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Abstract 

It is well established that the conventional approaches to understanding and managing natural 

resource systems such as the traditional linear-reductionist and mechanistic approach founded on a 

positivistic understanding of science do not provide a sufficient framework for understanding the 

dynamic complexity and growing uncertainties inherent in most environmental systems. Dynamic 

complexity arises because such systems are: tightly coupled (components or drivers of the system 

interact with one another); governed by feedback; nonlinear; history dependent (making a choice 

precludes other options and determines the destiny); adaptive (decision rules change over time); 

counterintuitive (cause and effect are distant in time and space); and policy resistant. Despite the 

recognition of these complexities, there is still a lack of dynamic models that adequately integrate 

various physical, social, and economic factors and feedback processes that determine the current 

and future dynamics of most Social-ecological systems such as water resources management 

systems. There is, therefore, the need for an integrated system dynamics simulation model that 

adequately captures the non-linear interactions and feedback effects between the key system drivers 

to improve our understanding of the dynamic behaviour of water resource systems and evaluate the 

effects of different policy and management scenarios.   

The overall aim of this research was to develop computer-based integrated conceptual, dynamic and 

simulation models that can be used to support decision-making for sustainable water resources 

management and agricultural development in the Volta River Basin in West Africa. To this end, a 

systems-based/systems thinking approach was used as the theoretical framework. Systems 

dynamics approach grounded in the relativistic, holistic/pragmatist philosophical or methodological 

paradigm provided an appropriate modelling tool to capture the relationships between the key 

system variables and their dynamic behaviour over time. Overall, a three-tied research plan (mixed 

methods approach) was employed. A comprehensive literature review, structured expert 

judgement/surveys and interviews were used to explore and identify the key system drivers, factors, 

and processes that influence the sustainability of the river basin system. A participatory modelling 

approach was employed where the system expert stakeholders from academia, NGOs, government, 

and private consultants were engaged in developing an integrated qualitative conceptual model that 

described the causal systemic feedback processes operating between the biophysical, 

environmental, and socio-economic drivers of the system. Based on the conceptual model, a formal 

quantitative simulation model was then developed using a system dynamics simulation approach, 

allowing different policy scenarios and strategies to be identified and tested. Besides the baseline or 

business as usual scenario, three additional policy scenarios were designed and simulated to explore 
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alternative futures, including investment in water infrastructure, an anticipation of water scarcity or 

dry conditions, and land or cropland expansion.        

The results of the conceptual model showed that the feedback structure of the Volta River Basin is 

governed by of 21 feedback loops comprising: 14 reinforcing (positive) feedback loops and seven 

balancing (negative) feedback loops, indicating the complexity and dynamics of the system. These 

feedback loops revolve around the issues available ground and surface water resources, climate 

variability and change, population growth, soil fertility, crop yield, and poverty level. These 

feedback loops were quantified and simulated over a 50-year period (2000-2050) to understand the 

dynamic behaviour of the system. The results of the BAU scenario showed that agricultural water 

demand, water availability, crop yields, and net farm income increased until a peak is reached in the 

mid-2030, after which they remain in a state of equilibrium for the rest of the simulation period.  

Besides the baseline model run or Business as Usual (BAU) scenario, three additional policy 

scenarios were designed and simulated to explore alternative futures, including the development of 

water infrastructure (Scenario1), land or cropland expansion (scenario 2), and water scarcity or dry 

conditions (worse case, Scenario 3). Results from simulating a range of policy scenarios indicate 

that development of water resource infrastructure (e.g., construction of additional reservoirs or 

dams) is the best policy scenario that can contribute to sustainable water resource management and 

agricultural development within the basin. 

Overall, the results of this study enabled a better understanding of the feedback structure and 

dynamics behaviour of the Volta River Basin water resource system under conditions of 

environmental and socio-economic change. Theoretically, the research contributes to the 

advancement of systems approach, including understanding interconnectivity and complexity, 

which until recently, has been dominated by the linear reductionist approaches. Practically, this 

research provides stakeholders and managers, from local farmers and NGOs, to policy makers with 

decision support tools in the form of an integrated conceptual and the simulation models for the 

sustainable management of water resource system at the basin scale. Methodologically, this is one 

of the few studies to apply systems thinking and system dynamics as a modelling tool to understand 

the dynamics of water resource management system in Africa, and, therefore, makes a significant 

contribution and sparks new research in this regard.  
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CHAPTER 1: GENERAL INTRODUCTION AND THE RESEARCH PROBLEM  

 

1.1. General Background – Global Change and Drivers of System Change  

Variability and global change are realities of the Earth system and during the past few decades, 

there has been growing evidence that planetary-scale changes are occurring rapidly (Liu et al., 

2015b; Steffen et al., 2005, 2015; Schimel et al., 2015). Indeed, change is one of the few reliable 

phenomena in coupled social-environmental systems (SES) (Adger, 2003). The critical feature of 

these global changes is described as ‘directional’, because it is characterised by a constant pattern 

over time (Chapin et al., 2009). They occur in both biophysical and socio-economic systems, and 

manifest across all levels – from local to global (Petschel-Held et al., 2005). Global change 

processes have dramatic effects and consequences for SES on which human communities depend. 

However, how societies respond to these changes can equally affect many managed natural resource 

management systems. To build a clear understanding, Anastasopoulou et al. (2009) argued that it is 

imperative to recognise the “agents or drivers” of those changes, which are a fundamental part of 

human existence.   

 

The fundamental agents of environmental change that are external to a particular system can be 

considered as drivers of that change (e.g., climate change and socioeconomic change, national or 

international policy (Rounsevell et al., 2010).  Drivers of change represent either the past, current or 

future conditions that modify the environment (Anastasopoulou et al., 2009; Rounsevell et al., 

2010).  Although some changes are caused by natural processes, it is widely argued that human 

activities (e.g., agriculture and the burning of fossil fuels) are the underlying forces driving change 

(Crutzen and Steffen, 2003; Steffen et al., 2005; Oldfield et al., 2014). During the past two 

centuries, anthropogenic actions have induced significant changes in many environmental systems 

(Steffen et al. 2005, 2015). According to Vallejo (2009, p. 13), “as early as the fourth century BC, 

Plato persuasively described extensive and insightful human impacts on forests: Hills that were 

once covered by forests and produced abundant pasture now produce only food for bees.”  The 

Sahara Desert was also described as a landscape of lakes and forest 7,000 years ago (Brown and 

Crawford, 2009). Several change phenomena are also caused by globalisation, described as the 

‘compression of space and time scales concerning the flows of information, people, goods and 

services’ (Berkes, 2008). These processes and activities give rise to the phenomenon of global 

change (Steffen et al., 2005). 
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The influence of humans on the global environmental system is so profound and persistent that the 

Nobel Laureate Paul Crutzen observed that we are now in a geological age called the Anthropocene 

(Crutzen, 2003). Indeed, it is widely recognized that sustainability is the theme of our times and 

represents the greatest challenge in the Anthropocene (Wu, 2013). While the concept Anthropocene 

is manifested in the nature, scale, and magnitude of human activities in the world, its societal 

significance rests on how we can take advantages of the changes to inform future decision choices 

and actions (Bai et al., 2015). Indeed, understanding the Anthropocene calls for systematic thinking 

concerning the future, as both drivers and the concomitant consequences of human activities 

intensify towards an unsustainable trajectory (Steffen et al., 2015; Bai et al., 2015).   

Against the backdrop of changing environmental and socio-economic conditions, decision-makers 

are confronted with the situation of whether to act reactively or proactively. Often, they consider 

these changes and challenges as simple problems. Occasionally, however, the change is large and 

complex, thereby limiting their ability to design sustainable solutions to address them. If this 

happens, decision-makers find ourselves to be facing an enormous problem, which can lead to far-

reaching consequences for life support systems. Thus, the issue of rapid change has raised concern 

among scientists that several of the SESs present today could collapse by the end of the 21st century 

(Ostrom, 2007). The situation has, therefore, necessitated a focus on the identification of key drivers 

of change and the resulting system dynamics to consider if it is possible that existing societies will 

be able to avoid their own decline or demise (Polhill et al., 2016; Schimel et al., 2015). 

Consequently, there is an increase in socio-economic and environmental system analysis and 

modelling studies that seek to gain an understanding of the trends and drivers of change in natural 

resource systems in the context of a changing earth system. These generally aim to improve the 

theory and strategic management of problems inherent social-ecological systems (SESs). Thus, 

understanding the problem of global change and the associated drivers of change in social-

ecological systems are urgent and relevant focus of this study. Further, given the increasing 

multiplicity of drivers of change associated with global change, there is a pressing need to develop 

an improved understanding of the interactive effects of multiple drivers, factors, and processes to 

better understand their responses to a changing environment.    

The issue of global change and the associated drivers have resulted in fundamental transformations 

of many SESs such as River Basin systems around the world, including the Volta River Basin 

(VRB), which provides the case study context for this study. The VRB is an important trans-

boundary river system (or 'catchment') in West Africa. As one of the 60 river basins in Africa, it 

supports the production of food, fibre, hydropower, and other products that are vital to West 

Africa’s economy and the livelihoods of 25 million people who depend on the availability of the 
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water that flows through the river basin system. During the last four to five decades, demographic 

pressures, land use change, high rainfall variability, climate change, and the increased competition 

for land and water have combined temporally and spatially to affect sustainable water resource 

management and agricultural development within the river basin (Gordon and Amatekpor, 1999; 

Douxchamps et al., 2012). There is tension between the aspirations of socio-economic development 

and environmental sustainability. However, the management of any water resource system can be a 

challenging and difficult because of the complexities arising from the functioning of hydrological 

cycles and biological systems (Antunes et al., 2009). This is exacerbated when multiple stakeholder 

‘perspectives, interest, values and concerns regarding the use of water for human-related purposes 

(Antunes et al., 2009; Simonovic, 2009; Pahl-Wostl et al., 2012).  

As is often the case in many SES or environmental systems, the most common approach to 

addressing problems in water resource systems is to adopt a linear, reductionist, analytical approach 

where the focus is on only one or a few factors or parts of the system, and to accept that those 

explanations can only be partial (Thompson et al., 2007; Simonovic, 2009; Pahl-Wostl et al., 2012; 

Liu et al., 2015b). However, the problems in most SESs, such as water resources systems are 

systemic, which means that biophysical and social systems are tightly interconnected and 

interdependent and cannot be understood in isolation (Simonovic, 2009; Pahl-Wostl et al., 2011, 

2012; Gain and Giupponi, 2015). They cannot be comprehended within the fragmented 

methodology characteristic of academic discipline and government agencies. As Capra (1982, 

1996) emphasised, such an approach will not resolve any of our difficulties, but will tend to shift 

them around in a complex web of social and environmental relations.  

 

Indeed, a number of scholars have argued that conventional approaches to understanding and 

managing natural resource systems such as equilibrium-centred, linear reductionist approaches, 

linear cause-effect methodologies or a command-and-control paradigm (founded on positivistic 

understanding of science), do not provide a sufficient framework for understanding the dynamics 

and complexities inherent in most SESs (Van den Belt, 2004; Thompson and Scoones, 2009; Pahl-

Wostl et al., 2011; Levin et al., 2013; Liu et al., 2015b; Sivapalan et al., 2015).  This is because, 

many current sustainability problems and challenges are closely linked in ways that challenges 

conventional linear causality (Hjorth and Bagheri, 2006; Sterman, 2012). Conventional approaches 

have been critiqued because they provide quick fixes to sustainability problems, but the intended 

solutions often result in unexpected, and in some cases, disastrous, delayed consequences (Wang et 

al., 2011; Sterman, 2012). According to Bai et al. (2015), while a disciplinary and reductionist 

approach is crucial in promoting and understanding science, it has shown to be inadequate in 
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addressing complex societal issues characterised by uncertainties, multiple interrelationships 

between social and natural systems, and diverse spatio-temporal scales, overlaid with profound 

socio-cultural influences.    

 

Further, conventional approaches that emphasise the importance of specific variables can de-

emphasize the essential elements of SESs, including nonlinear events and change, emergent 

properties, and unanticipated system behaviour (Young et al., 2006; Pahl-Wostl et al., 2011; Schoon 

and Cox, 2012; Levin et al., 2013).  Levin et al. (2013) argued that simple linear and reductionist 

thinking misrepresents how SESs function because they ignore fundamental characteristics of the 

underlying systems. Similarly, Kay et al. (1999) observed that dominant approaches on which much 

of the advice was given to decision and policy makers are based, have limited applicability. 

Likewise, reaffirming several scholars (e.g., Walker and Salt, 2006), Pollard and du Toit (2008, p. 

672) underscored “that conventional linear thinking has not only failed to chart a sustainable path, 

but in many cases, it has actually contributed to the problem.” Moreover, and perhaps more 

fundamentally, feedback effects and non-linear dynamics governing every environmental system 

have been identified as crucial attributes that influence systems resilience and sustainability through 

interaction (Pollard and du Toit, 2011; Cinner et al. 2011; Levin et at., 2013; Liu et al., 2015b; 

Steffen et al., 2015). However, not much attention has been given to understanding significant non-

linear feedbacks effects that characterise the behaviour of many complex environmental systems 

(Kittinger et al., 2012; Schlüter et al., 2012; Sterman, 2012; Levin et al., 2013; Sivapalan et al., 

2015). Yet, the recognition of those feedback processes, particularly in a water resource system is 

essential for improved quantitative and/or qualitative understanding of the long-term behaviour of 

complex water resource systems (Gohari et al., 2013; Sivapalan et al., 2015). Indeed, feedback 

processes have been understood to occur if changes in a particular part of a system to initiate 

changes in other aspects, which consequently, influences the part that initially started the change 

process (Hannon and Ruth, 2001).   

 

1.2. Developing the Research Problem and Question   

The problems in the management of natural resources or social-ecological systems, as described 

above, are currently prevalent in many river basin systems in the developing world, such as the 

Volta River Basin (VRB), West Africa. The Volta River Basin is one of the largest and most 

important river basins in Africa. It has a rich ensemble of various ecosystem goods and services, 

many of them are of global significance (UNEP-GEF Volta Project, 2013; Mul et al., 2015; 

Williams et al., 2016). Water resources play a pivotal role in the promotion of environmental 
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enhancement, economic growth, and poverty reduction in all the riparian countries of the basin 

(Lemoalle, 2009; Sood et al., 2013; UNEP-GEF Volta Project, 2013; Mul et al., 2015). However, 

since the 1980s, the sustainability and water resources management in the basin has been hampered 

by a plethora of challenges and rapid changes, including rapid population and urbanisation, land use 

change, growing demand for food; increasing demand for water for agriculture, domestic, and 

industries; high reliance on biofuels for energy; and rapid growth in livestock numbers (Barry et al., 

2005; Lemoalle, 2009; Douxchamps et al., 2012; Gorden et al., 2013; UNEP-GEF Volta Project, 

2013; Kolavalli and Williams, 2016).  

 

In addition, poorly managed development, weak governance and institutional arrangements further 

complicate approaches to solving water problems of the basin (UNEP Volta Project, 2013). Further, 

new challenges related to climate change are expected to increase both the spatial and temporal 

unpredictability of rainfall and water availability to meet human needs (McCartney et al., 2012; 

Sood et al., 2013; Awotwi et al., 2015; Amisigo et al., 2014; Roudier et al. 2014). In the midst of 

these challenges, extensive rain-fed agriculture remains the dominant practice throughout the basin; 

but this is not able to meet the increasing food demands, leading to the importation of cereals such 

as rice, wheat, and maize (Willaims et al., 2016). Moreover, extensive agriculture leads to serious 

and often unanticipated socio-economic and environmental consequences.   

 

Taken together, these problems are expected to exacerbate as standards of living grow, mining 

becomes extensive, and human activities are diversified (UNEP-GEF Volta Project, 2013). In fact, 

this situation is already leading to severe environmental degradation and frequent water shortages, 

which in turn, is resulting in declining agricultural productivity in terms of crop yields, dwindling 

incomes, and consequently, rising poverty levels among the inhabitants of the basin (Terrasson et 

al., 2009, Mul et al., 2015; Kolavalli and Williams, 2016; Williams et al., 2016). The increasing 

demands on the resources have resulted in intense competition among stakeholders, sectors, and 

countries (van de Giesen et al. 2001; Goa and Margolies, 2009; Mul et al., 2015). Indeed, there are 

profound environmental and socio-economic uncertainties associated with the current and future 

water supply and demand for various purposes in the Volta River Basin, particularly for agriculture, 

which is the main economic activity and determinant of regional development.     

 

To solve the numerous problems, various traditional management approaches have been pursued 

since the 1960s, including soil and water conservation techniques through large scale projects, river 

diversion storages, small-scale irrigation, and small reservoirs, with the view to mitigating the water 

problem and enhancing food security and economic growth (CGIAR, 2013; Douxchamps et al., 
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2012; Williams et al., 2016). Also, although most of the basin’s inhabitants actually depend on 

agriculture and traditional livelihoods, most of the current and planned water-development projects 

for the Volta basin countries focus on the construction of large scale hydropower schemes such as 

the Akosombo in Ghana or the Bagré dam in Burkina Faso, essentially to mobilise water primarily 

for hydropower generation. This is particularly the case in Ghana, as evidenced by the recent 

completion of another large scale hydroelectric dam on the Bui Gorge. Many of these large-scale 

projects and initiatives are usually designed and funded based on the advice of foreign consultants 

and international development partners, who, in turn, have based their thinking on conventional 

engineering solutions. While these projects resulted in some technical solutions, many studies have 

concluded that their actual impact on livelihood security and poverty alleviation is minimal and 

contentious (Batterbury and Warren 2001; CGIAR, 2013; Douxchamps et al., 2012).  

 

Indeed, in a review of the management strategies and approaches in the basin, Douxchamps et al. 

(2012, p. 17) drawing from Liniger and Critchley (2007) categorically attributed the failures of 

these water-related interventions to a number of factors: “they are planned in a relatively top-down 

manner, with experts as exclusive actors; projects were too shorts with “silver bullet” solutions; 

farmers preferences, values, and traditions were not taken into account (i.e., non-participatory); 

marketing of inputs and outputs were ignored; lack of corporations and alliances; and dearth of 

integrated and systematic analysis of measures and impact.” Further, several studies and reports 

indicate that the development of decision support tools in the form of management models linked to 

the broader challenges of the basin continues to focus mainly on the hydrological and biophysical 

changes – the key socio-economic processes are rarely encompassed (de Condappa et al., 2009; 

Leemhuis et al., 2009; Lemoalle, 2009; UNEP Volta Project, 2013; Kolavalli and Williams, 2016). 

This, may further exacerbate the failure of many policies and management decisions to achieve 

enhanced food security, sustainable livelihood, and economic development (Williams et al., 2016).  

These aforementioned concerns illustrate that several unsolved water planning and management 

problems remain in the VRB, and past approaches, based largely on the traditional mechanistic and 

compartmentalised approaches, no longer seem sufficient. Consequently, recent assessments have 

suggested that water resources planning and management for present and future generation in the 

basin, needs to take a holistic and integrated approach, where stakeholder interest and concerns are 

adequately considered; and both the critical environmental and socio-economic issues and their 

interrelationships concomitantly captured (Douxchamps et al., 2012; Gordon et al., 2013; UNEP 

Volta Project, 2013; Mul et al., 2015; Williams et al., 2016). In sum, actions to achieve food 

security and reduce poverty will have to be based on an integrated and systemic modelling approach 

and a collaborative decision-making process. From this perspective, the following important 
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question thus, arise:  How can socioeconomic issues be integrated with biophysical issues to inform 

river basin planning and management?   

 

The problems discussed and the ensuing question outlined earlier are complex planning and 

environmental management problems – so called “wicked problems” (Rittel and Webber, 1973). 

According to Balint et al. (2011, p.2) “a wicked problem is characterised by a high degree of 

scientific uncertainty and profound disagreement on values."  Therefore, dealing with such complex 

problems requires a scientifically robust approach or analytical tool that embraces complexity. In 

the past 60 years or so, systems thinking or systems approach (Forrester, 1958, 1961; Senge, 1990; 

Sterman, 2000; Richmond and Peterson, 2001) with its concomitant concepts and tools such as 

feedback, stocks and flows, time delays, and nonlinearity has evolved as one of the most promising 

approaches to confront this complexity. Detailed discussion of the systems thinking approach is 

carried out in chapter 3. Nevertheless, to summarise briefly, systems thinking approach is based on 

the notion that sustainability problems need to be informed by a holistic consideration of the system 

processes (biophysical, social, and economic), their dynamic interaction, and how they adapt to 

diverse changes (Levin et al., 2013; Liu et al., 2015b). It challenges us to view the world as a 

complex system, in which we understand that “you can’t just do one thing and that everything is 

connected to everything else.” (Sterman, 2000, p. 4). A systems approach has arisen as natural 

resource managers have reflected upon the practical implications of being holistic in their analysis 

of complex environmental systems. In terms of its application and purpose, Laniake et al. (2013, 

p.8) aptly explained that a “systems approach is necessary to serve the decision makers’ needs to 

understand the working system, compare impacts among decision scenarios, analyse trade-offs 

among options, ask ‘What if?’ questions, avoid the creation or transfer of problems in pursuing 

solutions to the problem at hand, adapt strategies based on future monitoring of the system, and 

respond to unintended consequences.” The application of the systems approach to water resources 

management problems has been recognized as one of the most significant developments around 

water resources management (Simonovic, 2009).   

 

As systems thinking framework advances, modelling has grown to become a powerful analytical 

tool for analysing and solving complex problems in many areas of scientific endeavour – thanks to 

the upturns in available computational power (Barnes, 1995; Silberstein, 2006).  Modelling enables 

individuals to learn and experiment with systems to gain valuable insight into the way systems 

work, to identify and describe the structural relationships among important system variables, to 

create system outcomes, and to communicate outcomes in a transparent manner (Simonovic and 

Fahmy, 1999; Deaton and Winebrake, 2012). In addition to generating an understanding of the 
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behaviour of systems, models provide a means for testing data, to check for inconsistencies and 

errors, to fill in missing information, and to exploring alternative scenarios (Silberstein, 2006). 

According to Kelly et al. (2013), models are built to accomplish five main purposes, including, 

prediction, forecasting, management and decision-making under uncertainty, for social learning, 

and for developing system understanding/experimentation. The ultimate aim of model building in 

water resources management is to support policy analysis and evaluate the consequences of a 

particular policy option for improved decision-making (Simonovic and Fahmy, 1999; Simonovic, 

2009).     

 

In the context of natural resource management such as water resources planning, a systems 

approach is concerned with pursuing what can be described as an integrated environmental 

modelling (IEM) agenda, which is inspired by contemporary environmental challenges, policy-

decisions, and facilitated by multidisciplinary science and computer capabilities – thus allowing the 

environment and its relationship to social systems and activities (i.e., social and economic) to be 

analysed as a complex integral whole (Laniak et al., 2013; Hamilton et al., 2015). A variety of 

dynamic modelling approaches or modelling tools have been developed and deployed to assist in 

the holistic and integrated analysis of complex environmental systems.  Kelly et al. (2013) provided 

an excellent review of the five common modelling approaches, pointing out their strengths and 

weaknesses. These include: systems dynamics approach, Bayesian networks, coupled component 

models, agent-based models, and knowledge-based models (also known as expert systems). 

Generally, these are particularly effective in describing and gaining an understanding of the 

behaviour of complex systems in a dynamic and integrated manner.  

 

In this study, a system dynamics modelling (SDM) approach (Forrester, 1958, 1961; Sterman, 

2000), which operates in a whole-system fashion using feedback-based object-oriented simulation is 

applied to explain and gain an insight into the complex behaviour and feedback-effects between the 

key environmental/biophysical and socio-economic drivers, factors, and processes that determine 

the current and future dynamics of the Volta River Basin (VRB) water resource system in West 

Africa.  The term ‘dynamic’ refers to changing over time (Barlas, 2007; Simonovic, 2009). Thus, 

system dynamics is applied here, because it provides an avenue to gain an insight into the behaviour 

of complex dynamical systems over time (Sterman, 2000; Simonovic, 2009; Ford, 2010). SDM 

approach is grounded in control theory and the theory of nonlinear dynamics (Sterman, 2000). It 

deals with “the time-dependent behaviour of managed systems as a means of describing the system 

and understanding, through qualitative and quantitative models, how information feedback governs 

its behaviour, and designing robust information feedback structures and control policies through 
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simulation and optimization” (Coyle, 1996, p.10). According to Kelly et al. (2013), system 

dynamics models (even in their conceptual forms) are valuable learning tools that can assist us to 

increase our understanding of systems, allows modellers and stakeholders to integrate diverse 

knowledge, and enhance important systems thinking. Following Simonovic (2009, p. 298), SDM 

approach was considered to be the most appropriate approach for modelling the dynamics in the 

Volta River basin because of: (1) its ability to address how structural changes in one part of a 

system might affect the behaviour of the system as a whole; (2) its ability to combine predictive 

(determining the behaviour of a system under particular input conditions) and learning (discovery of 

unexpected system behaviour under particular input conditions) functionality); and (3) the active 

involvement of stakeholders in the modelling process.”  

   

Several recent studies have used SDM approach to develop system dynamic and simulation models 

in various river basins around the world. For instance, SDM approach has been applied in Tunisia to 

develop an integrated simulation model for the Merguellil catchment (Sušnik et al., 2012); in the 

Aayandeh-Rud River Basin in Iran to analyse the potential of inter-basin water transfer and current 

and future water demands (Madani and Mariño, 2009; Gohari et al., 2013); within the Urmia Lake 

basin in Iran to simulate and examine the main factors which contribute to reduced water level 

(Hassanzadeh et al., 2012); in Lake Dianchi Yunnan Province in China to assess water quality and 

management and examine future development scenarios (Liu et al., 2015a); in the Shenzhen River 

catchment in Southeast China to study the dynamics of socio-economic and water management 

processes (Qin et al., 2011); within Las Vegas Valley in southern Nevada, USA to simulate and 

analyse the population dynamics  and changing climatic as they affect water resources (Dawadi and 

Ahmad, 2013). SDM has also been used in the Colorado River Basin to evaluate the effects of 

climate change on the hydrologic regime and water resources (Dawadi and Ahmad, 2012). Other 

previous scientific publications that have used the SDM approach to simulated feedback between 

water use – based on expected population growth and water availability at the River-basin scale 

include: Xu et al. (2002) for the Yellow River Basin, China;  Tidwell et al. (2004) and Passell and 

Assembly (2003) within the Middle Rio Grande River basin, USA; Langsdale et al. (2007) for the 

Okanagan basin, Canada and; Ahmad et al. (2009) for the Murrumbidgee River Catchment, 

Australia.   

 

The diversity of applications of the SDM approach at the river-basin scale has led to an improved 

understanding of the dynamic behaviour of various river basins as well as to the rapid advancement 

of the approach. Despite these efforts, there is still a lack of dynamic models that adequately 

integrate various biophysical, socio-economic factors and feedback mechanisms that determine the 
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current and future behaviour of river basins/water resources management systems (Green et al., 

2011; Sušnik et al., 2012; Johnston and Smakhtin, 2014). In particular, most current studies are 

predominantly limited to river basins in Europe, North America, and Australasia. Thus, comparative 

model-based studies based on systems thinking and SDM approach in Sub-Saharan Africa is sparse.  

Additionally, a global-scale studies have been able to provide adequate insight into the complex 

dynamics of linked social-ecological systems, particularly at the river basin level (Chang et al., 

2013). Further, SDM approach is dichotomised into qualitative conceptual and 

quantitative/numerical modelling methods and tools (Wolstenholme, 1999; Coyle, 2000; Sterman, 

2000).  However, recent reviews indicate that most system dynamics applications have not made 

adequate use of qualitative/conceptual modelling tools (Mirchi et al., 2012; Laniak et al., 2013). 

Moreover, in many of the existing studies, there were no participation stakeholders in the model 

development process. Yet, many scientists and experts have concluded that integrating stakeholder 

knowledge and their intrinsic mental models in environmental management and modelling is 

crucial, as it adds flexibility to the problem solving process and knowledge diversity, which in turn, 

helps to minimise model rigidity, accommodates multiple perspectives, promotes social learning, 

and promotes adaptability in policy decision-making (Voinov and Bousquet, 2010; Videira et al., 

2010; Hare, 2011; Krueger et al., 2012; Voinov et al., 2016).  

This research, thus, seeks to contribute to bridging the existing knowledge gaps and complement the 

noteworthy efforts of the prevailing researchers in the context of the Volta River Basin in West 

Africa, where as described earlier, the problems are complex, yet they are being managed based 

predominantly on conventional disciplinary, reductionist, and compartmentalized approaches. In 

doing so, the research is rooted in the systems thinking approach, which provided the theoretical 

framework and the analytical, methodological, and modelling tools to holistically explore and 

capture the important processes and their relationships shaping the basin’s behaviour over time. 

Although system dynamics and simulation models can serve as predictive tools (Davies and 

Simonovic, 2011; Kelly et al., 2013), their application in this study relates to social learning to 

enhance our understanding of the basin’s structure and dynamic behaviour and as it responds to 

changing socio-economic and environmental conditions and system drivers.    

 

1.3. Research Aim and Objectives  

 

Based on the challenges and the knowledge gaps earlier discussed, the overall aim of this research 

is to develop a computer-based integrated conceptual, dynamic and simulation model that can be 

used to support decision-making concerning sustainable water resources planning and management 

http://www.sciencedirect.com/science/article/pii/S1364815215301055
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and agricultural development in the Volta River Basin of Ghana, West Africa. To achieve this aim, 

three distinct research objectives based on the three research questions stated earlier, were 

formulated and, subsequently, addressed:   

1. To explore and identify the key biophysical and socio-economic drivers and factors that 

influence sustainable water resource management and agricultural development in the Volta 

River Basin. This was achieved through a review of the key drivers of change and processes 

that have been identified as influencing water and agricultural sustainability at the River 

Basin-scale within developing countries and assessing the relevance of these those drivers 

using expert structured expert judgements, surveys, and interviews (Chapter 5 - Paper I).   

2. To develop an integrated qualitative/conceptual system model that captures the systemic 

feedback loops, processes and structures governing the system behaviour and their 

implications for current and future water resource management agricultural development. 

This was achieved by integrating the key system drivers and processes identified in 

objective 1 and involving the system stakeholders (i.e., via participatory modelling 

approach) in the conceptual model development process using Causal Loop Diagrams 

(CLDs) as analytical tools (Chapter 6 - Paper II).       

3. To develop a formal integrated system dynamics simulation model that allows for different 

policy scenarios and strategies to be evaluated over time. This was achieved by quantifying 

and simulating the important feedback loops identified in objective 2 using quantitative 

historical biophysical and socio-economic data collected from secondary sources with the 

aid of system dynamics computer-based simulation tool (Chapter 7 - Paper III).        

 

It is envisaged that addressing research objective 1 will generate scientific knowledge on the on the 

current state of the basin and the ongoing socio-economic and environmental processes that 

influence sustainable water management and agricultural development. This is important because, 

as Kolavalli and Willaims (2016) argued, these dominant trends in the basin will concurrently lead 

to new opportunities and complex challenges that will need to be considered in the future 

formulation and implementation of policy. Answers to research objective 2 will hopefully lead to an 

improved understanding of the complex non-linear feedback structure and dynamic processes 

inherent in the river basin system. Finally, addressing objective 3 through dynamic simulation may 

provide an understanding regarding the dynamic behaviour of the important system variables and 

their dynamic behaviour over time, allowing the identification of the best policy scenarios and 
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strategies necessary to achieve long-term sustainable water resource management and agricultural 

development.  

It is important to stress that the model is not developed to capture the physical hydrologic system 

justifiable by developed world standards. Rather, it was constructed based on the 

indigenous/traditional knowledge and the mental models of the local stakeholders, considering the 

prevailing changes in the main socio-economic and environmental conditions and processes in the 

basin. Nevertheless, the simulation model made use of published scientific data and knowledge of 

scientists (i.e., scientists with western training) to ensure sufficient rigour and accuracy in the 

model’s function and outputs. In this respect, the model is distinguished from other models by 

placing emphasis on a balance between scientific and non-scientific knowledge sources (Petschel-

Held et al. 2005; Perera et al., 2012).  Further, the model is not purely a physically based hydrologic 

model as in numerous developed models in the basin (e.g., de Condappa et al., 2008), Leemhuis et 

al., 2009; Jung et al., 2012; Amisigo et al., 2015; Awotwi et al., 2015), neither is it an exclusively 

socio-economic model. Rather, it is a coupled population-economic-hydrologic dynamic model. 

Ultimately, the model is developed with the intent to provide an effective, locally relevant approach 

for the integration of stakeholder values and preferences into a dynamic system framework. The 

core hypothesis is that, by doing so, the research will provide a significant value for the future 

uptake of this approach in developing countries such as those in Sub-Saharan Africa.   

Methodologically, the research is grounded in the relativistic/holistic and pragmatist (i.e., the 

pragmatic realism) philosophical paradigm. Based on this paradigm, three-tiered research plan 

within a mixed-methods research strategy was deployed comprising: structured expert 

judgement/interviews, participatory modelling based on casual loop modelling (diagramming), and 

system dynamics simulation modelling approach. See chapters 4 for the detail discussion on overall 

methodology. The specific research design and strategies are, however, detailed in chapters 5, 6, 

and 7 along with justifications for their used.  

 

1.4. Study Context: The Volta River Basin 

The Volta River Basin is the 9th largest in sub-Saharan Africa. It occupies an area of about 

400,000Km2 within the sub-humid to semi-arid West African savanna zone (Figure 1.1). It extends 

approximately between latitude between latitude 50.30 N–140 30 N and between 20.00 E and 50.30 

W.  The widest stretch is roughly on longitude 50 30 W to 20 00 E; however, it becomes narrower 

as it enters the sea (the Atlantic Ocean) at the Gulf of Guinea (Barry et al., 2005; Gordon et al., 

2013). It is a trans-boundary river basin shared among 6 riparians West African countries: Burkina 
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Faso, Ghana, and Togo, Benin, Cote d’Ivoire, and Mali, making it an ethnically and culturally 

diverse basin. Table 1.1 shows the distribution of the area of the basin between the six riparian 

countries, which are independent in terms of water and other natural resources utilisation and 

management (Williams et al., 2016). Burkina Faso and Ghana make up approximately 90% of the 

total area of the basin and occupying a distinctive upstream–downstream formation (Bhaduri et al., 

2011). The river itself has a length of approximately 8, 242.8km. A significant portion (about 80%) 

of the basin is in the Savannah, and has largely a flat landscape, with elevations below 1000m 

(Oguntunde et al., 2006).  

 

 
            Figure. 1.1. The Volta River Basin showing important political boundaries (Gao and Amy Margolies, 2009)  

 

 

Table 1.1: The distribution of the area of the basin among the six riparian countries 

Country Area of the Volta River Basin (Km2) % of Basin % of Country in the basin 

Benin 17,098 4.10 15.2 

Burkina Faso 178,000 42.65 63.0 

Cote d’Ivoire 12,500 2.99 3.9 

Ghana 167,692 40.18 70.0 

Mali 15,392 3.69 1.2 

Togo 26,700 6.40 47.3 

Total 417,382 100%  

Source: Barry et al. (2005) 

 

The basin is sub-divided into smaller basins belonging to its three major tributaries consisting: 

Black Volta, the White Volta, and the Oti river basin. The Black Volta drains a land area of about 

146,820Km2 and donates about 18% of the annual flows to the Volta Lake; the White Volta covers 
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an area of 105,540Km2 and contributes about 20% of the annual flows of the Volta River system; 

while the Oti river basin drains an area of 71,940Km2. However, the network of the Volta River 

System within the area of Ghana occupies approximately 70% of the total land surface of Ghana 

(Gordon et al., 2013). The basin contributes about 25% of the annual flows in the Volta River 

system. Surface water is received from both outside and within the country, with about 54% of the 

flows of the tributaries coming from outside the country of Ghana (Gordon et al., 2013). Mean 

annual rainfall varies across the basin from approximately 1600mm in the south-eastern section of 

the basin in Ghana, to as low as 300-700mm/yr in the northern parts of Ghana and Burkina Faso 

(Barry et al., 2005; Martin and Van De Giesen, 2005; Wagner et al., 2006; Youkhana and Laube, 

2006; Gordon et al., 2013).  In the Southern part of the basin, there are two rainy seasons with peaks 

in June/July and September/October, whereas, in the Northern portion, there is only one wet season, 

from May through November, with peak rainfall occurring in September (Rodgers et al., 2007a).   

 

However, the amount of rainfall generally exhibits extensive spatial and temporal variability, and 

unreliable precipitation patterns, which make rain-fed agriculture a risky undertaking throughout 

much of the basin (Rodgers et al., 2007). Thus, river discharge is sensitive to variations in annual 

rainfall, with a ±10% change in annual rainfall leading to about ±40% change of river discharge 

(Lemoalle, 2009). Climatic patterns are strongly influenced by the movement of the Inter-Tropical 

Convergence Zone (ITCZ), which generates unimodal rainy season in the northern part and bimodal 

distribution in the Southern part, close to the Gulf of Guinea (Youkhana and Laube, 2006; 

Lemoalle, 2007; Rodgers et al., 2007). The mean annual temperatures in the basin vary from about 

27–30oC.  Daily temperatures can rise as high as 32–44oC and as low as 15oC in the night (Gordon 

et al., 2013). Generally, in Ghana, the average temperature rarely goes below 24oC (Barry et al., 

2005).  

The basin’s population stood at 23.8 million in 2010, however, this is expected to reach 56.1 

million by 2050 (Williams et al., 2016). The spatial distribution of the population within the basin 

varies with an average population of about 58 persons/km2; however, this average masks 

differences between riparian countries (Kolavalli and Williams, 2016). Over 90% of the Volta River 

Basin population resides in Ghana and Burkina Faso (Martin and Van De Giesen, 2005). The 

basin’s population is heavily dependent upon the land resources of the region for subsistence 

agriculture and livestock production. This results in both environmental and economic challenges. 

The predominant land use types are Guinea Savannah in the southern and Sudan savannah in the 

northern part (Wagner et al., 2006). Changes in the availability of water across the basin have 

socioeconomic and cultural impacts (Mul et al., 2015).  
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A major industrial development of the basin is Akosombo Dam, which plays a vital role in the 

economy of Ghana, although revenue has been less than expected (Lemoalle, 2009). The Akosombo 

Dam was constructed in the early 1960s to mainly provide electricity for Ghana and its 

neighbouring countries, although it delivers supplementary services for irrigation, livestock 

watering, fishing and domestic purposes (Douxchamps et al., 2012). Its construction led to the 

formation of the Lake Volta, which, up until the construction of the three gorges dams in China, 

was considered the largest man-made lake in the world (UNEP Volta Project, 2013).  It has a 

surface area with an area of 8,500 km2 (i.e., 4% of the total area of Ghana), a shoreline of about 

4,800km2 and a storage capacity of 152 billion km3 at full supply level (Gordon and Amatekpor, 

1999; Andah et al., 2003; Barry et al., 2005). Major water management issues focus on surface 

water resources. Groundwater is relatively abundant, but it is difficult to mobilise to satisfy the 

well-being of people. Surface water, thus contributes significantly to livelihoods and food security 

across the basin. Surface water in the Volta River Basin is subject to three main competing uses, 

including, agriculture, domestic, and industrial water demands. However, agricultural/irrigation 

constitutes the major user of water within the basin, particularly in Burkina Faso (Barry et al., 2005; 

Mul et al., 2015). Generally, irrigation is still very little developed in the Basin, covering less than 

0.5% of the cultivated area. There has some production increase in the last decade, but most of the 

increases came more from an increase in the cropped area than from increased productivity 

(Lemmoalle, 2009; Kolavalli and Williams, 2016). In general, the agricultural sector development 

has not kept pace with the Comprehensive Africa Agriculture Programme’s (CAAP) 6% goal for 

African countries (Williams et al., 2016).    

Existing infrastructure developments to manage water resources, such as the Akosonbo dam in 

Ghana and Bagre Dam in Burkina Faso, and many other environmental and demographic factors 

have already impacted on the hydrological cycle at both upstream and downstream ends of the 

basin, posing a potential threat to the future sustainability of the resources if not managed 

appropriately. For example, McCartney et al. (2012) report that following the construction of the 

Akosombo Dam, there has been a dramatic decline in agricultural productivity along the lake and its 

tributaries. Similarly, within the upstream area, UNEP Volta Project (2013) noted that 80,000 

people were displaced at the time of the dam construction, with a substantial loss of arable lands 

and forests. In more recent years, floods have been more recurrent, due mainly to the operation and 

management of dams and reservoirs, which in turn, have led to trans-boundary challenges (Mul et 

al., 2015). However, water shortages are more common, owing to the reduction in precipitation, 

drying up of some streams and wells in several communities, decline in river flows, dwindling 

water tables, a rise in the volume of evapotranspiration (attributable to the construction of thousands 
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of large and small reservoirs in the basin), which in turn, is caused by climate change, and 

inefficient use of water resources (Goa and Margolies, 2009; Mul et al., 2015). Several 

socioeconomic trends also suggest that the demand for, and the pressure on, the basin’s natural 

resources are likely to likely to increase in the coming decades (Gordon et al., 2013; UNEP-GEF 

Volta Project, 2013; Kolavalli and Williams, 2016).   

The two dominant countries in the basin – Ghana and Burkina Faso – both aspire to increase their 

large reservoir storage, primarily to meet their increasing energy demand by generating 

hydroelectric power (McCartney et al., 2012). In Ghana, the focus is on hydropower development, 

while in Burkina Faso, the basin’s water resources are considered as a source of irrigation 

(Andreini, et al., 2001). To date, water resources planners across the basin have not been able to 

strike a critical the critical balance between water resources and their multiple uses at the national 

and local levels.   

 

From the foregoing, it is apparent that the challenges facing the Volta River Basin are highly 

complex and cannot be treated independently from one another. Indeed, the behaviour of the Volta 

River Basin is typified not by stable equilibria, but by strong non-linearities, in which relatively 

small changes in an imposing fashion can push the system across a threshold leading to abrupt 

changes in the critical aspects of the system functioning (Steffen et al., 2004). The main challenge is 

how to manage the natural resources of the basin to improve food security, reduce poverty and 

promote economic development, without further degradation of the natural ecosystems for present 

and future generations (Kolavalli and Williams, 2016). Policy makers in the past have struggled 

with the problem of estimating water demand with supply uncertainties (Bhaduri et al., 2011; UNEP 

Volta Project, 2013; Williams et al., 2016). Yet, they are required to anticipate how to adapt 

management practices and infrastructure development for some future state of their water resource 

systems (Mul et al., 2015). As Johnson and McCartney (2010) underscored, planning water 

management and infrastructure requires not only insight into impending needs, but also a good 

understanding of what already exists and what was, and was not successful in the past. Further, with 

rapidly increasing demand for water for various purposes demands, water supply will be severely 

stretched and environmental and socio-economic problems are likely to increase.  

 

According to Kolavalli and Williams (2016), the goal of agricultural policy for the basin since the 

1980s has been to feed a rapidly growing population and reduce environmental degradation; 

however, the policy has been devoid of a comprehensive analysis of the trends being observed and 

has not responded rapidly enough. This cogent observation calls for an integrated water resources 
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model linking local livelihood and agriculture production, demographic changes, water supply and 

demand in the Volta River Basin and how their interaction help to informed policy making and 

sustainable water resources management. To accomplish this objective, a robust and holistic 

approach that allows planners and managers to seek sustainable solutions, and make long-term 

forecasts and projections as needed. Thus, the system dynamics approach based on the notion of 

systems thinking provides the appropriate approach and methodological tools for such an integrated 

and robust analysis.   

 

1.5. Boundaries and Scope of the Study 

According to Etwart et al. (2009, p. 547), “a system typically comprises elements, borders, relation- 

ships among elements and other systems.” The drivers of change of any linked SES, such as those 

in the Volta River Basin operate and interact at diverse hierarchical scales (proximate and 

underlying) and at distinct spatial scales (i.e., local, regional, national, global) and temporal scales 

(Nelson et al., 2006; Kittinger et al., 2012). An understanding of the trajectories of these driving 

forces necessitates a temporal and spatial perspective. Thus, boundary or scalar issues are 

paramount in complex systems research. In coupled SESs analysis, defining a study area also 

encompasses selecting a scale/boundary of analysis by drawing artificial boundaries around it 

(Schröter et al., 2005). These boundaries, consisting of spatial scale (e.g., a catchment or region) 

and temporal scale (e.g., over 5 or 50-year period), consist of what may be labelled the ‘focal 

system’ (Resilience Alliance, 2010).   

 

In addition to providing a common setting in which all biophysical and socioeconomic processes 

function (Agarwal et al., 2002), spatial and temporal scales also prescribe the level of detail for the 

data collection effort (Stoorvogel et al., 2004). The place and time scale selected then becomes the 

focus of the study, with an understanding that processes at smaller and larger scales, in addition to 

historical and future trajectory, are crucial for gaining adequate insight into the sustainability of 

natural resources systems (Schröter et al., 2005). However, the characterisation of the system under 

study in terms of its spatial and temporal scales (extent and resolution), its boundaries and 

constituents will rest mainly on the nature of problem, the goal of the study, and the challenges of 

constraints of procuring the required data (Xu et al., 2002; Ewert et al., 2009), such as the ones 

discussed above. As with the equilibrium point of view, spatio-temporal resolutions depend on the 

nature of the challenge (Pendall et al., 2010). It, therefore, follows that the results of any analysis or 

modelling will depend explicitly on the choice of the study area, context, spatial-temporal scales of 

the system of interest and the goal of the study.  
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It must, however, be pointed out that establishing boundaries for complex systems analysis is 

sometimes a challenging endeavour as there is always an input and output crossing the boundaries 

of the system (Sevaldson, 2008; Ewert et al., 2009). For example, as one is dealing with an open 

system, some understanding is unavoidably lost through the neglect of interactions across 

boundaries (McAllister et al., 2006). Indeed, in the real world, a boundary does not exist, but it is 

often perceived as a concept, which enables researchers to make sense of reality and will have a 

major influence on the model design and the ensuing product (Allison, 2003). These caveats, 

notwithstanding, it is imperative to construct boundaries and scales to focus the analysis, and thus, 

justify (or exclude) certain issues and levels (Molle, 2007). Also, the establishment of boundaries is 

necessary for a simpler, more tractable, and more feasible approach (Robinson et al., 1994) to the 

phenomenon under investigation. As Carpenter et al. (2001) suggest, scaling or boundary issues can 

be partly be addressed appropriately “bounding” social-ecological systems.   

