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14 ABSTRACT

15 Most commonly used methods for sewer sulfide control involves dosing chemical agents to 

16 wastewater, which incurs high operational costs. Here, we propose and demonstrate a cost-

17 effective and environmentally attractive approach to sewer sulfide control through urine 

18 separation and its subsequent conversion to nitrite prior to intermittent dosage to sewers. Urine 

19 collected from a male toilet urinal was fed to laboratory-scale sequencing batch reactors. The 

20 reactors stably converted roughly 50% of the nitrogen in urine to nitrite, with high abundance 

21 (at 17.46%) of known ammonia-oxidizing bacteria (AOB) of the genus Nitrosomonas, and 

22 absence (below detection level) of typical nitrite-oxidizing bacteria of the genus Nitrospira, 

23 according to 454 pyrosequencing analysis. The stable nitrite production was achieved at both 

24 relatively high (1.0–2.0 mg/L) and low (0.2–0.3 mg/L) dissolved oxygen concentrations. 

25 Dosing tests in laboratory-scale sewer systems confirmed the sulfide control effectiveness of 

26 free nitrous acid generated from urine. Life cycle assessment indicated that, compared with 

27 commodity chemicals, nitrite/free nitrous acid (FNA) production from urine for sulfide control 

28 in sewers would lower the operational costs by approximately 2/3 and greenhouse gas (GHG) 

29 emissions by 1/3 in 20 years.

30 Keywords: Urine separation; Free nitrous acid (FNA); Sulfide control; Life cycle assessment; 

31 Economic analysis

32
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33 1. Introduction

34 In urban water management, all pollutants, including ammonium, phosphorus, sulfate, and 

35 organics, are collected from households and industries, and then delivered through sewer 

36 networks to a treatment plant for removal. Sulfate is easily reduced anaerobically in sewers, 

37 resulting in production of sulfide (Liu et al., 2014a). The generation of sulfide in sewer systems 

38 is a serious problem because it induces odor, concrete and metal corrosion and health hazards 

39 (Pikaar et al., 2014). Subsequent rehabilitation and replacement of the damaged sewer pipes 

40 are rather expensive. It has been reported that national sewer rehabilitation in the US alone 

41 could cost up to 3.2 billion dollars annually (US Environmental Protection Agency, 2010). To 

42 date, one of the main approaches adopted to mitigate these issues has been the dosage of 

43 chemical agents, such as oxygen, iron salts, nitrate and nitrite salts, and alkalis (Ganigue et al., 

44 2011; Liu et al., 2014b). However, continuous dosing of these commodity chemicals incurs 

45 large operational costs.

46 Recently, the concept of integrated urban water management is receiving more attention 

47 because it can deliver system-wide optimization with tremendous economic and environmental 

48 benefits (Behzadian and Kapelan, 2015). For example, researchers proposed using iron 

49 chloride to replace commonly used alum as a coagulant in drinking water treatment and then 

50 using the same iron for corrosion and odor control in sewers and phosphorus removal in 

51 wastewater treatment plants, thus substantially reducing the use of chemicals in the entire urban 

52 water system (Gutierrez et al., 2010; Ge et al., 2012; Sun et al., 2015a). In this work, we 

53 investigate the feasibility of sulfide control in sewers using urine. This would involve urine 
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54 separation, its conversion to nitrite and the subsequent, intermittent addition of the nitrite to 

55 sewers. The nitrite addition would normally need to be accompanied by acid addition to 

56 produce free nitrous acid (FNA) at elevated (sub-ppm) levels. FNA was previously discovered 

57 to be a cost-effective agent for sulfide control in sewers (Jiang et al., 2013). It has a biocidal 

58 effect in sewer biofilms and can also lead to biofilm removal (Jiang et al., 2010; Jiang et al., 

59 2011a; Jiang et al., 2011b; Jiang et al., 2013; Jiang and Yuan, 2014; Sun et al., 2015b). The 

60 source separation approach proposed here is essentially to produce nitrite required from 

61 wastewater itself.

62 Source separation of urine from the remaining household wastewater is a promising 

63 approach toward sustainable urban water management (Maurer et al., 2006; Lienert and Larsen, 

64 2010; Udert and Wächter, 2012). Urine contains up to 80% of the total nitrogen in domestic 

65 wastewater but makes up only less than 1% of the total volume (Larsen and Gujer, 1996; Udert 

66 et al., 2006); therefore, source separation of urine can substantially reduce the nitrogen load to 

67 the downstream wastewater treatment plants. Many methods had been proposed for nutrient 

68 recovery from urine by using physical, chemical and biological methods (Maurer et al., 2006; 

69 Zhang et al., 2014; Xu et al., 2016). However, to the best of our knowledge, no information 

70 has yet been reported on sulfide control in sewers by using source-separated urine. 

