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Abstract: 

Accelerating interest by the pharmaceutical industry in the identification and development of 

less invasive routes of nanomedicine administration, coupled with defined efforts to improve 

the treatment of respiratory diseases through inhaled drug administration has fuelled growing 

interests in inhalable polymer-drug conjugates. Polymer-drug conjugates can alter the 

pharmacokinetics profile of the loaded drug after inhaled administration and enable the 

controlled and sustained exposure of the lungs to drugs when compared to the inhaled or oral 

administration of the drug alone. However, the major concern with the use of inhalable 

polymer-drug conjugates is their biocompatibility and long-term safety with the lungs, which 

is closely linked to their retention time in the lungs. A detailed understanding about the 

pharmacokinetics, lung disposition, clearance and safety of inhaled polymer-drug conjugates 

with significant translational potential is therefore required. This review therefore provides a 

comprehensive summary of the latest developments on several types of polymer-drug 

conjugates that are currently being explored as inhalable drug delivery systems. Finally, the 

current status and future perspective of the polymer-drug conjugates is also discussed with a 

focus on current knowledge gaps.  
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1. Introduction 

Polymers and polymer-based drug delivery systems have undergone an enormous expansion 

in the past decade, with the clinical and pre-clinical development of polymer-based 

nanomedicines and other biomedical applications. The key feature of a polymer-drug 

conjugate is that rather than containing a drug that is non-covalently encapsulating within a 

polymeric structure, the drug is physically conjugated to the polymeric carrier [1]. In this 

regard, problems associated with ‘burst drug release’ can be largely overcome and the drug 

can be covalently linked to the polymer via linkages that are specifically designed to liberate 

drug within certain structures, or at a predicted rate in vivo.  

 

The concept of polymer-drug conjugates was first introduced by Helmut Ringsdorf in 1975 

[2].  According to this concept, an ideal polymer-drug conjugate is characterized by a 

hydrophilic polymer backbone as a vehicle and a bioactive agent that is usually bound to the 

polymeric scaffold via a biological response linker. Sometimes a targeting moiety or a 

solubility enhancer may also be introduced into the conjugate to improve pharmacokinetic 

behaviour and therapeutic efficiency (Fig. 1) [2, 3]. In general, polymer-drug conjugates offer 

several advantages as drug delivery moieties, including 1) the capability to achieve high drug 

payloads, 2) improved drug solubility, 3) modulation of drug pharmacokinetics (including 

prolonged plasma exposure and optimised biodistribution behaviour, resulting in enhanced 

therapeutic efficacy), 4) reduced systemic and local side-effects as a result of highly irritant 

or cytotoxic drugs, 5) enhanced in vivo drug stability, and 6) controlled rate and site of drug 

liberation.  Despite these advantages, the full potential of polymer-drug conjugates as drug 

delivery platforms has yet to be fully harnessed, since the majority of current ‘nanomedicinal’ 

drug delivery systems still utilise the cheaper drug encapsulation approach.  

 

Fig 1. Example of a polymer-drug conjugate system, employing a polymer backbone, tissue 

targeting moiety, drug and solubility enhancer. 
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Polymer-drug conjugates are often synthesized using one of three strategies, including 1) 

conjugating the drug to an established polymers, 2) conjugating the drug to a monomer, 

followed by reversible addition fragmentation transfer (RAFT) polymerisation, ring-opening 

metathesis polymerisation (ROMP) or ring opening polymerisation (ROP), and 3) using an 

existing drug containing two or more functional groups as a monomer for poly-drug 

polymerization [4, 5]. The first strategy can lead to poor control over drug conjugation and 

limited drug loading, depending on the size and nature of the polymer structure. However, 

polymerisation of drug-monomer conjugates generally provides good control over drug 

loading and the final product [5, 6]. Drugs are often conjugated to the polymers via 

biodegradable linkers which can control the site and rate of drug liberation, although the 

linker has to be carefully selected to display optimal in vivo drug release rates for the 

intended therapeutic application [7]. It is important to note however, that the physicochemical 

properties of the polymer can have an impact on the in vivo liberation of drugs linked via 

‘biodegradable’ linkers, particularly when access by an enzyme is required [1, 8, 9].  

 

One of the most significant advantages that polymer-drug conjugates have, as alluded to 

above, is the ability to change the pharmacokinetic and biodistribution behaviour of the 

loaded drug [1]. In this regard, polymer-drug conjugates have traditionally been administered 

exclusively via the intravenous route as a result of their size and general hydrophilic nature 

limiting absorption after oral administration [3]. Subcutaneous or intramuscular delivery also 

provides a means to access the blood using a less invasive approach, but bioavailability can 

be limited in some cases. However, recent interest by big Pharma in non-invasive drug 

delivery approaches and targeted delivery to the lungs to improve the treatment of lung-

resident illnesses that are traditionally treated with oral medications, has sparked a 

tremendous worldwide interest in the inhaled delivery of nanomedicines.  

 

The pulmonary route possesses several distinct advantages over conventional oral or 

injectable routes of administration, including lower enzymatic activity in the lungs than that 

found in the gut, the avoidance of first-pass metabolism as well as the thin alveolar 

membrane, high surface area for absorption and extensive vasculature that can facilitate the 

rapid systemic absorption of drugs after inhaled administration [10, 11]. However, despite the 

potential for very rapid drug absorption from the lungs for relatively low molecular weight 

materials (several thousand Da max), the tight intercellular junctions between alveolar cells 
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typically limits the passage and systemic access of larger constructs, such as polymers. This 

has the effect of slowing the systemic absorption of polymers and providing the opportunity 

for sustained lung exposure to polymer-drug conjugates (and therefore to the drug). This is 

particularly advantageous when treating lung-resident illnesses, since the exposure key 

disease-mediating cells to the drugs can be significantly increased when compared to oral 

drug administration, and systemic exposure (and therefore related side effects) can be 

reduced. It also means that lung clearance mechanisms other than systemic absorption must 

play a more significant role in removing the polymer from the lungs [12, 13].  To date 

however, there is limited knowledge about the contribution of each lung clearance pathway in 

the removal of inhaled polymers and nanoparticles from the lungs [14, 15], which is 

important for clinical translation and regulatory approval. Moreover, the majority of studies 

investigating the fate of inhaled nanomaterials have been based on examining the lung 

clearance kinetics of the drug, rather than the polymer or polymer-drug conjugate. The 

critical issue here is that the safety of inhaled polymer-drug conjugates has also been called 

into question, based on widespread literature suggesting that nanomaterials, albeit non-

biodegradable/non-biocompatible nanoparticles, are ‘toxic’ in the lungs [16-20]. It is 

therefore important to understand the rate and mechanisms of polymer clearance from the 

lungs in order to design optimal dosing schedules that limit the long term retention of the 

polymer in the lungs and the potential for local adverse effects.  