Thus, given the size, the diverse and transboundary nature of the system under study (i.e., The Volta 

River Basin) and the complexity of the issues confronting it, it would not be feasible to study or 

model the basin entirely. It is, therefore, necessary to establish boundaries or a scale for the analysis 

and allow for robust results that are appropriate and useful to managers. Each time a 

researcher/modeller selects a boundary, she/he is making decisions about what to include in her/his 

model/analysis and, whether the variables chosen are to be endogenous, exogenous or 

environmental factors (Allison, 2003, 2006; Pendall et al., 2010). Accordingly, the temporal period, 

also known as ‘reference mode of behaviour’ in system dynamics parlance (Sterman, 2000; Van 

den Belt, 2004; Maani and Cavana, 2007;) for this study has been taken as 50 years, starting from 

the year 2000 through to 2050. The justification for the choice of this time period is that most socio-

economic data and information rarely go back further than 50 years, especially in developing 

countries, while environmental information (e.g., land use/cover, vegetation data) have similar time 

limitations (Biancalani et al., 2011). Additionally, biophysical data and information (e.g., climate 

change data) tend to mirror longer term conditions in many natural resources systems (Troyer, 

2002). Finally, environmental and socio-economic processes in SES systems evolve over time, so 

the time scale chosen determines which drivers are identified (McAllister et al., 2006).   

On the other hand, the spatial boundary is the Ghana side of the basin and its agro-ecological zones 

(i.e., the downstream country of the basin), owing to several reasons. First, the focus on this scale is 

due to pragmatic reasons as well as time and budget constraints. Second, the concentration on this 

part of the basin was informed by data availability and accessibility, especially gaining access to 

stakeholders who played a pivotal role in the development of the model. Third, the Ghana part of 

the basin was selected for the modelling, because the important biophysical and socio-economic 
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data required for the study are relatively accessible, and partly because from the analytical point of 

view, the relationship between economic development and water resources management in Ghana 

seems relatively apparent (Barry et al., 2005). Ghana has the more reliable and more readily 

available datasets, permitting the systematic analysis across a large river basin. Finally, as 

compared to the riparian countries, Ghana, the downstream country, has over the years been the 

more active in terms of the development of major projects that have resulted in significant impact 

on the basin’s water resources and the excessive consumption, utilisation of the water resources 

(Barry et al., 2005; McCartney et al., 2012; Mul et al., 2015). There are also further ambitious plans 

by Ghana to build more dams on the Black, Oti, and White Sub-basins, which will potentially have 

significant impact on the sustainable management of the basin’s resources in the coming future 

(McCartney et al., 2012).    

 

1.6. Outline of the Thesis  

As depicted in Figure 1.2, this thesis is structured into 8 chapters that interact to produce a final set 

of insights and conclusions.  Chapter 1 provides the general background introduction, the research 

problem, the research aim and specific objectives, and a description of the study context – in this 

case, the Volta River Basin. Chapter 2 reviews traditional approaches to researching and managing 

natural resource and environmental systems; specifically, the linear-reductionist thinking, 

equilibrium centred approach, and command-and-control strategy). The key argument 

underpinning this chapter is that, these linear approaches are not sufficient, and if at all, they offer 

limited answers to questions central to managing and researching complex systems natural resource 

management systems such as the Volta River basin.  

 

Thus, in chapter 3, the contemporary system- based approaches the coupled social-ecological 

system perspective, and complex systems thinking approach – and their conceptual and practical 

values are discussed and proposed as the theoretical framework for this study.  Chapter 4 builds on 

the preceding chapters and provides an account of the overall research design and the overarching 

methodology. Chapters 5 to 7 comprise the empirical base of the research presented as individual 

papers (i.e., journal articles), all of which have been published in international peer-reviewed 

journals. Specifically, chapter 5 (paper I) explored and identified the main biophysical and socio-

economic drivers of change within the Volta River Basin, and assessed their relative importance in 

relation to sustainable water resource management and agricultural development, particularly food 

and livelihood security, and in general, socioeconomic development.  
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Chapter 6 (paper II) used the drivers identified in chapter 6 to develop a qualitative/conceptual 

model in the form of a Causal Loop Diagrams (CLDs) showing the feedback structure consisting of 

the interrelationships between the important biophysical and socioeconomic drivers, factors, and 

processes governing the dynamics of the basin, with substantial input from the key system 

stakeholders and decision makers. Chapter 7 (paper III) developed an integrated simulation system 

dynamics model based on the conceptual model to improve our understanding of the behaviour of 

the river basin system over time. This then allowed for alternative policy scenarios to be evaluated 

and compared over time. Chapter 8 syntheses the key research findings from the individual chapters 

and discusses the research contributions, limitations, and opportunities for further research. These 

are linked back to the three objectives set out herein.      

Figure. 1.2: Thesis structure 
 

CHAPTER 1 

General Introduction and Research Problem 

CHAPTER 2 

Conventional Approaches to Managing 

and Researching Natural Resource 

Systems 

CHAPTER 3 

Contemporary Approach for Natural 

Resources Management and Research – A 

Systems-based Approach 

CHAPTER 4 

Research Methodology 

CHAPTER 5 
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CHAPTER 6 
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CHAPTER 7 
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CHAPTER 8 

Conclusion, Contribution, and 

Research Limitations 
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CHAPTER 2: CONVENTIONAL APPROACHES TO MANAGING AND RESEARCHING 

NATURAL RESOURCE SYSTEMS  

 

2.1. Introduction 

In chapter 1, it was briefly argued that the traditional approaches to managing and researching 

natural resource and environmental systems, as well as the prevailing explanations based on linear-

reductionist approaches are inadequate for understanding and addressing the complexity associated 

with environmental systems, such as the Volta River Basin of Ghana. Following the structure of the 

thesis, this chapter returns to review and critique some of the conventional approaches in more 

depth. They include the linear-reductionist thinking, command-and-control approach, and the 

equilibrium-centred approach. Essentially, these approaches are reviewed here in order expose their 

limitations in addressing the growing complexity and uncertainty presently faced by water resource 

managers due to rapid and continuous changes in system drivers. Thus, the review forms the basis 

to call for a paradigm shift, particularly the adoption of a system-based approach, which has been 

adopted as the theoretical base for this study.  

The chapter begins with a discussion of the meaning of the concept, “scientific paradigm”, and the 

way it operates to shape the research process in totality. This is important because every research is 

grounded in a philosophical assumptions and commitments that inform the way researchers 

conceptualise both the nature and purpose of the research enterprise (Thompson, 2007). The chapter 

then discusses the conventional approaches mentioned above. This is followed by a review of some 

criticisms launched against these approaches within the literature in relation to water resources and 

agricultural systems. Based on these criticisms, conclusions are drawn, where the systems thinking 

is proposed, and subsequently, discussed in detail in chapter 3.    

 

2.2. The Concept of Scientific Paradigm  

The previous decades have witnessed a proliferation of the use of the concept, paradigm, in 

association with many subject disciplines. The term is a particularly common and important one in 

contemporary science and philosophy. It has caught the imagination of scientists and researchers 

who are keen to lead a change or upturn a dominant paradigm (Pickett et al., 2007). Hence, the 

concept has become a common term in the daily parlance of scientific research. But like ‘niche’ and 

‘community’, it is challenging to find a single unequivocal definition for the term (Yunlong and 

Smit, 1994; Paine, 2005). Nevertheless, some few definitions can be gleaned from the existing 
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literature. Tilman et al. (2002, p. 9), defined a paradigm as a “worldview, a general perspective, a 

way of breaking down the complexity of the real world.” Similarly, Sparkes (1992) employed the 

term to suggest the possibility of diverse frameworks or perspectives containing different sets of 

values, beliefs, and assumptions (cited in Crook and Garratt, 2005). Van Cauwenbergh et al. (2007, 

p. 75), defined a paradigm as the “constellations of beliefs, values, and concepts that give shape and 

meaning to the world a person experiences and acts within.”  

Meanwhile, the whole notion of scientific paradigm was originally used by the philosopher of 

science, Thomas Kuhn in his 1962 book, The Structure of Scientific Revolutions and in his latest 

edition (Kuhn, 2012). Kuhn described a paradigm as the worldview, belief systems, a collection of 

assumptions and techniques, and exemplars for problem solution held in common by a scientific 

community (Kuhn, 2012). A plethora of background beliefs regarding the way the world operates 

are usually, incomplete or fragmented, and are typically not even recognised or appreciated by their 

proponents (Gladwin et al., 1995). Kuhn’s publications (1962/1970), and successions of 

publications by other scholars (e.g., Kuhn, 1970; Lakatos and Musgrave, 1970; Fuller, 2000; Von 

Wirén-Lehr, 2001; Swart et al., 2005) provided a distinctive view of the manner scientific research 

advances (Graham and Dayton, 2002). This appears to have determined the contemporary meaning 

of scientific paradigm in the twentieth century.  

The central argument of Kohn (1962, 1970) is that the ‘normal science’ many researchers conduct – 

that is, testing research philosophies identified with Popper (1959) and generally, the positivistic 

philosophies of science, has not yielded any significant explanation on how disciplines evolved. In 

the Popperian model, it is argued that knowledge is accumulated within a “formal logical 

framework”, derived from unswerving observations that are sufficiently gathered with a wide range 

of questions or hypotheses’, distinguished by a scientific method, consisting of an evolutionary 

process of conjectures and refutations (Popper, 1972). However, Kuhn contended this view and 

delineated science as an idea, which is considerably less integrated as compared to the Popperian 

model (Kuhn, 1962).  He underscored that the way scientists gain knowledge inevitably results in 

several methodological, philosophical, as well as “social constructs” that assist scientists in their 

works. Accordingly, Kuhn introduced the concept “paradigm” to describe those constructs. Thus, a 

‘paradigm’ is the fundamental concept that Kuhn employed to advance his arguments. In doing so, 

he also introduced a related concept – “normal science”, which he described as “research firmly 

based upon one or more past scientific achievements, achievements that a scientific community 

acknowledges for a time as supplying the foundation for its further practice” (Kuhn, 1970, p. 10).   



 

23 
 

From these above understandings, it is thus possible to deduce some principal components of 

scientific paradigm – problem formulation, theory, hypothesis, model development, interpretation, 

description, and explanation (Pahl-Wostl et al., 2011). A paradigm also includes generalisation 

along with preferred instruments and methods and further structured by ontological commitments 

about components and concepts, powered by the faith that nature can be fit into the box of the 

paradigm via problem solving (Ziegler and Ott, 2011). Paradigms are, thus, important because they 

provide philosophical and conceptual frameworks or the operational context from which we drive 

theories, laws and generalisations (Crook and Garratt, 2005; Bell and Morse, 2008; Pahl-Wostl et 

al., 2011; Scheff et al., 2015). To a certain level of abstraction, paradigms are also theories as well 

as models. Although less formal, and perhaps not set down as systematic, logical propositions, they 

are, increasingly, subject to testing and review in the same way that theories are (Pahl-Wostl et al., 

2011). Paradigms can be applied to not only to science, but to a specific area of science, but to other 

forms of knowledge and the ways that people think about the world in general. 

Within the confines of water and natural resources management, the modernist or the ‘normal 

science’ paradigm sees disturbances as an interference (i.e., white noise) that should immediately be 

eliminated through management and control (Simonovic, 2009; Pahl-Wostl et al., 2011, 2013; Cook 

and Bakker, 2012). Nonetheless, Popper’s idea of falsification has been embraced by many 

scientists and used widely by the public in the discussion of the challenges of resource management, 

particularly the notion of sustainability (Ziegler and Ott, 2011). Within the history of modernist 

paradigm, there has always been a tension between the dominant mechanistic and alternative 

organicist ways of thinking about the world (Sterling, 2003).  Hence, as Capra (1996, p.17) 

observed: “the underlying debate is dichotomised between the parts and the whole.” The 

prominence given to the parts has been described as mechanistic, reductionist or atomic; while the 

emphasis on the whole is referred to as holistic, organismic, or ecological (Capra 1996). 

Mechanistic and reductionist thinking has been the dominant paradigm in science and 

environmental/natural resources management, which is currently being challenged.       

 

2.3. Traditional Thinking and Approaches to Natural Resources Management   

The current and dominant ways of thinking about the management of natural resources, including 

management within the Volta River Basin of Ghana are rooted in a particular epistemology – i.e., in 

ways or methods for knowing on the basis of knowledge, which, hitherto, remain largely 

unchallenged (Sterling, 2003). According to Berkes (2010, p.14) the historical idea concerning 

‘natural resources management’ is intimately associated with the advent of many ideas in political 

economy and environmental philosophy. These consist of: (1) the looking at humans and the 
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environment systems as if they distinct entities, (2) the commodification of nature, (3) the 

separation of the user of natural resources from the one who manages them, as well as the 

emergence of the managerial class, (4) the evolution of a tradition of positivist scientific paradigm 

that believes that the world can be predicted and controlled, and (5) the extensive application of 

reductionism in scientific inquiry. As stated earlier, in this section, the conventional approaches to 

natural resource management are reviewed. They include linear-reductionist paradigm; command-

and-control approach, and equilibrium centred approach.  

 

2.3.1. Linear-reductionist Paradigm 

The conventional human thinking still holds that the world is explainable through ‘linear and 

mechanistic or deterministic thinking model (Hjorth and Bagheri, 2006; Jeffrey and Hawkins, 

2008). In other words, the prevailing beliefs are that everything followed precise observable laws 

and order (Geyer, 2003) and those natural occurrences are fully comprehensible through objective 

creation and testing of theories (Williams, 2008).  The linear causal thinking, upon which our 

knowledge of nature and insight of major scientific laws rest, believes that certain causes are 

operating in a collective and linear fashion, which, in turn, leads to a particular event (Hjorth and 

Bagheri, 2006; Foley, 2014; Liu et al., 2015a). The ‘reductionist paradigm’ is reflected in these 

notions and the way scientists, and generally, researchers make sense of a complex world (Cheung, 

2008). Reductionist thinking form the foundation for machine-like (mechanistic or deterministic) 

science, where nature is viewed as clockwork, where individual elements of a system can be 

assembled and disassembled (Jeffrey and Hawkins, 2008; Hjorth and Bagheri, 2006; Berkes, 2010). 

Its ideological roots can, thus, be traced to the conventional normal science (Lister, 1998; Foley, 

2014) that Kuhn talked about.    

The origin of reductionist paradigm is traceable to the Age of Enlightenment, the emergence of 

liberal social theory, ‘invisible hand’ reasoning, and bias towards human dominion over nature that 

many consider as rooted in Western religion (Daly and Cobb, 1994; Cheung, 2008; Berkes, 2010). 

However, three famous scientists of the seventieth century; the French Philosopher and 

Mathematician, Rene Descartes (1596-1650), Galileo Galilei and, subsequently, the English 

Physicist and Mathematician, Sir Isaac Newton (1642-1727) set the scene (Capra, 1996; Geyer, 

2003; Jeffrey and Hawkins, 2008). Galileo excluded quality from science, confining it to the study 

of phenomena that could be measured and quantified (Capra, 1996). This has been very successful 

throughout modern science. René Descartes advocated rationalism with the view that the way 

nature works could be demonstrated through the way a clock functions (Mebratu, 2001; Geyer, 
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2003). Consequently, Descartes developed the “method of analytical thinking”, which entails 

breaking down complex phenomena into smaller parts, to gain an understanding of the behaviour of 

its constituent parts (Capra, 1996). He considered his views of nature as the important distinction 

between two independent and discrete spheres – “that of the mind and that of matter” (Capra, 1996).  

Newton, on the other hand, discovered an astounding collection of fundamental laws in his book, 

Principia Mathematica – an effort that eventually became the foundation for all future scientific 

endeavours (Geyer, 2003).  In a classical Newtonian theory, systems are “epistemically closed, 

static off-line systems”, whose hypothetical condition stays static and intact by system dynamics 

and growth in the runtime of the system (Haag and Kaupenjohann, 2001). These developments were 

followed by another plethora of discoveries in various fields, including magnetism, electricity, 

astronomy, and chemistry, thereby providing increased confidence in the value of reason critical to 

solving scientific problems (Geyer, 2003).  

As stated earlier, the proponents of reductionist thinking believe that the behaviour of a system can 

be discerned in a clockwork manner, through an observation of the behaviour of the individual parts 

(Geyer, 2003; Cheung, 2008; Jeffrey and Hawkins, 2008; Singh, 2010). Indeed, reductionism is 

concern about breaking a system into separate elements, analysing the elements, and deriving 

predictions (Berkes, 2010). Generalisations can be achieved by using this approach, without 

considering the context of space and time (Berkes, 2010). According to Johnson (1982), 

“reductionism refers primarily to the effort to explain phenomena at one level of analysis entirely 

by reference to theoretical principles operating at another level”. Usually, but not necessarily, the 

guiding principles are thought to apply at a more "fundamental" level than the phenomena being 

explained. Thus, the underlying assumption of reductionist paradigm, which states that the sum of 

parts equals the whole, is vital to explaining the behaviour of a system (Jeffrey and Hawkins, 2008). 

In other words, the whole can be understood by the sum of its parts, and the goal of science is to 

recreate reality from the parts and produce casual relationships among the parts, usually to explain, 

guide or predict (Mebratu, 2001; Hjorth and Bagheri, 2006). Reasoning is egoistic, linear, 

instrumental and rational (Gladwin et al., 1995).   

Reductionism thus advocates an additive character of linear cause-effect relationship (Mebratu, 

2001; Dent, 2003) and by extension, it encourages linear thinking. Further, the use of reductionism 

is closely associated with “logical positivism or rationalism”, which asserts that the presence of 

reality is determined by unchallengeable laws founded on common truths (Berkes, 2010). Geyer 

(2003, p.3) summarised some basic characteristics of reductionist thinking: “(1) it profess order, 

meaning that particular causes give rise to known consequences at all times and places; (2) it 



 

26 
 

believe in predictability, implying, once global behaviour is established; the prospect of future 

events could be predicted by deployment of the required inputs to the model (3) it advocates 

determinism, which suggests that processes move in an logical and expected direction, with 

conspicuous beginnings and logical conclusions. Its objective is to provide “a knowable, unified 

and objective Truth” (Lister, 1998, p.128). Therefore, the duty of science is to unearth these truths 

and apply them in predicting and controlling nature. Science under this notion is believed to be 

value-neutral with the scientists viewed to be working in a value-free environment (Norton, 2005; 

Berkes, 2010). The positivistic-reductionist way of thinking is ‘natural, rational, and, perhaps, 

driven by the generic idea of control operating on local scales’ (Singh, 2010).  

However, many opponents of reductionist approach argue that you cannot correctly understand a 

system independent of its settings and contextual factors in which it situates (Clark and Stankey, 

2006; Simonovic, 2009; Singh, 2010; Pahl-Wostl et al., 2012). These scholars stressed that natural 

resource systems, such as water resources are complex, and that a truly complex system cannot be 

adequately ‘captured’ or represented from any single perspective as advocated by proponents of 

reductionism. According to Singh (2010), the reductionist approach fails, when humans begin, or 

are challenged to think about how to make use of natural resources for the greater good of society 

(i.e., based on a longer term and wider-scale gain). Hjorth and Bagheri (2006) add that, 

reductionism as a perspective of ‘modern science’ is characterised by increased specialisation and, 

consequently, it has produced numerous knowledge but insufficient insight.  Indeed, focusing on 

individual parts can help illuminate certain aspect about the ‘whole’, they fall short in explaining 

the full problem (Hjorth and Bagheri, 2006; Jeffrey and Hawkins, 2008; Cumming, 2011). This is 

because they also make many assumptions about the constancy of causal relationships, the 

prevalence of linear relationships, and the structure of the focused system (Cumming, 2011).   

 

2.3.2. Command-and-Control Approach 

Many of the large river systems around the world, including the Volta River basin are highly 

regulated with the numerous physical flow control and storage structures as well as a range of water 

sharing rules and regulations (Welsh et al., 2013; Johnston and Smakhtin, 2014). Indeed, as the 

human population rises and available natural resources become scarce, there are increased pressure 

and efforts to control those resources to maximise its products, minimise the threats, and 

consequently, to realise the expected outcomes (Holling and Meffe, 1996; Chaffin et al., 2016). In 

situation where the actions of people, institutions or nature goes contrary to the conventional 

wisdom, norms, desires or expectations of society, command and control are established to move 

such institutions, and/or the ecosystems, to a steady, and possibly, to predictable state (Rogers et al., 
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2000). This notion of ‘control’ and ‘management’ is viewed as the panacea to the challenges of 

deep-rooted environmental and social problems (Holling and Meffe, 1996; Luke, 1997; Luke, 

2002). According to Berkes (2010, p.34), the term “management’, suggests ‘domination of nature, 

efficiency, social, and ecological simplification, and expert-knows-best, command-and-control 

approaches.”  Pahl-Wostl et al. (2011, p. 840).) defined a management paradigm as a constellation 

of fundamental believes with respect to the nature of the system to be managed, the objectives of 

controlling the system and the ways in which these objectives are accomplished.  Both Berkes and 

Pahl-Wosl et al (2011), illustration is evinced in artefacts, including technical infrastructure, 

planning approaches, regulations, engineering practices, and models.     

Command-and-control approach assumes that natural resource systems will respond as predicted 

(Van den Belt, 2004; Hammer, 2015). It is the common term from the prescriptive and 

interventionist traditionally used in natural resource management before the inception of integrated 

natural resources management (Allison, 2003; Chaffin et al., 2016). This conventional wisdom has 

dominated natural resource management for decades. It allows for certainty and emphasis 

‘hierarchical, top-down decision-making, and risk aversion irrespective of the outcome’ (Knight 

and Meffe, 1997). It is founded on expert knowledge, which aims to control nature, viewing people 

as if they were independent from the environment (Berkes, 2003). Management, therefore, defines 

the primary use of the managed system (Chapin et al., 2009; Chaffin et al., 2016).  

Command-and-control policies were the approaches used in an appropriate way in response to the 

symptoms of natural degradation in agricultural landscapes (Allison, 2003).  Usually, control is 

exercised from the centre, following a rigid protocol for the achievement of established objectives. 

Command and control believes that management interventions can be optimised and their impact, in 

principle, be fully calculated (Berkes, 2010; Pahl-Wostl et al., 2013). This is enabled by segregation 

of the system to be controlled by different individual elements (Pahl-Wostl et al., 2011, 2013). 

Uncertainties are either relegated to the background or analysed quantitatively through the 

development of norms. The ultimate goal of the command-and-control approach is the elimination 

or the reduction of the natural range of environmental variability or the removal of disturbances in 

natural resource system properties and processes (Holling and Meffe, 1996; Rogers et al., 2000; 

Folke, 2003; Chapin et al., 2009). However, once the ‘natural variation in a system is reduced, it 

loses its resilience and its capacity to respond, following natural or human disturbances (Rogers et 

al., 2000).  

Because the natural world was viewed as ordered, segmented, and mechanistic, with linear, cause-

and-effect relationships, it was not surprising that agencies compartmentalized themselves into 
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specialties that employed a command-and-control mentality to manage resources (Knight and 

Meffe, 1997). However, as Berkes (2003) alludes, our evolving thinking on ecosystem-based 

management suggests that these assumptions often fail, because our capacity to truly predict 

behaviour of ecosystems is not advanced. Natural resource systems are not static (Chapin et al., 

2006). Indeed, while they view the complex and dynamic nature of environmental systems, 

managers usually strive to achieve sustainability through externally imposed regulations, aiming to 

reduce the likelihood of events that are viewed as environmentally or economically undesirable 

(e.g., floods, pest outbreaks, and fire (De Leo and Levin, 1997; Chaffin et al., 2016).  Figure 2.1 

illustrates the basic attitude of mind underlying current paradigm in environmental and natural 

resources management.    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

The metaphor in figure 2.1b indicates a type of mutual management and co-existence between 

natural and human systems (Pahl-Wostl, 1995). A recurrent, and possibly, widely known product of 

command and control in natural resources management context is the reduction of the variety of 

natural changes of systems structure, function, or both, aimed at increasing their predictability or 

stability. These changes evolve across time or space. Holling and Meffe (1996) suggested that the 

Global constraints 

(b) 

Managing Control Measures 

Information 

(a) 

 

Figure 2.1: Schemes of Environmental “Management”. (a) Current strategies where a human control panel, perceived as external, 

attempts to direct an ecosystem or even the global system towards a desired goal. (b) Ecosystems (clear shaded cloud) and human  

systems (light blue shaded cloud) closely interwoven in what can be called a human ecological system that organises itself towards a 

common goal within material constraints (Adapted from Palh-Wostl, 1995) 
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command-and-control approach, when extended to address problems in natural resource systems 

without careful consideration, often leads to unexpected and adverse impact.   

 

2.3.3. Steady-State Equilibrium Centred Approach 

In the physical world, it is believed that a mechanical system is at rest if the forces acting on it are 

in an equilibrium state (Gunderson et al., 2002). This idea is reflected in the notion of ‘balance of 

nature’ or ‘equilibrium’ paradigm, which argues that nature exists in a perpetual equilibrium state 

that may not be altered or disturbed (Mbatu, 2010). Notions of ‘balance of nature’ or ‘equilibrium’ 

and non-equilibrium in nature is rooted in the traditions of Western cultures (e.g., Ancient Greek, 

medieval Christian, and eighteenth century rationalist thoughts) (Botkin, 1990; Worster, 1993; 

Mbatu, 2010). Their application in natural resources management can be traced back to population 

and community ecology (Pickett et al., 2007; Ochola et al., 2011).   

Darwin’s concept of natural selection fostered a flourishing evolutionary ecology searching the 

explanations for species properties in the optimisation of life strategies to gain maximum fitness. 

Natural selection and maximum fitness are, therefore, closely tied to the concept of a stable 

equilibrium state. The latter is needed for competitive exclusion to become efficient and for 

optimisation strategies to be useful (Pahl-Wostl, 1995). Equilibrium has been defined variously in 

the literature. In environmental systems, Phillips (2004, p. 370) referred to a state of equilibrium or 

as a steady-state, as a situation in which little fluctuations may ensue around a constant mean 

condition. Stability, the conventional generalization that there is an inherent ‘balance’ or 

equilibrium in nature, is linked to successional theory: as systems become more diverse during 

succession, it is believed that they become more stable (Lister, 1998). These ideas have grown as 

exemplified by their applications in resource economics, social and cultural anthropology, water 

resource systems, range ecology, land use policy and law etc (Ochola et al., 2011). Like the 

reductionist and command-and-control paradigms, the equilibrium centred approach assumes that a 

stable or a single state of a system exists and that all we have to do is to guide a system there with 

appropriate policies and strategies (Van den Belt, 2004; Chapin et al., 2009). Such a viewpoint 

directs attention to the equilibrium and near equilibrium conditions (Holling, 1994).  

The fundamental assumptions of the equilibrium paradigm are that natural resource systems (1) are 

basically closed systems, (2) are self-regulating, (3) display a stable point or stable cycle equilibria, 

(4) have deterministic dynamics, (5) are virtually free of disturbance, and (6) are independent of 

human influences (Botkin, 1990; Turner et al., 1993; Pickett et al., 2007; Ochola et al., 2011). 

Further, Holling (1994, p. 600) points out some essential characteristics of this view: it directs 
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attention to not only constancy in time, but also, spatial homogeneity and linear causation; it leads 

to equilibrium theories and to empirical measures of reliability that stressed averaging changes  in 

time and averaging ‘graininess’ in space; it represents a policy world of a benign nature where trials 

and mistakes of any scale can be made with recovery assured once the disturbance is eliminated.   

However, many authors (e.g., Gunderson and Holling, 2002; Gunderson and Pritchard, 2002; 

Philips, 2003; Heise, 2008; Kricher, 2009) absolutely does not accept a balance of nature paradigm.  

They contend that nature or environmental systems are rarely close to equilibrium, nor has it ever 

been at any period in Earth's history. This contention has proliferated in the last 80 years (Scoones, 

1999), although it is not sufficiently recognised in many environmental and natural resource 

assessments (Reice, 1994). According to Kricher (1999), nature has no ‘balance’ that must be 

attained, and that nature works on its own terms and that human beings, as part of nature cannot 

claim to be a determining factor in the natural workings of nature. In his famous textbook of 1930, 

Elton noted that the balance of nature theory does not exist and possibly never was (Scoones, 1999). 

Fifty years later, Connell and Sousa (1983, p.789) arrived at a similar conclusion stating: "If a 

balance of nature exists, it has proved extremely challenging to establish.” The debate concerning 

equilibrium comes partly, from the varying definitions and criteria deployed by investigators and, in 

part from questions regarding whether, it is reliable to explain the presence of an equilibrium state 

(Turner et al., 1993).  

Meanwhile, the characteristics that have been employed to study equilibrium can be put into two 

broad categories: persistence (i.e., simple non-extinction) and constancy (i.e., no change or minimal 

fluctuation in numbers, densities, or relative proportions) (Turner et al., 1993). The idea of shifting 

mosaic steady-state has been challenging to measure empirically, but it has been applied in other 

systems. Consequently, the last few decades have witnessed a dramatic transformation in the debate 

and re-conceptualization of natural resource systems. Two changes in resources management led to 

the abandonment of the equilibrium paradigm (Pickett et al., 2007). First, the emergence of a large 

amount of empirical evidence that visibly and ultimately challenged the underlying assumptions 

successfully.  Second, scientists have been able to view their systems at different, often larger scales 

that were previously thought via much of the first half of the discipline history. Indeed, all natural 

environmental systems change over time, implying that it is challenging to determine a normal state 

for communities whose quantifiable resources are in constant flux, either because of natural 

disturbance or due to internal ecological dynamics (De Leo and Levin, 1997; Walker, 1999).  

Alternative to the equilibrium is the non-equilibrium perspective, which describes the decoupling of 

the plant and herbivore relations from resource variability (Schlüter et al., 2012).  Non-equilibrium 
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advocates multiple equilibria states: ‘nature engineered’ and ‘nature resilient’ and an evolutionary 

view that highlights organizational change and surprises generated by such change (Holling, 1994). 

The former emphasises variability, spatial heterogeneity and non-linear causation, the existence of 

more than one stable state (Holling, 1994; Ochola et al., 2011). A non-equilibrium perspective 

embraces the complexity of systems and encourages more flexible and dynamic adaptive responses 

to change (Scoones, 2004), The idea emerged from the recognition that most systems are 

simultaneously subjected to a number of disturbances) influenced by factors, such as fragmentation 

of forests, fire, environmental catastrophes (e.g. droughts, floods, wind storms) or by biotic 

structure and processes in environmental systems (Pickett et al., 2007; Ochola et al., 2011).  

The myriad of factors that influence ecosystem dynamics may be studied in homogeneous physical 

entities of a River Basin system such as the Volta River Basin. Existing advancements in the 

science within environmental systems support the importance of past disturbances and external 

forces in determining the direction of environmental change (Ochola et al., 2011). Moreover, 

disturbance may take place across a wide range of temporal and spatial scales (De Leo and Levin, 

1997). Conferring Heise (2003), the scale of change cannot be understood in its entirety if focusing 

only on local life forms and systems, and such a narrow focus can lead to misperceptions about 

nature’s enduring evolution. Theoretically, equilibrium dynamics related to defined temporal and 

spatial scales are examples of problems studies outside the larger temporal contexts (Ochola et al., 

2011).  

The equilibrium-centred approach is also embedded within the notion of fixed carrying capacities, 

steady-state resource dynamics, and maximum sustainable yield (Schlüter et al., 2012, 2014). 

Likewise, neoclassical economics have been based upon general equilibrium theory with steady 

flows of resources into the economic system and flows of wastes out of the system. The policies 

that result from such worldviews generally attempt to regulate systems to reduce variability and 

thereby maximize output (Ludwig, 1996). However, as we shall see in the next section, a growing 

number of authors (e.g. Holling, 1995) believe that such policies are ‘doomed’ to fail.     

Despite such concerns, however, the science of natural resource management, during this century, 

has been based on equilibrium ideas, which presume stasis, homeostatic regulation, and stable 

equilibrium points or cycles (Paul-Wostl, 1995, Scoones, 1999). Furthermore, despite the different 

paradigm shifts that has occurred over some millennia, the idea of balance in nature rests in the 

popular and the scientific mindset (Mbatu, 2010). The idea is still the dominant paradigm in the 

world upon which much of environmentalism is based. Indeed, Sullivan (2010) underscored that the 

belief in a “balance in nature” flourishes in our “exploitative and capitalistic culture.”  
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2.4. Critiques of the Conventional Approaches    

Many of the challenges confronting water resources management, such as the Volta River Basin are 

conceptualised based on the assumptions of the prevailing approaches discussed the preceding 

sections. These approaches often direct attention solely on ‘myopic optimisation’ and benefits of 

productivity instead of the ability to enhance long-term sustainable management (Berkes et al., 

2003; Rammel et al., 2007; Liu et al., 2015b). This is particularly prevalent in water resource 

management systems (Simonovic, 2009; Pahl-Wostl et al., 2011,2013; Johnston and Kummu, 2012; 

Johnston and Smakhtin, 2014; Sahin et al., 2016). According to Pahl-Wostl (2012), water systems 

are less amendable to external control. During the past several decades, the science of ecology, 

ecosystem and natural resources management has been changing from a “balance-of-nature 

paradigm” to a “dynamic ecosystem paradigm”, with significant developments in the understanding 

of the inherent complexities and uncertainties (Berkes, 2010). This is triggered by the widespread 

and growing recognition that the current models and practices in resource and environmental 

management are in many cases not leading to sustainability (Simonovic, 2009; Pahl-Wostl et al., 

2013; Liu et al., 2015b; Sahin et al., 2016; Krueger et al., 2016). This is especially the case for the 

growing numbers of poor people in the developing world. Some scholars point this to human ‘short-

sightedness and greed’, and questioned whether resources could ever be managed in a sustainable 

manner (Ludwig et al., 1993).   

One critique emphasised that such approaches had failed to see environmental systems as part of a 

larger socio-economic and political context and hence ignored the crucial role of the key drivers 

that were not environmental in nature (Berkes and Folke, 1998; Walker et al., 2012). Others 

attribute it to the general failure of science to recognise the linkages between disciplines (e.g. 

systems) through the persistent endorsement of silo approaches (Pollard and du Toit, 2011; Sahin et 

al., 2016). Yet, the increasing majority, attribute this to the application of conventional scientific 

method based on a Linear-Newtonian model/normal science paradigm to inform management, 

regardless of changes in the socio-economic, political and natural environment (Berkes, 2010; 

Pollard and du Toit, 2011; Schlüter et al., 2012). As a result, conventional natural resource models 

have come under scrutiny and sustained criticism in recent years (e.g., Berkes, 2010). In this 

section, I review the range of critical literature that have developed to challenge those conventional 

notions of ‘natural resources’ management’, practice and research as advanced by several scholars.   

One of the leading critics of the conventional models has come from Canadian ecologist, Crawford 

Stanley Holling. In his numerous of assessment of natural and managed behaviour of ecological 

systems, (Holling, 1987, 1994); Holling (1995) used a series of real-world examples to demonstrate 

how management activities based on command-and-control strategy and equilibrium centred 
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approach have led to unintended problems for both natural ecosystems and human well-being in the 

form of declining resources, social and economic conflicts, and losses of biodiversity. He provided 

several examples of this pathology in resources management. They include; the salmon fisheries in 

North America; and the conversion of the semi-arid savanna ecosystem to productive cattle grazing 

lands in the Sahel zone of Africa, southern and East Africa, the southern USA, northern India and 

Australia. In many of his studies, Holling demonstrated successful, but narrow attempts to manage 

and control ecological variables (e.g., pests, water quantity, and animal populations) have always 

led to less resilient ecosystems, more inflexible management institutions and more helpless 

societies. In place of command and control approaches, he advocated that adaptive management, 

which combines experimentation and integrated, flexible policies in a learning perspective will 

enable us to escape this pathology.  In their subsequent commentary, Holling and Meffe (1996) 

conclude that much of the traditional paradigm for managing resource and environmental systems 

may be contributing to problems, rather than the solutions.  

Within the context of water and agricultural systems Bawden (1991) argued that “the language of 

reductionism and positivism” does not sit comfortably with the complex and dynamic processes 

connected to the search for sustainable management. He asserts that much of the advancements 

made in terms of agricultural production in many parts of the world is simply being attained at the 

expense of long-term degradation of its biophysical and socio-cultural environments. Born and 

Sonzogni (1995, p.168) also note that management approaches of this type are mostly reactive, 

disjointed, and far narrow or limited purpose with ineffectual or unsatisfactory, often undesired, 

management outcomes.”  Consequently, Bawden (1991) went on to suggest the rejection of the ‘old 

paradigm’ of agricultural science for the new – “a paradigm that can accommodate complexity, 

uncertainty, and even chaos, both as aspects of the world itself and of the way we humans construe 

meanings of it” (p. 2363). In addition, Bawden proposed “a shift in thinking from the influence of 

the Age of Productivity to that of the new Age of Persistence” (p. 2363).  

During the past decade or so, the literature broadens significantly, with an increasing number of 

researchers joining in the criticism of the prevailing approaches, This reinforced the debate and the 

push for an alternative paradigm or way of thinking. For example, in his critical review of the old 

models, Berkes (2010, p.13) argued that the traditional methods of natural resources management 

are “problematic”, and possibly, outdated, due to the “baggage’ they carry” or their historical 

background. He contends that the term ‘management’, which brings with it the domination of 

nature, efficiency, social-ecological simplification, and expert-knows-best, command-and-control 

strategies, needs be revised and attention laid on ecosystem stewardship (p.34). He emphasised that 

such a shift is required to deal with complex adaptive systems, characterised by cross-scale effects, 
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self-organization, non-linear behaviour and threshold effects.  In this sense, there is the need to re-

conceptualise the management of natural resource systems and a system-based approach offers the 

best alternative, because of its ability to embrace continual change, and maintain capacity for 

renewal in dynamic environment rather than focus on stable states (Gunderson, 2003; Berkes, 2003, 

2010).   

Du-Toit et al. (2003) on their part challenged the significance of these models that have permeated 

agricultural practice and development in South Africa. They assert that such approaches, 

characteristics of the “modernity project”, and based on the methods of Newton’s empiricism and 

Descartes rationalism, will not achieve sustainable living, owing to their rigidity and complete 

disregard for change, which an important phenomenon in human society (p. 6). A similar line of 

argument is provided by Thompson and Scoones (2009). Explicitly, they criticised the dominant 

perspective in conventional agriculture and development programmes, which assume a stable and 

an almost indeterminately, resilient environment, where resource flow may be controlled, and 

nature would return to an equilibrium state once human stressors are eliminated. In their view, such 

static, equilibrium-centred perspectives do not offer sufficient understanding into the dynamic 

nature of food and water systems, particularly in a time of global economic and environmental 

change, in which factors such as population growth, climate change, land use change shifts all 

impact on the livelihood of people in the developing world. They attributed this to the inability of 

such ‘modernist’ strategies to address “complexity, diversity, uncertainty and non-equilibrium 

states.” To achieve long-term sustainability especially in developing countries, they concurred with 

Berkes et al. (2003) and Smit and Wandel (2006) and proposed a change policy strategy that aims to 

maintain the usual way of doing things, to embrace analytical approaches and practices that enhance 

the capacity of food and water systems to respond to change and uncertainties (Thompson and 

Scoones, 2009).  

Indeed, uncertainties and related mechanism (feedbacks) are inherent in many natural resource 

systems. This makes it a challenge to understand the behaviour of natural systems as advocated by 

the conventional models. As many authors (e.g., Fulton et al., 2011; Levin et al., 2013; Schluter et 

al., 2014) have pointed out, ‘system uncertainties’ and ‘decision stakes’ are significantly higher, 

thus, approaches derived from an assumed capacity to predict probabilistic responses to the 

management of exogenous processes such as climate change offer limited solutions. Uncertainty, 

however, does not operate as a source of unwanted conflict between scientists, policy-makers and 

citizens. Rather, it becomes a crucial aspect of the process as a vehicle for gaining insight into 

complexity, which produces information necessary for theory development, experimentation and 

decision-making that may not have been part of the original thought (Frame and Brown, 2008). 
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Nevertheless, Gallopin et al. (2001) stressed that fundamental uncertainty is manifesting numerous 

ways: by our limited understanding of human and environmental processes; by the “intrinsic 

indeterminism” regarding the complex dynamical systems (concerning natural, human-made, and 

human constituents; and by a broad range of human choices and goals. In their view, it is, therefore, 

not coincident that in several important cases, the very success of the traditional 

“compartmentalised” approaches have led to the exacerbation of the environmental and 

development problems they addressed. In this sense, they argue that the prevailing mindset is 

showing critical limitations with regards to environmental and socio-economic sustainability. From 

this perspective, Walker et al. (2002) contend that these types of uncertainty hamper the value of 

approaches necessary for scientific inquiry and management of developing regions and societies. 

Consequently, Walker et al. suggested that we shift attention on trying "control" these uncertainties 

to a focus on “learning” to live within systems. 

Learning is understood to be a social process where engagement, communication, and dialogue 

offer the platform for reflecting on and responding to feedback in a manner that is open to change 

and that ensures creative and innovative responses to an ever-evolving environment (Pollard et al., 

2009). Moreover, a system that can experience events, reflect on them, and therefore, learn, is 

implied to be responsive and capable of adapting to changes that are inherently part of complex 

systems” (Pollard et al., 2009, p. 21). Further, Walker (2005) underlined that “current best 

practice”, employed in many parts of the world to manage environmental systems are not 

sustainable, because they are leading to unintended and unwelcome results. He advanced that the 

prevailing paradigm for resource use and development is still dictated by the command-and-control 

approach (deterministic and viewing natural systems as highly controllable) that presaged the initial 

advancement of the contemporary methods of natural resources management. Pointing to the case in 

the Goulburn-Broken (G-B) catchment in Australia’s Murray-Darling Basin, Walker concludes that 

“the mindset of the early developers of agriculture in the region was one of command-and-control 

philosophy” (p.78).   

Indeed, the Murray-Darling Basin is, probably, a typical example of Australia’s natural resource 

management problem, as the management approach has resulted in 95% of its river basins being 

degraded (Gell et al., 2009). The Murray lakes and lagoons are also under severe stressed, due to a 

plethora of socio-economic and environmental drivers of change (Dearing et al., 2010). 

Consequently, Walker (2005, p.79) concluded that command-and-control approach to management 

that has been used to address sustainable development issues in the region and around the world is 

problematic because four flawed assumptions:  (1) too much attention placed on average conditions 

(instead of extreme events), fixed (and short) time frames and fixed spatial scales (instead of 
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multiple nested levels; (2) a belief that challenges from different sectors in these systems do not 

interact, when in fact interacting sectors are a key feature of their dynamics; (3) an expectation that 

change will be incremental and linear, when it is frequently non-linear and often lurching; (4) an 

assumption that getting the system into, and then keeping it in, some particular state will maximise 

yield (broadly speaking) from the resource base, indefinitely; there is, however, no sustainable 

“optimal” state of an ecosystem, a social system, or the world; it is an unattainable goal.” In his 

view, the major challenge to addressing the situation is to reorient the thinking of the policy-makers 

and managers, which he claims to have been conditioned to work towards finding ‘partial 

solutions’. However, incomplete solutions, he stressed, do not last. He concludes that the 

complexity and dynamics of environmental system preclude deterministic policies and advocates 

for more integrated approach, which assume that social-ecological systems behave as complex 

adaptive systems with alternate system regimes. A complementary perspective to this critique is 

provided by Allison and Hobbs (2006) who suggest that the inability various attempts to find 

solutions to the persistent problem of increasing salinity in the Western Australia agricultural region 

are due in large part to a failure to adopt an epistemology based on post-normal science paradigm. 

They maintained that natural resource degradation in the region was considered as a problem for 

science, far removed from its socio-economic and historical context.     

Another criticism levelled at the conventional approaches comes from Mayumi and Giampietro 

(2006) and Ludwig (2001). According to Mayumi and Giampietro (2006), there will always be 

‘non-equivalent descriptive domains and non-reducible models’, indeterminacy, multiple 

causations, and an open and expanding information space. These factors provide insights into the 

numerous shortcomings that the experts are unable to predict. They conclude that the role of science 

for sustainability should be about participation and mutual learning rather than making blueprints. 

Remarkably, Ludwig (2001) arrives at the same conclusion, but stressed the limitations with respect 

to expert knowledge in environmental problem solving. He emphasised that the current 

environmental problems (e.g., climate change and biodiversity loss), cannot be solved by 

conventional management, unless there is a fundamental shift in approaches. Because ‘there are no 

experts in problematic issues, neither can there be any Ludwig (2001, p.763) proposed a revaluation 

of our existing thinking, which have remained unchallenged: ‘economism’ (i.e., attaching excessive 

importance to economic values as compared to others); ‘scientism’ (understanding that science is 

distinctively capable of unravelling virtually every societal problem), and “technocracy” (i.e., 

believe that policy solutions can be accomplished by relying exclusively on technological 

innovation). Given that many of our complex environmental problems are ‘wicked problems’ he 

claims that period of traditional management approach has come to an end. Consequently, he 
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concludes that issues, such as ethics and environmental justice were vitally important, and should be 

moved to the forefront, and a different type of management approach, grounded on “learning” be 

promoted.     

Others, however, turn their attention to addressing the inherent weaknesses in existing models, 

because they do more harm to environmental systems than good.  For example, Meppem and 

Bourke (1999) content that conventional conceptualisation of environmental challenges has 

remained a largely discipline based endeavour that has relied on abstracting the environmental 

issues from their real-world complexities. They note that dominance of these approaches such as 

‘instrumental rationalism’ has led to a sustained increase in environmental degradation in spite 

widespread political and social interest in its abatement. For instance, Winz et al. (2009) argued that 

managing natural resources by command and control reduces natural variation in ecological 

systems, and results in the loss of biodiversity, declined natural resources, and socioeconomic strife. 

They conclude that systems thinking and participatory system dynamics offers the best 

methodology to adequately solving these problems.    

Against the backdrop of the preceding discussion, three key points are worth pointing out. First, 

there is seem to be ample evidence and growing agreement that the current models in resources and 

environmental management are inconsistent with dynamics and complexity in those systems, 

including problems in river basin systems, such as the ones under study here. Second, the foregoing 

advancements suggest that the challenges inherent in natural resource management systems are not 

purely ‘scientific or technical issues’, but are embedded in our insufficient understanding of the link 

between biophysical, social, and economic components of ecosystems. Third, and more essentially, 

many of the voices in the review are advocating for a paradigm shift from the conventional thinking 

to a considerably a different way of thinking that embraces complexity, feedbacks, non-linear 

dynamics. This, they believe, can help achieve long-term sustainable goals.  

