
MULTI-LEVEL VIDEO FILTERING

USING NON-TEXTUAL CONTENTS

Xingzhong Du

Master of Computer Science

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2017

School of Information Technology & Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/86630129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

Video is one of the major media human uses to store information. As the recording and storing

devices become cheaper, there are numerous videos generated nowadays. The unprecedentedly large

volume creates considerable new requirements on accessing the videos. Therefore, how to perform

video filtering, i.e. obtaining a set of relevant video clips from the video repository becomes a chal-

lenging research topic. In previous works, video filtering required user entering some texts to filter the

irrelevant video clips, which made the video filtering methods same as the document filtering methods

for a long time. However, there are three limitations of the text-based video filtering: (1) it dismisses

the rich contents in the videos; (2) it is inapplicable when the texts are absent, incomplete or sparse;

(3) it fails to support in-video filtering. These limitations make the text-based video filtering power-

less after the new requirements emerge. In recent years, there sees a tendency that computer could

parse more meaningful contents from the videos. These non-textual contents are complementary to

the texts in many cases. Enlightened by that, existing video filtering research gradually shifts from

text-based to non-textual-based. Under this direction, we study how to improve the video filtering

systematically from three levels.

Frame-level. We propose to use detected visual object to filter the videos. In previous works,

the visual objects were obtained manually where human took the responsibility of identifying the

visual objects and connecting them in the videos. The process of obtaining the visual objects is costly

when the data keep changing. Therefore, we proposed to leverage the object detection to obtain the

visual objects automatically for frame-level filtering. However, object detection itself is unable to

identify and connect the visual objects like human. To achieve that, we proposed a hybrid method

to identify and connect the visual objects, which is further divided into local merge, propagation and

global merge. We examined the proposed method on a real-world dataset then studied two issues:

(1) whether the identifications and connections were accurate, as well as (2) how the environment

influenced the proposed method. The experimental results were promising and proved that using

detected visual objects for frame-level filtering is feasible.

Video-level. We discover a new small content set for surveillance video filtering. Surveillance

video filtering, namely surveillance event detection (SED), is important for many safety and security

applications. It aims to alarm the events from the surveillance videos. Different from classical video

filtering which extracts video content vectors from diverse sources, SED is only able to leverage the

motion contents. And the state-of-the-art content set for surveillance is made up of STIP and MoSIFT.

iii

In our study, we proposed a new content set by using dense trajectory (DT) and improved dense tra-

jectory (IDT). According to our analysis, our new content set captures both the individual motions

and crowd motions in the surveillance, which leads to higher filtering accuracy in our experiments.

Based on the new content set, we investigated how feature transformation, codebook training, en-

coding process and vector normalization influence the filtering accuracy. The corresponding findings

helped us win the TRECVID SED 2015 competition.

User-level. We propose to leverage rich content set to filter the videos. User-level filtering, namely

video recommendation, performs personalized filtering for individuals based on user collaboration

and video content vectors. Previous works combined the user collaboration with texts to filter the

videos. This usually makes the video filtering inaccurate when texts are scarce. In our study, we tried

to make user collaboration work with state-of-the-art non-textual content vectors to filter the videos.

We used diverse non-textual content vectors to represent the videos, and reproduced existing methods

over them. Through the reproduction, we found all of the existing methods have significant draw-

backs that limited the filtering accuracy. To address these problems, we proposed the collaborative

embedding regression (CER) method to perform more accurate user-level video filtering. Based on

CER, we further studied how to combine the results from multiple contents into a unified one. The

experiments revealed the high accuracy of the proposed methods in different scenarios. Additionally,

the simulation experiment showed that the filtering accuracy is improved when the texts are scarce.

iv

Declaration by Author

This thesis is composed of my original work, and contains no material previously published or written

by another person except where due reference has been made in the text. I have clearly stated the

contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance,

survey design, data analysis, significant technical procedures, professional editorial advice, and any

other original research work used or reported in my thesis. The content of my thesis is the result of

work I have carried out since the commencement of my research higher degree candidature and does

not include a substantial part of work that has been submitted to qualify for the award of any other

degree or diploma in any university or other tertiary institution. I have clearly stated which parts of

my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the policy and procedures of The University of Queensland, the thesis be made available

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has

been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s)

of that material. Where appropriate I have obtained copyright permission from the copyright holder

to reproduce material in this thesis.

v

Publications during candidature

• Xingzhong Du, Hongzhi Yin, Zi Huang, Yi Yang, Xiaofang Zhou. Using Detected Visual

Objects To Index Video Database. Australasian Database Conference (2016): 333-345.

• Xingzhong Du, Yan Yan, Pingbo Pan, Guodong Long, Lei Zhao. Multiple Graph Unsupervised

Feature Selection. Signal Processing, Vol. 120, (2016): 754-760.

• Shicheng Xu, Huan Li, Xiaojun Chang, Shoou-I Yu, Xingzhong Du, Xuanchong Li, Lu Jiang,

Zexi Mao, Zhenzhong Lan, Susanne Burger, Alexander Hauptmann. Incremental Multimodal

Query Construction for Video Search. International Conference on Multimedia Retrieval (2016):

675-678.

• Tieke He, Zhenyu Chen, Jia Liu, Xiaofang Zhou, Xingzhong Du, Weiqing Wang. An Empirical

Study on User-Topic Rating Based Collaborative Filtering Methods. WWW Journal (accepted

in 2016).

• Xingzhong Du, Xuanchong Li, Xiaofang Zhou, Alexander Hauptmann. WARD-CMU @ TRECVID

2015. Proceedings of TRECVID. (2015)

• Shoou-I Yu, Lu Jiang, Zexi Mao, Xiaojun Chang, Xingzhong Du, Chuang Gan, Zhenzhong

Lan, Zhongwen Xu, Xuanchong Li, Yang Cai, Anurag Kumar, Yajie Miao, Lara Martin, Niko-

las Wolfe, Shicheng Xu, Huan Li, Ming Lin, Zhigang Ma, Yi Yang, Deyu Meng, Shiguang

Shan, Pinar Duygulu Sahin, Susanne Burger, Florian Metze, Rita Singh, Bhiksha Raj, Teruko

Mitamura, Richard Stern, Alexander Hauptmann. Informedia @ TRECVID 2014 MED and

MER. Proceedings of TRECVID. (2014)

vi

Publications included in this thesis

Xingzhong Du, Hongzhi Yin, Zi Huang, Yi Yang, Xiaofang Zhou Using Detected Visual Objects

To Index Video Database. Australasian Database Conference (2016): 333-345. -incorporated as

Chapter 3.

Contributor Statement of contribution

Xingzhong Du
Experiment design and conduction (100%)

Paper writing (70%)

Hongzhi Yin Proof reading (70%)

Zi Huang Proof reading (20%)

Yi Yang Proof reading (10%)

Xiaofang Zhou Paper writing (30%)

Xingzhong Du, Xuanchong Li, Xiaofang Zhou, Alexander Hauptmann WARD-CMU @ TRECVID

2015. Proceedings of TRECVID. (2015) -incorporated as Chapter 4.

Contributor Statement of contribution

Xingzhong Du
Experiment design and conduction (100%)

Paper writing (70%)

Xuanchong Li Proof Reading (60%)

Xiaofang Zhou Paper writing (30%)

Alexander Hauptmann Proof Reading (40%)

Shicheng Xu, Huan Li, Xiaojun Chang, Shoou-I Yu, Xingzhong Du, Xuanchong Li, Lu Jiang,

Zexi Mao, Zhenzhong Lan, Susanne Burger, Alexander Hauptmann Incremental Multimodal Query

Construction for Video Search. International Conference on Multimedia Retrieval (2016): 675-678.

-incorporated as Chapter 5.

vii

Contributor Statement of contribution

Shicheng Xu Experiment design and conduction (50%)

Paper writing (50%)

Huan Li Experiment design and conduction (15%)

Paper writing (20%)

Xiaojun Chang Experiment design and conduction (15%)

Paper writing (10%)

Shoou-I Yu Experiment design and conduction (10%)

Paper writing (15%)

Xingzhong Du Experiment design and conduction (10%)

Paper writing (5%)

Others Proof Reading (100%)

Contributions by others to the thesis

For all the published research work included in this thesis, Prof. Xiaofang Zhou, as my principle

advisor, has provided very helpful insight into the overall as well as the technical details and research

problems; guidance for problem formulation as well as constructive comments and feedback. He also

assisted with both the refinement of the idea and the pre-submission edition.

Statement of parts of the thesis submitted to qualify for the award of another degree

None.

viii

Acknowledgments

I would like to express my special thanks to my principal supervisor, Prof. Xiaofang Zhou, for his

generous support, and his valuable and in-depth guidance for my PhD study and research. In the past

days, I learned a lot from him. With his help, I learned how to discover fresh and intriguing research

topics, how to peer-review publications, and how to write good papers. The research experience will

also be of great benefit in my future career.

I would also like to thank my associative supervisor, Dr. Yi Yang. I appreciate all his contributions

from multimedia domain, to make my Ph.D. experience stimulating and rewarding.

I am very thankful to Dr. Hongzhi Yin. He gave me very valuable advises on recommendation

research and related technical details.

ix

Keywords

non-textual, video filtering, visual objects, retrieval, recommendation

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 080109, Pattern Recognition and Data Mining, 50%

ANZSRC code: 080201, Analysis of Algorithms and Complexity, 20%

ANZSRC code: 080604, Database Management, 30%

Fields of Research (FoR) Classification

FoR code: 0806, Information Systems 50%

FoR code: 0801, Artificial Intelligence and Image Processing, 40%

FoR code: 0803, Computer Software, 10%

x

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 3

1.2.1 Frame-level Filtering . 3

1.2.2 Video-level Filtering . 4

1.2.3 User-level Filtering . 4

1.3 Contributions . 5

1.3.1 Frame-level Filtering Using Detected Visual Objects 5

1.3.2 Video-level Filtering Using Small Non-textual Content Set 6

1.3.3 User-level Filtering Using Rich Content Set 6

1.4 Thesis Organization . 7

2 Literature Review 9

2.1 Overview . 9

2.2 Visual Object Detection . 10

2.2.1 Classifier Based Method . 10

2.2.2 Neural Network Based Method . 11

2.3 Visual Object Tracking . 12

2.3.1 Classifier Based Method . 12

2.3.2 Neural Network Based Method . 13

2.4 Video Content Vector . 13

2.4.1 Textual Content Vector . 13

2.4.2 Non-textual Content Vector . 14

2.4.3 Vector Normalization . 17

xi

xii CONTENTS

2.5 Video Filtering . 18

2.5.1 Frame-level Filtering . 18

2.5.2 Video-level FIltering . 20

2.5.3 User-level Filtering . 22

2.6 Summary . 23

3 Frame-level Filtering using Detected Visual Objects 25

3.1 Introduction . 25

3.2 Problem Statement . 29

3.2.1 Preliminaries . 29

3.2.2 Method Overview . 31

3.3 Related Work . 32

3.4 Proposed Method . 34

3.4.1 Detection . 34

3.4.2 Local Merge . 35

3.4.3 Propagation . 39

3.4.4 Global Merge . 41

3.4.5 Complexity Analysis . 42

3.4.6 Running Example . 43

3.5 Experiment . 44

3.5.1 Settings . 44

3.5.2 Evaluation Plan . 49

3.5.3 Accuracy . 50

3.5.4 Efficiency . 52

3.5.5 Impact of Factor . 52

3.5.6 Analysis . 53

3.6 Summary . 55

4 Video-level Filtering Using Small Non-textual Content Set 57

4.1 Introduction . 57

4.2 Problem Statement . 59

4.2.1 Preliminaries . 59

CONTENTS xiii

4.2.2 System Overview . 60

4.3 Related Work . 61

4.4 Proposed System . 62

4.4.1 Preprocessing . 62

4.4.2 Feature Extraction . 63

4.4.3 Feature Encoding . 64

4.4.4 Model Training . 65

4.4.5 Score Fusion . 67

4.5 Experiments . 67

4.5.1 Dataset . 67

4.5.2 Evaluation Plan . 68

4.5.3 Experimental Results . 69

4.6 Summary . 72

5 User-level Filtering Using Rich Content Set 73

5.1 Introduction . 73

5.2 Problem Statement . 76

5.2.1 Preliminaries . 76

5.2.2 System Overview . 77

5.3 Related Work . 77

5.4 Proposed System . 78

5.4.1 Content Vector Generation . 78

5.4.2 Video Recommendation . 80

5.5 Experiments . 86

5.5.1 Dataset Description . 86

5.5.2 Experimental Settings . 87

5.5.3 Experimental Results and Analysis . 90

5.6 Summary . 95

6 Conclusion and future work 97

6.1 Conclusion . 97

6.2 Future work . 98

xiv CONTENTS

List of Figures

1.1 Multi-level video filtering . 2

2.1 The structure of literature review . 10

2.2 The pipeline of non-textual vector generation . 14

3.1 The data structure for supporting frame-level filtering. 26

3.2 Visual object is located by a minimum bounding rectangle on a video frame 30

3.3 The pipeline of the proposed method. 32

3.4 The revised data structure for supporting frame-level filtering. 33

3.5 Four factors prevent image matching correctly in videos. 35

3.6 Use continuity to improve matching results. 36

3.7 A running example to display how the frame-level filtering is performed 44

3.8 The benefits from unique object table and occurrence table. 54

3.9 Share comparison . 54

4.1 The pipeline of proposed video-level filtering system 60

4.2 best aDCR for PersonRuns in recent five years’ retrospective and interactive systems. 72

5.1 Implicit rating matrix for in-matrix and out-of-matrix recommendation. 76

5.2 The flowchart of exploiting rich contents to recommend videos. 79

5.3 Performance of the state-of-the-art methods in both in-matrix and out-of-matrix set-

tings. To clearly display the methods which only support in-matrix recommendation,

we shift the origin of the vertical axis to a higher position. 81

5.4 Accuracy@k of different methods under in-matrix setting 90

5.5 Accuracy@k of different methods and features in out-of-matrix setting. 91

xv

xvi LIST OF FIGURES

5.6 Out-of-matrix recommendation accuracy in the text sparsity setting. 94

List of Tables

3.1 Differences between the assistant methods where X denotes yes and × denotes no . . 27

3.2 Summary of notations . 29

3.3 Server Configuration . 46

3.4 The accuracy of object identifying . 51

3.5 The accuracy of object connecting . 51

3.6 Impact of factor . 53

4.1 Differences between normal and surveillance videos 58

4.2 Differences between IDT, STIP and MoSIFT . 63

4.3 The statistics of events on training videos . 68

4.4 Evaluations for fusion strategy . 69

4.5 Filtering accuracy with resized and original videos 70

4.6 Fusion under resized videos and original videos . 70

4.7 Ground True (GT), Positive Miss (Pmiss) and False Alarm (FP) comparison 71

4.8 Competition results in TRECVID SED 2015 . 71

5.1 The dimensions of the encoded non-textual content vectors. 79

5.2 The state-of-the-art recommender models and the corresponding content features in

use. 80

5.3 An example of the weights generated in the late fusion method when p is set to 0.5. . 86

5.4 Fusion results on different feature combinations . 92

5.5 Training efficiency of WMF-based models. 94

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

In this chapter, we give a brief introduction of the research in this thesis, including background,

problem statements, contributions, and organization of the thesis.

1.1 Background

As the video recording devices become popular, more and more videos are generated every day. The

numerous amount of the videos enriches the choices of the users but also enlarges the difficulty of

accessing useful information. For example, on Youtube1, there are 300 hours of video uploaded every

minute 2. This makes browsing all the videos then choosing the useful ones impossible. To improve

this situation, many websites provide the video filtering services whose core function is to select the

most relevant video clips from the huge repository.

The video filtering services are divided into three levels as shown in Figure 1.1, namely, frame-

level, video-level and user-level. They support different process granularities.

• Frame-level filtering leverages the annotations on the frames to generate the most relevant

video clips. It accepts a set of annotations given by the users, and filters off the frames which

do not have the given annotations. After filtering, the remaining frames are reformed into video

clips as the output;

• Video-level filtering leverages the video content vectors to filter the videos. It accepts a set

1https://www.youtube.com/
2http://www.statisticbrain.com/youtube-statistics/

1

2 INTRODUCTION

of exemplar videos as input, and extracts the content vectors accordingly. During the filter-

ing, the videos whose contents are dissimilar with the exemplar videos’ are filtered off. After

thresholding, the remaining videos are returned as output;

• User-level filtering leverages the rating matrix and video content vectors to filter the videos in

a personalized way. Different from the frame-level and video-level filtering which requires user

explicit inputs, the user-level filtering can leverage the user implicit feedbacks as input. After

filtering, the videos which the user has no feedbacks but potentially likes are returned as result.

FIGURE 1.1: Multi-level video filtering

In previous works [74, 106], all the filtering methods heavily depend on the texts associated with

the videos. For instance, the keyword bases video search is a kind of video-level filtering methods.

It requires the video providers to generate the textual descriptions for the videos, and the users to

provide the key words guiding the filtering explicitly. Obviously, when the texts associated with the

videos are sparse, the keyword based search is inapplicable. The same problem is shared by the other

text based methods. To improve the situation, exploiting the non-textual contents in the videos has

drawn considerable attention in recent years.

The widely used non-textual contents are as follows:

• Visual Object. The images of real-world objects projected in the video frames as well as their

locations and occurrence time in the videos;

1.2 PROBLEM STATEMENT 3

• Video Content Vector. The aggregated content vectors derived from the raw features extracted

from the videos. The raw feature source channels usually are:

– Audio. The audio changes in the sound tracks of the videos;

– Scene. The texture, object and scene information in the video frames;

– Motion. The changes between two adjacent frames in the videos;

• User Collaboration. The co-feedback behaviors shared by the users.

The video filtering methods on different levels exploit the non-textual contents in various ways:

• For frame-level filtering, the visual objects are exploited to replace the textual annotations.

Existing works [63, 24, 57] employ human labors to annotate the visual objects in the videos;

• For video-level filtering, the non-textual content vectors are exploited to replace the textual

content vectors. Existing works [4, 123] extract the content vectors in terms of audio, scene and

motion respectively and try to make the content set as rich as possible;

• For user-level filtering, the behavior matrix and non-textual content vectors are exploited to

perform the filtering. Existing works have already investigated the benefits from single content

type such as MFCC [78] and CNN [42], as well as the benefits from fusion of CNN and text

[124].

In summary, the research of multi-level video filtering using non-textual contents is valuable. In

the next section, we will describe the problems we addressed in our study.

1.2 Problem Statement

The data sparsity problem suffers the availability of video filtering, even though the non-textual con-

tents have been introduced recently. In the following parts, we will explain the specific problems for

each level one by one.

1.2.1 Frame-level Filtering

The frame-level filtering aims at remaining the frames which meet the constraints given by the users.

The applications widely exist in video editing, surveillance, retrieval and so on [57, 24, 103, 63].

4 INTRODUCTION

When the users provide the visual objects as the constraints, the filtering should remain the frames

which contain these objects simultaneously. This requires all the visual objects are annotated in

advance, which is infeasible at present. Existing works [57, 24, 115] employ human to obtain the

visual objects on each frame. As the growth rate of videos is unprecedentedly high, the manually

annotated visual objects are usually scarce on large-scale or dynamic data. In order to improve that,

there calls for a more automatic way to discover the visual objects on the frames. Accordingly,

we try to introduce object detection instead of human annotation in our study [27]. However, the

object detection only returns the object occurrences on each frame. It cannot make the visual objects

identified and connected as human. We have reviewed some methods [69, 114] which could identify

or connect the visual objects. But none of them can support identifying and connecting at the same

time.

1.2.2 Video-level Filtering

Video-level video filtering has been studied for many years as video retrieval. It aims at returning the

most relevant videos according to their content relevances to the exemplars. The applications widely

exist in video classification, video caption, multimedia event detection and so on. Existing works

[4, 123] try to make the content set as rich as possible. This is achieved by extracting content vectors

from multiple sources with different methods [4, 123, 109, 116]. However, the rich content set is not

always available. For surveillance scenario, as the videos are muted, untrimmed and full of noise, the

applicable content set is usually small. For example, the state-of-the-art retrospective system [14] only

equips with STIP [61] and MoSIFT [12] for surveillance. Obviously, the smaller content set limits

the performance of the surveillance video-level filtering. Recent work in [123] introduces a more

powerful content, namely improved dense trajectory (IDT) [109], into the surveillance. However,

IDT fails to improve the filtering accuracy alone. In addition to that, the situation is not improved

even though IDT is fused with STIP and MoSIFT.

1.2.3 User-level Filtering

User-level video filtering generates outputs based on the user implicit feedbacks [47, 87] and video

content vectors [110]. It aims at generating a personalized top-k videos which has not been watched

for each user. To facilitate the learning process, the user implicit feedbacks are transformed into rating

1.3 CONTRIBUTIONS 5

matrix. According to whether the unwatched videos are in the rating matrix, the filtering operates in

two scenarios [106]. The first scenario is in-matrix where the unwatched videos are in the rating

matrix but not rated by the target users. The filtering results are dominated by the rating matrix. The

second scenario is out-of-matrix where the unwatched videos are not in the rating matrix. The filtering

results are dominated by the video content vectors. Most of the existing methods [78, 110, 42, 124]

only focus on how to leverage the content vectors to improve the in-matrix filtering where the rating

matrix has a considerable amount of ratings. The corresponding findings are not very helpful for out-

of-matrix filtering where the rating matrix is sparse or inapplicable [106]. Therefore, how to improve

the out-of-matrix filtering with single content type and how to fuse multiple contents to achieve higher

accuracy are still challenging.

1.3 Contributions

1.3.1 Frame-level Filtering Using Detected Visual Objects

Object detection discovers the visual objects on the video frames, but it fails to identify and connect

them to support frame-level filtering. Some assistant methods can overcome part of the drawbacks but

they cannot provide the complete support for identifying and connecting. To improve this problem,

we proposed a hybrid method which consists of matching-based and tracking-based methods to assist

object detection. The hybrid method has three steps, namely local merge, propagation and global

merge. They have following responsibilities in our hybrid method:

• Local merge identifies the visual objects discovered by object detection locally;

• Propagation connects the visual objects in the videos locally;

• Global merge identifies and connects the visual objects from different videos globally.

Our experiments show that the proposed hybrid method has achieved higher overall accuracy than

the existing assistant methods. It costs less time than object detection and discovers more object

occurrences for frame-level filtering.

6 INTRODUCTION

1.3.2 Video-level Filtering Using Small Non-textual Content Set

In this study [25, 26], we try to figure out why improved dense trajectory (IDT) performs poor in the

surveillance scenario. We find that it is because IDT applies dense sampling and camera removal.

These properties also make IDT fail to fuse with STIP and MoSIFT. Therefore, in our work, we

choose another content type, dense trajectory (DT), to fuse with IDT. With the new content set, we

carefully examine the impacts from different factors. The significant findings are: (1) the new content

set is much more accurate than the old content set which is made up of STIP and MoSIFT; (2) the

surveillance videos must be resized before feature extraction, otherwise the performance drops a lot;

(3) whiten principle component analysis (whiten PCA) is beneficial to the filtering accuracy; (4) the

event durations influence the filtering accuracy. According to above findings, we implemented a

retrospective system to perform video-level filtering on the surveillance videos. The proposed system

helped us obtain the first place in the TRECVID-SED competition in 2015.

