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Summary

This paper presents a fast terminal sliding‐mode tracking control for a class of

uncertain nonlinear systems with unknown parameters and system states com-

bined with time‐varying disturbances. Fast terminal sliding‐mode finite‐time

tracking systems based on differential evolution algorithms incorporate an inte-

gral chain differentiator (ICD) to feedback systems for the estimation of the

unknown system states. The differential evolution optimization algorithm using

ICD is also applied to a tracking controller, which provides unknown parametric

estimation in the limitation of unknown system states for trajectory tracking.

The ICD in the tracking systems strengthens the tracking controller robustness

for the disturbances by filtering noises. As a powerful finite‐time control effort,

the fast terminal sliding‐mode tracking control guarantees that all tracking

errors rapidly converge to the origin. The effectiveness of the proposed approach

is verified via simulations, and the results exhibit high‐precision output

tracking performance in uncertain nonlinear systems.
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1 | INTRODUCTION

Sliding‐mode control (SMC) is an efficient control scheme and has beenwidely applied in nonlinear systems. Sliding‐mode
control has many attractive features such as insensitivity to the model errors and parametric uncertainties.1,2 Given its
advantages, SMC provides powerful techniques to complicated nonlinear dynamic systems for tracking control, including
robotic manipulator systems,3 active suspension vehicle systems,4 induction motor drive systems,5,6 power systems,7 and
spacecraft systems.8

The tracking problems using evolutionary optimization in complicated nonlinear systems attract much more atten-
tion. Evolutionary optimization algorithms are considered as a powerful optimization tool in solving nonlinear and
complicated search spaces.9 Sliding‐mode control combined with evolutionary optimization algorithms is presented
to improve the tracking performances for complicated nonlinear systems, such as genetic algorithms10 and particle
swarm algorithms.11,12 These methods have difficulty solving a class of nonlinear tracking problems of unknown sys-
tem states with time‐varying disturbances, which causes an impact on the convergence and stability of the tracking
systems.

In limited situations, the system states are unknown and needs to be estimated. Along with time‐varying distur-
bances, the differential evolution (DE) optimization algorithm using an integral chain differentiator (ICD) proposed in
Copyright © 2017 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/rnc 1

https://core.ac.uk/display/86630974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-0645-7947
mailto:maruiziran@163.com
https://doi.org/10.1002/rnc.3890
http://wileyonlinelibrary.com/journal/rnc


2 MA ET AL.
this paper is introduced into the design of a sliding‐mode tracking controller to produce continuous state estimations by
relying only on the position measurements. Compared with other intelligent optimization algorithms, faster convergence
properties and accurate search performances are obtained from the DE optimization algorithm.13-15 A DE optimization
scheme is advantageous because it only needs a few control parameters to be defined, which is appropriate for nonlinear
constrained optimization problems. Because of its favorable performance, the DE algorithm has numerous applications in
the control of tunnel responses,16 robot path planning,17 permanentmagnet synchronousmotors,18 and chaotic systems.19

Tracking performance optimization is studied extensively in finite‐time control related to the technique work
demonstrated by Li et al,20 and the advantages of finite‐time tracking control are fast convergence properties in high
accuracy within the origin areas. Terminal SMC (TSMC) was developed to guarantee finite‐time optimization control
by introducing nonlinear sliding‐mode manifolds.21 Compared with the conventional SMC, TSMC is an effective
finite‐time control and converges faster when states approach the origin in higher precision.22 Particularly, TSMC
closed‐loop systems have a non‐Lipschitz property, which is similar to dynamic systems by finite‐time control based
on the homogeneous theory.23 The advantages shown are powerful in solving the tracking problems of uncertainty in
dynamic systems. Terminal SMCs have been applied in robot control,24 power system control,25 and motor control26

and other industrial complicated systems with uncertainties.
The drawbacks of the methods referred above are that TSMC stability is guaranteed within the prescribed set of uncer-

tainties and fast and precise tracking techniques are unavailable for unknown system states with time‐varying distur-
bances and unknown parameters in nonlinear uncertain systems, which exaggerates the oscillation and influences
tracking precision and stability in the nonlinear uncertain systems. The development of a differentiator technique provides
an effective method for state estimation. The problem of unmeasured system states in the tracking control is solved by the
derivative computation of available measured output signals. The ICD is capable of using a first‐order signal to estimate
other high‐order signals accurately. The high‐order ICD achieves a satisfactory tracking performance and accurate
differential estimation without relying on model information applicable in engineering.27 For example, Wang et al28 used
a singular perturbation technique to design a finite‐time convergent differentiator that reduces chattering phenomena. A
back‐stepping trajectory tracking control technique‐based differentiator is proposed for hypersonic reentry vehicles.29

