESPLALLNTESIIMNAITSLSYQINGAANN 120 
SP|P12554|HN_NDVA  TAISRAEGKITSALGSNQDVVDRIYKQVALESPLALLNTESIIMNAITSLSYQINGAANN 120 
                   * **: * *:** *.*:***:****************:**: **********:******. 
 
SP|P13850|HN_NDVQ  SGCGAPIHDPDYIGGIGKELIVDDASDVTSYYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|P12558|HN_NDVU  SGCGAPIHDPDYIGGIGKELIVDDASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|P12555|HN_NDVD  SGCGAPIHDPDYIGGIGKELIVDDASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|Q91UL0|HN_NDVB1 SGWGAPIHDPDYIGGIGKELIVDDASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|Q9Q2W5|HN_NDVK  SGWGAPIHDPDFIGGIGKELIVDNASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|P35743|HN_NDVL  SGWGAPIHDPDYIGGIGKELIVDDASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|P32884|HN_NDVB  SGWGAPIHDPDFIGGIGKELIVDDASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|P12553|HN_NDVTG SGWGAPIHDPDFIGGIGKELIVDDASDVTSFYPSAFQEHHNFIPAPTTGSGCIRIPSFDM 180 
SP|P12559|HN_NDVH4 SGWGAPIHDPDYIGGIGKELIVDDASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|P35741|HN_NDVH3 SGCGAPVHDPDYIGGIGKELIVDDASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDI 180 
SP|P35742|HN_NDVJ  SGCGAPVHDPDYIGGIGKELIVDDTSDVTSFYPSAYQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|P12557|HN_NDVM  SGCGAPVHDPDYIGGIGKELIVDDASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|P12556|HN_NDVI  SGCGAPVHDPDYIGGIGKELIVDDASDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDI 180 
SP|P35740|HN_NDVC  SGCGEPVHDPDYIGGIGKELIVDDISDVTSFYPSAYQEHLNFIPAPTTGSGCTRIPSFDM 180 
SP|P12554|HN_NDVA  SGCGAPVHDPDYIGGIGKELIVDDTSDVTSFYPSAFQEHLNFIPAPTTGSGCTRIPSFDM 180 
                   ** * *:****:***********: *****:****:*** ************ ******: 
 