1.3.3 User-level Filtering Using Rich Content Set

In this study [28], we firstly try to figure out the real limitations of the existing method [47, 87, 106,

78, 110, 42]. We reproduce them on our dataset and evaluate their accuracies in both in-matrix and

out-of-matrix scenarios. Our reproduction shows that none of the existing methods perform well in

both in-matrix and out-of-matrix scenarios with the non-textual content vectors. To overcome the

limitations, we propose the collaborative embedding regression (CER) method in our work. CER

performs well in both scenarios compared to the existing methods. In addition to that, we investigate

how to fuse multiple contents to achieve higher filtering accuracy in the out-of-matrix scenario. We

study both early and late fusion strategies, then propose a new late fusion strategy in our work. The

experiment shows that the proposed late fusion strategy achieves the highest accuracy compared to

average, learning-to-rank and early fusion strategies. Based on that, our simulation experiment indi-

cates that our findings make the user-level filtering more accurate even though the texts are scare or

inapplicable.

1.4 THESIS ORGANIZATION 7

1.4 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we review the fields of visual object

detection, video content vectors and filtering methods on different levels. In Chapter 3, we analyze

the drawbacks of existing works on frame-level filtering, then present our improvement in this area.

In Chapter 4, we analyze the drawbacks of the existing content set and present our improvement for

surveillance filtering. In Chapter 5, we describe and display the reproduction of the state-of-the-art

user-level filtering methods, then figure out none of these methods can achieve the highest accuracy

in both scenarios. We therefore propose the collaborative embedding regression (CER) method to

overcome the limitations, and further propose a new late fusion strategy. Finally, the conclusions and

the future research directions suggested by the thesis are given in Chapter 6.

8 INTRODUCTION

Chapter 2

Literature Review

In this chapter, we review the literatures related to multi-level video filtering, which includes the

non-textual content generation and existing works for the filtering.

2.1 Overview

The key components of video filtering are the non-textual content generation and the methods. For

frame-level filtering, the visual objects need to be generated by detection. Therefore, we will review

how the existing works detect the visual objects from the frames. In addition to that, we will review

how the existing works connect the visual objects by tracking. For video-level filtering, the video

content vectors need to be generated. Accordingly, we will review the literatures about how to gen-

erate the content vectors for the videos. Since our video-level study focuses on the surveillance, we

will also review how to perform video-level filtering for surveillance. For user-level filtering, the rat-

ing matrix and content vectors need to be generated. Since the generation of rating matrix is simple

and the generation of content vectors is overlapped with video-level filtering, we will skip this part.

Alternatively, we will focus on reviewing the main user-level filtering methods which include collab-

orative filtering, content-based filtering and hybrid filtering. The organization and connection of the

literature review is illustrated by Figure 2.1. In details, in Section 2.2, we will review the literatures

about object detection and tracking; in Section 2.4, we will review the literatures about the video con-

tent vector generation; in Section 2.5, we will review the literatures about multi-level video filtering

methods covered by this thesis.

9

10 LITERATURE REVIEW

FIGURE 2.1: The structure of literature review

2.2 Visual Object Detection

Object detection is a popular research topic in computer vision area. It aims at discovering objects

from images and videos by their appearances. Here, in order to differentiate the concept of object in

ontology, we use visual object instead in the following statements. Recent years, as the neural net-

works become popular, the detection method is gradually divided into two branches. The first branch

is classifier based method which obtains handcrafted feature for learning and uses linear classifier

as detector. The second branch is neutral network based method which integrates feature learning

and detector learning into one uniform framework. In this section, we will briefly review the major

progress in these two branches.

2.2.1 Classifier Based Method

The classifier based method treats the visual object detection as classification. The typical detection

process has several steps [105]: firstly, the train images are spliced into many small patches; secondly,

the handcrafted visual features are extracted from the small patches; thirdly, the classifier is trained

on the training set where the positives are the patches having large overlap with the ground truth and

the negatives are the patches having no overlap with the ground truth; finally, after the test images are

sliced, extracted and classified, the positive results are suppressed to generate the final result.

2.2 VISUAL OBJECT DETECTION 11

[105] proposed a early system for detection. The classifier in use was AdaBoost [34] and the

handcrafted features in use were simple rectangle features. [105] has several limitations. The first

limitation is that the rectangle features do not have scale, transformation and rotation invariant prop-

erties. This makes detection inaccurate in many cases. The second limitation is that the classifier

in use is a decision tree based method. It is not efficient with high dimension feature vector. To

overcome above limitations, new handcrafted features such as color histogram, SIFT [69], SURF [7],

HOG[18], ORB [91] and etc. were introduced into visual object detection [70]. [31] proposed a

structural classifier, namely discriminatively trained part-based model (DPM), to achieve more ac-

curate visual object detection. The base classifier is support vector machine (SVM) [11]. Instead

of treating the image patches as one object, the authors in [31] treat the images patches as a bag of

decomposed parts. Through training on separate parts and the whole image patches, the proposed

DPM performs detection more accurately when the objects are occluded. [58] proposed a method to

detect objects in the videos. It first trains the model on the ImageNet dataset. Then, it detects objects

and tracks the high confident objects in the videos. Then, it updates the model by the newly detected

and tracked objects. Compared to previous methods which only performed training on the images,

the method in [58] gradually update the model to adapt the new changes from the videos. In object

detection, some image patches may belong to the same objects. To suppress them into one image

patch, there usually applies a non-maximum suppression (NMS) after classification. [75] leverages

integral image to accelerate the NMS process efficiently.

Recent researches on visual object detection focus on how to generate accurate object proposals.

Compared to image patches, the object proposals indicate there exist objects and they are usually of

smaller amount. [102] proposed a selective search method. Instead of splicing images into many

patches, selective search leverages low-level color features and to filter object proposals hierarchi-

cally. [15] proposed an efficient method to generate the object proposals. It transforms the image

patches into HOG space and encode the features into binary code. Together with an efficient selection

algorithm, the speed of generating the object proposals can reach 300 fps. [56].

2.2.2 Neural Network Based Method

The neural network based method tries to integrate different parts of detection pipeline into an end-to-

end learning process. It is different from the classifier based method which divides the detection into

four steps and improve the accuracy of each step independently. The early version of neural network

12 LITERATURE REVIEW

method was proposed in [100]. It leveraged pretrained CNN model based on ImageNet dataset [92]

and append a MBR regression layer to generate MBR. This very first work shows promising result

on object detection. A more accurate work was proposed in [86].It proposes a faster region-based

convolutional neural network (R-CNN). Compared to [100], R-CNN perform co-training on object

recognition and detection, which shows state-of-the-art detection accuracy. Besides, some recent

works try to locate objects not with MBRs. [35] uses the features learned by CNN to perform image

segmentation. In this direction, the pixels which are labeled as same object classes are combined to

represent the objects. The follow-up work in [125] improves the accuracy by training conditional

random field as recurrent neutral network.

2.3 Visual Object Tracking

Visual object tracking aims at locating given objects in continuous video frames [121]. It can perform

accurate localization even though the tracked objects have large transformation. Like visual object

detection, the tracking method can be also divided into two branches, namely, classifier based method

and neural network based method. In this section, we will briefly review the major literatures in this

area.

2.3.1 Classifier Based Method

Classifier based method treats the input image as positive exemplar and tries to separate it from the

background. Nowadays, some works can achieve real-time tracking. [37] achieved real-time tracking

by a novel on-line AdaBoost algorithm method. It treats the given visual object as positive exemplar

and the image patches around as the negative exemplar. Together with local binary pattern features,

its tracking speed is very fast. However, the method in [37] is not very accurate when the objects

in the videos are moving too fast. This problem is called tracing drift. Multiple instance learning

(MIL) method was proposed in [6]. MIL crops some image patches which have large overlap with

the given visual objects as positive exemplars. Since the positives are enriched, MIL is better than the

method in [37] on handling tracking drift. Some works try to improve the tracking by automatically

providing the input. STRCUK tracker is proposed in [38], it leverages the structural outputs from

multiple kernels to improve the drift problem.

The object tracking becomes more and more robust recently. However, there is still a common

2.4 VIDEO CONTENT VECTOR 13

problem shared by all the object tracking methods. That is, they cannot stop when the given visual

objects disappear in the videos [121, 114]. Accordingly, some methods leverage object detection to

provide the input for the object tracking, namely, tracking-by-detection [9]. They use a frame counter

to decide whether the tracking should stop when the detection has no results for several frames. In

[9], a tracking-by-detection method was proposed to track the pedestrians in the videos. This method

leverages detection to provide objects for the tracking. In order to ensure the accuracy, the proposed

method calculates the similarities between the detected objects and tracked objects on each frames and

applied a greedy strategy to match the detected objects and the tracked objects. With some common

technique tricks, the method in [9] can accurately track the pedestrians in the videos. [9] is enhanced

in [51] by learning positives from the tracking results.

2.3.2 Neural Network Based Method

As the convolutional neutral networks (CNN) become popular in the computer vision community,

numerous CNN based tracking methods have been proposed in recent years. Deep learning tracking

method is proposed in [112]. It leverages stacked de-noising auto-encoder (SDAE) to learn the object

appearance. Since SDAE models the object appearances robustly based on a large mini image dataset,

the tracking accuracy is improved significantly. In [66], the robust tracking is achieved by on-line

convolutional neural network. Like MIL in [6], [66] crops multiple instances around the positive and

use these new instances as positives to train the CNN model. A recent comprehensive comparison

between different trackers could be found in [114].

2.4 Video Content Vector

2.4.1 Textual Content Vector

Traditional content-based video filtering systems [20, 110, 36] capture the video contents by texts.

The textual contents often include titles, descriptions, reviews as well as meta information for the

videos. Based on these texts, two kinds of textual features were extracted frequently: word fea-

tures and meta features. To construct the word vector, the title, description and reviews associated

with the given video are concatenated into one virtual document. After removing stop words and

stemming [106, 110], the top discriminative and meaningful words are selected by TF-IDF value to

14 LITERATURE REVIEW

compose the word vectors. The meta vector stores the meta data about the video such as its producers,

countries, languages, release dates, actors, genres and so on [2, 36, 39]. The top discriminative meta

items are selected by global frequency to form the codebook. Unlike the word vector where a word

may appear more than once, the meta item in the meta vector just appears once. Accordingly, the

meta vector is binary and usually very sparse.

2.4.2 Non-textual Content Vector

There are three components to form the non-textual content vectors, namely, raw features, encoding

method, and vector normalization. The pipeline is illustrated in Figure 2.2. In the following parts, we

will describe the function of each component.

FIGURE 2.2: The pipeline of non-textual vector generation

Raw Feature

In addition to the textual features, videos themselves also contain rich content information. Yang et.

al [118] and Deldjoo et. al [21] extract the normalized color histogram and aural tempos to represent

the videos. However, the experimental results reported in [118, 21] show that these features are not

significantly effective in improving video filtering. This is because these features fail to distinguish

between videos that share similar colors but are unrelated in content. For example, given a video

about the sky and another video about the sea, the normalized color histogram will result in a high

2.4 VIDEO CONTENT VECTOR 15

similarity between the two videos due to the common color blue. In this case, it is very likely that

sky-related videos will pass the filtering to the users who like seas.

The limitations of the normalized color histogram and aural tempos do not mean that all non-

textual video features are useless for video filtering. In fact, some non-textual features have been

proven to be effective in recent video filtering applications [74, 104, 4, 109, 96]. The representative

features are MFCC, SIFT, IDT and CNN. We will review their functions and extractions as follows.

1. MFCC (mel-frequency cepstral coefficients) [74] measure the audio changes in sound by

computing the cosine values from multiple channels between adjacent time points. MFCC

features can be extracted through the following steps [4]: 1) down-sampling the audio track of

a video to 16 kHz with 16 bit resolution; 2) using a window size of 25 ms and a step size of 10

ms to set the MFCC extractor and setting the number of channels to 13; and 3) concatenating

MFCC and their first and second derivatives as well as energy to form a 40 dimensional feature.

Each time window will obtain a feature. Accordingly, an audio file will result in a feature array

after extraction while the length of the array is proportional to the audio duration.

2. SIFT (scale invariant feature transform) [69] captures the texture information of images.

Since SIFT features can match the same visual objects of different scales [69], it has been

widely applied to scene classification [104] and image retrieval [50]. There are two kinds of

SIFT variants widely used nowadays. They are OSIFT (opponent SIFT) [104] and MoSIFT

(motion SIFT) [12]. OSIFT transforms the original RGB color space by light color change

and shift, which provides more robust SIFT features. An OSIFT feature has 384 dimensions.

MoSIFT leverages the optical flow between frames to select SIFT features so as to capture some

motions in the videos. A MoSIFT feature has 256 dimensions. For both OSIFT and MoSIFT,

the length of feature array after extraction is uncertain. Rich texture information and serious

motions will result in long length.

3. IDT (improved dense trajectory) [109] captures motion information in videos. IDT currently

is the state-of-the-art handcrafted motion features. Its early version, dense trajectory, was pro-

posed in [107]. The key idea is to use dense sampling key points instead of sparse sampling

key points to capture the motion information. IDT improves DT in two folds: first, it uses

homography to wrap the camera motion from the optical flow; second, it uses weakly human

16 LITERATURE REVIEW

detectors to refine the camera motion. IDT uses 2D normalized trajectory, HOG [18], HOF [19]

and MBH [107] to describe motions. This makes an IDT feature has 426 dimensions.

4. CNN (convolutional neutral network) [56] captures the semantic information in images. Re-

cently, CNN has shown its advantage over the other models in the object classification compe-

tition [93]. Some recent research shows that using a pre-trained CNN on ImageNet to extract

features from images is beneficial for video retrieval [116]. Inspired by its superior performance

in video search, we first sample frames from a video and then use the pre-trained CNN model

from the VGG group [96] to extract visual features from the pool5 layer. The original pool5

features are tensors. We apply spatial pooling to transform tensor into vector, following [41].

Thus, each sampled frame has 49 CNN features with 512 dimensions.

Unlike MFCC, MoSIFT and IDT which take the whole audio or video file as input, OSIFT and

CNN are applied to the frames sampled from the video. Following [4, 116], 5 frames should be

fetched uniformly every second from the video. After that, there is usually a normalization process

on the raw features. The state-of-the art method is SSR (signed squared root), we will introduce it

later in normalization part.

Feature Encoding

After feature extraction, each video obtains an array of features. These arrays are not ready because

video filtering needs them to be vectorized. Feature encoding is the process to transform the array

into vector by quantizing the features. Until now, there are three state-of-the-art feature encoding

methods. They are bag-of-word (BOW), fisher vector (FV) and VLAD. We will introduce them by

the publish date from early to late.

1. Bag-of-Word (BOW) [65] quantizes the features by the visual words which are usually gen-

erated by k-means clustering algorithm. BOW simulates the word vector. It calculates the

Euclidean distances between features and visual words, assigns the features with the nearest

cluster index, then counts the frequency in the corresponding bins. The assignment is further

divided into hard assignment [65] and soft assignment [67]. The hard assignment only assigns

the nearest cluster index while soft assignment assigns k nearest cluster indices. Given K cen-

troids, the dimension of the encoded vector is K.

2.4 VIDEO CONTENT VECTOR 17

2. Fisher Vector (FV) [82] quantizes the features by Gaussian mixture model (GMM). It firstly

generates the GMM by EM algorithm on the sample data, then calculates the derivatives with

regard to the means and variances of GMM to concatenate a vector given the feature array. The

variances of GMM for fisher vector is a symmetry matrix. In practice, this increases the com-

putation dramatically. [94] leverages PCA to make the variances into diagonal matrix which

increases the efficiency significantly. In later work [80], whiten PCA is applied to improve the

recognition accuracy. Compared to BOW, FV’s dimension is proportional to both the number

of Gaussian components and the feature dimension. Given K Gaussian components, D dimen-

sional features and half feature dimension reducing by PCA, the dimension of a FV vector is

KD.

3. VLAD [50] quantizes the features by centroids which are usually generated by k-means cluster-

ing algorithm. However, instead of recording the assignment information, VLAD concatenates

the differences between the features and the centroids to form a vector. Like FV, VLAD also

applies PCA to reduce the feature dimension to half. Given K centroids and D dimensional

features, the dimension of a VLAD vector is KD
2

.

2.4.3 Vector Normalization

After feature encoding, another important step for video content vector generation is normalization.

For different encoding methods, there are different ways to normalize the vectors. In this paper, we

will introduce the state-of-the-art normalization methods.

1. L1 normalization [119] makes the sum of the values in the vector equal to one. It is usually

applied on the content vector derived by BOW, because it generates histogram-based vector.

The similarity between two BOW vectors is therefore measured by chi-square distance.

2. Signed Square Root (SSR) normalization [5] makes the values in the vector squared by the

absolute value but remain the signs. SSR are usually applied on raw features and encoded

content vectors. After SSR, there is usually following the power normalization.

3. Power normalization [82] makes the length of the vector equal to one. This is because FV

and VLAD generate gradient-based vectors. The similarity between FV or VLAD vectors is

therefore measured by cosine distance.

18 LITERATURE REVIEW

4. Inner normalization [80] is a variant of power normalization. Instead of making the length of

whole vector equal to one, inner normalization separate the whole vector into several parts and

make their length equal to one. The similarity is still measured by cosine distance.

2.5 Video Filtering

2.5.1 Frame-level Filtering

The frame-level filtering using non-textual contents has been studied for many years in video database

area. The research mainly focuses on designing new filtering queries to make a better use of the video

data. Until now, three query types have been proposed in this area, namely, low-level query, spatial-

temporal query and semantic query [24]. The low-level query is equivalent to content-based video

retrieval [83]. Given some example videos, the query leverages the low-level visual and audio features

to search the similar videos [46]. In recent years, the low-level query has been improved a lot by the

semantic feature [56][35], motion feature [109] and feature encoding methods [82][50]. However,

the granularity of low-level query is not low. That is to say, if the user want to search some objects

in the video database, the low-level query cannot provide accurate evidences. According to this, the

spatial-temporal query is proposed to achieve lower granularity [53]. It is the query whose condi-

tions include any combination of directional relations, topological relations, 3D relations, external-

predicate, object-appearance, trajectory projection, and similarity-based object trajectory [24]. In the

spatial-temporal query, the user is allowed to use the visual objects as the input. Together with the

spatial and temporal relations, arbitrary segments of videos can be returned in response to user queries

[24]. The semantic query is a high-level query type. In previous works, the semantic query is usually

decomposed into some sub-queries which are made up of the low-level query and the spatial-temporal

query [1][83].

Many frame-level filtering systems using non-textual contents have been proposed in the past.

OVID is proposed in [77]. OVID uses video sequences as the input and designs VideoSQL for the

users to retrieve other video clips. However, OVID does not support spatial-temporal query. [33]

proposes a Query by Image and Video Content (QBIC) system. Essentially, QBIC only supports the

low-level query for the video frames. It achieves querying videos by using the most representative

frames from the video shots. However, QBIC does not support spatial-temporal query either. In

2.5 VIDEO FILTERING 19

[1], the Advanced Video Information System (AVIS) is proposed. It uses the frame segment tree to

organize the video sequences and a set of arrays to store the objects, events and their associations.

It supports the semantic query and the spatial query but it only accepts texts as the query input. A

content-based video query language (CVQL) is proposed in [57]. CVQL treats the objects as points

and express the spatial relations by distance or motion. It also designs indices to accelerate the

query processing. BilVideo is proposed in [103]. It has three modules, namely, fact-extractor, video-

annotator and object extractor, for assisting users to extract the information. These modules extract

the spatial-temporal relations between objects, the semantic data from video clips and the salient

objects from video keyframes respectively. Therefore, BilVideo can support all the three query types.

Besides that, BilVideo can return arbitrary segments of videos as the results compared to QBIC, AVIS

and OVID. It is worth noting that all these systems depend on user annotations to extract information

from the videos. BilVideo even needs the users to set the threshold to extract the saliency objects.

Recent years see a increasing tendency to leverage computer vision techniques to identify objects

in the images automatically. The related techniques are object recognition and object detection. The

object recognition indicates which classes are the images belonging to [56], while the object detection

locates the objects in the images then recognizes them [31]. Object recognition gets a significant im-

provement by Deep Convolution Neural Network (DCNN) [56][96] in recent years’ ImageNet com-

petition [92]. Some researchers even claim their models can excel human on the ImageNet Dataset

in terms of predicting top-5 annotations [40]. However, the success in object recognition does not

improve the object detection significantly [100]. It is because the object detection not only needs to

recognize the objects but also needs to locate them in the images. Some researchers divide object

detection into localization and recognition. The localization only focuses on which regions in the

images have objects [15]. After that, the recognition can predicts the labels based on the images from

localization. It is worth noting that all these mentioned methods are proposed and evaluated on the

images datasets. When they are transferred to video datasets, the accuracy drops significantly [58].

The superficial reason is that the state-of-the-art detection tools can not detect the objects continu-

ously on the video datasets [58], while the actual reason is that the image for research have better

quality than the frames from videos on average. To overcome the limitations, connecting the visual

objects by leveraging the spatial-temporal continuity is necessary. Therefore, some researchers design

the track-by-detection tracker to connect the visual objects discovered by object detection [9]. The

process firstly uses detector to get the objects’ positions then tracks them in the following frames.

20 LITERATURE REVIEW

But the tracking-by-detection trackers have the same problem as the general trackers. They cannot

stop tracking automatically when the objects already disappear. It means they will connect the visual

objects wrongly for several frames [9]. Such behavior is fine in the tracking benchmark [114] because

the objects in the corresponding test videos seldom disappear for a long time. However, in the real

world videos, the duration of object disappearance is uncertain. Simply performing such tracker will

generate a lot of false object occurrences into the frame-level filtering process.

2.5.2 Video-level FIltering

Video-level filtering using non-textual content vector has been also studied for many years in multi-

media and computer vision area. It has a lot of applications, such as action recognition [107], video

classification [52], event detection [116] and so on. The research hotspots are content vector genera-

tion [82, 50], filtering model [29, 11, 52] and multiple content fusion [4, 117, 123]. The content vector

generation has been discussed in Section 2.3. In this section, we mainly review the recent works on

filtering model and multiple content fusion.

To filter the videos with content vector, the filtering models need to accept content vectors as

input and assign scores to the videos for ranking purpose. The widely used filtering models are

support vector machine (svm) [29, 11], ridge regression [123] and neutral networks [52]. Among

them, svm and ridge regression are linear model while neutral networks are non-linear model. At

beginning of the video-level filtering, only linear models and BOW vectors are available for large

scale video data [108]. To make the linear model aware the non-linear pattern in the content vectors,

the chi-square distances between content vectors are precomputed and stored in a kernel matrix [108].

After that, svm or ridge regression is applied on the kernel matrix to train the filtering model [108, 4].

