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Boson sampling is a quantum mechanical task involving Fock basis state preparation and detection and
evolution using only linear interactions. A classical algorithm for producing samples from this quantum task
cannot be efficient unless the polynomial hierarchy of complexity classes collapses, a situation believed to be
highly implausible. We present a method for constructing a device which uses Fock state preparations, linear
interactions, and Gaussian continuous-variable measurements for which one can show that exact sampling would
be hard for a classical algorithm in the same way as boson sampling. The detection events used from this
arrangement do not allow a similar conclusion to be drawn for the classical hardness of approximate sampling.
We discuss the details of this result outlining some specific properties required by approximate sampling hardness.
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I. INTRODUCTION

Boson sampling is the task of producing statistical samples
from Fock basis measurements of a bosonic M-mode linear
scattering network with an input consisting of N modes
prepared with a single boson and the remaining M − N

modes prepared in the vacuum state. This task, while not
universal for quantum computing, has been shown to not
be efficiently computable by any classical algorithm (or the
polynomial hierarchy of complexity classes collapses, which
is believed to be extremely unlikely) [1]. However, a quantum
implementation is efficient as one merely needs to build the
scattering device as described within a sufficiently small error
budget. This is many orders of magnitude easier than the
construction of a fully universal quantum computer, but is
still a challenge for current technology.

Attempts have been made to identify scenarios where the
proof of classical hardness of boson sampling can be used or
adapted to other sampling problems. One particular scenario
that is of experimental interest is in the use of continuous-
variable (CV) Gaussian states or measurements. For another
restricted computational model based on sampling from qubit
circuits involving commuting coherent rotations, it has been
shown that CV variants are hard to simulate classically [2]. It is
known that for linear networks with Gaussian state inputs and
Gaussian measurements it is efficient for classical algorithms
to not only produce samples but also compute the entire
output distribution [3]. Nevertheless it has been shown that
a hybrid approach which involves linear networks with input
two-mode squeezed vacuum states and Fock basis detection
has a similar classical hardness proof to the original boson
sampling problem [4]. There is also evidence for the classical
hardness of a more general construction involving squeezed-
vacuum inputs, linear optics, and Fock basis detection [5,6].
The question this paper addresses is the reverse situation: Fock
state inputs to linear networks and homodyne detection.

An important aspect of the hardness proof for boson
sampling is that the output probability distribution contains
probabilities which are proportional to matrix permanents
from submatrices of the matrix describing the linear scattering
network. A matrix permanent is a quantity which is computed

like a matrix determinant without the alternating addition and
subtraction. In fact, when sampling with Fock state inputs
and detection, all detection probabilities are proportional to
submatrices derived from the linear scattering network [7].
This special situation, given that two plausible conjectures
hold, allows the hardness proof of “approximate” sampling to
be shown [1]. This is because an allowed error budget’s effect
can be spread over all detection events provided the linear
network appears randomly distributed.

Here we show that using single-photon input states and a
particular Gaussian measurement one can extract submatrix
permanents to within an exponentially small error. Therefore
one can show that exact sampling from this distribution
is hard. It is not necessarily the case that approximate
sampling is still hard and we discuss this in relation to our
construction.

In Sec. II we present some of the background behind the
hardness arguments for boson sampling. Then in Sec. III we
present the CV-n detector model using a Fock state |n〉 input
with CV measurements. In Sec. IV we will then describe
exact sampling using the CV-1 model and the technical details
involved in showing the hardness of computing samples from
the CV output distribution. Finally we will discuss the issues
preventing the hardness result from being used in this model to
make definitive conclusions about the hardness of approximate
sampling.

II. CLASSICAL HARDNESS OF BOSON SAMPLING

A problem in the class boson sampling is one where the
statistical samples can be generated by an M mode linear
interaction between N singly occupied bosonic modes (and
M − N bosonic vacua) which is subsequently detected in the
Fock basis. Boson sampling is either inefficient using classical
computational resources (not in P), or the “polynomial
hierarchy” of complexity classes collapses to the third level, a
situation believe to be implausible. It is not our goal to present
in full the background and subsequent arguments toward the
truth of this statement because this has been done elsewhere
[1]. We will, however, outline some of the key aspects used in
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this paper that are needed to understand what is required for
the proof presented in [1] to hold.

A. Polynomial hierarchy

The polynomial hierarchy of complexity classes is a nested
structure defined by the use of oracles. An oracle is essentially
an assumption on the resources available to an algorithm
which can greatly assist in proving statements in computational
complexity. The hierarchy has a complex definition and we will
concentrate on a simplified version.

The class NP is the set of decision (yes/no) problems whose
satisfying input can be verified efficiently. This defines the
first level of the polynomial hierarchy. The second level is
then the class NP with access to an oracle from the first level.
Subsequent levels are defined by continuing this recursion,
e.g., the third level is the class NP with access to an oracle
from the second level.

