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<ABS-HEAD>Highlights► Physical exercise on a treadmill reduced anxiety-like behavior 

► Spontaneous activity levels are genotype-dependent ► Benefits of physical exercise 

depend on the type of exercise performed 

 

<ABS-HEAD>Abstract 

<ABS-P>We investigated the effects of physical exercise (PE) on locomotor activity and 

anxiety-like behavior in Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) male rats. 

Rats received either four weeks of forced training, 5 days/week, on a treadmill (experiment 1) 

or were given 21 days of free access to running wheels (experiment 2). We also tested the 

effects of social isolation (SI) (seven days of isolation - experiment 3) on behavior. In 

experiment 1, 20% of LEW rats and 63% of SHR rats completed the training protocol. PE 

significantly increased central and peripheral locomotion in the open field (OF) and entries 

into the open arms in the elevated plus-maze (EPM) in both strains. In experiment 2, the 

distance traveled by SHR rats on running wheels was significantly higher compared with 

LEW rats. PE on running wheels also increased the time spent in the center of the OF in SHR 

rats only. In experiment 3, SI decreased central and peripheral locomotion in the OF in both 

strains. In summary, forced PE on a treadmill reduced anxiety-like behavior and increased 

locomotion in male rats of both strains, whereas voluntary PE on running wheels decreased 

anxiety-like behavior in SHR rats only. SI decreased locomotion in both strains in the OF. 

This study suggests that spontaneous activity levels are genotype-dependent and the effects of 

PE depend on the type of exercise performed. 

<KWD>Keywords: treadmill; running wheels; elevated plus-maze; open field. 

<H1>1. Introduction 

A growing body of evidence indicates the positive influence that lifestyle factors, including 

physical exercise (PE), social interaction and nutrition, can have on emotionality in humans 

(Kramer et al., 1985; Fox, 1999; Ratey & Loehr, 2011; Hötting & Röder, 2013). For example, 

periodic PE decreases anxiety, improves mood, physical well-being and mental disposition 

(McKercher et al., 2009; Samulski et al., 2009; UNESCO, 2013). It also may have a positive 

influence on the modulation of brain neurotransmitter systems (Hill et al., 2010), related to 
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improvements in cardiovascular function (Murlasits, 2015; Dunn et al., 2005), and increases 

brain plasticity and resilience to stress, which could prevent the development of mental 

disorders (Cotman & Berchtold, 2002). Although the biological mechanisms responsible for 

these improvements are not yet fully understood, PE is recommended as a complementary 

treatment for mental disorders, such as anxiety, depression and attention deficit hyperactivity 

disorder (ADHD) (Berwid & Halperin, 2012; Lees & Hopkins, 2013; Ströhle, 2009). 

Studies using genetic models can be useful to investigate the benefits of PE in humans 

(White, 2016). However, most studies use socially isolated animals, at least in some periods 

of time (e.g., during training). This procedure allows one to monitor PE levels for each 

individual; however, social isolation (SI) per se may be associated with anxiety-like behaviors 

(Butler et al., 2014; Skelly et al., 2015), cognitive dysfunction (Li et al., 2016) and depressive 

behaviors (Zanier-Gomes et al., 2015) in rodents, which could confound data interpretation. 

The Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) inbred rat strains show 

contrasting levels of anxiety-related behavior, with the former exhibiting increased levels of 

anxiety-like behavior (Chiavegatto et al., 2009). These strain differences were reliably found 

in different substrains, testing conditions, laboratories and countries (Ramos et al., 2002; 

Izídio et al., 2005a;b; Vendruscolo et al., 2006). The effects of PE on behavior and 

neurochemical measures have been tested independently in these two rat strains. It is 

interesting to note that PE decreased hyperactivity and aggressive behavior, while it improved 

attention and spatial learning in SHR rats (Kim et al., 2011; Baek et al., 2014; Jeong et al., 

2014; Hoffmann et al., 1990; Robinson et al., 2015). In LEW rats, PE has been shown to 

reduce plasma corticosterone levels and cocaine-induced conditioned place preference 

(Thanos et al., 2010; Calik et al., 2015). It has been suggested that SI can affect brain 

catecholamine levels and heart rate, depending on strain and experimental design (Varty & 

Geyer, 1998; Gavrilovic et al., 2005; Azar et al., 2011; Meyer & Bardo, 2015). However, to 

our knowledge, anxiety-related and locomotor behavior in LEW and SHR rats have not been 

directly compared following PE on treadmills or running wheels, neither following SI. 