More specifically, the paradigm shift is associated with viewing and conceptualising the world as a 

coupled social-ecological system (e.g., Berkes and Folke, 1998; Berkes et al., 2003; Redman et al., 

2004; Folke et al., 2005; Schlüter et al., 2014) or linked human-environmental system (e.g., Turner 

et al., 2003; Steffen et al., 2005; Liu et al., 2007; Scholz et al., 2011; Scholz, 2011) in which people 

and nature or biophysical and socio-economic factors generally interrelate at different spatio-

temporal and functional in a resilient and sustained fashion. In sum, the approach is linked with 

seeing environmental issues as complex and systemic problems, which require the adoption of 

systems thinking or system-based approach to solving them. As Young and Steffen (2009, p.306) 

underlined, “once we shift our paradigmatic perspective to recognise that nature system is a 
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complex and dynamic social-ecological system, it is evident that we need to think regarding 

coupled systems in which change is large-scale, often non-linear, frequently fast, and sometimes 

irreversible”. This recognition is not exclusively an academic or theoretical matter, but also 

warrants the reconsideration of the role of natural resource managers in the design and 

implementation of sustainable development policies and practices. It further necessitates the 

interaction of different disciplinary approaches as part of a broader quest to develop an integrated 

understanding of human-environmental interaction (Wilson and Bryant, 1997; Welsh et al., 2013; 

Liu et al., 2015b) towards the long-term goal of sustainable development of water resources 

systems, such as the Volta River basin, which is the focus of this study.  

 

2.5. Concluding Remarks 

 

In this chapter, the different viewpoints, approaches, and strategies that characterise the 

conventional way of thinking in managing natural resource management systems are reviewed. 

They include linear-reductionist thinking, command-and-control management strategy, and the 

equilibrium centred approach. Most of these traditional approaches stressed equilibrium, stability 

and reductionist method. They have arisen in the mould of the mechanistic world view prevalent in 

classical physics. The chapter then reviewed a few critiques launched against such approaches 

within the context of natural resources management. Most the literature have criticised the old 

approaches for applying a ‘one-size-fits-all’ or ‘quick-fix’ solutions to complex human-environment 

phenomena as they do not consider the non-linear dynamic, uncertainty, and complexity of natural 

and human-dominated systems. Many contend that they have produced an array of knowledge, but 

insufficient understanding of the complexities in natural resources management systems.   

These developments called for the adoption of a new and novel scientific and theoretical approach 

to studying and understanding such complexities and dynamics inherent in natural resource 

systems. Accordingly, this study advocates and adopts a systems thinking approach, which 

emphasises holistic analysis and understanding of complex social-ecological systems such as the 

Volta River basin water resources system. In the next chapter, the systems thinking or systems-

based approach is introduced, thoroughly reviewed, and subsequently, proposed as the conceptual 

and theoretical base for this study. 
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CHAPTER 3: A CONTEMPORARY APPROACH FOR NATURAL RESOURCES 

MANAGEMENT AND THE RESEARCH – A SYSTEMS-BASED APPROACH  

 

3.1. Introduction   

As demonstrated in the previous chapter, conventional approaches to researching and managing 

natural resource and environmental systems, founded on simple linear and reductionist, normal 

science paradigm are inadequate in dealing with the uncertainties, complexities and dynamics 

inherent in such systems. Thus, to address the research objectives as outlined in chapter 1, this 

research advocates for an alternative or contemporary approach that shifts the emphasis away from 

these static and approaches towards an approach that deals with complex dynamic open systems. 

This kind of thinking or approach is conceptually depicted in Figure 3.1 below.  

 

 

 

Moving from the conventional kinds of thinking to a contemporary thinking necessitates alternative 

frameworks and theories to guide the choice of an appropriate analytical focus and tools (Hinkel et 

al., 2014; McGinnis and Ostrom, 2014). According to McGinnis and Ostrom (2014), frameworks 

tend to organise diagnostic, descriptive, and prescriptive investigation.  A framework is thus, useful 

Figure 3.1: Different ways of thinking: (a) Linear causal thinking; (b) Non-linear causal thinking; causal states and 

causal relationships are denoted by words and arrows, respectively. Double bars indicate presence of time delay 

(Adapted from Sterman, 2000) 
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in providing a common suit of potentially relevant variables and their subcomponents to be used in 

the design of data collection instruments, the conduct of fieldwork, and the analysis of findings 

about the sustainability of complex social-ecological systems (Ostrom, 2009).  A theory, by 

contrast, posits specific causal relationships among the essential variables (McGinnis and Ostrom, 

2014). Thus, frameworks and theories help structure problems, organise information visually, and 

mathematically represent relationships among important system variables, and simulate the 

interactions of system variables over time (Stave, 2015).   

 

Thus, in this chapter, a systems-based approach is proposed as the alternative method of thinking, 

since it is more suitable in dealing with the complex dynamics of the real world (Senge, 1990; 

Sterman, 2000). Specifically, two system-based approaches – the Social-ecological system 

framework (SESF) and complex systems thinking theory, respectively constitute the analytical 

framework and theoretical foundation on which this study is based. SESF provides a frame to 

identify the key drivers of change and their dynamic characteristics relevant to the Volta River 

basin. Systems thinking, on the other hand, provided the theoretical base, tools and methods to 

investigate and model the interaction and relationship between the main drivers, issues, processes 

and impacts. Before proceeding to discuss the scientific underpinnings of these approaches, it is 

vital to make clear, the meaning of the term “system”. Following this, the perspective of system-

based approach, along with SESF and systems thinking theory are introduced and discussed. An 

essential aspect of this study is to explore and identify those important factors and processes that 

drive change and create unsustainable management problems within the Volta River basin (the 

drivers of change). Accordingly, this chapter concludes with a definition and clarification of the 

term ‘drivers of change’ in relation to sustainable natural resources management.   

 

3.2. Understanding the Term ‘System’   

Following Voinov (2008, p. 6), “a system is a combination of parts that interact and produce some 

new quality because of their interaction.”  Similarly, Ewert et al. (2009) delineated that a ‘system is 

typically made of elements, borders, relationships between elements and other systems’. Likewise, 

Brown et al. (2010) delineate a system simply as “a set of related parts forming a dynamic whole” 

(p.302). Systems are everywhere. In fact, the earth is made of interconnected systems. Systemic 

issues manifest every specialised knowledge areas dealing with specific problems (Rousseau, 

2014). So, we often talk casually about, a social system, a political system, a production system, a 

distribution system, an educational system, agricultural system, and water resource system. Each of 

these systems consists of several parts interrelating in a meaningful manner, to enable the system, 
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presumably to play its critical role (Barlas, 2007). In dynamical terms, Walker et al. (2012) 

explained that a system is characterised by its state variables, and it is the relationships between 

those variables. Thus, in system analysis the emphasis is usually on the relationship between the 

system components, rather than on specific individual parts and investigating them separately 

(Darnhofer et al., 2012; Rousseau, 2014). It places emphasises on “interaction, entanglement, 

dependencies, exchange, connections, relationships, and co-evolution” (Darnhofer et al., 2012).   

 

From the above definitions, three important features of a system can be deduced: (1) systems are 

made of parts or elements, (2) the parts interact and (3) something new is produced from the 

interaction. The assemblies of interrelating and co-dependent elements connected by exchanges of 

energy, matter, and information flow (Costanza, 1996; Barlas, 2007; Voinov, 2008). According to 

Proust and Newell (2006), to optimise system performance, it is necessary to optimise the way that 

the parts interact. The pattern of interactions or connections between the constituent elements gives 

rise to larger wholes (Manson, 2001; Biggs et al., 2010; Collins and Ison, 2010). Thus, words such 

as ‘wholes’ and ‘interconnected’ usually spring to mind with respect to systems (Maani and 

Cavana, 2007). Further, Chen and Stroup (1993), a system may be described as social, biological 

physical or symbolic; or it consists of a combination these aspects. The whole-system idea that 

everything is associated with everything else pervades environmental thought (Stave, 2015). This 

idea has, subsequently, resulted in the development of a system-based/systems thinking approaches 

to unravel the inherent complexities therein. It, therefore, follows that the Volta River Basin is a 

kind of a system, which warrants the application of systems-based approaches to understand it 

better, and move towards sustainable development. 

 

3.3. Systems-Based Approach 

Systems approach is a paradigm concerned with systems and the interrelations among their 

components (Simonovic, 2009). A systems approach assumes that most of our thinking, 

experiencing, practices, and institutions are interrelated and interconnected (Senge, 1990; Laszlo 

and Krippner, 1998). It, therefore, offers a conceptual framework to understand the dynamics these 

relationships. A systems approach is essential to address the decision makers’ requirements to gain 

an insight into the working system, compare the consequences between alternative scenarios, 

evaluate trade-offs between decisions, ask “What if?” questions, avoid the development or transfer 

of problems in terms of finding answers to the challenge in question, implement plans based on 

future monitoring of the system, and address unanticipated impacts (Laniak et al., 2013). The 

approach has unearthed innovative developments in studies in water resource management systems 
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(Simonovic, 2009). A system based approach has led to fundamental discoveries and sustainability 

actions that are not possible by using conventional disciplinary, reductionist, and 

compartmentalised approaches (Liu et al., 2015b). Indeed, within the confines of water resource 

management, many scholars have argued that it is difficult to address the empirical question in 

sustainable development without taking systems thinking perspective (Mirchi et al., 2012; Pahl-

Wostl et al., 2011; Pahl-Wostl et al., 2012; Simonovic, 2009; Welsh et al., 2013).   

 

3.3.1 Social-Ecological System Framework  

Until a few decades ago, the disciplinary division of labour and entrenched theoretical assumptions 

had been restricted to a situation whereby social (human) and the natural environment are 

investigated independently, so that human-environment interaction appears to be an afterthought 

and a topic for analysis at some distant point in the future (Berkes et al., 2003; Widlok et al., 2012; 

Liu et al., 2015b). However, global sustainability challenges have led to the realisation that most 

natural resource systems embedded in the planetary system, are made of complex, interconnected 

social, economic, and environmental subsystems (Cornell et al., 2012; Liu et al., 2015b; Steffen et 

al., 2015). The characteristic of the linkage between the social and environmental components is 

such that, it is difficult to separate the social component from the biophysical components. This is 

because these components continually interact and co-evolve overtime, impacting on each other. 

Further, uncertainty concerning the interconnections and feedbacks between the natural and 

anthropological drivers of environmental change that probably function at diverse spatial and 

temporal levels, makes it challenging for humankind to find the best solutions to sustainable 

livelihoods development (Rounsevell et al., 2010). Uncertainty usually range from insufficient 

knowledge in relation to the decision-making process of societies, to how future benefits are 

accounted, to how people learn, or from the processes that are considered crucial for the changing 

aspects of natural resources (e.g., the reproduction and development of natural resources) (Schlüter 

et al., 2014).   

Consequently, there is a widely-held view that ecosystems and natural resource management 

systems, in general, should be conceived as coupled social-ecological system (SES) (Berkes et al., 

2003; Liu et al., 2007; Ostrom, 2009) or linked human-environmental (H-E) system (Scholz et al., 

2011; Scholz, 2011; Turner et al., 2003). This notion of coupled social-ecological system arose 

from the understanding of the complexity of human–nature interactions in pursuit of both human 

well-being and global sustainability (Alberti et al., 2011; Costanza et al., 2014; Liu et al., 2015b). In 

linked human and natural systems, people and nature interrelate mutually, which leads to the 
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formation of complex feedback loops (Liu et al., 2007). The disciplinary origin of the SESF can be 

traced to social sciences, specifically, to theories such as collective choice, common-pool resources, 

and natural resources management, while the human-environmental system framework (HESF) can 

be tracked back to systems science, decision theory, game theory, and sustainability science (Binder 

et al., 2013). Generally, these frameworks are based on the premise that that human and nature are 

inevitably interdependent and should be viewed upon as integrated social–ecological systems (SES) 

(Berkes et al., 2003; Liu et al., 2007). Unlike the traditional approaches (discussed in chapter 2), 

which often study and manage the social and natural dimension of complex natural resource 

systems, these frameworks consider the complex interrelationships and feedback between social and 

environmental dimensions and analyse simultaneously (Liu et al., 2007; Binder et al., 2013; Liu et 

al., 2015b).  

 

The SESF was originally developed for application in a relatively distinct area of common-pool 

resource management situations in which resource users extract resource units from a resource 

system (McGinnis and Ostrom, 2014). Over time, it has grown to inform thinking about adapting to 

global environmental change (Foran et al., 2014) and ecology. The SESF and HESF share similar 

features and are often used interchangeably. Thus, for the purposes of this study, the SESF is used, 

since it is formulated to treat the social and ecological systems and their dynamics is equal depth 

(Berkes et al., 2003; Scholz, 2011; Binder et al., 2013).  

        

However, a noteworthy feature of all coupled SES systems is that they co-evolved through time and 

space as complex adaptive systems (Levin, 1998; Levin et al., 2013), with resource managers a 

pivotal part of the co-evolution (Walker et al., 2002; Norberg and Cumming, 2008). As complex 

adaptive systems, they differ from simple systems, in that, they exhibit certain characteristics, 

including dynamism, unpredictability and uncertainty, non-linearity, emergence, scale, self-

organisation, and feedback mechanisms (Levin, 1998; Berkes et al., 2003; Folke, 2006; Norberg 

and Cumming, 2008; Levin et al., 2013; Bohensky et al., 2015). Coupled SES may be water 

resource systems, fisheries, pastures, forest ecosystem system, agri-food system, or urban systems. 

This study views the Volta river basin as a typical coupled SES, and accordingly, adopts the Social-

Ecological system framework (SESF) to provide an integrated analysis leading to a better 

understanding of the system processes (biophysical, socio-economic), their interrelationships, and 

feedback processes.   

 

Like most SESs, around the world, the Volta River basin is a tightly coupled system, meaning that 

the Social (Human) systems are deeply embedded in natural ecosystems (the environmental 
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system). The actors (e.g., farmers, policy makers) within the system interrelate profoundly with 

each other and with the physical environment (e.g., water and forest resources, and the landscape in 

general). The basin is considered a complex adaptive SES system due to the presence and pressure 

of uncontrollable variables and multiple drivers of change, such as climate change, chronic water 

stress, land use change, population growth, and technological change, which are unpredictable. 

These challenges are usually non-linear in character, cross-scale in space and time and dynamic in 

nature (Thompson and Scoones, 2009; Levin et al., 2013).  

The dynamic nature and presence of a non-linearity implies that the cause-effect relationships 

between variables are not proportional (Barlas, 2007). Instead, interactions result in an emergent 

characteristics and behaviours of the system holistically. Nevertheless, the basin is conceived to be 

adaptive and evolving system in response to the changing endogenous and exogenous pressures 

(Folke and Gunderson, 2006; Schlüter et al., 2014). Furthermore, the basin is self-organising, 

implying that minor, random disturbances are increased and developed through the system’s 

feedback structure, resulting in patterns and behaviours in space and time (Liu et al., 2007; Sterman, 

2012). The presence of these characteristics make it difficult for investigators to offer the 

understandings required to make better decisions concerning the management of complex 

ecological–economic systems (Costanza and Ruth, 1998; Levin et al., 2013; Liu et al., 2015b). 

Tackling these challenges means conceptualising the basin as a complex system, with a 

concentration on gaining an understanding into the system dynamics and critical feedback processes 

governing those dynamics.     

Binder et al. (2013) have provided an important insight into how the social-ecological systems and 

associated dynamics are conceptualised. The social system is comprised of resource users (actors) 

and the governance system, which impacts on the actions of the users by establishing rules, as well 

as monitoring and sanctioning mechanisms. The ecological system, on the other hand, is 

conceptualised from an anthropocentric standpoint as resource system (e.g., water, forest, and 

corresponding resource units, e.g., water quantity, tree). In terms of its treatment of the system 

dynamics, the social system is conceptualised textually by several variables, including “information 

sharing,” “deliberation processes,” and “self-organization activities” categorised under the label 

“interaction.” Dynamics in the ecological system are reflected by a suit of variables, such as natural 

language descriptions of the resource system and resource units, including growth rate, equilibrium 

properties, and productivity. The framework is explicit; for example, in addressing how 

combinations of multiple socio-economic and ecological (or biophysical) variables jointly affect 

sustainable outcomes in complex settings (Binder et al., 2013; Epstein et al., 2013; Schlüter et al., 

2014).  
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The basic elements of any SES framework used in any empirical analysis are variables (Hinkel et 

al., 2014), also termed drivers of change (Nelson et al., 2006) or driving forces (Geist and Lambin, 

2001, 2002). Thus, the SES framework supports the development of models in that it provides: (a) a 

clear quest for the important variables (or drivers) from both the ecological and social perspectives; 

and (b) a systematic and comprehensive mechanism of thinking (Schlüter et al., 2014). Also, it 

offers a framework for selecting the variables required to explain the dynamics in the social and 

environmental systems and the interaction between them, and recommends the possible variable for 

specific evaluation (Binder et al., 2013). The drivers of coupled SESs manifest and interact at 

diverse hierarchical scales (proximate vs. underlying) and at various spatial scales (local, regional, 

national, global) and temporal scales (Kittinger et al., 2012). According to Hinkel et al. (2014) 

whenever empirical analysis encompasses many variables, as in typically the case for SESs, it is 

usually imperative to organise the variables according to their meaning. In this light, this study 

modified and used the Social-Ecological System framework developed by Chapin et al. (2006) and 

updated in Carpenter et al. (2009) (see Figure 3.2), as a guide for the detailed investigation of 

drivers of change, trend and impacts within the Volta River Basin, since it organised the various 

variables and drivers according to their types and dynamic characteristics.  

 

By framing the Volta River basin as a coupled SES, this study ultimately contributes to a research 

perspective that integrates human agency and environmental factors in a single explanatory model 

(Widlok et al., 2012). Despite the paramount value of the SESF to study coupled SESs like the 

Volta River Basin, it does not provide specific tools to model the relationship between the key 

system variables, particularly the dynamic feedback mechanisms that is produced because of the 

complex interactions between the system variables. Therefore, systems thinking theory that comes 

with its concomitant modelling tools is used as a complementary theory in this study.    
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Figure 3.2. Conceptual framework for integrated analysis of coupled social-ecological systems, high linking key issues 

of space and time scales, social-ecological interactions, dynamics of individual actors and institutional responses 

(Modified from Carpenter et al., 2009).   

 

3.3.2. Complex Systems Thinking   

The idea of complex systems thinking can be traced back to Ludwig von Bertalabffy’s General 

System Theory (GST) (Von Bertalanffy, 1969), and Ervin Laszlo’s notion of systems philosophy 

(Laszlo, 1972). The main contribution of the GST is the concept of ‘system’, which as stated earlier 

emphasises internal relations.  GST has been proposed as a foundation for the unification of science 

and subsequently used as one of the major tools guiding the design of large interdisciplinary 

systems. It draws upon other concepts from new science emerging over the past decades, for 

example, catastrophe theory, network theory, cybernetics, fractal theory, chaos and complexity 

theory, non-equilibrium thermodynamics and self-organisation, and Jaynesian information theory 

(Kay et al., 1999; Rousseau, 2014). Systems theory is also synonymous with complexity theory, 
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which preceded the idea of complex adaptive systems (Norberg and Cumming, 2008). The complex 

adaptive system theory offers a new lens for how to match the behaviour of individual agents with 

social objectives (Levin et al., 2013.p.117).  

 

Complexity theory has been developed with insights from fields such as physics, genetic biology, 

and computer science (An, 2012). Collectively, these theories are described as “systems sciences or 

‘systemics” (Bunge, 1979, p.1). Terms such as system, emergence, dynamic, nonlinear, feedback, 

adaptive, and hierarchy are the hallmark of these theories. The systems sciences encompass various 

types of mechanisms or dynamical states (e.g., feedback or integration or equilibrium) that play the 

role of maintaining the wholeness, capability, and stability of systems (Rousseau, 2014). As stated 

before, because systems are part of every subject domain, the systems science framework offers 

formal framework that can be applied in different scientific disciplines. Generic systems studies 

have influenced systemic thinking on sustainable development issues (Darnhofer et al., 2012). 

Indeed, it is well established that overcoming sustainability problems such as climate change, 

deforestation, and depletion of fossil fuels to overexploited fisheries, species extinction, and poisons 

in our food and water require the development of systems thinking (Senge et al., 2008; Sterman, 

2012).  

 

The notion of system thinking was proposed to move away from the simplistic dichotomy of pure 

basic vs. applied research and identify science that could overlap these two viewpoints. It usually 

seeks to integrate both the fundamental knowledge and utilisation of such knowledge, but does not 

replace the need for pure basic or applied research. According to Richardson (2011), systems 

thinking is conceived as the mental effort to uncover endogenous sources of system behaviour. 

Also, Richmond (1994, p.6) explained: “systems thinking is the art and science of making reliable 

inferences about behaviour by developing an increasingly deep understanding of underlying 

structure.”  Richmond (1993) argues that “doing good systems thinking means operating on at least 

seven thinking tracks simultaneously.” These tracks are dynamic thinking, closed-loop thinking, 

generic thinking, structural thinking, operational thinking, continuum thinking and scientific 

thinking. Also, Barton and Haslett (2007) underscored that understanding systems thinking is 

bewildered with a wide range of dichotomies each focusing on a particular dimension of systems 

thinking. These include wholes vs. parts, soft vs. hard systems, open vs.closed systems, synthesis 

vs. analysis, holism vs. reductionism, and organismic vs. mechanistic. Systems thinking approach 

has played a crucial role in traditional science since the 1950s (Barton and Haslett, 2007; Sterman, 

2012).   
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The idea of system thinking has the most natural connection to the notion of ‘holism’ or ‘holistic 

thinking’. Holistic thinking may be described as a science of integration (Thompson et al., 2007; 

Thompson and Scoones, 2009). Integration as espoused by Jakeman and Letcher (2003) and 

explored further by Kelly et al. (2013) may consists of: integrated treatment of issues; integration 

with stakeholders; integration of disciplines; integration of processes; and integration of scales of 

consideration. Consistent with this, Sterman (2000, 2012) describes systems thinking as the ability 

to take a ‘holistic’ view of the world as a complex system. However, a fundamental feature of 

complex systems thinking is that it rejects the assumptions of linear-reductionist approaches of the 

traditional scientific method, often viewed as ineffective to address the complex problems and 

interrelationships found in natural resource management (Costanza, 1996; Hjorth and Bagheri, 

2006; Pollard and du Toit, 2011).   

Proponents of systems thinking believe that to understand the nature of persistent system problems 

we face today, linear and mechanistic thinking must be discarded for non-linear and organic 

thinking, generally referred to as systems thinking (Hjorth and Bagheri, 2006, p.79). Systems 

thinking provides a multidisciplinary “framework for seeing interrelationships rather than things, 

for seeing patterns of change rather than static snapshots” (Senge, 1990). As Maani and Cavana 

(2007, p.2) explained, “system thinking provides an alternative approach to thinking based on the 

notion of wholes and of interrelationships. It handles unseen complexity, ambiguity and mental 

models. It provides tools and techniques to uncover complexity and develop long-term solutions to 

persistent problems. It emphasises holistic understanding of the problem under study, with attention 

laid on the interactions among the sub-systems governing overall system behaviour (Cavana and 

Adams, 2010). Thus, as compared to the linear cause-effect relationship or reductionist techniques, 

systems thinking recognise that the interaction between different elements or entities can lead to a 

positive or negative outcome for the system (Senge, 1990).  

The principle of systems thinking further recognises that a cause can produce more than one 

outcome (multifinality), while a multitude of causes can also generate an identical effect 

(equifinality) (Mebratu, 2001). By so doing, it lays emphasises on macro-level processes, including 

feedback mechanisms that can intensify changes leading to a significant or abrupt shifts in the 

relevant systems (Young et al., 2006). The approach also enables participatory modelling, and 

analysis of the system’s behavioural trends, essential to the sustainable management of natural 

resources (Vennix, 1996; Mirchi et al., 2012). Systems thinking offers methods and tools for 

applying non-linear causal thinking to environmental problem solving (Mirchi et al., 2012).   
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For the purposes of this study, systems thinking refers specifically to the conceptualization, 

development, and use of system dynamics models (Kelly, 1998). Dynamic models can serve as 

useful tools to explore social-ecological interactions (Binder et al., 2013; Levin et al., 2013; 

Schlüter et al., 2014) at a variety of settings and scales. Schlüter et al. (2014) defined “a dynamic 

model is defined as a formal, theory- or empirically based, simplified mechanistic representation of 

the structure and processes of a real-world entity considered relevant to answer a particular question 

about the development of the system over time.” Through mathematical analysis or simulating 

interconnections between the social and ecological systems, dynamic models enable the analysis of 

the impacts of important social-ecological feedbacks for management and sustainability (Schlüter et 

al., 2014). Importantly, the advent of computer-based modelling has assisted modellers and model 

users in terms of the selection the best modelling approach and tools to analyse and formulate 

problems, and accordingly make decisions about sustainability issues with stakeholders, which can 

then drive alternative solution (Bosch et al., 2007).  

Conventional modelling approaches that have been variously used to develop models in complex 

SES systems include: systems dynamics (Forrester, 1958), Bayesian networks (Varis, 2002; Varis 

and Kuikka, 1999), coupled component models (Delden et al., 2007), agent-based models (Moss et 

al., 2001), and knowledge-based models (or expert systems).  Kelly et al. (2013) have noted five 

distinctive purposes of using these modelling approaches, including prediction, forecasting, 

management and decision-making under uncertainty, social learning, and for developing 

understanding/experimentation. New knowledge of system dynamics and predictability has arisen 

from the investigation of complex systems, and is developing innovative tools for modelling social-

ecological systems (Costanza, 1996; Costanza et al., 2014). In this study, the system dynamic 

modelling approach is used as it is well suited for facilitating learning and a shared understanding 

about complex problems in environmental/natural resources systems. This method and how it was 

applied is described in the methodology chapters 6 and 7.        

 

3.4. Defining and Understanding Drivers of Change 

One of the aims of this study is to identify the key drivers and processes within the Volta system 

and use the information to build a conceptual and system dynamics simulation model that captures 

their interactions and feedback processes. However, the process of how one might do this is not that 

clear. Indeed, the first step in system dynamics modelling is the identification of the key issues and 

variables in the system whose behaviour over time defines the problem (Forrester, 1961; Sterman, 

2000; Stave, 2003). Accordingly, it is important to define what this study means by drivers of 

change.    
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Over the past decade or so, a significant amount of work has emerged over the issue of drivers of 

system change (Walker et al., 2012). The definition of a driver is aptly captured in two well-known 

frameworks – the Drivers-Pressures-State-Impact-Response (DPSIR) framework (Rapport and 

Friend, 1979); and the Millennium Ecosystem Assessment (MA) framework (MA, 2003, 2005). 

Within the DPSIR framework drivers are the underlying sources of environmental change that are 

exogenous to the system or region (e.g., climate and socio-economic change, national and 

international policy) (MA, 2005). They represent either the past, present or future conditions that 

lead to changes in the environment (Rounsevell et al., 2010). However, Tzanopoulos et al. (2013) 

argued that the usage of the term pressures in the framework seems to connote an implicit value and 

places the emphasis on the negative impacts of human activity on environmental systems. Another 

noted limitation of the DPSIR framework is the dearth of constancy concerning its application to 

address environmental problems (Maxim et al., 2009; Rounsevell et al., 2010). According to Maxim 

et al. (2009.p.13), the DPSIR framework appears as “a deterministic and linear ‘causal’ description 

of environmental problems, which certainly overlooks the complexity of the environmental and 

socio-economic systems.”   

Thus, the definition of a driver captured in the Millennium Ecosystem Assessment framework 

appears to be one of the broadest and most widely used. In the MA framework, “a driver is any 

factor that changes an aspect of an ecosystem” (MA, 2003, 2005, p.32). Different types of drivers 

are also distinguished in the framework: ‘direct’, and ‘indirect drivers’ of change. A ‘direct driver’ 

unequivocally influences ecosystem processes. ‘Direct drivers’ are predominantly physical, 

chemical, and biological, such as climate change, land cover change, air and water pollution, 

irrigation, use of fertilisers, harvesting, and the introduction of invasive alien species. An ‘indirect 

driver’ on the other hand, operates more diffusely, by changing one or more direct drivers. These 

are mainly demographic, economic, socio-political, scientific and technological, and cultural and 

religious factors. ‘Drivers’ within the DPSIR framework are comparable to the ‘indirect drivers’ in 

the MA framework, while ‘pressures’ correspond to the ‘direct drivers’ of the MA (Rounsevell et 

al., 2010; Tzanopoulos et al., 2013). ‘Direct’ and ‘indirect drivers’ can be respectively be 

considered as proximate causes and underlying driving forces, according to Geist and Lambin 

(2001, 2002). Regarding scale, proximate causes is seen to operate directly at the local level, while, 

underlying driving forces may manifest directly at the local scale, or indirectly, from the national or 

even global scale (Geist and Lambin, 2001). The categorisation of drivers based on the scale at 

which they operate has also been espoused (Hazell and Wood, 2008). However, the distinction 

between ‘direct’ and ‘indirect drivers’ may be difficult to delineate in some cases. For example, 
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demographic variables can, for example, be direct drivers, but also represent underlying drivers 

(population growth) (Kolb et al., 2013).   

In several other studies, the factors or drivers of change in most ecosystems have also been 

variously characterised as ‘exogenous controls’, ‘slow’ changing variables and ‘fast’ changing 

variables (Carpenter and Turner, 2000; Gunderson and Holling, 2002; Gunderson et al., 2002; 

Walker et al., 2006; Chapin et al., 2009; Huber-Sannwald et al., 2012) or ‘slower-acting’, long-term 

drivers of change and ‘fast-acting’, short term drivers of change (Msangi and Rosegrant, 2011). 

Exogenous controls are external factors such as regional climate or biota and global market 

conditions that strongly influence the properties of a system (Chapin et al., 2009).  Critical ‘slow’ 

changing variables or processes are factors, such as population growth; income growth, soil fertility, 

household capital wealth among others, tend to act rather slowly and gradually over a lengthy time, 

and evolve in a somewhat predictable manner with impacts in the long-time period (Carpenter and 

Turner, 2000; Msangi and Rosegrant, 2011). In contrast, fast-moving variables or drivers of change 

(e.g. droughts, floods, rainfall variability, soil water content, crop yield, household disposable 

income, disease and pest outbreaks etc.) are variables that change very rapidly and might have 

influence on the agricultural system in the short time period (Fernandez et al., 2002; 

Huber‐Sannwald et al., 2006; Msangi and Rosegrant, 2011). Slow moving variables within natural 

resources systems greatly influence fast changing variables at the same spatial scale (Chapin et al., 

2009).  

In this study, the MA definition of drivers of change is used as it offers a flexible definition and 

analysis of drivers (Tzanopoulos et al., 2013). Thus, all types of drivers: direct, indirect, exogenous, 

endogenous, fast and slow moving drivers or variables from both biophysical and socio-economic 

domains are considered, since most coupled social-environmental systems are not only affected by 

one individual driver, but rather a combination of different types of drivers at multiple scales 

(Chapin et al., 2009; Young and Steffen, 2009; Huber-Sannwald et al., 2012). “Drivers” are 

sometimes referred to as “variables”. Thus, the two terms are used interchangeably. The focus here 

is to investigate how these drivers change over time and influence the sustainability of the Volta 

River basin, particularly water availability and sustainable agricultural development.   

 

3.5. Concluding Remarks 

In this chapter, the theoretical and conceptual framework comprising; social-ecological system 

framework and complex systems thinking theory used for the study are discussed. The terms system 

and drivers of change are also discussed in relation to this study. Together, these approaches 
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provide a novel framework for investigating and analysing the Volta River Basin water resources 

system in an integrated and holistic manner, and, as such, do not focus on a comprehensive 

understanding of individual elements, but on how important aspects contribute to the understanding 

of the dynamics of the whole system and the impact of the system feedback structure on policy 

interventions. In the next chapter, the overall research methodology is outlined and discussed.   
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CHAPTER 4: THE RESEARCH METHODOLOGY  

 

4.1. Introduction 

This chapter explores the general research design framework as a broad orientation to the conduct 

of the research. As Rodela et al. (2012) underlined, “a journey through methodological choices 

gains specific relevance when it is accompanied by a reflection on practices of knowledge 

production and validation.” Accordingly, the chapter provides detailed information on the 

philosophical foundations, methodological approaches, research methods, the tools and methods of 

data collection and analysis that would be employed to address the research aim and objectives, as 

outlined in chapter 1. The overarching concern is that the approach chosen should be grounded in 

the philosophical worldviews and rigorous in its operationalization in the pursuit of the goal, 

recognising that a wide range of considerations and details go into the process of conducting a 

research.  

To this end, the chapter is structured into six main sections. It begins by discussing the main 

elements of a research design framework in section 4.2, focusing on how the research 

philosophies/paradigms and methodology, research strategies and methods work together to form 

the research study. In section 4.3, the framework is used to propose the overall research 

methodological framework for the overall study. Thus, the case for a mixed-methods approach is 

proposed, resulting in three-tiered research methods chosen to address each research objective. 

These include the use of structured expert judgement technique, participatory modelling based on 

casual loop modelling, and system dynamics simulation modelling approach. Also, the justifications 

and rationale for adopting these research methods are incorporated into the discussion. Section 4.6 

summarises the chapter and concludes the discussions.  

     

4.2. Elements of a Research Design Framework 

Research design involves ‘the process that one can follow to find answers to the research questions’ 

(Hassan and Ghauri, 2014). Over the past few decades, many research design and methodological 

frameworks have evolved, integrating a variety of impacts and the contemporary scientific 

knowledge. Several research textbooks and articles suggest that these approaches have become 

increasingly complex and pluralistic (Sarantakos, 2005; Johnson et al., 2007; Morgan, 2007; 

Bryman, 2012). The complex nature of the research design process is often shown in well-

constructed designs, which ultimately, provide the standards and principles of research practice 
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(Sarantakos, 2005). These developments are spurred on by the changing social and economic 

conditions and the advent of computer technologies in the 21st century. The issues further raise 

questions in relation to known empirical evidence, which, in turn, reveal particular expectations, 

concerning: (1) the protocols that guide knowledge construction; and (2) validation (i.e., what is 

considered as evidence) in the processes (Rodela et al., 2012). To assist with the design of an 

appropriate research strategy to address the aims and objectives of this study, Creswell (2009) and 

(Greene, 2006) research design frameworks provide a useful guide.  

Creswell (2009, p.5) suggested that three important components must be explored in the design of a 

research strategy. These comprise: (1) philosophical assumptions concerning knowledge claims 

(described here as methodological paradigm); (2) general procedures of research – that is strategies 

of inquiry (described here as research strategies); and (3) the detailed procedures for data 

collection, analyses and writing – that is methods (interpreted here as research methods). Figure 4.1 

illustrates this framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Greene (2006) offered a similar framework, but took it a step further. Greene proposed a design 

strategy, which she labelled Mixed-Methods Social Inquiry. Greene decomposed the mixed methods 

social inquiry or mixed methods methodology (broadly viewed) into four interconnecting, but 
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Figure 4.1: A Framework for Research Design - The Interconnection of Worldviews, Strategies of Inquiry, and 

Research Methods (Adapted from Creswell, 2009, p.5) 
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nevertheless conceptually distinctive realms: (a) philosophical assumptions and stances (i.e., what 

are the basic philosophical or epistemological assumptions of the methodology?); (b) inquiry logics 

(i.e., what traditionally is called “methodology”, and refers to broad inquiry purposes and questions, 

logic, quality standards, writing forms that guide the researcher’s “gaze”), (c) guidelines for 

practice (i.e., detailed actions and tools employed to carry out the research; “the how to” part of 

research methodology): and (d) socio-political commitments (i.e., interests, commitments, and 

power relations surrounding the location in society in which an inquiry is situated)”. In the sections 

that follow, the elements of these frameworks and their underlying assumptions are reviewed and 

discussed. The overarching research plan for this study, based on these frameworks is, 

consequently, proposed.    

 

4.2.1. Research Philosophy and Methodological Paradigms 

A research methodology is embedded into issues that are the pillars of the philosophy of science 

beliefs concerning the nature of the world (ontology) and about the nature of social knowledge 

(epistemology) (Greene, 2006, 2008). This perspective also encompasses suppositions related to 

issues, ‘such as objectivity and subjectivity, the role of context and contingency in social knowing, 

and the relationship between the knower and the known’ (Greene, 2006, p.93). There are also issues 

about methodological paradigm, which researchers ought to delineate and clarify.  Methodological 

paradigm consists of the rationale and the philosophical assumptions within which a research is 

carried out (Sarantakos, 2005).  

Traditionally, there are two distinct paradigms for doing research – that is induction and deduction 

(Gill and Johnson, 2010). Deductive research starts with theory development, hypotheses 

articulation, operationalising concepts, data collection and analysis, findings, hypothesis 

confirmation or rejection, and revision of theories. Induction simply reverses the deductive process. 

Specifically, it begins with the ‘data’ (e.g., observing the empirical world), obtaining documentary 

evidence, and then constructs meanings out of the information gathered to develop a theory. There 

are very few research textbooks that have not devoted a whole chapter or a section to the 

distinguishing features of induction and deduction principles. However, the deductive-inductive 

dichotomy is viewed as unhelpful (Layder, 1993), false or even misleading (Tuuli, 2009).  

Thus, the common philosophy of knowledge: ontological (i.e., conception of reality) and 

epistemological (i.e., what should be regarded as knowledge) and their underling viewpoints 

(Bryman and Bell, 2003) offers an appropriate frame for espousing the philosophical assumptions 

that guide various research designs (Neuman, 2011; Tuuli, 2009). According to Neuman (2011), all 
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scientific research is founded on assumptions and principles from these two areas whether a 

researcher acknowledges them. Neuman (2011) viewed ontology as a research philosophy that deals 

with the nature of being, or what exists; the area of philosophy that asks what reality is and its 

fundamental categories. Epistemology, on the other hand, entails the construction of knowledge, 

with emphasis on “how we know what we know or what are the most valid ways to reach truth.” 

Methodology encompasses “the process of how we seek out new knowledge, the principles of the 

inquiry and how the inquiry should proceed” (Schwandt, 2007, p. 190). These principles influence 

how researchers answer research questions in terms of the legitimacy of knowledge (qualitative vs. 

quantitative, etc.), the legitimacy of methods to produce knowledge (experimentation, induction, 

hypothesis testing, etc.), and the assumptions embedded in certain conceptualisations of the object 

of inquiry and specific methodologies that follow (Miller et al., 2008). These distinctions are 

illustrated in Table 4.1.   

Table 4.1: Philosophical foundations of Research (Adapted from Sarantokos, 2005, p. 32) 

 Deals with 

Ontology The nature of reality 

ASK: what is the nature of reality?  

   Is it objective (out there), constructed, subjective?  

OR BETTER: What does research focus on?  

Epistemology The nature of knowledge 

ASKs: How do we know what we know? 

   What is the way in which reality is known to us? 

OR BETTER: What kind of knowledge is research looking for? 

Methodology The nature of research design and method 

ASKS: How do we gain knowledge about the world? 

OR BETTER: How is research constructed and conducted? 

Research The execution of research designs 

  

There is an established consensus that research should be carried out under a paradigmatic 

framework (Sarantokos, 2005; Creswell, 2009). Consequently, ontological, epistemological, and 

methodological concepts of social science research are further ‘packaged’ in paradigms, which 

guide daily research inquiry (Sarantokos, 2005). However, paradigms are rarely discussed in most 

research texts and some research works, and when they do, they are given different prominence and 

sometimes conflicting definitions. In some research articles and textbooks, paradigms are 

articulated at the beginning of the text with research design subsequently (e.g., Denzin and Lincoln, 

2011; Robson, 2011).  Others, however, may make only an ephemeral reference to paradigms at a 

much later stage or make no mention of it at all (Mackenzie and Knipe, 2006).  

In chapter 2 of this study, a scientific paradigm was broadly explained as researchers’ beliefs 

concerning as they produce knowledge, particularly as it relates to the area of natural science 

studies, as argued by Kuhn (1962/1970). With regards to the conduct of a social science research, a 

plethora of definitions of paradigms can be gleaned from the scientific literature. Morgan (2007, p. 
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49) argued “for a version of paradigms as systems of beliefs and practices that influence how 

researchers select both the questions they study and methods that they use to study them.” Paradigm 

is a general framework for theory and research that encompass basic assumptions, important issues, 

models of quality research, and methods for finding solutions (Neuman, 2011). Patton (2002) 

referred to paradigms as guidelines for rational thought concerning research design, measurement, 

analysis, and personal participation. Guba and Lincoln (1994) on the other hand, explained a 

paradigm as a collection of basic beliefs that must be incorporated to explain the relationship 

between variables. Thus, paradigms provide researchers with the needed assumptions and principles 

to select the suitable methods and techniques to conduct a research.  

Several methodological paradigms are also delineated in the literature, including positivist (and 

post-positivist), constructivist, interpretivist, transformative, emancipatory, critical realism, 

pragmatism, deconstructivist, advocacy and participatory worldviews (see Mackenzie and Knipe, 

2006; Creswell, 2009; Denzin and Lincoln 2005, 2011). Each of these has developed its own 

principles, assumptions, and methodology (Denzin and Lincoln, 2011). Most importantly, the 

capacity to focus on these other belief systems provide the needed justification for the different 

types of research questions and the application of different types of methods to address those 

questions (Morgan, 2007). In what follows, some commonly cited paradigms in research are briefly 

discussed.  

Positivist (post-positivist paradigm): Although positivist/post-positivism or so-called realist-

positivist have been discussed together in some texts (e.g., Mackenzie and Knipe, 2006), two 

paradigms differ slightly (Denzin and Lincoln, 2011). Positivism paradigm assumes that reality 

exists independently of a human observer, and that through scientific research, we can build 

objective, real knowledge (generalisation) about reality (Creswell, 2009; Denzin and Lincoln, 

2011). This worldview is also known as scientific methods for doing scientific research (Cresswell, 

2009). As scientific methods, they generally seek to test a theory or explain an experience 

(Mackenzie and Knipe, 2006) "through observation and measurement or to predict and control 

forces that surround us" (O'Leary, 2004, p.5). Conventional evaluation criteria such as internal and 

external validity are stressed (Denzin and Lincoln, 2011). 

Post-positivist perspective is usually linked to ‘hard science’, which develops hypothesis and tests 

them with repeatable and quantifiable experiments. Practitioners of ‘hard’ science, many of whom 

are natural scientists are trained to believe that the world they seek to understand has an 

independent truth that they are discovering in their studies (Douthwaite et al., 2003). Indeed, its 

proponents assume that once they know external factors, individual reasoning simply follows a 
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deterministic, machine-like rational logic of decision making (Neuman, 2005). In fact, the 

principles underlying this perspective run parallel to the linear reductionist approach discussed 

earlier in chapter 2. It is reductionist in the sense that the goal is to reduce the phenomena into 

small, discrete sets of ideas to be tested, such as the variables that encompass hypothesis and 

research questions (Cresswell, 2009). It, therefore, directs attention to ‘standardization (i.e., 

attaining objectivity through the removal of personal judgment) and replicability (made possible in 

part by standardized and reproducible methods) (Williams and Patterson, 2007). Rigorous and 

quantitative analysis, and control over variables are the foundation of the associated the scientific 

methods, with the overall goal of generalisation of the research findings (Rodela et al., 2012). Pure 

positivism is gradually giving way to post-positivist perspective, which assumes that reality does 

exist, but that it can never be fully understood, although it can be approximated (Denzin and 

Lincoln, 2003; Robson, 2002). Post-positivism rests on several methods as a means of incorporating 

as much reality it can handle (Denzin and Lincoln, 2003). The conventional methods employed by 

positivist or post-positivist researchers are experimental, quasi-experimental, and survey designs.        

Interpretivist/Constructivist paradigm: Interpretivist/Constructivist paradigm: The paradigms 

interpretivism and social constructivism share similar beliefs and as are often combined and 

discussed in some texts (Mertens, 2005; Denzin and Lincoln, 2011). Their goal is to foster 

understanding of the real world rather than on prediction and positive verification. Denzin and 

Lincoln (2005) are two well-known scholars who have made important contributions to 

constructivist research approaches. The central assumption of the interpretativist and constructivists 

paradigm is that there is “in practice neither objective reality nor objective truth in the world” 

(Sarantakos, 2005, p.13). Rather, reality or knowledge is socially constructed (Denzin and Lincoln, 

2005; Sarantakos, 2005), hence, instead of testing assumptions, the researcher serves as an observer 

looking to identify the different interpretations available, and to gain an insight regarding how these 

shape one another, and the object of interest (Rodela et al., 2012, p.17). According to Sarantakos 

(2005), constructing reality imply making accounts of the world around us and gaining 

understandings through culturally defined and historically situated interpretations and personal 

experiences. Sarantakos (2005) maintained that the fundamental process that facilitates construction 

and reconstruction is interpretation (p. 39). The overall goal of a constructivist’s researcher is how 

to mentally grasp and reveal the explanations that different people have concerning the issue. 

Typical research methods employed include ethnography, grounded theory, hermeneutics, empirical 

phenomenological research, participatory research and so forth. Quantitative data may be employed 

in a manner, which assists or deepens the description of qualitative information (Mackenzie and 

Knipe, 2006).  
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Critical Research Paradigm: As compared to interpretative research, critical research, tries to 

engage in naturalistic inquiry (i.e., the study of subjects or objects in their natural environment), and 

often combine interventions in the design of the study, such as participatory workshops (Rodela et 

al., 2012).   

Pragmatic Worldview:  Pragmatists subscribes to the idea that the research question should inform 

the method(s) used, with the understanding that ‘epistemological purity does not get research done’ 

(Onwuegbuzie and Leech, 2005). Like post-positivism, pragmatic paradigm is based on actions, 

conditions, and consequences instead of past conditions (Cresswell, 2009). Its proponents believe 

that quantitative techniques cannot be considered positivist, neither can qualitative approaches be 

viewed as hermeneutic (Refsgaard et al., 2007; Robson, 2011). As such, pragmatists advocate 

combining methods within a single study (Creswell, 2003). From this perspective, pragmatism 

liberates the researcher from any mental and practical limitations imposed by the “forced choice” 

distinction between post-positivism and constructivism (Creswell and Clark, 2007, p.27). Within 

this paradigm, the research question is paramount and the appropriate data collection and analysis 

techniques are selected to illuminate on the problem with no philosophical allegiance to any other 

research paradigm (Mackenzie and Knipe, 2006). It recommends “eclecticism and pluralism” – 

meaning that different, even conflicting, theories and perspectives can be important; observation, 

experience and experiments are appropriate forms of gaining and understanding the world and the 

people in it (Robson, 2011). Pragmatism works without a method or methods and does not 

discriminate against others; neither does it expect to find consistent causal relations or truths, on the 

contrary, it seeks to investigate a question, theory, or situation using the best research method 

(Feilzer, 2010).  