71 In this study, we experimentally demonstrate nitrite production from urine and its 

72 effectiveness in sulfide control in sewers. Urine was collected from a male toilet urinal in a 

73 public building. Nitrite was then produced using laboratory-scale sequencing batch reactors 

74 with urine as the feed. The effectiveness of the urine-generated nitrite in suppressing sulfide 
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75 production in sewers was then demonstrated using a laboratory-scale sewer reactor. 

76 Additionally, life cycle assessment (LCA) was conducted to assess the economic and 

77 environmental performance of the proposed approach. 

78 2. Materials and methods

79 2.1 Urine collection and characteristics 

80 Urine was collected from a male toilet urinal in the Sino-Italian Environment and Energy-

81 efficient Building located in Tsinghua University, Beijing. The collected urine, which was 

82 stored in a large container for over three days, was then used as the feed to a nitrifying reactor. 

83 The feed contained approximately 400–900 mg N/L ammonia nitrogen, 450–950 mg N/L total 

84 nitrogen, 300–700 mg/L COD, and 1500–2800 mg/L alkalinity as CaCO3 with a pH of 8.8±0.1. 

85 The nitrogen concentrations were much lower compared with fresh urine because of the 

86 dilution with flushing water during collection. 

87 2.2 Reactor setup and operation 

88 Experiments on the production of FNA were performed in laboratory-scale sequencing batch 

89 reactor. The reactors were made from Plexiglas cylinders with an effective volume of 2.7 L (30 

90 cm in height and 12 cm in inner diameter). Each 8 h cycle consisted of period of feeding (5 

91 min), mixing and aeration (7 h), settling (50 min), and decanting (5 min). The hydraulic 

92 retention time (HRT) and sludge retention time (SRT) of the reactor were 24 h and 40 d, 

93 respectively. 

94 The experiments included three phases: I, start-up of a reactor and long-term operation with 

95 ammonia nitrogen concentration of ~550 mg/L as the influent for achievement of stable nitrite 
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96 production from urine; II, operation of two reactors in parallel under different dissolved oxygen 

97 (DO) conditions with influent ammonia nitrogen concentration fluctuation to investigate the 

98 potential impact of DO on the ammonium to nitrite conversion; and III, operation of a low DO 

99 reactor to investigate the effect of alkalinity supplement in the urine on the reactor performance. 

100 The DO concentration was monitored continuously using a DO probe (WTW, Oxi340i), and 

101 controlled at set-points of 1.0–2.0 mg/L and 0.2–0.3 mg/L in the high and low DO reactors, 

102 respectively. Temperature and pH were automatically recorded using a pH meter (WTW, 

103 pH340i). Both reactor was inoculated with nitrification sludge from a full-scale municipal 

104 wastewater treatment plant on the campus of Tsinghua University (Tsinghua Water Reuse, 

105 Beijing) in both Phase I and Phase II. The seed sludge in the Phase III was from a laboratory 

106 nitritation reactor. The ammonium, nitrite and nitrate concentrations in the effluent were 

107 measured 1–4 times every week. The nitrite accumulation ratio in the effluent was calculated 

108 as the percentage of nitrite nitrogen in the total nitrate and nitrite nitrogen, as described 

109 previously (Zheng et al., 2013a). Cycle studies were conducted by measuring the ammonium, 

110 nitrite and nitrate concentrations throughout a cycle. In Phase I, microbial communities in the 

111 inoculated sludge and in the reactor sludge were analyzed using 454 pyrosequencing, as 

112 described in 2.4.  

113 2.3 Batch tests to determine sulfide control effectiveness 

114 Batch tests were carried out in laboratory reactors to determine the effectiveness of the 

115 effluent from the above nitrifying reactors in controlling sulfide production by sewer 

116 sediments.  Nine reactors were used in the study. Among them, one was used as control. Each 
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117 reactor had an effective volume of 1 L and was made from a Plexiglas cylinder with a diameter 

118 of 80 mm and a height of 200 mm. Sediments were collected from a mature gravity sanitary 

119 sewer receiving domestic wastewater in Tsinghua University, Beijing, using a shovel. The bulk 

120 density of the sewer sediment was 1.46 g/cm3. The total and volatile solids contents were 0.19 

121 g/mL and 0.14 g/mL, respectively. The collected sediments were exposed for 12 h to different 

122 nitrite concentrations (50, 100, 150 and 200 mg N/L) at a pH of 6.5 (equal to FNA 

123 concentrations of 0.036, 0.072, 0.108, and 1.144 mg HNO2-N/L, respectively). Nitrite was 

124 prepared from the treated urine in four groups and NaNO2 in other four groups. Then, 100 mL 

125 of the exposed sediments and 900 mL of deoxygenated water with organics and sulfate were 

126 added into the reactors with no headspace. A shaker with a rotating speed at 30 r/min was used 

127 to keep a slight disturbance on the sediment. After 12 h, the produced sulfide concentration in 

128 the reactors was measured, and used for calculating the sediment sulfide production rate. The 

129 control test was repeated six times to obtain the baseline sulfide production rate, as 1.02±0.07 

130 mg S/(d·m2). 