Additionally, the filter function of ICD restrains the disturbances, eliminating the effects of disturbances to stability and accu-
racy. Meanwhile, fast TSMC (FTSMC), which preserves the main features of the TSMC, keeps robustness to time‐varying
disturbances and provides faster finite‐time convergence without excessive control effort. Given the fast finite‐time conver-
gence property, the development of FTSMC is shown in a wide range of complicated real applications, such as unmanned
aerial vehicles,30 piezoelectric plates,31 and direct current–direct current boost converter32 for accurate tracking control.

To overcome the above‐mentioned limitations of the tracking techniques, this paper proposes an FTSMC‐based DE
optimization algorithm using ICD (FTSMC‐DD) to realize the precision tracking control for unknown parameters and
states in nonlinear systems with time‐varying disturbances. The DE optimization algorithm using ICD removes the restric-
tion of parametric estimation in lacking state information. The feedback tracking system added into the ICD achieves an
accurate estimation of unknown system states. The ICD is also used to reduce the chattering effects, which has the
characteristics of filtering noisy signals and having a simple structure. The application of ICD strengthens the tracking
property on the basis of the filter function under the time‐varying disturbances and enhances the FTSMC's accurate track-
ing ability. The Lyapunov synthesis based on stability analysis is used to prove that all the output signals in the closed‐loop
systems converged to the desired trajectory with tracking errors converging to the origin. The analysis of finite‐time
stability is presented to verify that dynamic system states converge to an equilibrium state in finite time. The proposed
algorithm reduces the tracking errors and chattering effects, achieving high‐precision tracking performance.

The paper is organized as follows. In Section 2, the description of uncertain nonlinear systems is given. In Section 3,
the fast terminal sliding‐mode finite‐time tracking control based on the DE algorithm with ICD is demonstrated. The
effectiveness of the proposed approach is verified in Section 4. Finally, some conclusions are drawn in Section 5.
2 | PROBLEM FORMULATION

This paper considers the following second‐order nonlinear system with unknown parameters and states described by

_x1 tð Þ ¼ x2 tð Þ;
_x2 tð Þ ¼ f θ; xð Þ þ g ξ; xð Þu tð Þ þ d tð Þ;
y tð Þ ¼ x1 tð Þ;

(1)
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where x = [x1, x2]
T is a state vector; x2 is an unknown system state; y(t) is the system output; control input u(t) is

bounded; f(θ, x) and g(ξ, x) are nonlinear functions; g(ξ, x) ≠ 0, θ = [θ1θ2···θ�s]T, and ξ = [ξ1ξ2···ξ�q]
T are the unknown

parameter vectors; θi, i = 1, 2, 3, …, �s, and ξi, i = 1, 2, 3, …, �q, are unknown parameters; d(t) is the time‐varying ;distur-
bances and |d(t)| ≤ Ld.

The control objective is to design the fast terminal sliding‐mode controller u(t) for the uncertain nonlinear system
to complete the target that output tracks the desired trajectory with a prescribed accuracy μ, which is a sufficiently
small constant as follows:

y tð Þ−yd tð Þj j≤μ;

Thus, we introduce the error states given by

ei tð Þ ¼ xi tð Þ−yd i−1ð Þ tð Þ; i ¼ 1; 2;

where e1 = x1 − yd is the tracking error and yd is the reference signal. Hence, the error dynamics are given by

_e1 tð Þ ¼ e2 tð Þ;
_e2 tð Þ ¼ f θ; xð Þ þ g ξ; xð Þu tð Þ þ d tð Þ−y 2ð Þ

d :
(2)