Advocacy and participatory worldview: Advocacy/participatory worldview perspective of science 

was popularised in the 1980s from people who believe that post-positivist principles imposed 

structural laws and theories that did not benefit marginalised communities in society or problems of 

social justice that needed to be tackled (Creswell, 2009). Like qualitative research, participatory 

research places strong emphasis on contextual techniques in order gather qualitative data, with due 

regards to local knowledge, and “ensures local ownership and control of data collection and 

analysis” (Chambers, 1997). This type of “ownership and control” is aimed at providing the 

opportunity for local communities to pursue their own solutions to their problems. Participatory 

research basically uses different types of participatory techniques to explain problems in a context 

to outsiders (while considering ethical issues concerning the behaviour, transparency and 

ownership) (Garbarino and Holland, 2009). In addition, advocacy/participatory worldview argue 

that research study must not be pursued without political considerations (Creswell, 2009). In doing 
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this, stakeholder participation in research changes from passive to active. Participatory approaches 

produce qualitative as well as quantitative information. Participatory numbers may be derived and 

applied in the context, but have also been taken to scale, most particularly by participatory surveys 

or by a combination of group-based scoring and ranking activities. Recent calls to blend qualitative 

methods with quantitative techniques have strongly advocated a pragmatist philosophy (Morgan, 

2007; Creswell, 2009).     

Post-normal science: A “post-normal” approach to research tends to be issue-driven, policy 

relevant, trans-disciplinary and emphasises “issue improvement”. With regards to the later issues, 

most modern post-normal researchers deploy action research in their investigations. This implies 

that the researcher is not confined to a disciplinary area; instead he/she transient boundaries in 

collaboration with stakeholders in the problem definition, co-learning, knowledge co-production 

and validation (Rodela et al., 2012). The researcher is exposed to, and recognises the value of 

different ways of knowing and knowledge that can be used during the research process (Rodela et 

al., 2012). From this perspective, the post-normal science perspective shares the same characteristic 

as the advocacy and participatory worldview (discussed above).  

Although the above discussion has shown many paradigms, the scientific paradigms that are mostly 

used in most research are primarily the positivism/post-positivism and constructivism/interpretivism 

perspectives (Creswell and Clark, 2007). Further, even though these paradigms or worldviews 

appear to have different features in several important aspects, the notions of 

interpretative/constructivism, pragmatism, critical, advocacy and participatory worldview and post-

normal) tend to have the same characteristics.  As acknowledged by many researchers, (e.g., 

Lincoln et al., 2011; Rodela et al., 2012), they are underpinned by the assumption they diverse 

explanations of reality (co)exists, and consider qualitative data and case studies rather than 

hypothesis than can be tested to make generalisations.     

The instrumentalist paradigm: The instrumentalist paradigm: The instrumentalist paradigm, it is 

often presented as anti-realist position, although this is not always the case (Boven, 2009). Within 

this paradigm, models are only considered as necessary tools to explore complex systems, without 

making any “realist” claims (Boven, 2009). It is based on the notion that all scientific theories of the 

past have turned out to be wrong; hence, it is reasonable to assume that prevailing theories will also 

prove to be false (Boven, 2009; Kleindorfer et al., 1998). Instrumentalist paradigm holds that, the 

general propositions of a scientific theory or a simulation model are relegated to the role of 

convenient arrangements (i.e., instruments) that are used to order our observations (Kleindorfer et 
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al., 1998). Instrumentalism is therefore considered to be the engineering view of environmental 

modelling (Boven, 2009).   

To summarise from the above discussions, it is imperative to understand the relationship between 

‘research philosophy or assumptions’, ‘research methodology’ and research methods. Research 

philosophy or assumptions are statements of things that we cannot directly observe or empirically 

evaluate (Neuman, 2011). They are basically starting point of any inquiry. Generally, a 

methodology will develop, either implicitly or explicitly, based on a paradigm with its associated 

philosophical principles (Mingers and Brocklesby, 1997). The role philosophical assumptions are, 

therefore, to inform methodologies about the nature of knowledge, or about what is regarded as fact 

and where knowledge is to be sought. Methodologies, following these instructions, prepare 

‘packages’ of appropriate research designs, to be used by researchers, directing to the specific focus 

their research activity, and how to recognise and extract knowledge. Thus, research methodology 

rests on these assumptions (i.e., the foundation of ontology and epistemology), which, in turn, 

guides the selection of research designs and instruments (Neuman, 2011; Sarantakos, 2005).  

A methodology is, therefore, more than just methods. But many methods sections in much text see 

it as such. A method is the set of techniques or tools with which data is collected, and as with any 

tool, methods must be chosen for their ability to address a research question or questions (Boyd et 

al., 2004; Sarantakos, 2005; Bryman, 2012). A technique is an action that has a well-thought 

objective purpose within the methodological framework (Mingers and Brocklesby, 1997). Methods 

are, however, not passive instruments. They – and the specific logic with which they are 

implemented – provide a structure on empirical systems that have significant implications for the 

nature of the empirical test (Williams and Patterson, 2007). Therefore, one needs to apply the study 

of methodology to relate problems in epistemology or ontology – the philosophical assumptions – 

with issues in research design (i.e., methods and techniques) – rather than separating our thoughts 

about the nature of knowledge from our efforts to produce it (Morgan, 2007). For example, in this 

case study of the Volta River Basin, different methods and strategies were deployed to address the 

research objectives, as outlined in Chapter 1.     

 

4.2.2. Research Strategies and Methods  

The various methodological paradigms and philosophies explored in the above sections, would 

suggest different research strategies/approaches or methods. Generally, two basic research strategies 

– qualitative and qualitative strategies – have traditionally been used in most research. 

Consequently, a substantial discussion in research texts has concentrated on distinguishing 
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qualitative research from the quantitative technique (Morgan, 2007). Recently, mixed-methods 

research strategy (Johnson and Onwuegbuzie, 2004; Creswell, 2009) or methodological pluralism 

(Dow, 1997; Norgaard, 1989) have emerged as a third major alternative. Indeed, Johnson et al. 

(2007) claimed that the research community is currently in "a three methodological or research 

paradigm world, with quantitative, qualitative, and mixed methods research all thriving and 

coexisting.” Thus, strategies for designing and conducting research will, therefore, vary depending 

on whether it takes the quantitative, qualitative or mixed-methods route (Neuman, 2005). The 

important differences between the two research strategies are detailed in the sections that follow.    

 

4.2.2.1. Quantitative Research Approaches and Methods 

McLafferty et al. (2010, p.46) define quantitative research as that which primarily involves 

quantifiable, numeric data and the use of statistics.” Hence quantitative approach refers to research 

designs that involve numerical and objective measurements usually to address questions that 

hypothesize relationships among variables. The primary aim of this research strategy is to observe 

accurately and captures details of the empirical world and express what has been found in numbers. 

The research design is “pre-specified” at the beginning of the research (Robson, 2011). Thus, a 

quantitative research, usually proceeds as a deductive process – that is, in a straightforward 

sequence – first conceptualization, next operationalization, and then application of the operational 

definition or the collection of data (Neuman, 2005). Quantitative research therefore rigorously links 

abstract ideas to a measurement of procedures that can produce precise information in the form of 

numbers (p. 204). Objectivity, standardisation (for the sake of control and accuracy), and 

generalisation of findings are the primary aim (Robson, 2011). Regarding research philosophy, the 

quantitative research is grounded in the positivist paradigm, a realist/objectivist ontology or the  

empiricist epistemology (Sarantakos, 2005). Quantitative research is further catigorised into 

experimental and survey research.  

Experiments are also classified into true/classical experiments and quasi-experiments.  However, 

the high level of control needed to assure internal validity often results in very restrictive conditions 

which make true experiments appear artificial, and thus, lacks external validity. In some 

circumstances (e.g., evaluation of some social programme or policy), random assignment of 

subjects to treatment and control groups is not always possible as the treatment group is a ‘given’. 

Nevertheless, experimentation today is highly complemented by well-defined procedures of 

randomization, statistical control, and statistical analyses (Greene, 2006).  

Surveys can take several forms and can include a written questionnaire, which the respondent self-



 

63 
 

completes or self-administered by the researcher using face-to-face or a telephone methods. Survey 

method offers a high amount of data standardisation (Robson, 2011) and provides for transparency 

and repeatability (O'Leary et al., 2009; Kappel et al., 2012). Moreover, questionnaire method is 

simple, quick and allowed us to make a direct and meaningful comparison between the technical 

(scientific) and local knowledge sources. However, surveys have several limitations, including: (1) 

the researcher not knowing what he/she wants; (2) poor construct validity of measures and; (3) poor 

external validity when biased samples are used (Mitchell and Jolley, 2001). Robson (2011) also 

talked about the possibility of social desirability response bias – that is people responding in a 

manner that portrays them in good light. These drawbacks can, however, be handled through careful 

planning and design of the survey instrument (Robson, 2011).   

 

4.2.2.2. Qualitative Research Approaches and Methods 

Qualitative research emerged because of a reformist movement in the 1970s. Although an accurate 

definition is somewhat ambiguous (Denzin and Lincoln, 2005), McLafferty et al. (2010, p.46) 

define qualitative research methods simply as “those approaches that primarily involve the use of 

non-numeric data, expressed and analysed in words.” Compared to the quantitative approach, 

qualitative methods consist of research designs that explore the meaning, interpretation and the 

construction of social reality using data mainly in the form of words and ideas rather than numbers. 

The attention is on inductive logic, meanings, and on the natural context which the research is being 

conducted (Denzin and Lincoln, 2011; Robson, 2011, Bryman, 2012). Thus, objectivity and 

generalizability is not sought; rather, the social world is viewed as a creation of the people involved 

(Robson, 2011). Qualitative research belongs to the constructionist/interpretivist epistemology 

research paradigm (Sarantakos, 2005; Denzin and Lincoln 2005, 2011). A wide array of qualitative 

research techniques has been identified in the literature. For instance, Wolcott (2001) identified 19 

of such approaches, while Tesch (1990) identified 28. However, the widely discussed and used 

techniques include: interviewing, participant observation, analysis of documents, ethnography 

study, phenomenology, hermeneutic, case study, and grounded theory study (see Creswell, 2009; 

McLafferty et al., 2010; Denzin and Lincoln, 2011; Bryman, 2012; Robson, 2011).      

 

4.2.3. Mixed Methods Research Strategy  

Johnson et al. (2007, p.129) defined mixed-methods research broaly as a “research paradigm that 

(a) partners with the philosophy of pragmatism in one of its forms (left, right, middle); (b) follows 

the logic of mixed methods research (including the logic of the fundamental principle and any other 
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useful logics imported from qualitative or quantitative research that are helpful for producing 

defensible and usable research findings); (c) relies on qualitative and quantitative viewpoints, data 

collection, analysis, and inference techniques combined, in accordance with the logic of mixed 

methods research to address one’s research question(s); and (d) is cognisant, appreciative, and 

inclusive of local and broader socio-political realities, resources, and needs.”  Cresswell (2003) 

defined mixed-methods research is a research design (or methodology) in which the researcher 

collects, analyzes, and mixes (integrates or connects) both quantitative and qualitative data in a 

single study or a multiphase programme of inquiry. Mixed methods as a research strategy is rooted 

in the pragmatism paradigm (Johnson et al., 2007; Greene, 2008). McLafferty and Onwuegbuzie 

(2006) have attempted to offer a type of mixed methods, contingency theory by proposing a 

structural framework that allows for the combination of quantitative and qualitative research 

strategies and, by extension, provides a philosophical based for mixed methods research. Under 

their framework, the quantitative and qualitative research paradigms are no longer dichotomous—

rather, they are structurally distinct. A continuum of mixed-methods research strategy is illustrated 

in Figure 4.2.   

 

 

Figure 4.2: integration of the three major research paradigms, including sub-types of mixed research methods (Adapted 

from Johnson et al., 2007, p.124)  

The part around the center of the continuum, equal status, is the area of focus anyone who sees 

himself/herself as a mixed methods researcher. Such researchers believe that qualitative and 

quantitative data and approaches provide deeper understanding as one considers most, if not all, 

research questions (Johnson et al., 2007).  
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4.3. Towards a Research Plan and Design for this Study 

The issues reviewed above, suggest that the paradigm debate has changed considerably. Indeed, the 

focus has shifted to methodological suitability, rather than orthodoxy, methodological originality, 

instead of rigid adherence to a paradigm, and methodological flexibility, rather than conventionality 

to a narrow set of principles (Patton, 1997, p. 295). In this light, to design an appropriate research 

strategy for this study, three questions epitomised below were addressed following Creswell’s 

(2009), Greene (2006), and Tuuli (2009) research frameworks:   

a) What knowledge claims are being made? (e.g., objectivism/realism, subjectivism, etc.)  

b) What strategies of inquiry are required? (e.g., positivism/quantitative, 

interpretivism/qualitative, etc.) 

c) What methods of data collection and analyses are appropriate? (e.g., interviews, surveys, 

focus groups, modelling, etc.)  

By addressing these questions, a clear research plan emerged and underscored the intertwined 

nature of the methodological paradigm herein, adopted (i.e., the philosophical assumptions that 

underpin the study-the why and what) and the resulting research methods (i.e., the tools and 

techniques for gathering and analysing the data-the how) required to implement the research. The 

question of knowledge claim involved addressing the assumptions relating to how to learn and what 

will be learned during the inquiry (i.e. philosophical assumptions). This required being explicit 

about claims of what knowledge is (ontology), how we know it (epistemology), what values go into 

it (praxiology) and how to express it (rhetoric), enabling the processes of studying it (methodology) 

to be clearly and appropriately articulated (Creswell, 1994).  

Given the complex and open nature of the Volta River Basin, as well as the growing complexity of 

the problems currently faced by decision-makers, it is apparent that a single mode of inquiry will 

not be sufficient to investigate the research aim and objectives outlined in this study (see Chapter 

1). It is, therefore, essentially a question of blending different philosophies/paradigms, 

epistemologies, research methods, and strategies so that all aspects of the research problem would 

be adequately addressed. Accordingly, this research was grounded in what (Beven, 2002) described 

as pragmatic realism as its underlying philosophical foundation or methodological paradigm. This 

paradigm combines elements of instrumentalism, relativism, logical empiricism (or logical 

positivism), verificationism, critical rationalism, Bayesianism, and pragmatism, while allowing the 

realist perspective that underlies much of the research and practice of environmental modelling as a 

central aim (Beven, 2002, 2009).  Indeed, pragmatic realism is consistent with the relativist/holistic 

philosophy of science, which underlie the paradigm of systems thinking and system dynamics 

modelling approach (Sterman, 1984; Forrester, 1968; Barlas and Carpenter, 1990; Barlas, 1996).  
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The relativist/holistic philosophy view a valid model as one of several potential forms of describing 

a real situation. Barlas and Carpenter (1990, p. 157) sum aptly sum this up: “no particular 

representation is superior to others in any absolute sense, although one could prove to be more 

efficient. No model can claim absolute objectivity, for every model carries with it, the modeler’s 

worldview. Models are neither true nor false, rather, they lie along a continuum of usefulness.”  

Further, combining different paradigms accords well with the notion of epistemological pluralism, 

which states that, in any research situation, there may be several alternative ways of getting to the 

truth, and that considering this multiplicity may result in a more fruitful and effective integrated 

inquiry (Miller et al., 2008). As Liu et al. (2007a) stressed, integrating different 

philosophies/epistemologies provide a complete understanding of complex social-ecological 

systems. Moreover, combining different methodologies allows one to accommodate both scientific 

and indigenous local knowledge that can help one gain deeper insight into complex systems, such as 

the Volta River Basin. 

 In terms of the methods or research strategy, this study combines both qualitative and quantitative 

techniques (i.e., a mixed-methods approach) (Creswell, 2003, 2009, Johnson et al., 2007) was 

deployed.  Qualitative strategy in that unstructured interviews, focus groups and participatory were 

used to elicit the main drivers, factors and process that determine the dynamics of the basin. This 

process allowed for the development of a qualitative/conceptual or dynamic hypothesis capturing 

the feedback structure of the basin. The quantitative aspect of the study is in the process translation 

of the qualitative model into a quantitative simulation model using quantitative parameters and 

graphical integration.  Indeed, the combination of qualitative and quantitative approaches allows the 

drawbacks of one technique to be compensated by the counter-balancing strengths of the other 

(Denzin and Lincoln, 2011), while revealing different empirical truths about the problem being 

studied. The blending of quantitative and qualitative strategies in social research is reinforced by the 

strong argument that theory development necessitates ‘hard’ data for discovery causal relationships 

and ‘soft’ data for elucidation this relationship (Creswell, 2009; Denzin and Lincoln, 2011). The 

combination of both qualitative and quantitative approaches also illustrates a form of 

methodological pluralism in scientific discovery (Olson et al., 2008), which is often applied in an 

array of scales (Dow, 1997; Boyd et al., 2004). Methodological pluralism is also referred to as 

multimethodology (Mingers, 1997) or multistrategy research (Bryman, 2012).    

Methodological pluralism offers several benefits in research designs. Johnson et al. (2007) 

articulated how the combination of various methods can be useful in the research design, data 

collection, and data analysis phases of the research process. From this perspective, Johnson et al. 
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(2007) emphasized that during the data collection phase, quantitative data may be essential in 

providing baseline data and prevent “elite bias.” Also, qualitative information may assist in 

facilitating the entire data collection process. Likewise, at the design phase, qualitative data may 

help the quantitative aspect of the research by serving as an instrument for conceptualization. Also, 

during the data analysis stage, the qualitative data may provide deeper insight on qualitative 

findings, while the quantitative information may help with the generalisation of the study (Johnson 

et al., 2007). In the nutshell, the combination of multiple methodological practices, empirical 

materials, views, and respondent in a single study is best described as an approach that adds rigor, 

breadth, complexity, richness and depth to the research (Denzin and Lincoln, 2000; Flick, 2007), 

which ultimately leads to developing a systemic research approach, with one study method dictating 

the direction and nature of the next (Morse and Chung, 2008).   

Moreover, the case for methodological pluralism or mixed methods research has been advocated by 

many scholars in environmental and natural resource management discipline (e.g, Norgaard, 1989; 

Bellamy et al., 2001; Luzadis et al., 2002; Williams and Patterson, 2007; Olson et al., 2008;  

Gasparatos et al., 2009; Scholz, 2011), particularly as we seek to achieve the objective of integrated 

natural resource management and address the complexity and uncertainty inherent in many 

environmental and water resource management systems. It also accords very well with calls for 

integrated oriented approach (Sayer and Campbell, 2002; Campbell et al., 2006a; Campbell et al., 

2006b; Bellamy et al., 2012) in environmental and natural resource management research. This 

study further attempts to make a stronger case for methodological pluralism in environmental 

management and sustainability assessments, as it supports the reasoning that methodological 

pluralism with all its strengths and weaknesses should be invoked when holistic sustainability 

assessments are needed, and linear reductionist methods are to be complemented (Gasparatos et al., 

2009).   

 

4.4. Selected Methods and Approaches for this Study 

Based on the preceding discussions, it is the contention of this project that the complexity of the 

Volta River Basin requires a multiplicity of different approaches to more fully understand it. Within 

the broader framework of methodological pluralism and mixed-methods strategy adopted here, a 

three-tiered research plan, comprising; structured expert judgement technique, participatory 

modelling based on casual loop modelling (diagramming), and a system dynamics simulation 

modelling approach was adopted. Each method is different in its focus and addressed a specific 

research objective. To recap, the first research objective sought to explore and identify the key 
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biophysical and socio-economic drivers of change within the Volta River Basin system. To 

accomplish this objective, an extensive literature review combined with structured expert judgement 

technique, and interviews were employed. The second objective was formulated to examine the 

interrelationships and feedback-effects among the key biophysical/environmental and socio-

economic processes and drivers of change at the basin scale. Participatory modelling based on 

casual loop modelling – that is Causal Loop Diagrams (CLDs) were used as visualisation and 

analytical system tools to achieve this objective. Finally, the third research objective was designed 

to simulate the dynamics and behaviour of the system over time. To this end, system dynamics 

simulation modelling approach was applied.  

It is important to mention here that because this study took ‘a thesis by publication format’, the 

specific design issues that were considered to address the research aim and associated objectives are 

not provided in this chapter. Rather, they have been detailed in the individual published papers 

enclosed herein (see chapters 5, 6, and 7). This is to avoid unnecessary repetition. Nevertheless, the 

logical, procedural sequence that ensured implemented of the three-pronged research strategy is 

illustrated in Figure 4.3. Following this sequential procedure, the empirical phase of the study 

started with the identification of the dominant drivers of change and processes within the Volta 

River Basin (stage 3).  

This was followed by the development of qualitative/conceptual model (stage 4), based on 

information from stage 3 and the intrinsic mental models of the system stakeholders during a 

participatory modelling workshop. In stage 5, the conceptual model containing the key feedback 

loops was quantified and simulated using historical data obtained during the fieldwork. At the end 

of the sequence of the research process/activities, the results and outputs obtained from these 5 

activities was then compiled, integrated and cross-validated through triangulation in stage (stage 6).  

Although the research process encompassing the various activities is depicted graphically as 

sequential (Figure 4.3), they were, in practice, occurred concurrently or short cycle a few times 

before moving to other activities. In other words, they were pursued in an iterative manner (Winz et 

al., 2009). Therefore, some degree of flexibility was allowed within this sequential procedure. 

Nevertheless, the chart flow (Figure 4.3) with its associated research activities provides an 

opportunity at the end of each step and before starting the next one, to assess what is known and 

what information is missing and should be collected in the next cycle (gap analysis) (McDonagh et 

al., 2008). But it is important to distinguish these stages conceptually for the clarity of the 

methodological process, for the organisation, the coordination of the work and for a systematic 

processing of the research findings (McDonagh et al., 2008). In this way, the methodological 
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framework is systems base, integrative and distinguished from the traditional methodological 

approaches (Bellamy et al., 2001).  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Concluding Remarks 

This chapter presented the overall research methodology and framework for the study. In doing so, 

the philosophical foundations of a research framework are discussed. A three-tiered research 

approach comprised: structured expert judgment technique, participatory modelling based on casual 

loop modelling, and system dynamics simulation modelling approach were employed as the overall 

research framework for the study. These methods and tools adopted here are closely allied to the 

theoretical base of this study (i.e., the systems thinking approach) discussed in chapter 3. The 

Figure 4.3: Sequential Procedure Comprising Major Activities of the Research 
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remainder of the thesis consisting of the individual papers demonstrates how the methods and tools 

selected were applied.     
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Abstract  

 

Understanding the nature and relative importance of various drivers of change is crucial for 

sustainable management of natural resources and in prioritising management efforts, allocating 

limited resources, and understanding cumulative effects. In this paper, we employed structured 

expert judgements approach to identify, characterise, and assess the relative importance of the key 

biophysical and socio-economic drivers of change within the Volta River Basin, West Africa. 

Precipitation variability, water availability, land use change, drought events, and population 

growth were perceived as most important, while biodiversity loss, social conflicts, pest and disease 

occurrence, urbanisation, and pollution were viewed as less critical. A majority of these drivers 

were characterised as “slow” acting processes as compared to rapidly changing drivers. Intra- and 

inter- expert groups agreement were found to be significant and convergent, indicating the 

reliability of the results. The implications of these results for sustainable water resources 

management and agricultural production are discussed.  

 

Key Words: Africa; Agricultural system; coupled human-environmental system; expert judgement; 

expert opinion; environmental change; River basin; water resources system.    

 

 

                                                
1 This chapter (paper I) has been published as: Kotir H.J., Greg Brown, Nadine Marshall & Ron Johnstone 

(2017). Drivers of Change and Sustainability in Linked Social–Ecological Systems: An Analysis in the Volta 

River Basin of Ghana, West Africa, Society & Natural Resources. 
http://dx.doi.org/10.1080/08941920.2017.1290182  
 

mailto:j.kotir@uq.edu.au
http://dx.doi.org/10.1080/08941920.2017.1290182


 

72 
 

5.1. Introduction  

The earth system is undergoing a period of significant, continuous and rapid environmental and 

socio-economic change — a phenomenon described as global change (Steffen et al., 2015). Global 

changes, typically anthropogenic in origin, have become significant and pervasive since the mid-

twentieth century that despite any concerted efforts to minimise them, the planet is committed to a 

trajectory where changes are likely to continue or accelerate in the coming decades (Chapin et al., 

2009). Global change processes manifest through a wide range of driving forces and factors 

generally referred to as drivers of change (Petschel-Held et al., 2005; Chapin et al., 2009; Walker et 

al., 2012). Drivers of change reflect past, present, or future conditions that cause changes to the 

environment (Rounsevell et al., 2010). They range from environmental to socio-economic and from 

slow- to fast-moving, direct to indirect, exogenous to endogenous factors and influence outcomes 

differently in the short and long terms (Chapin et al., 2009; Msangi and Rosegrant, 2011; Walker et 

al., 2012). Drivers of change thus govern the dynamics, resilience and sustainability of most human-

environmental systems (Gunderson and Holling, 2002; Carpenter et al., 2009, Chapin et al., 2009).  

 

In an era of global change, concerted efforts to mobilise scientific information on the various 

drivers and trends, and strategies to manage them have become increasingly important in natural 

resource management systems. One such major effort was the global Millennium Ecosystem 

Assessment (MA, 2005) that provided a comprehensive analysis of the various drivers of change, 

trends, and indicators in ecosystems. More recent studies have examined drivers of change specific 

to agriculture and water resources systems (e.g., Hazell and Wood, 2008; Msangi and Rosegrant, 

2011; van Vliet et al., 2012; Kumar and van Dam, 2013).  However, most of these studies are too 

global in their perspective, or tend to be heavily focused on Europe, North America, and 

Australasia. Far less attention has been given to documenting status and trends of the drivers in arid 

and semi-arid areas in sub-Saharan Africa; despite evidence that Africa is the most vulnerable to the 

impacts of various drivers of change, particularly climate variability (Farley and Farmer, 2013; 

Niang et al., 2014). Moreover, a significant portion of environmental change literature and policies 

focus exclusively on climate as a driver of change (Bennett et al., 2016), yet sustainable 

development calls for integration of biophysical, economic, institutional, political, social, and 

technological issues (Berkes et al., 2003; Carpenter et al., 2009; Chapin et al., 2009).  

 

Further, much of the existing literature on drivers of change has failed to distinguish the slower-

acting, long-term drivers of change from the faster or rapidly changing ones that can have more 

influence in the short-term (Msangi and Rosegrant, 2011; Walker et al., 2012). However, such a 
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distinction is useful, not only in permitting the prioritisation of issues from a policy perspective, but 

also in distinguishing temporary from long-term issues (Msangi and Rosegrant, 2011). Similarly, 

separating rapid internal drivers from “slow” acting drivers is crucial to understanding system 

dynamics, resilience, and sustainability of social-ecological systems (Chapin et al., 2009; Walker et 

al., 2012). There are multiple drivers of change in any social-ecological system making it difficult 

to track their changes and associated impacts. Accordingly, there is a need to understand the relative 

importance of various drivers to prioritize management efforts, allocate limited resources, and 

understand cumulative effects (Chapin et al., 2009; Hall, 2011). As Hall (2011, p.140) emphasised 

‘‘... the relative importance of the various drivers and the pathways through, which they might act 

must be weighed to help prioritize actions.’’   

 

The preceding considerations suggest that our knowledge of drivers of change is incomplete, 

particularly at the river-basin scale in Africa where their impacts are often more pronounced. Yet, 

this knowledge, if well-garnered, can enhance our capacity to design strategies to manage these 

basins sustainably for human well-being as the impacts from global change continue to manifest at 

all scales. This paper aims to explore and analyse the environmental and socio-economic drivers of 

change and processes, with a focus on understanding how such changes influence sustainable 

agriculture development within the Volta River Basin (VRB) of Ghana, West Africa. The specific 

objectives are as follows: (1) to explore and identify the key environmental and socio-economic 

trends, processes, and drivers of change within the VRB of Ghana; (2) to assess and characterise 

those drivers as “slow” or “fast” changing/acting drivers; (3); to indicate the rate of change (i.e., 

trend) in each driver; and (4) to assess the relative importance of such drivers, as they influence 

sustainable agricultural development and water availability in the basin.  

As Kolavalli and Williams (2016) noted, the goal of agricultural policy for the basin since the 1980s 

has been to feed a rapidly growing population and reduce environmental degradation; however, the 

policy has been devoid of a comprehensive analysis of the trends being observed and has not 

responded rapidly enough. Ultimately, this study is intended to enable and better support policy 

decisions associated with sustainable agricultural development and water resource management in 

the semi-arid Volta River basin and other dryland river basins with similar environmental and 

socio-economic characteristics.   

5.1. The Study Area: The Volta River Basin 

The Volta River Basin (VRB) is a transboundary basin, which occupies an area of approximately 

400,000 Km2 and runs across six West African countries: Burkina Faso, Ghana, Togo, Benin, Cote 



 

74 
 

d’Ivoire, and Mali (Fig.1). It has 4 sub-catchments: Black Volta, White Volta, Oti River, and Lower 

Volta.  Average annual rainfall within the basin ranges from 1600mm in the South-Eastern section 

of the basin in Ghana to about 360mm in the northern part of Burkina Faso (Williams et al., 2016). 

The basin is also home to approximately 25 million people, more than 70% of whom are involved 

in small-holder subsistence agriculture. Given the extent of the basin, this study focused on the part 

of the basin in Ghana of the basin since about 70% of country lies in the basin, providing essential 

natural resources.    

 

               

 Figure 5.1. The Volta River Basin showing important political boundaries (Adapted from Gao and Margolies,  

2009) 
 

5.2. Materials and Methods  

5.2.1. Data Sources and Driver Identification Approach  

Fundamentally, in this paper, changed is conceived as variations or disturbances in the state, 

outputs, or structure of ecosystems (MA, 2005). However, to build a clear understanding, 

Anastasopoulou et al. (2009) argued that it is imperative to identify the agents, or drivers of those 

changes that are embedded in human society. Accordingly, this paper focuses on those drivers, 

which are defined as “any natural or human-induced factor that directly or indirectly causes a 

change in an ecosystem” (after MA, 2005, p.176). This definition impelled the consideration of both 
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environmental and socio-economic factors perceived to be undesirable in the context of the VRB of 

Ghana.  

 

Initially, various drivers of change were identified following an approach employed by 

Tzanopoulos et al. (2013). Comprehensive literature searches were performed using electronic 

databases: Google Scholar and Scopus using combinations of the following key words, 

“agriculture”, “change or driver or impact”, “ecosystem”, “river basin”. The reviewed materials 

included published work from scientific journals, books, and global scientific reports from 

developed and developing countries that have analysed drivers of change within agricultural and 

water resources sectors. From these sources, in total, 53 publications were identified and analysed 

that span local, basin-wide, regional, and global scales. Subsequently, a snowball search procedure 

was used, that yielded an additional 15 publications, resulting in a total of 68 publications. To 

capture the current issues, materials that were published in the last 10 years (between 2005 and 

2015) were considered.  

 

From the literature, 51 relevant drivers and factors were identified and placed under four categories: 

biophysical/environmental drivers, economic and technological drivers, socio-demographic drivers, 

and policy and institutional drivers. To assess the relevance of these drivers to the VRB of Ghana, a 

one-day workshop was held in the northern regional capital of Ghana (Tamale) on April 11, 2014 

with 16 expert stakeholders (i.e., 8 natural scientists and 8 social scientists) who live and work 

throughout the VRB. The process of selecting the participants was purposive, as it allowed the 

researcher to target leading researchers, practitioners, and senior policy- makers working in research 

and academic institutions, government, private firms, NGOs, and local farmers across the basin. In 

addition to assessing the relevance of the identified drivers to the VRB of Ghana, the workshop 

participants also indicated the direction of change of the individual drivers. An increasing trend is 

indicated by ↑, while ↓ indicates a decreasing trend (Figure 5.2).   

    

Subsequently, the drivers were characterised as “fast” or “slow” variables/drivers following Huber-

Sannwald et al. (2012). “Slow” changing drivers (VS) are those factors that tend to act more slowly 

over time in a somewhat predictable manner with long-term impacts, while fast changing drivers 

(VF) are factors that change rapidly in the short term (Chapin et al., 2009; Msangi and Rosegrant, 

2011; Walker et al., 2012). Overall, we identified 51 drivers of change comprising: 18 

biophysical/environmental drivers; 14 economic and technological drivers; 14 socio-demographic 

drivers; and five policy and institutional drivers. Drivers were characterised as either “slow” 

changing/acting drivers of change (n=38), or “fast” changing/acting drivers of change (n=12). 



 

76 
 

Further, 33 drivers indicate an increasing trend, while 17 drivers portray a decreasing trend (Fig.2). 

Many of these trends agree with known patterns described in Lemoalle (2009), UNEP-GEF Volta 

Project (2013), and Kolavalli and Williams (2016), indicating that the model is both robust and 

important to the social-ecological dynamics in the basin.   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To determine the relative importance of these drivers of change, a structured expert judgement 

technique was employed (Meyer and Booker, 2001; Perera et al., 2012; Drescher et al., 2013). As 

noted by Turner (2015), sustainable water resources will need to be conserved and traded through 

changes in public policy that will involve scientific experts as well as laypersons. Thus, this study 

 
Biophysical & Environmental Drivers 

  Biodiversity loss (VS) ↑ 

  Change in cropping pattern (VS) ↑ 

  Change in length of growing season (VS) ↑ 

  Change in temperature (VS)↑ 

  Crop yield growth (VS)↓ 

  Deforestation (VS)↑ 

  Droughts-intensity & duration (VF) ↑ 

  Floods-intensity & duration (VF)↑ 

  Ground & surface water availability (VS)↓ 

  Land productivity (VS) ↓ 

  Land use/cover change (VS)↑  

  Land/soil degradation (VS) ↑ 

  Pest & disease occurrence (VF)↓ 

  Precipitation variability (VF) ↑ 

  Pollution (VS)↑   

  Soil erosion (VF)↑ 

  Soil fertility (VS) ↓ 

  Use of fertilizer & pesticides (VS)↑  
 

 

 

 Socio-demographic drivers 
  Access to health care (VS)↓ 

  Change in age structure (VS)↑ 

  Change in fertility (VS)↑ 

  Change in mortality (VS) ↑ 

  Change in traditional values  

    & practices(VS)↑ 

  Education level (VS)↑ 

  In/out migration (VF)↑ 

  Inequality (gender, age class) (VS)↑ 

  Land Abandonment (VF)↑ 

  Population density (VS)↑ 

  Population growth (VS) ↑ 

  Poverty level (VS)↑ 

  Social Conflicts (VF)↓ 

  Urbanisation (VS)↑ 

 

 

Economic & Technological drivers 
  Access to financial credit (VF)↓ 

  Agricultural intensification (VS)↑ 

  Agricultural market access (VS)↓ 

  Availability of arable land (VS)↓ 

  Availability of off-farm employment (VS)↓ 

  Change in consumption patterns (VS)↑ 

  Change in farm size/structure (VS)↑ 

  Cost of inputs (VF)↑     

  Household income growth (VS)↓ 

  Infrastructure conditions (VS)↓ 

  Innovation & technological change (VS)↑   

  Labour availability (VS) ↓ 

  Livelihood & income diversification (VS) ↑  

  Small-scale mining (VF)↑ 

   
 

 

Policy & Institutional Drivers 
  Availability of extension services (VS) ↓ 

  Availability of R&D funding (VF)↓ 

  Level of investment (VS)↓ 

  Production subsidies (VF)↓ 

  Property rights issues (VS)↑ 

 

Figure 5.2: A simplified Model of Drivers of Change identified in the Volta River Basin and their 

interactions. VS denotes “slow changing variables”, while VF denotes “fast changing variables”. ↑ 

indicates increasing trend in the driver, while ↓ indicates decreasing trend.     
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considered two groups of experts: scientific/technical experts, and local experts in the assessment of 

drivers of change. 

5.2.2. Selection of Technical Experts  

For the purposes of this study, technical experts comprised of knowledgeable practitioners and 

researchers (Perera et al., 2012; Drescher et al., 2013) with extensive experience in agriculture and 

water resources related issues. As a register of qualified technical experts was unavailable in the 

VRB, the paper used a study design that combines multiple expert identification techniques 

including, web-based searches and professional networks directories (Drescher et al., 2013) to 

develop a sampling frame containing a pool of potential experts. This pool of experts was then 

supplemented using ‘chain referral’, in which the experts that were identified recommended other 

potential experts (Meyer and Booker, 2001). To minimise sampling bias and the marginalisation of 

other potential experts, a purposive sampling technique was used to select a group of experts from 

the pool based on their qualifications, reputation and publication record in the area, professional 

standing, prolonged experience, and peer recognition (Meyer and Booker, 2001; Martin et al., 2012; 

Drescher et al., 2013).    

 

According to Martin et al. (2012), few experts reach the highest levels of competence in less than a 

decade in a domain. Thus, individuals who have worked across the VRB of Ghana for more than 10 

years with technical expertise in water, soil, environmental science, rural geography, agricultural 

studies, agricultural economics, rural sociology and political science were considered. Also, 

considerable efforts were made to include individuals working in relevant research and academic 

institutions, government, private firms, and non-governmental organisations (NGOs) within the 

VRB of Ghana. Therefore, the selection of technical experts was designed to ensure that a range of 

cognate natural and social science backgrounds as well as persons from diverse institutions would 

be represented (Fish et al., 2009). The goal here was to avoid the dominance of one expert group, 

and hence, minimise possible institutional, locational, and disciplinary biases in the respondent 

pool.       

 

Through the processes described above, a total of 117 experts were contacted by email and phone, 

and invited to participate in the study. Overall, 42 technical experts agreed to participate in the 

survey, resulting in a response rate of 35.9%. The reasons provided for non-participation ranged 

from limited time (n=38) to lack of interest in the study (n=22). Others simply identified themselves 

as non-experts (n=15) and did not consider themselves knowledgeable enough to participate in the 

study.      
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5.2.3. Selection of Local Experts 

The sampling approach to selecting local experts followed “systematically gathering peer 

recommendations” – an analogue to snowball sampling or chain referral technique – as 

implemented by Davis and Wagner (2003). Local experts were defined as elderly farmers and land 

managers within the VRB in accordance with attributes set by Davis and Wagner (2003). 

Accordingly, one selection criterion was that individuals must be more than 40 years old.  

In doing so, the study purposively identified 18 local farmer-based organisations and associations 

from 10 districts across the three Northern regions of Ghana within the VRB: Northern, Upper East, 

and Upper West regions. It focused on these regions because most the population in these regions 

are smallholder farmers directly engaged with VRB water resources. The members of these groups 

ranged from 14 to 43 members, including both men and women. Across these groups, 142 potential 

local experts (all smallholder farmers) to participate in the survey were invited. Of these, 49 local 

experts agreed to participate, yielding a participation rate of 35.5%. Those who did not participate 

were simply constrained by time.   

 

5.2.4. The Elicitation (Survey) Instrument  

In total, 91 experts comprising: 42 technical experts and 49 local experts were engaged in this 

study. While this sample maybe relatively small, the sampling process ensured that it contains 

persons with ‘well-contextualized, synoptic knowledge’ (Drescher et al., 2013) and in-depth 

understanding of the VRB and its associated challenges. The experts provided judgements based on 

survey questions focussed on the drivers presented in Figure 5.1. The survey instrument was pre-

tested with a sample of 10 experts (five technical experts and five local experts), none of whom was 

part of the final response pool. The responses indicated that the questions were clearly defined, well 

understood, and appropriate to the research context.   

The final interviews were conducted from May and October 2014 by the first author using face-face 

style elicitation, as it allowed for more targeted questions and clarification, and therefore, helped to 

reduce bias due to linguistic uncertainty (Beyer and Booker, 2001; Kuhnert et al., 2010). Interviews 

were confidential individual-based, and took place at expert’s office, farm or home. An elicitation 

lasted approximately 1 hour and 15 minutes. To account for cross-gender and cross-cultural 

sensitivities (Nyantakyi and Bezner-Kerr 2015), a female local volunteer was recruited to assist in 

the process. Depending on the preference of the expert, one of the following languages was used: 

English, Twi, Dagbani, Dagaare, or Frafra. Some interviews were taped recorded with consent (85 

participants); otherwise, extensive hand-written notes were taken (six participants, all of whom 
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were technical experts). The respondents were not compensated for their time, but rather, the study 

relied on their good will and interest in the study.   

The survey instrument elicitation process consisted of three parts (see Appendix 1). It began by 

eliciting biographical information about the experts: age, gender, level of education, professional 

affiliation(s), years of experience in their current job/project, and years of experience within the 

VRB.  In the second part, the interviewers requested the experts to reflect on their knowledge of the 

51 drivers/factors in Figure 5.1 and, more specifically, gauge their relative importance relative to 

sustainable water resources management in agricultural development in the VRB of Ghana.  For 

example, one question was: “how important do you think precipitation variability is in terms of 

driving change and influencing water resources management and agricultural development within 

the VRB of Ghana”?  

A four-point Likert scale was used with anchor points ranging from 1(very important) to 4 (not at 

all important). Subsequently, we asked the experts to explain their reasoning for each judgement. 

This provided qualitative comments that were used to contextualise the study and enrich the 

quantitative data. In making their judgements, the experts were asked to focus on the consequences 

of these drivers in the last 30 years, as this is noted as the period the basin underwent fundamental 

changes, exemplified by the mid1980s droughts, which led to severe water scarcity and food 

shortages (Lemoalle, 2009; Kolavalli and Williams, 2016). In the final part of the process, experts 

suggested any strategies they believed could mitigate the consequences of these drivers.  

 

To minimise bias associated with overconfidence or conservatism (Meyer and Booker, 2001; 

Kuhnert et al. 2010), information-sampling theory (Klayman et al., 2006), which includes asking 

the same questions twice or with different wording throughout the elicitation process (Martin et al., 

2012) was used. During the elicitations, it was apparent that the experts were equally 

knowledgeable about most drivers and, therefore, did not show strong bias towards those issues in 

their professional domain. It was, however, observed that most experts paid much attention to the 

consistency of their judgements by referring to their previous answers while answering the 

questions; they often requested to amend response after they have had time to think about 

succeeding questions.  

 

5.3. Data Analysis  

The judgements and opinions of individual experts were analysed using simple descriptive statistics 

(unweighted means). Following Scholten et al. (2013), the judgement of each expert was presumed 
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to carry equal weight and were analysed together. We used the Chi-square (χ2) goodness-of-fit test 

to determine whether there was a potential difference between the technical and local expert 

respondents in gender, age, and level of education. Proportional representation of experts from 

different organisational affiliations within the technical expert group was tested using one-way 

ANOVA. The non-parametric Mann–Whitney U – test was used to test whether the ratings of each 

driver by the technical experts group and local experts group differ. The extent of agreement among 

individual experts (intra-expert agreement) and inter-expert agreement were quantified using 

Kendall’s Coefficient of Concordance (W) (see Kendall and Smith, 1939). 

Inter-expert (or between groups agreement) was measured using Spearman’s rho and Kendall’s 

Tau-b correlations coefficients. All statistical analyses were carried out in SPSS version 21.0.  

Qualitative comments were transcribed and analysed using thematic analysis, as it allowed for the 

extraction of the core themes that emerged from the interviews (Bryman, 2012). Verbatim quotes 

were used to support the results and discussion. Finally, published studies were used to confirm or 

disconfirm the expert knowledge or opinion.   

 

5.4. Results and Discussion  

5.4.1. Survey Pool  

As shown in Table 5.1, the majority of all respondents (58%), technical experts (62%), and local 

experts (55%) were male. Further, a majority (63%) of the total sample were aged 50 years and 

over, with only 3% below the age of 40. Most of the local experts (76%) had no formal education, 

while 55% of the technical experts had formal education to the postgraduate level. Overall, 59% of 

total respondents had some form of formal education. The majority of the technical experts were 

from NGOs (33%) and academic institutions (31%), with only 12% affiliated with private 

institutions. The technical experts were also highly experienced, with an average tenure in their 

current job of 12 ± 5.1 years (mean ± standard deviation) and average tenure in the VRB of 

approximately 19 ± 3.9 years.  

 

5.4.2. Potential Response Bias 

Table 5.1 also reports the results of the chi-square goodness-of-fit test that showed no statistically 

significant difference between the technical and local experts associated with gender and age.  The 

two expert groups, however, differed significantly in terms of the level of education (χ2 = 80.481, df 
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= 4, P < 0.01). With regard to the representation of experts from different organisational affiliation 

within the technical experts group, we found no significant difference ANOVA F(3,38) = 4.67, p = 

.198).  

 

Table 5.1: Demographics of Survey Respondents  

Variable Technical Experts 

(n =42) 

Local Experts 

(n = 49) 

Total (combined) 

(N = 91) 

Gender     

  Male 61.9 55.1 58.2 

  Female  38.1 44.9 41.8 
 Chi-square (χ2) = 430(df = 1, P = .512) .430 (df = 1, P = .512)  

Age (years)   

   <40 7.1 0.0 3.3 
  41 – 50  40.5 28.6 34.1 

  51 – 60  38.1 40.8 39.6 

  >61 14.3 30.6 23.1 
 χ2    7.095 (df = 3, P = .069)  

Educational level     

  No Education  0.0 75.5 40.7 
  School Level Education  2.4 18.4 11.0 

  Vocational/technical school level 9.5 6.1 7.7 

  Graduate level 33.3 0.0 15.4 
  Postgraduate level 54.8 0.0 25.3 

  χ2     80.481 (df = 4, P < .001)  

Organisational affiliation    
  Academic  31.0 - 31.0 

  State/government  23.8 - 23.8 

  NGO 33.3 - 33.3 
  Private institution  11.9 - 11.9 

  ANOVA (F)                                                                                                                                      a4.667 (df = 3, P = .198) 

Average years of experience in current job   12.3 (5.08) - - 
Average years of experience in the Volta River Basin  18.8 (3.94) - - 

Note: atest for possible difference among respondents within the technical experts group associated with organisational 

affiliation. Values in parenthesis represent the mean standard deviations (SD) of the corresponding variables. Note that 

we did not collect data on the variables: organisational affiliation, years of experience in current job and years of 

experience in the Volta River Basin for the local experts as they do not hold down formal jobs in institutions or 

organisations.    
 
 

 

5.4.3. Relative Importance of Drivers of Change and Trends    

To assess the relative importance of these drivers, the unweighted mean scores and the standard 

deviation for each driver of change were calculated and rank-ordered based on their mean values. 

The results are shown in Table 5.2. Although the study ensured that a range of cognate natural 

science and social science backgrounds were represented in the selection of experts, overall, four 

biophysical drivers (precipitation variability, ground and surface water availability, land use change, 

drought events) and one socio-demographic driver (population growth) were rated as the top five 

most important drivers. The result is consistent with previous analysis of the trends in the basin 

(e.g., UNEP-GEF Volta Project 2013; Mul et al., 2015; Kolavalli and Williams, 2016). Moreover, 

the experts seem to view all but three of the biophysical drivers (change in cropping pattern, 

deforestation, and soil erosion) in the same light.  
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At the opposite end, the five least important drivers included change in consumption pattern, social 

conflict, pest and disease occurrence, urbanisation, and pollution.  An interpretation of these results 

is that many experts consider the biophysical as the ultimate limiting factors for sustainability in the 

VRB. It could also be attributed to experts giving higher importance to those issues they have 

knowledge of. Nevertheless, the findings could well suggest that socioeconomic factors play a 

subsidiary role and that effective solutions should be targeted at those biophysical drivers. 