 

In the present review, we therefore provide a comprehensive overview of the state-of-the-art 

for inhalable polymer-drug conjugates (Fig. 2.). An additional focus of this review is to detail 

our current understanding about the in vivo behaviour and safety of inhaled polymer-drug 

conjugates. Finally, the need for further research and development of polymer-drug 

conjugates is also discussed with an emphasis on current knowledge gaps and future 

perspectives.  
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Fig 2. Chemical and schematic representations of polymers-drug conjugates that have been examined 

as inhalable drug delivery systems. A) Linear PEG-drug conjugates, B) PolyPEG star polymer-drug 

conjugates C) Dendrimer-drug conjugates (example of a generation 3 system is given), D) PEI-

drug/DNA conjugates, E) chitosan-drug conjugates, and F) Hyaluronic acid-drug conjugates. 

 

2. Polyethylene glycol (PEG)-drug conjugates  

2.1 Linear PEG-drug conjugates   

PEG is a polyether containing repeating units of ethylene glycol (Fig. 2A.). It is highly 

biocompatible, non-immunogenic, highly water soluble and FDA approved for use in 

medicine and other biomedical applications [21]. PEG exists as either linear or branched 

chains. Linear PEG is most commonly used as a drug carrier or surface coating on 

nanoparticles to improve biocompatibility and/or solubility, and conjugation processes are 

generally very straight forward [22-24]. While PEG-drug conjugates have most commonly 

been explored as delivery systems after IV administration, a few studies have explored the 

potential of these systems as inhalable drug vectors. The utility of PEG-based drug 

conjugates is that the PEG moiety can help to enhance penetrate through the mucus layer to 

gain access to the underlying epithelia, where most cells involved in lung disease reside. 

Furthermore, PEG can help to avoid prolonged mucosal exposure to drugs with ‘mucus 

damaging’ properties [25]. For example, alendronate has a low oral bioavailability (approx. 
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1-2%) and displays ‘mucosal damaging’ properties due to its structural similarity with 

phosphatidylcholine. Specifically, alendronate competitively displaces mucosal 

phosphatidylcholine which triggers mucosal damage [26]. Conjugation of alendronate onto 

low molecular weight PEG (510 Da) however, suppressed lung mucosal toxicity after 

pulmonary delivery, whereas administration of the free drug induced significant toxicity [26]. 

In another study, PEG was employed to prolong the residence time of steroidal drugs (e.g. 

prednisolone) within isolated lung preparations and increase the aqueous solubility of the 

drug [27]. The rate of absorption of mono substituted mPEG2000 conjugated at one end to 

prednisolone, and disubstituted PEG2000 (where prednisolone was conjugated to both ends 

of the PEG) across the lung epithelium in an isolated rat lung decreased by approximately 4 

and 8 fold respectively compared to the free drug solution. It is unclear why mono- and di-

substitution of PEG had this effect, but may be due to hydrophilic vs hydrophobic 

interactions between the different substituted PEGs [28]. To this end, a previous study 

evaluated PEG molecular weights that promoted efficient systemic absorption vs lung 

retention following intratracheal administration in rats [29]. This study showed that <2kDa 

PEGs were cleared from the lungs within 2 days, while >5kDa PEGs were retained in the 

lungs for up to 7 days.  

 

In a separate study, Luo and colleagues compared two different molecular weight PEG-

paclitaxel conjugates for inhalation chemotherapy against lung cancers and showed that the 

molecular weight of the PEG played a crucial role in chemotherapeutic efficacy (Fig. 3 A-C.) 

[30]. They reported that both PEG (20 kDa and 6 kDa)-paclitaxel conjugates showed superior 

anti-tumour efficacy compared with the commercial formulation of the drug (Taxol
®
) after 

both pulmonary and IV administration. Interestingly, equivalent anti-tumour efficacy and 

lower toxicity was observed for the high molecular weight PEG (20 kDa) construct at a 2.5 

fold lower dose than the low molecular weight PEG (6 kDa) construct. This may have been 

due to the fact that the 20 kDa PEG-paclitaxel conjugate resided in the lungs for a more 

prolonged period of time than the smaller PEG construct. 
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Fig 3. (Left images). Anticancer efficacy and tolerability of PEG-paclitaxel conjugates vs 

commercial Taxol® after intratracheal instillation or intravenous delivery in a murine model of Lewis 

lung carcinoma (Figures A-C). (A) Representative images of mouse lungs following each treatment. 

(B) Number of LL/2 cancer cells per mg of lung tissue. (C) Body weights of mice in each dose group 

over time (data represent mean ± SEM, n = 6–7; images adapted with permission from reference 

[30]). (Right images). Chemical structure of arm-first star polymer consisting of POEGA arm and 

core. The radiation symbol depicts the approximate location of the core confined 
3
H radiolabel. (D) 

POEGA represents poly(oligoethylene glycol) acrylate. (E) Plasma concentration versus time profile 

of the star polymer after intravenous, subcutaneous, and pulmonary administration (5 mg/kg). (Data 

represent mean ± SD, n = 3-5; Reproduced with permission from reference [31, 32]).  

 

 

2.2 PEG-based Star polymers  

The general availability of only two reactive groups on a linear PEG chain limits the drug 

loading capacities of these materials [33]. This limitation can be overcome by using star-

shaped, or ‘hyper-branched polymers’ with dendron-like structures that can contain a large 

number of reactive functional groups within a PEG-based scaffold [33-35].  

 

Star-shaped PEG polymers can be easily synthesized by cross-linking linear polymer chains 

with two or more linear arms that radiate from a central core (Fig. 2B and 3D.) [34]. The 

pulmonary pharmacokinetics of a 64 kDa PolyPEG star polymer was recently evaluated in 

rats after intratracheal administration, and the pharmacokinetics compared to the polymer 
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after IV and subcutaneous delivery (Fig. 3E.) [31]. By virtue of its large size, the star 

polymer showed limited systemic bioavailability (approx. 3%) after intratracheal instillation, 

but high bioavailability after subcutaneous administration (approx. 80%). After 6 days, a 

significant proportion of the polymer dose was recovered in the lungs, faces, and urine, as a 

result of the polymers extensive retention within the lungs (∼25%), clearance via the 

mucociliary escalator ∼20%) and biodegradation in the lungs to low molecular weight 

products that were absorbed and excreted via the urine (∼12%). In general, the pulmonary 

pharmacokinetics of the PEG-star polymer was reported to be similar to that of a similar 

sized polylysine dendrimer containing a fully PEGylated surface.   