Next, consider a vector ê as

ê tð Þ ¼ ê1 tð Þ; ê2 tð Þ½ �T ¼ x̂1 tð Þ−yd; x̂2 tð Þ−y 1ð Þ
d

h iT
;

where ê ∈ R2 and x̂i, i = 1, 2, is the estimation states.
Terminal SMC exhibits finite‐time convergence to the origin with a nonlinear sliding‐mode variable.21 The tracking

surface function on the basis of the conventional TSMC33 is defined as

σ ¼ e2 þ βe
q
p

1; (3)

where β > 0 is the sliding‐mode parameter, p and q are the positive odd integers satisfying 0 < q < p. The sufficient con-
dition for the existence of the prescribed sliding‐mode surface34 is

dσ2

dt
<−κ σj j; (4)

where κ > 0 is a constant.
According to Equation 4, the terminal sliding‐mode (TSM) controller is designed as

u ¼ 1
g ξ; xð Þ − f θ; xð Þ−β q

p
e1

q
p−1e2− Ld þ ηð Þ sgn σð Þ þ y 2ð Þ

d

� �
; (5)

where η > 0 is a constant. Analyzing the TSMC surface function (3), we can obtain the system state errors e1 and e2 with
controller u converging to zero in finite time.

Observing the TSM controller in Equation 5, the second term β q
p e1

q
p−1e2, when the sliding mode σ=0, ie, e2 ¼ −βe

q
p
1,

substituting e2 ¼ −βe
q
p

1 into e1
q
p−1e2 then for the term of −βe1

2q
p−1, if q<p<2q, e1

q
p−1e2 is nonsingular. When the system

states reach the sliding‐mode surfaces σ ¼ _σ ¼ 0, Equation 3 is described as follows:

_e2 ¼ −βe
q
p

1: (6)

Suppose the arriving time is tsfrom the initial state error e1 0ð Þ≠0 to e1(ts)= 0. We have the integration of Equation 6 as

∫ e1 tsð Þ
e1 0ð Þ e1

−q
pde1 ¼ ∫ ts

0−βdt: (7)
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Then

ts ¼ p
β p−qð Þ e1 0ð Þj j1−q

p: (8)
Remark 1. The convergence time will increase resulting from the nonlinear term βe
q
p

1, and the system states
converge slowly in the regions approaching the equilibrium point, because the exponent of e1 is less than 1
in Equation 3.

Remark 2. The switching gain η is generally chosen to be a larger value to achieve a faster convergence in TSM
controller Equation 5, resulting in the chattering which affects the tracking precision and stability. It is also
insufficient control for the systems with unknown system states and parameters in engineering applications.
Therefore, it is necessary to improve system convergence and eliminate system chattering based on the conventional
TSM controller.
3 | FTSMC WITH DE USING ICD

Aim to solve the tracking control problems for the uncertain nonlinear system with unknown system states and
unknown parameters and time‐varying disturbances. A fast terminal sliding‐mode finite‐time tracking control scheme
based on the differentiator evolution optimization algorithm using ICD is proposed to obtain faster convergence proper-
ties with high tracking precision.

To facilitate control system design, the following assumptions are presented in the subsequent developments.
Assumption 1. The desired trajectory yd(t) is differentiable with respect to time t and all of the higher‐order
derivatives are differentiable.

Assumption 2. Given the control input u is bounded, there exist constants lg , lf∈R+ such that
g ξ̂; x̂
� �

−g ξ; xð Þ�� ��≤lg ξ̂−ξ
�� �� x̂−xk k: (9)

Similarly,

f θ̂; x̂
� �

− f θ; xð Þ�� ��≤lf θ̂−θ
�� �� x̂−xk k: (10)
Assumption 3. − f θ̂; x̂
� �þ yd

2ð Þ−β
q
p
ê1

q
p−1ê2−αê2

����
����≤l1 is bounded35 and linfg≤ g ξ̂; x̂

� ��� ��≤ lsupg.
3.1 | Integral chain differentiator

The FTSMC controller on the basis of a fast estimation scheme consists of an ICD and DE optimization. The ICD aims to
estimate the unknown system states x2 from the plant output y= x1. For the proposed system, the estimation lemma is
given as follows.
Lemma 1. (Liu and Wang36) Consider nonlinear system (1) with the unknown states and unknown parameters,
the ICD is designed by
_̂x1 tð Þ ¼ x̂2 tð Þ;
_̂x2 tð Þ ¼ x̂3 tð Þ;
_̂x3 tð Þ ¼ −