This structure has a strong connection to similarly defined
hierarchies within number theory and set theory. In those cases
each level of the hierarchy is strictly larger than lower levels.
If two levels were to coincide, then the addition of levels stops
growing and the hierarchy is said to collapse. In terms of the
computational complexity structure, a collapse of the hierarchy
to the first level means that P = NP or that NP problems can be
efficiently solved deterministically, a situation believed to be
highly implausible. A collapse to the second level would mean
PNP = NPNP which is the same statement relative to an NP
oracle. Being relative to the oracle means that the statement is
slightly more plausible, but it is still believed to be not possible.
The prevailing belief is that the polynomial hierarchy does not
collapse to any level and this is the assumption on which the
hardness of boson sampling can be proven.

B. Stockmeyer’s approximate counting algorithm

Critical to the hardness proof of boson sampling is the
use of Stockmeyer’s approximate counting algorithm [8]. This
algorithm computes estimates of a quantity defined as

F =
∑
x∈Q

f (x), (1)

where f : Q → {0,1} is a boolean function from length l bit
strings Q = {0,1}l onto a single bit. In other words F is the
number of inputs that result in an output of 1, a set we will call
Q1. The computed estimate of this quantity is multiplicative,
which means the estimate of F that the algorithm produces is
F̃ satisfying

Fg−1 � F̃ � Fg, (2)

where g > 1 and for Stockmeyer’s algorithm is lower bounded
by 1 + 1/poly(l).

Stockmeyer’s algorithm computes the estimate F̂ by finding
the smallest output with no collisions for a randomly chosen
hash function on Q1. That is, choose randomly a function
h : Q1 → {0,1}p (for p � l) and if there exist no elements
a,b ∈ Q1 such that h(a) = h(b) (a hash collision) then we
have made an upper-bounded estimate on the size of Q1 of 2p.

Here we can see the elements which make up this algorithm:
the estimate of size is multiplicative, it requires finding hash

collisions, which is an NP problem, and involves random
choices. This results in Stockmeyer’s algorithm being con-
tained within a class FBPPNP (if the function f is efficiently
computable). The superscript notation describes access to an
NP oracle, which in the case of Stockmeyer’s algorithm is used
to find hash collisions. BPP means the algorithm proceeds
by making random (probabilistic) choices with a probability
of success at least 2/3. The prefix F is used to describe the
output from this algorithm, which is a number (function)
rather than a decision or yes/no output. This is therefore not an
algorithm one would expect to be efficiently computable when
realistically implemented. But it is used here to establish if a
problem lives within the “polynomial” hierarchy of complexity
classes. In this case, this algorithm lives within the third level
as BPP ⊂ NPNP [9,10].

This algorithm is used to make multiplicative estimations of
the underlying probabilities of a distribution from samples of
the distribution. In the model of classical computation, unlike
quantum mechanical models, there is no inherent randomness.
Randomness is introduced by external means and can be
regarded as an input to the algorithm. If the function f (x)
above represents a sampling algorithm for a two-outcome
distribution, then it can be thought of as converting input
random bits x distributed uniformly into samples of the desired
probability distribution. One can then estimate the probability
of the outcome 1 by counting how many inputs produce the
outcome 1 relative to the total number of possible inputs.
This would mean dividing the estimate F̂ by 2l which will
also produce a multiplicative estimate even though it has been
divided by an exponentially increasing factor.

A polynomial hierarchy collapse is triggered if f is efficient
to compute and the probability it produces samples from is a
quantity for which multiplicative estimation is known to be
outside the third level of the polynomial hierarchy.

C. Multiplicative and additive errors

Producing approximations within multiplicative errors is
particularly powerful. It is more natural to consider the case
of additive errors. An additive estimate of F would be one
satisfying

F − g � F̃ � F + g. (3)

This kind of estimation will arise from more natural models
of errors within a computation. For example, the function f

above most likely admits errors which are of an additive nature
and hence the estimations performed using this noisy model
will also be additive. Only in the case of admitting exactly zero
noise to f , or in the sampling case a situation called “exact
sampling”, can one generate a multiplicative estimation.

