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Abstract

Precision magnetometers are widely used in our daily life such as in aircraft navigation, space
applications, magnetoencephalography, studies of topological spin configurations, and nuclear magnetic
resonance spectroscopy. Magnetometers with optical readout have the advantage of inducing minimal
electromagnetic interference in the specimen to be measured. Micro cavity optomechanical magnetic
field magnetometers, as a type of miniaturized optical magnetometer developed in our group, is made
from the magnetostrictive material Terfenol-D surrounded by a micro toroidal optical cavity operated
at room temperature. It converts the magnetic field into stress, thus deforming the magnetostrictive
material. The minuscule mechanical deformation can be precisely read out by using an optical cavity
attached to it and monitoring the shift of the optical resonance frequency. Such magnetometers
have tens of micro-metre lateral and longitudinal sizes, outstanding sensitivity performances, broad
bandwidths, large dynamic ranges and a simple operating scheme. The latest experimental result shows
that the sensitivity is even competitive to superconducting quantum interference devices of similar
sizes which are operated in cryogenic temperature.

In this thesis, I develop a general recipe for predicting the magnetic field sensitivity and bandwidth
of magnetostrictive material based cavity optomechanical magnetometry, thus building a bridge
connecting to previous experimental results and allowing prediction for future designs of sensors with
improved performance. Magnetostrictive nature of the material, displaying a relation between stress
and external magnetic field, is added as an external stress tensor term in the elastic wave equation to
the intrinsic elasticity term which describes the stress-strain relation without external driving. Finite
element analysis is used to solve the modified elastic wave equation numerically, the results of which
are then combined with optomechanical analysis to obtain predictions of the sensitivity and bandwidth,
limited by the combination of thermal Brownian noise excited at room temperature and laser shot
noise. The calculations are performed with several structures with a highest predicted sensitivity
of 5 pT/

√
Hz limited by thermal Brownian noise, and a 3 dB bandwidth of a few MHz, which

is in good agreement with previous experimental observations, yet demonstrating the potential for
improvement. By adjusting Terfenol-Ds’ composition and its annealing process, sensitivity as good as
500 fT/

√
Hz maybe possible. The method paves a way for future design of magnetostrictive material

based magnetometers, possibly allowing both scalar and vectorial magnetometry.
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Chapter 1

Introduction

Precision magnetometers are widely used for aircraft navigation [1], mapping earth’s magnetic field
and magnetic-based attitude control system in space [2], magnetoencephalography [3], studies of topo-
logical spin configurations [4], nuclear magnetic resonance (NMR) spectroscopy etc. NMR techniques
can further find applications including identifying chemical composition, molecular structure and
dynamics [5], quantum control and computations [6].

1.1 State of the art of miniaturized magnetometry

The sensitivity of the magnetometers scales with size. For instance, the magnetic field noise of
superconducting quantum interference devices (SQUIDs) is inversely proportional to the effective flux
capture area [7]. Though SQUIDs have the best magnetic flux sensitivity to date, developed in the
1970s the SQUID with 20 aT/

√
Hz sensitivity is in a 70 cm long configuration for pick-up loop [8],

which is quite bulky and massive.
Miniaturization and low power consumption requirement for magnetometers allows a range of

applications such as space applications [2] for lighter loads and high spatial resolution characterization
of magnetic materials. Much effort has been put into the miniaturizations in the magnetometers
community while reaching good sensitivity.

Magnetometers with electronic readout enjoy a long history. Thin film Hall sensors with lateral size
of 800 µm and magnetoresistive magnetometers with flux concentrator of lateral size 500 µm reach
∼100 pT/

√
Hz sensitivity limited by thermal (or Johnson-Nyquist) noise (>1000 Hz) and empirical 1/f

noise (<1000 Hz) [9, 10]. Miniaturized fluxgates have the sensitivity of sub-hundred pT/
√

Hz for a cm
array [11]. The sensitivity of an induction coil based magnetometer, boosted by a long ferromagnetic
core, scales cubically with the sensors’ longitudinal size [12]. Even disregarding the length and scaling
a 5×5×150 mm3 coil sensor with a noise level 50 fT/

√
Hz at frequencies larger than 1000 Hz [13]

down to 100 µm lateral size gives a sensitivity of 10 nT/
√

Hz. SQUIDs consisting of two Josephson
tunnel junctions and superconducting loops operate in cryogenic temperature. Miniaturization of
SQUIDs into sub-micro size brings their application in thermal imaging of quantum system and
detection of the momentum of a single electron spin [14]. Note that magnetic momentum sensors,
measuring magnetization are a complementary counterpart of magnetic field magnetometer, have very
good spatial resolution down to a few spins but are poor at field sensing. A SQUID whose pick-up loop