131 2.4 Analytical methods 

132 Measurements of COD, NH4
+–N, NO2

-–N, NO3
-–N and sulfide concentrations in the reactor 

133 liquid phase were performed in accordance with standard methods (Ministry of Environmental 

134 Protection, 2006). Free ammonia (FA) and FNA concentrations were calculated as described 

135 by Anthonisen et al. (1976), based on the measured ammonium and nitrite concentrations, 

136 respectively, along with the pH and temperature levels. 

137 For DNA extraction and 454 pyrosequencing, the sludge samples were collected and 
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138 concentrated by centrifugation at 5000 rpm for 4 min. Then, the total DNA was extracted from 

139 each prepared sample using a Fast DNA Spin Kit for Soil (MP Biomedicals, LLC, Solon, OH, 

140 USA). The OD260/OD280 and OD260/OD230 values were determined on a NanoDrop 2000 

141 to evaluate the purity and quantity of each DNA sample. For each DNA sample, the V1-V3 

142 region of the 16S ribosomal RNA gene was amplified using the primers 27F and 533R. The 

143 amplified amplicons were detected by 454 pyrosequencing, and the sequenced data were 

144 processed using Quantitative Insights Into Microbial Ecology (QIIME) pipeline with default 

145 settings. The operational taxonomic units (OTUs) with a 97% sequence density threshold were 

146 clustered using UCLUST software. Sequences that were associated with one genus divided by 

147 total sequences were defined as the relative abundance of that genus in the sludge sample.

148 2.5 LCA and economic analysis 

149 To determine the practical feasibility of the proposed approach for nitrite production from 

150 urine, the capital cost, operational cost, and environmental impacts such as greenhouse gas 

151 (GHG) emissions and energy inputs must be assessed and compared with the industrial 

152 production of the chemical. In this study, we used the experimental results and then employed 

153 LCA methodology to design and compare life cycle energy inputs, GHG emissions and cost 

154 between the following two sulfide control strategies: 1) a commercial operation of nitrite 

155 production from urine and 2) a conventional chemical dosing method. 

156 Sulfide control in the sewer using nitrite produced from urine consists of three steps: urine 

157 collection, on-site treatment and dosing. A hypothetical commercial building with a male 

158 population of approximately 1000 was assumed to have a built-in urine diverting system for 
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159 urine collection from the toilet urinals in men’s lavatories, which, compared with typical urinal 

160 units, only requires additional pipes. The on-site treatment units are assumed to be located in 

161 the basement of the building and to include a urine collection tank, a treatment reactor, and a 

162 storage tank for dosing. The collected fresh urine was thoroughly decomposed in the collection 

163 tank with simultaneous conversion of urea to ammonia in 2 days, driving the pH to increase 

164 from approximately 6 to 9 (Mobley and Hausinger, 1989). Nitrite was then produced in the 

165 treatment reactor, and the nitrite-containing effluent was stored in the third unit and 

166 intermittently dosed into the sewer for sulfide control to nearby branch pipes with a gravity 

167 system. Assuming that 15 liters of diluted urine was produced per male person per day, and 

168 that people worked 5 days a week, a total of 7.14 m3/day diluted urine was estimated to be 

169 produced in the building during working hours. The volume of the collection tank, reactor tank 

170 and storage tank was designed as 16 m3, 8 m3 and 8 m3, respectively. The life-time of the 

171 system was assumed to be 20 years.

172 The infrastructure inputs included pipes, steel, concrete, and excavation. The operation 

173 inputs included electricity for mixing, aeration, and pumping. The infrastructure input data 

174 were taken from Cashman et al. (2014); electricity consumption data for operation were 

175 calculated based on data from Jiang et al. (2014); and life cycle inventory data for chemicals, 

176 electricity and construction materials were from the GaBi database (GaBi Software, 2012). 

177 GHG emissions were expressed as CO2 equivalents (CO2-e) using the 100-year global warming 

178 potentials (GWPs) of CO2, CH4 and N2O from the IPCC’s fifth report (Edenhofer et al., 2014). 