The crucial outcome of [1] is that the polynomial hierarchy
collapse can be shown to occur in boson sampling even with
a given level of total variation distance between the ideal and
actual distributions. The total variation distance is an additive
quantity and will generate additive errors in estimates. But
as the probabilities in boson sampling tend to decrease to
zero exponentially, the introduction of additive errors will
overwhelm the magnitude of the quantity being estimated.
The trick of [1] is to use the structure of the probabilities
in boson sampling to encode the estimated quantity within
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FIG. 1. CV-n measurement device. The outer green dashed box
encloses the whole CV-n device, which measures the input signal
in the displaced Fock state basis. The inner red boxes represent two
homodyne detections performed simultaneously that give two CV
outcomes x1,θ and p2,θ from the measurement device.

an exponentially large set of possible outcomes in a way
that without knowledge of where the problem is encoded,
looks like a Haar-random unitary matrix (i.e., the choice is
hidden from the implementation). This means that the additive
estimate generated will have bounds determined by the average
case which turns out to be sufficient to additively estimate
matrix permanents. Using this estimate it is then possible to
trigger a polynomial hierarchy collapse to the third level, given
that two plausible conjectures about the nature of estimating
permanents of Gaussian random matrices hold true.

III. DETECTOR

We will now describe our continuous-variable detection
model and how we use it to construct a probability distribution
which can be used in the arguments of [1]. The model is
based on a measurement device for measuring in the displaced
number state basis, which we refer to it as CV-n measurement,
and two variations of this measurement, phase-randomized
CV-n (PRCV-n) and discretized-phase-randomized CV-n
(DPRCV-n). Only a brief outline of the model is presented
here. The details of this calculation are given in the Appendix.

As depicted in Fig. 1, the measurement device works as
follows. The input signal is overlapped on a 50:50 beamsplitter
with a number state |n〉, and the outputs of the beamsplitter
are measured by two conjugate homodyne detections whose
local oscillators have π/2 phase difference. As shown in
the Appendix, the positive operator-valued measure (POVM)
elements of this measurement are

�n(x1,θ ,p2,θ ) = 1

2π
D(α) |n〉〈n| D†(α). (4)

The two real numbers x1,θ and p2,θ form the results of a
simultaneous measurement of two orthogonal quadratures.
Notice that for n = 0, CV-0, we have heterodyne measurement.

Phase-randomized CV-n (PRCV-n). If the phase θ of the
local oscillators is randomized, while the relative phase is
fixed, we have PRCV-n measurement. As discussed in the
Appendix, the outcome of this measurement is a single
non-negative parameter R = r2 = x2

1,θ + p2
2,θ with the cor-

responding POVM element

�n(R) = n!e−R

∞∑
k=0

Rk−n

k!

[
Lk−n

n (R)
]2 |k〉〈k| , (5)

with Lm
k (.) being the generalized Laguerre polynomials.

Though this measurement has less information, we will
concentrate on it since we are only interested in events where
R ≈ 0 and having the POVM diagonal in the Fock basis greatly
simplifies many calculations.

Discretized-phase-randomized CV-1 (DPRCV-1). The mea-
surement model outputs continuous variables (i.e., R) and
hence these POVMs are describing probability densities. To
be able to use the methods of [1] to make some definitive
statement about computational hardness, one must work in
probabilities and not probability densities. Hence, we will
utilize the discretized version of the phase-randomized CV-1
(DPRCV-1) measurement through its ability to distinguish
between the single-photon state and other number states. We
divide the range of 0 � R � ∞ for the POVM elements in
Eq. (5) for n = 1, to two parts: t = {R|0 � R � t} which
represents the smallest discrete region and t̄ = {R|t � R �
∞} which represents all the others. Thus, we have two POVM
elements for each interval:

�1
t =

∞∑
k=0

1

k!

∫ t

0
dR e−RRk−1(k − R)2 |k〉〈k| (6)

=
∞∑

k=0

G(t,k) |k〉〈k| ,

where

G(t,k) = 1

k!
[k2γ (k,t) − 2kγ (1 + k,t) + γ (2 + k,t)], (7)

with γ (k,t) = ∫ t

0 dR e−RRk−1 being the lower incomplete �

function. As this is a two-outcome measurement and each of
the elements is bounded above by 1 the POVM for all other
outcomes can then be written

�1
t̄ = I − �1

t . (8)

The POVM element in Eq. (6) can be expanded in a power
series as

�1
t =

(
t2

2
− t3

3
+ O(t4)

)
|0〉〈0|

+
(
t − 3t2

2
+ 7t3

6
+ O(t4)

)
|1〉〈1|

+
(
t2 − 4t3

3
+ O(t4)

)
|2〉〈2|

+
(

1

2
t3 + O(t4)

)
|3〉〈3| + O(t4) |4〉〈4| + · · · . (9)

Therefore, if t is small t = ε such that ε2 ≈ 0, the POVM
element associated with detecting R ∈ [0,ε] is

�1
ε = ε |1〉〈1| . (10)

It is this form of the POVM which allows a measurement that
distinguishes a single-photon Fock state from the remainder
of the Hilbert space.
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FIG. 2. Comparison between η(t) (solid line) and pD(t) (dashed
line) for the CV-1 detector.