However, given that most environmental changes are closely linked to socio-economic drivers, 

effective actions would require equal attention to both types of drivers and processes and the 

feedbacks (Carpenter et al., 2009; Chapin et al., 2009). This is particularly crucial considering 

repeated calls to view resources systems as coupled social-ecological systems (see Berkes et al. 

2003; Liu et al., 2007b; Ostrom, 2009) or linked human-environmental systems (see Turner et al., 

2003; Scholz, 2011). 

         

In comparing the findings across the two expert groups, differences were found in the judgement 

and ratings of the drivers and factors (Table 5.2). For example, population growth, ground and 

surface water availability, land and soil degradation, and soil erosion were judged and rated highly 

by the technical experts, but were considered less important by local experts. In contrast, the local 

experts rated issues related to livelihood security (e.g., access to financial credit, household income 

growth, crop yield, production subsidies, and livelihood and income diversification, labour 

availability) very high. This indicates that more attention must be paid to those factors and drivers 

which either constrain or enhance livelihood security.  

 

Given this insight, the importance of these drivers in livelihood sustainability could be more 

thoroughly evaluated with local people. However, an interpretation of the differences in ranking 

between the two expert groups is that people’s background, and values had an impact on the 

expert’s opinion of drivers of change. The differences also provide knowledge into how 

stakeholders perceive and conceptualise change variously. The results suggest that strategies 

intended to address the consequences of drivers of change must be flexible enough to account for 

these differences and, most importantly, incorporate the full range of stakeholders.    

 

5.4.4. Variability in Expert Opinion and Judgement  

The study examined whether the two expert groups rated the drivers of change differently using the 

non-parametric Mann-Whitney U test. The results are presented in the last column of Table 5.2. A 

significant relationship was found in 19 out of the 51 drivers, that is, 37% of drivers (based on p < 



 

83 
 

0.05 and p < 0.01 two-tailed significance levels). Eleven of the 19 significant drivers were 

statistically significant at the p < 0.01 level, and eight significantly differed at the p < 0.05 level. 

Five of these significantly different drivers: lack of access to financial credit (U = 385.00, p < 

0.01), cost of inputs (U = 630.00, p < 0.01), crop yield growth (U = 780.00, p < 0.05), level of 

investment (U = 693.00, p < 0.01) and production subsidies (U = 780.50, p < 0.01) were rated in 

the top 10 by the local experts.  Significant slow drivers such as soil erosion (U = 826.00, p < 0.05), 

deforestation (U = 790.00, p < 0.05), population growth (U = 658.00, p < 0.01) and population 

density (U = 715.00, p < 0.01) were also rated in the top 10 by the technical expert group. Notably, 

all policy and institutional drivers except for property rights were significant, while only four of the 

18 environmental and biophysical drivers were significant. It is also worth noting that more than 

half (57%) of the socio-demographic drivers statistically differed and a quarter (25%) of the 

economic and technological drivers were significant.   

 

5.4.5. Intra-and Inter- Expert Groups Agreement 

The concordances and discordances results are summarised in Table 5.3. Estimates of the Kendall 

coefficient of concordance, W, showed statistically significant concordance among the technical 

experts (W = .424, χ2 = 576.67, p < 0.01) and local experts (W = .534, χ2 = 897.61, p < 0.01). 

However, there is strong agreement among the local experts than between the technical experts. 

This may be due to the different areas of expertise and disciplinary traditions among the technical 

experts, which informs the principle of expert judgement (Fish et al. 2009). Also, the concordance 

when the two groups were combined was also highly significant (W = 0.432, χ2 = 1174.90, p < 

0.01), indicating a high level of agreement among the experts. The significant correlation 

coefficients confirm this.  
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Table 5.2: Mean scores, standard deviation (Std.Dev.), and rank orders for each driver with Mann–Whitney U test between the two expert groups 

 

Full Sample 
 

Technical Experts 
 

Local Experts 
 Mann-Whitney 

U-Test between 

expert groupsa 

N = 91 
 

n = 42 
 

N = 49 
 

Driver of Change  Mean Std.Dev 
Rank 

Order  
  Mean Std.Dev 

Rank 

Order  
  Mean Std.Dev 

Rank 

Order  
  

Environmental & Biophysical Drivers 
             

  Biodiversity loss (VS)  3.615 0.489 24 
 

3.619 0.492 16 
 

3.612 0.492 26 
 

      1022.00 

  Change in cropping pattern (VS) 3.451 0.500 35 
 

3.595 0.497 22 
 

3.323 0.474 39 
 

      752.50* 

  Change in length of growing season (VS) 3.462 0.637 34 
 

3.429 0.668 33 
 

3.489 0.617 34 
 

      987.00 

  Change in temperature (VS) 3.187 0.576 42 
 

3.310 0.517 41 
 

3.082 0.607 44 
 

      838.00 

  Crop yield growth (VS) 3.725 0.448 8  3.595 0.496 23  3.837 0.373 4        780.00* 

  Deforestation (VS) 3.570 0.580 29 
 

3.714 0.508 10 
 

3.449 0.614 35 
 

      790.00* 

  Droughts-intensity & duration (VF) 3.747 0.467 5 
 

3.762 0.431 7 
 

3.714 0.5 14 
 

      996.00 
  Floods-intensity & duration (VF) 3.747 0.467 6 

 
3.690 0.517 12 

 
3.776 0.421 7 

 
      960.50 

  Ground & surface water availability (VS) 3.769 0.423 2 
 

3.833 0.377 3 
 

3.714 0.456 15 
 

      906.50 

  Land productivity (VS)  3.593 0.557 27 
 

3.595 0.544 27 
 

3.592 0.574 27 
 

     1022.00 
  Land use/cover change (VS)  3.747 0.437 4 

 
3.786 0.415 6 

 
3.714 0.456 13 

 
       955.50 

  Land/soil degradation (VS)  3.714 0.453 11 
 

3.811 0.397 4 
 

3.633 0.4871 24 
 

       847.00 

  Pest & disease occurrence (VF) 2.604 0.729 49 
 

2.571 0.831 49 
 

2.633 0.635 48 
 

       991.00 
  Precipitation variability (VF)  3.890 0.314 1 

 
3.834 0.3771 2 

 
3.939 0.242 2 

 
       920.50 

  Pollution (VS)   3.122 0.596 51 
 

3.167 0.696 50 
 

3.083 0.498 51 
 

       908.00 

  Soil erosion (Vs) 3.702 0.459 13 
 

3.810 0.398 5 
 

3.612 0.4923 25 
 

       826.00* 

  Soil fertility (VS)    3.703 0.458 12 
 

3.714 0.457 11 
 

3.694 0.465 17 
 

      1008.00 

  Use of fertilizer & pesticides (VS) 3.275 0.667 41  3.262 0.767 42  3.286 0.577 40        1006.00 

Economic & Technological drivers 
             

  Access to financial credit(VF) 3.670 0.472 16 
 

3.333 0.477 39 
 

3.959 0.199 1 
 

      385.00** 

  Agricultural intensification (VS) 3.670 0.495 17 
 

3.643 0.485 15 
 

3.694 0.508 16 
 

      963.00 

  Agricultural market access (VS) 3.671 0.473 15 
 

3.619 0.492 21 
 

3.714 0.456 12 
 

      1006.00 
  Availability of arable land (VS) 3.560 0.581 30  3.690 0.539 20  3.510 0.616 32        943.50 

  Availability of off-farm employment (VS) 3.659 0.499 19 
 

3.595 0.497 26 
 

3.714 0.500 10 
 

      894.00 

  Change in consumption patterns (VS) 2.978 0.869 47 
 

3.167 0.729 45 
 

2.816 0.95 46 
 

      822.00 
  Change in farm size/structure (VS) 3.637 0.501 22 

 
3.619 0.539 19 

 
3.653 0.481 20 

 
      1010.00 

  Cost of inputs (VF)     3.659 0.521 18 
 

3.429 0.590 35 
 

3.857 0.354 3 
 

      630.00** 

  Household income growth (VS) 3.714 0.454 10 
 

3.667 0.477 13 
 

3.755 0.434 8 
 

      938.00 
  Infrastructure conditions (VS) 3.747 0.437 9 

 
3.69 0.468 14 

 
3.796 0.407 6 

 
      871.50 

  Innovation & technological change (VS)   3.110 0.547 45 
 

2.976 0.517 47 
 

3.224 0.55 41 
 

      808.00* 

  Labour availability (VS)  3.648 0.524 21 
 

3.571 0.590 28 
 

3.713 0.456 11 
 

      917.00 
  Livelihood & income diversification (VS)   3.604 0.514 25 

 
3.548 0.504 29 

 
3.653 0.522 21 

 
      909.00 

  Small-scale mining (VS) 3.341 0.581 38 
 

3.310 0.517 40 
 

3.367 0.636 38 
 

      952.00 

Socio-demographic Drivers 
             

  Access to health care (VS) 3.330 0.597 39 
 

3.238 0.617 43 
 

3.408 0.574 36 
 

      884.00 

  Change in age structure (VS) 3.538 0.564 32 
 

3.524 0.594 32 
 

3.551 0.542 31 
 

      1017.00 

  Change in fertility (VS) 3.055 0.639 46 
 

3.405 0.497 36 
 

2.755 0.596 47 
 

      500.50** 

  Change in mortality (VS)  3.275 0.547 40  3.429 0.501 34  3.184 0.565 42        813.00** 

  Change in traditional values & practices(VS) 3.143 0.708 44 
 

2.714 0.673 48 
 

3.51 0.505 33 
 

     422.00** 
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  Education level (VS) 3.165 0.834 43 
 

3.548 0.632 30 
 

2.837 0.85 45 
 

547.00** 

  In/out migration (VF) 3.648 0.503 20 
 

3.619 0.537 17 
 

3.673 0.474 18 
 

 989.00 

  Inequality (e.g., gender, age, class) (VS) 3.396 0.535 36 
 

3.19 0.455 44 
 

3.571 0.54 30 
 

647.00** 

  Land Abandonment (VF) 3.626 0.530 23  3.619 0.539 18  3.633 0.528 23  1017.50 

  Population density (VS) 3.549 0.563 31 
 

3.738 0.445 9 
 

3.388 0.606 37 
 

715.00** 

  Population growth (VS)  3.758 0.431 3 
 

3.952 0.216 1 
 

3.592 0.497 29 
 

658.00** 

  Poverty level (VS) 3.605 0.492 26 
 

3.524 0.506 31 
 

3.673 0.474 19 
 

 875.00 

  Social Conflicts (VF) 2.802 0.991 48 
 

3.071 0.921 46 
 

2.571 0.999 49 
 

 744.00* 

  Urbanisation (VS) 2.473 0.720 50 
 

2.405 0.735 51 
 

2.531 0.71 50 
 

  934.00 
Policy & Institutional Drivers 

             
  Availability of extension services(VS)  3.484 0.524 33 

 
3.357 0.485 38 

 
3.592 0.537 28 

 
780.00* 

  Availability of R&D funding (VF) 2.823 0.698 37  3.595 0.734 25  2.619 0.660 43  709.50** 

  Level of investment (VS) 2.349 0.808 28  2.525 0.735 37  2.196 0.833 9  693.00** 

  Production subsidies (VF) 3.725 0.448 7 
 

3.595 0.497 24 
 

3.837 0.373 5 
 

780.50** 

  Property rights issues (VS) 3.692 0.464 14 
 

3.738 0.445 8 
 

3.653 0.481 22 
 

 941.50 

Notes: Drivers are ranked based on their mean scores on a 4-point Likert scale where 1 = Not Important, 2 = Somewhat Important, 3 = Important and 4 = Very Important. Where there 

was a tie, the standard deviation was used to break the tie.  
Top ten drivers are colour coded. Black (with white numbers) are top ten drivers rated by both technical and local experts. Light grey are top ten drivers rated by the technical experts. 

Dark grey are top ten drivers rated by the local experts.  
aMann-Whitney (U) statistics in bold are statistically significant at * P < 0.05; **P< 0 .01 (two tailed). 
VS denotes “slow variables”, while VF denotes “fast variables”.       
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Table 5.3: Intra-expert group agreement measured using Kendall’s Coefficient of Concordance (W) and inter-expert group 

agreement measured using Spearman rho and Kendall’s–tau b correlation coefficients (i.e., technical vs. local experts).  

Statistic Technical Experts Local Experts Total (combined) 

Kendall’s Coefficient of Concordance, W                 0.424*            0.534*             0.432* 

Chi-square (χ2) 480.15            654.90 929.49 

DF                 50             50             50 

Spearman rank correlation coefficient (Rho)  0.58*  

Kendall’s tau-b correlation coefficient (τ) 0.42*  

Note: the test statistics for Kendall’s W test is distributed as the classical Chi-squared with k-1 degrees of 

freedom (DF).    

*For p < 0.01 

 

These results imply that some experts may be applying similar standards in judging the 

importance of the drivers of change (Meyer and Booker, 2001). Such a convergence further 

indicates some level of consensus and, invariably, increasing confidence in the results. An 

important conclusion is that when local and technical expert’s views on driving forces are 

systematically elicited and combined, they can generate consistent judgments to inform future 

agricultural and water policy decisions. 

 

5.5. Characteristics of Drivers of Change  

Our results reveal the presence of more ‘slow’ acting drivers in the VRB than “fast” changing 

ones (see Figure 5.2 and Table 5.2 above). Gunderson and Holling (2002) argued that the 

long-term dynamics and sustainability of most social-ecological systems are often driven by 

three to five key “slow” acting variables or drivers. From this perspective, it could be 

concluded that the sustainability of the VRB could be determined by the five top, slow 

changing drivers – population growth, land use/cover change, ground and surface water 

availability, infrastructure conditions, and land degradation. This implies that water managers 

and agricultural policy-makers will need to prioritise and manage those slow drivers 

carefully. However, the rapid changing drivers (e.g., precipitation variability), could be used 

as early warning indicators of impending damage (Thom et al., 2013).  

 

In this study, factors such as infrastructure conditions, access to information and technology, 

access to financial credit, household income growth, access to markets, equity issues, skills or 

educational level, labour availability, and access to health care have all been identified as 

important drivers of change. However, these factors also determine the resilience and 

adaptive capacity in environmental systems (Yohe and Tol, 2002), and, therefore, need to be 
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strengthened. As one local farmer commented, “we will only ever be able to cope with the 

problems of change if only we have easy access to credit.”                

 

5.6. Reasoning Behind Expert Opinion and Judgement 

The qualitative reasons behind the quantitative judgements and ratings are as follows. A clear 

majority of the local experts explained that their judgement and ratings of most were based 

on the effects that these drivers are having their livelihoods and food security, highlighting 

progressively declining crop yield and incomes to buttress their point. One local expert sums 

up this argument:  

 

“For the last 30 years, we hardly produce enough to food to feed our families and sell 

for income. We can only attribute this to the unpredictable rainfall, weak water 

infrastructure, coupled with the rising cost of basic inputs (e.g., fertilizer), and general 

lack of financial credit and institutional support”.  

 

Indeed, a consultation of published sources confirms that, overall, productivity is low, with 

cereal import dependency ranging from 10 to 50% (Lemoalle, 2009; Terrasson et al., 2009; 

Kolavalli and Williams, 2016). Regarding the lack of access to credit, most of the technical 

experts disagreed, explaining that credit is available, but many farmers simply do not repay 

the loans they collect from the lending bodies. Few, however, acknowledged that the high 

interest rates, collateral demands and perceived risks to exogenous factors (e.g. weather, pest, 

and diseases and commodity price fluctuation) by some banks and microfinance companies 

made it difficult for some farmers to obtain credit. This clarified why several of the local 

experts rated the provision of production subsidies so highly. An interpretation of these 

contrasting views is a readjustment of the current lending criteria to meet the unique financial 

challenges smallholder farmers face.  

 

Notably, the local experts did not deem population growth as a critical issue. For most local 

respondents, people are valuable assets. Indeed, some noted that the population in their 

communities had dwindled as many of the youth moved to urban areas in search of better 

economic opportunities. This, in turn, has led to farm labour shortages and land 

abandonments in several places. Few technical experts confirmed this situation, deferring to 

extreme events (floods and droughts) and construction of some hydroelectric projects in some 
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parts of Ghana (e.g., the Bui Dam) as the drivers of rural depopulation. However, the 

majority view was that population growth is a generally important driver because it underpins 

the major changes in the basin, including environmental degradation, changes in water 

quantity and seasonal flows, and increased competition and demands for land and water 

resources. Reports indicate that the population across the entire basin has been growing at an 

average rate of 2.7% per annum, making it one of the fastest in the world (Mul et al., 2015). 

Further, projections indicate that the basin’s population will increase from 23.8 million in 

2010 to 56.6 million by 2050 (Kolavalli and Williams, 2016). These evidence and views, real 

or perceived, seem to support the neo-Malthusian thinking about environmental degradation 

and resource scarcity as population rises; although some studies in Africa have firmly 

challenged this assumption (Leach and Fairhead, 2000). Indeed, Lemoalle (2009) reports a 

correlation between population growth and the expansion of cultivated area over the past 30 

years in the VRB.    

 

Among all the expert respondents, precipitation variability was perceived as highly important 

because it is the major source of water underpinning the economic status of basin’s 

inhabitants who depend on rain-fed agriculture. Also, a recurring theme was the under 

exploitation of irrigation in the basin, which makes natural rainfall extremely vital. Further, 

several others argued that the problem of the basin was not the lack of policies, but more to 

do with a lack of policy implementation. Two comments sum this up:  

 

 “As a farmer, if I am asked of anything I need to survive, it would be a reliable rainfall 

because is it determines whether or not, I will be able to feed my family and earn some 

income” (Local expert) 

 

“The problem in the Volta River Basin is not lack of water, but institutional failures and 

weak governance structure. During the droughts of the 1960s and 1970s, the 

government at the time, constructed a number of small reservoirs to augment 

agricultural production, but successive governments failed to maintain these structures 

very well. The problem is compounded by the lack of sufficient political will, 

corruption and, generally, poor maintenance culture. Consequently, many noble 

initiatives aimed at enhancing water productivity for agricultural development and 

poverty reduction have vanished from the national development agenda” (Technical 

expert).   
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Indeed, evidence from several studies (e.g., Lemoalle, 2009; UNEP-GEF Volta Project, 

2013) indicates that, because of declining precipitation in recent decades, some areas in the 

South now experience a greatly reduced second wet season compared to historical conditions. 

Consequently, rain-fed agriculture can only be carried out once instead of twice a year. This 

buttressed most of the expert’s opinion that investments in water storage reservoirs, the 

provision of supplemental irrigation, and stronger policy implementation are required to meet 

the goals of food security and environmental sustainability. This is particularly more crucial 

in the wake of climate change, which observed evidence have shown to be changing at an 

alarming rate, causing temperature rise, shifting patterns of precipitation, and more extreme 

events (Awotwi et al., 2015).  

When the results are viewed with a gender lens, an interesting but unsurprising finding is 

noteworthy. Specifically, most of the women pointed to the discrimination against them about 

access, control, ownership and inheritance of natural resources. Hence, their judgement 

prioritised drivers, including land availability, gender equality, and property rights issues. A 

technical female expert, for example, stated that “the basin’s resources (e.g., land), while 

plentiful, are unevenly distributed”, and four of her local counterparts lamented about how 

they lost access to and control of the family lands when their husbands passed on. A majority 

of the male respondents agreed, but attributed the problem to traditional practices, statutory 

institutions, and patriarchal land ownership systems, which still prevail in many rural 

communities across the basin. This observation supports several comments in the literature 

concerning gender-related problems surrounding resource access in the VRB (e.g., Lemoalle, 

2009; Williams et al., 2016). It was a common view that actions promoting changes in 

cultural values are needed to ensure that women have equitable control of, and access to, all 

types of natural resources in the basin.       

 

5.7. Conclusions  

In this study, an expert judgement-elicitation approach was employed to provide a valuable 

source of information leading to insightful conclusions about drivers of change, their 

characteristics, and relative importance concerning water resource management for 

agricultural development in the VRB of Ghana. 51 drivers of change were found to be most 

critical to the sustainability of the basin. Among them, 38 drivers (e.g., land use/cover 

change, soil fertility, biodiversity loss) were characterised as predisposing (slow) 
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changing/acting drivers of change, while 12 (e.g., precipitation variability, soil erosion, 

access to financial credit, social conflict) were considered fast changing/acting drivers of 

change. Further, 33 drivers (e.g., drought intensity and duration, in/out migration, small-scale 

mining) indicate an increasing trend, while 17 (e.g., crop yield growth, household income 

growth, level of investment) drivers indicate a decreasing trend.  

With regards to their relative importance, the study found four biophysical/environmental 

drivers (precipitation variability, water availability, land use change, drought events), and one 

socio-demographic driver (population growth) to be the most important drivers. Intra- and 

inter- expert group agreement in relation to the importance attached to the drivers were 

generally moderate and convergent thereby, increasing confidence in the results. Overall, the 

results can form the basis for decision-making concerning sustainable water resources 

management and agricultural production in the VRB of Ghana and other basins with similar 

environmental and socio-economic characteristics. 

While this study acknowledges the limitations of this study due to the small sample size, 

every respondent is an influential expert in a limited network involved in decision-making 

within the VRB. Also, using quantitative structured expert survey based on published 

literature and requiring all experts to make decisions based on the same set of issues and the 

similar scales provides for transparency and repeatability of the study (Moody and Grand, 

2012). Further, because the survey and interviews were designed here to cover a variety of 

themes, and respondents were recruited purposively from diverse backgrounds and 

disciplines, the study was unable to detect any institutional or disciplinary biases in expert’s 

responses.  

It is, however, important to stress that this study specifically focused on the relative 

importance of drivers of change as perceived my experts. Thus, the role of actors and the 

basin in driving change, issues of agency as well as the causal relationships and feedback 

among the individual drivers have not been explored in this chapter. Instead, this has been the 

focus of chapter 6.  
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Abstract 

Although our understanding of water resource problems has grown in recent years, our ability 

to improve decision-making is still limited. Participatory modelling and stakeholder 

engagement considered an important tool that can facilitate strategic decision-making in 

environmental/natural resource management systems. This paper presents the participatory 

and methodological processes involved in the development of an integrated qualitative, 

conceptual model using causal loops diagrams to assist integrated water resources 

management and sustainable agricultural development in the Volta River Basin, West Africa. 

The developed integrated conceptual model facilitates a holistic and shared understanding of 

the key biophysical and socio-economic factors and processes, and the role the systemic 

feedbacks play in determining the basin’s behaviour. The implication of the results for 

sustainable water resources management and agricultural development in the Volta River 

Basin is also given.  

 

                                                
2 This chapter (paper II) has been published as: Kotir, H.J., Brown, G., Marshall, N. and Johnston, R. (2017). 

Systemic feedback modelling for sustainable water resources management and agricultural development: an 

application of participatory modelling approach in the Volta River Basin. Environmental Modelling and 

Software, 88: 106-118.  http://dx.doi.org/10.1016/j.envsoft.2016.11.015.  

mailto:j.kotir@uq.edu.au
http://dx.doi.org/10.1016/j.envsoft.2016.11.015
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6.1. Introduction  

In the last two decades, concerns have been raised at the global scale about the need and 

challenge for sustainable water resource management in an era of rapid global change, and 

pervasive water and food insecurity (Pahl-Wostl et al., 2013; Girard et al., 2015; Sivapalan, 

2015).  Although our understanding of water resources problems has grown in recent years, 

our ability to improve decision-making is still limited (Pahl-Wostl et al., 2011, 2013). New 

approaches have been exploring the potential of computer modelling methods that allow 

environmental problems to be considered in a holistic manner with active stakeholder 

involvement (Videira et al., 2011). More specifically, participatory modelling (PM) and 

stakeholder engagement is an important tool that can facilitate strategic decision-making in 

complex environmental/natural resource management systems (Voinov and Bousquet, 2010; 

Stave, 2010; Laniak et al., 2013; Videira et al., 2014; Voinov et al., 2016). According to Reed 

et al. (2008) the dynamic and complex nature of environmental issues call for a flexible and 

transparent decision-making that balances scientific findings with multi-faceted input from a 

range of stakeholders and decision-makers, many of whom have different values, 

perspectives, and objectives.   

PM is particularly well-suited for the growing emphasis on integrated water resources 

management that aims to provide an improved understanding of water resources systems 

while considering biophysical and socio-economic concerns (Voinov and Gaddis, 2008). The 

involvement of stakeholders in modelling complex systems has grown considerably in the 

last decade (Beall and Ford, 2010; d’Aquino and Bah, 2014). PM has been designed and 

implemented in several river basins or watersheds around the world (e.g., Metcalf et al., 

2010; Stave, 2010; Beall et al., 2011; Carmona et al., 2013; Hewitt et al., 2014; Robles-

Morua et al., 2014; Butler and Adamowski, 2015; Inam et al., 2015; Safavi et al., 2015; Beall 

and Thornton, 2016). However, a search in Google Scholar, Scopus, and Web of Science 

revealed that some forms of PM have been used to develop models for land use polices in 

dryland Sahelian region in Africa (e.g., d’Aquino and Bah, 2013, 2014), but it has only been 

implemented in one out of the over 60 river basins or watersheds across Africa. The study by 

Farolfi et al. (2010) used a form of PM (Companion Modelling) to develop multi-agent 

http://www.sciencedirect.com.ezproxy.library.uq.edu.au/science/article/pii/S0301479713003472


 

93 
 

models to represent water supply and demand dynamics for the Kat River Valley in South 

Africa but the models developed did not consider the feedback processes operating between 

the system components. Simonovic et al. (1997) has also used the system dynamics approach 

for long-term water resources planning and policy analysis for the Nile River basin in Egypt, 

but the study is mainly quantitative and more importantly, did not benefit from stakeholder 

perspectives. Therefore, there is the need to complement quantitative simulations with 

conceptual or qualitative models that incorporate stakeholder knowledge and perspectives.  

Indeed, conceptual modelling has been an important component of PM and of successful 

application of adaptive management to natural resource problems (Argent et al., 2016). 

However, system conceptualisation within the integrated environmental modelling 

community remains limited (Laniak et al., 2013). A review of dynamic modelling in water 

resources systems indicates that most system dynamics applications have not made adequate 

use of qualitative modelling tools (Mirchi et al., 2012). However, several studies (e.g., Gupta 

et al., 2012; Herr et al., 2015; Argent et al., 2016) suggest that qualitative or conceptual 

modelling provides a means to developing an understanding of a complex system, 

particularly when there is uncertainty about the system or limitations of quantitative data.  

Moreover, many of the existing PM studies tend to focus on the modelling process rather than 

the model itself (Voinov et al., 2014). Consequently, it has been suggested that modellers pay 

attention to the participatory as well as the modelling process and the model 

outcomes/outputs (e.g., van den Belt et al., 2010; Voinov and Bousquet, 2010; Videira et al., 

2012).  

The preceding knowledge gaps need to be filled to improve our understanding and 

management of environmental/natural resources management. Thus, this paper presents the 

participatory and methodological processes involved in the development of an integrated 

qualitative, conceptual model that captures the causal non-linear relationships between the 

key and multiple biophysical and socio-economic drivers and processes in the Volta River 

Basin (VRB) in West Africa, highlighting the key or dominant feedback loops. This chapter 

is based essentially on “conceptual modelling”, defined as approach “used in explaining, 

understanding and exploring different kinds of systems” (Argent et al., 2016, p.114).  

Conceptual modelling was also strongly advocated as part of the early development of system 

dynamics (Forrester, 1973).  
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Following the above considerations, this chapter, thus, set the state for the development of the 

system dynamics model proposed in this study. A model is defined as a simplification of a 

real system in relation to some defined problem(s) (Forrester, 1995; Coyle, 2000; Barlas, 

2007; Ford, 2010). According to Forrester (1971), all decisions, laws and actions are taken 

based on models. Models help us simply complex phenomena by eliminating everything we 

believe is extraneous to what we interested in studying (Ruth and Hannon, 1997). Models 

help to organise information in a more comprehensible manner (Forrester, 1991). Models are 

central to our understanding of the world, because they enable us to represent and manipulate 

real phenomena, then explore the results (Ruth and Hannon, 2012). Models can consist of 

many types: physical and symbolic (Barlas, 1996; Barlas, 2007). Physical models comprise 

of “physical objects (such as scaled models of airplanes, submarines, architectural models, 

models of molecules – symbolic models consist of abstract symbols (such as verbal 

descriptions, diagrams, graphs, mathematical equations)” (Barlas, 2007, p.4). Models may 

take a spatial or temporal perspective or a combination of both (Kerr et al., 2011). In recent 

times, modelling has been used as a tool to integrate knowledge, issues, and stakeholders. A 

typical model development process generally involves a continuous iteration, questioning, 

testing, and refinement (Sterman, 2000) before it can be used for decision-making.     

Models are built for several purposes including, prediction, forecasting, management and 

decision-making under uncertainty, for social learning, and for developing system 

understanding/experimentation (Kelly et al., 2013). The purpose of the model developed in 

this study is to provide for a better understanding of the feedback structure and dynamic 

behaviour of the basin, and to provide a knowledge base in the form a decision support tool 

that would assist water resources management and sustainable agricultural development. The 

approach adopted herein, focuses on both the model development process and an evaluation 

of the participatory process as well as the model outcomes/outputs. Thus, this chapter is 

structured as follows. The study area is already described in chapter 1, and as such, is not 

repeated here. Section 6.2 provides an overview of participatory modelling approach and the 

modelling process. The conceptual modelling results are given in Section 6.3. A discussion of 

the results, implications, and conclusion are provided in Sections 6.4 and 6.5.  
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6.2. Materials and Methods 

6.2.1. Systems Thinking and Participatory System Dynamics Modelling   

Systems thinking approach is a science-based approach of making robust inferences 

concerning the behaviour of a system and developing full insight into the underlying structure 

of a complex system (Richmond, 1994). Systems thinking deals with unknown complexity, 

uncertainty, and mental models, thus providing a framework for holistic thinking (Senge, 

1990; Sterman, 2000). It offers powerful concepts, tools, and techniques to unravel 

complexity and create lasting interventions for chronic socio-economic and environmental 

problems (Simonovic, 2009). These include feedback, stocks and flows, time delays, 

nonlinearities, which are critical building blocks for effective systems thinking and modelling 

(Sterman, 2000; 2002). System dynamics modelling (SDM) approach based on the notion of 

systems thinking (Maani and Cavana, 2007), on the other hand, is a computer-based scientific 

method for studying and managing complex systems that change over time (Ford, 2010).  

 

SDM was originally developed by Professor Jay W. Forrester at the Massachusetts Institute 

of Technology (MIT), in the mid-1950s (Forrester, 1961). Forrester’s work also led to a more 

sophisticated world model by Donella and Dennis Meadows. Their classic book: Limits to 

Growth (Meadows et al., 1972) advanced the application of SDM for a wide range of 

environmental/natural resources and social systems. The approach is grounded in feedback 

control theory and the modern theory of non-linear dynamics (Sterman, 2000). It stresses the 

multiloop, multistate, nonlinear character of the feedback systems in which we live 

(Forrester, 1961). It involves the development of formal models to capture complex system 

dynamics, and to create an environment for learning and policy design using a feedback 

perspective (Forrester, 1961; Sterman, 2000; Barlas, 2007).   

 

Fundamentally, SDM rests on the assumption that time delays, nonlinearities, system 

feedbacks, amplifications, and structural relationships between a system's elements can be 

more significant in determining aggregate system behaviour than the individual components 

themselves (Forrester, 1961; Sterman, 2000). Since its development, SDM has been applied 

to issues ranging from physics to physiology and psychology, from arms races to the war on 

drugs, from global climate change to organisational change (Sterman, 2000). An extensive 

review of SDM applications in water resources systems is provided by Winz et al. (2009). As 

stated in chapter 1, the applicability of SDM approach is largely based on its ability to 
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capture the feedback-effects of systems and characterise temporal processes (Sterman, 2000). 

Compared with the conventional simulation or optimisation models, the SDM approach has 

the advantage of showing how different changes of the fundamental components of the 

system affect the dynamics of the whole system in the future (Xu et al., 2002). It can capture 

feedback-effects, time delays, accumulations, and nonlinearities (Sterman, 2000). These 

model development procedures are designed based on a visualisation process that allows 

modellers to conceptualise, document, simulate, and analyse models of dynamic systems 

(Sterman, 2000; Ford, 2010).   

 

There is a consensus among practitioners and modellers that stakeholders can, or should be 

involved in most steps of environmental modelling (Beall and Ford, 2010; Laniak et al., 

2013; Stave, 2015; Voinov et al., 2016). Thus, and as stated above, the main aim of this 

chapter is to also demonstrate the involvement of stakeholders in the development of the 

dynamic hypothesis, specifically, through the application of participatory modelling (PM) 

approach. In broad terms, PM consists of the participation of diverse interested stakeholders 

in a specified modelling process (Vidiera et al., 2011). According to Stave (2010, p. 2766), a 

“participatory system dynamics modelling is the use of a system dynamics perspective in 

which stakeholders or clients participate to some degree in different stages of the process, 

including problem definition, system description, identification of policy levers, model 

development and/or policy analysis.”  

 

The approach is based on the notion that people who reside and work in a system may be 

better informed about its processes and probably have observed phenomena that would not be 

captured by scientists (Voinov and Bousquet, 2010). According to Beall and Ford (2010, 

p.19), “modellers using the science of system dynamics and the art of facilitation in a 

participatory process can create a nexus of science and social concerns.”  The PM process 

leads to one or more types of system models ranging from qualitative, descriptive visual 

maps or causal loop diagrams that seek to identify the archetype of behaviour, to quantitative 

spatial and or temporal modelling (Beall and Thornton, 2016). It should be noted that PM 

shares similar methodological elements with Shared Vision Planning (SVP) – a computer- 

aided collaborative approach, which has been extensively used for several decades by the US 

Army Corps of Engineers as a tool to address complex water resources management 

problems (see Cardwell, et al., 2009; Creighton, 2010).   
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Many proponents and practitioners of PM approach in environmental decision-making (e.g., 

Videira et al. 2009, 2012; Stave, 2010; Voinov and Bousquet, 2010; Rockmann et al., 2012; 

Carmona et al., 2013; Bellocchi et al., 2015; Voinov et al., 2016) have highlighted several 

benefits of modelling with stakeholders. These include facilitating and structuring discussion 

between scientists and stakeholders, creating an environment for social learning and co-

production of knowledge, building social capital, and increasing the credibility of model 

outputs and legitimacy of management decisions. While the model building process assists 

stakeholders to clarify their own mental models and gain deeper insight into vital scientific 

relationships, jointly developed models also have a great virtue of helping stakeholders with 

problem definition and evaluation of possible management or policy options (Beall and Ford, 

2010). Another great virtue of PM is that it can provide valuable skills to stakeholders, and 

help to bridge important data or information gaps (Voinov et al., 2016). Also, the 

involvement of stakeholders in modelling also provides a platform to integrate natural 

resource science and social issues (Beall and Ford, 2010), as well as scientific and non-

scientific/indigenous knowledge (van den Belt, 2004; Voinov and Gaddis, 2008; Hewitt et al., 

2014; Stave, 2010; Lippe et al., 2011). Among the numerous advantages, the promotion of 

social learning, the co-production of knowledge and development of innovative strategies to 

problems, have possibly been considered the most important outcomes from any participatory 

process (Videira et al., 2010).  

 

However, several issues, including: (1) the multifarious and conflicting views, values, 

perspectives, and interests held by stakeholders concerning the problematic issue and how it 

should be managed and; (2) different disciplinary backgrounds of stakeholders can make the 

PM process difficult (Hedelin, 2007; Voinov and Bousquet, 2010; Stave, 2010; Hare, 2011; 

Carr et al., 2015; Voinov et al., 2016). Also, it may be quite expensive to organise, and can be 

tiring and time-consuming in terms of identifying and bringing expert stakeholders to a joint 

process of problem solving and model building (Voinov et al., 2016). Despite these 

drawbacks, it is the many benefits it provides, particularly its ability to involve key 

stakeholders in the co-construction of dynamic and integrated models, leading to a shared or 

collective view and understanding of persistent complex management problems (such as 

those in the Volta River Basin) that justifies its application here. Further, the lack of 

stakeholder involvement in the planning and decision-making processes in the basin, as 

expressed in recent studies (e.g., Douxchamps et al., 2012; UNEP Volta Project, 2013) 

informs the application of the PM approach in this study.   
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6.2.2. Model Development Process 

Generally, the development of a system dynamics model involves a sequence of iterative and 

interrelated steps (e.g., Randers, 1980, Richardson and Pugh, 1981; Roberts et al., 1983, 

Wolstenholme, 1990, Stave, 2003; Cavaana and Maani, 2007; Barlas, 2007; Simonovic, 

2009; Beall and Ford, 2010; Ford, 2010). There is, however, no standard or best modelling 

process employed by all system dynamic modellers. Although the specifics differ between 

processes, there is general agreement on some key steps. In this study, the modelling steps 

proposed by Sterman (2000) were followed (see Table 6.1): It should be noted, though, that 

the process is flexible; hence, one does not need to strictly follow the depicted sequence in 

Table 6.1. Indeed, the process is iterative and, in many cases, imposed by several 

considerations such as the project context, time, available resources, the needs of the 

stakeholders, and the preference of the modeller (Beall and Ford, 2010; Beall and Thornton, 

2016). Parts of step 1- that is the problem, and the identification of the key variables and 

concepts are covered in chapters 1 and 5, respectively. Thus, this chapter specifically focused 

on step 2.  

The remainder of the modelling process is addressed in chapter 7, where the dynamic 

hypothesis is translated into a formal computer-based simulation model, allowing alternative 

policy scenarios to be designed, analysed, and compared. The end-product of the efforts in 

this chapter is, therefore, a dynamic hypothesis or a conceptual model – that is a qualitative 

model in the form of a causal loop diagram (CLD), which captured the feedback structure of 

the VRB, showing the cause-effect relationships and feedback loops between the important 

variables (Sterman, 2000; Barlas, 2007). A dynamic hypothesis is a ‘conceptualisation of the 

causal relationships, feedback loops, delays, and decision rules that are believed to produce 

system behaviour’ (Kelly et al., 2013, p.164). It is “a working theory of how a particular 

problem came about” (Sterman, 2000, p. 95).    

According to Sedlacko et al. (2014), CLDs are perhaps the most utilised system visualisation 

and communication or modelling tools for dealing with environmental problems. CLDs based 

on the principles of systems thinking and system dynamics are powerful tools because they 

assist in conceptualising how different systems structures and understanding how different 

variables interconnect. They visually represent the feedback loops among the various 

components of the system under study (Hassanzadeh et al., 2014). In addition, CLDs can be 
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used to formulate preliminary causal hypothesis of the problem under study as well as to 

simplify the illustration of a model (Sterman, 2000; Coyle, 2002).  

 

Table 6.1: Steps of the modelling process (Adapted from Sterman, 2000, p. 86) 

1.Problem Articulation 

(Boundary selection) 
• What is the problem? Why is it a problem?  

• Theme selection: what are the key variables and concepts one must consider?  

• Time horizon: How far in the future should one consider? How far back in 

the past lie the roots of the problem?  

• Dynamic problem definition (reference modes): what is the historical 

behaviour of the key concepts and variables? What might their behaviour be 

in the future?   

2.Formulation of 

Dynamic Hypothesis 
• Initial hypothesis generation. What are current theories of the problematic 

behaviour? 

• Endogenous focus: Formulate a dynamic hypothesis that explains the 

dynamic as endogenous consequences of the feedback structure 

• Mapping: Develop maps of casual structure based on initial hypothesis. Key 

variables, reference modes, and other available data, using tools such as    

Model boundary diagrams, Subsystem diagrams, Causal loop diagrams, 

Stock and flow diagrams, Policy structure diagrams, and other facilitation 

tools.   

3.Formulation of 

Simulation model  
• Specification of structure, decision rules. 

• Estimation of parameters, behavioural relationships, and initial conditions.  

• Testing for consistency with purpose and boundary.   

4. Testing the model  • Comparison to reference mode: does the model reproduce the problem 

behaviour adequately for your purpose?  

• Robustness under extreme conditions: does the model behave realistically 

when stressed by extreme conditions?  

• Sensitivity analysis: How does the model behave given uncertainty in 

parameters, initial conditions, model boundary, and aggregation?  

5.Policy Design and 

Evaluation for 

improvement    

• Scenario specification 

• Policy design: What new decision rules, strategies, and structures might be 

tried in the real world? How can they be represented in the model?   

• “What if” analysis: what are the effects of the policies? 

• Interaction of policies: do the policies interact? Are there synergies or 

compensatory responses?    

 

CLDs comprise of words and arrows with appropriate polarity, depicting combinations of 

positive and/or negative causal relationships. A positive (+) causal relationship indicates that, 

other things being equal (Ceteris paribus), an increase/decrease in model Variable A would 

result in an increase/decrease in model Variable B. In other words, the polarities change in 

the same direction. A negative (-) causal relationship means that an increase/decrease in 

model Variable A will lead to a decrease/increase in model Variable B (i.e., the polarities 

change in opposite direction). A combination of positive and negative causal relationships 

gives rise to the system’s feedback loops. The notion of ‘feedback loop’ implies that at least 

two unidirectional cause-effect relationships connect two or more system components, thus, 

representing circular causalities (Le et al., 2012). Feedback loops can be described as 

reinforcing (or positive) or balancing (or negative) feedback loops (Sterman, 2000). Positive 
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feedback loops accelerate change within systems, which can result in a rapid growth or 

decline (Simonovic, 2009).  On the other hand, negative feedback loops counteract or oppose 

change and display goal seeking behaviour. This type of feedback loop “is characterised by 

trends of growth-decline or decline-growth (oscillation around the equilibrium point)” 

(Goheri et al., 2013, p. 27).   

 

CLDs are used as the modelling tools in this study, because of their ability to show cause-

effect relationships between a set of variables, issues, and problems that characterise a 

dynamical system through a simple graphical structure (Sterman, 2000). Also, the ability to 

model feedback and delay processes present a distinct advantage of CLDs over the other 

visualisation tools such as Bayesian network modelling for example, which is inherently 

acyclic, and thus unable to handle feedback structure of systems (Molina et al., 2010; Kelly et 

al., 2013). In addition, the focus on identifying and modelling feedback loops promotes 

closed-loop thinking (i.e., thinking in terms of interdependent variables rather than linear and 

uni-directional relationships) (Richmond, 1993). In addition, CLDs appear to be ideal for 

problem scoping and model conceptualisation (Videira et al., 2010), which is the case in this 

chapter. Further, due to their graphical nature, CLDs can easily be understood by non-

technical users, thus making it the ideal modelling tool in a participatory setting.   

 

6.2.2.1. Developing the Dynamic Hypothesis/Conceptual – The CLD   

As already stated, the following process in this study followed the steps presented in Table 

6.1, although it also drew from some examples of participatory modelling processes 

conducted in environmental systems in recent years (e.g., Videira et al., 2012; Inam et al., 

2015) and guidelines suggested by Voinov and Bousquet (2010) and Argent et al. (2016). 

However, most of the activities took place in a workshop setting. Thus, the participatory 

aspect in this study was structured into 5 key activities (see Figure 6.1). This comprise: (1) 

preparatory activities; (2) participatory modelling workshop; (2) mental modelling and 

construction of the CLDs; (4) digitising the CLDs using Vensim; and (5) evaluation of the 

PM process and outcomes/outputs. Each stage is further decomposed into several key 

activities that guided implementation of the overall process. Some may reasonably argue that 

these specific activities ought not to be reported. However, as Rahmandad and Sterman 

(2012, p. 397) recently advised, “modellers need to document their work in such a way that it 

is fully reproducible by others.” Seidl (2015) recently re-echoed similar concerns. This level 
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of documentation and transparency, according to Laniak et al. (2010), is necessary to 

facilitate quality assurance and peer review.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 6.1. Iterative stages of the participatory modelling workshop within the Volta River Basin 

 

6.2.2.1.1. Problem definition 

As part of the problem definition, a scoping review was performed to understand the context 

of the study and its underlying problem issues. Specifically, this task involved literature 

review, definition of the spatial and temporal scale (i.e., the model boundaries), selection of 

time horizon, identification of key variables, dynamic problem definition (reference modes), 

Feeding 

Problem definition 

Behind the scenes (prior to model building 

workshop) 

• Literature review & problem definition 

• Stakeholder analysis and identification  

• Conduct exploratory interviews 

• Send out invitations for modelling workshop 

• Prepare for the workshop: meeting place, 

space & materials (e.g., computer, projector, 

flipcharts, butcher sheets, pens, markers). 

 

1st participatory modelling workshop 

(morning session) 

• Establish ground rules  

• General introduction: Getting to know each 

other 

• Presentation of research aim & objectives 

(by lead Author) 

• Introduction to system thinking, system 

dynamics modelling methodology, Causal 
Loop Diagrams (CLDs) & VENSIM 

Software. 

Stage 1 Stage 

2

 

Mental modelling process and construction 

of individual CLDs (afternoon session) 

• Composition of sub-working groups based 

on stakeholder professional discipline  

• Explore mental models of participants & 

elicit the key drivers, issues, and processes 
in the Volta River basin system 

• Participants work in small groups to develop 

individual CLDs capturing the key drivers 
and issues on butcher sheets and report back 

to the whole group. 

 

Digitising and merging of CLDs (by lead 

author) 

• Digitise the individual CLDs  

• Combine individual CLDs to form one 

complete integrated conceptual model (CLD) 

for the VRB. 

 

 

2nd workshop (one week after first workshop) 

• Simulation model development (see results as 

presented in chapter 7) 

• Present complete conceptual model (CLD) to 

stakeholders 

• Analysis and identification of feedback loops, and 

leverage points 

• Completion of evaluation questionnaires 

• Conclusion, review, and follow up activities. 

 
 

Feeding 

Feeding 

Feeding 

Stage 3 Stage 4 

Stage 5 
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and identification of the stakeholder groups (Sterman, 2000; Ford, 2010).  Reference modes 

consist of a set of graphs and other descriptive data indicating the historical and dynamic 

behaviour of the main system variables or challenges over time (Sterman, 2000). If possible, 

there should be accessible (quantitative) historical information and data for the graphs as far 

back in time as you decide to look ahead (Rander, 2013). They can represent either past or 

future behaviour of the system (Simonovic, 2009). Nevertheless, reference modes can be 

drawn in a rough manner without reference to exact observed or time series data (Sterman, 

2000; Maani and Cavana, 2007).   