1
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has a size of 40 µm without counting the millimetre long stripline connecting Josephson junctions and
pick-up loop demonstrates a sensitivity of 40 pT/

√
Hz [15]. Another three times larger SQUID with

120 µm size exhibits 1.4 pT/
√

Hz sensitivity at 1000 Hz [16].
While electronic readout may interfere with the specimen through, for instance, undesired parasitic

inductance and capacitance, optical readout is well decoupled from magnetic signal. Atomic vapours,
ultracold Bose-Einstein condensates (BEC) magnetometry, nitrogen-vacancy (NV) defect center(s),
magnetic resonance force microscope (MRFM) and optomechanical magnetometers use optical readout.
Miniaturisation has brought the atomic vapour cell down to 1 mm with 5 fT/

√
Hz sensitivity [17].

However, 200oC of heating needs to be applied for an optimised atomic density. A single NV centres’
exceptional nm spatial resolution enables it to be placed extremely close (nm scale) to the sample
having detected NMR signals from a single electron spin [18], a single protein spin [19, 20] and
individual proton spins [21]. However, the sensitivity of a single NV is limited, using an ensemble of
NV centres sacrificing some spatial resolution to a volume size of ∼ 1003 m3 pushes the sensitivity
down to 1 pT/

√
Hz [22]. In this way applications of NV centres are extended to the detection of the

magnetic field from the electrical impulse conveying between neurons [23] and NMR spectroscopy
of weak signals from small sample solutions of picoliter-volume [24]. However, the remarkable
sensitivity of AC NV centres magnetometry is compensated by its narrow bandwidth, typically ∼ a few
kHz. Small bandwidth limits the detection speed of the NMR spectroscopy. It is likely that multiple
frequency spectra are needed to be examined before the fingerprint frequency region of the specimen
is found. Furthermore, NV magnetometers need high optical power for excitation (e.g. 400 mW
in ref. [22]) and complicated microwave decoupling sequences in NMR spectroscopy, and they are
limited by the fabrication reproducibility [7]. DC NV magnetometers have a record bandwidth among
NV magnetometers of 1.6 MHz with ∼ 5nT/

√
Hz sensitivity limited by the available excitation laser

power. The input laser power of 2.3 MW/cm2 [25, 7] used in NV magnetometer is around 3 orders
of magnitude larger than the detection laser power of standard optomechanical experiments [26–28].
MRFM [29] and optomechanical magnetization magnetometers [30] are sensitive to magnetization in
nano and micro scale respectively, but not to magnetic field. Micro-sized BEC magnetometry has a
quantum-enhanced sensitivity of 2 nT/

√
Hz [31].

As an alternative, optomechanical field sensors developed in our group [32, 27, 26] are of µm size
operated at room temperature. It has pT/

√
Hz thermal noise limited sensitivity and is detected by a

coherent laser with a few µW input power. This platform offers a simple operational scheme, low
energy consumption, large bandwidth and extraordinary field sensitivity among micro-magnetometers.
A sensitivity of 30 pT/

√
Hz is achieved in the latest experiments [32] comparable to the best SQUIDs

of the same orders of size.

1.2 Basics of cavity optomechanical magnetometry

Our optomechanical system consists of an optical cavity attached to a magnetostrictive material, whose
shape deforms in response to the external magnetic field. If the frequency of the external magnetic
field coincides with the mechanical resonances, the deformation would dramatically enhance. Thus,
this type of magnetometer is very sensitive to AC magnetic field signal at mechanical resonance
frequencies.
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F     =cactBfield
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Fig. 1.1 Simplified cavity optomechanical magnetometry concept illustrated by a Fabry-Pérot type
optical resonator.

Explained via an example of Fabry-Pérot type optical resonator in Fig. 1.1, the optical cavity couples
to the magnetostrictive material through one-end-movable mirror. The magnetostrictive material exerts
force Ffield = cactB (cact being the actuation constant) when immersed in a magnetic field environment
to the end-movable mirror. How large cact is depends on how good the magnetomechanical coupling
mode describing the mode overlap between the spatial profile created by the Ffield and the shape of
mechanical eigenmodes is. At the same time, there exist noise sources that blur the motion driven
by the magnetic field, the dominant noise for this room temperature system comes from thermal
excitations. It is described by the equipartition theorem that each degree of freedom of an object has a
mean energy of kbT/2 (kb is the Boltzmann constant and T is the temperature) in a finite temperature
environment.