 

3. Dendrimer-drug conjugates 

Dendrimers are fundamentally hyperbranched polymers, but contain a more well-defined 

scaffold structure. Specifically, dendrimers are constructed in a radial manner from 

monomers that contain at least 3 functional groups (with 2 functional groups being identical 

to build the branched structure). They contain three major domains 1) a central core on which 

the polymer scaffold is built, 2) the scaffold which is formed through a series of additions of 

layers or ‘generations’ of monomers, and 3) the outermost surface which contains multiple 

functional groups that can be used to allow the attachment of drugs, targeting ligands, 

imaging agents etc. (Fig. 3C.) [36]. In this way, they typically display much lower 

polydispersity than hyperbranched or star polymers, but are also more expensive and timely 

to manufacture due to their step-wise synthesis [37].  

 

Drugs may be associated with dendrimers via either non-covalent entrapment in the 

hydrophobic scaffold, or via covalent conjugation to the surface. For a review on the 

advantages and disadvantages of covalent vs non-covalent association of drugs with 

dendrimers, the reader is directed to the following review [38]. In this review however, we 

focus specifically on covalent drug-polymer conjugates.  

 

Dendrimers have been examined as potential drug delivery systems following intravenous 

administration for several decades now, and at present one dendrimer based drug conjugate is 

in Phase I clinical trials in Australia for the treatment of advanced breast cancer (DEP-

docetaxel; Starpharma Pty Ltd). More recently, they have also begun to be explored as 
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inhalable drug delivery systems, most notably for the improved treatment of lung-resident 

cancers.  

 

The inhaled delivery of dendrimers can improve metabolic stability when compared to oral 

administration, promote systemic access via a non-invasive route of delivery (note, 

dendrimers are not, or poorly orally bioavailable) or provide a long term depot for drug 

release in the lungs [39, 40]. Poly amino acids-based dendrimers such as polylysine also have 

the advantage of allowing biodegradation of the dendrimer scaffold, which provides a novel 

route of lung clearance [39, 41]. The potential biomedical application of inhaled dendrimers 

was first realised almost 2 decades ago by Baker and colleagues who examine the ability to 

delivery DNA to the lungs using a PAMAM dendrimer carrier and to use sialic acid 

conjugated dendrimers to treat influenza pneumonitis [42, 43]. Following on from these 

earlier studies, subsequent studies aimed to use PAMAM dendrimers as carriers for 

methylprednisolone (to treat lung inflammation) [44], peptide phage clones to enhance 

dendrimer absorption from the lungs [45] and to improve the systemic absorption of peptides 

and proteins, such as heparin [46, 47], calcitonin and insulin [48]. To this point however, only 

PAMAM dendrimers had been used, and none of the studies had systematically characterised 

the effect of dendrimer size or charge on pulmonary pharmacokinetics 

 

Since then, several studies have examined the pulmonary pharmacokinetics of PEGylated 

polylysine dendrimers after aerosol and intratracheal administration to the lungs of rats and 

sheep. An initial study showed that after intratracheal instillation to the lungs of rats, the 

extent of systemic absorption for a series of PEGylated G4 polylysine dendrimers decreased 

with increasing construct molecular weight. In this case, construct molecular weight was 

controlled by changing the molecular weight of surface conjugated PEG, from 200 Da to 

2300 Da (to give constructs with a molecular weight of 11 to 78 kDa) [41]. In general, the 

smallest 11 kDa dendrimer was rapidly absorbed from the lungs, but was also rapidly 

degraded to low molecular weight PEGylated fragments that were systemically absorbed and 

excreted via the urine. The 22 kDa dendrimer however, showed slower biodegradation in 

vivo, and approximately 30% bioavailability, while the 78 kDa dendrimer was largely 

retained in the lungs and was cleared mainly via the mucociliary escalator (Fig. 4[I] A-D.) 

[41]. These results suggested that intermediate sized dendrimers (around 22 kDa) may 

provide an ideal balance between lung retention and systemic access, while larger molecular 
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weight dendrimers may provide ideal lung deports for the sustained release of drugs in the 

lungs.  

 

A subsequent study, however, compared the pulmonary pharmacokinetics of the 22 kDa 

dendrimer after aerosol administration to the lungs of rats and sheep, which provide a good 

model of human respiratory dimensions and physiology. In general, systemic bioavailability 

was lower after aerosol administration when compared to intratracheal administration in rats 

by approximately 50%. After aerosol administration to the lungs of rats and sheep, the 

dendrimer showed similar bioavailability in both species, albeit slightly, but not significantly, 

lower systemic bioavailability in sheep [40]. In sheep however, the dendrimer appeared to be 

cleared more rapidly from the lungs compared to in rats, suggesting that nanoparticle 

clearance is likely to be more efficient in larger species such as humans than in rodents. 

While pulmonary lymphatic exposure was also examined in sheep, the study showed that less 

than 0.5% of the dose appeared in lung lymph, despite showing extensive lymphatic exposure 

in rats after subcutaneous administration. Subsequent studies have also examined the 

pulmonary pharmacokinetics of PAMAM dendrimers in rodents [49-51]. For instance, Zhong 

et al. compared the pulmonary and intravenous pharmacokinetics of G3 amine-terminated 

and PEGylated PAMAM dendrimers in mice [51]. When compared to intravenous 

administration, both dendrimers showed higher and more prolonged lung exposure after 

pulmonary administration, as expected. Interestingly however, PEGylation appeared to 

enhanced systemic exposure to the dendrimer after pulmonary administration, but it is not 

known whether this was due to an increase in bioavailability (not reported) or reduced plasma 

clearance. Differential internalisation of both dendrimers with endothelial and epithelial cells 

in the lungs was also shown.   