The difference between the linear models is that, svm [29] tries to separate the exemplar videos and

the background videos, while ridge regression tries to assign high scores to the exemplar videos. The

state-of-the-art video-level filtering methods changed after FV and VLAD were proposed. FV and

VLAD vectors are of high dimension so they can approximate the complex non-linear relations in

a linear space. Under this direction, linear svm [29] has been widely used. Recent tendency tries

to use convolutional neural networks (CNN) to filtering the videos [52, 116, 97]. Compared to the

traditional methods, the functions of feature extraction and encoding are gradually replaced by CNN

[56]. CNN has multiple convolutional layers to perform non-linear learning but its last layer is linear

for filtering purpose.

2.5 VIDEO FILTERING 21

Multiple content fusion is another hotspot. As we introduce in Section 2.3, there are multiple

content vectors extracted for representing the videos [4, 109, 116]. However, the filtering models

we introduced are naturally oriented to single content type. Accordingly, many studies on multiple

content fusion has been conducted in recent years [17, 76, 99]. Based on existing works, there are two

branches of fusion strategies, one is early fusion which applies fusion on the inputs of the filtering

models, and the other one is late fusion which applies fusion on the outputs of the filtering models.

The simple form of early fusion is summing the kernel matrices up. It is applied in the system

proposed in [60]. Another way to perform early fusion is to learn a shared space of multiple content

vectors [76, 99]. The simple form is concatenating different content vectors into big vectors, then

feeding the big vectors into the existing filtering models. More complicated models are proposed in

[76] and [99]. In [76], various neural networks structures were proposed to perform early fusion.

The most effective design is to establish a neural network for each content type and add a canonical

component analysis (CCA) layer on the top of all the neural networks to perform early fusion. In [99],

the shared space was learned by restricted Boltzmann machine (RBM). Compared to the supervised

model in [76], RBM is an unsupervised model and uses contractive divergence (CD) [43] to train the

model rather than back propagation.

The simple form of late fusion is average fusion. It collects the scores derived from different

features and averages them to obtain the final score. It is fast and it does not modify filtering model as

the early fusion. A enhanced version of average fusion is proposed in [59]. It treats the scores from

early fusion as one score source during the calculation. Learning-to-rank [10] is the most popular

late fusion method nowadays. It treats the scores derived from different content vectors as the new

features. Then, it applies svm or regression to weight the scores from different content vectors. It has

been widely used in document retrieval. In [17], a feature correlation tree is constructed to model the

relations between different content vectors. Then, conditional random field method was applied on

the tree to perform the late fusion.

Recent studies [17, 4, 60] show that both fusion strategies push the video-level filtering accuracy

in to a high level. Sometimes, the high accuracy means the highly ranked ones could be used as

exemplar videos. This encourages the studies on how to leverage the highly ranked videos to improve

the accuracy further, which are called pseudo relevance feedback (PRF) [60, 123].

22 LITERATURE REVIEW

2.5.3 User-level Filtering

The user-level filtering, namely personalized recommendation, exploits rating matrix and video con-

tent vectors to perform filtering. It aims to generate personalized top-k videos for each user. The rating

matrix is derived from user implicit feedbacks [47, 87], while the video content vectors are same as

those used in video-level filtering methods. The rating matrix records the user behaviors on the videos

such as likes and clicks [47] and transforms these behaviors into binary values. According to whether

the videos are included by the rating matrix, the user-level filtering can be further divided for two

scenarios: in-matrix and out-of-matrix. In the in-matrix scenario, the filtering methods generate the

top-k videos which have not been rated by the target user but have been rated by other users [106].

Based on the co-rating behaviors from similar users, state-of-the-art methods [47, 106, 78, 110] use

collaborative filtering (CF) to generate the personalized recommendation. In out-of-matrix scenario,

the filtering methods generate top-k new videos that have not been rated by any user [106]. In this

scenario, CF-based methods are ineffective, whereas content-based methods perform well.

Weighted matrix factorization (WMF) [54] and Bayesian personalized ranking (BPR) [87] repre-

sent the state-of-the-art user-level filtering methods in in-matrix scenario. Both of them are matrix

factorization models and are derived from collaborative filtering (CF). They learn a latent vector to

predict each user’s rating on each item, for each user and item in turn, and then select the top ranked

items with the highest predicted ratings. The major difference between them is the optimization ob-

jective. The WMF model [54] learns the latent factors by minimizing the rating prediction loss on

the training data, while the BPR model [87] learns the latent factors by preserving the personalized

rankings. Recently, both WMF and BPR were extended to incorporate content features, so they can

learn a latent vector to represent both in-matrix and out-of-matrix items, and hence be applied to

both in-matrix and out-of-matrix scenarios. The representative WMF-based models include collabo-

rative topic regression (CTR) [106], deep content-based music recommendation model (DPM) [78]

and collaborative deep learning (CDL) [110]. CTR and CDL only integrate the textual features of

items, while DPM only considers non-textual features. The representative BPR-based models are

visual Bayesian personalized ranking (VBPR) [42] and collaborative knowledge base embedding

(CKE) [124]. VBPR is designed to incorporate visual features, and CKE fuses both structural and

non-structural features from the knowledge base.

2.6 SUMMARY 23

2.6 Summary

In this chapter we reviewed some related research areas to our thesis, including visual object detection

and tracking, video content vectors as well as video filtering methods from different levels. We notice

the limitations of the existing methods from different levels even though the non-textual contents are

in use, and we try to overcome the limitations in our study. In the next three chapters, we will describe

how we improve the multi-level video filtering using the non-textual contents.

24 LITERATURE REVIEW

Chapter 3

Frame-level Filtering using Detected Visual

Objects

3.1 Introduction

There exist numerous visual objects in the videos. They not only have various appearances but also

associate with accurate time information within the videos. These properties make the frame-level

filtering with visual objects return more precise results [53, 24], which is different from the low-level

filtering [44, 77] and the semantic filtering [83, 120].

To manage the visual objects for frame-level filtering, existing works usually maintain two tables

simultaneously as Figure 3.1: one is the unique object table which stores the globally identified objects

appear in the videos, the other one is the occurrence table which stores the occurrences of the globally

identified objects in the videos [57, 22, 63, 49]. Ideally, all the occurrences should be connected to

the identified objects. With these connections, the frame-level filtering is easy to implement: given a

set of visual objects, the filtering process firstly performs lookup in the unique object table; if all the

given visual objects are hit, the filtering process will fetch the frames according to the connections

and merge the adjacent frames into video clips.

In previous works [57, 22, 63, 49], the construction of these two tables is a top-down process:

first, experts are hired to generate the unique object table; second, more labors are hired to identify

the unique visual objects and connect their corresponding occurrences in the videos; third, the connec-

tions are gathered to generate the occurrence table. After the top-down process, the globally identified

objects are stored by the unique object table, while their occurrences as well as the connections are

25

26 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

stored by the occurrence table.

FIGURE 3.1: The data structure for supporting frame-level filtering.

There is one major limitation that all the existing works [57, 22, 63, 49] have. That is, the construc-

tion process of these two tables heavily depends on human labors [23, 53]. It means that, every time

new visual objects or new videos appended into the filtering system, enormous human annotations on

the videos should be conducted to update these tables. Obviously, it is inefficient for obtaining these

two tables on the real world large-scale dynamic video datasets. There requires a more efficient way

to help the frame-level filtering get rid of intensively labeling.

Recent years’ progress on object detector has shown that machine is very possible to locate visual

objects as precise as human in the near future [9, 48, 86]. Accordingly, one promising way to im-

prove the efficiency is using the detector instead of human labors to annotate visual objects as much

as possible. However, it is worth noting that precise detector is not enough to relieve labors from

annotations. This is because the detector has two drawbacks compared to human: (1) detector is un-

able to identify the visual objects in the videos [9], which is inappropriate for generating the unique

object table; (2) it also fails to connect the object occurrences in the continuous frames [9, 58], which

decreases the number of true occurrences in the occurrence table.

According to existing works, there exist three assistant methods to equip object detection with

identifying or connecting. They are recognizing-based, matching-based and tracking-based methods.

According to Table 3.1, their respective functionalities are explained as below:

3.1 INTRODUCTION 27

• Recognizing-based method leverages the recognized information to identify and connect the

visual objects. For example, if two car plates are detected and recognized to have the same plate

number, they will be identified as the same. The limitation of the recognizing-based method is

that the recognized information is not always reliable and available.

• Matching-based method leverages low-level visual features to identify and connect the visual

objects. Compared to recognizing-based method, it is more versatile and it performs well when

the visual objects are clear in the videos. The limitation of matching-based method is that it

performs bad when the visual objects are blurred, transformed or occluded.

• Tracking-based method leverages the spatial-temporal continuity to connect visual objects.

The tracking-based method accepts a visual object and its location as input. It connects the

occurrences of the same object within the videos. When the visual objects are blurred, trans-

formed or occluded, it performs better than matching-based method. However, the tracking-

based method has one non-negligible drawback. That is, the tracking-based method cannot

stop connecting when the target visual object disappears.

TABLE 3.1: Differences between the assistant methods where X denotes yes and × denotes no

Method Connect Identify Precision Recall

human X X very high very high

recognizing X X high very low

matching X X high low

tracking X × very low high

our method X X high high

In addition to the functionalities, each method’s connecting accuracy is different. The human

annotation obviously achieves very high accuracy in terms of precision and recall. Recognizing-based

and matching-based methods have high precision but their recalls are quite low. On the contrary, the

tracking-based method achieves high recall but its precision is very low. Since the drawbacks of each

assistant method is too significant, there calls for a method which can achieve both high precision and

recall.

28 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

Based on the above analysis, we propose a hybrid method to generate the unique object table and

the occurrence table in our work. The proposed method blends the matching-based and tracking-

based methods to identify and connect visual objects based on object detection. The process has three

steps. The first step is local merge. It begins with applying the detector on the frames to get the visual

objects from each video. Then, the detected visual objects are identified locally by the matching-based

method. The second step is propagation. It connects the visual objects within the videos by tracking-

based method. It is worth noting that not all the tracked occurrences are reserved in our method. Only

those pass the check by the matching-based method will be left. After that, the connections between

the unique visual objects and their occurrences are stored locally. The third step is global merge. It

identifies and connects the visual objects globally from different videos. Our experiments show that

the proposed hybrid method is more accurate than the three assistant methods in both identifying and

connecting visual objects. In addition to that, the experiments show that the proposed method cost

less time than object detection but generates more connected object occurrences.

In summary, our contributions in this work are as follows:

1. We propose to leverage automatically detected objects to support frame-level filtering. The

new proposal makes the original top-down process changed into bottom-up for generating the

unique object table and the occurrence table;

2. We find object detection alone is not enough to generate the two table. Accordingly, we study

three candidate assistant methods, namely, recognizing-based, matching-based and tracking-

based methods, for object detection to identify and connect visual objects. We show that all of

them are not suitable for table generation by mechanism analysis and experiments;

3. Based on above analysis, we propose a hybrid method to generate the tables. It blends the

matching-based and tracking-based methods, and has three steps, namely local merge, prop-

agation and global merge. The evaluation in terms of accuracy and efficiency shows that our

proposed method is more suitable to assist object detection than the three assistant methods for

supporting frame-level filtering.

3.2 PROBLEM STATEMENT 29

3.2 Problem Statement

In this section, we present some preliminary concepts and give an overview of the proposed method.

Table 3.2 summarizes the major notations used in the rest of the section.

TABLE 3.2: Summary of notations

Notation Definition Notation Definition

A a set of unidentified visual objects a an unidentified visual object

O a set of identified visual objects o an identified visual object

V a set of videos v a video

Given a set of visual objects, the frame-level filtering should return the video clips which contain

all the given visual objects. Accordingly, the research problem is defined as follow:

Vout = filter(Oin, Vall) (3.1)

where Oin is the set of input visual objects, Vall is the set of videos to be filtered and Vout is the set

of videos containing all the objects in Oin. It is worth noting that a video in Vout might be a part of a

video in Vall.

3.2.1 Preliminaries

The real-world motion is continuous. It is simulated by the frame switching in the videos. Therefore,

the motion in the video is discrete. The switching speed is defined by frames per second (fps). For

example, if fps is 24, it means one second in the video has 24 frames on average. According to this, if

the beginning frame of the video is assigned the frame number 1, the nth frame in the sequence will

be assigned the frame number n. These frame numbers are used for calculating video duration in our

method. For example, if fps is r and frame numbers are from m to n (m < n), the duration of video

clip is calculated as n−m
r

seconds.

The frame-level filtering aims at selecting the relevant video frames given some constraints and

concatenating the remaining frames to form the video clips as return [24]. In our work, the frame-

level filtering is designed to use the detected visual objects as constraints. To simplify the irrelevant

details, we have following definitions for our further discussions:

30 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

Definition 3.1. Visual object is a real-world 3D object’s projection on the frame.

In our work, we assume the shape of visual object is rectangle, which has been applied by many

previous works [31, 86]. It means that the visual object can be located by the minimum bounding

rectangle (MBR) such as Fig. 3.2. The appearance of the visual object then can be represented by the

image cropping from the frame.

FIGURE 3.2: Visual object is located by a minimum bounding rectangle on a video frame

Definition 3.2. Visual object detector is a function which locates the visual objects on the frames

using MBRs.

Definition 3.3. Visual object tracker is a function which connects the visual objects in the videos

using MBR sequences.

The differences between detector and tracker are two folds: first, the input of a detector is frame

only, while the input of a tracker in addition needs the MBR of the visual object that needs to be

tracked; second, the visual objects discovered by a detector have no identifications, while the visual

objects discovered by a tracker have identifications within the videos.

Definition 3.4. Unidentified object is a visual object having no identification within or across videos.

The visual objects discovered by detector have none identifications. Because they have no con-

nections to other visual objects within or across the videos. Every unidentified object is associated

with an image, a MBR and the frame number and the video id.

3.2 PROBLEM STATEMENT 31

Definition 3.5. Locally identified object is a visual object having identification within videos.

The visual objects discovered by tracker have local identifications. Because they are connected

by the tracker within the videos. Same to unidentified object, every locally identified object is at least

associated with an image, a MBR, the frame number and the video id.

Definition 3.6. Globally Identified object is a visual object having identification within and across

videos.

The identified objects have connections to more than one unidentified objects not only within the

videos but also across the videos. This makes them have global identifications. Every identified object

is associated with an image and a global unique id.

Definition 3.7. Occurrence table is a set of unidentified visual objects with their connections to

identified visual objects.

The tuple in occurrence table representing an unidentified visual object is denoted as (aid, oid,

img, c, s, mbr, v, t). In each tuple, aid is the primary key of the occurrence table, oid is the foreigner

key to the corresponding identified object, img is the appearance image of the unidentified object, c

is the recognized content, s is the confidence of localization, mbr is the location, v is the video id and

t is the frame number.

Definition 3.8. Unique object table is a set of identified visual objects.

The tuple in unique object table representing an identified visual object is denoted as (uid, img, c, s)

where uid is the primary key of the unique object table and img is the appearance image of the iden-

tified object. In our propose method, each video will have one local unique object table and one local

occurrence table temporally. After all the processes are done, there will be only one global unique

object table and one occurrence table for supporting frame-level filtering.

3.2.2 Method Overview

Our method aims at generating the unique object table and the occurrence table based on object

detection. It consists of four steps and its data stream is described in Fig. 3.3:

0) Detection detects the unidentified objects from the frames of the videos. These detected visual

objects are stored in-memory temporally;

32 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

FIGURE 3.3: The pipeline of the proposed method.

1) Local Merge identifies and connects the visual objects within the videos. It generates the local

identified object set and the local occurrence set for each video based on the detected visual

objects;

2) Propagation enriches the local occurrence set by propagating the locally identified objects on

the video frames;

3) Global Merge identifies and connects the visual objects globally. It merges the locally identi-

fied objects from local merge to obtain the globally identified objects, and generates the unique

object table. In addition, global merge also updates the connections to generate the global

occurrence table.

After above steps, the globally identified visual objects and their occurrences on the frames are

stored by the global unique object table and global occurrence table accordingly. The final data

structure for supporting the existing frame-level filtering methods [24, 22] is summarized as Fig. 3.4.

3.3 Related Work

The frame-level filtering using non-textual contents has been studied for many years. The research

mainly focuses on designing filtering queries to make a better use of the video data. Until now,

three enhanced query types have been proposed, namely, low-level query, spatial-temporal query and

3.3 RELATED WORK 33

FIGURE 3.4: The revised data structure for supporting frame-level filtering.

semantic query [24, 95]. The low-level query is equivalent to content-based video retrieval [83].

Given some exemplar videos, the query leverages the low-level features to search the similar videos

[46]. In recent years, the low-level query has been improved a lot by more advanced features [56]

[109] [35]. However, since the low-level query only involves similarity calculation and ranking,

it seldom builds index structure to guide the query. In addition to that, the granularity of low-level

query is high. For instance, if a user wants to query some visual objects in the video database, the low-

level query cannot provide accurate location and time information. As an improvement, the spatial-

temporal query which exploits the visual objects is proposed to achieve lower granularity [53]. On one

hand, it allows more flexibility in query conditions: any combination of object directional relations,

topological relations, appearance and trajectory [24]. On the other hand, the spatial-temporal query

accepts the visual objects as the input and returns arbitrary segments of videos [24]. The low-level

query and spatial-temporal query are powerful, but they require specialist skills to work properly.

The semantic query is proposed to achieve the easy-to-use purpose. It is usually decomposed into

some sub-queries which in fact can be regarded a combination of the low-level query and the spatial-

temporal query [1][83]. With these query types, many systems have been proposed in the past, such

34 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

as OVID [77], QBIC [33], AVIS [1], CVQL [57] and BilVideo [103]. We notice that some of them

also design index structure for the enhanced query type. However, the visual objects and links for

constructing index are obtained manually, which limits the scalability of these systems.

Developing automatic algorithms instead of human to locate objects visually has achieved a signif-

icant improvement by Deep Convolution Neural Network (DCNN) [100]. However, these algorithms

are oriented to images. When they are applied to videos, the accuracy drops significantly [58]. One

possible reason is that the images for training have better quality than the frames from videos on

average. To improve this, some researchers propose the track-by-detection algorithms to increase the

accuracy of object localization [9]. Such series of algorithms first try to locate the objects on some

frames then track them in the following frames. But the tracking-by-detection algorithm keeps on

tracking even when the objects already disappear [9]. Such behavior is fine in the tracking benchmark

[114] because the visual objects in the test videos seldom disappear for a long time. However, in the

real world videos, simply performing such tracker will bring a lot of false visual objects into the video

database.

3.4 Proposed Method

The proposed method is divided into three steps, namely, local merge, propagation and global merge.

After detection provides the initial visual objects, local merge identifies the visual objects within the

videos. Then, the enriches the corresponding occurrence set. When all the locally identified objects

and occurrence sets are gathered, the global merge identifies and connects the visual objects from

different videos. Accordingly, the data structure for supporting frame-level filtering is obtained after

global merge.

3.4.1 Detection

The initial step is detection. It is achieved by the pretrained visual object detector. To perform the

detection, the frames in the videos are fetched sequentially. Then, the detectors operate on the frames

and return the MBRs and the detection confidences. According to our definitions, these returns are

used to represent the unidentified objects. Some visual objects might have the recognized contents

such as car plate. These contents, if exist, will be collected as well.

3.4 PROPOSED METHOD 35

3.4.2 Local Merge

The first step of the hybrid method is local merge. It aims at identifying and connecting the visual

objects within videos. It can be performed in parallel. As we discussed, the visual objects from the

detectors have no connections to the visual objects on the other frames or in the other videos, which

means they are unidentified. Considering the real-world objects usually last for more than one frames

in the videos, there exist redundancy in the unidentified objects. This decreases the efficiency when

the video filtering need to check whether the given objects existing in the database. To improve that,

we need to identify and connect these detected visual objects.

The key of identification is to decide whether two visual objects are same by comparing their

appearances. To this end, we introduce the image matching function in local merge.

FIGURE 3.5: Four factors prevent image matching correctly in videos.

However, directly using the image matching function does not return the correct indications in

many situations. In Figure 3.5, we list 4 common factors that will make the image matching function

return the false indications. The first factor is size. It makes the image matching function wrong when

the input images are too small. This is because the small images do not have enough visual features

to accomplish the matching [69]. A solution to that is to resize the small images to the larger ones.

In Figure 3.5, the matching function returns the correct result when resized images are used. The

second factor is illumination. Too strong or weak light will change the color of object appearances.

To overcome this, we convert the images into gray. It is not enough because the contrast ratio needs to

adjust as well. Therefore, we perform the adjustment by histogram equalization. After that, the image

matching function can well adapt the illumination. The occlusion and transformation are caused by

the object or camera motion. These factors cannot be well handled by the image matching function

alone. Since the frames are read in sequence, a better way is to maintain the last appearance for

36 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

each unique objects during merge and use it to perform image matching. This method is similar to

visual tracking task which leverages the spatial-temporal continuity of appearance in a shot [121].

An example about how to leverage spatial-temporal continuity to overcome occlusion is described in

Figure 3.6. The adjacent images are easy to match because the change is small. After a gradual match

progress, we get the match result between the target image and the large-occlusion image.

FIGURE 3.6: Use continuity to improve matching results.

The local merge is described in Algorithm 1. For each frame, the local merge uses the object de-

tector to obtain unidentified objects at first (line 3 to line 4). These appearances are resized, changed

to gray, and histogram equalized to overcome the size and illumination issues. After that, the lo-

cal merge updates Ok and adds correspondences between unidentified object and locally identified

objects relying on the indications from the mapping function fmap (line 5 to line 19). If a locally iden-

tified object is mapped to an unidentified object, its last appearances will be updated correspondingly.

Otherwise, a new locally identified object will be inserted.

Each locally identified object in Ok has two appearances: imglast stores the last appearance,

while imgbest stores the best appearance. We keeps two appearances for each locally identified object

in local merge for two reasons. First, as we mentioned, keeping imglast makes the image match

overcome the motion issues. Second, imglast may drift seriously as the transformation continues.

In this situation, only keeping imglast is incorrect when the next appearances are not transformed.

We need to keep the non-transformed appearance as well. After the local merge, the imglast of each

3.4 PROPOSED METHOD 37

Algorithm 1: Local Merge
Input: video vk, object detector fod, matching function fmatch, mapping function fmap

Output: local object occurrence set Ak, locally identified object set Ok

Initialize the empty object sets;

1: initialize Ok ← {}, Ak ← {}

Fetch the frames sequentially;

2: for all frame frtk ∈ vk do

Get the MBRs and the corresponding confident scores;

3: MBRs← fod(fr
t
k)

4: A← crop unidentified objects from frtk by MBRs

Traverse the unidentified objects in frtk;

5: for i ∈ {1, 2, · · · , |A|} do

6: flag, o← fmap(A[i].img, Ok)

7: if flag is true then

Update the last appearance with current one;

8: o.imglast ← A[i].img

9: Ak ← Ak ∪ {(A[i].aid, o.oid, A[i].img,A[i].MBR,A[i].c, A[i].s, vk, t)}

10: if A[i].s > o.s then

If current appearance is better, update the best appearance and score;

11: o.imgbest ← A[i].img

12: o.s← A[i].s

13: end if

14: else

If not mapped, add a new unique object;

15: o′.imglast ← A[i].img

16: o′.imgbest ← A[i].img

17: o′.c← A[i].c

18: o′.s← A[i].s

19: Ok ← Ok ∪ {(o′.oid, o′.imglast, o′.imgbest, o′.s, o′.c)}

20: end if

21: end for

22: end for

23: return Ak, Ok

38 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

Algorithm 2: Matching-Based Map
Input: object appearance img, locally identified object set Ok, matching function fmatch

Output: flag, o

1: flag ← false

2: n← null

3: for o ∈ Ok do

4: lf lag ← fmatch(o.imglast, img)

5: bflag ← fmatch(o.imgbest, img)

6: if lf lag is true or bflag is true then

7: flag ← true

8: break

9: end if

10: end for

11: return flag, o

locally identified object will be dismissed due to the possible arbitrary drift. imgbest is assigned by

the appearance from the mapped unidentified object whose confident score is the highest. It will be

kept and used as the input for the global merge.