The aim of the present study was to investigate the impact of PE and SI on the behavior of 

LEW and SHR rats. To this end, LEW and SHR rats were tested in two behavioral models of 

anxiety, namely the open field (OF) and the elevated plus-maze (EPM), after forced 

(treadmill; experiment 1) or voluntary (running wheels; experiment 2) PE. These experiments 

were conducted in animals that were socially isolated, at least during the period of PE. 

Therefore, we performed a third experiment to evaluate the potential effects of SI on behavior 

of LEW and SHR rats (experiment 3). We hypothesized that PE would decrease anxiety 

levels at least in LEW rats (``high anxious rats''), whereas increases in locomotor activity 

would be observed for both LEW and SHR rats. Additionally, we expected SI to increase 

anxiety-like behavior at least in SHR rats (``low anxious rats''). 

<H1>2. Animals 

The inbred LEW (LEW/HsdUnibAnra) rats came originally from Harlan Sprague Dawley, 

IN, and were then bred at UNICAMP (Campinas, SP, Brazil). The inbred SHR 

(SHR/NCrlAnra) rats were originally from Harvard University, Boston MA, and were then 

bred at UNESP, Botucatu, SP, Brazil. Both strains were obtained from UNICAMP or UNESP 

and have been maintained at the Behavior Genetics Laboratory (Federal University of Santa 

Catarina, Florianópolis, Brazil) for more than 40 generations, under a brother-sister mating 

system (described at the Rat Genome Database). 

Animals were kept in collective plastic cages (4-5 animals/cage), except during the isolation 

period, where they were kept in individual cages. They had food and water available ad 

libitum and were kept under a 12 h light/dark schedule (lights on at 7:00 a.m.) at 22±2 °C. All 
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procedures were performed according to the guidelines of the local committee for Animal 

Care in Research (CEUA/UFSC) and had the valid permissions PP00046 and PP00903. 

<H1>3. Experiment 1 

<H2>3.1 Material & Methods - Forced physical exercise on a treadmill 

One hundred and four male rats (22-30 rats/strain/training), 56-day old, were used. LEW and 

SHR rats were randomly divided into sedentary (SED) or PE groups. SED rats were kept in 

their home-cage near the treadmill during the same period that the PE group was training. 

Training consisted of forced running sessions on a treadmill adapted to rodents, with six 

individual compartments (Insight, Brazil). The daily running sessions were performed during 

four weeks (5 days/week). The protocol was adapted from Real et al. (2010) and is presented 

in Table 1. 

During each daily session, rats that remained for more than 1 minute without running were 

eliminated from the experiment. Only animals that successfully completed the four weeks of 

forced training were used in the behavioral experiments. One day after the end of the PE 

protocol, animals were submitted to the behavioral experiments starting at 2:00 p.m. 

<H2>3.2 Behavioral experiments 

<H3>3.2.1 Open field (OF) 

The apparatus was made of white Formica surrounded by white walls (40 cm high). The floor 

of 100 cm × 100 cm was divided by black lines into 25 squares of 20 cm × 20 cm and was 

under 7 lx illumination. Each rat was placed in the center of the OF and the following 

behaviors were registered for 5 min: peripheral locomotion (adjacent to the walls), central 

locomotion (apart from the walls) and time spent in the center of the apparatus. The apparatus 

was cleaned with a 5% ethanol solution after each test. A camera positioned above the 

apparatus recorded the tests, and behaviors were quantified by a trained observer. Methods for 

cleaning and recording were identical for all tests. 

<H3>3.2.2 Elevated-plus maze (EPM) 

The apparatus was made of black Formica and had four elevated arms (52 cm from the floor) 

50 cm long and 10 cm wide. The arms were arranged in a cross, with two opposite arms being 

enclosed (by 40 cm high walls) and two being open, having at their intersection a central 

platform (10 cm × 13.5 cm) that gives access to any of the four arms. A raised ledge (1 mm 

thick and 5 mm high) surrounded the open arms. The central platform was under 70 lx. Rats 

were placed in the central platform facing the open arm and the following behaviors were 

registered for 5 min: number of entries and time spent (with all four paws) inside each arm. 