 

Following on from initial pulmonary pharmacokinetic evaluations in rats, a 56 kDa 

PEGylated polylysine dendrimer conjugated with doxorubicin via an acid labile chemical 

linker was examined as an inhalable chemotherapeutic nanomedicine in rats [39]. Upon 

intratracheal instillation, the conjugate was initially rapidly cleared within 24 h and only 15% 

of the administered dose was retained in the lungs after 7 days. Up to 13% of the pulmonary 

dose was systemically absorbed. However, twice weekly pulmonary administration of the 

conjugate was sufficient to reduce lung tumour burden by almost 95%, while intravenous 

administration of the doxorubicin solution formulation reduced lung tumour burden by only 

30-50% (Fig. 4[II] A-I.). Interestingly, intravenous administration of the dendrimer did not 
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have an impact on tumour growth. In addition, the doxorubicin solution formulation induced 

significant pulmonary toxicity after a single dose, whereas the doxorubicin conjugate was 

well tolerated after twice weekly dosing over 2 weeks. 

 

 

Fig 4. (Left images) [I]. Plasma concentration–time profiles of a 
3
H-scaffold labelled 11 kDa 

PEGylated (PEG200) polylysine dendrimer (Panel A), 22 kDa PEGylated (PEG570) 

polylysine dendrimer (Panel B), and 78 kDa PEGylated (PEG2300) polylysine dendrimer 

(Panel C) after intravenous (cyan circles) and pulmonary (black triangles) administration at 5 

mg/kg. Values represent mean ± SD (n = 3–6 rats). Distribution of intratracheally 

administered 
3
H-dendrimer in lungs after sacrifice and in total pooled excreta (Panel D). Data 

are represented as mean ± SD (n = 4–6 rats).  (Reproduced and modified from references [41, 

52]). (Right images) [II] (A-H) Representative images showing changes in lung tumour 

burden following various treatments in syngeneic F344 rats bearing lung metastases of firefly 

luciferase-expressing MAT 13762 IIIB carcinoma. Panels A to D depict bioluminescent 

images of the lungs immediately before termination (18 to 21 days after injection of cells) 

and Panels E to H depict images of excised lung tissue showing the extent and size of 
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metastatic foci. Rats were treated with intratracheal saline alone (Panels A and E), 

intravenous doxorubicin (Panels B and F), intravenous doxorubicin-conjugated dendrimer 

(Panels C and G) and intratracheal doxorubicin-conjugated dendrimer (Panels D and H). The 

scale for bioluminescent images is depicted on the right. (Panel I) Fold increase in lung 

tumour burden determined by measuring total flux emitted from the lungs of rats 7 and 11–14 

days after the first dose. Data is represented as mean ± s.e.m (n = 6–9). *Indicates p < 0.05 cf. 

IV D-DOX. † Indicates p < 0.05 cf. D control. (Reproduced with permission from reference 

[39]) 

 

Similarly, PAMAM dendrimers have also been examined for their ability to improve the 

treatment of lung-resident cancers after pulmonary administration of a doxorubicin-

conjugated G4 PAMAM dendrimer [50]. This complex showed pH-dependent drug release 

with maximal drug liberation (80%) at an acidic pH (pH 4.5). Pulmonary administration of 

the PAMAM-doxorubicin conjugate showed more prolonged drug retention in lungs, lower 

systemic toxicity and improved cancer survival rates in mice when compared to pulmonary 

administration of the solution formulation of the drug.  

 

4. Polyethyleneimine (PEI)-drug conjugates 

PEI has been successfully used as an inhalable non-viral gene and drug delivery vector [53-

55]. Linear PEI contains repeating units of secondary amine-(NH) and aliphatic groups (-

CH2-CH2-) (Fig. 3D.), while branch PEI contains primary, secondary and tertiary amines 

[56]. PEI has high transfection efficiency due to its high density of cationic amine functional 

groups that condense negatively charged DNA and RNA via electrostatic interactions [57, 

58]. PEI can also interact with negatively charged cell membrane (glycoproteins and 

phospholipids) to promote the cellular uptake of conjugated drugs. Additionally, at the low 

pH encountered in lysosomes and late endosomes, the amine groups of PEI become 

protonated and act as proton sponge to rupture endosomes and promote the exposure of 

endosomal contents into the cytosol [59]. This unique and efficient endosomal escaping 

feature also allows for the selective delivery of cytotoxic drugs into the cytosol of tumour 

cells, thereby minimizing adverse effects on healthy tissues.   

 

Pulmonary administration of PEI-RNA and WT1 (Wilms’ tumor gene) complex was 

successfully delivered as an aerosol to the lungs of mice bearing B16-F10 melanoma 

metastases [60]. The PEI-RNA-WT1 complex promoted the apoptosis of B16-F10 cancer 
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cells in the lungs, which led to reductions in tumour size and angiogenesis. In addition, mean 

survival time in mice was significantly increased compared to untreated or WT1-2 RNA 

alone treated control groups [60]. However, the nucleotide/polymer complexation process 

may be limited by the uncontrolled formation of aggregates that lack transfection capability 

[61]. Formation of these aggregates during complexation can usually be overcome by 

correctly identifying nitrogen-to-phosphate ratios (the ratio of PEI amine groups per RNA 

phosphate group) and via the covalent conjugation of PEI with PEG linkers that can mask 

high density cationic charges and improve physiological stability [62]. Additionally, 

PEGylated PEI can also be coupled with cell penetrating peptides to enhance the intracellular 

delivery of nucleotides compared to PEGylated PEI alone. For instance, PEG-PEI conjugates 

coupled with TAT-peptide derived from human immune deficiency virus (HIV) enhanced 

cell penetration and transfection efficiency in human lung A549 and Calu-3 cells, and in 

mouse lungs when compared to PEI alone [63]. Kleemann et al. compared the transfection 

efficacy of PEI/DNA and TAT-PEG-PEI/DNA polyplexes after intratracheal instillation in 

rats [55]. TAT-PEG-PEI/DNA polyplexes targeted both bronchial and alveolar cells with 

600% higher transfection efficiencies than the PEI/DNA polyplexes alone. Further, PEI/DNA 

polyplexes were only capable of partial targeting to bronchial epithelial cells. The low 

transfection efficacy of the PEI/DNA polyplex is due to their excessive cationic surface 

charge which promotes their binding and retention in upper respiratory tract. In contrast, 

PEGylation can shield the positive charge and prevent the formation of large aggregates of 

TAT-PEG-PEI/DNA complex so that they can more readily access alveolar regions of the 

lungs, where they may be more available for systemic absorption and transfection.  