γ1
ω3 x̂1 tð Þ−x1 tð Þð Þ−γ2

ω2x̂2 tð Þ−γ3
ω
x̂3 tð Þ;

(11)

where ω>0 is sufficiently small perturbation parameter. The differentiator is proposed to estimate x2(t) from the plant
output y= x1(t). The speed parameters γ1 , γ2 , γ3 are positive and chosen as the coefficients of Hurwitz polynomial such
as σ3+ γ3σ

2+ γ2σ+ γ1=0. Therefore, we have



MA ET AL. 5
lim
ω→0

x̂i tð Þ ¼ xi tð Þ; i ¼ 1; 2: (12)

and

lim
ω→0

x̂3 tð Þ ¼ lim
ω→0

_̂x2 tð Þ ¼ _x2 tð Þ; (13)

where x̂i tð Þ i ¼ 1; 2; 3: are estimate system states.
The Laplace transformation of ICD is

X̂i−k sð Þ ¼ X̂i sð Þ
sk

; k ¼ 0; 1; 2; i ¼ 1; 2; 3;

sX̂3 sð Þ þ γ3
ω
X̂3 sð Þ þ γ2

ω2X̂2 sð Þ þ γ1
ω3X̂1 sð Þ ¼ γ1

ω3X1 sð Þ;
(14)

where Xi(s) is the Laplace transformation of x̂i tð Þ; i ¼ 1; 2; 3.
Remark 3. From Equation 14, we have
X̂1 sð Þ
X1 sð Þ ¼

γ1
ω3

s3 þ γ3
ω s

2 þ γ2
ω2 s1 þ γ1

ω3

(15)

It is noted that if the parameters γ1 , γ2 , γ3 are chosen to be suitable, the filtering ability is able to be obtained.
3.2 | DE algorithm based on ICD

Differential evolution algorithms use a simple differential operator to create new candidate solutions and employ a one‐
to‐one competition scheme to greedily select new candidates.37 The DE using ICD realizes the parameters estimations
with unknown system states. These unknown states in the systems are estimated by the differentiator using the only
position signals of measurements. The key steps of DE algorithm are mutation, crossover, and selection. The initial indi-
viduals satisfying constraints are generated by adding uniformly distributed random deviations as Equation 16

xij 0ð Þ ¼ randij 0; 1ð Þ xijU−xijL
� �þ xijL; (16)

where xij(t)i = 1, 2, 3,...,n, j=1 , 2 , 3 , … ,NP, is each target vector, xij
U and xij

L are minimum and maximum values of the
jth component respectively, randij(0, 1) is uniformly distributed random number in the range 0 to 1. Differential evolu-
tion algorithms generate a mutate vector by adding the weighted difference of 2 vectors to the third vector as Equation 17

hij t þ 1ð Þ ¼ xp1j tð Þ þ F xp2j tð Þ−xp3j tð Þ
� �

: (17)

The integer index randomly chooses as p1 ,p2 ,p3 are mutually different and also chose to be different from the run-
ning index i referred to the ith candidate in the population consisting of n candidates and t is denoted the generation
counter. The target vector in this case is a random individual xp1j tð Þ, and xp2j tð Þ and xp3j tð Þ are 2 randomly selected indi-
viduals in the current population. The scale factor F>0 controls the amplification level in the differential variation. The
trial vector is defined component‐wise as a binomial crossover operator as Equation 18

vij t þ 1ð Þ ¼ hij t þ 1ð Þ; randlij≤CR
xij tð Þ; otherwise

�
; (18)

where randlij is a random number generated by using the uniform distribution in the range 0–1. The crossover constant
CR∈ [0, 1] is to be determined by the user. If the trial vector is coming out to be better by the fitness function, the trial
vector will replace the target vector, otherwise, xi(t) is selected to target vector which is defined as Equation 19.

xi t þ 1ð Þ ¼ vi t þ 1ð Þ; f vi t þ 1ð Þð Þ< f xi tð Þð Þ
xi tð Þ; otherwise:

�
(19)