<H2>3.3 Statistical analysis 

Data was expressed as mean + standard error of the mean (SEM) and analyzed using two-way 

analysis of variance (ANOVA). Results with p ≤ 0.05 were considered significant. All 

analyses were performed using the Statistica 7.0 software package. 

<H2>3.4 Results - Experiment 1 

Figure 1 shows the percentage of rats from both strains that completed the forced PE 

training on the treadmill. Only 20% of LEW (6 from 30 rats) and 63% of SHR (14 from 22 

rats) rats satisfactorily completed the training and, therefore, were used in the behavioral tests. 
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One SHR rat was excluded after training, and thus experimental groups were composed of: 13 

SHR PE, 13 SHR SED, 6 LEW PE and 6 LEW SED. 

Figure 2 shows (a) central and (b) peripheral squares crossed by LEW and SHR male 

rats in the OF. The two-way ANOVA showed significant effects of strain (SHR > LEW; 

F(1,34) = 29.48; p ≤ 0.0001; partial η2 = 0.46) and training (PE > SED; F(1,34) = 11.04; p = 

0.0022; partial η2 = 0.25) on central locomotion and a significant effect of training (PE > 

SED; F(1,34) = 15.19; p = 0.0004; partial η2 = 0.31), but not strain (F(1,34) = 3.46; p = 

0.0712; partial η2 = 0.09), on peripheral locomotion. The two-way ANOVA also showed a 

significant effect of strain (SHR > LEW; F(1,33) = 8.64; p = 0.0060; partial η2 = 0.21), but 

not training (F(1,33) = 2.51; p = 0.1223; partial η2 = 0.07), on time spent in the center of the 

OF (data not shown). 

Figure 3 shows (a) open and (b) closed arm entries and time in the (c) open and (d) 

closed arms by LEW and SHR male rats in the EPM. The two-way ANOVA revealed 

significant effects of strain (SHR > LEW; F(1,34) = 4.31; p = 0.0453; partial η2 = 0.11) and 

training (PE > SED; F(1,34) = 5.41; p = 0.0262; partial η2 = 0.14) for open arm entries 

(Figure 3a). No significant effects of strain (F(1,34) < 1; p = 0.5880; partial η2 = 0.01) or 

training (F(1,34) < 1; p = 0.5134; partial η2 = 0.01) were found for closed arm entries (Figure 

3b). There was a significant effect of strain for time spent in the open (SHR > LEW; F(1,34) = 

23.28; p ≤ 0.0001; partial η2 = 0.41) and closed (LEW > SHR; F(1,34) = 53.75; p ≤ 0.0001; 

partial η2 = 0.61) arms (Figure 3c-d). No significant effects of training were found for time 

spent in the open (F(1,34) = 1.15; p = 0.2914; partial η2 = 0.03) or closed arms (F(1,34) < 1; p 

= 0.8600; partial η2 < 0.01) (Figure 3c-d). 

<H2>3.5. Discussion - Experiment 1 

The results showed that four weeks of forced PE on a treadmill significantly increased central 

locomotion in the OF and open arm entries in the EPM for both strains compared with their 

respective SED controls, indicating an anxiolytic-like effect of forced PE. In humans, PE has 

been shown to decrease anxiety and depression levels and improve physical well-being 
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(McKercher et al., 2009; Samulski et al., 2009; Unesco, 2013). Some studies also suggest that 

PE could be used as a treatment for anxiety and depression (Ströhle, 2009). In rodents, PE 

was shown to attenuate the negative behavioral changes associated with exposure to predator 

scent (Hoffman et al., 2015), reduce responsiveness to stress (Lalanza et al., 2012) and 

decrease anxiety-related behaviors in the OF and EPM (Pietrelli et al., 2011; 2012). However, 

the mechanisms responsible for these improvements are not yet fully understood (Cotman & 

Berchtold, 2002; Hill et al., 2010). 

Forced PE also caused an increase in peripheral locomotion in the OF in both strains. 