To demonstrate what this measurement is detecting con-
sider the case of an input state being either |0〉 or |1〉. Then
when detecting the single-photon state (and for any value of t),

η(t) = Tr
[ |1〉〈1| �1

t

] = 1 − e−t (1 + t2) (11)

can be thought of as the efficiency of the detector. Also

pD(t) = Tr
[ |0〉〈0| �1

t

] = 1 − e−t (1 + t) (12)

can be thought of as the dark count probability. Figure 2
compares these two quantities.

IV. BOSON SAMPLING

We now consider the problem of sampling from the output
probability distribution of a linear-optical network (LON)
using CV-1, PRCV-1, and DPRCV-1 measurements (where
the ancillary Fock state is n = 1) introduced in the previous
section. We first derive the output probability distribution for
each measurement scheme, and then discuss the complexity
of sampling from the probability distribution.

A. Probability distributions

In this setup, the input state to the LON is

|1N 〉 = |1,1, · · · ,1︸ ︷︷ ︸
N

, 0,0, · · · ,0︸ ︷︷ ︸
M−N

〉 . (13)

Each output mode is measured by a CV-1 measurement; hence,
the overall POVM elements are

�1(α) = 1

(2π )M
D(α) |1M〉〈1M | D†(α), (14)

where α = (α1,α2, . . . ,αM ). As shown in Fig. 3, this setup is
equivalent to injecting single photons into a larger network and
performing homodyne measurements at the output, i.e., boson
sampling with homodyne measurements.

Therefore, the output probability density is given by

P (α) = 1

(2π )M
| 〈1M | D†(α)ULON |1N 〉 |2

= 1

(2π )M

∣∣∣∣∣∑
n

〈1M | D†(α) |n〉 〈n|ULON |1N 〉
∣∣∣∣∣
2

. (15)

FIG. 3. Boson sampling using CV-1 measurements.

Here ULON is the unitary operation associated with the LON,
and |n〉 = |n1,n2, . . . ,nM〉 is the multimode Fock state. As a
LON preserves the number of photons, the sum is restricted to
n’s which satisfy

∑M
i=1 ni = N .

We have [7]

〈n|ULON |1N 〉 = Per
(
U1N ×n

)
, (16)

which is the permanent of an N × N submatrix of the unitary
matrix of LON, U1N ×n that is corresponding to the first N rows
and columns with multiplicity of ni . The unitary matrix U is
defined through the relation

b
†
j = ULONa

†
j U†

LON =
M∑
i=1

Uija
†
i , (17)

where b
†
j and a

†
i are modal creation operators for output

j and input i, respectively. Also, using the expression for
〈k| D(α) |m〉 in [11], one can simply verify that

〈1M | D†(α) |n〉 =
M∏

j=1

e−|αj |2/2
(α∗

j )nj −1√
nj !

(nj − |αj |2).

By using these relations, the output probability density (15)
becomes

P (α) = e−αα†

(2π )M

∣∣∣∣∣∣
∑

n

Per
(
U1N ×n

) M∏
j=1

(α∗
j )nj −1√
nj !

(nj − |αj |2)

∣∣∣∣∣∣
2

.

(18)

From this expression we can see that if αj = 0, the probability
density P (α) is zero unless nj = 1.

We define nN = (nN,1,nN,2, . . . ,nN,M ) as a M-tuple whose
elements are either zero or one and the number of ones is
N , and define αnN

a vector of length M whose element are
given by [αnN

]j = (1 − nN,j )αj , i.e., it has N zero elements
corresponding to nN,j = 1. Using these notations, we can see
that

P (αnN
) = 1

(2π )M
∣∣Per

(
U1N×nN

)∣∣2 ∏
nN,j =0

e−|αj |2 |αj |2, (19)

where the product is over M − N nonzero elements of αnN
.

This implies that if N of M α’s are zero, the probability density
P (α) is proportional to the absolute value square of permanent
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of a submatrix of U . For example, for nN = 1N

P (α1N
) = P (0,αM−N )

= 1

(2π )M
∣∣Per

(
U1N ×1N

)∣∣2
M∏

j=N+1

e−|αj |2 |αj |2. (20)

If we use PRCV-1 measurements at the output of LON,
using the POVM in Eq. (A36), the output probability density
is given by

PP(R) = e−|R| ∑
n

∣∣Per
(
U1N×n

)∣∣2
M∏

j=1

1

nj !
R

nj −1
j (nj − Rj )2,

(21)

where R = (R1,R2, . . . ,RM ) and |R| = R1 + R2 + · · · +
RM . Defining RnN

similar to αnN
, we have

PP(RnN
) =∣∣Per

(
U1N ×nN

)∣∣2

×
∏

nNj =0

1

nj !
e−Rj R

nj −1
j (nj − Rj )2. (22)