The initial mapping method is written in Algorithm 2 where it uses both best appearance and last

appearances of each object in Ok to match the target object appearance. Once a locally identified

object is matched, the mapping is successful and the matched object will be returned. However, the

match-based map cannot guarantee to generate the correct result. This is because the image matching

function does not perform exactly matching. It may cause more than one objects to be matched to the

target object appearance in Algorithm 2, which means that if a locally identified object is not same

as the target it also has the chance to be returned. With or without the break statement in line 9 only

influences whether first or last matched unique object will be returned.

To address the drawback of the match-based map method, we propose our similarity-based map-

ping method in Algorithm 3. We make this change based on the assumption that the correct match

exists in the most similar object. The similarity-based mapping function first finds the most similar

locally identified object. Then, it compares the target appearance with the most similar locally identi-

fied object instead of all the objects in Ok. This ensures only one object is mapped to the target object

3.4 PROPOSED METHOD 39

Algorithm 3: Similarity-Based Map
Input: object appearance img, unique object set Ok, matching function fmatch

Output: flag, o

1: flag ← false

2: o← null

3: find the most similar o′ in Ok given img

4: lf lag ← fmatch(o
′.imglast, img)

5: bflag ← fmatch(o
′.imgbest, img)

6: if lf lag is true or bflag is true then

7: flag ← true

8: o← o′

9: end if

10: return flag, o

appearance at most. If the match is successful, the most similar object will be hided for the other

comparisons on the same frame and returned. Otherwise, the match is unsuccessful and non locally

identified object will be returned. The similarity-based mapping works better than the matching-based

one. It is worth noting that the similarity calculation is important for the improved map method. We

will discuss the details of similarity calculation in our experiments.

3.4.3 Propagation

The local object occurrence set misses some occurrences due to the limitation of detection. To recover

some missing occurrences, we propose the propagation step. The propagation aims to enrich the

occurrences caused by the locally identified objects in the videos. It can be performed in parallel.

The process logic is described in Algorithm 4. It leverages the visual object tracker and our proposed

similarity-based mapping method to achieve the recovering.

In propagation, the videos are read again to fetch the frames sequentially. The first step is filtering

off the visual objects generated by detector (line 4 to line 12) to reduce unnecessary propagations: if

some of the locally identified objects have been already detected by the object detectors on current

frame, the propagation will not propagate them but use their occurrences to update the last appear-

ances. After this step, the propagation uses the visual object tracker to recover the filtered locally

40 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

Algorithm 4: Propagation
Input: video vk, locally identified object set Ok, local occurrence set Ak,

matching function fmatch, object tracker ftrack, mapping function fmap

Output: local occurrence set Ak

1: for all frame F t
k ∈ vk do

2: A← get object occurrences on F t
k from Ak, O ← {}

3: for a ∈ A do

4: flag, o← fmap(a.img,Ok, fmatch)

5: if flag is true then

6: o.imglast ← a.img

7: else

8: O ← O ∪ {o}

9: end if

10: end for

11: for all o ∈ O do

12: MBR← ftrack(o.imglast, F t
k)

13: a← get object occurrence from F t
k by MBR

14: lf lag, o′ ← fmap(a.img,Ok, fmatch)

15: if lf lag is true and o is o′ then

16: Ak ← Ak ∪ {(a.aid, o.oid, a.img, a.MBR, o.c, o.s, vk, t)}

17: o.imglast ← a.img

18: else

19: MBR← ftrack(o.imgbest, F t
k)

20: a← get object occurrence from F t
k by MBR

21: bflag, o′ ← fmap(a.img,Ok, fmatch)

22: if bflag is true and o is o′ then

23: Ak ← Ak ∪ {(a.aid, o.oid, a.img, a.MBR, o.c, o.s, vk, t)}

24: o.imglast ← a.img

25: end if

26: end if

27: end for

28: end for

29: return Ak

3.4 PROPOSED METHOD 41

identified objects’ occurrences (line 13 to line 30). Different from the object detector, the object

tracker always returns a MBR from the frame based on the appearance of the target object. So it

obviously has much higher recall rate than the object detector. However, generating a MBR does not

ensure that the locally identified object exists in the frame. It means that only relying on the tracker

will add many false positive occurrences. Therefore, after the tracking, the propagation leverages the

similarity-based mapping to get a mapped locally identified object for the returned MBR (line 15 and

line 22). If the mapped locally identified object’s appearance equals to the input to tracker at start, the

propagation is successful and the occurrence is recorded. Same as local merge, the propagation also

maintains the best and last appearances for each locally identified object during the process. It makes

propagation very robust to the occlusion and transformation. It is worth noting that the last appear-

ances are not set before the propagation performs successfully once. The default last appearance is

initialized by the best appearance. When a propagation operation is successful, the local occurrence

table is update accordingly.

The Algorithm 4 contains the major idea of propagation. However, applying the tracker on the

whole frame is usually unnecessary. This is because the object motion often occurs in a small region

between two adjacent frames, which reveals the essence of spatial-temporal continuity. The propaga-

tion therefore can be accelerated by taking this advantage. In experiments, we will introduce how we

leverage the spatial-temporal continuity to improve propagation.

3.4.4 Global Merge

The global merge aims to identify and connect the visual objects from different videos globally. It

is responsible for generating the unique object table and the occurrence table. The global merge is

described in Algorithm 5 where only the best object appearances are in use to perform mapping.

Different from local merge, the parallel version of global merge needs to add read and write locks

on the globally identified object set, because their copies need to be consistent. The global merge

generates the object occurrence table. This requires to update the connections in the local object

occurrence sets, when the corresponding locally identified objects are merged. After global merge,

the generated data structure can be instantly used for frame-level filtering.

42 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

Algorithm 5: Global Merge
Input: locally identified object sets O1, . . . , Ok,

locally object occurrence sets A1, . . . , Ak,

matching function fmatch, mapping function fmap

Output: globally identified object set O, object occurrence set A

1: initialize O ← {}, A← {}

2: for all i ∈ {1, . . . , k} do

3: for all o′ ∈ Oi do

4: flag, o← fmap(o
′.imgbest, O, fmatch)

5: if flag is false then

6: O ← O ∪ {(o′.oid, o′.imgbest, o′.c, o′.s)}

7: else

8: update a ∈ Ak where a.oid eq. o′.oid set a.oid← o.oid

9: end if

10: end for

11: A← A ∪ Ak

12: end for

13: return O, A

3.4.5 Complexity Analysis

In this part, we analyze the complexity of mergeand propagation. We use T (f) to represent the time

complexity of a function f . For local merge, we assume there are x unidentified objects, y locally

identified objects and z frames for a video after process. According to Algorithm 1, the local merge

needs to perform z detections and 2(x− 1) matches constantly. The time complexity only varies with

the frequency of calling similarity function. We therefore get the time complexities of the best case

and the worst case. In the best case, the first x− y + 1 unidentified objects are the same and the last

y − 1 unidentified objects are different to each other. In this situation, the local merge needs to call

the similarity function 0 + · · · + 0︸ ︷︷ ︸
x−y times

+2 + 3 + · · · + y − 1 = y(y−1)
2
− 1 times. Therefore, the time

complexity of the best case is :

2(x− 1)T (fmatch) + (
y(y − 1)

2
− 1)T (fsim) + zT (fod)

3.4 PROPOSED METHOD 43

In the worst case, the first y unidentified objects are different to each other. The local merge needs

to call the similarity function y(y−1)
2
− 1 + y + · · · + y︸ ︷︷ ︸

x−y times

= y(2x−y−1)
2

− 1 times. Therefore, the time

complexity of the worst case is :

2(x− 1)T (fmatch) + (
y(2x− y − 1)

2
− 1)T (fsim) + zT (fod)

The time complexity of global merge is same to that of local merge. Here, we omit the deduction of

its time complexity.

For propagation, its time complexity is correlated to the unidentified objects on each frame. We

use xi to denote the amount of the detected unidentified objects on the ith frame. According to

Algorithm 4, the propagation firstly tries to filter xi detected unidentified objects by mapping them to

the locally identified objects. The propagation therefore performs xiy similarity calculations and xi

matches. After filtering, the propagation performs various amounts of tracking and matching based on

cases: in the best case where all the recovered object occurrences are matched by last appearances, the

propagation perform tracking y− xi times and matching y− xi times; in the worst case where all the

recovered object occurrences are matched by best appearances, it performs tracking 2(y − xi) times

and matching 2(y − xi) times. Notice that x =
∑z

i=1 xi. The overall time complexity of propagation

is :

best :
z∑

i=1

yT ′ + (y − xi)T (frd)

= yzT ′ + (yz − x)T (frd)

worst :
z∑

i=1

(2y − xi)T ′ + 2(y − xi)T (frd)

= (2yz − x)T ′ + 2(yz − x)T (frd)

where T ′ = T (fmatch) + yT (fsim).

In our study, the I/O time cost is not a big issue because videos are usually efficiently encoded.

This makes the time cost on disk access is small, which is negligible compared to perform detecting,

matching and tracking on the frames.

3.4.6 Running Example

In this section, we give an illustrative example to display how the frame-level filtering performs using

the visual objects. In our case, the visual object is the image of the car plate. The process is depicted

44 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

FIGURE 3.7: A running example to display how the frame-level filtering is performed

in Figure 3.7 where the video frames are annotated with their numbers. The process has three stages.

In the first stage, two visual objects are presented to start the filtering. Then, in the second stage,

the frame-level filtering is performed to filter the frames. In Figure 3.7, not all the frames contain

the exemplar plates. Accordingly, after filtering, only the frames which record the co-occurrences of

these two visual objects are left. In Figure 3.7, we can see the frames whose numbers are from 34 to

102 are selected. These frames form the final video clip in the third stage.

3.5 Experiment

3.5.1 Settings

Detection Tools

The accuracy of the ready-made detectors is a disturbance term for us to examine the proposed meth-

ods. More specifically, the false positive results will add unnecessary unique objects during the merge

and cause a lot meaningless propagations, which will influence the evaluation. In order to make the

3.5 EXPERIMENT 45

experiment get rid of it to some extent, we require the detectors generating the false positive results

as few as possible. In addition to that, we need the detector to recognize the visual objects by texts to

examine the recognizing-based method. For these reasons, we choose the plate detector in the follow-

ing experiments. It is one of the most mature detection applications in the real world. The detector

is downloaded from the OpenALPR repository 1. Here, we use the release version 2.1. It is a stable

version and it supports the plate format in Australia. The width of the minimum detected plate is set

to 45 pixels to ensure most of the plates can be detected.

Data

The videos used in our experiments are recorded by the SONY X1000V 4K Action Cam with Wi-Fi

& GPS2. The collection consists of 393 videos which record the daily drives on the road. Due to the

change of the speed and surrounding environment, all the influential factors discussed in Figure 3.5

are involved in these videos. The durations of the videos are around 10 seconds and fps is either 30 or

60. And they are all recorded in FULL HD where the frame width is 1920 pixels and the frame height

is 1080 pixels. We use the FULL HD videos because the plate detector cannot perform well on the

lower resolution videos in our scenario. After the videos are collected, we notice that the total size

is 22GB while the individual sizes range from 54 MB to 62 MB. This means the video sizes do not

vary with the fps significantly. On the other hand, the plate images used in the image match function

must be resized. Based on our observation, we choose to resize the images whose widths are below

80 pixels. The resize is performed by a bicubic interpolation over 4x4 pixel neighborhood. After

resizing, their widths will be adjusted to 80 pixels and heights will be adjusted as well according to

the original aspect ratio.

We manually label 100 car plates appear in the videos and their 56160 occurrences. They are used

as ground truth in our evaluation.

Environment

We run the experiments on a server. Its main specifications are in Table 3.3. The OpenALPR is

much faster in the GPU mode than in the CPU mode. Therefore, we installed a Tesla K40 on the

server which was donated by the NVIDIA Corporation. It is worth noting that Tesla K40 only has

1https://github.com/openalpr/openalpr
2http://www.sony.com/electronics/actioncam/fdr-x1000v-body-kit

46 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

TABLE 3.3: Server Configuration

OS Debian 3.2.57-3

CPU 2×Intel Xeon E5-2690 v2

#CORES 20

#THREADS 40

MEMORY 256GB

GPU 1×NVIDIA Tesla K40

DRIVER VERSION 346.46

CUDA VERSION 7.0

OPENCV VERSION 2.4.11

PYTHON VERSION 2.7.7

15 multiprocessors. This means that the detections can only use 15 threads in parallel. In order to

ensure the parallel does not interfere the evaluation of the time efficiency, we also use 15 threads in

the parallel of local merge and propagation. The whole project is implemented in Python. And we

package the OpenALPR into a shared library called in Python instead of calling it from command

line. This reduces a lot of the time cost on function call, which makes the time measurement on the

detection more accurate.

Functions

In this part, we discuss the low-level functions serve merge and propagation in details. They are the

image matching function fmatch, the similarity function fsim and the tracker ftrack.

The image matching function fmatch which is described by Algorithm 6 accepts two images as

input then returns an indicator judging whether these images are same. Based on [73] and [72], the

threshold is set to 10 in our implementation. fmatch has two important components. The first one is

the visual feature. Different visual features might cause different matching results. Accordingly, we

make fmatch work with three kinds of visual features as comparison in the evaluation:

1. SIFT [104] is used to capture the texture information in images. It is invariant to scale and

slight transformation;

2. ORB [91] is used to detect and describe the corners in the images. ORB can be regarded as

3.5 EXPERIMENT 47

Algorithm 6: Image Match Function fmatch

Input: Images img1 and img2, threshold θ

Output: IsMatched

1: feats1 ← ffeat(img1)

2: feats2 ← ffeat(img2)

3: count← fpc(feats1, feats2)

4: if count > θ then

5: IsMatched← True

6: else

7: IsMatchsed← False

8: end if

9: return IsMatched

an extension of FAST [89]. ORB has all the properties that SIFT has and it is also invariant

to rotation. However, since ORB uses binary descriptor, it loses accuracy on object matching

[72];

3. BRISK [64] is also used to capture the corners in the images. In spite of BRISK’s high effi-

ciency, it also loses accuracy on object matching [72].

In addition to visual feature, the other crucial component is the counting function fpc. Its return

value directly influences the matching result. Recent counting functions [73, 72] often exploit fast

library of approximate nearest neighbors (FLANN) to count the pairs. Accordingly, fpc operates as

Algorithm 7 in our implementation. According to [73], ρ is set to 0.7 in the evaluation. In Algorithm

7, the search of the nearest neighbors is based on different distance metrics for different feature type.

For SIFT, as suggest in [104], we use Euclidean distances . For ORB and BRISK, we use normal-

ized Hamming distances referring to [91, 64]. FLANN is efficient but cannot ensure the counting

result is symmetrical (pair count from feats1 to feats2 is not equal to that from feats2 to feats1). So

Algorithm 7 performs FLANN twice then returns the maximum counting result. Our merge method

is implemented based SIFT because its higher accuracy of image matching [72].

The feature pair counting function fpc is also served as the similarity function fsim in our im-

plementation. Accordingly, the similarity-based map in Algorithm 3 (line 3) regards the candidate

which has the largest counting value as the most similar one. This trick makes the image matching in

48 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

Algorithm 7: Feature Pair Counting fpc
Input: feats1 and feats2, ratio ρ

Output: count

1: count1← 0

2: for feat in feats1 do

3: find 2 nearest neighbors n1 and n2 for feat from feats2

4: if distance(feat, n1) > ρ · distance(feat, n2) then

5: count1 = count1 + 1

6: end if

7: end for

8: count2← 0

9: for feat in feats2 do

10: find 2 nearest neighbors n1 and n2 for feat from feats1

11: if distance(feat, n1) > ρ · distance(feat, n2) then

12: count2 = count2 + 1

13: end if

14: end for

15: count← max(count1, count2)

16: return count

similarity-based map simplify because the counting value can be directly re-used to indicate whether

the image pair is same.

The tracker ftrack is the most important component for object connecting. The related research

has achieved significant progress in recent years [114]. In our connecting evaluation, we investigate

three state-of-the-art trackers which are highly cited and have source code released. Their details are

as follow:

1. STRUCK [38] leverages multiple feature kernels to learn a robust appearance model for track-

ing. It requires the MBR on the initial frame to track the visual object;

2. TLD [51] is a tracking-by-detection tracker. Compared to the original method [9], TLD devel-

opers positive and negative learner to generate exemplars for improving the accuracy of tracker.

Unlike STRUCK, TLD only requires the object detector to start tracking. Accordingly, we

3.5 EXPERIMENT 49

adapt the car plate detector into TLD;

3. SO-DLT [111] is an enhanced version of deep learning tracker (DLT) [112]. SO-DLT lever-

ages stacked de-noising auto encoder (SDAE) to learn a robust appearance model. Same to

STRUCK, SO-DLT requires the MBR on the initial frame to track the visual object.

Our propagation method is implemented based on STRUCK due to its usability.

In previous section, we mentioned a way to accelerate the tracker when the last appearance is

used. It aims at reducing the search space during tracking. To do so, we leverage the spatial-temporal

continuity to restrict the search space. The new search space is a subspace of the whole frame.

Its center is indicated by the last propagation, and its area is nine times to the last detected area.

Compared to the whole frame, the new search space is reduced by a factor of 700 roughly. It avoids

the exhausting search in the whole frame so that the efficiency is improved.

3.5.2 Evaluation Plan

The whole evaluation is divided into four parts, namely, accuracy, efficiency, impact of factor and

analysis. in accuracy evaluation, we study the accuracy of object identifying and connecting. Specifi-

cally, for object identifying, we will count the amount of unique objects each methods generated and

their overlaps with the ground truth. The overlap rate is calculated by Equation 3.2.

Overlap Rate =
|Ogt

⋂
Omerge|

|Ogt

⋃
Omerge|

(3.2)

The method which has closer amount and higher overlap rate to the ground truth is more accurate. For

object connecting, we use precision and recall to evaluate the accuracy. The calculations of precision

and recall are listed in Equation 3.3:

Precision =
The amount of correct fixed occurrences
The amount of total fixed occurrences

Recall =
The amount of correct fixed occurrences
The amount of ground truth occurrences

(3.3)

Besides that, we also use F1 measure to reflect the overall performance. The calculation of F1 score

is expressed in Equation 3.4.

F1 socre =
Precision×Recall
Precision+Recall

(3.4)

. In the perspective of precision, recall and F1 measure, the method which obtains higher values is

more accurate.

50 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

In efficiency evaluation, we study time and space cost respectively. As the I/O cost is negligible,

we only monitor the in-memory cost in the evaluation. For time cost, we record the execution time

of each step and display their average time costs over all the videos. For memory cost, we use object

wrapper to make the data structure persistent and record the storage cost. The baseline in the efficiency

experiment is the costs from detection.

In impact of factor evaluation, we study how the motion, transformation and illumination influence

the accuracy of object identifying and connecting. We apply the variance control strategy: each time,

we remove one factor and re-run the whole process; after that, we count and record the corresponding

result.

In analysis part, we study how the hybrid method benefits the frame-level filtering. We collect and

compare the numbers of identified objects and occurrences. The comparison shows that the proposed

method supports the frame-level filtering more sufficient.

3.5.3 Accuracy

The first experiment evaluates the accuracy of object identifying. We use object detector to generate

the local occurrence sets, then apply local merge and global merge to obtain the globally identified

objects. For comparison, we have evaluated following methods against the proposed method:

1. Recognizing based merge leverages the recognized texts from the car plate to identify the

visual objects and merge them to generate the globally identified objects;

2. Matching based merge leverages the visual features from the appearances to identify visual

objects and perform merge.

In Table 3.4, the number of globally identified objects generated by different methods are listed.

Since tracking-based method can only generate locally identified objects, Table 3.4 does not have

its number of globally identified visual objects. Compared to recognizing-based and matching-based

methods, the proposed method with similarity-based map function generates the closest amount to the

ground truth. In addition to that, the corresponding overlap rate is the highest. These results show that

putting all the changes in Algorithm 1 leads to the most accurate identification result. The proposed

method with matching-based map achieving the second accuracy indicates that the local merge is very

sensitive to the mapping function in use.

3.5 EXPERIMENT 51

TABLE 3.4: The accuracy of object identifying

Method #Visual Objects Overlap Rate

Ground Truth 100 100%

Recognizing: Text 123 77%

Matching

SIFT [104] 112 86%

ORB [91] 117 80%

BRISK [64] 121 78%

Our Method

matching-based map

(Algorithm 2)

109 89%

similarity-based map

(Algorithm 3)

102 97%

TABLE 3.5: The accuracy of object connecting

Method Precision Recall F1 score

Recognizing: Text 0.9315 0.2803 0.2157

Matching: SIFT [104] 0.9372 0.4046 0.2826

Tracking

STRUK [38] 0.3218 0.9654 0.2414

TLD [51] 0.3353 0.9814 0.2499

SO-DLT [111] 0.3418 0.9984 0.2546

Our Method: SIFT [104]+STRUK [38] 0.9225 0.7490 0.4134

The second experiment evaluates the accuracy of object connecting. The inputs are the locally

identified object sets and the local occurrence sets. For comparison, we evaluate following methods

in our experiment:

1. Recognizing based propagation leverages the recognized texts from the car plate to connect

the visual objects;

2. Matching based propagation leverages the visual features from the appearances to connect

visual objects. Since SIFT is the most accurate in our first experiment, we only use SIFT to

perform matching based propagation;

52 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

3. Tracking based propagation leverages the object trackers to connect the visual objects.

Table 3.5 shows the accuracy of different methods on object connecting. The results show that the

recognizing-based and the matching-based methods achieve much higher precisions than the tracking-

based method, while they have much lower recalls than the tracking-based method. Compared to all

of the existing assistant methods, our hybrid method which achieves high precision and recall at the

same time. In the perspective of F1 measure, our method has the highest overall accuracy.

3.5.4 Efficiency

Another aspect we study is the efficiency of local merge, global merge and propagation. In Table

3.5.4, we list average time cost of executing each stage per video and the overall storage cost of the

outputs from each stage. The time cost comparison shows that our proposed method which consists

of local merge, global merge and propagation is faster than detection. It means that the time of

generating unique object table and fixing object occurrences will be finished within acceptable time.

We also notice that the size of occurrence table increases significantly after propagation. Because the

proposed hybrid method has high accuracy, we think these enriched object occurrences are what the

detection fails to discover.