Although the meaning of this behavior is complex, peripheral locomotion is often interpreted 

as locomotor activity (Ramos et al., 2003; Izídio et al., 2011). Thus, it can be suggested that 

the PE-induced increase in cardiovascular or muscular capacity of these animals (Moraska et 

al., 2000) facilitated locomotion in the OF. 

Alternatively, the increase in general locomotion may be a result of the selection of animals 

that completed the treadmill training, i.e., rats with baseline increased locomotion. Because 

the behavioral outcomes in the OF and EPM tests change with repetition, we did not perform 

these tests before the period of PE to properly address this question. The possibility that 

baseline locomotion affects the percentage of rats that conclude the treadmill training could be 

investigated in the future. Another possible explanation was suggested by Malisch et al. 

(2016) that showed that acute stress can increase the patterns of locomotor activity of mice. 

However, studies using Sprague Dawley or Long-Evans rats submitted to the treadmill or the 

running wheel, reported that PE has either no effects (Fulk et al., 2004; Hopkins et al., 2011; 

Patki et al., 2014; Sciolino et al., 2015) or reduces locomotor activity in rats (Grace et al., 

2009). Therefore, some caution is needed to suggest that PE caused stimulant motor effects in 

LEW and SHR rats and this point deserves a further evaluation in future experiments. 

<H1>4. Experiment 2 

<H2>4.1 Material & Methods - Voluntary physical exercise on running wheels 

Thirty-six male (9 rats/strain/training), 56-day old, rats were used. LEW and SHR rats were 

randomly divided into SED or PE groups. Rats were individually placed in a cage with free 

access (PE group) to a running wheel (31 cm in diameter) for 21 days (24 h/day). The SED 

group had no access to the running wheel. One day after the final exercise day, animals were 

submitted to the behavioral experiments starting at 2:00 p.m. 

<H2>4.2 Behavioral experiments 

The animals were submitted to the OF and EPM, as described in 3.2.1 and 3.2.2. 

<H2>4.3 Statistical analysis 

Data was expressed as mean + SEM and analyzed using two-way ANOVA or two-way 

ANOVA for repeated measures. When a significant interaction between factors was detected, 

we used the post hoc Tukey HSD. Results with p ≤ 0.05 were considered significant. All 

analyses were performed using the Statistica 7.0 software package. 

<H2>4.4 Results - Experiment 2 

Figure 4 shows the average distance traveled during the voluntary PE on running 

wheels by rats from both strains. LEW animals travelled 0.05 km/day, whereas SHR travelled 

3.63 km/day. The two-way ANOVA for repeated measures revealed a significant strain x day 
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interaction (F(20,240) = 2.65; p = 0.0003; partial η2 < 0.18). The post hoc tests indicate that 

SHR rats showed higher traveled distance compared with LEW rats from the third day on. 

Figure 5 shows (a) central and (b) peripheral squares crossed and (c) time spent in the 

center of the OF by LEW and SHR rats. The two-way ANOVA revealed a significant effect 

of strain (SHR > LEW; F(1,28) = 9.37; p = 0.0048; partial η2 = 0.25), but not training 

(F(1,28) < 1; p = 0.9124; partial η2 < 0.01), for central locomotion (Figure 5a). There was no 

significant effect of strain (F(1,28) < 1; p = 0.8836; partial η2 < 0.01) or training (F(1,28) < 1; 

p = 0.5517; partial η2 = 0.01), for peripheral locomotion (Figure 5b). There was a significant 

strain x training interaction (F(1,28) = 4.73; p = 0.0383; partial η2 = 0.14) for the time spent 

in the center. The post hoc test showed that SHR spent more time in the center of the OF than 

LEW rats (p = 0.0319), but only after PE training (Figure 5c). 