For DPRCV-1 measurements at the output, the probability
of detecting outcome mN , that is, N clicks within interval t

and M − N clicks within t̄ , using Eq. (7), is given by

PD(mN ) =
∑

n

∣∣Per(U1N ×n)
∣∣2

×
∏

mNj =1

G(t,nj )
∏

mNj =0

[1 − G(t,nj )]. (23)

If t is very small, this probability can be expanded to leading
order in a powers of t as

PD(mN ) = ∣∣Per
(
U1N ×mN

)∣∣2
[tN + O(tN+1)]

+
∑

m=m1
N

|Per
(
U1N ×m

)|2O(tN+2), (24)

where m1
N are M-tuples whose elements are equal to mN

except one 0 and one 1 are interchanged.
Notice that the probability distribution (23) corresponding

to DPRCV-1 measurements is a coarse-grained version of
probability density (21), and that itself is a phase-randomized
version of Eq. (18). Therefore, if exact sampling from the
probability distribution (23) is classically hard, exact sampling
from the other probability distributions must be classically
hard as well. In the following two sections we discuss exact and
approximate sampling from the probability distribution (23).

B. Exact boson sampling

To leading order in t , Eq. (24) gives a distribution for which
hardness of exact sampling can be determined, as we shall
show in this section. Merely setting the O(tN+1) terms to zero
results in a probability

PD(1N ) = |Per
(
U1N×1N

)|2tN . (25)

A probability of this form does not pose any problems for
the argument of hardness in exact sampling. However, it
is important to consider higher-order terms because exact
sampling allows sampling using any matrix even those with

vanishingly small permanents. For example, one could con-
sider the case where the permanent |Per(U1N×1N

)|2 = O(t2)
but the unwanted higher-order terms have |Per(U1N×n)|2 =
O(1). Furthermore, as |Per(U1N×n)|2 defines a probability
distribution over all n (i.e., the boson sampling distribution)
we have ∑

m=m1
N

|Per
(
U1N ×m

)|2 � 1. (26)

This means that, using Eq. (24), the probability can be
written as

PD(1N ) = tN
[
(1 − O(t))

∣∣Per
(
U1N ×1N

)∣∣2 + E
]
, (27)

where E = O(t2) is an “error” over the desired probability.
Unfortunately E contributes to the probability in an additive
sense. However, as we have used the upper bound on the
matrix permanents that contribute to E we know that this
bound is independent of N . So if we choose E to be a
small constant, we need to quadratically vary t to achieve that
constant. Furthermore, with constant E, the sizes of submatrix
permanents that can be estimated must be lower bounded with
a bound that depends on E.

To make this more explicit consider the case where 0 <

L � |Per(U1N ×1N
)|2 � 1. If we used the approximate counting

algorithm using PD(1N ) from Eq. (27) then we would have an
estimate p̃ which satisfies[|Per

(
U1N×1N

)|2 + E
]
g−1 < p̃ <

[|Per
(
U1N×1N

)|2 + E
]
g,

(28)

where g > 1 is the multiplicative error factor from the
estimation. We can also write[|Per

(
U1N ×1N

)|2−|E|]g−1 < p̃ <
[|Per

(
U1N×1N

)|2+|E|]g,

(29)

and using |Per(U1N ×1N
)|2 > L

|Per
(
U1N×1N

)|2(1 − |E|/L)g−1

< p̃ < |Per
(
U1N ×1N

)|2(1 + |E|/L)g. (30)

Now if |E|/L < 1/2 (arbitrarily, it could be any constant less
than 1), we have

|Per
(
U1N ×1N

)|2(1 + 2|E|/L)−1g−1

< p̃ < |Per
(
U1N ×1N

)|2(1 + 2|E|/L)g, (31)

where we now have a multiplicative error estimate with error
g′ = (1 + 2|E|/L)g.

The #P-hardness of approximating Per(X)2 (Theorem 28
from [1]) where X is an N × N matrix, requires a choice of
g that is polynomially dependent on N . This will be achieved
here if the extra (1 + 2|E|/L) term maintains a polynomial
scaling.

At this point, we consider the origin of the added error
term E to argue how L must scale in terms of N . All of the
schemes described in Sec. III depend on a continuous output
parameter based on the CV-1 style measurement. However,
any experimental realization will output values to within some
precision. One particular way to do this, with a connection to
discrete computational outputs, is to consider a discretization
of the results into b-bit integers. The outcomes R from PRCV-1
are non-negative, so in this case consider b-bit non-negative
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integers. R is unbounded for large values, but in our scheme
we are only interested in small values so we can choose an
arbitrary fixed boundary above which all values are assigned
the same bit-string output. With these requirements, results
can be partitioned into 2b regions such that the largest result
corresponds to all outcomes above some fixed value, say 1.
In the simplest case, if b = 1 then we would have the one-bit
binary string with ‘0’ representing all results of the continuous
value R between 0 and 1 and the binary string ‘1’ representing
values greater than 1. Increasing b and continuing this division
of the results, we find that the range of values covered by
equal size partitions of the values between 0 and 1 we have
t = 2/(2b − 1) = O(2−b). It is the scaling in b, and not t , that
is required to be considered when analyzing the complexity of
the problems modeled on this device.