179 The conversion ratio of nitrous oxide (N2O) nitrogen to consumed ammonia nitrogen under 
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180 aeration conditions was assumed to be 1.7%, as evaluated in a full-scale nitritation reactor for 

181 reject water treatment (Kampschreur et al., 2008). Energy inputs, GHGs and cost were reported 

182 for 1 kg N of nitrite produced from urine (kg nitrite-N). The capital cost of the reactor was 

183 estimated using a unit price per volume of approximately $60/m3 (Hao and Hao, 2009). The 

184 price of electricity was set at $0.12/kWh from the literature (Law et al., 2015). The dosing rate 

185 requirement of NaNO2 was calculated to achieve an equivalent sulfide control effect as realized 

186 with the FNA application approach. Acid dosage is likely required to lower the sewage pH in 

187 order to achieve an effective FNA level. However, this was neglected in the analysis as the 

188 amount of acid needed in the two cases would be the same or similar. The life cycle inventory 

189 energy and GHG emissions were obtained from the GaBi database (GaBi Software, 2012). The 

190 price of NaNO2 was assumed to be $460/tonne (Alibaba website). 

191 3. Results

192 3.1 Reactor operation to achieve stable nitrite production from urine

193 Experiments were performed in three phases to investigate the effects of influent 

194 characteristics and operational conditions on nitrite production from urine, as described in 

195 section 2.2. The reactor performance is shown in Figure 1-3, and summarized in Table 1. 

196 3.1.1 Phase I: start-up and stable operation with influent ammonia concentration at ~550 

197 mg N/L

198 Initially, the influent ammonia nitrogen concentration was 424.3±81.7 mg N/L, and the 

199 average FA concentration reached up to 140 mg NH3–N/L. The high FA concentration 

200 significantly inhibited the activities of both AOB and nitrite oxidizing bacteria (NOB) 
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201 (Anthonisen et al., 1976). However, the activity of AOB recovered after four days (Figure 1). 

202 The effluent nitrite nitrogen concentration increased sustainably and stabilized at above 250 

203 mg/L on day 10. The effluent nitrate nitrogen concentration slightly increased to 46.1 mg/L in 

204 the initial 6 days, before gradually decreasing to below 10 mg/L on day 10, and stayed at this 

205 low level. On day 10, the effluent pH became stable at approximately 5.7, and stayed at 5.6-

206 5.8 for the remaining period of the study. The typical reactor operational cycle studies showed 

207 that the pH gradually decreased as ammonia was converted to nitrite because of the nitritation 

208 process (data not shown). On day 15, the influent ammonia nitrogen concentration was 

209 increased and maintained at 550 mg/L. Stable nitrite production with average nitrogen 

210 concentration at 280.3±16.6 mg/L was achieved during 100 days’ operation (Figure 1). The 

211 average nitrite accumulation ratio in the effluent was high as 99.9±0.3%. The average ammonia 

212 removal efficiency was 48.4±2.0%, which indicates that nearly half of the ammonium in the 

213 feed was converted to nitrite. 

214 3.1.2 Phase II: Reactor operation with influent ammonia nitrogen concentration fluctuation 

215 under low and high DO conditions

216 Two reactors were operated in parallel in Phase II. The reactor operated at a lower DO level 

217 (0.2–0.3 mg/L) performed similarly to the reactor at a higher DO level (1.0–2.0 mg/L) in the 

218 initial 40 days (Figure 2). The nitrite accumulation ratios in the effluent were both very high, 

219 and reached 89.4±6.2% and 87.9±6.3% in the low and high DO reactors, respectively, with a 

220 high influent ammonia concentration at 850 mg/L. When the influent ammonia concentration 

221 decreased to a lower level down to 375 mg/L, the effluent nitrite accumulation ratio 
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222 considerably decreased approximately 50% in the high DO reactor, while the ratio remained 

223 basically unchanged in the low DO reactor. The results indicate that DO indeed played an 

224 important role for the achievement of nitrite production with relatively low influent ammonia 

225 concentration but did not have a significant impact on the reactor performance fed with 

226 wastewater containing a high-level ammonia like urine collected in most cases. A lower DO is 

227 also preferred due to lower energy consumption. 

228 3.1.3 Phase III: Reactor operation with alkalinity supplement in the urine 

229 Figure 3 shows the reactor performance with and without alkalinity supplement in the urine. 

230 The operational DO was set as 0.2-0.3 mg/L. Initially, the reactor was operated to stably 

231 produce nitrite as described above. On day 31, additional NaHCO3 was added to the influent 

232 as an alkalinity supplement, which facilitated higher ammonia removal efficiencies of up to 

233 94.8±13.5%. The average nitrite accumulation ratio was as high as 90.3±13.3%. The ammonia 

234 removal efficiency returned to approximately 50% on day 84, when alkalinity supply was 

235 terminated. These results indicate that the technology is flexible and can produce nitrite at 

236 appropriate levels when properly controlled. 