Figure 6 shows (a) open and (b) closed arm entries and time in the (c) open and (d) 

closed arms by LEW and SHR rats in the EPM. The two-way ANOVA showed a significant 

effect of strain (SHR > LEW; F(1,26) = 7.34; p = 0.0118; partial η2 = 0.22), but not training 

(F(1,26) < 1; p = 0.6055; partial η2 = 0.01), for open arms entries (Figure 6a). There was no 

significant effect of strain (F(1,26) < 1; p = 0.5126; partial η2 = 0.02) or training (F(1,26) = 

1.62; p = 0.2144; partial η2 = 0.06) for closed arm entries (Figure 6b). There were significant 

strain effects for time spent in the open (SHR > LEW; F(1,26) = 19.54; p = 0.0002; partial η2 

= 0.43) and closed (LEW > SHR; F(1,26) = 25.32; p ≤ 0.0001; partial η2 = 0.49) arms (Figure 

6c-d). No significant effect of training was found for the time spent in the open (F(1,26) = 

3.65; p = 0.0670; partial η2 = 0.12) or closed arms (F(1,26) < 1; p = 0.7855; partial η2 < 0.01) 

(Figure 6c-d). 

<H2>4.5. Discussion - Experiment 2 

In the running wheel, 21 days of voluntary PE increased the time spent in center of the OF 

only in SHR rats (Figure 5c). The same trend was observed for central locomotion in SHR 

rats (Figure 5a). These results suggest an anxiolytic-like effect of voluntary PE in this strain, 

given that the central area of the OF is considered aversive to rats (Prut & Belzung, 2003). 



7 
 

Clark et al. (1995) showed that mice of 12 different strains that exercised in running wheels 

display increased neurogenesis in the hippocampus, a brain area involved in cognition and 

emotionality (Bannerman et al., 2004; Juruena et al., 2004; Kalisch et al., 2006). Moreover, 

14 to 21 days of PE in running wheels have been shown to improve attention of male and 

female SHR rats (Robinson et al., 2011) and have been suggested to be effective in decreasing 

anxiety symptoms (Haydari et al., 2014). However, caution is needed because increased 

activity or locomotion could also be considered as a stress response to a new environment 

(Thorsell et al., 2006; Ago et al., 2007; Malisch et al., 2016). Increased locomotion may also 

lead to freezing behavior, increasing the time spent in the center in the OF (where the animal 

is place at the beginning of the test), thereby masking anxiolytic effects. Moreover, time spent 

in the center of the OF could be interpreted as an inappropriate behavioral response caused by 

previous stress (Raineki et al., 2016). 

The anxiolytic-like effect of voluntary PE was only evident in SHR rats. This result can be 

explained by the fact that SHR rats ran voluntarily about 3.6 km/day, whereas LEW ran only 

0.05 km/day. Surprisingly, LEW rats stopped running after 17 days, whereas SHR rats 

reached a total of 4.7 km on 21th day. Interestingly, studies have been demonstrating great 

variability in the distance traveled by LEW rats. For example, Makatsori et al. (2003) showed 

that individual running distance traveled by LEW rats varied considerably, ranging from 4 to 

6 km, whereas Roebuck et al. (1990), similarly to the present results, reported that LEW rats 

ran voluntarily less than 1 km/day. The discrepancies in the distance traveled by LEW rats 

may be due to differences in experimental protocols, including type and size of the running 

wheel, sub-strain, acclimatization to the apparatus and other conditions in the maintenance of 

rats. Some studies show that intense PE can cause muscle pain and hyperalgesia (Borghi et 

al., 2014). Considering that LEW rats exhibit high secretion of cytokines (Elenkov et al., 

2008), these animals could present higher levels of inflammation and oxidative stress in the 

muscle, thus impairing the maintenance of voluntary PE for long periods in this strain. 

Consistent with our results, SHR rats have been shown to run an average distance of 3-10 

km/day in running wheels (Hoffmann et al., 1987; 1990; Jonsdottir et al., 1996; Jonsdottir & 

Hoffmann, 2000). These results suggest that genetic background largely influences the 

individual’s willingness/capacity to engage in regular physical activity. 

Some studies suggest that voluntary PE on running wheels is rewarding and sometimes 

addictive-like (Belke & Wagner, 2005; Rhodes et al., 2003; 2005). Several studies 

investigating the effects of PE have focused on the hippocampus. For example, voluntary 

wheel running has been shown to enhance learning and hippocampal neurogenesis in rodents 

(van Praag et al., 2005; Merkley et al., 2014). However, other brain regions must be also 

considered. For example, mice that were continuously selected for voluntary running 

exhibited, after 29 generations, differentiation of brain regions associated with motivation, 

such as lateral hypothalamus, sensory cortex, nucleus accumbens and putamen. In addition, 

altered dopaminergic and glutamatergic functions were also reported in rodent runners, which 

may contribute to behavioral outcomes observed after PE (Rhodes & Garland, 2003; Staples 

et al., 2015). 