SP|P13850|HN_NDVQ  SATHYCYTHNVILSGCRDHSHSHQYLALGVLRTSATGRVFFSTLRSINLDDTQNRKSCSV 240 
SP|P12558|HN_NDVU  SATHYCYTHNVILSGCRDHSHSHQYLALGVLRTSATGRVFFSTLHSINLDDTQNRKSCSV 240 
SP|P12555|HN_NDVD  SATHYCYTHNVILSGCRDRSHSHQYLALGVLRTSATGRVFFSTLRSINLDDTQNRKSCSV 240 
SP|Q91UL0|HN_NDVB1 SATHYCYTHNVILSGCRDHSHSYQYLALGVLRTSATGRVFFSTLRSINLDDTQNRKSCSV 240 
SP|Q9Q2W5|HN_NDVK  SATHYCYTHNVILSGCRDHSHSHQYLALGVLRTTATGRIFFSTLRSISLDDTQNRKSCSV 240 
SP|P35743|HN_NDVL  SATHYCYTHNVILSGCRDHSHSYQYLALGVLRTSATGRVFFSTLRSINLDDTQNRKSCSV 240 
SP|P32884|HN_NDVB  SATHYCYTHNVILSGCRDHSHSHQYLALGVLRTTATGRIFFSTLRSISLDDTQNRKSCSV 240 
SP|P12553|HN_NDVTG SATHYCYTHNIISSGCRDHSHSYQYLALGVLRTSATGRIFFSTLRSINLDDTQNRKSCSV 240 
SP|P12559|HN_NDVH4 SATHYCYTHNVILSGCRDHLHSHQYLALGVLRTSATGRVFFSTLRSINLDDTQNRKSCSV 240 
SP|P35741|HN_NDVH3 SATHYCYTHNVILSGCRDHSHSHQYLALGVLRTSATGRVFFSTLRSINLDDNQNRKSCSV 240 
SP|P35742|HN_NDVJ  SATHYCYTHNVILSGCRDHSHSHQYLALGVLRTSATGKVFFSTLRSINLDDTQNRKSCSV 240 
SP|P12557|HN_NDVM  SATHYCYTHNVILSGCRDHSQSHQYLALGVLRTSATGRVFFSTLRSINLDDTQNRKSCSV 240 
SP|P12556|HN_NDVI  SATHYCYTHNVILSGCRDHSHSHQYLALGVLRTSATGRVFFSTLRSINLDDNQNRKSCSV 240 
SP|P35740|HN_NDVC  STTHYCYTHNVILSGCRDHSHSHQYLALGVLRTSATGRVFFSTLRSINLDDTQNRKSCSV 240 
SP|P12554|HN_NDVA  SATH-CYTHNVIFSGCRDHSHSHQYLALGVLRTSATGRVFFSTLRSINLDDTQNRKSCSV 239 
                   *:** *****:* *****: :*:**********:***::*****:**.***.******** 
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SP|P13850|HN_NDVQ  SATPLGCDMLCSKVTETEEEDYNSAIPTSMVHGRLGFDGQYHEKDLDVTTLFEDWVANYP 300 
SP|P12558|HN_NDVU  SATPLGCDMLCSKVTETEEEDYNSAVPTSMVHGRLGFDGQYHEKDLDVTTLFEDWVANYP 300 
SP|P12555|HN_NDVD  SATPLGCDMLCSKVTETEEEDYNSAIPTSMVHGRLGFDGQYHEKDLDVTTLFEDWVANYP 300 
SP|Q91UL0|HN_NDVB1 SATPLGCDMLCSKATETEEEDYNSAVPTRMVHGRLGFDGQYHEKDLDVTTLFGDWVANYP 300 
SP|Q9Q2W5|HN_NDVK  SATPLGCDMLCSKVTETEEEDYNSAVPTLMAHGRLGFDGQYHEKDLDVTTLFEDWVANYP 300 
SP|P35743|HN_NDVL  SATPLGCDMLCSKVTETEEEDYNSAVPTRMAHGRLGFDGQYHEKDLDVTTLFGDWVANYP 300 
SP|P32884|HN_NDVB  SATPLGCDMLCSKVTETEEEDYNSAVPTLMAHGRLGFDGQYHEKDLDVTTLFEDWVANYP 300 
SP|P12553|HN_NDVTG SATPLGCDMLCSKVTETEEEDYNSAVPTLMVHGRLGFDGQYHEKDLDVTTLFEDWVANYP 300 
SP|P12559|HN_NDVH4 SATPLGCDMLCSKATETEEEDYNSAVPTRMVHGRLGFDGQYHEKDLDVTTLFGDWVANYP 300 
SP|P35741|HN_NDVH3 SATPLGCDMLCSKITETEEEDYSSVTPTSMVHGRLGFDGQYHEKDLDVITLFKDWVANYP 300 
SP|P35742|HN_NDVJ  SATPLGCDMLCSKVTETEEEDYKSVTPTSMVHGRFRFDGQYHEKDSDRTTLFKDWVANYP 300 
SP|P12557|HN_NDVM  SATPLGCDMLCSKVTETEEEDYNSVTPTSMVHGRLGFDGQYHEKDLDVTTLFGDWVANYP 300 
SP|P12556|HN_NDVI  SATPLGCDMLCSKITETEEEDYSSVTPTSMVHGRLGFDGQYHEKDLDVITLFKDWVANYP 300 
SP|P35740|HN_NDVC  SATPLGCDMLCSKVTETEEEDYKSVTPTSMVHGRLGFDGQYHEKDLDTTVLFKDWVANYP 300 
SP|P12554|HN_NDVA  SATPLGCDMLCSKVTETEEEDYNSVIPTSMVHGRLGFDGQYHEKDLDVTTLFGDWVANYP 299 
                   ************* ********.*. ** *.***: ********* *  .** ******* 
 