237 3.1.4 Community analysis 

238 The microbial communities in the inoculated sludge (sample T0) and reactor sludge when 

239 stable nitrite production was achieved in Phase I (sample T1 take on Day 85, see Figure 1) are 

240 compared in Figure 4. The 454-pyrosequencing analysis generated 19352 DNA gene sequences 

241 from the two samples and separated them into 373 OTUs. The OTUs calculated from each 

242 sample using Good’s coverage estimator showed that this test captured 99% of the species in 
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243 the samples. The relative abundances of the Nitrosomonas and Nitrospira genera in the 

244 inoculated sludge were 3.08% and 4.79%, respectively. The relative abundance of the 

245 Nitrosomonas genus reached up to 17.46%, while that of the Nitrospira genus was as low as 

246 0.02% during the stable production of FNA. In the biomass, the AOB in the Nitrosomonas 

247 genus became predominant, whereas the NOB in the Nitrospira genus were selectively 

248 eliminated. 

249 3.1.5 Organics consumption in the nitrifying reactor 

250 The aeration process also resulted in a decrease in the organics concentration of the urine. 

251 The average COD concentration decreased from 464.6±56.9 mg/L in the influent to 94.5±28.4 

252 mg/L in the effluent, but the loss of total organics in domestic wastewater could be ignored 

253 because most of those organics were from feces (Larsen and Gujer, 1996) and other sources. 

254 3.2 Dosing tests for sulfide control in the laboratory-scale sewer system 

255 Previous studies demonstrated that dosing of FNA prepared from hydrochloric acid and 

256 sodium nitrite is effective for sulfide control in sewers (Jiang et al., 2011a; Jiang et al., 2013). 

257 Sulfide production was reduced by more than 80% in 10 days following each dosing of FNA 

258 at a concentration of 0.26 mg HNO2–N/L and with a dosing duration of 8 h in real rising main 

259 sewers in Australia (Jiang et al., 2013). Thus, dosing tests for sulfide control comparing the 

260 FNA agent produced from urine with the chemical FNA agent were experimentally conducted 

261 in the laboratory-scale sewer systems. The sediment sulfide production rate gradually 

262 decreased with the nitrite/FNA concentration increase in the groups of reactors (Figure 5). 

263 After a 12 h exposure to FNA at 0.14 mg HNO2–N/L, achieved through the addition of either 
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264 NaNO2 or nitrite produced from urine (a similar amount of HCl was added in both cases to 

265 achieve a pH level of 6.5), the sediments sulfide production rate decreased by approximately 

266 50%, and was down to 0.48-0.52 mg S/(d·m2) in both cases. This means that nitrite produced 

267 from urine is as effective as a commodity nitrite source when applied to sulfide control in 

268 sewers. 

269 3.3 Life cycle GHG, energy and cost analysis 

270 According to the results reported above, nitrite produced from urine has the same sulfide 

271 control effect as NaNO2. For the testing case designed in 2.5, the annual nitrite production is 

272 estimated to be 781 kg N, equivalent to 3850 kg NaNO2 as a commodity product for achieving 

273 the same sulfide control effectiveness. The production cost, energy inputs and GHG emission 

274 results of our approach are compared to those of the commercial supply in Table 2. The 

275 production of FNA from urine showed significant advantages compared with the commercial 

276 NO2
- supply in all aspects. The life cycle energy and GHGs for the commercial production of 

277 pure NaNO2 are 3514 MJ/kg–N and 13.75 kg CO2e/kg–N, respectively. In comparison, the 

278 energy requirement and GHG emissions for urine conversion to nitrite are 44.74 MJ/kg–N 

279 (98.7% reduction) and 9.76 kg CO2e/kg–N (29% reduction), respectively. Additionally, the 

280 production cost is also reduced by 69.1%. For the GHG emissions, N2O emission during the 

281 biological conversion of ammonia to nitrite represents the most significant source due to the 

282 high global warming potential of N2O. Uncertainty analysis indicated that the savings in GHG 

283 emissions would be negative when the N2O conversion factor is increased to above 2.7% in the 

284 urine nitrification reactor. Therefore, efforts are needed to minimize N2O emissions during 



ACCEPTED MANUSCRIPT

15 / 33

285 urine treatment.