Using a technique for QTL (Quantitative Traits Loci) identification, Kelly et al. (1996) 

mapped regions on chromosomes 1, 2, 7, 11 and 14 of the mouse that influence PE in running 

wheels. Although very interesting, this study just associated PE in running wheels to genomic 

regions without finding the genes responsible for this behavior, which would be an important 

advance in understanding the genetic basis of voluntary PE. The results of the present study 

suggest that LEW and SHR rats constitute a good rat model for the search of the genetic bases 

underlying voluntary PE because of their contrasting voluntary running patterns. As already 

reported for anxiety-like behaviors (Ramos et al., 1997; Izídio et al., 2005a;b; Vendruscolo et 
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al., 2006; Chiavegatto et al., 2009), this genetic model can also be an important tool for the 

identification of genes influencing voluntary PE. 

<H1>5. Experiment 3 

<H2>5.1 Material & Methods - Social isolation 

Thirty-two male rats (8 rats/strain/training), 56-day old, were used. LEW and SHR rats were 

randomly divided into SI (socially isolated) or GR (grouped, four animals per cage) group. 

After seven days of social isolation, the rats were submitted to the behavioral experiments 

starting at 2:00 p.m. 

<H2>5.2 Behavioral experiments 

The animals were submitted to the OF and EPM, as described in 3.2.1 and 3.2.2. 

<H2>5.3 Statistical analysis 

Data was expressed as mean + SEM and analyzed using multivariate analysis of variance 

(MANOVA) followed by post hoc Tukey HSD. Results with p ≤ 0.05 were considered 

significant. All analyses were performed using the Statistica 7.0 software package. 

<H2>5.4 Experiment 3 

Table 2 shows the behaviors exhibited by rats of both strains in the OF and EPM while single 

(a week of social isolation) or group-housed. The MANOVA revealed a significant effect of 

strain (Wilks value = 0.486; F(3, 26) = 9.17; p = 0.0002) and social condition (Wilks value = 

0.718; F(3, 26) = 3.40; p = 0.0325) in the OF. The post hoc tests showed that SHR rats 

presented higher central locomotion (p = 0.0002) and spent more time in the center (p = 

0.0012) of the OF than LEW rats (Table 2). Moreover, SI animals presented lower central (p 

= 0.0270) and peripheral (p = 0.0100) locomotion than GR animals (Table 2). 

The MANOVA also revealed a significant effect of strain (Wilks value = 0.388; F(4, 25) = 

9.85; p = 0.0001), but not social condition (Wilks value = 0.908; F(4, 25) = 0.63; p = 0.6436) 

in the EPM. The post hoc tests showed that SHR presented fewer entries (p = 0.0341) and 

spent less time (p = 0.0002) in the closed arms of the EPM than LEW rats (Table 2). The 

MANOVA did not reveal significant interactions for the OF (Wilks value = 0.903; F(3, 26) = 

0.93; p = 0.4402) or the EPM (Wilks value = 0.952; F(4, 25) = 0.32; p = 0.8633) (Table 2). 

<H2>5.5. Discussion - Experiment 3 

It is important to highlight that experiments 1 and 2 were performed with animals that were 

socially isolated, at least during the period of PE. Therefore, we designed this third 

experiment to evaluate the potential effects of SI on behavior of LEW and SHR rats. The 

results showed that seven days of SI caused a decrease in central and peripheral locomotion in 

the OF. These results suggest a hypolocomotor effect of SI in rats of both strains. No 

significant effects were observed in the EPM (Table 2). 