Mutation, crossover, and selection will be operated repeatedly until the iteration reaches to the maximum iterations
number G. The DE algorithm is depicted in Figure 1. To identify the unknown parameters, the system input signals will
be rewritten as Equation 20



6 MA ET AL.
Y tð ÞΘ tð Þ ¼ τ tð Þ (20)

The identification criterion J is designed as Equation 21

J ¼ ∑
N

i¼1

1
2

τi−τ̂ið ÞT τi−τ̂ið Þ (21)

where N is the total number of data, optimization input test data denoted to τi, i=1 , 2 , … ,N, andΘ tð Þ ¼ θ

ξ

� �
is the iden-

tification parameter vector. When identification criterion J is sufficiently small, then we have lim
J→0

Θ̂ tð Þ ¼ Θ tð Þ, ie,
lim
J→0

θ̂ ¼ θ; lim
J→0

ξ̂ ¼ ξ:.
3.3 | Fast terminal sliding‐mode controller with DE using ICD and stability analysis

The FTSMC‐DD objective is to track the desired trajectory of the uncertainty nonlinear system in high precision and
steady by using differentiator based on DE algorithm. In this paper, the fast terminal sliding surface is defined as

σ tð Þ ¼ e2 þ αe1 þ βe1
q
p: (22)

Then, the estimate sliding surface is given by

σ̂ tð Þ ¼ ê2 þ αê1 þ βê1
q
p; (23)

where design parameters α>0 , β>0 , q<p<2q, p ,q are chosen to be odd integral �β ¼ β
q
p
. The derivation with respect

to time t on both sides of Equation 22 is obtained from

_σ tð Þ ¼ _e2 þ α _e1 þ �βe1
q
p−1e2: (24)
FIGURE 1 Differential evolution algorithm
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Correspondingly,

_̂σ tð Þ ¼ _̂e2 þ α _̂e1 þ �βê1
q
p−1ê2: (25)

To guarantee the tracking property, the fast terminal sliding tracking control system is given by the following
theorem.
Theorem 1. For system (1) with unknown system parameter vectors θ , ξ and unknown state x2 and time‐
varying disturbances d(t), the fast terminal sliding‐mode tracking controller is designed as
u tð Þ ¼ 1

g ξ̂; x̂
� � − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p−1ê2−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

	 

: (26)

Given to the high ICD using DE algorithm, the output signals will converge to the desired trajectory in finite time as
follows

xi tð Þ→yd
i−1ð Þ tð Þ; i ¼ 1; 2;

where the design parameter δ is chosen to be positive constant.
Proof. Consider a Lyapunov function candidate
V ¼ 1
2
σ2:

Its time derivative is

_V ¼ σ _σ:

Furthermore, the derivation is

_V ¼ σ _e2 þ α _e1 þ �βe1

q
p
−1

e2

0
@

1
A

¼ σ

f θ; xð Þ þ d tð Þ þ g ξ; xð Þ 1

g ξ̂; x̂
� � − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

0
BB@

1
CCA

−yd 2ð Þ tð Þ þ α _e1 þ �βe1

q
p
−1

e2

0
BBBBBBB@

1
CCCCCCCA

¼ σ

f θ; xð Þ þ d tð Þ þ g ξ̂; x̂
� �þ g ξ; xð Þ−g ξ̂; x̂

� �
g ξ̂; x̂
� � − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

0
BB@

1
CCA

−yd 2ð Þ tð Þ þ α _e1 þ �βe1

q
p
−1

e2

0
BBBBBBB@

1
CCCCCCCA

¼ σ

f θ; xð Þ− f θ̂; x̂
� �þ d tð Þ− Ld þ δð Þ sgn σ̂ð Þ þ α e2−ê2ð Þ þ �β e1

q
p
−1

e2−ê1

q
p
−1

ê2

0
@

1
A

þg ξ; xð Þ−g ξ̂; x̂
� �

g ξ̂; x̂
� � − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

0
BB@

1
CCA

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(27)
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Next, Equation 28 is equivalent to the Equation 27 given by

_V ¼ σ f θ; xð Þ− f θ̂; x̂
� �� �þ σ d tð Þ− Ld þ δð Þ sgn σ̂ð Þð Þ þ σ α e2−ê2ð Þð Þ