286 4. Discussion

287 4.1 The proposed integrated urban water management strategy

288 This study demonstrates that source-separated urine can be used for sulfide control in sewers. 

289 With aerobic treatment, approximately 50% of the ammonia can be converted to nitrite, 

290 generating FNA in sewage for sewer biofilm control when discharged to sewers particularly 

291 when acid is also dosed. This decentralized treatment also reduces the total nitrogen load to the 

292 downstream centralized wastewater treatment plants. The experimentally obtained results also 

293 showed that the sulfide control effectiveness of nitrite thus produced is essentially the same as 

294 NaNO2 as a commodity product. According to Jiang et al. (2010) and Jiang et al. (2011a), FNA 

295 is effective for sewer biofilm control when added to sewage at 100 mg N/L for 12 hours every 

296 1-2 weeks. As an ammonium to nitrite conversion ratio of 50% in the urine treatment reactor, 

297 this means a total nitrogen addition of 200 mg N/L during each dosing period. This means that 

298 roughly 15-30% of the urine should be collected in a catchment in order to produce an adequate 

299 amount of nitrite for sewer biofilm control. The strategy is evaluated as being easy to 

300 implement and providing economic and energy savings. 

301 Conventionally, ammonium in domestic wastewater is transported through sewers and then 

302 removed by nitrification and denitrification processes in downstream treatment plants. Strict 

303 effluent standards for total nitrogen incur not only high aeration costs but also loss of carbon 

304 sources for denitrification (Zheng et al., 2013b; Zheng et al., 2014). Resources can be 

305 recovered more effectively if wastewater streams are not mixed but treated separately. 
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306 Fundamentally, urine source separation has been reported as a promising innovation in 

307 sustainable urban water management (Lienert and Larsen, 2010). In these publications, the 

308 main purposes of separate urine treatment were hygienization, volume reduction, stabilization, 

309 nutrient recovery, and micropollutant handling (Maurer and Larsen, 2006; Udert and Wächter, 

310 2012; Zhang et al., 2014). However, developing low cost resource recovery technologies is 

311 still critical. In this study, we converted ammonia to nitrite for sulfide control in sewers, a 

312 ‘niche’ application. As previously reported, after being treated by FNA at ppm levels, only 2–

313 3% of microorganisms in an anaerobic sewer biofilm remained viable (Jiang et al., 2011b), a 

314 result that is a good indication of the feasibility of using the FNA product from urine to control 

315 the ubiquitous sulfide problem in sewers. 

316 Commonly used methods for sulfide control in sewers involved dosing chemicals agents 

317 such as oxygen, iron salts, nitrates, nitrites, sodium hydroxide, alkalis and microbial inhibitors 

318 have been reported (Ganigue et al., 2011; Liu et al., 2014b). Among them, FNA dosing had 

319 the lowest cost and had been evaluated in field trials by Jiang et al. (2013). Using the urine-

320 generated FNA agent should make this approach even more competitive. Differences in the 

321 purity of the FNA agent from urine and industrial chemicals should be noted. Before 

322 environmental and human health risk assessments, expanding the scope of using the urine-

323 generated FNA beyond the sewers is unexpected. 

324 In general, dosing urine-generated FNA in nearby upstream pipes should have an inherent 

325 advantage because these pipes have a high area-to-volume ratio and are important sources of 

326 sulfide leading to corrosion of main pipes (Sharma et al., 2008; Guisasola et al., 2009). 
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327 Previous studies showed that through the optimization of intermittent and simultaneous dosage 

328 in pressure pipe systems, FNA treatment at a concentration of 0.26 mg HNO2–N/L with a 12 h 

329 exposure was able to effectively suppress sulfide production (Jiang et al., 2011a; Jiang et al., 

330 2013). However, in commonly used gravity pipe systems, maintaining the same exposure time 

331 requires substantially more chemicals and thus has additional negative effects on downstream 

332 wastewater treatment plants. Therefore, the dosing strategy significantly depends on the 

333 successive exposure time of FNA in pipes, and the effect of dilution on the dosage needs to be 

334 considered further when using the urine-generated FNA. In addition, the wastewater volume 

335 in the sewer system can exceed the capacity of the sewer system during periods of heavy 

336 rainfall or snowmelt. In this case, the dosing of the urine-generated FNA should be terminated 

337 to avoid nitrite emissions. 

338 4.2 Achieving nitrite production and its relationship with the pH limit for AOB metabolism.

339 Through urine wastewater treatment, nitrite production was achieved in the reactor. Half of 

340 the influent ammonium was converted to nitrite at a pH of approximately 5.7. The results are 

341 similar to nitrite production from anaerobic digester liquor in a treatment plant (Law et al., 

342 2015). Many experimental results presented before showed a strong dependency of the nitrite 

343 pathway on DO concentration (Ma et al., 2009; Wang et al., 2016), while this study 

344 demonstrated that achieving the nitrite pathway was not significantly affected by DO. 