Time Cost Storage Cost

Process Time Output Volume

detection 437.98s initial occurrences 972.8 MB

local merge 1.76s locally identified objects 52.4 MB

global merge 34.21s globally identified objects 22.4 MB

propagation 304.64s fixed occurrences 2.3 GB

3.5.5 Impact of Factor

The factor experiment examines the impact of four factors (resizing, illumination, last appearance and

best appearance) in accuracy. We want to know which factor has the largest impact on the object iden-

tifying and connecting. Therefore, we set the version which considers all the factors as the baseline,

and remove one factor each time to see the influence respectively. The influence is measured by the

3.5 EXPERIMENT 53

same metrics in the accuracy experiment. For object identifying, the amount of globally identified is

used. We want to see how much the identification capacity is damaged by the factor removing. Ac-

cordingly, if the amount of globally identified objects increases too much, we will regard the removal

factor as the important one to object identifying. For object connecting, the number of fixed occur-

rences is used for evaluation. As the identification capacity is damaged, less accurate connections

will be established. Accordingly, if the amount of propagations decreases sharply after removing a

factor, we will regard it as the important one to object connecting. The corresponding results of each

factor are recorded in Table 3.6. Three conclusions are made from Table 3.6: (1) resizing is the most

important factor for object identifying and connecting. The accuracy is damaged seriously without

resizing. (2) The last appearance is very important for object connecting. The amount of occurrences

is decreased sharply without last appearance. (3) The best appearance has nothing to do with object

connecting. The amount of the occurrences keeps unchanged after removing best appearance.

TABLE 3.6: Impact of factor

factor
#identified objects

#fixed occurrence
locally globally

ground truth 221 100 23792

without resize 2523 2242 7937

without illumination 252 132 20482

without last appearance 251 121 9257

without best appearance 232 127 23792

3.5.6 Analysis

In this analysis, we want to show how the hybrid method supports the frame-level filtering. Figure

3.8 summarizes two major benefits. The first benefit is the compressed search space. If the unique

object table does not exist, the frame-level filtering needs to scan the occurrence table in a brute-

force manner when given a set visual objects. Fig 3.8(a) shows the huge difference between scanning

on the whole occurrence table and the unique object table. It indicates that the filtering process

needs to pay much more time to scan the visual objects without the unique object table. The second

benefit is the enriched object occurrences. Frame-level filtering with visual objects should provide

54 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

 0%

 20%

 40%

 60%

 80%

 100%

orignal local global

100.0%

0.5% 0.2%

search space

(a) compressed search space

 0%

 50%

 100%

 150%

 200%

 250%

before propagation after propagation

100.0%

239.8%object occurrences

(b) enriched object occurrences

FIGURE 3.8: The benefits from unique object table and occurrence table.

precise temporal information. If most of the object occurrences are missing, the temporal information

won’t be precise any more. Figure 3.9(a) compares and shows how much occurrences are fixed by

the proposed method. Obviously, the hybrid method significantly increases the amount of object

occurrences compared to using detection only. It indicates frame-level filtering gets more precise

temporal information.

(a) occurrences (b) pair-wise co-occurrences

FIGURE 3.9: Share comparison

Above analysis shows that the amount of object occurrence is increased after propagation. The

result is promising but we come up with another question. That is, whether the increase in occurrences

would cause the increase in co-occurrences. The co-occurrences between objects are often leveraged

in more complex frame-level filtering when a set of objects are given. If the amount of co-occurrences

3.6 SUMMARY 55

does not increase significantly, the fixed occurrences cannot support the complex frame-level filtering

well. To answer this question, we count the number of pair-wise co-occurrences between the objects

which appear on the same video frames and display the ratio comparisons in Figure 3.9: the shares

of detection and propagation on occurrences are revealed in Figure 3.9(a); the shares of detection and

propagation on co-occurrences are revealed in Figure 3.9(b). The share results show that the amount

of co-occurrences is increased significantly as well. It indicates complex frame-level filtering could

be served well by the proposed hybrid method.

3.6 Summary

In this chapter, we study how to support frame-level filtering by detected visual objects. The key

tasks are how to generate the unique object table and occurrence table accurately and efficiently.

Based on our literature review, the visual objects used in previous methods are manually labeled. The

process is top-down which heavily relies on human labors. It makes previous methods inapplicable

on the dynamic or large-scale datasets. To improve these problems, we propose to use detected visual

objects instead, whereas object detection fails to support object identifying and connecting as human.

There are several assistant methods but all of them have many drawbacks. Accordingly, we propose a

hybrid method which consists of local merge, propagation and global merge to better serve the frame-

level filtering. The experiments show that the unique object table and occurrence table generated from

the proposed method is better than those generated from the existing methods. Our further analysis

shows that the unique object table and occurrence table generated by the proposed method supports a

more accurate and efficient frame-level filtering.

56 FRAME-LEVEL FILTERING USING DETECTED VISUAL OBJECTS

Chapter 4

Video-level Filtering Using Small Non-textual

Content Set

4.1 Introduction

Unlike frame-level filtering which decomposes the video into frames, video-level filtering treats the

video as a whole during the process. The widely used application is keyword-based video filtering

where each video in the database is associated with some texts collecting from web users or video

producers. When a set of keywords are given, the videos whose texts are irrelevant to the keywords

are filtered off. Keyword based filtering is inapplicable when the texts are sparse or meaningless.

Accordingly, non-textual content-based filtering is introduced and has been further widely applied in

video classification [52], event detection [59, 4] and so on.

The non-textual content-based filtering starts with the user specific videos which are regarded as

positive exemplars in the learning process. Then, the system extract non-textual contents and perform

vectorization to obtain the vectors. The classification model is trained after the vector generation

using some background videos’ content vectors as negatives. After that, the classification model is

used to predict scores for all the videos, and the top-k videos of the highest scores are selected as

the result. Usually, different content types cause different predication scores so as to the dissimilar

rankings. Therefore, the fusion process is applied when the filtering process uses one more content

types. Recent systems [60, 4, 123] exploit the content types as many as possible. In other word, all of

them try to exploit rich content set to perform video-level filtering.

In some specific areas such as surveillance, the rich content set is not applicable for video-level

57

58 VIDEO-LEVEL FILTERING USING SMALL NON-TEXTUAL CONTENT SET

TABLE 4.1: Differences between normal and surveillance videos

Normal Surveillance

untrimmed × X

muted × X

scene independent × X

noise from crowd little much

filtering. In Table 4.1, we list the major differences between normal and surveillance videos, which

make video-level filtering cannot exploit rich content set [59, 4, 52]:

• Surveillance videos are untrimmed: In previous works [59, 4, 52], the input videos are

trimmed. It means that the non-textual contents from the videos can be totally used as pos-

itive or negative. Differently, the surveillance videos are untrimmed. It means that a video

may contain positive and negative contents at the same time, which damages the discriminative

ability of the content vectors;

• Surveillance videos are muted: Audio is a important content source for video-level filtering

[123]. However, surveillance videos are usually muted that disable the audio contents. This

makes many audio content vectors cannot be used for video-level filtering;

• Surveillance videos are scene independent: The scene contents are often exploited for video

classification [94, 116]. They are useful because many events correlate to the scene such as

playing football and playground, swimming and swimming pool. However, in surveillance

videos, the scene is always same under the same camera. Therefore, the scene content vectors

are useless for video-level surveillance filtering;

• Surveillance videos have noise from crowd: Surveillance videos record the daily activities

under the certain cameras. If the filtering process try to remain some video clips correlate to

some specific individual activities, it is inevitably interfered by the noise from the crowd.

One of the video-level filtering applications is surveillance event detection (SED). It aims at alarm-

ing the predefined events in the surveillance videos when they occur. However, the differences in

4.2 PROBLEM STATEMENT 59

Table 4.1 make the filtering process difficult on surveillance videos, because many content types ex-

ploited by previous works are inapplicable. This makes the motion contents become the only choice

for video-level surveillance filtering. In state-of-the-art system proposed in [60], two motion contents

are used. They are spatial temporal interest points (STIP) [62] and motion SIFT (MoSIFT) [12].

These motion contents leverage sparse sampling method to extract interest points from the frames,

and calculate the optical flow between the temporally adjacent points to describe motions. They are

ineffective when the motions are complex in the SED videos. To improve this problem, we introduced

the new content set which consists of dense trajectory (DT) [107] and improved dense trajectory (IDT)

[109] to improve the accuracy of SED. Our internal experiments show that the new content set signif-

icantly improves the accuracy and the conclusion helps us win the competition of TRECVID SED in

2015.

In summary, we have following contributions in this work:

• Through analyzing the characters of surveillance videos and uncovering the mechanism of re-

cent motion features, we push the accuracy of video-level surveillance video filtering to a new

level by exploiting new content set which consists of improved dense trajectory (IDT) and

dense trajectory (DT). The new content set beats all the previous content sets on recent five-

year TRECVID SED competition.

• We conduct extensive experiments and show how different settings influence the accuracy of

video-level surveillance video filtering, which provides performance benchmark to the future

followers.

4.2 Problem Statement

4.2.1 Preliminaries

The basic elements of video-level surveillance filtering system are videos and annotations. The videos

are untrimmed so they cannot be used as negative or positive instantly. Additionally, they are usually

captured from several cameras so the scenes are not helpful for the filtering. The annotations are

classified by the events. They contain the event intervals in the videos. According to the annotations,

the negative and positive could be parsed. In real-world surveillance, the amount of the annotations

60 VIDEO-LEVEL FILTERING USING SMALL NON-TEXTUAL CONTENT SET

is usually small. To perform video-level surveillance filtering, the users need to provide the annota-

tions of the events on the training videos. The system then learns the prediction models to filter the

irrelevant parts on the test videos and returns the high confident parts.

4.2.2 System Overview

FIGURE 4.1: The pipeline of proposed video-level filtering system

The proposed system consists of five components : preprocess, feature extraction, feature encod-

ing, model training and score fusion. The data stream flows as Figure 4.1. In this part, we will briefly

introduce their functionalities.

1) Preprocess slides the training videos to generate the negative and positive instances according

to the annotations, as well as the test videos for prediction. The preprocess only performs once.

All the videos are delivered for feature extraction;

2) Feature Extraction extracts raw features of different content types from the video clips and

normalizes them for feature encoding. The number of extraction process is equal to the number

of content types used in the system;

3) Feature Encoding learns the codebooks and uses the codebooks to encode the raw features into

content vectors. The number of encoding process is equal to the number of extraction process

times the number of encoding settings;

4.3 RELATED WORK 61

3) Model Training trains the detection models based on the content vectors of positives and neg-

atives. The scores are required to transform into [0, 1] to represent the possibilities.

3) Score Fusion fuses multiple ranking scores of the video clips from different models into unified

scores. The unified scores are used to filtering the irrelevant video clips finally.

4.3 Related Work

The key of video-level filtering is calculating the ranking scores given the exemplar videos. In early

works, the scores are calculated by texts, click rate or demographic data [68], which require human

efforts. In recent years, the research focuses on how to leverage the videos themselves to calculate the

scores. As a result, many non-textual video contents have been introduced [69, 12, 109] to provide

more accurate scores without human efforts. In addition to that, recent studies [4, 123] show that

fusing multiple scores wisely could provide more accurate filtering results. Therefore, various learn-

ing based fusion methods such as double fusion [59], feature weighting [117] have been proposed

recently.

However, due to the limitations of the surveillance videos, the existing methods for general video

filtering tasks are usually poor in SED. In order to improve that, the research on SED has drawn con-

siderable attention in the past. One early system uses MoSIFT features and BOW encoding method is

proposed in [13]. Since there is only one content type in use, there is no fusion process in this system.

The drawback of the system is the large amount of false alarms. To reduce them, the researchers

design a cascade method to reject the positives inferred by the predictions. In [14], the system is

enhanced by introducing STIP features and FV encoding method. Compared to [13], the new system

gets more useful information from the encoding and the fusion. The accuracy has been improved ac-

cordingly. The system in [123] introduces IDT features for SED. However, the IDT brings numerous

false positives into the results. Even though fusion could reduce the amount, but the final results are

inferior to those in [14].

62 VIDEO-LEVEL FILTERING USING SMALL NON-TEXTUAL CONTENT SET

4.4 Proposed System

4.4.1 Preprocessing

The video preprocessing prepares the input for the feature extraction. As we mentioned, the origi-

nal inputs are surveillance videos and annotations. To make the following processes efficiently and

sufficiently, the preprocessing is made up of following steps in the proposed system:

• Resizing. The input videos are recorded in full HD. The resolution is too high for fast feature

extraction. In order to accelerate the extraction, the original videos are resized to resolution

320 × 240 in the proposed system. In our experiments, we will show the resized videos are

more suitable for SED than the original ones;

• Sliding. The input videos are untrimmed, which cannot provide the positive and negative ex-

emplar videos instantly. The original videos can be trimmed by the annotations. However, due

to the small amount of the annotations, the trimmed positive and negative exemplar videos are

usually not enough to train robust detectors. In the proposed system, the videos are not trimmed

by the annotations directly. Instead, they are slided uniformly at first. We adopt the window

size of 60 frames and the step size of 30 frames to slide the videos. Considering the features

in use are DT and IDT which need continuous 15 frames to track the feature points on current

frames, we also append extra 15 frames at the end of each slided videos. This results in the

maximum length of each video clip is 75 frames in the end;

• Pruning. The sliding only tries to slide the videos into short pieces. However, when the slided

video clips are too small, the feature extraction fail to extract features anymore. To avoid the

failures, we prune the videos whose length is below 15 length;

• Labeling. Since the video clips are slided uniformly, they do not have labels as those slided

according to the annotations. To assign the labels, the video clips which have more than half

length overlapped with the annotations are regarded as the positives. Otherwise, they are re-

garded as the negatives. This process enriches the amount of non-duplicate positives and stabi-

lizes the accuracy of the proposed system on the test data.

The preprocessing applies all the above steps on the training videos, while applies the first three

steps on the test videos. In addition to that, it can fast generate many short video clips in parallel.

4.4 PROPOSED SYSTEM 63

4.4.2 Feature Extraction

TABLE 4.2: Differences between IDT, STIP and MoSIFT

IDT MoSIFT & STIP

sampling strategy dense sparse

motion removal X ×

description method HOG, HOF and MBH HOF, HOG and SIFT

The feature extraction extracts raw features from the video clips. In [14], STIP [61] and MoSIFT

[12] are extracted from the surveillance videos for filtering. Recent findings in [109] and [80] show

that improved dense trajectory is better than STIP and MoSIFT for many tasks. But the experiments

in [123] show that IDT performs worse than STIP and MoSIFT for video-level surveillance filtering.

In addition to that, IDT’s poor performance is not improved even though it is fused with STIP and

MoSIFT. To figure out what make IDT worse, we check the source codes of IDT, STIP and MoSIFT.

We list their major differences in Table 4.2. The first major difference is that IDT applies the dense

sampling strategy, while STIP and MoSIFT apply the sparse strategy. This makes the keypoints used

in STIP and MoSIFT are a subset of those used in IDT. Therefore, the fusion may not work. The

second major difference is that IDT applies motion removal. This is achieved by estimating domi-

nant motion between two adjacent frames through homography by RANSAC [32, 30], and removing

the dominant motion from the motion descriptors [109]. In SED, there is no camera motion in the

videos. When there are a crowd of people appear in the camera, the dominant motion is caused by

the crowd. Extracting IDT in this situation can remove the interference motion contents from the

irrelevant crowd.

However, the surveillance videos also have the situation where few people are moving around. In

such situation, removing the dominant motion is not wise because it may contain the useful motion

contents. According to this, in our proposed system, we introduce dense trajectory (DT) [107] as the

complementary content to IDT instead of STIP and MoSIFT. DT is an early version of IDT which

does not remove the camera motions. We think the small content set which made up of DT and IDT

is more powerful than STIP and MoSIFT because the situations of both few and many persons are

taken into consideration simultaneous.

64 VIDEO-LEVEL FILTERING USING SMALL NON-TEXTUAL CONTENT SET

After the small content set is fixed by using DT and IDT, the feature extraction in the proposed

system has two steps:

• Extraction. The feature extraction needs to process thousands of videos clips for different

content types. Even though the extractions can be parallel, the I/O issues will slow down the

overall speed. To accelerate the extraction, we limit the amount of concurrency to the number

of the available cores. In addition, we do not perform persistence for all the raw features. Only

the raw features used for codebook learning are preserved;

• Normalization. The raw features can cause more accurate detection if correct normalization

is applied. In the proposed system, we follow [5] to normalize the raw features by SSR. The

computational cost can be neglected compared to feature extraction and encoding.

As comparison, we will also extract MoSIFT and CNN features according to [14] and [116]

respectively. We will use them to show whether many features can not be used for the SED.

4.4.3 Feature Encoding

The feature encoding encodes the raw features into content vectors. In SED, this step is necessary

because it makes the content vectors more discriminative. The state-of-the-art encoding method is the

spatial-temporal fisher vector (SFV) [55]. Compared to the standard fisher vector (FV), this method

also encodes the spatial-temporal information of the feature points into the content vectors.

The proposed system applies four steps to generate the content vectors:

• Dimension reduction on raw features. This steps learns a projection matrix on the sampled

features by Principle Components Analysis (PCA). Then, use the projection matrix to map

the raw features into a low-dimensional space. This step is necessary because following steps

assume there are no co-variances between different feature dimensions.

• Codebook learning on sampled features. This steps learns the codebook for encoding. In

fisher vector, the codebook is formed by Gaussian Mixture Model (GMM), which leverage

multiple Gaussian components to reconstruct the feature space. In our system, the learning is

initialized by k-means clustering and optimized by EM algorithm.

4.4 PROPOSED SYSTEM 65

• Fisher encoding. This steps performs the encoding actually and generates the content vectors.

It leverages the means and variances from the Gaussian components from the codebook to cal-

culate the derivatives. Since these derivatives describe different gradient information, they are

concatenated to form a high-dimensional vectors. GivenK components and oneD dimensional

feature point, the fisher encoding results in a 2KD dimensional vector. The high dimensional

vectors from multiple feature points are dimension-wise averaged. Therefore, each video clip

generates one content vector in the end.

• Normalization. This steps further enhances the discrimination of content vectors. After en-

coding, some dimensions will dominate the similarity computation between two vectors, which

harms the discrimination. In order to improve that, the content vectors are firstly applied signed

square root (SSR) to weaken the dominant dimensions. In addition to that, during the model

training, it is recommended to make the instances be the most similar to themselves. To achieve

that, the length of each content vector is normalized to 1 by applying power normalization.

In previous systems [14, 123], the projection matrix in dimension reduction is learned by standard

PCA. Recent studies in [80] show that whiten PCA could improve the detection accuracy further.

Therefore, in the proposed system, we also applied whiten PCA to perform the dimension reduction.

This results in another group of content vectors in the proposed system. The effects of whiten PCA

will be examined in the experiments.

4.4.4 Model Training

The model training creates detectors for each event. Because there exist multiple cameras, the detec-

tors are further trained for different cameras. The training has three steps:

• Detector Training. This step uses classification model to train the detectors. In previous works

[60, 123], the widely used model is kernel svm [11]. It selects the support vectors during

the training and decides whether the new instances are positives according to the distances

between them. As the vector dimension increases by fisher encoding, the number of support

vectors increases as well. This makes keeping the support vectors no longer a good choice.

For instance, in our system, each content vector occupies 0.5MB space no matter on disk or

in memory. Each detector usually keeps roughly 5000 support vectors. Adding all the support

vectors results in 2.5GB cost on disk or in memory. Considering the detectors are trained for

66 VIDEO-LEVEL FILTERING USING SMALL NON-TEXTUAL CONTENT SET

different events and cameras, the overall space cost is amazingly huge. To reduce the space

cost, in our proposed system, we apply linear svm [29] to train the detector. Instead of keeping

support vectors, linear svm transforms these vectors into weights for prediction. After that,

each detector only occupies 0.5MB on disk or in memory.

• Score Learning. The public available source code of linear svm [29] is older than that of

kernel svm [11]. This makes the detectors trained by linear svm only generate distances rather

than probabilities. The distances usually are not in same scale. If the fusion is directly applied

on the distances, less accurate results could be generated. To improve that, there requires a

method to map the distances into probability scores. To do so, we refer to [85] to learn the

probabilities from the scores. Our python implementation is open available 1. We verify this

code by reproducing the action recognition experiment in [109].

• Parameter Selection. The regularization parameter of svm need to tune during the training.

Since the search space is infinite, we empirically apply enumeration method to select the reg-

ularization parameter. The search space of the parameter is defined as [0.01, 0.1, 1, 10, 100],

and selected by two-fold cross validation. It means we divide the whole training data into two

disjoin parts. When one fold is used for training, the other fold is used for evaluation. The best

parameter is selected by the best average performance on the tow folds.

• Positive Selection. The initial outputs of the detectors are probabilities, which indicate the

relevances between the video clips and events. They cannot indicate whether and when the

events happened. To parse these final outputs from the initial results, the first step is to learn

the threshold for binarizing the probabilities, which is achieved by cross validation. After this

step, the system gets the positive indicators on the time intervals predefined by the sliding

process. The second step is to compress the positives. The positive indicators may appear

on several continuous intervals, which potentially increases the amount of false positives. In

order to amend this problem, we introduce non-maximum suppression (NMS) [75] to prune the

positives. After that, the system returns the remaining positives as output.

1https://github.com/domainxz/pytools.git

4.5 EXPERIMENTS 67

4.4.5 Score Fusion

Given T content types, C cameras and E events, the model training generates T × C × E binary

detectors in total and results in the ranking lists of same amount. For system outputs, there only

require C × E ranking lists. The system outputs can be generated by selecting one content type. But

it is not recommended due to the low accuracy [14, 123]. The more suitable process is score fusion

which transforms the ranking lists derived from different content types into one. In our proposed

system, we select the direct but efficient way to perform score fusion, which averages the probabilities

and thresholds from different selected content types to form the final results. After that, the key issue

is which content types should be fused together. After apply the detectors on the cross-validation data,

we get four group of detection scores at hand. They are predicted by the fisher vectors in terms of

dense trajectory with normal PCA (dtfv), dense trajectory with whiten PCA (dtwfv), improved dense

trajectory with normal PCA (idtfv) and improved dense trajectory with whiten PCA (idtwfv). We

enumerate all the possible small sets to select the best one, and find the combination of dtwfv and

idtwfv is the best. The details are displayed in the experiments.

4.5 Experiments

4.5.1 Dataset

The data for video-level surveillance filtering is from NIST SED competition [79], which consist

of raw videos and annotations. The raw videos are from London airport, which are recorded by 5

cameras. They are divided into two parts. The first part is training videos which contain 10-day

surveillance. The second part is test videos which are recorded after the training videos. The total

duration of the test videos are 10 hours. The events required to detect are provided by annotations.

There are seven events in total, namely, CellToEar, Embrace, ObjectPut, PeopleMeet, PeopleSplitUp,

PersonRun and Pointing. The annotations contain the durations of different events on the training

videos. In Table 4.3, we list the statistics of the seven events, which include the amounts and the

duration medians. PersonRuns, PeopleMeet, PeopleSplitUp and Embrace have more than 2-second

duration on average. We call them as long-duration events. The rest events are called as short-duration

events.