þ σ �β e1

q
p
−1

e2−ê1

q
p
−1

ê2

0
@

1
A

0
@

1
A þ σ

g ξ; xð Þ−g ξ̂; x̂
� �

g ξ̂; x̂
� � − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

0
B@

1
CA

¼ σ̂ f θ; xð Þ− f θ̂; x̂
� �� �þ σ−σ̂ð Þ f θ; xð Þ− f θ̂; x̂

� �� �þ σ̂ α e2−ê2ð Þð Þ

þ σ−σ̂ð Þ α e2−ê2ð Þð Þ þ σ̂ �β e1

q
p
−1

e2−ê1

q
p
−1

ê2

0
@

1
A

0
@

1
Aþ σ−σ̂ð Þ �β e1

q
p
−1

e2−ê1

q
p
−1

ê2

0
@

1
A

0
@

1
A

þ σ̂
g ξ; xð Þ−g ξ̂; x̂

� �
g ξ̂; x̂
� � − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

0
B@

1
CA

þ σ−σ̂ð Þg ξ; xð Þ−g ξ̂; x̂
� �

g ξ̂; x̂
� � − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

0
B@

1
CA

þ σ̂ d tð Þ− Ld þ δð Þ sgn σ̂ð Þð Þ þ σ−σ̂ð Þ d tð Þ− Ld þ δð Þ sgn σ̂ð Þð Þ:

(28)

Hence, Equation 29 is obtained.

_V≤ σ̂j j f θ; xð Þ− f θ̂; x̂
� �� ��� ��þ σ−σ̂ð Þj j f θ; xð Þ− f θ̂; x̂

� �� ��� ��þ σ̂j j αj j e2−ê2j j

þ σ−σ̂j j αj j e2−ê2j j þ σ̂j j �β�� �� e1
q
p
−1

e2−ê1

q
p
−1

ê2

������
������þ σ−σ̂j j �β�� �� e1

q
p
−1

e2−ê1

q
p
−1

ê2

������
������

þ σ̂j j g ξ; xð Þ−g ξ̂; x̂
� �

g ξ̂; x̂
� �

�����
����� − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

�������

�������

þ σ−σ̂ð Þj j g ξ; xð Þ−g ξ̂; x̂
� �

g ξ̂; x̂
� �

�����
����� − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

�������

�������
þ d tð Þj j σ−σ̂j j þ Ld þ δð Þ σ−σ̂j j−δ σ̂j j
≤ σ̂j jlf θ̂−θ

�� �� x̂ tð Þ−x tð Þk k þ σ−σ̂j jlf θ̂−θ
�� �� x̂ tð Þ−x tð Þk k þ σ̂j j αj j e2−ê2j j

þ σ−σ̂j j αj j e2−ê2j j þ σ̂j j �β�� �� e1
q
p
−1

e2−ê1

q
p
−1

ê2

������
������þ σ−σ̂ð Þj j �β�� �� e1

q
p
−1

e2−ê1

q
p
−1

ê2

������
������

þ σ̂j jlg ξ̂−ξ
�� �� x̂ tð Þ−x tð Þk k

l infg
− f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

�������

�������

þ σ−σ̂j jlg ξ̂−ξ
�� �� x̂ tð Þ−x tð Þk k

l infg
− f θ̂; x̂

� �þ yd
2ð Þ tð Þ−�βê1

q
p
−1

ê2

−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

�������

�������
þ d tð Þj j σ−σ̂j j þ Ld þ δð Þ σ−σ̂j j−δ σ̂j j

(29)

Using the Equation 21, we have τ̂→τ, when J is sufficiently small.
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According to the Equation 20, the result is obtained as

lim
J→0

Θ̂ tð Þ ¼ Θ tð Þ;

where Θ tð Þ ¼ θ

ξ

� �
is unknown parameters vectors.