We will proceed with the analysis below assuming this
simple partitioning of the values of R. It should be noted that
other discretization strategies can be considered. For example,
we could change the discretization thresholds such that smaller
regions around zero could be considered by using a common
technique called “companding.” However, one must be careful
here not to sacrifice too much probability by having the zero
region scale super-exponentially. Any scaling which results in
the region at zero scaling as O(2−poly(b)) is sufficient for the
exact sampling argument below. This is due to the nature
of Stockmeyer’s approximate counting algorithm utilized in
Ref. [1]. As these strategies do not change the complexity
hardness result we present, we will not consider them further in
this paper.

Now we will return to considering the error term |E|. This
quantity, as stated above, scales as O(t2). But in the number of
bits used for discretization it will scale as O(2−2b). To achieve
a poly(N ) scaling of |E|/L, a scaling in L of O(2−2b) would
counteract the error, leaving a O(1) overhead.

So our procedure will achieve a multiplicative estimate with
a very quickly decaying lower bound L on the matrix perma-
nents that can be estimated. But what actually determines the
choice of the lower bound L that is permitted? The proof of
the #P-hardness for approximating Per(X)2 proceeds in [1]
by using this estimation polynomially many times to compute
Per(X) given that X was a zero-one matrix. As part of the proof
one needs to use the estimation procedure in a binary search
toward a matrix whose permanent is zero and the procedure
stops when sufficient precision has been achieved to determine
the permanent of the zero-one matrix, as it must be an integer
value. Introducing a lower bound on the permanents for which
the estimation is valid would have to be compatible with this
final precision.

Nevertheless, in the hardness proof for approximate boson
sampling, it is assumed that the input matrices X have matrix
elements that have a Gaussian distribution. If one is to accept
the conjectures of [1], then there is a low probability of
randomly having Per(X) near zero. Specifically, using the
words from [1],

...if X ∼ Gn×n is Gaussian then ...a 1 − 1/poly(n) fraction of
[Per(X)’s] probability mass is greater than

√
n!/poly(n) in

absolute value,
√

n! being the standard deviation.

Using this we could choose the lower bound of Per(X)
to scale as

√
N !/poly(N ). However, we have written the

bound for our construction in terms of the submatrix of the
unitary matrix U . Following the embedding procedure from
[1] this reduces the size of X by a factor involving the matrix
norm ||X||. Therefore the probability reduces by a factor of
||X||2N � 2poly(N) as N (the number of input photons) is a
proxy for the problem input size (i.e., the matrix X) which must
be efficiently represented in N . This results in a scaling of L =
O(||X||−2NN !/poly(N )). In terms of the discretization bits
the scaling is b = O(N log N + poly(N )), where the poly(N )
in this scaling is from the polynomial which bounds ||X||−2N .
So a polynomial scaling in the size of the discretization allows
the approximation of permanents which are highly probable
when using an approximate boson sampling algorithm. This
argument shows that the exact sampling problem presented
here, which permits multiplicative permanent estimation with
permanents with an exponentially decreasing lower bound,
must also be hard to compute with classical resources.

C. Approximate sampling

The arguments just made do not permit one to continue
the hardness argument through to the case of approximate
sampling as was done in [1] for the CV distributions we
have constructed above. The reason is quite simple: only
an exponentially small subset of events (i.e., detections near
the origin) are used to make the exact sampling argument.
Conversely, for the same reason, one also cannot definitively
conclude that approximate sampling from this distribution is
an efficient classical task.

The approximate sampling criterion for this CV distribution
would be ∫

|P (α) − Q(α)|d 
α < β, (32)

where P is the probability density for our distribution of
CV events from the device described above and Q is the
computable approximation. The event used for sampling
above is the set of α, where N α’s are around a ball of
radius t around the origin. Hence all of this error could
potentially be concentrated on our event. This would dominate
any exponential prefactors of the matrix permanent in the
probability, exponentially reducing the signal that is being
fed into the approximate counting algorithm.

Approximate sampling is shown in [1] by potentially
utilizing all possible (or more precisely the collision-free
subspace of) events to perform the approximate counting.
The algorithm cannot know which event is being probed,
so a concentrate of error as described above would result in
the approximate sampling algorithm being an exact sampling
algorithm for almost all results.