SP|P13850|HN_NDVQ  GVGGGSFIDNRVWFPVYGGLKPNSPSDTAQEGKYVIYKRYNDTCPDEQDYQIQMAKSSYK 360 
SP|P12558|HN_NDVU  GVGGGSFIDNRVWFPVYGGLKPNSPSDTAQEGKYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|P12555|HN_NDVD  GVGGGSFIDNRVWFPVYGGLKPNSPSDTAQEGKYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|Q91UL0|HN_NDVB1 GVGGGSFIDSRVWFSVYGGLKPNSPSDTVQEGKYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|Q9Q2W5|HN_NDVK  GVGGGSFIDGRVWFSVYGGLKPNSPSDTVQEGKYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|P35743|HN_NDVL  GVGGGSFIDSRVWFSVYGGLKPNSPSDTVQEGKYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|P32884|HN_NDVB  GVGGGSFIDGRVWFSVYGGLKPNSPSDTVQEGKYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|P12553|HN_NDVTG GVGGGSFIDSRVWFSVYGGLKPNSPSDTVQEEKYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|P12559|HN_NDVH4 GVGGGSFIDSRVWFSVYGGLKPNTPSDTVQEGKYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|P35741|HN_NDVH3 GVGGGSFIDNRVWFPVYGGLKPNSPSDTVQEGRYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|P35742|HN_NDVJ  GVGGGSFIDDRVWFPIYGGLKPNSPSDIAQEGKYVIYKRYNNTFPDKQDYQIRMAKSSYK 360 
SP|P12557|HN_NDVM  GVGGGSFIDSRVWFPIYGGLKPNSPSDTAQEGRYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|P12556|HN_NDVI  GVGGGSFIDNRVWFPVYGGLKPNSPSDTAQEGRYVIYKRYNDTCPDEQDYQIRMAKSSYK 360 
SP|P35740|HN_NDVC  GVGGGSFIDDRVWFPVYGGLKPNSPSDTAQEGKYVIYKRYNNTCPDEQDYQIRMAKSSYK 360 
SP|P12554|HN_NDVA  GVGGGSFIDNRVWFPVYGGLKPSSPSDTGQEGRYVIYKRYNDTCPDEQDYQIRMAKSSYK 359 
                   ********* **** :******.:***  ** :********:* **:*****:******* 
 
SP|P13850|HN_NDVQ  PGRFGGKRVQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRVLTVGTSHFLYQRGSSY 420 
SP|P12558|HN_NDVU  PGRFGGKRVQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRVLTVGTSHFLYQRGSSY 420 
SP|P12555|HN_NDVD  PGRFGGKRVQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRVLTVGTSHFFYQRGSSY 420 
SP|Q91UL0|HN_NDVB1 PGRFGGKRIQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRILTVGTSHFLYQRGSSY 420 
SP|Q9Q2W5|HN_NDVK  PGRFGGKRIQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRILTVGTSHFLYQRGSSY 420 
SP|P35743|HN_NDVL  PGRFGGKRIQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRILTVGTSHFLYQRGSSY 420 
SP|P32884|HN_NDVB  PGRFGGKRIQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRILTVGTSHFLYQRGSSY 420 
SP|P12553|HN_NDVTG PGRFGGKRIQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRILTVGTSHFLYQRGSSY 420 
SP|P12559|HN_NDVH4 PGRFGGKRIQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRILTVGTSHFLYQRGSSY 420 
SP|P35741|HN_NDVH3 PGRFGGKRVQQAILSIKVSTSLGEDPVLTIPPNTVTLMGAEGRVLTVGTSHFLYQRGSSY 420 
SP|P35742|HN_NDVJ  PGRFGGKRVQQAILSIKVSTSLGEDPVLTVPPNTITLMGAEGRVLTVGTSHFLYQRGSSY 420 
SP|P12557|HN_NDVM  PRRFGGKRVQQAILSIKVSTSLGEDPVLTVPPNTVTLMGAEGRVLTVGTSHFLYQRGSSY 420 
SP|P12556|HN_NDVI  PGRFGGKRVQQAILSIKVSTSLGEDPVLTVPPNTVTLMGPEGRVLTVGTSHFLYQRGSSY 420 
SP|P35740|HN_NDVC  PGRFGGKRVQQAILSIKVSTSLGEDPVLTIPPNTITLMGAEGRVLTVGTSHFLYQRGSSY 420 
SP|P12554|HN_NDVA  PGRFGGKRVQQAILSIKVSTSLGEDPVLTIPPNTVTLMGAEGRVLTVGTSHFLYQRGSSY 419 
                   * ******:********************:****:**** ***:********:******* 
 