Rats usually live in groups and have high contact with other rats to establish their social 

organization (Varlinskaya & Spear, 2008). The lack of physical contact generates a series of 

behavioral and physiological reactions that affect emotional reactivity of adult rats (Weiss et 

al., 2004). Results in the literature vary greatly, both in rats or mice, with SI increasing 

anxiety levels in the OF (Hall et al., 2000) and in the EPM (Maisonnette et al., 1993; Weiss et 

al., 2004) or showing anxiolytic-like effects in the EPM (Voikar et al., 2005; Thorsell et al., 

2006). The LEW and SHR inbred rat strains have already been tested in OF and EPM 

showing contrasting anxiety-like behaviors, with the former presenting higher levels of 
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anxiety/emotionality than the latter (Chiavegatto et al., 2009). Such differences are robust and 

have been confirmed using different substrains, at different laboratories and countries. Then, 

we initially hypothesized that SI would increase anxiety-related behaviors, at least in the low 

anxious-like SHR rats. However, the effects of SI were found not to depend on strain and 

were more pronounced on locomotion (central and peripheral were decreased) than in 

anxiety-behaviors. 

SI may increase locomotor activity in a new environment (Hall et al., 1998; Thorsell et al., 

2006; Ago et al., 2007), trigger aggressive behaviors (Wongwitdecha et al., 1996), induce 

deficits in prepulse inhibition (Weiss et al., 1999), and cause changes in endocrine parameters 

(Pohorecky et al., 2008). SI is also capable of inducing morphological changes in length and 

dendritic density of neurons localized in the prefrontal cortex and nucleus accumbens, which 

are associated with increased locomotor activity in a novel and stressful environment 

(Alquicer et al., 2004; 2008). However, in the present study, SI rats exhibited hypo instead of 

hyperlocomotion in the OF, and SI did not cause changes in anxiety levels, as measured in the 

EPM. Thus, it is possible to suggest that, in our study, the SI period was not long enough 

(only seven days) to cause the expected effects (e.g., hyperlocomotion and anxiogenic-like 

effects). Still, this could be a specific effect of SI in the LEW and SHR strains or, 

alternatively, our results could indicate that the OF is more sensitive to the effects of SI than 

the EPM. 

<H1>6. General discussion 

We have investigated the effects of PE and SI on anxiety-like behavior using a genetic model 

that has been well validated for the study of anxiety. Our results confirm the behavioral 

profiles of LEW and SHR rats reported in previously published articles. SHR rats approach 

more and spent more time exploring potentially dangerous situations, such as the center of the 

OF and the open arms of the EPM, than LEW rats (Ramos et al., 1997; Izídio et al., 2005a;b; 

Vendruscolo et al., 2006; Chiavegatto et al., 2009). 

We show that forced PE on a treadmill decreases anxiety-like behavior and increases 

locomotion in both LEW and SHR rats. Voluntary PE on the running wheel, on the other 

hand, decreases anxiety-like behavior in SHR rats only. Finally, SI decreased locomotion in 

rats from both strains. 

Our study also suggests that the effects of PE depend on the type of exercise performed. PE in 

the treadmill has an inherent stress component, because the rats are forced to run. On the other 

hand, voluntary PE in the running wheel is a rewarding and voluntary physical activity. Some 

studies propose that forced and voluntary PE may produce different brain adaptations. For 

example, Ke et al. (2011) showed that voluntary exercise is more effective than forced 

exercise in upregulating hippocampal BDNF levels. Moreover, Yuede et al. (2009) suggested 

that voluntary exercise may be superior to forced exercise in reducing memory impairment in 

a mouse model of Alzheimer’s disease. Furthermore, Arida et al. (2004) proposed that PE 

leads to changes in the hippocampal formation of rats, which were more evident following 

voluntary activity. However, this matter is not completely unraveled in the literature. Some 

researchers have found beneficial effects of the forced when compared to spontaneous PE. 

For example, Cheong et al. (2013) showed greater improvement in cognitive function in rats 

submitted to forced exercise than in the spontaneous exercise group. 

<H1>7. Conclusions 

In summary, forced PE on a treadmill decreased anxiety/emotionality in the EPM and OF, and 

increased locomotion in male rats of both strains. In contrast, PE on running wheels only 

decreased anxiety/emotionality in SHR rats tested in the OF. SI caused hypolocomotor effects 

in both strains in the OF. Finally, SHR displayed higher levels of spontaneous exercising in 
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the running wheel than LEW rats. This study suggests that PE affect spontaneous activity 

levels in a genotype-dependent manner and the effects of PE also depend on the type of 

exercise performed. 
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Captions to illustrations 

[Figure 1]. Percentage of Lewis (LEW) and SHR male rats that completed the training by 

week. 