So what is required in the CV case is more events. To
show classical hardness for this distribution, one needs to
argue that events away from the origin are also #P-hard
when used exactly. This is difficult for this construction
because these events do not reduce to Fock basis measurements
under any approximation. Also, there must be combinatorially
enough events so that the approximate sampling error can be
considered low enough on average over all the events so that
hardness is maintained. Even if this specific criterion cannot
be met, this does not mean that the distribution is efficient
for a classical computation. To show classical efficiency,
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either a constructive proof demonstrating efficiency (e.g., the
methodology used in [12]) or some other proof technique
ruling out classical hardness would be required.

V. CONCLUSION

We have constructed a continuous-variable measurement
model we call CV-n which measures in a displaced number
state basis. The measurement model can be achieved by mixing
an n-photon state with the input on a 50:50 beamsplitter
then making homodyne measurements on the output. We
have shown how an n Fock basis state measurement can
be approximately achieved using this measurement utilizing
those cases when the homodyne measurement outcomes are
simultaneously small.

We then showed that this measurement model is compatible
with the exact boson sampling problem, a computing task that
has been shown to be inefficient for any classical device to
simulate. We have discussed how this model as presented here
is not compatible with approximate boson sampling since the
number of detection events utilized, when compared with the
whole event space, is too small.

Note added in proof. Recently, we became aware that a re-
lated approach to this problem has been described in Ref. [13].
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APPENDIX: CV-N MEASUREMENT:
CONTINUOUS-VARIABLE MEASUREMENT IN THE

DISPLACED NUMBER STATE

In this appendix we obtain the POVM elements of the
CV-n measurement; see Fig. 1. The POVM elements of this
measurement are of the form

�n(x1,θ ,p2,θ ) = 1

c
|�(x1,θ ,p2,θ )〉〈�(x1,θ ,p2,θ )| , (A1)

where x1,θ and p2,θ are the outcomes of the first and second
homodyne measurements, respectively, and c is the normal-
ization constant such that

∫
dx1,θ dp2,θ�(x1,θ ,p2,θ ) = I .

The POVM elements of the first homodyne measurement
are

|x1,θ 〉〈x1,θ | = e−iP̂1,θ x1,θ |x1,θ = 0〉〈x1,θ = 0| eiP̂1,θ x1,θ , (A2)

where

P̂1,θ = −X̂1 sin θ + P̂1 cos θ. (A3)

Notice that |x1,θ = 0〉 is an infinitely squeezed vacuum state,
and can be written as

|x1,θ = 0〉 = lim
r→∞ Ŝ(rei2θ ) |0〉 , (A4)

with Ŝ(ξ ) = exp [(ξ ∗â2 − ξ â†2)/2] being the squeezing oper-
ator and |0〉 being the vacuum state.

For the second homodyne measurement we have

|p2,θ 〉〈p2,θ | = eiX̂2,θ p2,θ |p2,θ = 0〉〈p2,θ = 0| e−iX̂2,θ p2,θ , (A5)

where

X̂2,θ = X̂2 cos θ + P̂2 sin θ. (A6)

Similarly, we have

|p2,θ = 0〉 = lim
r→∞ Ŝ(−rei2θ ) |0〉 . (A7)

Now using Eqs. (A2) and (A5), |�(x1,θ ,p2,θ )〉 in Eq. (A1) is
given by

|�(x1,θ ,p2,θ )〉

= 1

N 〈n| ÛBSe
−iP̂1,θ x1,θ eiX̂2,θ p2,θ︸ ︷︷ ︸

A

|x1,θ = 0,p2,θ = 0〉 ,

(A8)

where N is the normalization constant. Using the following
relations for the 50:50 beamsplitter

ÛBS

(
X̂1

X̂2

)
Û †

BS =
(

1√
2

−1√
2

1√
2

1√
2

)(
X̂1

X̂2

)
, (A9)

ÛBS

(
P̂1

P̂2

)
Û †

BS =
(

1√
2

−1√
2

1√
2

1√
2

)(
P̂1

P̂2

)
, (A10)

the expression A in Eq. (A8) becomes

ÛBSe
−iP̂1,θ x1,θ eiX̂2,θ p2,θ = D1(β1)D2(β2)ÛBS, (A11)

where

β1 = 1
2 (x1,θ cos θ − p2,θ sin θ ) + i 1

2 (x1,θ sin θ + p2,θ cos θ ),

(A12)

β2 = 1
2 (−x1,θ cos θ − p2,θ sin θ )

+ i 1
2 (−x1,θ sin θ + p2,θ cos θ ), (A13)

and D(β) is the displacement operator. Thus, Eq. (A8)
becomes

|�(x1,θ ,p2,θ )〉

= 1

N 〈n| D1(β1)D2(β2)ÛBS |x1,θ = 0,p2,θ = 0〉 .