68 VIDEO-LEVEL FILTERING USING SMALL NON-TEXTUAL CONTENT SET

TABLE 4.3: The statistics of events on training videos

Event Amount Duration Median

PersonRuns 632 2.68s

CellToEar 488 0.80s

ObjectPut 2457 1.00s

PeopleMeet 1102 3.44s

PeopleSplitUp 1469 6.36s

Embrace 878 2.88s

Pointing 2588 1.28s

4.5.2 Evaluation Plan

The filtering accuracy is measured by counting the system errors. The metric in used is detection

cost rate (DCR). It is made up of two sub-metrics after the predictions from the system are aligned

to the ground truth. The first sub-metric is positive miss (Pmiss). If one ground truth event has not

hit any positive predictions, a Pmiss will be reported. The second sub-metric is false alarm. If the

positive predictions have 50% less overlap with the corresponding ground truth, a false alarm (FA)

will be reported. After counting all the Pmiss and FA of one specific event, the DCR is calculated by

Equation 4.1.

DCR =
Pmiss

NP

+ 0.005 · FA (4.1)

Since DCR measures the system’ errors, a smaller DCR value means higher accuracy. If the

system does not perform detection, the DCR will be 1. If the system does not have errors, the DCR

will be 0,. Currently, none of the existing systems can perform error-free detections.

The value of DCR is decided by the threshold. Therefore, there are two values for references in the

experiments. The first value is aDCR which is the actual detection error of the proposed system. The

other value is mDCR which is the ideal detection error of the proposed system. mDCR is usually

smaller than aDCR because it searches the best threshold according to the ground truth, which is

impossible for the proposed system leveraging.

4.5 EXPERIMENTS 69

4.5.3 Experimental Results

Small Content Set Comparison

The first experiment tries to select the best small content set. In order to compare with previous works,

the number of content types is set to 2. The best 4 combinations are recorded in Table 4.4. We can

clearly see the small set which consist of dtwfv and idtwfv is the most accurate.

TABLE 4.4: Evaluations for fusion strategy

Event dtfv + idtfv dtfv + idtwfv idtfv + idtwfv dtwfv + idtwfv

CellToEar 1.0058 1.0013 1.0036 1.0040

Embrace 1.0068 0.9253 0.9197 0.9105

ObjectPut 1.0042 1.0023 1.0026 1.0020

PeopleMeet 0.9520 0.9238 0.9369 0.9297

PeopleSplitUp 0.9613 0.8931 0.9036 0.8861

PersonRuns 0.6440 0.6478 0.6549 0.6299

Pointing 1.0140 0.9920 0.9891 0.9858

Resized Videos vs. Original Videos

The first experiment display the impact of small feature set. In our second experiment, we want to

examine how the resized videos influences the accuracy of surveillance video filtering. Table 4.5

shows the aDCR from our cross validation. The results clearly indicate that original videos could

improve the filtering accuracy of Embrace and PersonRuns events.

Based on the aDCR from individual content types, we further fuse them according to the first

experiment to see whether the accuracy could be remained after fusion. The aDCR values of the

fusion on validation and the feedback from NIST are displayed in 4.6. The results in Table 4.6 show

the poor performance of detection on original videos for formal submission, while the performance

of detection on resized videos is quite consistent.

To figure out why the performance divergence of detection on original videos is so high, we look

inside the aDCR and extract the positive miss (Pmiss) and false alarm (FA). The sub-metrics show

that detection on original videos increase the amount of FA significantly. This drawback ruins the

70 VIDEO-LEVEL FILTERING USING SMALL NON-TEXTUAL CONTENT SET

TABLE 4.5: Filtering accuracy with resized and original videos

resized original

event dtwfv idtwfv dtwfv idtwfv

CellToEar 1.0009 1.0018 1.0026 1.0022

Embrace 1.0050 1.0131 0.9197 0.9774

ObjectPut 1.0057 1.0059 1.0154 1.0218

PeopleMeet 0.9589 0.9516 0.9634 0.9710

PeopleSplitUp 0.9610 0.9595 0.9798 0.9752

PersonRuns 0.6634 0.6458 0.6193 0.6119

Pointing 0.9890 0.9956 0.9887 0.9908

TABLE 4.6: Fusion under resized videos and original videos

validation submission

event resized original resized original

CellToEar 1.0013 1.0008 1.0046 1.0140

Embrace 0.9251 0.8409 0.8680 0.8646

ObjectPut 1.0034 1.0133 1.0160 1.0044

PeopleMeet 0.9172 0.9200 0.8939 0.9269

PeopleSplitUp 0.8821 0.8712 0.8934 0.8909

PersonRuns 0.6426 0.5325 0.5768 1.0303

Pointing 0.9869 0.9826 1.0140 1.0057

overall performance of the detection. We think it is because the motion contents in original videos are

richer than those in resized videos. This brings much more noise than useful signals. To this end, the

performance of detection on original system is inferior to that on resized videos.

4.5 EXPERIMENTS 71

TABLE 4.7: Ground True (GT), Positive Miss (Pmiss) and False Alarm (FP) comparison

Resized Original

event GT Pmiss FA GT Pmiss FA

CellToEar 54 54 8 77 77 28

Embrace 138 76 552 173 131 215

ObjectPut 289 282 70 348 345 26

PeopleMeet 256 156 495 323 231 424

PeopleSplitUp 152 95 467 176 135 248

PersonRuns 50 22 238 63 36 1237

Pointing 794 759 101 929 899 76

Comparison with Other Systems

We use the conclusions from above experiments to generate submission for the TRECVID SED 2015

competition. The results are listed in Table 4.8. Our overall retrospective results (no human assis-

tance) outperform the other retrospective systems. Besides that, the proposed system can also beat

the results from the systems with human assistance.

TABLE 4.8: Competition results in TRECVID SED 2015

Event
Our retro results Best retro results Best inter results

aDCR mDCR aDCR mDCR aDCR mDCR

CellToEar 1.0046 1.0006 1.3071 1.0006 2.1010 1.0006

Embrace 0.8680 0.8453 0.7909 0.7909 0.8540 0.8540

ObjectPut 1.0160 0.9884 1.0120 0.9965 0.9930 0.9867

PeopleMeet 0.8939 0.8848 1.0426 0.9981 0.9978 0.9919

PeopleSplitUp 0.8934 0.8785 0.9387 0.9253 0.9164 0.9164

PersonRuns 0.5768 0.5466 0.9700 0.9545 0.9411 0.9411

Pointing 1.0140 0.9940 1.0040 0.9989 0.9939 0.9939

In addition to that, we achieve the state-of-the-art aDCR in PersonRuns event. We compare our

72 VIDEO-LEVEL FILTERING USING SMALL NON-TEXTUAL CONTENT SET

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2011 2012 2013 2014 2015

0.8924

0.8546

0.6445

0.7708

0.5850

0.8301

0.7361

Ours
0.5760

0.9441

D
C

R

year

retrospective
interactive

FIGURE 4.2: best aDCR for PersonRuns in recent five years’ retrospective and interactive systems.

result to recent five years’ best results in Fig. 4.2. We find this score achieves the new record in recent

years’ SED competitions, even though the test data become harder since 2014.

4.6 Summary

In this chapter, we study how to perform video-level filtering in a surveillance environment. Due the

differences between normal and surveillance videos, the filtering methods cannot exploit rich content

set in this situation. It only allows to use a small motion content set to filter the videos. The existing

content set is made up of MoSIFT and STIP which are sparse sampling motion features. In our work,

we try to introduce the dense sampling motion features as replacement. The challenge of this study

is that improve dense trajectory (IDT) alone performs poor in the surveillance filtering. We need to

find a good complementary feature to work with IDT. This cannot be achieved by MoSIFT or STIP

in previous works. Therefore, we introduce dense trajectory (DT) in our study by analyzing what

make IDT imperfect on surveillance videos. Our study further uncovers the importance of resizing,

encoding and fusion, which helps us win the TRECVID SED 2015 retrospective competition.

Chapter 5

User-level Filtering Using Rich Content Set

5.1 Introduction

Watching online videos has become one of the indispensable entertainment activities in daily life.

Many famous websites, such as YouTube, Netflix and Hulu, host a tremendous number of videos to

meet such demand. However, these massive video repositories place an enormous burden on users

when trying to find videos of interest [2, 88]. To improve this situation, most video websites have

adopted user-level video filtering service, namely recommender systems, as an effective way to help

users explore the world of videos [20, 36]. Existing user-level filtering methods can be categorized

into three classes [8, 2]: content-based methods, collaborative filtering (CF)-based methods, and

hybrid methods. Content-based methods make use of user profiles and item descriptions, e.g., item

contents, for filtering videos. CF-based methods use the historical user activity or feedback, such as

user ratings, but not user or item content information. Hybrid methods [3, 45] seek the best of both

worlds by combining both content and CF-based methods.

With the rapid expansion of video websites and platforms, and a dramatic increase in the amount

of available videos, existing video recommender systems are confronted with two critical problems:

data sparsity and cold start. The number of videos a user can watch is limited, and most videos

receive a small number of ratings. The user-video interaction/rating matrix is thus extremely sparse,

which significantly limits the performance of CF-based methods. Moreover, thousands of new videos

are uploaded to video websites very day. Collaborative filtering and matrix factorization methods,

which use only user-video matrix information without any content information, are not effective for

recommending new videos. These new videos are called cold-start videos or out-of-matrix videos. To

73

74 USER-LEVEL FILTERING USING RICH CONTENT SET

tackle these problems, hybrid recommendation methods, which combine collaborative filtering and

auxiliary information such as item content, usually achieves more accurate filtering results and have

gained increasing popularity in recent years.

Most existing hybrid recommender systems [110, 106, 71, 45] integrate textual content to improve

recommendations. However, the scarcity of textual content, especially for user-generated videos,

makes these hybrid recommendation methods ineffective. For example, plenty of videos on Youtube

only have titles. A few recent works [118, 78, 42] have tried to exploit non-textual content features

(i.e., multimedia features) for video, music and product recommendation, but have only focused on

in-matrix recommendation scenarios. In these cases, the user-item interaction matrix information ac-

tually dominates the model learning process, and the effect of non-textual content is not significant.

As such, whether non-textual features can really benefit out-of-matrix recommendations, is still un-

explored, and is an important issue for video recommendation given the fast pace of today’s video

generation.

Given traditional video features such as normalized color histogram and aural tempos, have proven

to be unhelpful for improving the video recommendation [118], we first introduce several new non-

textual content features to represent videos. Intuitively, users might be interested in a video for many

reasons. We thus propose to use MFCC [4], SIFT [12, 104], improved dense trajectory (IDT) [109]

and convolutional neural network (CNN) [56] to extract and quantize the audio, scene and action

information contained in the videos. Encoding these non-textual content features with the state-of-the-

art methods [82, 55, 50] will enable generation of more effective and expressive content features [4,

109, 116].

Using both the widely used textual content features and these new non-textual content features, we

first reproduced and tested the state-of-the-art hybrid recommendation methods [106, 78, 110, 42] in

both in-matrix and out-of-matrix scenarios. The results showed that none of these methods achieved

high recommendation accuracy in both scenarios. In particular, we observed that weighted matrix

factorization (WMF)-based methods achieved better performance in the in-matrix scenario, while

Bayesian personalized ranking (BPR)-based methods generated more accurate recommendations in

the out-of-matrix scenario. To improve that, we propose a collaborative embedding regression method

(CER) based on WMF in this work. Unlike existing WMF-based methods [106, 78, 110] which apply

non-linear learning on the content features, CER applies linear learning instead, considering that (1)

the non-textual content features are encoded to work with the linear learning models [82, 55, 50];

5.1 INTRODUCTION 75

and (2) the content features are usually of high dimensionality, and linear learning is more efficient

than the non-linear learning. The experimental results show that, for any individual content feature

(either non-textual or textual), CER performs slightly better than other WMF-based methods in the

in-matrix scenario, and significantly outperforms both WMF and BPR-based methods in the out-of-

matrix scenario. Moreover, CER’s model training is more efficient and more scalable to large datasets

than the other methods’.

In addition, observing that different content features have significantly diverse performance in

out-of-matrix recommendation, we have also studied how to use multiple content features of videos

to further improve top-k recommendations in the out-of-matrix scenario. In recent years, design-

ing fusion strategies of multiple features has become a major research trend and different techniques

have been proposed. There are two widely accepted yet independent strategies to fuse multiple fea-

tures [17]: early fusion and late fusion. Most works on early fusion try to map multiple feature spaces

to a unified one. For example,in [98, 124, 113], multiple original features are mapped to a latent space

with lower dimensionality based on neutral networks. Although some interactions among features can

be captured by such a framework, a number of problems exist. First, a unified feature space is often

built according to global statistical information using deep learning models, which incurs extremely

high computational costs for large-scale video databases, each with tens of thousands dimensions.

Second, the textual, audio, visual and action information contained in videos are widely diverse and

heterogeneous. It is almost infeasible to construct a shared latent space for recommendation without

losing some important and meaningful feature information.

The other line of research focuses on the late fusion of multiple features. This fusion strategy

uses separate result lists derived from different features, and carries out fusion using the candidate

results [101, 84]. Learning-to-rank techniques (e.g., ranking SVM) represent the state-of-the-art of

late fusion mechanisms [68, 4, 116]; however, as supervised learning techniques, learning-to-rank

models can only be trained based on user-video interaction matrix in our problem. The feature

weights learned in in-matrix setting are not suitable for out-of-matrix setting, as these two settings

have disparate characteristics and intrinsically different. Also, training learning-to-rank models is

time-consuming. Instead, we propose a novel unsupervised late fusion method to compute the feature

weights that does not depend on user-video interaction information.

To summarize, the contributions of this work include:

• To the best of our knowledge, this is the first effort to leverage MFCC, SIFT, IDT as well as

76 USER-LEVEL FILTERING USING RICH CONTENT SET

CNN features for video recommendations and to study their effect in improving out-of-matrix

recommendations.

• We propose a novel hybrid video recommender model, CER, to effectively combine collabora-

tive filtering with both textual and non-textual content features in a unified way. We also study

how to fuse multiple types of content features to further improve out-of-matrix recommendation

and propose a novel fusion method.

• We conduct extensive experiments to evaluate both the proposed CER and the unsupervised

late fusion method. The results reveal that our approaches significantly outperform competitor

methods.

5.2 Problem Statement

5.2.1 Preliminaries

FIGURE 5.1: Implicit rating matrix for in-matrix and out-of-matrix recommendation.

The basic elements of a video recommender system are users and videos. Assume there are m

users and n videos in total. As shown in Figure 5.1, we use rij ∈ {?,+} to denote the ith user’s

implicit rating/feedback on the jth video: rij = + means the ith user likes the jth video; rij =?

5.3 RELATED WORK 77

means the ith user dislikes the jth video or is not aware of the jth video. As a convention[87], we map

{?,+} to {0, 1}.

Given a target user, the video recommender system aims to find the top-k videos that the user

is potentially interested in. The video recommendation can be further divided into two settings:

in-matrix and out-of-matrix recommendations. In the in-matrix setting, the recommender system

recommends the top-k videos which have not been rated by the target user but have been rated by

other users[106]. Based on the co-rating behaviors of similar users, state-of-the-art methods[47, 106,

78, 110] use collaborative filtering (CF) to generate recommendations. In out-of-matrix setting, the

recommender system suggests top-k new videos that have not been rated by any user[106] (i.e., cold-

start recommendation). In this setting, CF-based methods become ineffective, whereas content-based

methods perform well.

5.2.2 System Overview

The proposed systems aims to perform user-level video filtering with rich content vectors. It consists

of several steps:

1) Content Vector Generation extracts raw features from the videos and use feature encoding

methods to transform the raw features into vectors. The content types in use are MFCC, OSIFT,

MoSIFT, IDT, CNN. The encoding methods in use are fisher vector (FV) and VLAD.

2) Model Training learns the score predictors based on the rating matrix and the content vectors.

It tries to obtain the latent factors from both user collaboration and video contents, and uses the

latent factors for both in-matrix and out-matrix score predictions.

3) Multiple Content Fusion fuses the scores of a video from different contents into the uniformed

one. It has two strategies, namely, early fusion and late fusion. The method in the proposed

system is late fusion because it has superior performance to early fusion.

5.3 Related Work

For top-k recommendation, weighted matrix factorization (WMF) [54] and Bayesian personalized

ranking (BPR)[87] represent the state-of-the-art performance in in-matrix setting. Both of them are

78 USER-LEVEL FILTERING USING RICH CONTENT SET

matrix factorization models and are derived from collaborative filtering (CF). They learn a latent vec-

tor to predict each user’s rating on each item, for each user and item in turn, and then select the top

ranked items with the highest predicted ratings. The major difference between them is the optimiza-

tion objective. The WMF model[54] learns the latent factors by minimizing the rating prediction loss

on the training data, while the BPR model[87] learns the latent factors by preserving the pair-wise

personalized rankings.

Recently, both WMF and BPR were extended to incorporate content features, so they can learn

a latent vector to represent both in-matrix and out-of-matrix items, and hence be applied to both

in-matrix and out-of-matrix recommendation scenarios. The representative WMF-based models in-

clude collaborative topic regression (CTR)[106], deep content-based music recommendation model

(DPM)[78] and collaborative deep learning (CDL)[110]. CTR and CDL only integrate the textual fea-

tures of items, while DPM only considers non-textual features. The models for learning the content

latent vectors are latent Dirichlet allocation (LDA), stack de-noising auto-encoder (SDAE) and mul-

tiple layer perception (MLP) respectively. The representative BPR-based models are visual Bayesian

personalized ranking (VBPR)[42], collaborative knowledge base embedding (CKE)[124] and Visual-

CLiMF[90]. VBPR and Visual-CLiMF are designed to incorporate with single feature, while CKE

works with both structural and non-structural features from the knowledge base by adding them up.

Visual-CLiMF enhances VBPR by optimizing the approximate reciprocal rank instead of pair-wise

rank. All of these BPR variants use linear embedding to learn the latent content vectors.

5.4 Proposed System

5.4.1 Content Vector Generation

This section describes how the content features, including both textual and non-textual, are extracted

for video recommendation. They are used for content-based inference in Figure 5.2.

The proposed system not only generate the textual content vectors but also the non-textual con-

tents. Two kinds of textual content vectors are generated. They are word vector and meta vector. In

addition to that, six kinds of non-textual content vectors are generated in the proposed system. The

raw features in use are MFCC, OSIFT, MoSIFT, IDT and CNN. Unlike MFCC, MoSIFT and IDT

which take the whole audio or video file as input, OSIFT and CNN are applied to the frames sampled

5.4 PROPOSED SYSTEM 79

FIGURE 5.2: The flowchart of exploiting rich contents to recommend videos.

from the video. Following[4, 116], we fetch 5 frames per second from the video. Besides, there is

usually a normalization process on the raw features. We apply SSR (signed squared root) to normalize

all the raw features[5, 4].

Feature Encoder Dimension

MFCC

FV

10240

OSIFT 98304

MoSIFT 68608

IDT 128304

CNN
131072

VLAD 65536

TABLE 5.1: The dimensions of the encoded non-textual content vectors.

We obtain a group of vectors for each non-textual content feature. These feature vectors need to

be transformed into one feature vector to be incorporated into collaborative filtering[106, 78, 110, 42].

An intuitive transformation method is to simply average the feature vectors by dimension. But this is

not a good choice due to its limited representative capacity[80]. Recent studies show that it is better

to transform the feature vectors using an encoding process[82, 4, 80, 116]. As a result, we apply

two state-of-the-art encoding methods, Fisher vector (FV)[82] and VLAD[50], to transform a group

of feature vectors to one vector. The encoding methods and the resulting dimensions for each non-

textual feature in Table 5.1. We notice that the dimensions of all the encoded feature vectors are very

80 USER-LEVEL FILTERING USING RICH CONTENT SET

high. This high dimensionality makes it infeasible to integrate with collaborative filtering (i.e., latent

factor models). Thus, we apply PCA to reduce the dimension of each feature to 4000, following[81].

5.4.2 Video Recommendation

In this section, we first reproduce existing recommender models and analyze their performance in

both in-matrix and out-of-matrix settings. Based on the results, we study the possible reasons why

these state-of-the-art recommender models cannot deliver effective video recommendations with non-

textual features. Inspired by the results, we propose an improved recommender model, CER, followed

by a novel late fusion strategy to fuse the recommendation lists from different content features to

further improve recommendation accuracy.

Recent Methods on Various Features

Methods Contents

WMF, BPR N/A

CDL, VBPR, CTR WORD, META

CDL, VBPR, DPM MFCC

CDL, VBPR CNNFV

TABLE 5.2: The state-of-the-art recommender models and the corresponding content features in use.

Given the set of extracted content features associated with videos, an interesting question nat-

urally arises: how do state-of-the-art recommender models perform with these features in top-k

recommendations. To answer this question, we reproduce the WMF and BPR-based recommender

models using the Movielens 10M dataset[39]. We adopt the optimal parameter settings proposed

in[47, 87, 106, 78, 110, 42]. Additionally, we extend CDL[110] and VBPR[42] to work with vectors

from MFCC and CNNFV. The recommender models and the corresponding content features are listed

in Table 5.2.

The recommender models listed in Table 5.2 were tested in both in-matrix and out-of-matrix

settings with their optimal parameters. More details about the dataset splits and evaluation metrics are

discussed in the experiments section. The results are presented in Figure 5.3 where the subscripts of

5.4 PROPOSED SYSTEM 81

0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.1 0.2 0.3 0.4

A
cc

u
ra

cy
@

3
0
 (

o
u
t-

o
f-

m
at

ri
x
)

Accuracy@30 (in-matrix)

BPR
WMF
CTRWORD
CTRMETA
CDLWORD
CDLMETA
CDLCNNFV
CDLMFCC
DPMMFCC
VBPRWORD
VBPRMETA
VBPRCNNFV
VBPRMFCC

FIGURE 5.3: Performance of the state-of-the-art methods in both in-matrix and out-of-matrix settings. To
clearly display the methods which only support in-matrix recommendation, we shift the origin of the vertical
axis to a higher position.

the models denote the content features in use. To clearly show the differences between these methods,

we use the evaluation metric Accuracy@30. Figure 5.3 provides the following observations:

1. WMF-based recommender models yielded more accurate recommendation than BPR-

based models in the in-matrix test. In Figure 5.3, all the WMF-based models (i.e. WMF,

CTR, DPM and CDL) are located to the right of the BPR-based models (i.e. BPR and VBPR).

Additionally, the performance of the WMF-based models (e.g., CDL) in the in-matrix test do

not vary significantly with respect to the different types of content features, while the introduc-

tion of content features improves the basic WMF. All these facts indicate that the WMF-based

models in the in-matrix scenario are mainly dominated by their collaborative filtering compo-

nent WMF, and they are insensitive to feature types.

2. VBPR achieved the best performance in the out-of-matrix test. In Figure 5.3, given a par-

ticular content feature, the position of VBPR is always higher than that of all the other meth-

ods. This shows that VBPR is the most effective method in the out-of-matrix scenario, and the

content-based components in the existing WMF-based models are not suitable for out-of-matrix

recommendations.