345 Community analysis confirmed that stable maintenance of the nitration process was due to 

346 AOB predominance and NOB elimination in the biomass, which has been identified in the 

347 literature as a key factor for achieving the nitrite pathway (Wang et al., 2014; Zheng et al., 
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348 2016). However, to achieve the nitrite pathway, this study further revealed that in addition to 

349 the above community response, obtaining a final pH as low as 5.7 is essential. Normally, pH 

350 drops with proton production and with alkalinity consumption coupled with ammonia 

351 oxidation. The rate of the ammonia oxidation declines as pH decreases and very often stops at 

352 a pH slightly below 6. Therefore, in the case of nitritation, cessation of ammonia oxidation is 

353 very important to obtain a low final pH and to achieve the nitrite pathway. Conventional kinetic 

354 studies assumed that FNA inactivates NOB more significantly than it does on AOB (Wang et 

355 al., 2014) and relatively high concentrations of FNA would completely inhibit the activity of 

356 AOB (Park et al., 2010). These assumptions indicate that the oxidation of ammonia to nitrite, 

357 together with a decrease in pH by AOB, would increase FNA inhibition and result in a cessation 

358 of ammonia oxidation. However, the pH could also drop from 9 to approximately 6 in the case 

359 of nitrification without FNA inhibition using a moving bed biofilm reactor (MBBR) with 

360 biofilm carriers (Udert et al., 2003). Fumasoli et al. (2015) proposed a mathematical model to 

361 simulate the pH limit of a known AOB, Nitrosomonas eutropha, and indicated that energy 

362 limitation would be responsible for the cessation of ammonia oxidation. Thus, cessation of 

363 ammonia oxidation might be mainly influenced by the FA substrate rather than by external 

364 FNA inhibition. In addition, the lowest possible ammonium concentration for achieving the 

365 FNA pathway requires further research. 

366 5. Conclusions

367 This study proposed a promising approach to treating urine to produce nitrite for sulfide 

368 control in sewers. The methods for achieving the production of nitrite and then using the urine-
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369 generated nitrite (forming FNA along with acid dosage) for sulfide control were experimentally 

370 investigated. Economic and environmental analysis was also conducted. The main conclusions 

371 are as follows:

372  Nitrite produced from urine is effective for sulfide control in sewers. 

373  Based on urine collection from a public building, the proposed strategy of dosing urine-

374 generated nitrite/FNA for sulfide control in sewers would significantly reduce the cost and 

375 GHG emissions compared with conventional chemical agent approach.

376  A nitrifying reactor can easily convert 50% of ammonium in urine to nitrite suitable for 

377 sewer discharge for sulfide control. 
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495 Table 1. Reactor performance for the production of nitrite.

Influent Effluent
Experiments Time (days)

DO 

control Ammonia (mg N/L) Ammonia (mg N/L) Nitrite (mg N/L) Nitrate (mg N/L) Nitrite accumulation ratio (%)

Ammonia removal 

efficiency (%)

I 1-14 424.3±81.7 239.6±53.3 140.4±116.3 16.3±12.3 73.0±29.6 41.9±17.0

15-98
-

546.5±8.8 282.0±9.6 280.3±16.6 0.2±0.7 99.9±0.3 48.4±2.0

II Low* 323.5±130.8 200.7±144.0 20.1±22.4 80.9±31.4 47.9±19.7
1-25

High**
615.9±34.8

352.4±130.9 139.4±162.5 23.6±21.8 71.7±30.2 42.9±20.6

Low 394.2±58.9 389.8±49.3 47.1±26.1 89.4±6.2 53.6±6.9
25-37

High
850.0±0.0

440.8±44.8 442.2±46.1 61.9±35.4 87.9±6.3 52.8±5.3

Low 185.4±29.4 251.5±26.1 35.9±9.8 87.6±2.5 67.2±5.2
38-55

High
565.0±0.0

204.0±34.1 155.1±25.3 166.2±53.2 49.5±13.2 63.9±6.0

Low 375.0±0.0 156.8±47.3 211.1±42.6 0.0±0.0 100.0±0.0 72.2±8.4
56-70

High 153.0±45.4 90.8±9.9 87.8±31.9 52.1±10.9 72.9±8.0

III 1-30 803.7±115.4 353.0±63.6 330.7±55.9 0.0±0.0 100.0±0.0 56.1±3.9

31-83*** 457.6±6.4 23.9±62.7 358.2±40.3 21.1±14.8 90.3±13.3 94.8±13.5

84-126

Low

559.3±72.4 288.7±14.1 217.0±91.8 16.4±17.4 87.6±19.4 58.6±5.0

496 *Reactor was performed with low DO of 0.2–0.3 mg/L.
497 **Reactor was performed with high DO in the range of 1.0–2.0 mg/L.
498 ***An alkalinity supplement of NaHCO3 was added in the influent to increase ammonia removal efficiency. 
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499 Table 2. LCA and cost analysis of the production of nitrite from urine and the commodity nitrite 
500 (functional unit in 1 kg nitrite-N produced).