 

To this point however, PEI-based polymers have mostly been used to exclusively deliver 

genetic material and only a few studies have analysed the potential of PEI-drug conjugates 

and PEI-gene complexes for delivery via inhalation. Combination therapy (by combining the 

inhaled delivery of drugs and genetic material) maximizes the potential for anticancer activity 

in the lungs due to additive or synergistic effects [64, 65]. For instance, PEI-doxorubicin and 

Bcl2 siRNA complexes were investigated as potential treatments for metastatic lung cancer in 

mice [53]. The PEI-doxorubicin/SiRNA complex showed accelerated drug release profiles in 

an acidic pH, and more efficient cell killing via apoptosis in isolated B16F10 cells when 

compared to naked siRNA and doxorubicin alone. Furthermore, pulmonary administration of 

the PEI-doxorubicin/SiRNA complex enhanced antitumor efficacy and prolonged drug 
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retention in the lung tumour tissue of mice beyond 7 days. In general though, PEI has not 

been examined in detail as an inhalable carrier material.   

 

5. Chitosan-drug conjugates 

Chitosan is a popular inhalable delivery system and nanoparticle coating as a result of its 

capability to deliver drugs locally and systemically via mucosal routes [66, 67].  It is both 

biocompatible and biodegradable and is an FDA approved polymer for wound dressings [68]. 

Recently, chitosan was used to physically encapsulate or covalently conjugate drugs into its 

polymeric backbone to improve the efficiency of drug delivery to lungs [69-72]. Chitosan 

contains linear polysaccharides that are derived from chitin which is composed of D-

glucosamine and N-acetyl-d-glucosamine (Fig. 3E.) [67].Chitosan is cationic in nature due to 

the presence of repeated glucosamine units with primary amino functionality. The amino 

groups in chitosan can be conjugated with various functional groups to enabling the further 

conjugation of drugs and other ligands. However, the major limitation of chitosan is its pH 

dependent solubility. Since the pKa of amino groups in chitosan lie between 5.5 and 6.5, it 

losses its surface charge and aggregates at physiological pH, whereas at mildly acidic 

environments it is partially protonated and displays higher aqueous solubility. While this can 

represent a solubility limit in vivo, the selective ionization/deionization events that occur at 

physiological pH and in the more acidic microenvironment of tumours can be used to 

facilitate efficient drug release from chitosan conjugates [73, 74]. As an example, a 

thermoresponsive hydrogel was prepared from chitosan-doxorubicin conjugates to achieve 

sustained release of doxorubicin and superior antitumor effects after intratumoural injection 

in nude mice bearing solid human lung adenocarcinomas [75]. The hydrogel containing 

doxorubicin-chitosan conjugates displayed sustained release profiles of drug compared to the 

hydrogel without chitosan-drug conjugation). Furthermore, the hydrogel composed of 

chitosan-doxorubicin conjugates showed superior in vivo antitumor effect as compared to free 

drug or hydrogel containing drug solution.  

 

Chitosan solubility, degradation and toxicity can also be tailored via chemical modification 

with other hydrophilic moieties [76]. In one example, chitosan was conjugated to amino acids 

such as L-leucine to provide a potentially improved pulmonary delivery system for the model 

drug diltiazem [77]. The diltiazem-chitosan-leucine conjugate showed an initial rapid burst 

release of drug, which was followed by slower release with approximately 50% of the drug 

released over 16 days [69]. Additionally, amphiphilic L-leucine has surfactant-like properties 
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which can improve the aerosol performance of conjugated particles which are required for 

pressurized metered dose inhaler formulations. Very recently, water soluble conjugates of 

chitosan and the anti-tuberculosis drug isoniazid were therefore prepared and examined for 

their capacity to provide an inhalable platform for the lung delivery of the drug, which is 

currently administered as an oral tablet formulation [78]. Isoniazid was either conjugated to 

N-(2-carboxyethyl) chitosan (CEC) or to N-(3-chloro-2-hydroxypropyl) chitosan (CHPC). 

The antitubercular activity of isoniazid-CEC conjugates against M. tuberculosis H37Rv was 

similar to the parent drug, whereas the antitubercular activity of isoniazid-CHPC was poor. 

Additionally, both chitosan-based isoniazid complexes showed biodegradability in vitro and 

limited in vivo toxicity. It was suggested that the limited antitubercular activity of isoniazid-

CHPC could be due to the lower surface presentation of isoniazid required to interact with the 

target bacteria, or due to limited breakdown of C-N bonds between isoniazid and the 

polymer.  

 

Another interesting property of chitosan as an inhalable polymeric drug carrier is that it can 

transiently open transepithelial junctions between cells by dysregulating claudin-4 (Cldn4), 

thus allowing for enhanced systemic absorption compared to similar sized polymers [79]. 

Using this property, chitosan was modified with ethylene glycol to prepare a water soluble 

glycol chitosan conjugate (GC) [80]. The GC complex was then formulated with lipoid 100 

to allow encapsulation of low molecular weight heparin (LMWH, approx. 18 kDa) into 

chitosan nanoparticles to facilitate the systemic delivery of LMWH following inhaled 

delivery. GC-based LMWH nanoparticles appeared to be safe in the lungs and did not display 

any significant signs of lung damage or inflammation. Both GC bearing nanoparticles and 

free heparin showed comparable blood coagulation times after 4h of administration. 

However, the pharmacokinetic behaviour of the nanoparticle was not examined and a 

conclusion as to whether heparin was liberated in the lungs, followed by being absorbed from 

the lungs, or whether the construct was absorbed intact cannot be made. Since the authors 

only evaluated the in vivo fate of the nanoparticle over a short period of time, it is also 

uncertain whether GC may have shown more prolonged systemic effects over heparin alone.  

 

In another study, hydrophilic GC was modified with hydrophobic 5β-cholanic acid and used 

to form a nanoparticle that was examined for its potential as a pulmonary delivery vehicle 

[81]. Following intratracheal instillation of the nanoparticles, a large proportion of the dose 

was retained in the lungs of mice after 14 days.  A mild inflammatory effect was also 
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observed in the lungs from 6 h to 3 days after dosing [81], but in general, this is consistent 

with the inhaled delivery of all nanosized material including endogenous proteins [82]. 

However, the pathways by which chitosan are cleared from the lungs and the time frame over 

which it is cleared is still unknown. 