In summary, our reproduction experiment shows that none of the existing recommender models

achieve high recommendation accuracy in both in-matrix and out-of-matrix scenarios. To address this

82 USER-LEVEL FILTERING USING RICH CONTENT SET

problem, we propose a new WMF-based recommender model CER in this work.

Collaborative Embedding Regression

All recent WMF-based models[106, 78, 110] follow a similar rating generation process. The major

difference among them is the way they generate content latent vectors. CTR[106] incorporates textual

features with WMF and generates the content latent vectors using latent Dirichlet allocation (LDA).

Since the optimization of LDA is based on word count only, CTR naturally fails to support non-textual

features that are real values. Compared to CTR, DPM[78] and CDL[110] can generate various content

latent vectors from both textual and non-textual features. They achieve this by respectively applying

multiple layer perception (MLP) and stacked de-nosing auto-encoder (SDAE) as generation functions.

However, the results in Figure 5.3 show that neither of them perform well in out-of-matrix setting,

especially those with non-textual features. This is because the non-textual features are encoded for

linear learning[82, 55, 50]. Thus, MLP and SDAE that perform non-linear learning degrade the

performance of the encoded non-textual features. On the other hand, the excellent performance of

VBPR actually benefits from its adoption of the linear embedding method[42]. Based on above

analysis, we propose a novel recommender model, collaborative embedding regression (CER), to

work with both textual and non-textual features. Let d denote the dimension of the content feature

and k denote the dimension of the latent vector. The whole generation process of CER with an

individual content feature is described below.

1. For each user i, draw a user latent vector wi ∈ Rk×1:

wi ∼ N (0, λ−1u I). (5.1)

2. Generate an embedding matrix E ∼ N (0, λ−1e I).

3. For each video j:

(a) Generate a content latent vector h′j ∈ Rk×1:

h′j = ET fj . (5.2)

(b) Draw a latent video offset vector εj ∼ N (0, λ−1v I), and then set the video latent vector as:

hj = h′j + εj . (5.3)

5.4 PROPOSED SYSTEM 83

4. For each user-video pair (i, j), draw the rating:

rij ∼ N (wT
i hj , c

−1
ij). (5.4)

where I is an identity matrix, fj ∈ Rd×1 is a feature vector, E ∈ Rd×k is an embedding matrix,

and cij is the confidence parameter for the user-item pair (i, j). Following[106, 110], the value of cij

is defined below:

cij =

1, if rij = 1

0.01, if rij = 0

(5.5)

Note that, in step 3(a), we use linear embedding instead of non-linear learning adopted by CTR,

DPM and CDL. This is more suitable for learning the content latent vectors from the non-textual

features[82, 4, 109]. In step 3(b), h′j serves as the bridge between the implicit feedback preference

and the video content features.

Learning the parameters. To predict the rating, the latent vectors and the embedding matrix need

to be learned. As computing the full posterior of the parameters is intractable and maximizing the

posterior probability of W , H and E is equivalent to maximizing the log-likelihood, we follow[106]

to minimize the negative log-likelihood as follows:
m∑
i=1

n∑
j=1

cij
2

(wT
i hj − rij)2 +

λu
2

m∑
i=1

wT
i wi+

λv
2

n∑
j=1

(hj − ET fj)
T (hj − ET fj) +

λe
2
||E||2F ,

(5.6)

where λu, λv and λe are the hyper parameters and || · ||F denotes the Frobenius norm. When these

hyper parameters are fixed, the optimal latent vectors wi and hj as well as the embedding matrixE are

obtained by performing the alternating least squares (ALS), following[106, 110]. Specifically, in each

iteration, given the current estimation of E, the derivatives with respect to wi and hj are computed

and set to zero. We then derive the following updating formulas for wi and hj:

wi ← (HCiH
T + λuIk)−1HCiRi

hj ← (WCjW
T + λvIk)−1(WCjRj + λvE

T fj)
(5.7)

where W = (wi)
m
i=1 ∈ Rk×m is the matrix formed by user latent vectors, H = (hj)

n
j=1 ∈ Rk×n is

the matrix formed by video latent vectors, and F = (fj)
n
j=1 ∈ Rd×n is the content matrix. For user i,

Ci ∈ Rn×n is a diagonal matrix with cij , j = 1 · · · , n as the diagonal elements, Ri ∈ {0, 1}n×1 is a

vector with rij , j = 1 · · · , n as its elements. For video j, Cj and Rj are similarly defined.

84 USER-LEVEL FILTERING USING RICH CONTENT SET

Then, we fix the current estimation of H , and the derivatives with respect to E are computed and

set to zero. We derive the following updating formula for E:

E ← (λvFF
T + λeId)−1(λvFH

T). (5.8)

Similar to CTR and CDL, CER supports both in-matrix and out-of-matrix rating prediction. For

in-matrix predictions, given a user-video pair (i, j), the rating r̂ij is estimated as wT
i (E

Tfj + εj).

For out-of-matrix prediction, the rating r̂ij is predicted as wT
i E

Tfj since no offset is observed. In

summary, the rating predictor is defined as:

r̂ij =

w
T
i hj, in-matrix setting

wT
i E

Tfj, out-of-matrix setting
(5.9)

Multiple Feature Fusion

The CER model presented in the previous subsection is designed to work with a single type of feature,

just like most of the recent hybrid recommender models[106, 78, 110, 42]. In this subsection, we will

study how to leverage rich and diverse content features to further improve the video recommendation.

Specially, we present three feature fusion methods to facilitate CER to work with multiple types of

features.

The first method concatenates all the feature vectors associated with a video into one big vector

and then feeds the big vectors into CER. Assuming there are L features in total, the concatenation is

performed as follow:

fj ← [f1j , f
2
j , . . . , f

L
j]. (5.10)

This fusion method is expected to learn the shared latent factors among the concatenated features. It

does not introduce any modification on the objective function of CER, but it will significantly increase

the training time of the CER because the time complexity of CER’s optimization is proportional to

the dimension of the feature vector fj .

The second method adds all the content latent vectors h′lj together, as done in CKE[124]. The

content latent vectors in the generation process of CER are redefined as:

h′j =

L∑
l=1

h′lj =

L∑
l=1

Elf lj . (5.11)

Compared to the first method, the second method compresses the dimension so that the training is

faster, but it needs to modify the objective function of the CER by adding the regularization terms of

5.4 PROPOSED SYSTEM 85

all the embedding matrices, and the updating formulas of the model parameters also need to change

accordingly.

The above two methods are early fusion methods. They try to map multiple feature spaces to

a unified one. However, the textual, audio, visual and action information contained in videos are

widely diverse and heterogeneous. It is almost infeasible to construct a shared latent space for recom-

mendation without losing some important and meaningful feature information. Besides, early fusion

methods require re-training models when the features in use are changed (e.g., adding new features).

From these two perspectives, the early fusion tends to be inferior to the late fusion which directly

works on the results obtained from each type of feature.

As shown in Figure 5.3, the performance of WMF-based models in the out-of-matrix scenario

varies greatly with respect to the different types of content features. In a recent video retrieval

system[4], such divergence is leveraged by fusing multiple ranking lists to obtain a more relevant

ranking list. Inspired by[4], we consider the late fusion has the potential to improve the video rec-

ommender system as well. We thus propose the third method to fuse the top-k recommendations

generated from multiple content features.

Inspired by the success of learning-to-rank techniques[4, 116], in the third method, we first com-

pute a weight for each feature and then apply the weighted sum strategy to implement the late fusion.

The fused estimation rating is computed as follows:

r̄ij =

L∑
l=1

πlr̂
l
ij , (5.12)

where L is the number of content features; πl is the weight of the lth content feature; r̂lij is the

predicted rating based on the lth content feature. The challenge of the above fusion mechanism is

how to compute the weights.

A naive solution is to treat each content feature equally, namely average fusion. Recall that Fig-

ure 5.3 shows a large performance divergence between different content features. The average fusion

method neglects this divergence, which would lead to inferior performance. Another solution is to

learn the weights using a learning-to-rank method [10]. However, learning-to-rank models are super-

vised learning and can only be on a user-video interaction matrix in our problem. Thus, the feature

weights are learned in the in-matrix setting, which are not suitable for the out-of-matrix setting, as

these two settings are intrinsically different. Moreover, training learning-to-rank models is time-

consuming. Accordingly, we propose an efficient unsupervised method to decide the weights. We

86 USER-LEVEL FILTERING USING RICH CONTENT SET

first rank all content features based on their performances in the in-matrix or out-of-matrix settings

on the validation dataset, then the weight of lth content feature is computed as πl = p(1−p)l−1 where

p ∈ [0.5, 1) is a hyper parameter. Note that, for any rank position t (i.e., ∀t > 0), the inequality∑L
l=t+1 πl 6 πt holds in our method. This strategy ensures that the lth content feature has higher

weight than the total weight of the remaining less powerful content features. In other words, the pro-

posed method allows the more effective features have much more impact in the final rating which is

consistent with the observation in Figure 5.3.

To clearly illustrate the calculation of the weights, we present an example in Table 5.3 where

four features are given and ranked. Note that, as WMF-based models (including our CER) with

different content features achieve almost the same recommendation results in the in-matrix setting,

as shown in the experiment section, we only apply our proposed fusion method to the out-of-matrix

recommendation.

Feature META CNNFV IDT MFCC

l 1 2 3 4

πl 0.5 0.25 0.125 0.0625

TABLE 5.3: An example of the weights generated in the late fusion method when p is set to 0.5.

5.5 Experiments

In this section, we first describe the setup of experiments and then demonstrate the experimental

results.

5.5.1 Dataset Description

We used the MovieLens 10M [39] as the base dataset for our empirical studies. The Movielens

dataset does not itself contain videos or links for downloading. So we attempted to collect the videos

from YouTube by ourselves. However, as most full-length videos are not available to download for

free due to copyright restrictions, we downloaded the trailers according to the movie titles with the

dataset. After a manual check to ensure the trailers matched the original full-length videos, a small

fraction of the movies still not have trailers sourced from YouTube and we used other available clips

5.5 EXPERIMENTS 87

instead. By these means, we collected 10380 videos of the 10682 movies in the Movielens 10M

dataset. The ratings associated with the missing 302 videos were removed, which slightly decreased

the number of ratings from 10, 000, 054 to 9, 988, 676. The collected videos are resized to accelerate

the content feature extraction: their widths were reduced to 240 pixels and their heights were adjusted

proportionally.

The Movielens dataset also provides the movie IDs that correspond to IMDB1. Based on these IDs,

we crawled the movie plots, actors, directors, companies, languages and genres. Each movie’s title

and plot were concatenated into a document. The top 20000 words were selected as the vocabulary

according to global TF-IDF values, following[106, 110]. Then, a word vector for each movie was

generated by word frequency. The other textual information including actors, directors, languages,

companies, genres and other meta items formed another meta vector. To make the textual features of

the videos have the same dimensions, the top 20000 meta items are selected as the codebook of meta

vectors.

Similar to[106, 110], to be consistent with an implicit feedback setting, we transformed the ratings

in the dataset into {0, 1}. Specifically, we mapped rating 5 to 1 and all the other ratings to 0. As

a result, 1, 543, 593 positive ratings were generated, which only used 0.2% of all elements in the

rating matrix. To make our experiment repeatable, both our collected dataset and the code is publicly

available 2.

5.5.2 Experimental Settings

Comparison Methods

We compared our proposed CER model with the following six state-of-the-art recommender models.

Weighted Matrix Factorization (WMF)[54] only works in in-matrix setting, and achieves its

best performance with λu = 0.01, λv = 0.01.

Collaborative Topic Regression (CTR)[106] learns the content latent vectors from word vectors

using LDA. We trained CTR with both word and meta vectors. CTR achieves its best performance

with λu = 0.1, λv = 10.

DeepMusic (DPM)[78] uses MLP to learn content latent vectors from MFCC. We extended

DPM[78] to work with all the content features introduced in this section. DPM achieves its best
1http://www.imdb.com/
2https://github.com/domainxz/top-k-rec

88 USER-LEVEL FILTERING USING RICH CONTENT SET

performance with λu = 0.1 and λv = 10.

Collaborative Deep Learning (CDL)[110] learns content latent vectors using SDAE from word

vectors. Replacing the binary visible layer with Gaussian visible layer, SDAE can accept non-textual

content vectors as input. We therefore extend CDL to work with both textual and non-textual features.

CDL achieves its best performance with λu = 0.1, λv = 10 and λn = 1000.

Bayesian Personalized Ranking (BPR)[87] can be only applied to in-matrix recommendation

setting, and its best performance is obtained with λu = 0.0025, λi = 0.0025, λj = 0.00025 and

λb = 0.0.

Visual Bayesian Personalized Ranking (VBPR)[42] is an extension of BPR to combine visual

contents with the CF. VBPR can work with all content features. Its optimal parameter settings are

λu = 0.0025, λp = 0.0025, λi = 0.0025, λj = 0.00025, λb = 0.0 and λe = 0.0.

Note that CTR, DPM, CDL and VBPR can work in both in-matrix and out-of-matrix settings. The

dimension of the latent vectors in all the methods is set to 50 for fair comparison. Our proposed CER

achieves its best performance with λu = 0.1, λv = 10 and λe = 1000.

We also compare our proposed late fusion method with three state-of-the-art late fusion methods

and two early fusion methods as follow:

Average fusion (AF) averages the predicted ratings from different content features.

Ranking SVM (SF) is a classic learning-to-rank model based on SVM[68].

Ranking BPR (BF) computes the feature weights in a learning-to-rank way by BPR[87].

EFC is the first early fusion method presented in Section 5.4.2 that concatenates all the feature

vectors.

EFS is the second early fusion method presented in Section 5.4.2 that sums up all the content

latent vectors to get a unified content latent vector.

Our proposed fusion method is denoted as PF. The ranking of the content features is obtained on

the validation dataset. Given the ranking list, we find PF achieves its best performance with p = 0.5.

Data Split

Following the previous works [106, 110], we applied 5-fold cross validation to test the recommenda-

tion accuracy of each method in both in-matrix and out-of-matrix settings. Specifically, we divided

the dataset into the training set, in-matrix test set and out-of-matrix test set with a split of 60%, 20%,

20% of the total positive ratings, respectively. To achieve this, all videos were first split into five folds

5.5 EXPERIMENTS 89

randomly and uniformly. Then, the corresponding ratings are also split into five folds. When one fold

of videos was used to simulate new videos, its corresponding rating fold was chosen as the out-of-

matrix test set, and the rest of the four rating folds were mixed together and re-split into four folds

uniformly and randomly. Three of the re-split rating folds were used as the training set and the rest

of the rating fold was used as the in-matrix test set. Note that we randomly chose 5% of the ratings

from each test set as validation data to tune the model hyper-parameters.

In previous works [106], the in-matrix and out-of-matrix tests were conducted separately. The

training data would change when the test scenario switches, which actually makes the two recom-

mendation scenarios incomparable. Our proposed split protocol improves this situation so we can ex-

actly compare the performance of each recommendation method in both in-matrix and out-of-matrix

settings.

Evaluation Protocol

We adopt the evaluation methodology and measurement Accuracy@k in [16, 122] to evaluate the top-

k video recommendation accuracy. According to our data and the split protocol described in Section

5.2.2, each user will have roughly 8000 unrated videos in the in-matrix test and 2000 unrated videos

in the out-of-matrix test. We computed the ratings based on the latent vectors or the content vectors,

then generated a ranking list of the unrated videos for each user according to the predicted ratings.

The top-k videos from the ranking list were returned as the personalized recommendation. For each

user-video pair (i, j) in the test set Dtest, if video j is in user i’s recommendation, we have a hit (i.e.,

the ground truth video is recommended to the user), otherwise we have a miss.

All the methods were evaluated by Accuracy@k where a higher value means better performance.

Its calculation proceeds as follows. We define Hit@k for a single test case as either the value 1, if the

ground truth video is in a user’s top-k video recommendation, or the value 0 if otherwise, if otherwise.

The overall Accuracy@k is defined by averaging all the test cases:

Accuracy@k =
#Hit@k

|Dtest|
(5.13)

where #Hit@k denotes the total number of hits in the test set, and |Dtest| is the number of all test

cases. The experimental results were validated by means of a standard 5-fold cross validation. In

previous works [106] [110], the value of k was selected from {50, 100, 150, 200, 250, 300}. However,

such values of k were too large for a user to receive at once in a real world recommender system[36].

90 USER-LEVEL FILTERING USING RICH CONTENT SET

Therefore, k was selected from {5, 10, 15, 20, 25, 30} in this section.

5.5.3 Experimental Results and Analysis

In this subsection, we evaluate the performance of our proposed CER in both in-matrix and out-of-

matrix settings. We also study whether our proposed feature fusion method can improve the out-of-

matrix recommendation. Recommendation efficiency is also studied.

0.1

0.2

0.3

0.4

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

CER
CDL
DPM
CTR

WMF
BPR
VBPR

FIGURE 5.4: Accuracy@k of different methods under in-matrix setting

In-matrix Recommendation Effectiveness

In this experiment, we study recommendation effectiveness in the in-matrix setting and present the

experimental results in Figure 5.4. For each recommender model, we notice that the performance

difference incurred by using different content features can be ignorable. Therefore, we only present

the one with the highest accuracy. Overall, our proposed CER achieved the highest recommendation

accuracy, although its superiority is not visually obvious in Figure 5.4. Another observation is that

the performance gap between the BPR-based models and WMF-based models are significant. This

indicates the WMF-based models are more effective for top-k recommendation in in-matrix setting.

5.5 EXPERIMENTS 91

0.05

0.10

0.15

0.20

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

CER
CDL
VBPR
DPM
CTR

(a) META

0.02

0.04

0.06

0.08

0.10

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

CER
CDL
VBPR
DPM
CTR

(b) WORD

0.02

0.04

0.06

0.08

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

CER
CDL
VBPR
DPM

(c) CNNFV

0.02

0.04

0.06

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

CER
CDL
VBPR
DPM

(d) CNNVLAD

0.01

0.02

0.03

0.04

0.05

0.06

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

CER
CDL
VBPR
DPM

(e) IDT

0.01

0.02

0.03

0.04

0.05

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

CER
CDL
VBPR
DPM

(f) MFCC

0.01

0.02

0.03

0.04

0.05

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

CER
CDL
VBPR
DPM

(g) OSIFT

0.01

0.02

0.03

0.04

0.05

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

CER
CDL
VBPR
DPM

(h) MoSIFT

FIGURE 5.5: Accuracy@k of different methods and features in out-of-matrix setting.

Additionally, the differences between pure WMF and its variants (CTR, DPM, CDL, CER) are non-

negligible. This indicates content information is beneficial for the in-matrix recommendation.

Out-of-matrix Recommendation Effectiveness

In this experiment, we study the performance of all recommendation methods in out-of-matrix setting.

Since out-of-matrix recommendation accuracy is heavily dependent on the types of content features,

we show the performance of all recommendation methods with different types of content features in

Figure 5.5. The sub-figures are sorted in descending order according to the performance of our CER.

From the results, we observe that our CER model significantly outperformed the other WMF-based

models consistently with each feature. Moreover, our CER also achieves higher recommendation

accuracy than VBPR which is the most effective baseline method in the out-of-matrix setting. This

indicates that linear embedding is more suitable for generating latent content vectors in the video

recommendation. However, the results in these figures also indicate that textual features (i.e. Figure

5.5(a) & 5.5(b)) are still the most powerful for out-of-matrix recommendation, while our introduced

non-textual feature CNNFV (i.e. Figure 5.5(c)) achieves comparable performance. This finding sug-

gests that, for user generated/uploaded videos without sufficient textual contents, the video recom-

mender system is still able to produce accurate recommendations if the effective non-textual features

are exploited and leveraged. Another observation is that recommendation accuracy in out-of-matrix

setting is not as high as in in-matrix setting. This is because out-of-matrix recommendation is more

challenging than in-matrix recommendation[106, 110, 42].

92 USER-LEVEL FILTERING USING RICH CONTENT SET

fusion on all non-textual features

Method k=5 k=10 k=15 k=20 k=25 k=30

AF 0.021243 0.037600 0.051699 0.064683 0.076871 0.088040

BF 0.021241 0.037602 0.051707 0.064690 0.076864 0.088044

SF 0.021498 0.037748 0.051894 0.064918 0.077049 0.088096

EFC 0.021830 0.038222 0.051606 0.065720 0.077664 0.089460

EFS 0.021439 0.037826 0.051994 0.064998 0.077119 0.088350

PF (p=0.5) 0.023090 0.040390 0.055746 0.069401 0.081788 0.093239

CNNFV 0.022809 0.039488 0.054017 0.067184 0.078983 0.089915

fusion on all features

Method k=5 k=10 k=15 k=20 k=25 k=30

AF 0.063132 0.093990 0.118933 0.140554 0.159595 0.176996

BF 0.061949 0.092322 0.116883 0.138128 0.156966 0.174059

SF 0.067023 0.100991 0.127185 0.149112 0.168508 0.186059

EFC 0.041733 0.063908 0.081737 0.097422 0.111366 0.124557

EFS 0.068546 0.101244 0.127280 0.149542 0.169221 0.187168

PF (p=0.5) 0.070157 0.104109 0.130914 0.153513 0.173169 0.190906

META 0.065530 0.098272 0.123640 0.145093 0.163806 0.180630

TABLE 5.4: Fusion results on different feature combinations

Test of Multiple Feature Fusion

In this experiment, we study whether fusing multiple types of features can further improve the out-

of-matrix recommendations.

We report the recommendation accuracy of each fusion method with different feature combina-

tions in Table 5.4. Since our CER achieved the best performance on all types of features, all the fusion

methods were performed based on our CER. To clearly illustrate the improvement, we also present

the highest recommendation accuracy achieved by our CER on a single feature in the last row.

As shown in Table 5.4, AF and BF fail to improve the recommendation accuracy with the combi-

nation of either the non-textual features or all the features. SF improves out-of-matrix accuracy with

all the features, but it does not improve the accuracy with non-textual features. The only method that

5.5 EXPERIMENTS 93

improves recommendation accuracy with both feature combinations is our proposed PF. The failure

of AF is due to the huge performance gap among different content features. In Figure 5.5, the highest

out-of-matrix accuracy of CER is achieved with META vectors, while the lowest accuracy of CER

is achieved with MoSIFT vectors. The highest accuracy is three times of the lowest accuracy. In

this situation, averaging the ratings weakens the predictability of the most powerful feature. Both BF

and SF are learning-to-rank methods and they learn the feature weights in a supervised way. In other

words, the weights can only be learned based on user-video interaction matrix (i.e., in the in-matrix

setting). The feature weights learned in the in-matrix setting, however, are not applicable to the out-

of-matrix setting, as the importance of the same feature is different in these two different settings. In

contrast, our proposed PF computes the weights in an unsupervised manner, thus the weights can still

be computed even in the out-of-matrix setting.