 System Assumptions Urine nitrite NaNO2

Lifetime (Period over which capital costs are annualized) 20  
Male population in the building 1,000  
Operation time (days/year) 365  
Flow rate of the urine (m3/day) 7.14  
NH4

+-N concentration in urine (mg N/L) 600  
NH4

+-N flow (kg N/year) 1564  
Volume of the urine collection tank (m3) 16  
Volume of the FNA production reactor (m3) 8  
Volume of the FNA storage tank (m3) 8  

Nitrite 
Production from 

Urine 

NO2-N production (kg N/year) 781 781
PVC pipe length (m) 500  
PVC pipe mass (kg) 1,520  
Steel (kg/m3) 0.15  
Steal (kg) 4.80  
Concrete (m3/m3) 0.0009  
Concrete (kg) 69  

Construction 
Materials

Excavation (m3) 32  
O2/NH4

+-N (g/g) 3.43  
O2/COD (g/g) 1  
Reactive NH4

+-N (kg N/y) 781  
COD (kg COD/y) 781  
O2 requirement (kg/y) 3460  
Electricity for NH4

+-N oxidation (kWh/kg O2) 0.66  
Electricity for pumping (kWh/(m3.d)) 0.078  

Operation Inputs

Electricity for reactor mixing (kWh/(m3.d)) 0.12  
Life cycle energy for construction (MJ/ 20 years) 110,894  
Life cycle energy for operation electricity (MJ/ 20 years) 587,976  
Total life cycle energy (MJ/ kg NO2-N) 44.74 3,514

Life Cycle 
Energy 

Consumption Life cycle energy saving 98.7%
On-site N2O emission (kg/year) 20.88  
GHGs from N2O emission (kg CO2e/ 20 years) 110695  
GHGs from construction (kg CO2e/ 20 years) 5,074  
GHGs from operation electricity (kg CO2e/ 20 years) 36829  
Total GHGs (kg CO2e/ kg NO2-N) 9.76 13.75

Life Cycle GWP

GHG Emissions Saving 29.0%
Cost of tanks ($/m3) 60  
Capital cost of three tanks and major equipment ($) 2160  
Interest applied for initial capital expenditure 8.50%  
Annualized capital cost ($/y) 228  
Power price ($/kWh) 0.12  
Cost of O2 supply ($/y) 247  
Cost of mixing ($/y) 61  
Total cost ($/y) 536  
Cost ($/ kg NO2-N) 0.69 2.22

Life Cycle Cost

Cost saving 69.1%
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501 Figure Captures

502 Figure 1. Phase I results. Reactor start-up (left) and stable (right) performance with the 

503 treatment of urine from a male toilet urinal with influent ammonia concentration around 550 

504 mg/L. ▲: Sludge sample collection for community analysis.  

505 Figure 2. Phase II results. Reactor performance with fluctuation in the influent ammonia 

506 nitrogen concentration under low DO of 0.2-0.3 mg/L (A) and high DO in the range of 1.0-2.0 

507 mg/L (B) operational conditions.

508 Figure 3. Phase III results. Reactor performance with and without alkalinity supplement in the 

509 influent (DO = 0.2-0.3 mg/L).

510 Figure 4. The relative abundance of the predominant groups at genus level according 454 

511 pyrosequencing. T0: The inoculated nitrification sludge. T1: The sludge collected from the 

512 reactor stably producing nitrite.

513 Figure 5. Measured sulfide production rates under different nitrite/FNA concentrations (pH = 

514 6.5).
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515

516 Figure 1. Phase I results. Reactor start-up (left) and stable (right) performance with the 

517 treatment of urine from a male toilet urinal. The influent ammonia concentration was around 

518 550 mg/L during stable operation. ▲: Sludge sample collection for community analysis.  

519
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520

521 Figure 2. Phase II results. Reactor performance with fluctuation in the influent ammonia 

522 nitrogen concentration under low DO of 0.2-0.3 mg/L (A) and high DO in the range of 1.0-2.0 

523 mg/L (B) conditions. 

524
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525

526 Figure 3. Phase III results. Reactor performance with and without alkalinity supplement in the 

527 influent (DO = 0.2-0.3 mg/L). 

528
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530 Figure 4. The relative abundance of the predominant groups at genus level according to 454 

531 pyrosequencing. T0: The inoculated nitrification sludge. T1: The sludge collected from the 

532 reactor stably producing nitrite. 

533
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534

535 Figure 5. Measured sulfide production rates after 12 h exposure to different nitrite/FNA 

536 concentrations (pH = 6.5).
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Highlights

 A green chemical produced from urine for sulfide control in sewer 

 Urine can be partially (-50%) converted to nitrite

 The approach is cost-effective with a lower carbon footprint