 

Finally, chitosan displays mucoadhesive properties that can be used to retain conjugated 

drugs in the respiratory mucosa for prolonged periods of time [83]. Thiolation however, can 

be used to increase the mucoadhesive effect by promoting the formation of disulphide bridges 

with thiol groups of cysteine rich proteins. This approach was therefore tested as a mean to 

enhance the mucus retention of calcitonin after pulmonary administration and prolong 

therapeutic effects in blood [84]. The thiolated GC nanoparticles were retained in the lungs 

two fold longer than the non-thiolated GC nanoparticles. The pulmonary ‘bioavailability’ of 

calcitonin relative to a subcutaneous dose (rather than to a conventional intravenous dose) 

was also reported to be moderately higher for the thiolated material (40%) than the non-

thiolated material (27%), despite the more prolonged lung retention of the thiolated material. 

In both cases, the systemic access of calcitonin when formulated into a chitosan nanoparticle 

was higher than after pulmonary administration of calcitonin alone (10%). Importantly, the 

thiolated GC had a significantly more prolonged impact on reducing blood calcium levels in 

rats after pulmonary administration when compared to the non-thiolated nanoparticles and 

calcitonin alone.  

 

6. Hyaluronic acid-drug conjugates 

Hyaluronic acid (HA) - also known as hyaluronan - is a naturally occurring biopolymer 

composed of repeating disaccharides units of N-acetylglucosamine and D-glucuronic acid 

(Fig. 3F.) [85]. The pKa of the carboxylic group of HA is between 3 and 4 and thus at 

physiological pH, HA exists as a polyanion. HA can absorb significant amounts of water and 

expand up to 1,000-times compared to its original solid volume, forming hydrogels [86]. 

They are predominantly found in the extracellular matrix of connective tissues and in a small 

quantities within lungs [87]. Under haemostatic condition, HA usually does not activate 

immune cell infiltration, with the except of transient increases in alveolar macrophages [88]. 

Alveolar macrophages specifically bind to pneumocytes to incorporate themselves within the 

alveolar space or internalize HA to the lymphatic system  [88].  Thus, HA is extensively 

explored as a drug delivery vector following various routes of administration, including 
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intravenous, intraperitoneal, oral and subcutaneous. For a review of these delivery routes, the 

reader is referred to the following reference [89].  

 

Recently, a number of researchers have used HA as a polymer base for inhalable dry powder 

formulations for a range of lung-active therapeutics [90-92]. The lung clearance and 

pulmonary pharmacokinetics of HA was recently reported to be depended on its molecular 

weight. Upon pulmonary administration, low molecular weight HA (7 and 30 kDa) was 

rapidly absorbed into the blood, while higher molecular weight HA (67 and 215 kDa) showed 

prolonged lung retention and slow absorption into the systemic circulation (Fig. 5[I].) [93]. In 

comparison, a very high molecular weight HA construct (741 kDa) was rapidly cleared from 

the lungs via mucociliary clearance (Fig. 5[II].).  

 

Fig 5. [I] Fluorescent images of excised lungs after pulmonary administration of IR-labelled HA of 

molecular weight 7 kDa (immediately after lung administration) (A), 7 kDa (8h after lung 

administration) (B), 30 kDa (after 8 h) (C), 67 kDa (after 8h) (D), 215 kDa (after 8h) (E), and 741 

kDa (after 8h) (F). The white numbers represent the different lung lobes, with 1, 2, and 3 representing 

the 3 anatomical lung lobes on the right, and 4 and 5 representing anatomical lung lobes on the left. 

[II] Time course of lung clearance of IR-labelled HA after pulmonary administration. Each point is 

the average of at least three animals  (Reproduced with permission from reference [93]). 

 

HA provides multiple sites for the covalent conjugation of drugs and ligands into its 

backbone. HA can therefore be used either as a surface coating on nanoparticles, or as a 

direct drug carrier via conjugation. HA can also be used as a tumour-targeting moiety since it 

binds to CD44, a transmembrane glycoprotein which is commonly overexpressed on the 

surface of cancer cells [94, 95]. However, in healthy cells CD44 is highly glycosylated which 

limits its capacity to bind to HA [96]. Thus, conjugation of anti-cancer drugs onto HA 

carriers can facilitate the improved retention of the drug in tumours and cancer cell 
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internalisation and avoid targeting and uptake by normal healthy cells [97]. Using this 

principle, Ishiguro et al. developed HA-cisplatin conjugates and freeze-dried the formulation 

with 2.5 % trehalose as cryprotectant for pulmonary administration of a dry powder [98]. The 

conjugate efficiently bound to CD44 expressing cancer cell lines (H1299 and H358) and a 

single intratracheal aerosolized bolus dose was effective in treating lung tumours in mice 

[98].  In another study, a HA (35 kDa)-cisplatin conjugate displayed prolonged in vitro 

release of cisplatin over time [99].  Pulmonary delivery of this HA-cisplatin conjugate when 

compared to intravenous administration, resulted in higher lung exposure in rats in the order 

of 5.7 and 1.2 fold after 24 h and 96 h respectively [99]. As a result, the pulmonary 

administration of HA-conjugated anticancer drugs can enhance the exposure of lung resident 

cancers to chemotherapeutic drugs when compared to after intravenous administration, 

provide efficient lung cancer killing when compared to intravenous administration of the drug 

solution formulation, reduce systemic and lung toxicity and enhance drug uptake by cancer 

cells. 

 

Another prominent feature of HA is its ability to passively target the lymphatic system.  

Recent evidence showed that pulmonary delivery of HA-conjugated anticancer drugs also 

provides control over lymphatic cancer metastases [93, 98, 100]. Nanoparticles prepared 

using HA with a molecular weight of approx. 75 kDa and a particle size below 50 nm may 

access the lymphatic system [93]. High molecular weight HA also breaks into small 

molecular weight components by hyaluronidases that can also facilitate the entry of HA-

conjugated drugs into the lymphatic circulation [101].  The potential lymphatic targeting 

features of HA following inhalation may also allow then to act as efficient polymeric 

nanocarriers for the vaccines delivered via mucosal routes, such as following inhalation.  

  

7. Other Polymers 

With the exception of the above mentioned polymers that are more commonly evaluated as 

inhalable drug carrier systems, several other polymers have also been evaluated as inhalable 

drug vectors. Carbopol
®

 for instance, is a high molecular weight polyacrylic acid-based 

crosslinked mucoadhesive polymer that typically contains repeating carboxyvinyl units. 