Equivalently,

lim
J→0

θ̂ ¼ θ; lim
J→0

ξ̂ ¼ ξ

and

lim
J→0

θ̂−θ
�� �� ¼ 0; lim

J→0
ξ̂−ξ

�� �� ¼ 0;

when perturbation parameter ω is sufficiently small and according to the result in Lemma 1, we have

lim
ω→0

x̂i−xij j ¼ 0 i ¼ 1; 2:

According to Equation 12, we have

lim
ω→0

ê1 ¼ lim
ω→0

x̂1−ydð Þ ¼ e1; lim
ω→0

ê2 ¼ lim
ω→0

x̂2− _ydð Þ ¼ e2:

Using Equations 22 and 23, we have

lim
ω→0

σ−σ̂j j ¼ 0:

Consequently, _V≤−δ σ̂j j≤0 ie, _V ¼ σ _σ≤0 and xi(t)! yd
(i− 1)(t) , i=1 , 2, which proves the results. The tracking sys-

tems are stable with tracking errors converging to the origin.

When the exponent of position tracking errors e1 is less than 1, e1
q
p−1 will converge in nonlinearity. Apparently, the

convergence speed in the nonlinear form of e1
q
p−1 is slower than that in the linear form of e1. Although the system is dis-

turbed by time‐varying signalsd(t), which exaggerates the tracking errors, the estimate signal ê2 is filtered by the
differentiator, which is robust to the disturbances. It is feasible that the speed tracking errors ê2 without the noise distur-
bances will be estimated accurately faster by adjusting the speeding parameters and perturbation parameters.

The following analysis is provided to demonstrate the finite‐time attainability of sliding‐mode surface. When the sys-

tem states reach the sliding‐mode surface σ̂ ¼ _̂σ ¼ 0, Equation 23 is described as follows:

ê2 ¼ −αê1−βê1
q
p: (30)

Suppose the arriving time is ts from the initial state error ê1 0ð Þ≠0 to ê1 tsð Þ ¼ 0. We have the integration of Equa-
tion 30 as

∫ ê1 tsð Þ
ê1 0ð Þ

1

−αê1−βê1
q
p
dê1 ¼ ∫ ts

0 dt: (31)

Then

ts ¼ p
α p−qð Þ ln

αê1 0ð Þ1−q
p þ β

β
: (32)

It can be concluded that the system tracking errors arrive at the sliding‐mode surface in finite time from Equation 32.
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4 | SIMULATION

The uncertain nonlinear systems with time‐varying disturbances are presented to illustrate the validity of the proposed
approach. The uncertain systems are required to reach and maintain the desired trajectory in finite time. Consider the
following inverted pendulum systems as

_x1 ¼ x2

_x2 ¼ g sinx1−mlx22 cosx1 sinx1= mc þ mð Þ
l 4=3−mcos2x1= mc þ mð Þð Þ þ cosx1= mc þ mð Þ

l 4=3−mcos2x1= mc þ mð Þð Þuþ d tð Þ

8<
: :

The unknown parametersmc , m , l are identified through FTSMC using DE algorithm based on ICD. Optimization
processing of the identification criterion J is presented in Figure 2. In this case, the ICD parameters are selected to be
ω=0.01 , γ1=10 , γ2= γ3=15. The scale factor of DE identification is F = 0.6. The crossover probability is chosen to
be CR = 0.5 and the size of the population is 90. The maximum number of iteration is 200 and the true value of identi-
fication parameters aremc=1.5 , m=0.4 , l=0.6. For parameters identification simplicity, we transform the parameters
in the form as Θ1 ¼ mc þ mð Þ 43 l; Θ2 ¼ mc þ mð Þg; Θ3 ¼ ml.

The identification results are Θ1=1.5191 , Θ2=18.6116 , Θ3= 0.2414. Its corresponding system parameters are

m̂c ¼ 1:4968; m̂ ¼ 0:4024; l̂ ¼ 0:5999 identification criterionBest J=1.34×10−2.

u tð Þ ¼ 1

g ξ̂; x̂
� � − f θ̂; x̂

� �þ yd
2ð Þ tð Þ−β q

p
ê1 tð Þqp−1ê2 tð Þ−αê2 tð Þ− Ld þ δð Þ sgn σ̂ð Þ

� �
FIGURE 2 Optimization of the identification criterion J in inverted pendulum system [Colour figure can be viewed at wileyonlinelibrary.

com]

FIGURE 3 Fast terminal sliding‐mode control–based differential evolution optimization algorithm using integral chain differentiator

sliding‐mode variable [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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The simulation is implemented with the desired trajectory yd=0.1 sin t,g=9.8, time‐varying disturbances d(t)
=0.3 sin t and parameters as p=9 , q=7 , α=0.5 , β=2 , Ld=0.3 , δ=3.