[Figure 2]. Means + standard error of the mean of (a) central and (b) peripheral squares 

crossed from Lewis (LEW) and SHR male rats in the open field. Two-way ANOVA was 

performed. **p<0.01 represents overall strain effects and ##p<0.01; #p<0.05 represents 

overall physical exercise effects. 

[Figure 3]. Means + standard error of the mean of (a) open and (b) closed arm entries and 

time in the (c) open and (d) closed from Lewis (LEW) and SHR male rats in the elevated 

plus-maze. Two-way ANOVA was performed. **p<0.01 represents overall strain effects and 

#p<0.05 represents overall physical exercise effects. 

[Figure 4]. Means + standard error of the mean of traveled distance from Lewis (LEW) and 

SHR male rats in the running wheels. Two-way ANOVA for repeated measures and the post 

hoc Tukey HSD were performed. **p<0.01; *p<0.05 represent differences between strains. 

[Figure 5]. Means + standard error of the mean of (a) central and (b) peripheral squares 

crossed and (c) time spent in the center from Lewis (LEW) and SHR male rats in the open 

field. Two-way ANOVA and the post hoc Tukey HSD were performed. *p<0.05 represents 

overall strain effects and &p<0.05 represents differences between strains only in physical 

exercise group. 

[Figure 6]. Means + standard error of the mean of (a) open and (b) closed arm entries and 

time in the (c) open and (d) closed from Lewis (LEW) and SHR male rats in the elevated 

plus-maze. Two-way ANOVA was performed. **p<0.01 represents overall strain effects. 

<Table>Table 1- Protocol of four weeks of forced training with LEW and SHR male rats. The 

daily running sessions were conducted for four weeks (5 days/week).  

Weeks Days Velocity Total time in running 

First 1th 8 m/min 15 min 

 2th 8 m/min (first 10 min) and 10 

m/min (last 5 min) 

15 min 

 3th 10 m/min (first 10 min) and 12 

m/min (last 5 min) 

15 min 

 4th 10 m/min (first 10 min) and 12 

m/min (last 15 min) 

25 min 

 5th 10 m/min (first 5 min), 

12 m/min (for 20 min) and 15 

30 min 



17 
 

m/min (last 5 min) 

Second Five days 15 m/min 40 min 

Third Five days 15 m/min 40 min 

Fourth Five days 15 m/min 40 min 

Fifth Five days 15 m/min 40 min 

 

 

<Table>Table 2- Means ± SEM of behaviors from Lewis (LEW) and SHR male rats tested in 

the open field and elevated plus-maze. MANOVA followed by post hoc Tukey HSD were 

performed.  

 LEW SHR 

 GR SI GR SI 

Central squares crossed 6.4 ± 1.45 ** & 3.9 ± 1.17 ** 17.1 ± 2.35 
& 

10.6 ± 2.42 

Peripheral squares 

crossed 

Time in the center (s) 

Open arms entries 

Closed arms entries 

Time in the open arms (s) 

Time in the closed arms 

(s) 

101.1 ± 2.64 & 

<H2>8.4 ± 2.12 

** 

1.3 ± 0.62 

<H2>8.5 ± 1.22 

* 

7.3 ± 3.62 

169.9 ± 11.86 

** 

81.0 ± 8.23 

12.0 ± 5.17 ** 

<H2>2.5 ± 

0.91 

7.8 ± 0.56 * 

16.0 ± 5.61 

175.6 ± 5.12 

** 

88.8 ± 2.88 
& 

29.1 ± 4.74 

<H2>1.1 ± 

0.61 

6.4 ± 0.75 

12.1 ± 6.30 

128.8 ± 

7.37 

78.3 ± 6.27 

21.9 ± 4.06 

<H2>0.9 ± 

0.30 

5.9 ± 0.91 

10.5 ± 4.54 

139.6 ± 9.27 

 

<PA>GR = grouped and SI = social isolated animals. * or ** (p<0.05; p<0.01; respectively) 

strain (LEW vs. SHR); & or && (p<0.05; p<0.01; respectively) social condition (GR vs. SI) 

Tukey HSD effects. 

TDENDOFDOCTD 

 

 