SP|P13850|HN_NDVQ  FSPALLYPMIVSNKTATLHSPYTFNAFTRPGSVPCQASARCPNSCVTGVYTDPYPLVFYR 480 
SP|P12558|HN_NDVU  FSPALLYPMTVSNKTATLHSPYTFDAFTRPGSVPCQASARCPNSCVTGVYTDPYPLVFYR 480 
SP|P12555|HN_NDVD  FSPALLYPMTVSNKTATLHSPYTFNAFTRPGSVPCQASARCPNSCVTGVYTDPYPLVFYR 480 
SP|Q91UL0|HN_NDVB1 FSPALLYPMTVSNKTATLHSPYTFNAFTRPGSIPCQASARCPNSCVTGVYTDPYPLIFYR 480 
SP|Q9Q2W5|HN_NDVK  FSPALLYPMTVSNKTATLHSPYTFNAFTRPGSIPCQASARCPNSCVTGVYTDPYPLIFYR 480 
SP|P35743|HN_NDVL  FSPALLYPMTVSNKTATLHSPYTFNAFTRPGSIPCQASARCPNPCVTGVYTDPYPLIFYR 480 
SP|P32884|HN_NDVB  FSPALLYPMTVSNKTATLHSPYTFNAFTRPGSIPCQASARCPNSCVTGVYTDPYPLIFYR 480 
SP|P12553|HN_NDVTG FSPALLYPMTVSNKTATLHSPYTFNAFTRPGSIPCQASARCPNSCVTGVYTDPYPLIFYR 480 
SP|P12559|HN_NDVH4 FSPALLYPMTVSNKTATLHSPYTFNAFTRPGSIPCQASARCPNSCVTGVYTDPYPLIFYR 480 
SP|P35741|HN_NDVH3 FSPALLYPMTVNNKTATLHSPYTFNAFTRPGSVPCQASARCPNSCVTGVYTDPYPLIFHR 480 
SP|P35742|HN_NDVJ  FSPALLYPMTVYQQTATLHSPYTFNAFTRPGSVPCQASARCPNSCITGVYTDPYPLVFHR 480 
SP|P12557|HN_NDVM  FSPALLYPMTVNNKTATLHSPYTFNAFTRPGSVPCQASARCPNSCVTGVYTDPYPLVFHA 480 
SP|P12556|HN_NDVI  FSPALLYPMTVNNKTATLHSPYTFNAFTRPGSVPCQASARCPNSCVTGVYTDPYPLVFHR 480 
SP|P35740|HN_NDVC  FSPALLYPMTVNNKTATLHSPYTFNAFTRPGSVPCQASARCPNSCITGVYTDPYPLIFHR 480 
SP|P12554|HN_NDVA  FSPALLYPMTVNNNTATLHSPYTFNAFTRPGSVPCQASARCPNSCVTGVYTDPYPLVFHR 479 
                   ********* * ::**********:*******:********** *:**********:*:  



 