The modulation of the optical resonance frequency due to the change of the cavity length by the
end mirror is read out at the front mirror where the input light launches.

Meanwhile, there is an another optomechanical system using magnetostrictive material [33]. In
their scheme, the magnetostrictive YIG sphere is put inside a cavity. When driving with magnet field,
the YIG sphere deforms thus disturbing the electromagnetic wave confined in the cavity. The readout
is measured from the transmission and reflection of a microwave cavity. Their magnetomechanical
coupling depends on how good the mode overlap of the spatial profile of the magnon oscillation
excited by external magnetic field and the mechanical eigenmode of the YIG sphere is. As the
magnetic field influences greatly on shifting the magnon oscillation frequency, the magnetomechanical
coupling is magnetic field dependent. Compared with our system, the magnetomechanical coupling
is constant within one mechanical eigenmode independent with magnetic field. Thus their system is
good for hybridization of magnon and phonon as what has been demonstrated, but is not suitable for
magnetometry.

1.3 Previous numerical modelling

Numerical modelling of optomechanical field magnetometry builds the bridge between past experimen-
tal results and future designs. Previous numerical modelling [34, 35] predicted the actuation constant
cact only at radial-breathing mode (RBM) of a piece of magnetostrictive material, which expands and
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contracts ideally only in radial direction due to radial symmetry. It calculates the magnetomechanical
coupling in multiple procedures: extracting the mechanical eigenmode profile along one direction
(could be extended to a few directions) and then integrating it with a force vector derived from the mag-
netic field-induced longitudinal stress. This analytical mode-overlap calculation limits the mechanical
eigenmode profile to radial symmetrical cases and stress induced spatial profile to only one dimension.
Though it is sufficient to estimate the performance of radial-breathing mode, this half numerical and
half analytic method is hard to extend to other mechanical eigenmodes. Furthermore, it consists of the
piece of magnetostrictive material only, neglecting the optical cavity. Consequently, it overlooks the
bending effect due to a bimetallic-strip like mechanism that makes the dominant contribution to the
performance of the magnetometers in many configurations.

1.4 Introduction of this thesis

In the model developed here, we modifies the elastic wave equation which governs the linear oscillations
of elastic media. The spatial mode overlap is intrinsically included in the elastic wave equation. A
magnetostrictive term displaying the relation between stress and external magnetic field, is added as an
external stress σσσ ext in the elastic wave equation together with the elasticity stress without driving [36].

The elastic wave equation is solved in 3D numerically by Finite Element Analysis (FEA), using a
commercial software package (COMSOL Multiphysics 5.2 Solid Mechanics module) with the input of
a vectorial reference magnetic field producing the external stress σσσ ext . This model intrinsically includes
the anisotropic nature of magnetostrictive materials. Originally coming from the magnetostrictive
materials (Terfenol-D [37–43] and Galfenol [44–48]) based actuators and transducers community,
this model is exploited by us by combining optomechanical analysis (see Chapter 2) with the study
of the mechanical properties under the consideration of magnetomechanical coupling (see Chapter
3) to derive the sensitivity and bandwidth (see Chapter 4). The input parameters to the model are
input laser power and empirical optical mechanical quality factors depending on the fabrication. Key
mechanical properties include the magnetic actuation constant cact(ΩM) and geometrical-dependent
ξ (ΩM) parameter. In toroidal geometry as shown in Fig. 1.1c), ξ (ΩM) is the ratio between the change
of the outermost circumference equivalent to the optical path and the maximum displacement, and it
quantifies the strength of the coupling of the motion of a given mechanical eigenmode to the optical
field in the cavity. Theoretical analysis from the optomechanics community considers the presence of
a thermal Langevin force and coherent laser noise under a homodyne detection scheme.

We apply this analysis to the previous experiment [32] predicting an optimal sensitivity of
5 pT/

√
Hz around an order of magnitude better than the experiment results, showing a potential

for improvement. We further study the effect of bending and the size of the magnetostrictive material
on sensitivity, as well as the improvement of bandwidth as a result of laser detuning and increasing the
power for different geometries. Numerical predictions are compared with miniaturized high perfor-
mance magnetometers demonstrated experimentally in Fig. 1.2. This numerical model would help to
specify the orientation of a sample to best boost the magnetomechanical coupling, thus amplifying
the detected magnetic field signal for a scalar magnetometer; as well as characterizing the mechanical
response with the variation of magnetic field direction allowing a vectorial magnetometer. More
conclusions and outlook can be found in Chapter 5.
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Fig. 1.2 State-of-the-art miniaturized magnetometers mentioned in the text is presented as sen-
sitivity vs. lateral size. This numerical work of cavity optomechanical magnetometry is highlight-
ed with red hollow square compared with all other experimental works listed in the text [32, 9–
11, 13, 16, 15, 22, 17].