Carbopol
®
 is commonly used in oral tablets and mucosal formulations. In a recent study 

though, Carbopol was conjugated to wheat germ agglutinin (WGA) derived from Triticum 

vulgare to enhance binding of the polymer to N-acetyl-D-glucosamine residues located on 

surface of epithelial cells in alveoli [102]. Pulmonary administration of WGA-carbopol 
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modified liposomes containing calcitonin showed a prolonged therapeutic effect in rats and a 

high uptake by alveolar A549 cells when compared to unmodified liposomes containing 

calcitonin. Additionally, the WGA-carbopol modified liposomes did not increase the total 

protein and LDH levels in the BALF of rats, confirming the absence of any significant 

pulmonary toxicity.  

Poly(lactic-co-glycolic acid) PLGA is also a safe and biodegradable polymer that is rapidly 

gaining attention for its potential as an inhalable drug carrier [103]. However, the majority of 

studies on PLGA as pulmonary carrier have focused on encapsulation/adsorption of drugs, 

proteins, and peptides into PLGA nanoparticle structures, rather than by direct conjugation of 

drugs onto PLGA [104]. PLGA can be modified to contain cell targeting moieties, but it has a 

limited availability of favourable functional groups for chemical conjugation [105]. 

Uncapped PLGA contains both hydroxyl and carboxyl groups that can be utilized to 

conjugate drugs or targeting agent [106]. However, the cleavage of the amide bond formed 

from the conjugation of carboxyl groups of PLGA with amine-containing drugs is not easy 

under physiological conditions, thus requiring drug ‘liberation’ via degradation of the PLGA 

backbone. In comparison, hydroxyl groups in PLGA can be functionalized with carboxyl 

group in drugs or targeting agents to yield an ester bond that is more readily cleavable under 

physiological conditions [107]. Mo et al. for instance, conjugated WGA lectin to PLGA to 

enhance the in vitro therapeutic efficacy of paclitaxel [108]. PLGA-WGA nanoparticles 

actively transported paclitaxel into the cancer cells via lectin-receptor-mediated endocytosis 

and showed an improved cytotoxicity activity against both A549 and H1299 cells. 

 

Other polymer such as HPMA [N-(2-hydroxypropyl)methacrylamide] conjugated to 

pirarubicin via hydrazone bonds showed high therapeutic potential against lung cancers 

[109]. This conjugate was found to improve the treatment of metastases in patient suffering 

from stage IV lung cancer. Although the conjugate was administered via the intravenous 

route, it has the significant potentially to also be delivered via pulmonary route to enhance the 

local therapy of lung cancers. In a similar way, conjugates of several other polymers (such as 

dextrans, poly glutamic and poly aspartic acids) are yet to be assessed for their suitability as 

inhalable drug carriers [3, 5].  

 

8. Current opinion on the future of inhalable polymer-drug conjugates  

Polymer-drug conjugates have enormous potential as an inhalable drug delivery platforms for 

the treatment of lung diseases. They also have some potential as systemic delivery systems 
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using the inhaled route as an alternative to more invasive injectable routes of delivery They 

have several chemical and structural attributes which can be tailored to modulate drug release 

kinetics, cellular and subcellular interactions within the lungs and lung clearance pathways. 

Although a large number of polymer-drug conjugates have been reported so far, but they 

have almost exclusively been administered via the intravenous route in preclinical studies 

(including a few undergoing clinical trials) [3]. This is important because the physiochemical 

properties of polymer-drug conjugates need to be modulated according to the intended route 

of administration to define their in vivo pharmacokinetic and pharmacodynamic behaviour [3, 

110]. Further, despite a number of preclinical studies having been undertaken, the clinical 

translation of polymer–drug conjugates has been slow (irrespective of the route of 

administration) due to limitations such as poor drug loading, low bioavailability and 

circulation times, inadequate information about polymer-related toxicity and inappropriate 

design (i.e. lack of sustained or controllable drug release, unsuitable choice of linkers to 

conjugate drugs or unsuitable methods of drug conjugation) [1, 3, 111].  

 

The success of polymer drug conjugates as a ‘inhalable drug delivery platforms’ will 

therefore be depend on defined advancements in their preclinical development, and 

refinements in their design as per the requirements for an ideal pulmonary drug delivery 

system. For instance, Shamay et al. recently developed a VEGFR-1 targeted N-(2-

hydroxypropyl)methacrylamide (HPMA) copolymer–doxorubicin conjugate to inhibit 

primary tumour growth and slow the development of cancer metastases in mice by actively 

targeting the tumour vasculature [112]. This approach is likely to emerge as an attractive 

technology for improving the therapeutic efficacy of cytotoxic drugs. Similarly, Lomkova et 

al. reported the synthesis of a smart micellar polymer-betulinic acid conjugates based on 

HPMA copolymers for passive tumour targeting. These conjugates enabled pH-dependent 

controlled release of drug within tumour cells followed by disassembly of the micellar 

structure to facilitate elimination of the water-soluble HPMA copolymer by renal filtration 

[113]. In another recent study, Camacho et al. demonstrated the high therapeutic potential of 

low molecular weight polymer–drug conjugates composed of 10 kDa HA or poly(vinyl 

alcohol) for the delivery of chemotherapeutics to the lungs and provided further insight into 

the development of polymer drug therapeutics based on low molecular weight polymers 

[114].  Apart from these polymers, dendrimers (lysine based) and star polymers have very 

narrow size ranges (≤20 nm), low polydispersity (< 0.1), display ease of surface 

functionalization and good biocompatibility for pulmonary drug delivery applications [31, 39, 
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41]. The clinical translation of these polymer-drug conjugates as inhalable therapeutics 

however, will depend upon better understanding their deposition, dissolution, absorption, 

lung clearance, interactions with different biological barriers of the lungs and safety/toxicity 

within the lung environment, particularly in large species with similar respiratory dimensions 

to that of humans [14]. 

 

Regulatory approval for the clinical use of polymer drug conjugates will also be dependent on 

in-depth assessments of their systemic and lung disposition, as well as the pathways and 

kinetics of lung clearance [14].  Furthermore, the lung clearance kinetics of polymer drug 

conjugates needs to be evaluated by tracking the polymers, and not just the conjugated drugs. 