 

An important purpose of generating the reference modes is that they are used as a reference in 

step 6 to test whether the simulated model outputs adequately replicate the reference modes 

or observed behaviour of the system (Sterman, 2000; Stave, 2003; Ford, 2010). If they do, 

then confidence is gained in the performance of model, implying that it can be used for policy 

design and analysis (Sterman, 2000; Stave, 2003; Barlas, 2007; Ford, 2010).  As stated above, 

the model boundaries and the time horizon have already been defined in chapter 1 – 

specifically in Section 1.5. Through a combination of literature review and expert stakeholder 

interviews, the identification of the key variables has also been carried out and, the results, as 

presented in chapter 5 showed that issues such water availability and demand, population 

growth, land use change (crop land area), crop yield were deemed to be the critical variables 

characterising the dynamic problem of the basin. Accordingly, a graph indicating the 

dynamic pattern and behaviour of these central variables in recent years is depicted in Figure 

6.2. They were constructed based on available historical data.  

 

In general, the graph shows total population increased steadily. Agricultural water demand 

has also increased from 2000; however, it has levelled off since 2007. Cropland area grew 

rapidly from 2000 to 2006. It then reached equilibrium until 2007, when it began to rise 

again. Although crop yield slowly trended up, it started to level off since 2010. Moreover, 

crop yield rise is not fast enough to keep up food demand.  Indeed, several studies confirm 

that current overall agricultural productivity is low, with cereal import dependency ranging 

from 10 to 50% (Lemoalle, 2009; Terrasson et al., 2009; Kolavalli and Williams, 2016). As a 

result, projections of future income growth and poverty reduction efforts are more uncertain 

(UNEP Volta Basin Project, 2013; Williams et al., 2016). The behaviour of these key 

variables creates an archetypical example of a system with potential for evolving threat, 

which poses several challenges from the standpoint of production and sustainable 
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development in the basin. In sum, there is some evidence of a long-term problem with 

potential unanticipated side effects. If this is to be avoided, managers and decision-makers 

need a systemic understanding of the issues and problems so that they can respond with the 

appropriate strategies and solutions. Participatory system dynamics modelling provides such 

an approach.  
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Figure 6.2: Reference modes of key variable of the VRB over 10-year time horizon  

 

6.2.2.1.2. Stakeholder analysis, identification, and invitation 

Participation in a PM process ‘can never be all-inclusive’ (Voinov et al., 2016). Thus, the 

identification and selection of participants are important regarding the transparency, 

representativeness, and legitimacy of the PM process (Reed et al., 2009; Mathevet et al., 

2014). In general, there is no standard method for identifying and selecting a sample of 

stakeholders for a PM process (Voinov and Bousquet, 2010; Drescher et al., 2013). 

According to Voinov and Bousquet (2010), whichever method one adopts, efforts should be 

made to include different group of stakeholders that represent a diversity of interest and 

background. As a register of qualified stakeholders was unavailable in the VRB, multiple 

techniques including, ‘snowball sampling’ or ‘chain referral’ (Lewis-Beck et al., 2004), web-

based searches, and a review of literature were employment to develop a sampling frame 

containing a pool of potential stakeholders.  
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To minimise sampling bias and the marginalisation of stakeholder groups (Reed et al., 2009; 

Voinov et al., 2016; Drescher et al., 2013), a purposive sampling technique was then used to 

select a group of stakeholders from the pool based on their professional standing, prolonged 

years of experience through research or practice (i.e., more than 10 years) and their likely 

ability to discuss problems of the basin with a strategic basin-wide perspective. The selection 

process was designed to ensure that a range of stakeholders from the natural science and 

social science backgrounds (i.e., traditional scientists) and local farmers (i.e., non-traditional 

scientists) (Perera et al., 2012, as described in chapter 5) were represented. Participants did 

not need to have any modelling aptitude or experience. Overall, a pool of 44 potential 

stakeholders were identified and were subsequently contacted via phone and email for a 

preliminary/exploratory interview.       

 

6.2.2.1.3. Exploratory Interviews 

One month prior to the modelling workshop, an exploratory interview was conducted with 

the 44 selected stakeholders. The exploratory interviews served as a useful tool for building 

rapport with the stakeholders and explaining the participatory process in more detail before 

the modelling workshop (Videira et al., 2009, 2011). Furthermore, these interviews permitted 

us to gather relevant background information about the participants and offered a point of 

departure for suggesting issues that could be addressed during the workshops (Videira et al., 

2009). This background information was essential in deciding who to invite for the model 

development workshop and also ensuring equal representation in terms of gender, areas of 

discipline, and expertise. Results from the interviews indicate that six of the participants had 

an idea of system dynamics modelling but only two had experience in participatory 

modelling workshop elsewhere in Africa.  During the interviews, an invitation was extended 

to each participant to participate in the modelling workshop.   

 

6.2.2.1.4. The Participatory Modelling Workshop 

Out of the 44 stakeholders interviewed and invited, 27 participants from different 

organisational affiliation reported for the modelling workshop (see table 1). The model 

building workshop was conducted on June 14th and 21st, 2014 (i.e., in 2 full days).  The lead 

author facilitated the workshop with assistance from an outside consultant (Dr Oscar 

Yawson) from the University of Cape Coast, Ghana. Together, we kept track of the 
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exchanges between the participants and helped to explain the modelling process to the 

participants.   

 

We also ensured that the modelling process followed standard scientific practice and 

objectivity (Voinov and Bousquet, 2010). We started with an “ice breaker” during which 

participants got to know each other and the facilitators. After establishing the grounds rules 

for the day, the participants were given a brief introduction to the general objectives of the 

research, the principles, methods and objectives of the modelling process, and system 

dynamics approach in general. We also introduced the participants to the Vensim modelling 

software version 6.4 from Ventana Systems, Inc.  (http://www.ventanasystems.com/) and its 

function.  The introductory session also provided an opportunity for the facilitators to discuss 

the scope and boundaries established for the study. The reference modes constructed and 

depicted in Figure 6.2, were also presented to the stakeholders to confirm whether they were 

logically consistent with their mental models. Overwhelmingly, they confirmed that the 

trends conformed with their experiences.    

 

Table 6.2: Workshop participants and organisational affiliation (N =27) 

Types of organisation represented   Number of participant 

Government institutions 7 

NGO and civil society 9 

Research and academic institutions 4 

Private and consulting firms  1 

Local farmers and their agents  4 

Other  2 

Total  27 

 

6.2.2.1.5. Mental Modelling Process and Construction of the CLD  

Having introduced the participants to modelling process, the rest of the day was devoted to 

developing the conceptual models (i.e., the CLDs). The workshop participants were placed 

into one of four groups, based on their research interests representing: the 

biophysical/environmental sub-sector; the socio-demographic sub-sector, the economic and 

policy sub-sector. Each group composed of at least 6 members. Stakeholders were asked to 

reflect on their mental models and brainstorm about the key drivers, issues, factors, and 

processes affecting the sustainability of the VRB. As the father of system dynamics, Jay W 

Forrester indicated, the most important source of information, both in quantity and 

significance for the modeler, is the mental database of individuals (Forrester, 1994). Thus, 

http://www.ventanasystems.com/
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focusing on mental models helped the modeller/researcher and the participants understand the 

different worldviews. The guiding questions that prompted the brainstorming exercise were:       

✓ What do you think are the main drivers, factors, and processes that influence water 

resource management and agricultural development in the Volta River Basin? 

✓ What are the impacts/consequences of the drivers and factors?  

✓ What strategies are required to enhance sustainable water resource management and 

agricultural development?    

 

These questions are similar to the main research question used in chapter 5, except that they 

are unstructured. The ideas that emerged from the mental modelling were collected using 

flip-charts and post-it notes. Many of the issues, problems, and drivers identified were largely 

consistent with those identified and described in chapter 5 as part of the problem definition or 

familiarisation process. Butcher sheets and large sheets of papers were provided to each sub-

group to develop their individual CLDs showing the cause-effect relationships between the 

system drivers and processes. The sub-groups operate mostly in parallel, punctuated by 

plenary sessions, to enable adequate creativity and divergent thinking concerning the relevant 

issues throughout the workshop (Metcalf et al., 2010). However, each group selected a 

rapporteur who took notes and reported the results achieved to the whole group in a plenary 

session. Overall, the model building exercise was straightforward and stakeholders kept 

amending their CLDs until all members in their groups were satisfied that they had built a 

simple model representing their mental map in the form of causal linkages. In the end, each 

group presented their results to the plenary, generating a lively and informative discussion.    

 

6.2.2.1.6. Digitising and Merging Individual CLDs 

After the first workshop, all the individual CLDs were digitised and merged by the lead 

author using Vensim modelling software (http://www.ventanasystems.com/). The merging 

process started with the most comprehensive model, which in this case was the economic and 

policy sub-model (Figure 6.4). After one week, the digitised preliminary CLDs and the 

merged (integrated) model were presented back to the stakeholders during the second 

workshop for further evaluation, refinement, and validation. During this process, the 

stakeholders were reminded to focused on the most important factors and processes while 

striking a balance between model comprehensiveness and simplicity so as avoid creating an 

unnecessarily complex model that could have a high cost in terms implementation (e.g., high 

http://www.ventanasystems.com/
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costs of data input, a lengthy cycle of model development, and difficulty in application by the 

decision-makers) (Le et al., 2012). For example, it was agreed by all stakeholders to drop 

‘agricultural production’ as variable from the model, and instead use ‘crop yield’ since they 

considered this to be more specific and definitive.  Stakeholders also agreed to focus on 

surface resource water availability instead of combined ground and surface water availability 

as captured in the biophysical/environmental sub-model (Figure 6.3) because it is the first 

choice to meet all water demands while groundwater is used when surface water supply is not 

available (Barry et al., 2005).    

 

Because of the stakeholder evaluation, not all factors contained in the individual CLDs (e.g., 

availability of arable land) made it into the final integrated model (CLD) as there was a 

consensus among the stakeholders that the basin’s problems could be explained without those 

factors.  Finally, the merged/integrated model went through a little more refinement process 

until all participants were satisfied the developed model had met certain important criteria 

concerning its realism, flexibility to respond to changing management needs, clarity, ability 

to reproduce historical patterns, and ability to generate useful insights (Homer and Hirsch, 

2006; Jackman et al., 2006; Bellocchi et al., 2015). For example, the clarity of the model, its 

credibility, and whether it realistically represents the VRB was assessed through thorough 

visual inspection (Hewitt et al., 2014) of the outputs with the stakeholders to ensure that the 

key components (such as the description of the variables, the model polarities, the causal 

relationships, and the resulting feedback loops) were not ambiguous. The model’s ability to 

reproduced historical patterns was inferred by cross-checking the behaviour of certain key 

variables (e.g., population, crop yield, water demand, and precipitation variability) with 

observed trends that have been described elsewhere in the literature (e.g., Barry et al., 2005; 

Lemoalle, 2009; UNEP-GEF Volta Project, 2013).    

 

It is, however, important to mention that the robustness and performance of the model in 

terms of how accurately it replicates the major behaviour patterns can be comprehensively 

evaluated once it has been quantified and simulated with reliable observed/historical data 

(Sterman, 2000; Bellocchi et al., 2015). The simulation model development, stock and flow 

construction, and parameterisation, started with stakeholders but stakeholders run out time. It 

was subsequently, refined and completed by the researcher/modeller and evaluated 

individually by few stakeholders. The formal numerical simulation model of the conceptual 

model is developed in chapter 7. At the end of the second workshop, an evaluation was 
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conducted with the stakeholders to solicit their views on the modelling process and the model 

outputs. Detail results from the evaluation process as well as the insights and lessons learned 

gained from the process are presented in chapter 8.       

 

6.3. Results 

6.3.1. Biophysical/Environmental Sub-model  

The CLD representing the biophysical/environmental domain is shown in Figure 6.3. 

Stakeholders within this domain have identified 20 drivers of change or issues. The model 

was constructed around the issues of climate change, available surface water, total 

agricultural production, and crop yield.   
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         Figure 6.3. CLD of biophysical/environmental sub-model 

 

6.3.2. Economic and Policy Sub-model 

The economic and technology sub-model is depicted in Figure 6.4. The model consists of 23 

variables. Overall, the economic and policy sub-model appears to be underpinned by five 
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fundamental drivers and factors:  water availability, crop yield, agricultural production, farm 

income, and use of fertilizer. Compared to the biophysical sub-model, stakeholders in this 

domain also identified the issues of climate change, land use change, use of fertilizer, 

agricultural production, crop yield, and water availability as crucial, and thus, incorporated 

them in their model.  
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            Figure 6.4. CLD of economic and policy sub-model 

 

 

6.3.3. Socio-demographic sub-model   

The CLD representing the socio-demographic sub-sector is depicted in Figure 6.5. 

Stakeholder in this domain identified 16 drivers or issues. However, the model was built 

around the issues of total population, food availability, agricultural production, poverty level, 

malnutrition, and socio-economic marginalisation. Between the socio-demographic group and 

the economic and policy group, the issues of total population, and tenure security appear to 

be paramount.  
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                   Figure 6.5. CLD of socio-demographic sub-model 

 

6.3.4. Integrated Conceptual System Model    

The merged system model (CLD) that integrates the biophysical/environmental, socio-

demographic, economic and policy sub-models of the VRB is shown in Figure 6.6. Overall, 

46 variables are involved, which are connected to each other by 85 arrows (links). The 

interconnections produced 21 feedback loops comprising: 14 reinforcing (positive) feedback 

loops and seven balancing (negative) feedback loops, indicating the complex systemic 

feedback structure that determines the dynamics behaviour of the basin. Given this 

complexity, 15 feedback loops (highlighted) are selected for in-depth discussion, because 

they capture the key structural elements of the conceptual model and have important 

implications for water resources management and agricultural production.  

 

Loop R1 illustrates the interdependence between total population, labour inputs, crop yield, 

and available food. According to the mental model of the stakeholders, total population after 

a delay leads to an increase in labour force, and consequently, crop yield growth. As crop 

yield increases, it leads to food availability and population growth is reinforced.  



111 
 

                
Figure 6.6: Integrated Conceptual model of the Volta River Basin. (“+”) indicate a positive link; (“–”) indicates negative link. (R) denotes a Reinforcing (or 

positive) loop; (B) denotes a Balancing (or negative) loop.  \\ (delay marks) on the arrows denotes time delay perceived to be relevant to the dynamics of the system.      
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Loop R1 is counteracted by an important balancing loop (loop B1) which illustrates that population 

pressure will eventually feedback to limit the amount of food available to the population.  The 

model also portrays total population as a direct function of mortality, and emigration from the basin 

which is determined by social conflicts.  Further, total population increases water demand, which 

causes a reduction in the available surface water resources, which in turn, has a direct influence on 

crop yield and the process loops forward to influence available food and total population (loop B2).   

 

The conceptual model also illustrates that investment in water infrastructure (e.g., expansion of 

reservoir capacity) is an important issue to the stakeholders as it is assumed to lead to a more 

desirable outcome (i.e., surface water availability). Specifically, the more water infrastructure 

investments, the more available water for various purposes and, consequently, the less water use. 

On the other hand, increased water demand increases more expansion in reservoir capacity (loop 

B3). However, expansion of reservoir capacity is also seen as a function of funds for investments, 

which in turn, is a product of donor/external financial support driven by good institutional 

arrangements, legal framework, and good governance. However, it is also evidenced that water 

availability is influenced not only by infrastructure investment but also by the amount of 

precipitation (rainfall) and changes in surface run-off, which stakeholders conceived as outside their 

control. 

      

Precipitation is intermittent in the VRB, and the amount of rainfall, when it occurs, depends largely 

on temperature and climate variability and change (UNEP-GEF Volta Project., 2013; McCartney et 

al., 2012; Sood et al., 2013; Awotwi et al., 2015). From the perspective of the stakeholders, as 

climate changes, several direct influences alter precipitation amount, intensity, frequency, and type. 

High precipitation variability accelerates run-off, and thus, soil erosion. Increased erosion leads to 

higher rate of land/soil degradation which over time increases the intensity of land use/cover change 

and consequently climate change is reinforced (loop R9). Also, within the conceptual model, land 

use/cover change increases the rate of deforestation, and, therefore, land/soil degradation thereby 

causing more and more land to be used and exploited over time (loop R10). The combined effect of 

soil erosion and land/soil degradation creates persistent decline in soil fertility (soil nutrient stock), 

which according to the stakeholders is being augmented by the widespread use of chemical 

fertilizers. However, the use of fertilizer is determined by access to credit and the availability of 

production subsidies both of which are functions of steady agricultural policy support. The ripple 

effect of fertilizer use is the emergence of several positive feedback loops, where its applications 

increases soil fertility and consequently crop yield.   
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Crop yield growth leads to increased net-farm income which in turn encourages more use of 

fertilizer to improve soil quality (loop R3). Also, higher net-farm income means a reduction in 

poverty levels, and hence, more ability to purchase chemical fertilizer and the process feeds back to 

affect soil fertility, crop yield, and net-farm income (loop R4). Further, high crop yield and net- 

farm income imply increase food availability, which then causes a reduction in malnutrition levels, 

although this trigger yet another reinforcing loop (R2), where more food stimulates higher 

population growth, which, in turn, influences total labour force and demand for water resources.     

 

Other important feedback loops worth focusing attention on are loops R5, R6, R7, and R8. 

Together, these loops show the reinforcing effects of market access, net-farm income, and level of 

education. Within the model, it is hypothesised by the stakeholders that access to market is induced 

by investment in road and transportation infrastructure, which leads to more net-farm income, less 

poverty, and further market access (loop R5). Market access also depends on the educational level, 

and access to information and technology by the population and their interaction with poverty level 

and access to education result in the formation of two important positive feedback loops (R6 and 

R7). Finally, the issues of poverty and social conflict and their dynamic feedback effect is aptly 

recognised and depicted in the conceptual model by the system stakeholders. Specifically, socio-

economic marginalisation leads to an increase in poverty levels, which cause a rise in social 

conflicts (mainly land and chieftaincy disputes). As conflicts rise, poverty is reinforced (Loop R8). 

It is, however, important to stress that mitigating social conflicts will depend on the strong 

institutional arrangements, effective legal framework, and good governance (Agyenim, 2011; Mul 

et al., 2015; Williams et al., 2016). 

 

Overall, the reinforcing feedback loops indicate sources of growth, erosion, and collapse in the 

system. On the other hand, the balancing feedback loops point to areas of trends of growth-decline 

or decline-growth (i.e., oscillating around the equilibrium point) (Sterman, 2000; Gohari et al., 

2013). They reduce the pressure on the water resources system, and, therefore, contribute to 

agricultural sustainability within the river basin. In the following sections, the role of systemic 

feedback effects and leverage points in relation to policy and management are discussed.       

 

6.4. Discussion  

6.4.1. Systemic Feedback Effects and Leverage Points    

In this paper, a qualitative conceptual model was developed to enhance a shared and holistic 

understanding and management of water resources and improve agricultural development in the 
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VRB. The integrated conceptual model developed here differ from other science based-models in 

that it is not linear, rather, it is cyclical, considering the complex non-linear feedbacks between the 

critical suite of biophysical, socioeconomic, policy, and institutional processes that determine the 

structure and behaviour of the basin. The model indicates that the feedback structure of the basin is 

governed by available ground and surface water resources, climate variability and change, total 

population, soil fertility, crop yield, and poverty level. However, it is the resulting feedback loops 

from the interaction among these key drivers and several other factors that are of paramount 

importance for this study.   

Feedback loops govern the dynamic behaviour of the system and are regarded as the main ‘engine’ 

of change for the system (Barlas, 2007; Sterman, 2012). Understanding these governing feedback 

loops can provide insights into the structure and functioning of the basin, and the identification of 

leverage points for strategic decision-making. The conceptual model shows that the feedback 

structure and behaviour of the VRB is dominated by positive feedbacks (reinforcing loops) rather 

than negative feedbacks (balancing loops). These feedback loops reside in the biophysical, socio-

demographic, and economic and policy domains within the system. This supports the long-held 

view that society, economy and natural environment are connected through feedback mechanisms 

(Liu et al., 2015b; Steffen et al., 2015). The dominant of positive feedbacks indicates that there are 

more sources of growth, erosion, and collapse in the system, which implies that if management does 

not take action the system is likely to run “out of control.”   

From management and policy perspective, the conceptual model and the controlling feedback loops 

provide hints concerning action (leverage) points to sustainably manage the system. Leverage 

points are the “right places in a system where small, well-focused actions can sometimes produce 

significant, enduring improvements” (Senge, 2006, p. 64). According to Meadows (1999) leverage 

points range from physical elements in the system (e.g., constants and parameters, structure of 

material stock and flows, time delays), to feedback control interventions (e.g., strengthening 

balancing loops, weakening reinforcing loops, sharing information between the different parts of the 

system) to fundamental levers (such as rules of the system, self-organisation of the systems 

structures, system’s goals and paradigm. In the VRB system, leverage points lie in reducing the gain 

around a positive loop while simultaneously improving the self-correcting abilities of the system 

(i.e., its resilience). For example, as a strategy, the stakeholders suggested that population growth 

control has the ability of slow down agricultural land expansion, which is creating the referencing 

process regarding land use change, deforestation, and land/soil degradation or soil erosion (loops 

R9 and R10). This could also contribute to weakening some balancing loops (e.g., B5 and B6), 

which are limiting loops in the conceptual model.  
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In addition, the stakeholder suggested that population control while investing in water infrastructure 

(loop B3), such as reservoir development and expansion, could contribute to water resource 

availability for agricultural production while reducing the pressure on the water resources (water 

demand). Stakeholders also raised concerns about the increasing problem of land or cropland area, 

which, as depicted in Figure 6.6, is causing land use change and deforestation. They therefore 

suggested the implementation cropland expansion and control measures to address it. These 

proposed strategies have tested as part of the policy design and analysis (step 8) in the simulation 

model in chapter 7 to determine their effect on various water demands and agricultural productivity.    

Another action point identified by the stakeholders is strengthening the institutional arrangements 

and the governance systems, which the they believe could attract more external funding into the 

system, thereby improving the balancing loop underpinned by water investments, demand loop and 

water availability (loop B3). Good governance and institutional arrangements according to our 

stakeholders could also contribute to reduce the gain around the loop that is reinforcing poverty and 

social conflicts (loop R8) as well as strengthening tenure security and property rights. Further, as 

agricultural production is the mainstay of the basin economy (Mul et al., 2015; Williams et al., 

2016), the system stakeholders believe sustainable intensification offers a practical leverage point 

towards the goal of producing more food with less impact on the environment. Finally, the process 

has demonstrated that stakeholders from diverse backgrounds and knowledge domains can work 

together to develop an integrated model that contributes to an understanding of the system structure 

and behaviour. Therefore, the participants agreed that sharing information (i.e., information flow) 

between different parts of the system and among the system stakeholders is an important leverage 

point to improve understanding of the system’s problems, and consequently, the design of 

sustainable and integrated strategies to address the challenges.   

Taken together, the conceptual model as developed by the system stakeholders illustrates three key 

points: (1) that the number of factors, drivers, and process and interactions between them is 

complex and dynamic; (2) that the important feedback processes exist that influence the ability of 

the system to move towards a sustainable trajectory; and (3) that individual drivers can 

simultaneously have positive and negative consequences and loops. Therefore, management 

decisions would benefit from considering the interaction between the different components of the 

system and the non-linear feedback-effects and dynamics and their implications for water resource 

management and agricultural production within the basin. 
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6.4.3. Caveats 

The entire modelling process was based on simple cost and time-effective approach, which can be 

replicated in developing countries. Given the paucity of participatory system dynamics modelling 

efforts in Africa, this paper could inspire more research on participatory modelling within the basin 

and beyond. It is, however, important to note that the model outputs (the CLDs) are mental 

constructs (models) of the VRB system as perceived by the stakeholders who were engaged in the 

modelling process. As such, the integrated model (CLDs) reflects the biases and assumptions of 

those stakeholders who were involved in its development. Also, as a conceptual model, it should be 

a ‘dynamic hypothesis’ of the structure and functioning (Sterman, 2000; Gupta et al., 2012; Kelly et 

al., 2013) of the VRB system. As noted by several scholars (e.g., Richardson, 1996; Sterman, 

2000), the dynamic behaviour of a complex system cannot be fully understood from a purely 

causal-descriptive (qualitative) model perspective. Thus, in chapter 7, a numerical simulation of the 

key feedback loops was performed and alternative long-term policies and management scenarios 

evaluated and compared.      

 

6.5. Conclusions   

The overarching purpose of this study was to develop an integrated qualitative, conceptual system 

dynamic model that can be used to understand the feedback structure and behaviour of the VRB 

system as well as a decision support tool to assist sustainable water resources management and 

agricultural development.  Toward this end, a PM approach, based on the principle of system 

thinking and system dynamics was employed. Within this approach, CLDs were used as system 

visualisation tools to capture the non-linear causal relationships between the biophysical, socio-

economic, social, and policy factors and processes inherent in the basin, resulting in the 

identification of the key feedback loops and leverage points.  

 

The developed integrated model indicated that the VRB system is governed by several feedback 

processes, including seven balancing (negative) feedback loops and 14 reinforcing (positive) loops, 

concluding that the system is dynamically complex. However, positive feedback loops dominate the 

dynamic behaviour of the basin. Based on the numerous governing feedback loops, several number 

of leverage points comprising; investment in water infrastructure (e.g., reservoir expansion); land 

expansion control; population growth control; strengthening the institutional arrangements; and 

sharing of information among managers of the constituent parts of the system were proposed as key 

strategies that can help improve the function and sustainability of the basin.   
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An evaluation of the modelling process and the model outputs/outcomes from the perspective of the 

stakeholders showed that the process and the resulting model outputs have contributed to a better 

understanding of the feedback structure and function of the basin. Stakeholders also thought that the 

developed integrated model is realistic enough to be used it as a simple tool to support making 

management decisions. However, it is imperative to mention that dynamic behaviour of a complex 

system such as the VRB cannot be comprehensively assessed based on a qualitative (conceptual) 

model. As such, in chapter 7, a numerical simulation of the key feedback loops was carried out with 

observed/historical data and alternative long-term policies and management scenarios evaluated and 

compared over a desired time horizon.    
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CHAPTER 7: A SYSTEM DYNAMICS SIMULATION MODEL FOR SUSTAINABLE 

WATER RESOURCES MANAGEMENT AND AGRICULTURAL DEVELOPMENT IN 

THE VOLTA RIVER BASIN, GHANA3   

Abstract 

In a rapidly changing water resources system, dynamic models based on the notion of systems 

thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key 

system variables over time. In this paper, an integrated system dynamics simulation model was 

developed using a system dynamics modelling approach to examine the feedback processes and 

interaction between the population, the water resource, and the agricultural production sub-sectors 

of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for 

policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and 

as a decision support tool for exploring plausible policy scenarios necessary for sustainable water 

resource management and agricultural development. Structural and behavioural pattern tests, and 

statistical test were used to evaluate and validate the performance of the model. The results showed 

that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis 

also indicated that the model is reliable and robust to uncertainties in the major parameters. 

Results of the business as usual scenario showed that total population, agricultural, domestic, and 

industrial water demands will continue to increase over the simulated period. Besides business as 

usual, three additional policy scenarios were simulated to assess their impact on water demands, 

crop yield, and net-farm income. These were the development of the water infrastructure (scenario 

1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that 

scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model 

results could help inform planning and investment decisions within the basin to enhance food 

security, livelihoods development, socio-economic growth, and sustainable management of natural 

resources. 

 

Keywords: Agricultural production; feedback loops; system dynamics modelling; River basin; 

scenarios analysis; systems thinking   

 

                                                
3 This chapter has been published as: Kotir, H.J., Smith, C., Brown, G., Marshall, N. and Johnston, R. (2016). A 

System Dynamics Simulation Model for Sustainable Water Resources Management and Agricultural Development in 

the Volta River Basin, Ghana. Science of the Total Environment 573, 444–457. DOI: 

http://dx.doi.org/10.1016/j.scitotenv.2016.08.081.   
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7.1. Introduction 

Global water assessments indicate that multiple countries are confronted with water scarcity as a 

critical problem to socio-economic development. By 2030 more than a third of the world population 

will be living in river basins that will have to adapt to high water stress, including countries and 

regions that influence global economic growth (Water Resources Group, 2009). Currently, 

management at the river-basin scale, particularly in developing countries, has become increasingly 

challenging due to the complexities arising from the functioning of hydrological cycles, socio-

economic factors, diverse stakeholder perspectives, needs, values, and concerns associated with the 

use of water for various purposes (Gain and Giupponi, 2015; Martin et al., 2016). In particular, 

complex interactions and dynamic feedbacks between socio-economic and environmental systems 

make it difficult to understand the potential consequences of decisions (Sterman, 2012; Stave, 2015; 

Sivapalan, 2015).  

 

System feedbacks have been identified as one of the key attributes that influence sustainability in 

most human-environmental systems (Levin et al., 2013; Liu et al., 2015b), yet limited attention has 

been given to feedback processes and long-term dynamics in those systems (Sterman, 2012; Levin 

et al., 2013; Schlüter et al., 2014).Within water resources management systems, it has been argued 

that our inability to develop sustainable solutions is grounded in the lack of understanding about the 

interconnections and dynamics of different sub-systems (Davies and Simonovic, 2011; Sivapalan, 

2015). Consequently, many authors have stressed that decision-making in water resources planning 

and management should be based on a holistic view given the magnitude of complex dynamics, 

feedback processes, and interdependencies between the socio-economic and biophysical processes 

(Simonovic, 2009; Davies and Simonovic, 2011; Mirchi and Watkins, 2013; Gohari et al., 2013; 

Gain and Giupponi, 2015; Liu et al., 2015a; Sivapalan, 2015; Sahin et al., 2016). According to 

Girard et al. (2015), water planners need to anticipate how to adapt management practices and infra- 

structure development by developing a systemic approach to depicting the natural and socio-

economic factors and processes that determine future dynamics of river basins. Consideration of the 

combined effects of system dynamics can improve management decisions and reduce the 

possibilities of adverse side-effects and unintended consequences of policy decisions (Simonovic, 

2009; Kelly et al., 2013; Sivapalan, 2015). 

 

In the past few decades, system dynamics modelling (SDM) based on the notion of systems 

thinking (Forrester, 1961; Sterman, 2000) has emerged as an innovative approach that facilitates a 

holistic analysis of complex human-environmental systems, such as water resource systems 
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(Simonovic, 2009). Several recent studies have used the SDM approach to develop system dynamic 

and simulation models in various river basins or watersheds around the world (see Qin et al., 2011; 

Sušnik et al., 2012; Dawadi and Ahmad, 2013; Gohari et al., 2013; Mirchi andWatkins, 2013; Niazi 

et al., 2014; Liu et al., 2015b; Sahin et al., 2016; Chapman and Darby, 2016). The diversity of SMD 

applications contributed to an improved understanding of the dynamic behaviour of basins, but 

there is still a need for dynamic models that adequately integrate various physical, social, and 

economic factors and feedback processes that determine the current and future dynamics of river 

basins and water resources management systems (Green et al., 2011; Qin et al., 2011; Sušnik et al., 

2012). Existing basin-scale models are usually focused on the hydrology of the basin, and economic 

processes as they relate to agricultural production, while socio-demographic dynamics are rarely 

included and quantified (Johnston and Kummu, 2012; Johnston and Smakhtin, 2014). Therefore, 

there is limited knowledge and understanding about the long-term dynamic behaviours of most river 

basins. Moreover, most SDM are predominantly limited to river basins in Europe, North America, 

and Australasia. Comparative models and SDM approach in Sub-Saharan Africa are scarce. 

 

This paper presents an integrated system dynamics simulation model in the form a decision support 

system for the sustainable management of water resource system for the Volta River Basin (VRB) 

of Ghana. The developed model, hereby referred to as the Volta River Basin System Dynamics 

(VRB-SD) model, simulates the interaction and feedbacks between the population dynamics, 

surface water resources, and agricultural production sub-sectors of the basin. While some studies 

have developed integrated models that provide insights into the basin's hydrological cycle, water 

use and availability, climate change impacts, and the consequent effects on livelihoods using 

various climate and hydrologic models (see e.g., Bharati et al., 2008; McCartney et al., 2012; 

Amisigo et al., 2015; Awotwi et al., 2015) these studies do not consider feedback processes and 

non-linear dynamic behaviour of the system overtime. Further, these studies are largely based on 

the traditional linear-reductionist and mechanistic approach, which has been widely considered to 

be ill-equipped to addressing the problems and complexity inherent in many water resource 

management systems (Simonovic, 2009; Pahl-Wostl et al., 2011; Mirchi et al., 2012). Recent 

assessments of the VRB (e.g., McCartney et al., 2012; Mul et al., 2015; Williams et al., 2016) have 

highlighted the need for an integrated approach that combines the biophysical and socio-economic 

processes in a strongly coupled manner for future water resources development that will contribute 

to food security, poverty reduction, and socio-economic development, while Bharati et al. (2008) 

suggested the need to simulate the dynamics of the basin over a long period of time. Thus, the 

recognition of feedback processes and interaction between the key system components and 
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processes, as well as simulation over a long period of time, were fundamental to the development of 

the VRB-SD model described herein. 

 

A dynamic hypothesis or qualitative conceptual model in the form of CLD of the system under 

study here was developed and presented in chapter 6. In this chapter, the dynamic hypothesis is 

translated into a formal simulation model, allowing alternative policy scenarios to be designed, 

analysed, and compared. Indeed, it has been argued that the behaviour of complex systems cannot 

be credibly inferred from purely qualitative perspective (Richardson, 1999; Coyle, 2000). Instead, a 

quantitative simulation model makes behavioural inferences possible. A cardinal point in this 

“genre was that the system dynamics of systems cannot be inferred simply by reasoning from an 

influence or causal loop diagram and that quantified simulation is the sine qua non of policy 

analysis” (Coyle, 2000, p. 25). The development of a simulation model is necessary because, as 

Beall and Ford (2010) noted, a simulation model enables the system stakeholders to gain a deeper 

insight into the dynamics of the problem they have defined with their qualitative or conceptual 

model. Thus, the specific objectives of this chapter are, thus, to: (1) enhance our understanding of 

the dynamic behaviour of the VRB system as it responds to changes in the key system drivers over 

time through simulation; and (2) identify and evaluate the effects of different policy scenarios to 

support decision-making for sustainable water resources management and agricultural development.  

 

Given the preceding considerations, the key role of the simulation model constructed herein, relates 

to shared/collective learning and understanding and scenario testing (Davies and Simonovic (2011). 

Thus, although desirable, accurate prediction of levels and volumes regarding the key system 

variables is not the primary aim of this chapter. It is also important to stress that the model is not 

developed to capture the physical hydrologic system justifiable by developed world standards. 

Rather, it was constructed based on the indigenous/traditional knowledge and the mental models of 

the local stakeholders, taking into account the prevailing changes in the main socio-economic and 

environmental conditions and processes in the basin. Nevertheless, the simulation model made use 

of published scientific data and knowledge of scientists (i.e., scientists with western training) to 

ensure sufficient rigour and accuracy in the models function and outputs. In this respect, the model 

is distinguished from other models by placing emphasis on a balance between scientific and non-

scientific knowledge sources (Petschel-Held et al. 2005; Perera et al., 2012).  Further, the model is 

not purely a physically based hydrologic model as in numerous developed models in the basin (e.g., 

de Condappa et al., 2008), Leemhuis et al., 2009; Jung et al., 2012; Amisigo et al., 2015; Awotwi et 

al., 2015), neither is it an exclusively socio-economic model. Rather, it is a coupled population-
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economic-hydrologic dynamic model. Ultimately, the model is developed with the intent to provide 

an effective, locally relevant approach for the integration of stakeholder values and preferences into 

a dynamic system framework. The core hypothesis is that, by doing so, the research will provide a 

significant value for the future uptake of this approach in developing countries such as those in Sub-

Saharan Africa.   

 

7.2. The Study Context and Scope   

The VRB is located within the sub-humid to semi-arid West African savannah zone (see Figure 1.1 

shown earlier in chapter 1), with a surface area of approximately 400,000 km2. The River Basin is a 

transboundary watershed shared among six riparian West African countries: Benin, Burkina Faso, 

Côte d'Ivoire, Ghana, Mali, and Togo. It is the ninth largest basin in Africa and consists of three 

main sub-basins: the Black Volta, the White Volta, and the Oti river basin all flowing into the 

Atlantic Ocean. Mean annual rainfall varies across the basin from approximately 1600mm/yr in the 

South-Eastern section of the basin in Ghana to as low as 300–700 mm/yr in the northern parts of 

Ghana and Burkina Faso (Barry et al., 2005; Gordon et al., 2013). The major uses of the water in 

the basin are agricultural (irrigation), domestic, and industrial (hydroelectric power generation) 

(Mul et al., 2015). Rain-fed with some irrigation and animal husbandry (mixed farming) for 

subsistence are the principal economic activities for the majority of the largely rural population. 

Thus, the livelihoods of 25 million people depend on the availability of water that flows through the 

river basin (Mul et al., 2015; Williams et al., 2016).  

While it is recognised that a trans-boundary perspective and an integrative approach, based on the 

principle of integrated water resources management (IWRM) is optimal in assessing water 

resources issues in large river basins, several studies have also confirmed that practical realities 

related to differences between riparian countries in terms of socio-economic development, capacity 

to manage water resources, infrastructure, political orientation, and institutional as well as legal 

con- text do hamper the implementation of such an approach (see Biswas, 2008; Medema et al., 

2008; Saravanan et al., 2009; Giordano and Shah, 2014). Specific assessments within the VRB 

(e.g., Barry et al., 2005; Agyenim, 2011; UNEP-GEF Volta Project, 2013) indicate that the absence 

of effective and operational institutional and legislative mechanisms, inadequate coordination of the 

implementation of strategies, action plans and regional programmes, inadequate human and 

financial resources do expressly hinder effective and coordinated development as well as 

transboundary management of the basin. Moreover, for transboundary river basin such as the VRB, 

the paucity of data represents a challenge to developing basin-scale models particularly in 
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developing countries (Johnston and Smakhtin, 2014). As a result, most integrated modelling efforts 

in large scale river basins focus on the sub-basin scales or portions of the basin (e.g., Dawadi and 

Ahmad, 2013; Hassanzadeh et al., 2014; Chapman and Darby, 2016). 

Taken cognisance of above challenges, the geographical scope of the model is the Ghana portion of 

the basin to help assess the country's efforts to understanding its internal water resource situation 

and the potential issues influencing sustainable agricultural production; including potential future 

behaviours under different strategies being discussed. This scale of focus also meant that suitable 

and accurate data sets could be obtained in the most efficient and cost-effective manner, and that 

practical challenges such as those mentioned above did not significantly limit the potential to gain 

new knowledge and insights that can successfully be implemented. Further, as compared to the 

riparian countries, Ghana, the downstream country, has over the years been the most active in terms 

of the development of major projects that have resulted in significant impact on the basin's water 

resources and the excessive consumption utilisation of the water resources (Barry et al., 2005; de 

Condappa et al., 2008; Mul et al., 2015). Notable examples include the Akosombo Dam (the Lake 

Volta), which was completed in 1965 on the main Volta River to provide electricity for Ghana, as 

well as for export to the other riparian countries, and the Bui Dam, which was completed in 2013 on 

the Black Volta sub-basin. With an area of 8,500 km2 and a storage capacity of 148 km3, the Volta 

Lake is considered the largest man-made lake in the world by surface area and third in the world by 

volume. There are also ambitious plans by Ghana to build more dams on the Black, Oti, and White 

Sub-basins, which will potentially have significant impact on the sustainable management of the 

basin's resources in the coming decades (McCartney et al., 2012). 

 

7.3. Methods and Model Development Process  

7.3.1. System dynamics simulation modelling 

While in chapter 6, the focus was on the development of conceptual/dynamic hypothesis in the form 

of a CLD to capture the mental model of stakeholders, in this chapter, the attention is on converting 

parts of the CLD into a system dynamics simulation model (SDSM). SDSM is a computer-based 

method grounded in feedback control theory and the modern theory of non-linear dynamics 

(Sterman, 2000). It rests on the assumption that time delays, nonlinearities, system feedbacks, 

amplifications, and structural relationships between a system's elements can be more significant in 

determining aggregate system behaviour than the individual components themselves (Forrester, 

1961; Sterman, 2000). In general, system dynamics states that a system’s structure, and its 

concomitant feedbacks lead to its observed behaviour (Davies and Simonovic, 2011). Therefore, 
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observed actions are not external to the systems they affect, but rather, emanate from the 

unanticipated interrelationship between system elements (Sterman, 2000; Davies and Simonovic, 

2011). Developing a computer model compels modellers to make their ideas explicitly clear 

(Forrester, 1971). A more detailed description of SDM approach can be found in Sterman (2000), 

Maani and Cavana (2007), and Ford (2010), while an extensive review of its applications in water 

resources context is provided by Winz et al. (2009).   

As stated earlier, this chapter focused on developing a simulation model for the VRB.  A SDSM is 

distinguished from CLD (i.e., qualitative mode/dynamic hypothesis) in several significant ways.  

CLDs, as depicted and described in chapter 6, are essentially problem structuring tools, and, as 

such, can yield qualitative models, indicating the causal relationships among the main system 

variables (Sterman, 2000). As influence diagrams, “they put a very complex problem, which may 

require complex pages of narrative explanation, onto one piece of paper” (Coyle, 2000, p. 240).  

However, they do not incorporate model parameters, functional forms, external inputs, and initial 

conditions required to completely to completely parametrised and test the model (Sterman, 2000). A 

simulation or a formal model on the other hand, captures these essential features. Also, insights 

drawn from CLDs are usually based on our mental models, and thus, have some major limitations: 

“they are vague, implicit, often biased, ambiguous, and non-testable” (Barlas, 2007, p.12) and 

generally ignores feedbacks, time delays, accumulations, flows, and nonlinearities (Sterman, 2000). 

A formal simulation model, on the other hand, is explicit, precise, less biased, unambiguous and 

testable (Barlas, 2007), making it possible to draw behavioural and policy inferences reliably, which 

is impossible using qualitative diagrammes or maps (Homer and Oliva, 2001). Further, CLDs do 

not allow modellers to infer the dynamic behaviour of complex systems; rather, the dynamic 

behaviour of systems can be observed via quantified simulation (Coyle, 2000; Barlas, 2007).  

 

There are several benefits that can be gained by converting the CLD developed in chapter 6 into a 

computer-based system dynamics simulation model. For example, a simulation model essentially 

provides a laboratory in which one can experiment with complex dynamic systems to gain useful 

insight into how different elements of causal structure produce observed behaviour of system 

variables over a specified time (Forrester, 1961; Keating, 1999; Sterman, 2000; Simonovic, 2009; 

Ford, 2010; Barlas, 2007). Simulation allows modellers to experiment with the model of the real 

problem, rather than experimenting with the real system (Barlas, 2007). Simulation illuminates and 

strengthens the governing feedbacks in the dynamic hypothesis (Sterman, 2000). A simulation 

modelling is, therefore, the refinement, formalising, testing alternative assumptions, and putting 

finality on the dynamic hypothesis or the conceptual models using an explicit set of mathematical 
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relationships. A formal simulation model is usually developed to clarify our mental model, to make 

it rigorously possible to analyse and testable, as well as for making scientific improvement possible 

(Barlas, 2007). Formalising qualitative models and testing them via simulation often lead to radical 

changes in the way we understand complex dynamic systems from which insights could be 

generated into strategic policy scenarios to improve system behaviour (Coyle, 2000; Sterman, 

2000). Fundamentally, a simulation model comprises the following key components: stock and flow 

diagrams, inputs, physical relationships (i.e., mathematical equations expressing the relationships 

among the physical variables of the system being modelled), non-physical relationships, operational 

rules, and simulation outputs (see Simonovic, 2009). A simulation model can be static or dynamic. 

Static models are independent of time, while dynamic models are time-dependent. The simulation 

model developed herein, is dynamic in nature. Modelling and simulation tend to function in 

combination: modelling determines structure and clarifies ideas, and simulation then reveals 

unexpected behaviours and clarifies their causes (Forrester, 1971).  

 

SDSM was chosen to model the non-linear dynamics of the key feedback processes within VRB of 

Ghana, because it is considered as a hybrid method, which combines the advantages of continuous 

and discrete time concepts (Sterman,2000; Sahin et al., 2016). The discrete concept of time is based 

upon the distinction between time-points and finite time intervals, while the continuous concept 

deals with changes over time, based on infinitesimal mathematics (Sahin et al., 2016). Also, the 

approach helps provide a deeper understanding of how complex systems behave and evolve over 

time, giving a dynamic rather than a static view of such systems (Forrester, 1961; Sterman, 2000; 

Kelly et al., 2013). In addition, SDSM can be easily understood by different stakeholders and users 

since it is able to visibly show structure and relationships among different sub-systems (Stave, 

2003).  Further, SDSM is applied here due to its simple way of development and modification, 

SDSM environments promotes quick prototyping and significantly cut down programming effort 

(Ahmad and Simonovic, 2000).  Finally, the fact that it is not limited to a particular system type 

means that biophysical and socio-economic sub-systems can be incorporated, simulated, and 

analysed within the same model (Sušnik et al., 2012). Generally, a system dynamics model starts 

with the development of a dynamic hypothesis (the conceptual model), generally referred to as a 

Causal Loop Diagram (CLD), which is then quantified and simulated using Stock and Flow 

Diagrams (SFDs) (Sterman, 2000), as demonstrated below.  
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7.3.1.1. Building the Conceptual Model (CLD)/Dynamic Hypothesis    

 

As has been delineated in chapter 6, CLDs are useful qualitative analytical tools for representing 

relationships among system variables that produce a dynamic feedback structure (Sterman, 2000). 

An integrated qualitative conceptual system model (CLD) was developed for the VRB with the help 

of key stakeholders in the second stage of this study (see Figure 6.6, chapter 6). The current VRB-

SD simulation model is based on this conceptual model – that is a quantification of the qualitative 

model or dynamic hypothesis. As shown in Figure 6.6 (chapter 6), overall, the conceptual system 

model (CLD) consists of 46 system variables, which are connected to each other by 83 links. The 

interactions generate 21 feedback loops comprising 14 reinforcing (positive) and seven balancing 

(negative) loops.   

Ideally, the entire model could be quantified and simulated. However, one important criterion of a 

model is that it should be a generic and simplified representation of the real system (Forrester, 

1995; Coyle, 2000; Ford, 2010; Fisher, 2011). This statement is akin to Albert Einstein’s maxim 

that: “All models should be as simple as possible, but no simpler than necessary” (cited in Kenneth 

and David 2001, p. 112). Similarly, Casti (cited in Ruth and Hannon, 1997, p. 5), argues that “good 

models are the simplest ones that explain the data and yet do not explain it all, leaving some room 

for the model, or theory, to grow.” Likewise, Argent et al. (2016) stressed that “the goal for the 

model should be for it to be simple enough to be usable, but complicated enough to be useful, 

whilst holding to the parsimonious principle of Ockham's razor.” Moreover, developing models 

with many parameters and complex configurations to represent the reality of the social-

environmental systems lead to models being too quantitatively uncertain to efficaciously inform the 

decision-making process (Voinov et al., 2014).  

Given the above understanding, and coupled with time, cost, and logistical constraints, the Volta 

VRB-SD model has been constructed to be simple and useful, yet able to capture the major 

components or feedback loops as shown in the conceptual model depicted in chapter 6. 