192 Appendices 

SP|P13850|HN_NDVQ  NHTLRGVFGTMLDDKQARLNPVSAVFDSISRSRITRVSSSSTKAAYTTSTCFKVVKTNKT 540 
SP|P12558|HN_NDVU  NHTLRGVFGTMLDDKQARLNPVSAVFDSISRSRITRVSSSSTKAAYTTSTCFKVVKTNKT 540 
SP|P12555|HN_NDVD  NHTLRGVFGTMLDDEQARLNPVSAVFDSISRSRITRVSSSSTKAAYTTSTCFKVVKTNKT 540 
SP|Q91UL0|HN_NDVB1 NHTLRGVFGTMLDGEQARLNPASAVFDSTSRSRITRVSSSSIKAAYTTSTCFKVVKTNKT 540 
SP|Q9Q2W5|HN_NDVK  NHTLRGVFGTMLDSEQARLNPASAVFDSTSRSRITRVSSSSTKAAYTTSTCFKVVKTNKT 540 
SP|P35743|HN_NDVL  NHTLRGVFGTMLDGVQARLNPASAVFDSTSRSRITRVSSSSTKAAYTTSTCFKVVKTNKT 540 
SP|P32884|HN_NDVB  NHTLRGVFGTMLDSEQARLNPTSAVFDSTSRSRITRVSSSSTKAAYTTSTCFKVVKTNKT 540 
SP|P12553|HN_NDVTG NHTLRGVFGTMLDGEQARLNPASAVFDSTSRSRITRVSSSSTKAAYTTSTCFKVVKTNKT 540 
SP|P12559|HN_NDVH4 NHTLRGVFGTMLDGEQARLNPASAVFDSTSRSRITRVSSSSIKAAYTTSTCFKVVKTNKT 540 
SP|P35741|HN_NDVH3 NHTLRGVFGTMLDDGQARLNPVSAVFDNISRSRITRVSSSRTKAAYTTSTCFKVVKTNKT 540 
SP|P35742|HN_NDVJ  NHTLRGVFGTMLDDEQARLNPVSAVFDNISRSRVTRVSSSSTKAAYTTSTCFKVVKTSKA 540 
SP|P12557|HN_NDVM  NHTLRGVFGTMLDDERARLNPVSAVFDNVSRSRITRVSSSSTKAAYTTSTCFKVVKTNKT 540 
SP|P12556|HN_NDVI  NHTLRGVFGTMLDDKQARLNPVSAVFDNISRSRITRVSSSSTKAAYTTSTCFKVVKTNKT 540 
SP|P35740|HN_NDVC  NHTLRGVFGTMLDDEQARLNPVSAVFDNISRSRVTRVSSSSTKAAYTTSTCFKVVKTNKA 540 
SP|P12554|HN_NDVA  NHTLRGVFGTMLDDEQARLNLVSAVFDNISRSRITRVSSSRTKAAYTTSTCFKVVKTNKT 539 
                   *************  :**** .*****. ****:******  ***************.*: 
 
SP|P13850|HN_NDVQ  YCLSIAEISNTLFGEFRIVPLLVEILKDDGVREARSSRLSQLREGWKDDIVSPIFCDAKN 600 
SP|P12558|HN_NDVU  YCLSIAEISNTLFGEFRIVPLLVEILKDDGVREARAGRLSQLREGWKDDIVSPIFCDAKN 600 
SP|P12555|HN_NDVD  YCLSIAEISNTLFGEFRIVPLLVEILKDDGVREARSGRLSQLQEGWKDDIVSPIFCDAKN 600 
SP|Q91UL0|HN_NDVB1 YCLSIAEISNTLFGEFRIVPLLVEILKDDGVREARSG----------------------- 577 
SP|Q9Q2W5|HN_NDVK  YCLSIAEISNTLFGEFRIVPLLVEILKNDGVREARSG----------------------- 577 
SP|P35743|HN_NDVL  YCLSIAEISNTLFGEFRIVPLLVEILKDDGVREARSG----------------------- 577 
SP|P32884|HN_NDVB  YCLSIAEISNTLFGEFRIVPLLVEILKNDGVREARSG----------------------- 577 
SP|P12553|HN_NDVTG YCLSIAEISNTLFGEFRIVPLLVEILKNDGVREARSG----------------------- 577 
SP|P12559|HN_NDVH4 YCLSIAEISNTLFGEFRIVPLLVEILKDDGVREARSG----------------------- 577 
SP|P35741|HN_NDVH3 YVLSIAEISNTLFGEFRIVPLLVEILKNDGV----------------------------- 571 
SP|P35742|HN_NDVJ  YCLSIAEISNTLFGEFRIVPLLVEILKDDRV----------------------------- 571 
SP|P12557|HN_NDVM  YCLSIAEISNTLFGEFRIVPLLVEILKDDKV----------------------------- 571 
SP|P12556|HN_NDVI  YCLSIAEISNTLFGEFRIVPLLVEILKEDGV----------------------------- 571 
SP|P35740|HN_NDVC  YCLSIAEISNTLFGEFRIVPLLVEILKDDRV----------------------------- 571 
SP|P12554|HN_NDVA  YCLSIAEISNTLFGEFRIVPLLVEILKDDGV----------------------------- 570 
                   * *************************:* *                              
 