(A14)

Using

ÛBS |x1,θ = 0,p2,θ=0〉
= lim

r→∞ ÛBSŜ(rei2θ )Ŝ(−rei2θ ) |0,0〉 (A15)

= lim
r→∞

1

cosh r

∞∑
k=0

(e2iθ tanh r)k |k,k〉 (A16)

= lim
r→∞

e2iθ n̂2

cosh r

∞∑
k=0

(tanh r)k |k,k〉 , (A17)

we can write Eq. (A14) as

|�(x1,θ ,p2,θ )〉 = 1

N D1(β1) lim
r→∞

1

cosh r

×
∞∑

k=0

(tanh r)k |k〉 〈n| D2(β2)e2iθ n̂2 |k〉 .

(A18)
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It can be shown that

〈n| D2(β2)e2iθ n̂2 |k〉
= e2iθn 〈n| D2(β ′

2) |k〉 = e2iθn 〈k| D2(−β ′∗
2 ) |n〉 ,

(A19)

where

β ′
2 = 1

2 (−x1,θ cos θ + p2,θ sin θ )

+ i 1
2 (x1,θ sin θ + p2,θ cos θ ), (A20)

and the second equality can be seen using this expression

〈n| D(α) |k〉 =
√

k!

n!
e−|α|2/2αn−kLn−k

k (|α|2), (A21)

with Lm
k (.) being the generalized Laguerre polynomials.

By substituting from Eq. (A19) into Eq. (A18), we get

|�(x1,θ ,p2,θ )〉 = 1

N D1(β1)e2iθn lim
r→∞

1

cosh r

×
∞∑

k=0

(tanh r)k |k〉 〈k| D2(−β ′∗
2 ) |n〉 .

(A22)

As this state must be normalized in the limit of r → ∞, it is
straightforward to see that

N−1 = cosh r. (A23)

As limr→∞ tanh r = 1, we now have

|�(x1,θ ,p2,θ )〉

= e2iθnD1(β1)

(
lim

r→∞

∞∑
k=0

(tanh r)k |k〉〈k|
)

D2(−β ′∗
2 ) |n〉

(A24)

= e2iθnD1(β1)D2(−β ′∗
2 ) |n〉 (A25)

= e2iθne(−β1β
′
2+β∗

1 β ′∗
2 )/2D(β1 − β ′∗

2 ) |n〉 (A26)

= e2iθne(−β1β
′
2+β∗

1 β ′∗
2 )/2D(α) |n〉 , (A27)

where

α = (x1,θ + ip2,θ )eiθ = reiθ+iφ. (A28)

Therefore, POVM elements of the CV-n measurement are

�n(x1,θ ,p2,θ ) = 1

2π
D(α) |n〉〈n| D†(α). (A29)

Notice that it can be simply checked that

1

2π

∫
d2 αD(α) |n〉〈n| D†(α) = I. (A30)

Next we describe the phase-randomized CV-n measure-
ment. If the phase θ of the local oscillator is randomized, with

the relative phase π/2 being fixed, we have

�n(R) = 1

2π

∫
dθD(

√
Reiθ+iφ) |n〉〈n| D†(

√
Reiθ+iφ),

(A31)

where

R = r2 = x2
1,θ + p2

2,θ . (A32)

The matrix elements of this operator in the Fock basis are

〈k| �n(R) |l〉
= 1

2π

∫
dθ 〈k| D(

√
Reiθ+iφ) |n〉〈n| D†(

√
Reiθ+iφ) |l〉

(A33)

= 1

2π
e−R n!√

k!l!
(
√

R)k+l−2nLl−n
n (R)Lk−n

n (R)

×
∫

dθei(θ+φ)(k−l) (A34)

= 1

2π
e−R n!√

k!l!
(
√

R)k+l−2nLl−n
n (R)Lk−n

n (R)2πδk,l .

(A35)

Therefore, the POVM elements of the phase-randomized
measurement are given by

�n(R) = n!e−R

∞∑
k=0

Rk−n

k!

[
Lk−n

n (R)
]2 |k〉〈k| . (A36)

It can be simply verified that∫ ∞

0
dR �n(R) = I. (A37)

For n = 1, using

Lk−n
n (R) =

n∑
j=0

(−1)j k!

j !(k − n + j )!(n − j )!
Rj , (A38)

we have

Lk−1
1 (R) = k − R; (A39)

so the POVM elements (A36) become

�1(R) = e−R

∞∑
k=0

Rk−1

k!
(k − R)2 |k〉〈k| . (A40)

Notice that

�1(0) = |1〉〈1| (A41)

as expected.
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