The early fusion method EFS achieves the consistent performance in both feature combination

settings. It performs better than the late fusion methods AF, BF and SF but worse than our proposed

late fusion method PF. On the contrary, EFC achieves different performance in different feature com-

bination settings. It achieves higher recommendation accuracy than AF, BF, SF and EFS when the

fusion is applied on the non-textual features, but lower accuracy than all the methods when the fusion

is performed on all the features. The results show that concatenating feature vectors then learning

the shared latent vectors may be infeasible when the input features are heterogeneous. Summing up

the latent vectors may overcome the heterogeneous problem, but it is not as good as the late fusion

method which leverages the accuracy divergences.

Test in Text Sparsity Setting

In this experiment, we study whether the out-of-matrix recommendation accuracy can be improved

by the non-textual features when few texts are available. Based on the fact that many user uploaded

videos on Youtube having titles only, we simulate a text sparsity setting where the construction of the

word vectors for the videos only uses titles. Figure 5.6 shows the performance of our CER with sparse

text features and the fusion of all the non-textual features, respectively. From the figure, we observe

that our CER achieves much higher out-matrix accuracy with the fusion of non-textual features than

with the sparse text features. It shows that more accurate recommendation is achieved with non-

textual features when there are few texts available, which indicates non-textual features are better for

out-of-matrix recommendation in a text sparsity scenario.

94 USER-LEVEL FILTERING USING RICH CONTENT SET

0.04

0.06

0.08

0.10

5 10 15 20 25 30

A
cc

u
ra

cy

#Recommendations

fusion of non-textual features
sparse text feature

FIGURE 5.6: Out-of-matrix recommendation accuracy in the text sparsity setting.

Training Time Comparison

In this experiment, we compare the model-training efficiency of different WMF-based models. Ta-

ble 5.5 reports the time cost of each iteration. Obviously, WMF costs the least time per iteration.

This is because WMF is a pure CF method which does not involve the content vector generation

process. CTR is the fastest of all the methods that use a content latent vector generation process.

Our proposed CER is the second fastest. This is because CER needs to update embedding matrix,

which requires more computation resource than the updates in LDA. However, CTR cannot support

non-textual contents. Therefore, among the methods that can work with all types of features, CER is

the most efficient. CDL is the slowest because it must pre-train SDAE before regression. Its time cost

per iteration is slightly higher than DPM when regression begins.

Method WMF CTR DPM CDL CER

Time cost 8.52s 11.57s 19.18s 41.77s 13.82s

TABLE 5.5: Training efficiency of WMF-based models.

5.6 SUMMARY 95

5.6 Summary

In this section, we investigated how to leverage the rich textual and non-textual content information

associated with videos to improve recommendation quality, especially in the out-of-matrix scenario.

We first extracted and encoded multiple content features including word vectors, meta vectors, MFCC,

SIFT, IDT and CNN. Then, we proposed a collaborative embedding regression model (CER) to in-

corporate these content features with collaborative filtering. We also studied how to fuse multiple

content features to further improve video recommendation and proposed a novel late fusion strategy

to fuse both non-textual and textual features. To evaluate the performance of our proposed recom-

mender model CER and feature fusion method, extensive experiments were conducted on a large

video dataset collected through multiple sources. The results show that our CER achieved the best

performance in both in-matrix and out-of-matrix recommendation settings, and our proposed unsu-

pervised feature fusion method significantly outperforms existing both early fusion and late fusion

methods.

96 USER-LEVEL FILTERING USING RICH CONTENT SET

Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, we first reviewed the relevant techniques for frame-level, video-level and user-level

video filtering. Enlightened by that the non-textual contents are complementary to the texts, we study

how to improve multi-level video filtering by using non-textual contents:

• In Chapter 3, we study frame-level filtering using detected visual objects. In previous works,

the visual objects are obtained manually with a top-down process, which is very costly. In our

study, we proposed to leverage the detected visual objects instead and designed a bottom-up

method. The proposed method is superior to the existing methods in our experiments in terms

of accuracy and efficiency.

• In Chapter 4, we study video-level filtering using small non-textual content set. In previous

works, the small content set is made up of STIP and MoSIFT. The state-of-the-art motion

feature IDT is not beneficial for the surveillance video filtering. In our study, we found that DT

is complementary to IDT. Fusing them together overwhelmed the state-of-the-art content set on

most events. Our findings helped us win the 2015 competition of TRECVID SED.

• In Chapter 5, we study user-level filtering using rich contents. In previous works, texts have

been widely used. When the texts are scarce, the accuracy of filtering is low. In our study,

we leveraged the non-textual contents to improve the text sparsity problem. Additionally, we

studied how to fuse multiple contents to form more accurate filtering. The experiments show

97

98 CONCLUSION AND FUTURE WORK

that the proposed method is superior to the state-of-the-art methods and the fusion method is

superior to widely used early and late fusion methods.

6.2 Future work

In the future, we plan to continue to explore our research work on video filtering along the following

directions:

• We plan to extend the frame-level filtering method to more visual objects classes. In order to

achieve that, we plan to use learning-based matching method instead of current hand-crafted

method. The input features will be replaced in the future as well to adapt to more visual objects

classes. In addition to that, we will gradually try to apply detection on some frames rather than

all frames in the future. This is because the detection is very time-consuming in our proposed

pipeline. In order to avoid missing unique visual objects, the frame sampling strategy should

be carefully selected. We will explore different strategies and design a better one in the future

work.

• We also plan to introduce the frame-level filtering method into video surveillance. This is

because some events are pose-related which the motion contents could not correctly capture. In

order to achieve that, we will apply pedestrian detection on the surveillance videos and label a

small dataset of different pose-related events to train the detection model. After that, we will

explore how to use the frame-level filtering method to improve the detection accuracy.

• For video-level filtering, we plan to explore another feature set in the future. In recent studies,

CNN based feature extraction has attracted considerable attention even though its performance

is still inferior to IDT in a pure motion-oriented dataset. However, as more powerful computing

devices and algorithm appear, CNN based feature extraction has the potential to exceed IDT.

We want to be the pioneer in this area. After that, we will try to design a real-time system

instead of the current retrospective system, and try to port the system onto CCTV in the future.

• For user-level filtering, we plan to explore user privacy preservation in the future. Existing

methods including our proposed method require to identify user in the system. It is not realistic

in many cases. In the future work in user-level filtering, we will try to study how to perform it

6.2 FUTURE WORK 99

without user identification. Related works have been done by using recurrent neural networks

(RNN). We want to make it more flexible and accurate with rich contents.

100 CONCLUSION AND FUTURE WORK

References

[1] S. Adali, K. S. Candan, S. Chen, K. Erol, and V. S. Subrahmanian. The advanced video

information system: Data structures and query processing. MMS, 4(4):172–186, 1996.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A

survey of the state-of-the-art and possible extensions. TKDE, 17(6):734–749, 2005.

[3] D. Agarwal and B.-C. Chen. Regression-based latent factor models. In KDD, pages 19–28,

2009.

[4] R. Aly, R. Arandjelovic, K. Chatfield, M. Douze, B. Fernando, Z. Harchaoui, K. Mcguiness,

N. O’Connor, D. Oneata, et al. The axes submissions at trecvid 2013. In TRECVID Workshop,

2013.

[5] R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object

retrieval. In CVPR, pages 2911–2918, 2012.

[6] B. Babenko, M. Yang, and S. J. Belongie. Visual tracking with online multiple instance learn-

ing. In CVPR, pages 983–990, 2009.

[7] H. Bay, T. Tuytelaars, and L. J. V. Gool. SURF: speeded up robust features. In ECCV, pages

404–417, 2006.

[8] J. Bobadilla, F. Ortega, A. Hernando, and A. GutiéRrez. Recommender systems survey. Know.-

Based Syst., 46:109–132, July 2013.

[9] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. J. V. Gool. Robust tracking-

by-detection using a detector confidence particle filter. In ICCV, pages 1515–1522, 2009.

101

102 REFERENCES

[10] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise

approach. In ICML, pages 129–136, 2007.

[11] C. Chang and C. Lin. LIBSVM: A library for support vector machines. ACM TIST, 2(3):27,

2011.

[12] M.-y. Chen and A. Hauptmann. Mosift: Recognizing human actions in surveillance videos.

2009.

[13] M.-y. Chen, H. Li, and A. Hauptmann. Informedia@ trecvid 2009: Analyzing video motions.

In TRECVID Workshop, 2009.

[14] Q. Chen, Y. Cai, L. M. Brown, A. Datta, Q. Fan, R. S. Feris, S. Yan, A. G. Hauptmann, and

S. Pankanti. Spatio-temporal fisher vector coding for surveillance event detection. In MM,

pages 589–592, 2013.

[15] M. Cheng, Z. Zhang, W. Lin, and P. H. S. Torr. BING: binarized normed gradients for object-

ness estimation at 300fps. In CVPR, pages 3286–3293, 2014.

[16] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n

recommendation tasks. In RecSys, pages 39–46, 2010.

[17] B. Cui, A. K. Tung, C. Zhang, and Z. Zhao. Multiple feature fusion for social media applica-

tions. In SIGMOD, pages 435–446, 2010.

[18] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, pages

886–893, 2005.

[19] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and

appearance. In ECCV, pages 428–441, 2006.

[20] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. V. Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert,

B. Livingston, and D. Sampath. The youtube video recommendation system. In RecSys, pages

293–296, 2010.

[21] Y. Deldjoo, M. Elahi, P. Cremonesi, F. Garzotto, P. Piazzolla, and M. Quadrana. Content-based

video recommendation system based on stylistic visual features. J. Data Semantics, 5(2):99–

113, 2016.

REFERENCES 103

[22] M. E. Dönderler, E. Saykol, U. Arslan, Ö. Ulusoy, and U. Güdükbay. Bilvideo: Design and

implementation of a video database management system. MTA, 27(1):79–104, 2005.

[23] M. E. Dönderler, Ö. Ulusoy, and U. Güdükbay. A rule-based video database system architec-

ture. Inf. Sci., 143(1-4):13–45, 2002.

[24] M. E. Dönderler, Ö. Ulusoy, and U. Güdükbay. Rule-based spatiotemporal query processing

for video databases. VLDB J., 13(1):86–103, 2004.

[25] X. Du, X. Li, X. Zhou, and A. Hauptmann. Ward-cmu @ trecvid 2015. In Proceedings of

TRECVID 2015, 2015.

[26] X. Du, Y. Yang, and X. Zhou. Ward@trecvid 2016. In Proceedings of TRECVID 2016, 2016.

[27] X. Du, H. Yin, Z. Huang, Y. Yang, and X. Zhou. Using detected visual objects to index

video database. In The 27th Australasian Database Conference (ADC) 2016, pages 333–345.

Springer, 2016.

[28] X. Du, H. Ying, L. Chen, Y. Wang, Y. Yang, and X. Zhou. Exploiting rich contents for person-

alized video recommendation. arXiv preprint arXiv:1612.06935, 2016.

[29] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A library for large linear

classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

[30] G. Farnebäck. Two-frame motion estimation based on polynomial expansion. In SCIA, pages

363–370, 2003.

[31] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan. Object detection with

discriminatively trained part-based models. PAMI, 32(9):1627–1645, 2010.

[32] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting

with applications to image analysis and automated cartography. CACM, 24(6):381–395, 1981.

[33] M. Flickner, H. S. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,

D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The QBIC system.

IEEE Computer, 28(9):23–32, 1995.

104 REFERENCES

[34] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an

application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[35] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate

object detection and semantic segmentation. In CVPR, pages 580–587, 2014.

[36] C. A. Gomez-Uribe and N. Hunt. The netflix recommender system: Algorithms, business

value, and innovation. TMIS, 6(4):13, 2015.

[37] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In BMVC,

pages 47–56, 2006.

[38] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In ICCV,

pages 263–270, 2011.

[39] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. TiiS, 5(4):19,

2016.

[40] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification. CoRR, abs/1502.01852, 2015.

[41] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks

for visual recognition. PAMI, 37(9):1904–1916, 2015.

[42] R. He and J. McAuley. VBPR: visual bayesian personalized ranking from implicit feedback.

In AAAI, pages 144–150, 2016.

[43] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural

Computation, 14(8):1771–1800, 2002.

[44] R. Hjelsvold and R. Midtstraum. Modelling and querying video data. In VLDB, pages 686–694,

1994.

[45] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu. Personalized recommendation via cross-

domain triadic factorization. In WWW, pages 595–606, 2013.

[46] W. Hu, N. Xie, L. Li, X. Zeng, and S. J. Maybank. A survey on visual content-based video

indexing and retrieval. SMC C, 41(6):797–819, 2011.

REFERENCES 105

[47] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In

ICDM, pages 263–272, 2008.

[48] Z. Huang, H. T. Shen, J. Shao, B. Cui, and X. Zhou. Practical online near-duplicate subse-

quence detection for continuous video streams. TMM, 12(5):386–398, 2010.

[49] Z. Huang, H. T. Shen, J. Shao, X. Zhou, and B. Cui. Bounded coordinate system indexing for

real-time video clip search. TOIS, 27(3), 2009.

[50] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregating local

image descriptors into compact codes. PAMI, 34(9):1704–1716, 2012.

[51] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. PAMI, 34(7):1409–1422,

2012.

[52] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li. Large-scale video

classification with convolutional neural networks. In CVPR, pages 1725–1732, 2014.

[53] M. Köprülü, N. K. Cicekli, and A. Yazici. Spatio-temporal querying in video databases. Inf.

Sci., 160(1-4):131–152, 2004.

[54] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender sys-

tems. IEEE Computer, 42(8):30–37, 2009.

[55] J. Krapac, J. J. Verbeek, and F. Jurie. Modeling spatial layout with fisher vectors for image

categorization. In ICCV, pages 1487–1494, 2011.

[56] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. In NIPS., pages 1106–1114, 2012.

[57] T. C. T. Kuo and A. L. P. Chen. Content-based query processing for video databases. TMM,

2(1):1–13, 2000.

[58] A. Kuznetsova, S. Ju Hwang, B. Rosenhahn, and L. Sigal. Expanding object detector’s horizon:

Incremental learning framework for object detection in videos. In CVPR, pages 28–36, 2015.

[59] Z. Lan, L. Bao, S. Yu, W. Liu, and A. G. Hauptmann. Double fusion for multimedia event

detection. In MMM, pages 173–185, 2012.

106 REFERENCES

[60] Z.-Z. Lan, L. Jiang, S.-I. Yu, S. Rawat, Y. Cai, C. Gao, S. Xu, H. Shen, X. Li, Y. Wang, et al.

Cmu-informedia at trecvid 2013 multimedia event detection. In TRECVID 2013 Workshop,

page 5, 2013.

[61] I. Laptev. On space-time interest points. IJCV, 64(2-3):107–123, 2005.

[62] I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, pages 432–439, 2003.

[63] T. Le, M. Thonnat, A. Boucher, and F. Brémond. A query language combining object features

and semantic events for surveillance video retrieval. In MMM, pages 307–317, 2008.

[64] S. Leutenegger, M. Chli, and R. Siegwart. BRISK: binary robust invariant scalable keypoints.

In ICCV, pages 2548–2555, 2011.

[65] F. Li and P. Perona. A bayesian hierarchical model for learning natural scene categories. In

CVPR, pages 524–531, 2005.

[66] H. Li, Y. Li, and F. Porikli. Deeptrack: Learning discriminative feature representations online

for robust visual tracking. TIP, 25(4):1834–1848, 2016.

[67] L. Liu, L. Wang, and X. Liu. In defense of soft-assignment coding. In ICCV, pages 2486–2493,

2011.

[68] T. Liu. Learning to rank for information retrieval. Foundations and Trends in Information

Retrieval, 3(3):225–331, 2009.

[69] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–110,

2004.

[70] M. Mathias, R. Benenson, M. Pedersoli, and L. V. Gool. Face detection without bells and

whistles. In ECCV, pages 720–735, 2014.

[71] J. McAuley and J. Leskovec. Hidden factors and hidden topics: Understanding rating dimen-

sions with review text. In RecSys, pages 165–172, 2013.

[72] O. Miksik and K. Mikolajczyk. Evaluation of local detectors and descriptors for fast feature

matching. In ICPR, pages 2681–2684, 2012.

REFERENCES 107

[73] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm con-

figuration. In VISAPP, pages 331–340, 2009.

[74] M. Müller. Information retrieval for music and motion. Springer, 2007.

[75] A. Neubeck and L. J. V. Gool. Efficient non-maximum suppression. In ICPR, pages 850–855,

2006.

[76] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal deep learning. In

ICML, pages 689–696, 2011.

[77] E. Oomoto and K. Tanaka. OVID: design and implementation of a video-object database

system. TKDE, 5(4):629–643, 1993.

[78] A. V. D. Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation.

In NIPS, pages 2643–2651, 2013.

[79] P. Over, G. Awad, M. Michel, J. Fiscus, W. Kraaij, A. F. Smeaton, G. Quenot, and R. Ordelman.

Trecvid 2015 – an overview of the goals, tasks, data, evaluation mechanisms and metrics. In

Proceedings of TRECVID 2015. NIST, USA, 2015.

[80] X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of visual words and fusion methods for action

recognition: Comprehensive study and good practice. CoRR, abs/1405.4506, 2014.

[81] F. Perronnin and D. Larlus. Fisher vectors meet neural networks: A hybrid classification archi-

tecture. In CVPR, pages 3743–3752, 2015.

[82] F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image

classification. In ECCV, pages 143–156, 2010.

[83] M. Petkovic and W. Jonker. Content-Based Video Retrieval - A Database Perspective, vol-

ume 25 of Multimedia systems and applications. Springer, 2003.

[84] J. Pickens and G. Golovchinsky. Ranked feature fusion models for ad hoc retrieval. In CIKM,

pages 893–900, 2008.

108 REFERENCES

[85] J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS, pages 61–74. MIT

Press, 1999.

[86] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object detection

with region proposal networks. In NIPS, pages 91–99, 2015.

[87] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: bayesian personalized

ranking from implicit feedback. In UAI, pages 452–461, 2009.

[88] F. Ricci, L. Rokach, and B. Shapira, editors. Recommender Systems Handbook. Springer,

2015.

[89] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine learning approach to

corner detection. TPAMI, 32(1):105–119, 2010.

[90] S. Roy and S. C. Guntuku. Latent factor representations for cold-start video recommendation.

In RecSys, pages 99–106, 2016.

[91] E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski. ORB: an efficient alternative to SIFT

or SURF. In ICCV, pages 2564–2571, 2011.

[92] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recog-

nition Challenge. IJCV, pages 1–42, April 2015.

[93] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li. Imagenet large scale visual recognition

challenge. IJCV, 115(3):211–252, 2015.

[94] J. Sánchez, F. Perronnin, T. Mensink, and J. J. Verbeek. Image classification with the fisher

vector: Theory and practice. IJCV, 105(3):222–245, 2013.

[95] H. T. Shen, J. Shao, Z. Huang, and X. Zhou. Effective and efficient query processing for video

subsequence identification. TKDE, 21(3):321–334, 2009.

[96] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-

nition. CoRR, abs/1409.1556, 2014.

REFERENCES 109

[97] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video represen-

tations using lstms. In ICML, pages 843–852, 2015.

[98] N. Srivastava and R. Salakhutdinov. Learning representations for multimodal data with deep

belief nets. In ICML, 2012.

[99] N. Srivastava and R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In

NIPS, pages 2231–2239, 2012.

[100] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS,

pages 2553–2561, 2013.

[101] D. R. Turnbull, L. Barrington, G. Lanckriet, and M. Yazdani. Combining audio content and

social context for semantic music discovery. In SIGIR, pages 387–394, 2009.

[102] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. Selective search

for object recognition. International Journal of Computer Vision, 104(2):154–171, 2013.

[103] Ö. Ulusoy, U. Güdükbay, M. E. Dönderler, E. Saykol, and C. Alper. Bilvideo video database

management system. In VLDB, pages 1373–1376, 2004.

[104] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek. Evaluating color descriptors for object

and scene recognition. PAMI, 32(9):1582–1596, 2010.

[105] P. A. Viola and M. J. Jones. Rapid object detection using a boosted cascade of simple features.

In CVPR, pages 511–518, 2001.

[106] C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles.

In SIGKDD, pages 448–456, 2011.

[107] H. Wang, A. Kläser, C. Schmid, and C. Liu. Action recognition by dense trajectories. In CVPR,

pages 3169–3176, 2011.

[108] H. Wang, A. Kläser, C. Schmid, and C. Liu. Dense trajectories and motion boundary descrip-

tors for action recognition. IJCV, 103(1):60–79, 2013.

[109] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, pages 3551–

3558, 2013.

110 REFERENCES

[110] H. Wang, N. Wang, and D. Yeung. Collaborative deep learning for recommender systems. In

SIGKDD, pages 1235–1244, 2015.

[111] N. Wang, S. Li, A. Gupta, and D. Yeung. Transferring rich feature hierarchies for robust visual

tracking. CoRR, abs/1501.04587, 2015.

[112] N. Wang and D. Yeung. Learning a deep compact image representation for visual tracking. In

NIPS, pages 809–817, 2013.

[113] W. Wang, B. C. Ooi, X. Yang, D. Zhang, and Y. Zhuang. Effective multi-modal retrieval based

on stacked auto-encoders. Proc. VLDB Endow., 7(8):649–660, Apr. 2014.

[114] Y. Wu, J. Lim, and M. Yang. Object tracking benchmark. PAMI, 37(9):1834–1848, 2015.

[115] Z. Wu, G. Xu, Y. Zhang, Z. Cao, G. Li, and Z. Hu. GMQL: A graphical multimedia query

language. KBS, 26:135–143, 2012.

[116] Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative CNN video representation for event

detection. In CVPR, pages 1798–1807, 2015.

[117] Z. Xu, Y. Yang, I. W. Tsang, N. Sebe, and A. G. Hauptmann. Feature weighting via optimal

thresholding for video analysis. In ICCV, pages 3440–3447, 2013.

[118] B. Yang, T. Mei, X. Hua, L. Yang, S. Yang, and M. Li. Online video recommendation based

on multimodal fusion and relevance feedback. In CIVR, pages 73–80, 2007.

[119] J. Yang, Y. Jiang, A. G. Hauptmann, and C. Ngo. Evaluating bag-of-visual-words representa-

tions in scene classification. In Proceedings of the 9th ACM SIGMM International Workshop on

Multimedia Information Retrieval, MIR 2007, Augsburg, Bavaria, Germany, September 24-29,

2007, pages 197–206, 2007.

[120] Y. Yang, Z. Huang, H. T. Shen, and X. Zhou. Mining multi-tag association for image tagging.

WWWJ, 14(2):133–156, 2011.

[121] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Comput. Surv., 38(4),

2006.

REFERENCES 111

[122] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail recommendation. PVLDB,

5(9):896–907, 2012.

[123] S.-I. Yu, L. Jiang, Z. Mao, X. Chang, X. Du, C. Gan, Z. Lan, Z. Xu, X. Li, Y. Cai, et al. Infor-

media@ trecvid 2014 med and mer. In NIST TRECVID Video Retrieval Evaluation Workshop,

2014.

[124] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma. Collaborative knowledge base embedding

for recommender systems. In KDD, pages 353–362, 2016.

[125] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S.

Torr. Conditional random fields as recurrent neural networks. In ICCV, pages 1529–1537,

2015.