Consequently, the VRB-SD model only captured eight feedback loops of the conceptual 

model/dynamic hypothesis (i.e., loops R1, R2, R11, R14, B1, B2, B3, and B4). Indeed, a discussion 

with the stakeholders revealed that these feedback loops capture the essential components of the 

system – that is the water resource sub-sector, the population sub-sector, and the production sub-

sector (i.e., agriculture production). Taken together, the selection of these feedback is based on a 

combination of pragmatic reasons, stakeholder’s preferences and suggestion, as well as previous 

scientific literature (See Gordon et al., 2013; Mul et al., 20015; Williams et al., 2016) describing the 

problems in the basin and its dynamics. In future, the simulation model could be expanded to 
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include the other feedback loops and relevant issues to ascertain how they might influence the 

system’s behaviour.  

  

7.3.1.2. Stock and Flow Diagrams   

While CLDs present causal relationship between the key system variables, they are qualitative and 

cannot be used to simulate system behaviour. Stock and Flow Diagrams (SFDs) provide the 

mathematical and quantitative basis of a system dynamics model (Guo et al., 2001).  The key 

assumption of SFDs is that systems can be represented as a collection of stocks and flows, so 

material or energy accumulates in stocks and moves between them through flows (Voinov and 

Bousquet, 2010).  Stocks (states) are used to represent an entity that accumulates; an example of 

stock would be water stored in a reservoir or people in a country (Sterman, 2000; Forrester, 1961). 

Stocks, also known as integrals or state variables, characterise the state of the system at time t, and 

generate the information upon which decisions and actions are based (Sterman, 2000;  Simonovic, 

2009). Flows (rates) represent the rate at which material flows in and out of stocks (e.g. births and 

deaths represent inflows and outflows to a population stock), thus changing the levels within stocks. 

SFDs also contain converters (auxiliaries) and connectors. Converters are used to adjust flows (e.g. 

birth and death rates that control birth and death flows), define exogenous inputs to the model, 

calculate algebraic relationships and store graphical functions. Thus, converters are used to 

complete feedback loops within a system (Sušnik et al., 2012). Connectors are used to specify 

dependency with a model by connecting stocks, flows and converters together. The concept of the 

stocks and the flows in SD is deployed here because it is very appropriate to deal with the complex 

problems in water resources (Ahmad and Simonovic, 2000), such as the Volta River Basin.    

 

7.3.2. Dynamic Simulation Model Settings and Description   

SFDs provide the numerical basis of a system dynamics model (Sterman, 2000; Forester, 1961). 

The key assumption of SFDs is that systems can be represented as a collection of stocks (levels, 

accumulations) and flows (rates), so material or energy accumulates in stocks and moves between 

them through flows (Voinov and Bousquet, 2010). The CLD in this study was numerically 

structured in terms of SFDs consisting of three sub-sectors, all linked into a single system model 

simulating the interaction between the population dynamics, the water resources issues and 

agricultural production in the VRB over a 50-year period (2000-2050). The year 2050 is chosen for 

the model because it represented a long-term perspective to observe the long-term dynamic 

behaviour of the basin and the consequences of policies on long-term outcomes. Moreover, water 
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management problems in the basin are expected to exacerbate by 2020 and 2050 (Lemoalle, 2009; 

McCartney et al., 2012). The complete simulation model was implemented with STELLA®, an 

object-oriented, graphical simulation modelling environment marketed and distributed by isee 

systems (isee systems, www.isee systems.com). Stella was chosen because it has modular 

storytelling structures (Beall Thornton, 2016).  Also, it facilitates the construction of complex water 

resources models effortlessly compared to using traditional programming languages (Ahmad and 

Simonovic, 2000). In addition, because of its dynamic modelling framework, Stella enables 

modellers to integrate feedback loops (i.e., cyclic processes) and portray complex system dynamics 

over time (Greiner et al., 2014). Further, Stella has user-friendly graphical interface that is easy to 

use by lay persons, because it has intuitive features that allow one to manipulate model parameters 

and perform simulation of different scenarios (Ahmad and Simonovic, 2000; Greiner et al., 2014).  

Following a suggestion by Forrester (1961), the VRB-SD model has a time-step of 0.25 years, 

which means that the values of stocks, flows, and converters are calculated every ¼ year for the 

entire simulation run. Time Step, “also called Delta Time (DT), is the interval of time between 

model calculations; thus, DT represents the smallest time interval over which a change in the 

numerical values of any element in the model can occur” (Ahmad and Somonovic, 2000, p. 195). 

The standard values are 0.5, 0.25, 0.125 and so on. However, 0.25 it is smaller than strictly 

required, but produces smooth graphs (Coyle, 1996). Moreover, this value is selected because it is 

not too small to lead to delay during the model run or too large to result in an implicit delay in 

feedback (Kampmann 1991) or induced integration error in dynamic behaviours (Forrester 1961; 

Coyle, 1996; Barlas, 2007). It is important to note that DT is often selected by modellers to get the 

equations, which purport to represent the system to run on a computer platform. As Coyle (1996) 

pointed out, and reinforced by Barlas (2007), DT has nothing at all to do with the way real system 

works – it has no real life meaning – it is a figment of the calculation – so its value should not 

significantly affect the real system as simulated by the model. Although the VRB-SD model is an 

integrated model, for the sake of clarity, and owing to the modular nature of the simulation tool 

(Ahmad and Simonovic, 2000), the discussion below focuses on individual sub-sectors. More 

important, as done by Beall and Thornton (2016), modules were used to separate the structures for 

each sector to more easily display these structures to stakeholders. It is also important to note that 

the simulation did not begin at steady- state equilibrium. This is because the system is not always at 

equilibrium owing to rapidly changing environmental and socio-economic conditions. 
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7. 3.2.1. Population Sub-sector  

Several demographic and environmental factors, including climate change drive changes in water 

resources systems. However, population dynamics has been noted as the main driving force of 

various water demands and uses (Davies and Simonovic, 2011; Wu et al., 2013). As such, 

population growth has been identified as the most important socio-economic factor that influences 

water resource use and availability within the VRB (Barry et al., 2005; Gordon et al., 2013; Mul et 

al., 2015; Williams et al., 2016). The population sub-sector of the VRB-SD model is shown in 

Figure 7.1. The model estimates population dynamics, which is considered to be strongly influenced 

by emigration and immigration rates, birth and death rates as well as the availability of food for 

human consumption. For this study, the population stock is divided into two categories: children 

and adults. Children flow into the adult population after a 16-year maturation delay. The death of 

children is assumed to the same as the adults. Consequently, the total population of the basin was 

calculated as the sum of the children and adult population. Population growth also affects labour 

force availability. Thus, labour force availability is incorporated in the model as a function of the 

adult population. The model is deliberately kept as simple as possible. As a result, not all factors 

that influence population dynamics were incorporated. Factors such as nutrition, access to health 

care, pollution and crowding all depend on the size and wealth of the population, creating several 

feedbacks. These are beyond the scope of the current model, but they are issues that can be included 

in future efforts.      

 

 
Figure 7.1. SFD of the population sub-sector 
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7. 3.2.2. Water Resources Sub-sector   

The water resources sub-sector is depicted in Figure 7.2. This sub-sector represents water 

availability and demand within the VRB of Ghana. Water can come from surface water (i.e., from 

natural rainfall, rivers, streams, lakes) or groundwater resources (Barry et al., 2005; Mul et al., 

2015). The water sub-sector of the simulation model focused on surface water resources, because 

the major water management issues in the basin focus on surface water resources (Barry et al., 

2005; Jäger and Menge, 2012; UNEP-GEF Volta Project, 2013). In the past, Ghana’s water policies 

were formulated under the premise of continued availability of sufficient surface water. Surface 

water is the first choice to meet all water demands in the basin, while groundwater is used when 

surface water supply is not available (Andah and Gichuki, 2003; Barry et al., 2005). The study also 

concentrated on surface water resources on the basis that it is controllable, unlike groundwater 

resources, which is uncontrollable (Safavi et al., 2015).  

 

 
Figure 7.2. SFD of the water resources sub-sector 

 

 

However, the omission of groundwater resources in the current model deserves an explanation. 

Groundwater flow to rivers in the basin is assumed to be insignificant, because mean monthly 

evapotranspiration exceeds mean monthly rainfall for most of the year for the entire basin (Jung et 

al., 2012). As a result, its current usage in the basin is very low, although this is likely to increase 

(Jäger and Menge, 2012; UNEP-GEF Volta Project, 2013). Indeed, it has been reported that 

groundwater production is still below 5 percent of the average annual groundwater recharge in most 
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of the basin, such that the current production should not be expected to have any significant effect 

on the regional water balance (Martin and van de Giesen, 2005; UNEP-GEF Volta Project, 2013). 

Moreover, surface water and groundwater are separate resources, with virtually no interaction 

between them (Jung et al., 2012). Water quality issues are also omitted from the current model 

because recent assessment reports suggest there are no widespread, or major severe quality 

problems in the basin (see UNEP-GEF Volta Project, 2013; Mul et al., 2015). Thus, the extend of 

the selected of the issues in the water resources sector was informed by consideration of where the 

greatest management problem is currently being observed. Again, despite the omission of these 

issues, they are important aspects in the basin that can be considered in future modelling efforts, 

given that groundwater and surface water resources in most river basins typically interact 

profoundly.   

Further, as shown in Figure 7.2, surface water availability is governed by a number of factors, 

including the various demands, surface water inflows and outflows, groundwater discharge, run-off, 

and climate related factors (such as the amount of precipitation, temperature, and evaporation) 

(Chang et al., 2013). The total annual runoff for the VRB in Ghana is estimated to be 37.90 km3 

(Barry et al., 2005) and 70% of surface water inflows into the VRB of Ghana comes from outside 

the country (Gordon et al., 2013). Quantification of water demands was based on water demand for 

agriculture (irrigation), domestic, and industrial purposes. In the VRB-SD model domestic water 

demand was expressed as a function of population (Davies and Simonovic, 2011). Agricultural 

water demand generally accounts for more than 70% of the total demand, and would typically 

include irrigation, fisheries and livestock (Andah and Gichuki, 2003; Mul et al., 2015; Williams et 

al., 2016). Total water withdrawal from the basin was estimated as the sum of agricultural, domestic 

and industrial water demands. As the VRB is an open basin with an outlet to the sea, spillage 

represents that water that cannot be stored and flows into the sea. Notice that the main climatic 

variables captured in the model are precipitation change and evaporation. This is based on fact that 

precipitation is the key determinant of the hydrologic regime of most basins and based on the 

preferences of the stakeholders.   

 

7. 3.2.3. Agricultural Production Sub-sector      

The agricultural production sub-sector is depicted in Figure 7.3. Rain-fed agriculture is the 

economic bedrock of most of the VRB population. Indeed, agriculture constitutes more than 40% of 

the basin’s economic activity (McCartney, et al. 2012). Rain-fed agriculture uses about 14% of the 

total rainfall of the total basin area (Lemoalle, 2009). Currently it is not clear how much is 

augmented by surface water withdrawal. However, due to high rainfall variability, there has been 
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increased calls to shift more food production away from rain-fed systems to irrigated agriculture 

(Lemoalle, 2009; McCartney et al., 2012). Thus, the agricultural sector focuses on the potential of 

irrigation agriculture through improved the use of the available rain water (Lemoalle, 2009). 

Generally, the agriculture sector consists of the crop production, livestock, and fishery sectors.   

 

 

 
Figure 7.3. SFD of the agricultural production sub-sector 

 

However, in this model, the livestock and fishery sectors have also been omitted, because they are 

mainly secondary economic activities in basin (Lemoalle, 2009; Gordon et al., 2013). Nevertheless, 

the model could be expanded in future to include these domains. Since cereal is the major crop 

produced throughout the basin (Barry et al., 2005; Mul et al., 2015; Williams et al., 2016), it 

provides a good indicator of the economic fortune of the basin. Accordingly, cereal yield, 

representing the combined production of the major cereals (millet, sorghum and maize, paddy rice, 

Groundnuts), was used as the stock for agricultural production. Crop yield depends on the cropland 

area, water, and labour availability. Cropland area is, in turn, influenced by many variables, 

including the demand for food, total arable land and the change in crop yield. As the focus is on 

cereal yield, the cropland area was estimated based on the area under cereal production.  

 

7.3.4. Input Data and Model Parameterisation  

Accurate and specific data for the VRB are not readily available as these data are embedded in 

national figures (Barry et al., 2005). Thus, most of the data used to parameterise the VRB-SD model 
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are national in scope, but should be representative of conditions within the basin in most cases, 

particularly in Ghana. Population and demographic figures were estimated based on census data 

available from the Ghana Statistical Service (GSS, 2010). Crop yield, cropland area and food 

production and consumption data were obtained from the Ministry of Food and Agriculture 

(MOFA, 2012) of Ghana. The initial values for available surface water and demands were obtained 

from the Volta River Authority and from published sources (e.g., Andah and Gichuki, 2003; Barry 

et al., 2005). The VRB-SD model was parameterised with data from the year 2000. The key 

parameters used in the model and their corresponding values are described in Table 7.1. Detailed 

Stella equations are provided in Appendix 3.  

 

All assumptions are based on stakeholder suggestions during the participatory modelling workshop. 

As evinced in the model equations, most assumptions concerning the graphical relationships follow 

an ‘extreme end effects’ curve (Fisher, 2011). This is informed by the vulnerable nature of the VRB 

due to various environmental and socio-economic changes (Gordon et al., 2013; UNEP-GEF Volta 

Project, 2013).  However, it was not possible to identify or obtain empirical data to compare these 

assumptions with. Despite this, it is believed they are reasonable assumptions given the 

stakeholders and our own understanding about the dynamics in the system. Finally, it is imperative 

to also note that in this model, the value of all excluded parameters is assumed to be zero (Sterman, 

2000; Forrester, 1961; Ford and Beall, 2010). Nevertheless, their likely impacts on the model can be 

assessed in future studies.   
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Table 7.1: Details of some important parameter values used in the VRB-SD Model along with the data sources  

Variable  Initial values used (unit)   Source  

Water Resource sub-sector    

Precipitation in volume  500 (km3) Andreini et al. (2000)  

Rainfall run-off ratio 0.08 Oguntunde et al. (2006) 

Fraction of runoff to reservoir 1 Assumption 

Surface water produced internally  29 (km3) Barry et al. (2005) 

The total mean annual flow into the entire Volta River 

system (Ghana)  

37.9 (km3) Barry et al. (2005) 

Agricultural water demand  565 (Mm3) Andah and Gichuki (2003) 

Domestic water demand 235 (Mm3) Andah and Gichuki (2003) 

Industrial water demand 95 (Mm3) Andah and Gichuki (2003)  

Reservoir storage capacity  150 (km3) UNEP-GEF Volta Project (2013). 

Per capita water use  50 (m3)  UNEP-GEF Volta Project (2013) 

Population sub-sector    

Total population  6,900,368 (people) Ghana Statistical Service (2010) 

Population growth rate per year  2.5 (%) Gordon et al. (2013)  

Adult population  70 (% of total 

population)  

  

Total Fertility Rate  5.48 (per woman) Ghana Statistical Service (2010) 

Birth rate  30.87 (per 1,000 

people) 

Ghana Statistical Service (2010)  

Death rate  9.10 (per 1,000 people)  Ghana Statistical Service (2010) 

Immigration rate   3 (per 1000 people) Assumption  

Emigration rate  12 (per 1000 people) Ghana Statiscal Service (2010)  

Children population  30 (% of total 

population)  

Ghana Statistical Service (2010)    

Proportion of population that is in labour  60 (%)  Ghana Statistical Service (2010) 

Food available per person  248 (kg/ha – yr) MOFA (2012) 

Per capita food consumption 423,00 (kg/capita)   
 

MOFA (2012) 

Total food consumption 83.98 (kcal/capita) MOFA (2012)  

Maturation delay  16 (years)  Assumption  

Agricultural production sub-sector    

Cropland area  6,331 (per 1000 ha) MOFA (2012) 

Crop price  59.88 (USD) This work   

Cost per ha  225.18 (USD) This work  

Net-farm income   311.26 (USD) This work  

Delay in cropland area change  5 (yr)  Assumption  

Crop yield 1,039 (kg/ha) MOFA (2012)  

 

7. 3.5. Model Testing  

Model testing is an essential tool to learn about the flaws in a model and set the stage for a better 

understanding (Sterman, 2000). In principle, the more tests that are carried out, in which it cannot 

javascript:showDefn('4155');
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be proven that the model is flawed, the more confidence is gained in the model (Bellocchi et al., 

2015). The VRB-SD model was tested by performing several tests as suggested by Forrester and 

Senge (1980), Barlas (1996), and Sterman (2000), including a parameter-confirmation test, 

integration error test, and behaviour pattern test, and sensitivity analysis using extreme-conditions 

test. Parameter-confirmation testing involved checking to ensure that the equations contained in the 

model correspond to the relationships depicted in the conceptual model (the CLD). Integration error 

testing was performed by cutting the simulation time step into half as well as doubling it and 

checking for any possible erroneous changes in the model behaviour created by the underlying 

feedback structure (Sterman, 2000).  

 

Behaviour pattern testing measured how accurately the model replicated the major behaviour 

patterns exhibited by the real system. To this end, the simulated model results were compared with 

the reference modes depicted in Figure 6.2 (refer to chapter 6). The following four important 

parameters in the model were selected for behavioural pattern testing based on the availability of 

historical data: total population, crop yields, cropland area, and agricultural water demand. Extreme 

conditions entail evaluating the validity of selected model equations, by assigning extreme values to 

their input variables, and comparing the value of the output variable to what would logically happen 

in the real system under the same extreme condition (Barlas, 1996; Sterman, 2000). In this case, the 

input value of food available was assumed to be zero after 2025. Similarly, precipitation was 

assumed to be zero (i.e., no rainfall), while the evaporation rate was presumed to increase by 50%. 

Results of the extreme conditions tests are shown in section 7.4.1. It should, however, be mentioned 

that like Greiner et al. (2014), the outputs VRB-SD model was not put to a formal output validation, 

which suggests a major limitation with regards to its scientific credibility, although its acceptability 

by the system stakeholders should not be in doubt.                      

 

7.3.6. Policy Scenarios Design 

Following the model, different policy scenarios were designed and simulated over a period of 50 

years (i.e., between 2000-2050) to assess the availability of land and water resources, their use and 

implications for agricultural development within the VRB of Ghana. Following Gohari et al. (2013), 

this stage of the analysis involved trial and error, as well as some assumptions about the 

effectiveness of different policies. First, the baseline run or Business-as-usual (BAU) scenario was 

run over the simulated period. The BAU assumed that current environmental and socioeconomic 

conditions within the basin would remain the same without any policy change. Besides the BAU, 

three additional policy scenarios were designed and simulated. These scenarios were designed 
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based on inputs received during the participatory stakeholder/modelling, as well as information 

drawn from the existing literature concerning the effective management of the basin.  

 

Scenario 1 (water infrastructure development) represents a policy change, which assumes sustained 

development of water infrastructure in the form of small and medium scale reservoir expansion. As 

contained in the Ghana Poverty Reduction Strategy (GPRS I), the Water Vision for Ghana is to 

achieve an efficient and effective management system for the sustainable development of water 

resources to achieve full socio-economic benefits for present and future generations (Andah and 

Gichuki, 2003; Lemoalle, 2009). One important strategy for achieving this, according to 

stakeholders and available literature, is the expansion of small and medium scale reservoirs to 

ensure availability of water in sufficient quantity and quality, as well as the appropriate 

infrastructure for agriculture to sustain food production and food security, to increase incomes, and 

to promote rural development. Indeed, the importance of small reservoirs as a tool for poverty 

alleviation has been documented by the Small Multi-Purpose Reservoir Project of the Challenge 

Program on Water and Food (CPWF)4 (Lemoalle, 2009).  

Small reservoirs “are structures capturing and storing run-off at macro-catchment level, with sizes 

ranging from 3 to 30 ha” (Douxchamps et al., 2012). They are designed primarily for supplementary 

irrigation during dry spells, dry season irrigation, fishing, livestock and household watering, and 

groundwater recharge through decreasing run-off (Leemhuis et al., 2009; Venot et al., 2011; 

Douxchamps et al., 2012; Mul et al., 2015). According to a review by and Lemoalle (2009) and 

Douxchamps et al. (2012), small-scale dams and reservoirs made essential contribution to the 

sustainable use of water and poverty reduction in Ghana in the 1960s and 1970s. However, their 

development declined since the1980s in favour of medium and large public hydroelectric dams, and 

also due to limited investment and poor maintenance of existing ones (Venot et al. 2011). 

Meanwhile, there are several of them in Burkina Faso and the number is increasing (de Condappa et 

al., 2008; Leemhuis et al., 2009). Against this backdrop, stakeholders proposed doubling the 

capacity of existing reservoirs (i.e., a 100% increase). However, taking cognisance of potential 

funding, constraints, it was agreed among stakeholders that providing half of what is suggested 

would be realistic. Hence, we simulated a 50% increase in reservoir storage capacity, applied in the 

first year of the simulation.   

Scenario 1 was also considered against the backdrop of climate change. This is because climate 

variability (especially changes in rainfall regime) has been noted as being the main cause for critical 

                                                
4 The Challenge Program on Water and Food (CPWF) contributes to efforts of the international community to ensure global 

diversions of water to agriculture are maintained at the level of the year 2000.  
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water levels of the reservoirs in the basin (de Condappa et al., 2008; McCartney et al., 2012; 

Gordon et al., 2013). In this respect, scenario 1, also considered that there is enough water available 

for all uses, due to significant precipitation across the basin. Thus, it assumed a wetter climatic 

change scenario, consistent with other scenarios analysis (e.g., de Condappa et al. 2008; Amisigo et 

al., 2015). According to the Intergovernmental Panel on Climate Change (IPCC, 2013), although 

the projected precipitation is highly uncertain throughout the entire West Africa region, the range of 

possible precipitation changes will span both negative and positive values (mostly between −30 and 

+30 %). Thus, based on this analysis, a 30% increase in precipitation (i.e., the best-case scenario) 

was applied and simulated, assuming that infrastructure may be built incrementally (Amisago et al., 

2015).  Also under this scenario, it is assumed that enough money is earmarked for expanding 

agricultural facilities and funding water development infrastructure (after Simonovic, 2009).   

 

Scenario 2 (cropland expansion) simulates the effect of cropland expansion within the VRB of 

Ghana. There is a consensus that approximately 50% of a typical country in West Africa is arable; 

however, only a small proportion is cultivated in the countries of the VRB (Lemoalle, 2009). 

Because of rapid population growth and the need to improve agricultural production under Ghana's 

poverty reduction strategy, more arable lands are envisaged to be put under cultivation or irrigation. 

Hence, scenario 2 simulates the effect of cropland expansion of water resource availability, water 

demands, and agricultural production.  The underlying assumption for this scenario was that current 

cropland area would increase, and abandoned croplands are brought into sustainable production.  

 

Scenario 3 (dry years scenario/conditions). As have been document by some analyst (Leemhuis et 

al., 2009), the Volta River basin has witnessed an extremely wet year in 1968, as well as extremely 

dry years (i.e., in 1986 and1997). Cognisance of this, this scenario envisaged water scarcity and 

persistent dry spells characterised by decreasing precipitation due to climate change since it is the 

ultimate determinant of water availability in the region. Thus, given the future changes in 

precipitation trends for West Africa as projected by the IPPC (2013), and described in scenario 1, 

scenario 3 considered a 30% increase in precipitation in the basin (i.e., the worst-case scenario) and 

an assumed 50% reduction of available water in the main basin storages. Descriptions of the 

simulation scenarios and the parameters that were varied in the model are summarised in Table 7.2. 

It is recognised that these scenarios may be inherently unrealistic, but as stated earlier, this study is 

more interested in understanding the behaviour than the numerical outcomes. The results of these 

scenarios were compared to the BAU scenario to examine the overall policy implications.  
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Table 7.2: Description of selected policy scenarios  

 

Policy scenario  

 

Description of parameters  

Business as Usual  Business as usual (BAU) 

Scenario 1 

(water 

infrastructure 

development and 

reservoir 

expansion) 

Reservoir storage capacity is increased by 50%; precipitation is increased by 30%; 

agricultural water demand per ha is increased by 30%. Effects of agricultural water 

demand is offset by 20%. All other parameter values and graphical relationships are 

held at their base case values.     

Scenario 2 

(cropland 

expansion) 

Cropland area, delay in cropland change, and total arable are increased by 30%. 

Effects of agricultural water demand is offset by 20%. All other parameters and 

graphical relationships are held at their base case values.   

Scenario 3 

(“Dry conditions”) 

Precipitation is decreased by 30%; available surface water is decreased by 50%; 

Effects of agricultural water demand is offset by 20%. Agricultural water demand per 

ha is decreased by 30%. Effects of agricultural water demand is offset by 20%. All 

other parameters and graphical relationships are held at their base case values.     

          

 

7.4. Results  

7.4.1. Model Testing  

The results of the model testing are shown in Figure 7.4. The simulated results followed the same 

trend as the observed data, indicating that the model is well calibrated. These plots show that the 

model is not over-predicting or under-predicting the patterns and behaviours inherent in the VRB.  

These behaviour patterns indicate that the model satisfactorily fits the available data. However, 

there some slide variations in the patterns, which could be attributed to uncertainties associated with 

the model structure, parameter uncertainty, or input uncertainty (Refsgaard et al., 2007).  
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Figure 7.4: Comparison between observed and simulated data 
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Further, the errors could be due to the assumptions made for the model parameters and graphical 

relationships. Nevertheless, the aim of the model is to understand the dynamic behaviour patterns of 

key system variables, and not to make precise numerical prediction of levels and volumes regarding 

those variables. Indeed, many system dynamicists have concluded that, by their nature, system 

dynamics models are not designed to make accurate predictions of system variables (point 

predictions), rather they are formulated to predict significant time patterns of interests (pattern 

prediction) (Forrester, 1961; Barlas, 1996; Sterman, 2000; Kelly et al., 2013).  

 

With regards to the extreme conditions test using sensitivity analysis, when available food is 

assumed to be zero, total population and domestic water demand decline sharply to zero in five 

years, then remain the same for the rest of the simulation period (see Figure 7.5).  
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            Figure 7.5: Behaviour of selected model variables in the simulation period under  

            extreme conditions (i.e., when food available is assumed to be zero after 2025). 

 

 

However, available water stays as results of population collapse. Further, if precipitation is assumed 

to have dropped by 100% (i.e., no rain), and the evaporation rate is increased by 50% after 2025, 

total population, available surface water, agricultural and domestic water demands all collapsed 

within five years (Figure 7.6). Overall, the model performed satisfactorily well under these test 

conditions, which suggest again that the model is strong enough to simulate the period 2010-2050.  
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           Figure 7.6: Behaviour of selected model variables in the simulation period under  
extreme conditions (i.e., when precipitation is assumed to be zero and evaporation  

rate is assumed to increase by 50% after 2025). 

 

7.4.2. Policy scenario analysis   

7. 4.1. Baseline Model Run (Business as Usual Scenario)  

For BAU, available surface water (line 1) plateaus around 2006 (Figure 7.7). Similarly, agricultural 

water demand plateaus around 2010. Total population and domestic water demand grow 

exponentially. These upward trends in total population and domestic water demand, coupled with 

the plateauing of available surface water, could lead to future water deficit within the basin, with 

negative implications for agricultural production, which is the mainstay of the basin’s economy. 

Further, crop yield plateaus at 2030 because of water limitations.  
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            Figure 7.7: Behaviour of selected variables under the baseline model run (BAU). 
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7.4.3. Analysis of Designed Policy Scenarios   

By 2050, maximum growth is expected to occur under scenario 1 (water infrastructure 

development) and the least growth is expected to occur under scenario 3 (dry conditions) (Figure. 

7.8).  
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        Figure 7.8: Behaviour of selected variables in the simulated period (2000-2050) under different  

        policy scenarios. 

 

All scenarios display limits to growth behaviour, except for population, which is expected to 

continue to grow under all scenarios. Limits to growth in crop yield and net farm income are 

expected to occur around 2040 under scenario 1, while these limits are reached a decade earlier 

(around 2030) under the BAU scenario and 20 years earlier (around 2020) under scenario 3. The 
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trends in agricultural water demand reflect those of crop yield, however the peak in water demand 

occurs earlier than the peak in yield because yield is not only limited by water, it is also limited by 

the availability of labour, which continues to grow with population beyond the peak in the water 

supply. Domestic and industrial water demands increase with population; however, growth in water 

demand begins to plateau towards 2050 due to the limits of water supply or available water.  

 

7.5. Discussion    

The results suggest that in the case of VRB of Ghana, cropland expansion is likely to lead to an 

outcome similarly to BUA and will not maximise the benefits to people living within the basin. This 

finding is contrary to popular assumption that future agricultural development in Africa would have 

to come from the expansion of cropland (Deininger and Byerlee, 2011; Hertel, 2011; Chamberlin et 

al., 2014). Moreover, pursuing such a strategy is unsustainable because cropland expansion in the 

tropical environments is associated with deforestation and significant environmental costs (Byerlee 

et al., 2014; Chamberlin et al., 2014). If scenario 3 (dry conditions) were to occur, the results 

suggest that all water demands (agriculture, domestic, and industrial) may not be met in the future, 

which will have a profound impact on crop yield and consequently food security within the basin. 

This finding confirms the results of recent model-based studies and assessments that analysed the 

impact of climate change on water resource availability within the VRB (e.g., Bhaduri et al., 2011; 

McCartney et al., 2012; Sood et al., 2013; Amisigo et al., 2015). This suggests that a system-wide 

demand management programme must part of Ghana'swater resources management and agricultural 

development strategies for the VRB of Ghana. 

 

Water infrastructure development (scenario 1) appears to provide the maximum benefits to local 

people through improved crop yields and net-farm income. Increased incomes would also have a 

positive impact on education, nutrition and health, and social equity. Improved water security would 

also be a pathway to improved food security, socio-economic development and poverty reduction. 

If this scenario is complemented with other policy mechanisms such as soil fertility management 

and the provision of micro-credit, agricultural production within the VRB of Ghana could be greatly 

enhanced. An important consideration is that the development of water infrastructure would come at 

a cost as it would compete with other spending priorities. Water infrastructure would also require 

associated water allocation management and good governance (Agyenim, 2011), which would need 

to be supported by institutional development in Ghana. The results of all policy scenarios analysed 
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in this study, including BAU, show that total population growth will continue to increase, driving 

increases in agricultural, domestic and industrial water demands.  

 

These upward trends are consistent with previous estimation of water use and demands within the 

basin (e.g., Andah and Gichuki, 2003; Jung et al., 2012). Given this situation, it is also imperative 

for policy-makers to understand that simply supplying more water without effective demand 

management will not prevent future water shortages. It will only delay them. Hence, a combination 

of population growth control, water conservation and strategic water demand management would 

assist the VRB of Ghana to meet its current and future water needs in a sustainable manner. It is 

also important to reiterate that the scenarios tested in this study should not be seen as rigid 

prescriptions. Their purpose is to build our understanding of the long-term dynamics of the system 

and inspire decision-makers to look beyond existing policies and management strategies. 

 

Overall, the model results presented in this study are likely to play an important role in water 

resources management and agricultural development. It should be noted, however, that the model as 

collaboratively constructed is, like any other model, imperfect and incomplete (Meadows et al., 

1972). Thus, the findings presented in this paper should be interpreted in light of the assumptions 

and limitations inherent in the modelling process. For example, the model considered by 

stakeholders and in the literature to be important in shaping the dynamics of the basin. Thus, as 

noted in the preceding sections, issues such as land use/cover change, the diverse ecosystem 

services, water quality, groundwater, and market-related factors were omitted. However, given that 

we live in rapidly changing environment, the magnitude these variables could change within a year 

or even a month or a day, which may render them significant. It is, therefore, important to 

continuously assess their likely impact in the model. It is for this reason that they have been marked 

for future consideration.  

 

It is also important to emphasise that the model is developed for biophysical and socio-economic 

conditions prevalent in Ghana. This suggests that some degree of caution should be exercised when 

using the results associated with the model assumptions and scenarios or extrapolating the findings 

to all riparian countries of the VRB. Nevertheless, it does present significant insights into the 

potential and current directions of water resources management within Ghana, which is likely to 

have an influence across political and geographic boundaries. A future endeavour would be to 

expand the scope of the study to include issues from these other countries with the view of 

developing a basin-wide water resources management decision support tool, and to also incorporate 

other components such as water quality and groundwater resources. However, as already stated, 
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given the sensitive nature of most SD models, the inclusion of these issues and consideration of 

basin-wide conditions may have a significant impact on the model behaviour and the results that 

underpin the insights from the study.   

 

7.6. Conclusions   

This paper describes the development of a system dynamic model (SDM) that captures that the 

interactions and feedbacks between the key components of the VRB of Ghana (i.e., the population 

sub-sector, water resource sub-sector and agricultural production sub-sector). The model was 

developed in a participatory process with stakeholders. The specific objectives of the study were to 

use the model as a learning tool to improve our understanding of the long-term dynamics of the 

VRB of Ghana and as a basis for exploring alternative policy scenarios for sustainable water 

resources management and agricultural development. The model was tested using both structural 

and behavioural pattern tests, and extreme conditions tests. The SDM was used to simulate the 

outcomes of three different policy scenarios: scenario 1 (development of water infrastructure), 

scenario 2 (cropland expansion), and scenario 3 (dry conditions) over 50 years (i.e., between 2000-

2050). The results show that all scenarios reach limits to growth, however, crop yield and net farm 

income was maximised under scenario 1. This will benefit food security, poverty reduction, and 

socio-economic development within the VRB of Ghana.          

 

Although SDMs have been built for river basins in other parts of the world, the study is one of the 

few applications in Sub-Saharan Africa and the first application in the VRB. Other model-based 

studies within the basin have used mechanistic models that are not conducive to improving 

stakeholder shared understanding of how the system works. Using the SDM approach, and 

engaging stakeholders in model development, this study has implemented a process compatible 

with improving stakeholder understanding of the dynamic behaviour of the VRB over time, and 

more importantly, the interactions between the river basins sub-systems that determine this 

behaviour over time. 
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CHAPTER 8: CONCLUSIONS, CONTRIBUTION AND RESEARCH LIMITATIONS 

 

8.1. Introduction 

This final chapter summarises and synthesises the key findings of this thesis as they relate to the 

aim and objectives as outlined in chapter 1. In doing so, a reflective narrative about the study is 

provided. The theoretical and practical implications and the fundamental contribution of the 

research are also presented and discussed. Finally, I highlight the key limitations of the work and 

potential areas for further research.   

 

8.2. Reflection and Insights   

Up until this stage, the study documented the modelling process and its results. This section reflects 

on, and documents the stakeholders and researcher/modellers’ experiences and insight gained 

regarding the application and development of the system dynamics model in the Volta River Basin. 

Reflection is generally understood as engaging in one’s feelings (e.g., assumptions, attitudes, biases, 

resentments etc.) (Maani and Cavana,  2007). Reflecting and documenting the participatory process 

of developing integrated models have become vitally important, due to the growing need to allow 

researchers/modellers to learn and improve upon their own modelling practice. As Rodela et al. 

(2012, p. 17) underlined, “a journey through methodological choices gains specific relevance when 

it is accompanied by a reflection on practices of knowledge production and validation.” Also, 

Simonovic (2009) stressed that, the process of reflection differentiates theory from practice, 

unearths important insights derived from experience, and provides a frame for uncovering many 

unseen facets of employing a theoretical approach in pursue of a strategy to a solve real-world 

problems. In a more recent assessment Seidl (2015) concludes that the level of reflection about 

participatory processes is rarely explored in participatory modelling projects.  

 

Against this backdrop, the discussion presented here is what Schön (1983, cited in Bots et al., 2011) 

describes as “reflection on action.” In doing so, I have attempted to show how the insights and 

experiences gained differed or converged with what is reported elsewhere in the literature. I hope 

that these insights and experiences would inform future modelling efforts, particularly in a 

developing country context. An effective reflection may entail an evaluation of the modelling 

process geared towards capturing the participants’ experiences. The reflection and insights are 

based on my observation during the fieldwork, the collaborative modelling workshop, and feedback 

received from the modelling participants. Thus, the insights, as discussed below, are taken from the 
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perspective of the stakeholder who co-constructed the model and from the perspective of the 

researcher/modeller.  

 

8.2.1. Process Evaluation and Insights: Stakeholder’s Perspective  

According to Jones et al. (2009), the success of participatory effort is seldom evaluated. 

Consequently, Hewitt et al. (2014) stressed that evaluation of a PM effort is an important step of the 

work, not only because it would assist in evaluating the degree to which the modelling process has 

contributed or is likely to contribute to the broader aims (e.g., more sustainable resource 

management), but also because, it is crucial for gauging the effectiveness of the approach deployed. 

Importantly, the generalisation of the outcome and results of a shared learning and co-constructed 

model beyond its applied context is difficult, if not impossible ((Voinov and Bousquet, 2010; 

Bennett et al., 2013). In this situation, evaluating the learning process and the role the model-

building process played in the learning become vitally essential (Voinov and Bousquet, 2010).   

 

In this respect, some valid and important questions that follow a participatory modelling effort 

could be (see Videira et al., 2010, p. 455): “Did the process foster learning and insight? Did the 

process improve communication and exchange of viewpoints? Did it promote a shared view of the 

problem or actions?” Currently, there are no widely accepted protocols for evaluating the success of 

a participatory modelling exercise. However, surveys, questionnaire and protocols have been 

suggested as the most appropriate evaluation tools (Voinov and Bousquet, 2010). Also, qualitative 

measures may be employed (Beall et al., 2011). In this study, a questionnaire consisting of both 

open and closed-format questions (see Appendix 3) was used to evaluate both the modelling process 

and the model outputs/outcomes. The closed format questions were coded on a 3-point scale and 

scored from: I agree; I Disagree; and No Answer. Many of the questions were modified from 

previous studies (e.g., Videira et al., 2003, 2009; Carmona et al., 2013). All 27 stakeholder 

participants responded to the questions.  

 

Regarding the process (see Figure 8.1), a majority of participants (96%) thought the modelling 

process was a good method for planning and management; and that the process has helped improve 

their understanding of the complex problems within the VRB (93%); open and transparent (85%), 

and that it was useful to them (93%) as their views were represented in the final model (94%). All 

participants indicated that they have learned from the co-modelling process. The most cited learning 

outcome, which is consistent with Vieira et al. (2003) was an increase in the ability to integrate the 

complex management problems of the Volta River Basin into one consistent framework. Several 
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participants felt that the modelling process and accompanying discussions added greater value and 

insight to their knowledge and expertise because they knew better where it fit into their decision-

making process. For example, one stakeholder commented that: “collaborating with other people in 

this process has helped me to familiarise myself more with the problems in the basin.” Some 

participants stated that, seeing the model outputs helped them to understand the complexity of the 

problem in the basin. For instance, one remarked that: “I have heard a lot about feedback-loops and 

feedback-effects, but I never knew how they play out in reality. This modelling process has taught 

me a lot.” Some were thankful that they had learned a new skill (e.g., use of the software tools), 

which they could apply in their various workplaces. Quoting a statement from one participant: 

“with this new modelling skill, (like Vensim and Stella), I am one step ahead of my colleagues in 

the office.”  

 

0% 20% 40% 60% 80% 100%

8. I will participate in future participatory modelling

exercise/workshop

7. The model building process has been useful to me

The modelling tools/software (i.e.,Vensim & Stella) were easy to

learn and implement

6. The process has helped me to understand other participants

mental model

5. Participatory modelling process is a good method for planning

and management

4. The process has helped me to learn and improve my 

understanding of the basin’s problems and their interrelationships

3. Other stakeholders brought fresh ideas into the modelling

process

2. The modelling process/workshop was open and transparent

1. My interest/views/ideas have been included in the model

Agree

Disagree

No Answer

 
   Figure 8.1. Evaluation of the modelling process 

 

With respect to the model outputs (Figure 8.2), most participants (96%) thought that the use of the 

conceptual model (i.e., the CLD) and the simulation model (even in its preliminary form) were 

important system tools to represent and simplify complex environmental issues in the basin. 

Participants also felt that the developed models represent the reality on the ground (93%). Overall, 

there were strong feelings among the stakeholders that the developed models were credible, 

relevant, and consistent, and may potentially be used to enhance learning and facilitate decision-

making within the basin (93%). As one stakeholder indicated that: “I like the fact that I can simply 

manipulate one or two policy variables and instantly visualise their implication on the overall 
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system. It’s a useful policy-making tool. I like it.” Overall, the participants experience and 

perception of the modelling process and the resultant outputs were largely very positive. This 

insight is consistent with experience from recent participatory modelling experiments (Videira et 

al., 2003, 2009; Metcalf et al., 2010; Carmona et al., 2013; Inam et al., 2015).  Consequently, all 

participants expressed appreciation for the opportunity to discuss the river basin problems in such a 

structured manner, reflecting on their knowledge, opinions, views, values, perspectives, and 

interests. Many expressed their willingness to participate in future participatory modelling efforts.   

 

   
0% 20% 40% 60% 80% 100%

5. The developed simulation model can

be used as a decision-making tool

4. The developed CLD and simulaion

models are comprehensive and easy to

understand

3. The CLD and the simulation models

are important system tools to represent

and simplify complex environmental…

2. The developed model is valid and

represent the true structure of the Volta

River Basin

1. Visual representation of the basin’s 

problems helps my understanding about 

how the system functions

Agree

Disagree

No Answer

 
   Figure 8.2. Evaluation of the model outputs/outcomes  

 

In addition, some stakeholders indicated that the modelling process was successful in empowering 

them, in that, they learned to stand up and express their views in the presence of more powerful 

stakeholders. This corroborates the empirical work of Bot et al. (2011) carried in the Philippines.  

However, many of the stakeholders reckoned that the time allocated for the entire process was 

inadequate. For some of them, it was the first time they participated in a model building exercise, so 

it was difficult for them to grasp the entire process and follow through in such a limited time. This 

was particularly the case during the parameterisation and formulation of the simulation model. As 

one participant intimated: “the modelling process is interesting, but developing the stock-and-flow 

structure requires enough time to complete.” In general, most participants acknowledged that the 

process had been difficult, tiring, and time-consuming, while others conceded that at some stage, 

they were doubtful the task could be successfully carried out. However, they noted that patient and 

impartial facilitation was instrumental in keeping them motivated, and that their perception changed 

after seeing the completed CLD and the simulation model, which was in its preliminary form and 

had to be completed by the researcher/modeller.   

 



 

149 
 

The evaluation results and feedback from stakeholders, as illustrated above, suggest that PM 

process and its outputs (i.e., the models) are important vehicles for enhancing social learning, 

participation, and facilitating a shared and better understanding of complex problems within water 

resources systems, such as the Volta River Basin. Social leaning is generally understood as a 

process in which participants are involved in a dialectic exchange of information and ideas in a 

structured group situation, leading them to learn from each other and develop a deeper and 

collective understanding of a complex issue and its possible solutions (Muro and Jeffrey, 2008; 

Barreteau et al., 2010; Stave, 2010; Reed et al., 2010).  Also, having stakeholders stating that they 

now perceive the problems differently indicates that PM can be a powerful tool for changing current 

paradigms and mental model of how complex environmental systems functions.  

 

What is also apparent from the evaluation results is that the process has succeeded in building 

stakeholders’ knowledge, capacity and skills regarding the use of the technical tools, such as the use 

of the Vensim and Stella modelling tools (or software). This is indicated by stakeholders expressing 

that the modelling tools were easy to learn and implement, with some participants becoming excited 

about the possibility to use them in their own modelling experiments. This finding supports the 

notion that in certain situations, a model is considered valuable not for the accuracy of its predictive 

power, but for other outcomes, such as community and capacity-building, as well as the ontological 

and educational functionality that it conveys to stakeholder groups or users who benefitted by 

taking part in the modelling process (see Voinov and Bousquet, 2010; Krueger et al., 2012; Bennett 

et al., 2013).  

 

In addition, as indicated by participants’ perception that their values, opinions or positions have 

been represented, the decisions made herein, can be viewed as legitimate (Carr et al., 2015). This 

means that the results have the potential of being implemented. Further, the declaration that the 

process was inclusive, open and transparent, as well as the desire to be involved in future efforts are 

also important insights worth noting, as they have implication for model use and uptake. As Seidl 

(2015, p. 757) underlined, “…the degree of success of a participatory process can be read from 

stakeholders’ trust in modelers’ expertise and the amount and quality of information they give, as 

well as whether they intend to use the model and/or its results and will actually continue in future 

collaborations.”  
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8.2.2. Reflection, Insights, and Lessons Learned: Researcher/modeller Perspective  

Although the modelling process and the results have resulted in a shared or collective understanding 

of the Volta River Basin problems and its dynamics, it has also led to a few insights, experiences, 

challenges, and lessons worth documenting from my perspective as the researcher/modeller.  

 

First, many modellers/researchers emphasised that adequate preparation at the initial stage 

determines the success or failure of any modelling project (Forrester, 1961; Sterman, 2000; Stave, 

2003; Voinov et al., 2016). In this case, the preliminary individual interviews held with potential 

stakeholders prior to the group model building workshop proved to be useful. While these 

interviews enabled me to obtain background information about the system and the stakeholders, 

appreciate the magnitude of the problems, and accordingly, defined the scope and boundary of the 

model, it was also an important vehicle for building trust and strong relationships with the 

stakeholders. An example of this trust and relationship came up when one of the participants after 

learning about the nature of the project, freely offered his office space and conference facilities for 

the modelling workshop. This helped saving valuable financial resources that otherwise would have 

been required.  

 

More importantly, through these interviews, I learned about the gender, political, and cultural 

sensitivity issues to beware of, such as attributing corruption to a particular department or making 

statements that may be perceived to be a direct attack on the main political parties in the country. 

This information was helpful when facilitating the modelling workshop. Thus, an important take 

home lesson is that holding a preliminary interview prior to a group model building can result in 

saving significant financial resource, anticipating problems and building trust between participant 

stakeholders and scientific modellers. This experience further indicates that preliminary individual 

interviews can avoid costly mistakes, wasted time and efforts, and more importantly, and help 

moderate political and cultural sensitivities during the co-construction of a shared system model. 

From this perspective, this study reinforces the value of preliminary interviews as highlighted by 

the participatory modelling community (e.g., Weil,1980; Videira et al., 2009, 2010).  

 

Second, PM project may be initiated by local decision makers, governmental bodies, citizen 

activists, or scientific researchers (Voinov and Gaddis, 2008; Carr, 2015). This study was initiated 

by the researcher/modeller, with the original intent of modelling ecosystem health in the basin. 