SP|P13850|HN_NDVQ  QTEYRRELESYAASWP 616 
SP|P12558|HN_NDVU  QTEYRRELESYAASWP 616 
SP|P12555|HN_NDVD  QTEYRRELESYAASWP 616 
SP|Q91UL0|HN_NDVB1 ---------------- 
SP|Q9Q2W5|HN_NDVK  ---------------- 
SP|P35743|HN_NDVL  ---------------- 
SP|P32884|HN_NDVB  ---------------- 
SP|P12553|HN_NDVTG ---------------- 
SP|P12559|HN_NDVH4 ---------------- 
SP|P35741|HN_NDVH3 ---------------- 
SP|P35742|HN_NDVJ  ---------------- 
SP|P12557|HN_NDVM  ---------------- 
SP|P12556|HN_NDVI  ---------------- 
SP|P35740|HN_NDVC  ---------------- 
SP|P12554|HN_NDVA  ---------------- 
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Appendix C 

HCD MS/MS of NDV V4-VAR HN peptide Q87-K138 

Amino acid sequence changes in V4-VAR from QLD/66 (UniProt entry P13850) have been 

highlighted in red in the sequence schematic. They represent sequence changes R113Q, N115S and 

N119S. All b- and y-ions indicated in the schematic were observed in the MS/MS spectrum of the 

precursor at m/z 1319.660 (4+) with a precursor mass tolerance of 0.45 ppm. Not all ions have been 

labelled on the spectrum for ease of interpretation. Within the continuous y-ion series y-18 to y-35, 

ions y-19, y-20 and y-23 to y-26 (highlighted red in the spectrum) confirm the sequence changes. 
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Appendix D 

HCD MS/MS of NDV V4-VAR HN peptide M175-R197 

The amino acid sequence change I175M in V4-VAR from QLD/66 (UniProt ID P13850) has been 

highlighted in red in the sequence schematic. All b- and y-ions indicated in the schematic were 

observed in the MS/MS spectrum of the precursor at m/z 916.399 (3+) with a precursor mass 

tolerance of -0.78 ppm. Not all ions have been labelled on the spectrum for ease of interpretation. 

Full sequence coverage was obtained through y-series ions and y-22 (highlighted red in the 

spectrum) confirms the mass of methionine at the N-terminus of the peptide. 
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Appendix E 

Protein sequence coverage of hRSV sF based on identified peptides from Mascot searches 

after HCD MS/MS  

(a) RSV sF was digested with trypsin and a NCE of 30% was used for the MS analysis. Sequence 

coverage of was 84.86%. (b)  RSV sF was digested with trypsin and a stepped (25±5%) NCE was 

used for the MS analysis. Sequence coverage of was 85.74%. (c) RSV sF was digested with trypsin 

then PNGase F and a stepped (25±5%) NCE was used for the MS analysis. Sequence coverage of 

was 80.11%. 

 
(a)  

 
 
 

(b)   
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(c)  
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Appendix F 

Retention time profiles of putative N-linked glycopeptides containing site N70 from HCD 

(NCE of 25±5%) MS/MS analysis of RSV sF digested by trypsin 

(a) The extracted ion chromatogram (EIC) at m/z 204.0867 indicated the presence of putatively 

glycosylated peptides. (b) The EIC for the calculated Y1 ions of glycopeptides containing N-linked 

sites N70 with carbamidomethyl Cys residues (69C(+57.0215)NGTDAK75) and pyro-

carbamidomethyl (69C(+39.9949)NGTDAK75) delineate the retention times of the glycopeptides. 

The observed masses of the Y1 ions can be seen in the EIC above some of the more intense Y1 

ions.  
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