The sliding‐mode variable of proposed FTSM control based on the exponent reaching la method compared with the
SMC manifold variable is shown in Figure 3. It is clear to see FTSMC‐DD has a faster convergence with light fluctuations
compared with the SMC‐DD in sliding‐mode manifold with intense oscillation. Figures 4 and 5 shows the inverted pen-
dulum system control input signals using SMC‐DD and FTSMC‐DD respectively. The FTSMC‐DD input signal obtains
an effect control without chattering by the fast finite‐time control. Although the differentiator has the filter function,
SMC‐DD has an impact on control signals with constant chattering because of the time‐varying disturbances.

Figure 6 shows the position tracking versus time, which can be seen from that, the position output signals tracks the
desired trajectory in high precision. The speed estimation results are shown in Figure 7, which demonstrates the accu-
racy of tracking trajectory to the reference signals.

The estimated state x̂2 is displayed in Figure 8. Although system states are disturbed by the time‐varying noises sig-
nals and system parameters are unknown, the system state x2 is estimated accurately using the ICD based on the DE
algorithm. It verifies the ICD robustness and strong filter function. It is noted that fast terminal sliding mode control
with the integral chain differentiator using DE algorithm not only could estimate the unknown parameters and states,

but also extra and additionally could provide an accurate approximate for f θ̂; x̂
� �

clearly shown as in Figure 9.
FIGURE 5 Fast terminal sliding‐mode control–based differential evolution optimization algorithm using integral chain differentiator

control input [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Position tracking [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Control input signals using sliding‐mode control–based differential evolution optimization algorithm using integral chain

differentiator [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 9 Estimated f(θ, x) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Fast terminal sliding‐mode control–based differential evolution optimization algorithm using integral chain differentiator

estimated position tracking error norm [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 State x2 and estimated value [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Speed tracking [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 10 demonstrates that estimated position tracking errors converge to zero rapidly in a short tracking period.
The converge results can be seen in Figure 11, which shows that the estimated speed tracking error norm more rapidly
converges to the origin as compared with estimated position tracking error convergence, which verifies the precision
tracking performance by the FTSMC‐DD approach.
FIGURE 11 Fast terminal sliding‐mode control–based differential evolution optimization algorithm using integral chain differentiator

estimated speed tracking error norm [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Fast terminal sliding‐mode control–based differential evolution optimization algorithm using integral chain differentiator

speed tracking errors and control input [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Fast terminal sliding‐mode control–based differential evolution optimization algorithm using integral chain differentiator

position tracking errors and control input [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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To illustrate the high‐precision tracking performances of position and speed trajectory tracking without a chattering
effect, the dynamic of control input signals with position and speed tracking errors within the tracking period is shown
in Figures 12 and 13, respectively. It is clear that the position tracking errors and speed tracking errors converge to the
central areas and the surface is smooth without steep oscillations. It is verified that the position and speed signals track
the desired trajectory steadily.
5 | CONCLUSION

In this paper, an FTSMC combined with a DE algorithm and an ICD is proposed to solve tracking problems for a class of
uncertain nonlinear systems with unknown parameters, unknown system states, and time‐varying disturbances. The
integration of the DE algorithm using ICD to the design of the sliding‐mode controller estimates the unknown param-
eters, avoiding the unknown state limitation. The unknown system states of the uncertain nonlinear system are esti-
mated by the design of the ICD added into the feedback in the tracking system. The technique of combing a DE
algorithm and ICD into FTSMC is provided to realize track trajectory with unknown parameters and states with time‐
varying disturbances. Although the interference from time‐varying disturbances exaggerates the tracking errors and
chattering phenomenon, the differentiator filter function eliminates the disturbance effect and reduces the chattering
in large scale. Compared with the conventional SMC, the algorithm proposed completes a fast global tracking error con-
vergence without chattering, which obtains more rapidly and steadily precision tracking. The stability of the closed‐loop
system is proven based on the Lyapunov approach. Tracking errors are driven to the sliding‐mode surface to converge to
the origin in a finite time. The simulation results exhibit high‐precision output tracking performance.
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