However, during the preliminary interviews and the workshop, this objective had to be changed, as 

stakeholders highlighted water management and agricultural production as key concerns. While 

embracing their concerns, considerable care was taken to ensure that the process followed standard 
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scientific principles and objectivity (Argent et al., 2016; Voinov and Bousquet, 2010), by 

triangulating the elicited stakeholder’s knowledge with published scientific literature. One benefit 

from this, however, was that by allowing stakeholders’ priorities and questions to dictate the 

modelling process, enthusiasm was high throughout the modelling process. So was the sense of 

ownership. Nonetheless, the key learning here is that nothing is set in stone in PM process. This 

insight suggests that to fully benefit from a PM process, it important to be flexible to accommodate 

stakeholders’ concerns (Voinov and Bousquet, 2010).   

 

A third experience and challenge to note, relates to the number of participants engaged. On the one 

hand, there is a general understanding that involving several committed stakeholders can 

considerably improve the participatory modelling process (Voinov and Gaddis, 2008). But on the 

other hand, it has also been noted that involving too many stakeholders can add more complexity to 

the problem (Rockmann et al., 2012), especially in a co-construction process (Voinov and 

Bousquet, 2010). In this study, it was difficult to manage 27 participants. Specifically, although 

participants got on well, they had difficulty integrating the different problems and issues. This 

situation was ameliorated by breaking the participants into smaller sub-groups, where they 

developed different sub-models, which were integrated in a plenary session. The downside of this 

was that it took time for participants to learn about each other ‘s perspectives and build trust. Thus, 

while the large number of stakeholders enabled me to capture a diversity of views and interests 

(Ferreyra, and Beard, 2007), we have to be well aware that the larger the stakeholder group, the 

more unwieldy the results and the most problematic to integrate the diversity of interests and 

perspectives (also see Chan et al., 2010; Laniak et al., 2013).     

 

Fourth, it is widely acknowledged that a participatory modelling exercise can be a slow, time-

consuming, and a resource intensive process, overlaid with the practical difficulties (Sterman, 2000; 

Sterman, and Sweeney, 2007; Laniak et al., 2013; Voinov et al., 2016). In developing countries, 

attempting to do it alone can even be more frustrating, costly, and unproductive. In this study, two 

“gatekeepers” (who also acted as co-facilitators during model building) were essential to its success. 

In a research context, “gatekeepers” are considered as “people who can assist researchers gain 

access to remote places, institutions, departments, businesses and other people of relevance to a 

project” (Collins et al., 2016, p.136). It is also important to remember that the payment of royalties 

to local elders, chiefs, customary landowners, and local people may be required to have unrestricted 

access to some research sites. Indeed, Chan et al. (2010) experienced this situation in their work in 

the Solomon Islands. However, this may not be the case for modellers in more advanced countries. 

All the same, these insights go to support the notion that the socio-cultural context in which 
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stakeholders are embedded is crucial to the success (or not) of participatory modelling exercise 

(Hedelin, 2007; Voinov and Bousquet, 2010; Carr et al., 2015).  

 

Finally, while other studies (e.g., Stave, 2010) found the problem definition and the 

conceptualisation stage of the modelling process to be more time-consuming, in this case, the model 

quantification (i.e., simulation model formulation) proved challenging for stakeholders. 

Specifically, it was difficult for several participants to grasp the logic behind the stock and flow 

relationships. Some of them were discouraged by the model parameterisation, quantification, and 

the equation formulations. In fact, it must be noted that, the conversion of the dynamic 

hypothesis/conceptual model to the simulation model was a slow and time-consuming process, as 

every equation and assumption had to be clearly explained for the understanding of all stakeholders. 

Indeed, enthusiasm dropped at this stage of the process. However, things change quickly when the 

first simulation was run, with one participant stating: “I think it is now making sense.” Another 

said: “changing the parameter values and seeing the impacts on the whole system in real-time is 

what I like most about this modelling approach.” Unfortunately, while considerable efforts were 

made, there was no time to fully parameterised and simulate the model with the stakeholders. Thus, 

it was subsequently finalised by the researcher and the outputs evaluated by few experts. In this 

light, it may be argued that the modelling process accomplished more success at the problem 

framing and the model conceptualisation phase than at the simulation stage. Indeed, in a 

participatory modelling effort for river basin planning in Southern Europe, Kallis et al. (2006) came 

to the similar conclusion, thus, highlighting the difficulty involved in participatory system dynamics 

simulation modelling.   

   

In relation to the above problem, a reasonable approach would have been to develop a preliminary 

model, which could have then been modified by stakeholders (Voinov and Bousquet, 2010) as done 

by Mai (2013). However, the drawback of this approach is that the stakeholders would be denied of 

the opportunity of genuine “co-construction process and co-learning”, which, in turn, could affect 

the credibility, and hence, hamper the acceptability of the model results.  Also, this is likely to 

reduce the feeling of ownership and legitimacy of the results among the stakeholders (Videira et al., 

2003; Rockmann et al., 2012). As Voinov and Bousquet (2010) and Laniak et al., 2013) argue, if 

the modelling process is deemed to be exclusive, results may not be trusted and accepted by the 

stakeholders and the decision-making community. However, given this encountered problem, a 

recommendation suggested by Beall and Ford (2010, p.10) may be an appropriate take away lesson: 

“simulate early and often.” More insights might also be gained if enough time is devoted to the 

simulation model development stage. Nevertheless, this experience highlights that in certain 



 

153 
 

situations, it may be impossible to go through the whole model-building process (Vennix, 1999). It 

is, however, important to point out that, the difficulty encountered with the stock and flow 

construction is not limited to this study context. Indeed, previous studies in Western context have 

shown that even “highly educated people,” with strong training in science and mathematics 

(including calculus) find it difficult to understand basic stock-flow problems (see Sweeney and 

Sterman, 2000; Kainz and Ossimitz, 2002; Sterman and Sweeney, 2007; Cronin et al., 2009; 

Sterman, 2010; Sterman, 2012) – a problem, Cronin et al. (2009, p.117), described as “stock-flow 

(SF) failure.”     

 

Taken together, the above discussion demonstrates that, implementing a PM process is not trivial. It 

can be time-consuming, mentally, and physically strenuous on the part of the researchers-modellers 

and, more crucially, the stakeholders involved. It, therefore, requires a high level of commitment 

from stakeholders and the modellers involved in the process (Voinov and Bousquet, 2010; Voinov 

et al., 2016).      

 

8.3. Summary of Key Findings   

As stated in the introduction, a major challenge in the Volta River Basin is to increase 

understanding of rapidly changing socio-economic and biophysical conditions on the water 

resources of a semi-arid region. To help address this challenge, this study set out to promote shared 

understanding about the problems by developing a computer-based system dynamics simulation 

model that integrates both socio-economic and biophysical processes to support decision-making 

concerning sustainable water resources planning and management and agricultural development in 

the basin. In doing so, one overarching research question was framed: How can socio-economic 

issues be better integrated with biophysical issues to inform river basin planning and management? 

Based on this question, three distinct research objectives were formulated and, subsequently, 

addressed:    

1. To explore and identify the key biophysical and socio-economic drivers and factors that 

influence sustainable water resource management and agricultural development in the Volta 

River Basin.  

2. To develop an integrated qualitative/conceptual system model that captures the systemic 

feedback loops, processes and structures governing the system behaviour and their 

implications for current and future water resource management agricultural development.   

3. To develop a formal integrated system dynamics simulation model that allows for different 

policy scenarios and strategies to be designed and tested over time.  
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The key findings of the study addressing the research aim and objectives as outlined in chapter one 

are as follows.  With respect to the analysis on the drivers of change and processes using interviews 

and structured expert judgments approach, precipitation variability, water availability, land use 

change, drought events, and population growth were perceived as most important, while 

biodiversity loss, social conflicts, pest and disease occurrence, urbanization, and pollution were 

viewed as less critical. A majority of these drivers, such as land use change were characterised as 

“slow” acting processes as compared to rapidly changing drivers (e.g., population growth). Intra- 

and inter-expert groups agreement were found to be significant and convergent, indicating the 

reliability of the results.  

 

Using the results of the drivers of change as a guide, dynamic hypothesis (or a conceptual model) 

was first developed, facilitating a better understanding of the feedback structure and function of the 

basin. The conceptual model indicated that the VRB system is governed by several feedback 

processes, including seven balancing (negative) feedback loops and 14 reinforcing (positive) loops, 

concluding that positive feedback loops dominant the Volta River Basin water resources system. 

These feedback loops revolve around the issues of available surface water resources, total 

population growth, crop yield/agricultural productivity, soil fertility, and poverty level. 

Consequently, the main parts of the conceptual model were translated into a system dynamics 

simulation model to gain an insight into the dynamic behaviour of the basin in a 50-year time 

horizon. The simulation model consisted of three interacting constituent sub-models: population 

sub-model, water resources sub-model, and crop/agricultural production sub-model. Structural and 

behavioural pattern tests, and extreme conditions test were used to evaluate and validate the 

performance of the model. The results showed that the simulated outputs agreed well with the 

observed reality of the system.  

 

Besides business as usual scenario, which suggests an unsustainable trajectory, three additional 

policy scenarios were simulated to assess their impact on water demands, total population, crop 

yield, water availability, and net-farm income. These were the reservoir expansion and development 

(scenario 1), cropland expansion (scenario 2), and dry conditions (scenario 3). The results showed 

that scenario 1 would provide maximum benefit concerning sustainable water resources 

management and agricultural development in the basin.  The evaluation results and feedback from 

stakeholders suggest that PM process and its outputs (i.e., the models) are important instruments for 

enhancing social learning, participation, and promoting a shared and better understanding of 

complex problems within water resources systems, such as the Volta River Basin. Overall, the 
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model results could help inform planning and policy decisions within the basin to enhance food 

security, livelihoods development, socio-economic growth, and sustainable management of natural 

resources.  

 

However, it was noted that implementing a participatory system dynamics process is not trivial. 

Consequently, several challenges and lessons, which can guide future work were highlighted based 

on my experience. These include: the importance of preliminary interviews, being cognisance that 

the modelling objective could be changed and dictated by stakeholders, involving a manageable 

number of participants, maximising the value of “gatekeepers” in the process, and devoting enough 

time for model quantification and simulation.  

 

8.4. General Research Contribution and Implications 

Given what is now known about the complex problems and dynamics of the Volta River Basin of 

Ghana, what are the implications for theory and practice? This is discussed in the sections below.   

 

8.4.1. Theoretical Contribution and Implications  

As discussed in the theory chapters (i.e., chapters 2 and 3), this research questions traditional 

approaches to researching natural resource and environmental systems, particularly water resources 

and agricultural systems. Consequently, the thesis adopted a systems-based/systems thinking 

approach that directs attention towards key system variables, non-linear dynamics behaviour over 

time, feedback processes underlying those dynamic behaviours, and unanticipated consequences. 

Compared with more conventional approaches, this research has contributed to systems thinking by 

adding important empirical insights to advance a systems-based approach, including understanding 

inter-connectivity and complexity. Within the Volta River Basin, where this study was 

implemented, this research represents a change in thinking about the design of sustainable 

management strategies to address current and future challenges. It could significantly change the 

paradigm set that local and national managers use for future water resources management.   

 

Second, rather than modelling social systems and biophysical systems separately, this study 

considered the socio-economic and environmental/biophysical drivers and processes simultaneously 

using a linked social-ecological (SESF) or human-environmental system framework (HESF). These 

frameworks served as guides to identifying the key system variables and a lens to a systematic and 

transparent process of model development under conditions of rapid environmental and socio-

economic change. The thesis, thus, helps advance the coupled social-ecological system framework, 
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which is essential for understanding complex social-ecological systems (Schlüter et al., 2014), such 

as the Volta River Basin. This is even more important, given the shift toward integrated natural 

resource management and sustainability science. Finally, this study not only explored and identified 

the various drivers of change, but it also demonstrated how these drivers can be assessed and 

characterised. Specifically, the drivers identified were characterised as “slow” changing drivers that 

tend to act slowly over time in a somewhat predictable manner with long-term impacts, and “fast” 

changing drivers that change rapidly in the short term (Chapin et al., 2009; Gunderson and Holling, 

2002; Walker et al., 2012). The study provided an indicative assessment of the rate of change (i.e., 

trend) in each driver, and assessed the relative importance of such drivers as they influence 

sustainable agricultural development and water availability. In the current context of uncertain and 

rapid environmental and socio–economic change, the research has helped provide clarity in our 

understanding of the drivers of change, while extending the empirical work of Msangi and 

Rosegrant (2011) and Huber-Sannwald et al. (2012).         

 

Third, like other participatory methods, this study built a more equity and confidence in a 

heterogeneous group of people by providing a framework to share knowledge, cultural and 

traditional principles, access to power and status, ability to communicate and interact (Voinov and 

Bousquet, 2010, p. 1273). Within this context, Hedelin (2007, p. 158) argues that a planning 

process for sustainable river basin management must promote structuring of the planning process as 

a “rational discourse” and engage itself in the “handling of power asymmetries.” Although, the 

participants composed of laypersons (e.g., farmers), scientist and government officials who are 

generally considered to be of high social standing it was interesting to observe all participants 

discuss their ideas with confidence and assurance. As is apparent in the post workshop evaluation, 

many of the stakeholders indicated that the modelling process was successful in empowering them, 

in that, they learned to stand up and express their views in the presence of more powerful 

stakeholders. In this respect, we see a convergence between participatory practice (or modelling) 

and Habermas’ theory of rational discourse, which posits that reaching a consensus is part of a 

utopian ideal speech situation in which all persons are at liberty to articulate their views and 

question one another’s assumptions and power differences do not exist, resulting in a new, shared, 

and more robust knowledge (Hebermas, 1979, cited in Carr et al., 2015).  

 

Fourth, by combining a variety of knowledge and data (i.e., empirical, scientific and non-scientific/ 

indigenous knowledge), biophysical and socio-economic data, to provide a holistic understanding of 

the Volta River Basin, the PM process as implemented here has helped to illuminate on the theory 

of post-normal science as it relates to complex environmental problem solving at the river basin 
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scale. A post-normal science theory is a type of scientific parading, which tries to solve complex 

problems with a consideration that expert knowledge is insufficient (Funtowicz and Ravetz, 1993; 

Ravetz, 2006).      

 

Finally, an important outcome of this study was the development of computer-based conceptual and 

simulation models that consider the main and important the relationships between the key variables 

and their dynamic behaviour at a river basin scale. This research approach breaks down research 

silos and brings scientists from various disciplines together with decision makers and local 

stakeholders to solve an environmental management problem for which the social, economic, and 

environmental issues are highly interdependent. The research, therefore, contributes to the 

advancement of integrated environmental modelling (IEM) agenda that is motivated by the need to 

solve increasingly complex real-world problems involving the environment and its relationship to 

human systems and activities (social and economic) (Laniak et al., 2013). Further, as stated in the 

introduction, system dynamics modelling and its application has grown in the past 60 years. 

However, it has rarely been applied to study water resource systems in sub-Saharan Africa. It is, 

therefore, anticipated that the study will encourage research in this direction.   

 

8.5.2. Practical Contribution and Implications  

From a practical standpoint, the set of drivers identified and analysed in this study can provide 

decision-makers with useful information about the system state and dynamics. More crucially, with 

the results of this study, decision-makers are better placed to track changes in those critical drivers 

affecting the sustainability of the basin and, consequently, target policy and investment 

interventions for sustainable water resources management and agricultural development. Further, 

system dynamics is generally regarded as a practical tool policy-makers can use to solve important, 

complex socio-economic and sustainability problems – that is so-called wicket problems 

(Forrester1961; Sterman, 2000; Sterman, 2012). Thus, this research provides stakeholders and 

managers, including local farmers, NGOs, and policy makers, with decision support and planning 

tools in the form of conceptual and simulation models to help achieve sustainable water 

management and agricultural development. The models also show current knowledge, which can be 

of profound significance for communication with stakeholders and for facilitating a better 

understanding of whole system processes and impacts.  

 

Indeed, and as evinced in the process evaluation and reflective narrative, the modelling exercise 

generated considerable interest among the stakeholders who were engaged in the process. Many of 
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the stakeholders who attended the workshops and contributed to the development of the models are 

now familiar with participatory modelling based on systems thinking. They thought that the use of 

conceptual models (in this case, the CLDs), was an important system and visualisation tool to 

represent and simplify complex environmental issues. They also felt that the developed model 

represents reality on the ground; and that it could be used as a simple decision support tool in the 

basin and have requested to use the models in their workplace, since it incorporated the main 

problematic issues and the feedback between them.  

 

Further, in many parts of Africa, political decisions are crucial to put policy into in practice. From 

this perspective, thus, this study and the associated model results have been delivered in the right 

political environment and conditions. In fact, it has been completed at the time the government of 

the day has declared keen interest and commitment to the development of the water resources sector 

to boost agriculture through the expansion of irrigation infrastructure. In his recent State of Nation 

(SoN) address, the President of the Republic states: “We have decided to embark upon a 

programme to provide water to enable all-year farming. We are calling it the one-village-one-dam 

policy. It is a programme that I expect will rapidly get the support of the population, and should 

help to transform food insecurity in our country” (Government of Ghana, 2017). This means that 

the political conditions are favourable for the potential implementation of the model results. On this 

basis, it is envisaged that the study results may provide a vital piece of information to assist the 

planning and implementation of the policy.    

 

Finally, it is generally accepted that system dynamics has the potential to make revolutionary 

contributions to education and learning in general (Sterman, 2000; Barlas, 2007; Ford, 2010). In 

model-based case studies, students can experiment with simulation models of the case, which gives 

them a chance to rigorously test their own theories of how the problems in the case could be 

avoided. Similarly, it is hoped that the simulation model can serve as a learning and educational tool 

for people studying dynamics in Sub-Saharan African social-ecological systems.  

 

8.4.3. Methodological Contribution 

The research was grounded in a pragmatic relativist/holistic methodological 

paradigm/epistemology, a paradigm which until recently, has been suppressed by the traditional 

reductionist/logical positivist paradigm. After sixty years of its development, the system dynamics 

approach has rarely been applied to study water resources management systems in Sub-Saharan 

Africa. To the best of the researcher’s knowledge, this research represents one of the relatively few 



 

159 
 

studies to use an integrated system dynamics and simulation modelling approach to explore a 

complex environmental problem at the river basin scale in sub-Saharan Africa. Thus, given the 

paucity of system dynamics application in Africa, this is a distinctive and significant 

methodological contribution. The novel context also has the potential to provide a useful base for 

future studies.  

 

Another important aspect of the research is that the modelling process focused on individual and 

social learning, and provided a valuable methodological and conceptual insight into the 

participatory modelling approach based on the principle of system thinking and system dynamics in 

a developing country context, where data have often been limited or unavailable, yet, the stakes are 

usually high. A more direct benefit of the approach applied here is that it has also provided a deeper 

understanding of the problem issues in our case study context; issues which can now be compared 

with findings from other similar situations using similar approaches. Further, the thesis has 

demonstrated how qualitative data/information from interviews, workshops, and intrinsic mental 

models of diverse stakeholders from local farmers, NGOs, research scientists and academics, to 

policy makers can be combined with existing survey and historical quantitative information to 

developed integrated conceptual and simulation models that can be used to support decision making 

in a complex environmental system. Thus, the blending of different knowledge and information 

sources to address a complex environmental problem is a significant methodological contribution.  

 

Finally, the study has added to the broader literature on the system dynamics and participatory 

modelling process. A fundamental principle of research is to establish or confirm facts, reaffirm the 

results of previous work (Robson, 2011; Bryman, 2012). The findings as presented in this study 

affirm some of the existing principles and modelling practices documented in previous studies and 

in situations where the participatory system dynamics approach was taken. Collectively, it is hoped 

that the study will help raise/establish the level of confidence and the validity and robustness of the 

participatory modelling approach based system dynamics, as it is replicated and tested in different 

geographical contexts across the world. It will also affirm the place of the PM methodology as a 

tool of choice in developing countries, where there is a strong need for integrating highly technical 

expert knowledge with indigenous and non-expert, non-technical knowledge and values. This is 

particularly important in view of a recent review of the participatory modelling approach, in which 

Voinov et al. (2016, p.198) expressed concern about the reward academics and researchers receive 

for the development of new tools and methods, while the “extension, adaptation, application, or 

even testing of existing tools and methods” in new case studies have received relatively the least 

attention and support. In this respect, whilst the application of the existing approach relied on its 
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pre-existence as a sound methodology, it has contributed in determining how system dynamics and 

PM approach stood up under the dynamic operational setting of the case study area. As Voinov et 

al. (2016) emphasised, this type of validation is essential in modelling and science in general.  

 

8.5. Research Limitations and Direction for Future Research  

According to Beall and Thornton (2016, p.18), “we must realise that we never solve all our 

problems and challenges, we move from solution to the next challenge.”  Also, Hannon and Ruth 

(2001, p.4) argued that “modelling is a never-ending process – we build, revise, compare and 

change models.”  Accordingly, some limitations that present opportunities for further research can 

be identified because of this research study. First, the Volta River basin is a trans-national basin that 

runs across six riparian areas in West African countries: Burkina Faso, Ghana, Togo, Benin, Cote 

D’Ivoire, and Mali. However, due to time, financial, and logistical constraints, this study only 

focused on the Ghana part of the basin. Thus, the scope or geographical boundary of the model 

could be expanded to include key problematic issues from the other riparian countries of the basin, 

with concentration on developing a basin-wide system dynamics model for integrated water 

resources planning and management. Indeed, the model equations, graphical functions, and data 

sources may act as a template for such efforts. Second, the development of conceptual system 

model (CLD)/dynamic hypothesis produced 21 feedback loops, 14 reinforcing (positive) feedback 

loops and seven balancing (negative) feedback loops encompassing the biophysical and socio-

economic components of the basin. However, these have also not been considered in the formal 

simulated model for pragmatic reasons, and should therefore be avenues for extension. Other 

limitations in relation to the above, that present opportunities for extensions include the integration 

of fishery and livestock, sub-models, groundwater and water quality issues as deemed necessary by 

future modellers/researchers.      

 

Third, the system dynamic modelling approach as applied in this study has contributed to an 

improved understanding of the feedback structure and dynamics behaviour of the Volta River basin. 

However, some authors allude, one of its drawbacks is that it cannot handle spatial data very well 

(Voinov and Bousquet, 2010; Sušnik et al., 2012; Kelly et al., 2013). Consequently, the spatial 

issues within the basin were not captured in the current study, but their inclusion could offer another 

dimension and insight to the results. To this end, the combination of the system dynamics with 

geographic information system (GIS) analytical tools to model the feedback-based dynamic 

processes and spatial relationship in time and space may be a worthwhile venture. In fact, the work 

of Ruth and Pieper (1994) and Ahmad and Simonovic (2004) are exemplary of such an approach.   
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Fourth, a noteworthy point to mention when discussing modelling relates to uncertainties. This is 

because, uncertainty is generally accepted to be an integral aspect part of any effort to manage and 

understand environmental problems, including modelling (Jung et al., 2012; Voinov and Bousquet, 

2010; Guilaume et al., 2012; Hamilton et al., 2015). Walker et al. (2003) characterised uncertainty 

uncertainties in model development by its level along the spectrum from determinism to total 

ignorance; and its nature (epistemic, stochastic or ambiguity uncertainty). Refsgaard et al. (2007) 

categorised as: input uncertainty, model structure uncertainty, parameter uncertainty, model 

technical uncertainty. Indeed, this research does not rule out the presence of all these forms of 

uncertainties in the model. However, the drawback to draw attention here, relates to parameter 

uncertainty (i.e., the uncertainties concerning parameter values) (Refsgaard et al., 2007). For 

example, in developing and parameterising the simulation model, some assumptions and inferences 

were made based on the researcher’s and stakeholder’s best judgment and their understanding of the 

basins’ problems and challenges. Also, some variables and issues, which may be relevant, have 

been omitted to keep the models simple and comprehensible.  

 

Further, some parameter values were obtained from the literature, or calibrated within the bounds 

found in literature, and not from on-site measurements (Jung et al., 2012). Thus, the current data 

used may be incomplete, unreliable, or even invalid for what it claims to represent, which could 

bias the results of the integrated models toward the conclusion (Sterman, 2002; Olsson and 

Anderson, 2007). Moreover, certain parameters may change due to future rapid change in 

environmental, socio-economic and technological conditions (Qin et al., 2011). Some of these 

changes may be exogenous to the focal system (e.g., climate change, new policies), while others 

could be endogenous (e.g., new data or new priorities) (Voinov and Bousquet, 2010). This means 

that some of the parameter estimates and other plausible assumptions, particularly the graphical 

functions used in the simulation model, are open to question, and should be confirmed, and 

accordingly, adjusted using empirical data when it becomes available. After all, “science based 

values are not set in stone, they change when new knowledge becomes available” (Voinov et al., 

2014, p. 2011). Having said this, in this study, great efforts were made to obtain the best data 

available, but it was not possible to fully assess quality and exactness.   

 

Finally, it is vital to acknowledge that there are no models that can represent the ‘true’ or complete 

reality of a system, as they are only approximations of real systems (Mai, 2013). Thus, although the 

models developed in this study were verified and validated through standard best practice, it is 

imperative to note that, ideally, no model can ever be fully verified or validated (Barlas, 1996; 
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Sterman, 2000, 2002).  This is because “all models are wrong; all models, mental or formal, are 

limited, simplified representations of the real world” (Sterman, 2000, p.846). Moreover, open 

systems and model results are always “non-unique” (Oreskes et al., 1994). Indeed, many system 

dynamicists recognize the “impossibility” of perfect model validation (e.g., Oreskes et al., 1994; 

Barlas, 1996; Sterman, 2000; Olsson and Andersson, 2007). For instance, Olsson and Andersson 

(2007) argue that models will never provide an answer by themselves to the “best solution” for an 

environmental problem; models only provide input to a decision in the form of indications of which 

sources that are important or the plausible scale of the effects of a suggested measure. As such, the 

model developed in this study may not be the best, despite the multiple tests to establish their 

robustness and reliability. Hence, the results should be interpreted with caution. Nevertheless, the 

acceptability and the trustworthiness of the results by the system stakeholders may not be in doubt, 

since they took part in the model development and are, therefore, aware of the model assumptions, 

aware of the degree of model reliability and recognize that the model included the best available 

knowledge and data, and understand that there will always be inherent uncertainty in the model 

results (Voinov and Bousquet, 2010).     

 

Despite the above limitations, the results of this study have contributed significantly to improve the 

current knowledge and shared understanding of the systems’ function by giving importance to the 

relationships among the main variables and drivers. This model integrates what the researcher and 

the system stakeholders view as the important issues, processes, and complex dynamics that operate 

in basin over time. The participatory model-building exercise allowed the stakeholders to 

holistically view the complex challenges in the Volta River Basin and the potential solutions to the 

problems.  The overall goal of the research was to develop an integrated system dynamics model 

that provides an understanding of the feedback structure and dynamic behaviour concerning water 

resources management and agricultural development within the Volta River Basin, West Africa. 

This has been achieved through the application of a contemporary approach – systems-

based/systems thinking approach and its concomitant tools: participatory modelling, causal loop 

diagrams, and system dynamics simulation modelling approach. This research was conducted with 

the understanding that a flawless research design or model rarely exists. However, if a research 

project is carefully designed and executed, while acknowledging weaknesses and limitations, the 

research can achieve its intended purpose.  
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APPENDIX 1: Expert Survey and Interview Questionnaire   

Project Title: An Application of Systems Thinking and Dynamic Modelling Approach to Support Strategic 

Decision Making and Sustainable Water Resources Management in the Volta River Basin, West Africa 

 

Interview Date _______________Time _______________ 

Informant ID number or name if interview is willing to give) ____ 

 

SECTION A 

PROFILE OF KEY EXPERTS 

Please give us a little background information about yourself and the work you do.  

A1  Gender (tick one) 

□ Male   

□ Female  

 

A2 How old are?__________________________________________________________ 

 

A3 Your highest academic qualification is (for technical experts only): 

□ Diploma    

□ Bachelors degree 

□ Masters degree 

□ PhD Degree         

□ Other (please specify)___________________________________________                

A3  What is your field/area of specialisation?_____________________________________ 

A4 Your current job title_____________________________________________________ 

A5 Which institution/organization do you currently work for?________________________ 

A6 How long have you been working in your current organization?____________________ 

A7 How long have you been working/doing research in the Volta River Basin?_______Years 

 

 

 

SECTION B 

 

I am now going to ask you some questions about the key biophysical/environmental, socioeconomic and 

policy and institutional drivers that underpin agricultural production and sustainability in the Volta River 

Basin  

 

 

B1 Think about the BIOPHYSICAL/ENVIRONMENTAL AND SOCIO-ECONOMIC DRIVERS OF 

CHANGE within the Volta River Basin (1 being very important, 2 being important, 3 being less 

important and 4 being not at all important), how IMPORTANT do you think the following factors 

are in terms of driving change and influencing water resource management and agricultural 

production within the basin?   
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 Environmental & Biophysical Drivers 

Driver of Change/Rating Scale  1 2 3 4 
If possible, please give reason for your 

rating  

  Biodiversity loss (VS)  
  

 
 

 

  Change in cropping pattern (VS) 
 

  
 

 

  Change in length of growing season 

(VS) 
   

 
 

  Change in temperature (VS)    
 

 

  Crop yield growth (VS)      

  Deforestation (VS)    
 

 

  Droughts-intensity & duration (VF)    
 

 

  Floods-intensity & duration (VF)    
 

 

  Ground & surface water availability 

(VS) 
   

 
 

  Land productivity (VS)     
 

 

  Land use/cover change (VS)     
 

 

  Land/soil degradation (VS)     
 

 

  Pest & disease occurrence (VF)    
 

 

  Precipitation variability (VF)     
 

 

  Pollution (VS)      
 

 

  Soil erosion (Vs)    
 

 

  Soil fertility (VS)       
 

 

  Use of fertilizer (VS)      

Please add any biophysical/environmental other 

driver(s) of change you think is (are) important but are 

not on this list 

 

 

 

Economic & Technological Drivers 

Driver of Change/Rating Scale   1 2 3 4 If possible, please give reason for your rating  

  Access to financial credit(VF)    
 

 

  Agricultural intensification (VS)    
 

 

  Agricultural market access (VS)      

  Availability of arable land (VS)    
 

 

  Availability of off-farm employment (VS)    
 

 

  Change in consumption patterns (VS)    
 

 

  Change in farm size/structure (VS)    
 

 

  Cost of inputs (VF)        
 

 

  Household income growth (VS)    
 

 

  Infrastructure conditions (VS)    
 

 

  Innovation & technological change (VS)      
 

 

  Labour availability (VS)     
 

 

  Livelihood & income diversification (VS)      
 

 

  Small-scale mining (VS)    
 

 

Please add any biophysical/environmental other driver(s) of 

change you think is (are) important but are not on this list 
 

 

 

 

Socio-demographic Drivers 

Driver of Change/Rating Scale  1 2 3 4 If possible, please give reason for your rating  

  Access to health care (VS)    
 

 

  Change in age structure (VS)      

  Change in fertility (VS)    
 

 

  Change in mortality (VS)     
 

 

 Change in traditional values & 

practices(VS) 
   

 
 

  Education level (VS)    
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  In/out migration (VF)    
 

 

  Inequality (e.g., gender, age, class) (VS)    
 

 

  Land Abandonment (VF)    
 

 

  Population density (VS)    
 

 

  Population growth (VS)     
 

 

  Poverty level (VS)    
 

 

  Social Conflicts (VF)    
 

 

  Urbanisation (VS)      

Please add any biophysical/environmental other driver(s) of 

change you think is (are) important but are not on this list 
 

 

 

Policy & Institutional Drivers  

Driver of Change/Rating Scale 1 2 3 4 If possible, please give reason for your rating  

Policy & institutional Drivers    
 

 

 Availability of extension services(VS)       

 Availability of funds for investments (VF)    
 

 

  Level of investment (VS)    
 

 

  Production subsidies (VF)    
 

 

  Property rights issues (VS)    
 

 

Please add any biophysical/environmental other driver(s) of 

change you think is (are) important but are not on this list 
 

 

 

 

SECTION C 

I will also like to know your view and observation concerning the impacts of the drivers of change we just talked about, 

and what you thinking the future will play out in the context of changing socio-economic and environmental conditions 

in the Volta River Basin.   

 

C1 What specific types of POLICIES OR STRATEGIES do you think could assist the people in responding to 

this [these] changes?   

 

 

C2 Who else should I speak to?---------------------------------------------------------------------------------------  

C3 What are the key documents I should read?  

C4 Given all we have discussed so far, is there anything else that you would like to add, remember your comments 

are completely confidential. 

 

 

 

 

Thank you for your time. Your comments have been insightful and will be used to inform more proactive community 

planning. If you would like to receive information about the results of this research, please provide me with an e-

mail or contact number or address where you can be reached. Thank you again for your time and comments. 

 

 

TOTAL DURATION OF INTERVIEW________________________ 

 

Thank you very much for taking part in this survey/interview 
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APPENDIX 2:  Questionnaire: Participatory Modelling Workshop Evaluation   

 

Project Title: An Application of Systems Thinking and Dynamic Modelling Approach to Support Strategic 

Decision Making and Sustainable Water Resources Management in the Volta River Basin, West Africa 

 

We would like to know the extent to which this workshop has met your expectations. Summary information 

of your responses will be important in our analysis of the research information. Please fill in your response 

circles completely using either a pen or pencil and return this evaluation to the person designated to collect 

them in your group. Thanks 

 

This study adheres to the Guidelines of the ethical review process of The University of Queensland. Whilst 

you are free to discuss your participation in this study with project staff (contactable on +61404650811 or 

j.kotir@uq.edu.au ), if you would like to speak to an officer of the University not involved in the study, you 

may contact Dr Annie Ross, the Ethics Officer on +61 3365 1450; or +61 3365 6084; or 

annie.ross@uq.edu.au.    

 

For further enquiries, my contact details are: 

Email: j.kotir@uq.edu.au 

Phone number: +61404650811 

 

 

 

PART A: BACKGROUND AND DEMOGRAPHIC INFORMATION (please tick √ the appropriate 

box):  

 

 

PART A 

 

 A1 Organisational affiliation:  

□ Government institutions  

□ NGO and civil society      

□ Research and academic institutions  

□ Private and consulting firms 

□ Local farmer group               

□ Tertiary Education       

    Other (please specify)______________________________________  

 

 

PART B: STAKEHOLDER PERCEPTION ABOUT THE PARTICIPATORY MODELLING 

WORKSHOP /PROCESS 

B1. To what extend do you agree or disagree (1 being “Agree”, 2 being “disagree”, 3 being “No Answer”) 

with each of the following statements regarding your opinion about this participatory modelling workshop 

you participated in?    

 

 

 

mailto:j.kotir@uq.edu.au
mailto:annie.ross@uq.edu.au


 

210 
 

Evaluation of the Modelling Process  

Item 

no. 

 

Statement/evaluation item 

 

Scale 

1 My interest/views/ideas have been included in the model 1 2 3 

2 The modelling process/workshop was open and transparent 1 2 3 

3 Other stakeholders brought fresh ideas into the modelling process 1 2 3 

4 The process has helped me to learn and improve my 

understanding of the basin’s problems and their interrelationships 

1 2 3 

5 Participatory modelling process is a good method for planning 

and management 

1 2 3 

6 The process has helped me to understand other participants 

mental model 

1 2 3 

7 The modelling tools/software (i.e.,Vensim & Stella) were easy to 

learn and implement 

1 2 3 

8 The process has helped me to understand other participants 

mental model 

1 2 3 

9 The model building process has been useful to me 1 2 3 

10 I will participate in future participatory modelling 

exercise/workshop 

1 2 3 

 

Evaluation of the Model Outputs  

Item 

no. 

 

Statement/evaluation item 

 

Scale 

1 Visual representation of the basin’s problems helps my 

understanding about how the system functions 

1 2 3 

2 The developed model is valid and represent the true structure of 

the Volta River Basin 

1 2 3 

3 The CLD and the simulation models are important system tools 

to represent and simplify complex environmental issues 

1 2 3 

4 The developed CLD and simulaion models are comprehensive 

and easy to understand   

1 2 3 

5 The developed simulation model can be used as a decision-

making tool 

1 2 3 

 
 

Please provide, any relevant comment you have have regarding the modelling process and the 

outputs produced. confidential. 

 

 

 

 

 

Thank you very much for taking part in this Participatory Modelling Workshop 
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APPENDIX 3:  Detailed Stella Equations  

Adult_Population(t) = Adult_Population(t - dt) + (Immigration + Maturation - Deaths - Emmigratoin) * dt 

INIT Adult_Population = 6900368 * 0.70 

INFLOWS: 

Immigration = Adult_Population*actual_immgration_rate 

Maturation = Children_population/maturation_delay 

OUTFLOWS: 

Deaths = Adult_Population*actual_death_rate 

Emmigratoin = Adult_Population*emmigration_rate 

Available__surface_water(t) = Available__surface_water(t - dt) + (Actual_surface_water_inflow + Run_off - 

Surface_water_withdrawal - Spill - Evaporation) * dt 

INIT Available__surface_water = 37900000000 

INFLOWS: 

Actual_surface_water_inflow = Normal_surface_water_inflow*Effect_of_rainfall_on_surface_water_inflow 

Run_off = Actual_precipitation*Actual_rainfall_runoff_ratio*Faction_of_runoff_to_reservoir 

OUTFLOWS: 

Surface_water_withdrawal = if Available__surface_water < 

(Domestic_water_demand+Agricultural_water_demand+Industrial_water_demand) then (Available__surface_water + 

Actual_surface_water_inflow) else (Domestic_water_demand+Agricultural_water_demand+Industrial_water_demand) 

Spill = (Available__surface_water+net_flow)-Reservoir_storage_capacity 

Evaporation = Available__surface_water*Evaporation_rate 

Children_population(t) = Children_population(t - dt) + (Births - Maturation - Infant_deaths) * dt 

INIT Children_population = 6900368 * 0.30 

INFLOWS: 

Births = Adult_Population*actual_birth_rate 

OUTFLOWS: 

Maturation = Children_population/maturation_delay 

Infant_deaths = Children_population*actual_death_rate 

Cropland_Area(t) = Cropland_Area(t - dt) + (Change_in_cropland_area) * dt 

INIT Cropland_Area = 1306631 

INFLOWS: 

Change_in_cropland_area = if Required_minus_actual_cropland_area>Total_arable_land_minus_cropland_area then 

(Total_arable_land_minus_cropland_area/Delay_in_cropland_area_change) else 

(Required_minus_actual_cropland_area/Delay_in_cropland_area_change) 

Crop_Yield(t) = Crop_Yield(t - dt) + (change_in_crop_yield) * dt 

INIT Crop_Yield = 1309.3 {kg/ha} 

INFLOWS: 

change_in_crop_yield = suggested_minus_actual_crop_yield/delay_in_crop_yield_change 

Actual_agricultural_water_demand_per_ha = 

Inital_agricultural_water_demand_per_ha*Effect_of_water_availability_on_agricultural_water_demand_per_ha 

Actual_average_domestic_water_demand_per_capita = 

Inital_average_domestic_water_demand_per_capita*Effect_of_water_availability_on_domestic_water_demand 

Actual_average_industrial_water_demand_per_capita = 

Inital_average_industrial_water_demand_per_capita*Effect_of_water_availability_on_industrial_water_demand 

Actual_birth_rate = inital_birth_rate*(Effect_of_food_available_on_birth_rate ) 

Actual_death_rate = initial_death_rate*(effect_of_food_available_on_death_rate) 

Actual_food_available_per_person = Food_available/Total_population 

Actual_immgration_rate = inital_immigration_rate*effect_of_food_on_immigration_rate 

Actual_outside_of_Ghana_precipitation = Normal_outside_of_Ghana_precipiation * (1-Percent_drop_in_precipitation) 

Actual_precipitation = Normal_precipitation * (1-Percent_drop_in_precipitation) 

Actual_rainfall_runoff_ratio = Normal_rainfall_runoff_ratio*Effect_of_rainfall_on_runoff 

Agricultural_water_demand = Cropland_Area*Actual_agricultural_water_demand_per_ha {565000000} 

Average_food_consumed_per_capita = 423 {kg/year} 

Cost_per_ha = 2.44 {GHC} 

Crop_price = 1.5{$} 

Delay_in_cropland_area_change = 5 

Delay_in_crop_yield_change = 1 

Domestic_water_demand = total_population*Actual_average_domestic_water_demand_per_capita 

effect_of_agricultural_water_demand_on_crop_yield = 

GRAPH(Actual_agricultural_water_demand_per_ha/Inital_agricultural_water_demand_per_ha) 
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(0.00, 0.00), (0.2, 0.202), (0.4, 0.397), (0.6, 0.593), (0.8, 0.795), (1.00, 1.00), (1.20, 1.20), (1.40, 1.34), (1.60, 1.38),  

(1.80, 1.39), (2.00, 1.39) 

Effect_of_food_available_on_birth_rate = 

GRAPH(Actual_food_available_per_person/Initial_food_available_per_person) 

(0.00, 0.00), (0.2, 0.509), (0.4, 0.749), (0.6, 0.899), (0.8, 0.974), (1.00, 1.00), (1.20, 1.00), (1.40, 1.00), (1.60, 1.00),  

(1.80, 1.00), (2.00, 1.00) 

Effect_of_food_available_on_death_rate = 

GRAPH(Actual_food_available_per_person/Initial_food_available_per_person) 

(0.00, 50.0), (0.2, 10.5), (0.4, 3.56), (0.6, 1.65), (0.8, 1.12), (1.00, 1.00), (1.20, 1.00), (1.40, 1.00), (1.60, 1.00), (1. 80, 

1.00), (2.00, 1.00) 

Effect_of_food_on_emmigration_rate = 

GRAPH(Actual_food_available_per_person/Initial_food_available_per_person) 

(0.00, 50.0), (0.2, 10.3), (0.4, 3.56), (0.6, 1.87), (0.8, 1.05), (1.00, 1.00), (1.20, 0.984), (1.40, 0.946), (1.60, 0.902), 

(1.80, 0.729), (2.00, 0.202) 

Effect_of_food_on_immigration_rate = 

GRAPH(Actual_food_available_per_person/Initial_food_available_per_person) 

(0.00, 0.00), (0.2, 0.423), (0.4, 0.764), (0.6, 0.909), (0.8, 0.965), (1.00, 1.00), (1.20, 1.06), (1.40, 1.14), (1.60, 1.26) , 

(1.80, 1.43), (2.00, 1.59) 

Effect_of_labour_on_crop_yield = GRAPH(labour/inital_labour) 

(0.00, 0.505), (0.2, 0.696), (0.4, 0.8), (0.6, 0.867), (0.8, 0.874), (1.00, 1.01), (1.20, 1.04), (1.40, 1.07), (1.60, 1.14), 

(1.80, 1.14), (2.00, 1.14) 

Effect_of_rainfall_on_runoff = GRAPH(Actual_precipitation/Normal_precipitation) 

(0.00, 0.007), (0.2, 0.007), (0.4, 0.037), (0.6, 0.202), (0.8, 0.419), (1.00, 1.00), (1.20, 1.21), (1.40, 1.36), (1.60, 1.40) , 

(1.80, 1.40), (2.00, 1.40) 

Effect_of_rainfall_on_surface_water_inflow = 

GRAPH(Actual_outside_of_Ghana_precipitation/Normal_outside_of_Ghana_precipiation) 

(0.00, 0.00), (0.2, 0.00), (0.4, 0.045), (0.6, 0.21), (0.8, 0.412), (1.00, 1.00), (1.20, 1.21), (1.40, 1.36), (1.60, 1.40), (1.80, 

1.40), (2.00, 1.40) 

Effect_of_water_availability_on_agricultural_water_demand_per_ha = 

GRAPH(Available__surface_water/initial_surface_water) 

(0.00, 0.00), (0.2, 0.202), (0.4, 0.412), (0.6, 0.607), (0.8, 0.809), (1.00, 1.00), (1.20, 1.15), (1.40, 1.26), (1.60, 1.34),  

(1.80, 1.39), (2.00, 1.40) 

Effect_of_water_availability_on_domestic_water_demand = GRAPH(Available__surface_water/initial_surface_water) 

(0.00, 0.00), (0.2, 0.514), (0.4, 0.754), (0.6, 0.871), (0.8, 0.965), (1.00, 1.00), (1.20, 1.03), (1.40, 1.10), (1.60, 1.24),  

(1.80, 1.42), (2.00, 1.61) 

Effect_of_water_availability_on_industrial_water_demand = GRAPH(Available__surface_water/initial_surface_water) 

(0.00, 0.00), (0.2, 0.514), (0.4, 0.754), (0.6, 0.871), (0.8, 0.965), (1.00, 1.00), (1.20, 1.03), (1.40, 1.10), (1.60, 1.24),  

(1.80, 1.42), (2.00, 1.61) 

Emmigration_rate = inital_emmigration_rate*effect_of_food_on_emmigration_rate 

Evaporation_rate = 0.1 

Faction_of_runoff_to_reservoir = 0.5 

Food_available = Cropland_Area*Crop_Yield  

Food_consumption = total_population*average_food_consumed_per_capita 

Industrial_water_demand = total_population*Actual_average_industrial_water_demand_per_capita 

Inital_agricultural_water_demand_per_ha = 565000000/1306631 {water/ha} 

Inital_average_domestic_water_demand_per_capita = 235000000/6674376 

Inital_average_industrial_water_demand_per_capita = 95000000/6674376 

Inital_birth_rate = 41.87/1000 

Inital_emmigration_rate = 3/1000 

Inital_immigration_rate = 12/1000 

Inital_labour = 6900368 * 0.60 

Initial_death_rate = 8.10/1000 

Initial_food_available_per_person = 248 {423 {kg/yr} 

Initial_surface_water = 37900000000 

Intal_crop_yield = 1814.3 {kg/ha} 

Labour = Adult_Population*proportion_of_population_that_is_labour 

Maturation_delay = 16 

Net_farm_income = (Crop_Yield*crop_price)-cost_per_ha 

Net_flow = (Run_off+Actual_surface_water_inflow)-(Surface_water_withdrawal+Evaporation) 

Net_growth_rate = (actual_birth_rate+actual_immgration_rate)-(actual_death_rate+emmigration_rate) 

Normal_outside_of_Ghana_precipiation = 1 

Normal_precipitation = 500000000000 

Normal_rainfall_runoff_ratio = 0.08 
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Normal_surface_water_inflow = 25900000000 

Percent_drop_in_precipitation = 0 + STEP(0.1, 2000) 

Proportion_of_population_that_is_labour = 0.6 

Required_cropland_area = food_consumption/max(Crop_Yield, 0.0001) 

Required_minus_actual_cropland_area = Required_cropland_area-Cropland_Area 

Reservoir_storage_capacity = 150000000000 

Suggested_crop_yield = Intal_crop_yield * min(effect_of_agricultural_water_demand_on_crop_yield, 

effect_of_labour_on_crop_yield) 

Suggested_minus_actual_crop_yield = suggested_crop_yield-Crop_Yield 

Total_arable_land = 1306631*1.25 

Total_arable_land_minus_cropland_area = Total_arable_land-Cropland_Area 

Total_population = Children_population+Adult_Population 