This is because the kinetics of the drug is based in large part on its rate of cleavage from the 

conjugated polymers and it does not necessarily correlate well with the rate of polymer 

clearance [14]. This is important, since the long term retention and build-up of polymers or 

nanoparticles in the lungs may stimulate long term inflammatory and structural changes in 

the lungs, and may also exacerbate underlying respiratory diseases for which these systems 

are intended to treat. Although a considerable amount of literature is available on the fate of 

inhaled PEGylated polylysine dendrimers, at this stage it is difficult to predict the extent to 

which this information relates to the pulmonary clearance of other polymer-drug conjugates 

[31, 39, 41].  

 

An important requirement of polymer-drug conjugates is also to define their overall safety in 

the lung microenvironment, in particular the impact of repeated inhaled exposure on lung 

retention and the and safety of the individual excipients. It has been widely demonstrated that 

environmental pollutants including particulate material, inorganic/metal nanoparticles and 

non-biodegradable polymeric nanoparticles are capable of inducing inflammation, oxidative 

stress, cytotoxic and genotoxic effects in the lungs after inhalation [16-20]. In contrast, 

however, very few studies have been carried out to determine the immunological, 

inflammatory and toxicological potential of inhalable polymer drug conjugates or 

biodegradable polymers which have potential for pulmonary application. In a recent study, 

the safety of an inhaled G5 fully PEGylated polylysine dendrimer and an alpha-carboxyl 

OtButylated methotrexate conjugated PEGylated dendrimer (substitution of 50% surface 

PEG groups with alpha-carboxyl OtButylated methotrexate) was evaluated in rats. The results 

showed that the dendrimers did not induce a significant local lung inflammatory response 

over 2 weeks after a single 5 mg/kg dose, but safety studies following repeated dosing were 
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not performed (unpublished data). Further, it has been observed that the cumulative lung 

administration of up to 80 mg of partly PEGylated dendrimers to rats had little impact on the 

lung tissue, with mild increases in alveolar macrophages consistent with the presence of a 

mild and reversible adaptive physiological response in the lungs, which normally occurs after 

the inhaled exposure of any nanomaterial, including proteins [39, 115, 116]. In contrast, the 

intratracheal instillation of a cationic PAMAM dendrimer led to pulmonary inflammation in 

mice due to accumulation of autophagosomes in the lung tissues and inhibition of Akt-mTOR 

signaling pathways [117].   

 

Among the biodegradable polymers, a few studies have examined the pulmonary toxicity of 

chitosan, PEI, PLGA, albumin and hyaluronic acid. For instance, Grenha et al. showed that 

chitosan based formulations do not induce overt toxicity against Calu-3 or A549 cells 

(determined via MTT assay) and are compatible with bronchial and respiratory epithelial 

cells [118]. Muhsin et al. examined the safety of chitosan l-leucine conjugates in vitro and 

reported the conjugate to be relatively more toxic and pro-inflammatory than chitosan alone. 

The authors suggested that the level of toxicity and inflammatory effects can still enable its 

utilization for pulmonary drug delivery unless intra-lung concentrations are increased beyond 

that which they reported [77]. However, this was an entirely in vitro study, and one can only 

assume that the pro-inflammatory effects of the polymer would be increased in vivo this 

highlights the need for stringent in vivo testing of pharmacokinetics and safety prior to 

considering inhalation studies in humans, particularly those with already compromised 

respiratory disease.  

 

PEI based polymers used for gene therapy or RNA interference have been found to cause 

well-known adverse effects especially high cytotoxicity in both in vitro and in vivo studies 

[119]. The safety study conducted on inhaled PLGA based systems have shown different 

results in bronchial (Calu3) and alveolar (A549) cell lines. PLGA based nanoformulations 

showed insignificant cytotoxicity and inflammation towards bronchial epithelial cells 

irrespective of their surface chemistry, charge (depending on their stabiliser) and dose [120]. 

However, a significantly higher inflammatory response was observed following exposure of 

A549 alveolar epithelial lung cells to a family of PLGA based systems covered with different 

polymeric stabilizers [121]. The safety study conducted on HA has confirmed so far that it 

plays an important role in inflammation due to its affinity for the CD44 receptor that is 

expressed on a variety of cell types [122]. However, the inflammatory potential of hyaluronic 
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acid has been found to depend upon its molecular weight. Relatively low molecular weight 

fragments (<250 kDa) have been found to stimulate the production of a variety of 

inflammatory cytokines [122, 123]. Conversely, high molecular weight hyaluronic acid 

structures (>250 kDa) have been found to possess anti-inflammatory effects [122, 124]. 

While biodegradation is generally considered to be an ideal mechanism by which inhalable 

polymers can be cleared from the lungs, the rate of biodegradation of different types of 

polymers is therefore likely to play a major role in defining their safety in the lungs. For 

instance, the slow degradation rate of polymers such as PLGA may lead to enhanced 

accumulation and toxicity in the lungs when compared to, for instance, proteins due to long 

term accumulation upon repeated administration [125]. In addition, polymer accumulation in 

the respiratory region of lungs for prolonged periods of time has been found to cause 

depletion of lung surfactants [14]. Besides this, there are quite a few excipients that have 

been approved by different regulatory agencies for potential use in pulmonary drug delivery 

applications. Only a few amino acids, sugars and some polyethylene glycols have been 

approved for use in inhalable products. This limited number of approved excipients can slow 

the development of inhalable polymer-drug conjugates as well as limit their clinical 

translation, since the use of new polymers and excipients will require extensive in vivo safety 

studies [15, 126]. 

 

To conclude, polymer drug conjugates have potential as an ‘inhalable drug delivery 

platforms’ for the treatment of respiratory diseases and for the non-invasive systemic delivery 

of therapeutics. However, a general lack of knowledge about ideal physiochemical properties 

to optimally enhance pulmonary pharmacokinetics, safety, drug release rates and efficacy, 

together with a general lack of understanding about their pharmacokinetic behaviour and 

clearance kinetics have thwarted the significant preclinical development and clinical 

translation of these systems. Focussed efforts are needed to identify the most ideal polymers 

and polymer formulations (whether as nanoparticles or simple polymer-drug conjugates) that 

will provide the best inhalable drug delivery platforms in order to accelerate clinical 

translation of such systems, in a similar way that liposomes have advanced into clinical trials. 

The ultimate commercial success of inhaled polymer-drug conjugates is therefore dependent 

on the conduct of more focused research to address these knowledge gaps, rather than mere 

development of a series of novel and more complex polymer-drug conjugates. 
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