Chapter 2

Optomechanical Analysis for Magnetometry

The magnetometers are built on an optomechanical platform, where AC magnetic field is converted to
mechanical motions imprinting on optical field. The amplitude and phase information from optical
field can be read out via optical detection scheme. In this thesis, homodyne detection is used. The
signal and noise detection from an optomechanical system is based on the derivation of the book by
Bowen and Milburn [49] from Chapter 1 to Chapter 3 with an extension to the case where the laser
is detuned from the cavity resonance by the factor ∆ = ω0 −ωL (where ω0 is the optical resonance
frequency and ωL is the laser frequency).

2.1 System of the optomechanical field magnetometry

fth

g0

Fba
F     =cact(ΩM)Bfield

ΩM 

Γ

Bref

ref

measurement 
imprecision

Fig. 2.1 Cavity optomechanics concept illustrated by a Fabry-Pérot resonator.

The optomechanical system shown in Fig.2.1 consists of a Fabry-Pérot resonator confining the
optical field and a bulk elastic material serving as a mechanical oscillator. The bulk material is
magnetostrictive whose shape deforms in response to the external magnetic field, therefore, it converts
magnetic field signal (Bref) to a force Ffield = cact(ΩM)Bref, where the actuation constant is mechanical
mode dependent. A priorly known reference magnetic field Bref is used as signal here for charac-
terization of the sensitivity spectrum. The motion of the magnetostrictive material couples to the
optical cavity through dragging one end moveable mirror with vacuum optomechanical coupling rate
g0 (rad·s−1), quantifying the linear dispersive shift of the optical resonance frequency ω0 at the level
of zero-point motion. At finite temperature, an incoherent motion of a mechanical oscillator is excited
under finite temperature. The so-called thermal Brownian noise fth will blur the magnetic field driven

7
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motion limiting the sensitivity of the magnetometer. Measurement noise from the light perturbs the
end mirror through back-action force Fba, which is rooted from the random kick from the intra-cavity
photons due to the optical shot noise. The effect of optical shot noise in the phase quadrature on the
readout attributes to measurement imprecision.

The optical cavity is lossy with κ = κin + κl + κ ′
in (rad·s−1) being the total optical decay rate,

counting the decay happened at the front mirror, inside optical cavity and at the end mirror. κin and
κloss = κl +κ ′

in are the input and loss port decay rate. Optical escape efficiency is defined by

η0 =
κin

κin +κloss
(2.1)

due to the presence of light absorption in the cavity and scattered by defeats etc. η0 is an important
parameter in the detection process quantifying how much of the output field stands out from noise.
The mechanical decay is labelled as Γ (rad·s−1) in Fig. 2.1.

2.2 Interplay between mechanical motion and optical field

Mechanics imprints its information onto optics, and optical measurement influences mechanics. The
understanding of the interplay between mechanical motion and optical field is important in knowing
the noise source that limits the sensitivity of the magnetometer.

The equation of motion of optical field can be obtained by using quantum Langevin equation
under rotation wave approximation for optics with the assumption that η0 = 1 [49] and considering the
general situation where the detuning from the laser and cavity exists, as

˙̂a =−i∆â− iGNx− κ

2
â+

√
κinâin(t) (2.2)

˙̂X =−κ

2
X̂ +∆Ŷ +

√
κX̂in (2.3)

˙̂Y =−κ

2
Ŷ −∆X̂ −

√
2GNx+

√
κŶin (2.4)

where X̂ (Ŷ ) refers to the optical amplitude (phase) quadrature, â (âin) describes the loss of the photon
number inside (input to) the cavity, N is the time averaged intra-cavity photon number in steady-state,
and x is the mechanical position. The mechanical position information is encoded onto optical field
via Eq. (2.2) and optical phase quadrature via Eq. (2.4). The optical phase quadrature is related to the
optical amplitude quadrature through Eq. (2.3) when the non-zero laser detuning is present.

Using quantum Markovian Langevin equation for mechanics and considering thermal random
force due to fluctuation dissipation theorem is the only driving force, resulting the mechanical equation
of motion as

˙̂Q = ΩMP̂ (2.5)
˙̂P =−ΩMQ̂−ΓP̂+

√
2ΓP̂in −2gX̂ (2.6)

where P̂ (Q̂) is the dimensionless mechanical momentum (position) normalized by zero-point motion
xzp =

√
h̄/2mΩM (zero-point momentum pzp =

√
h̄mΩM/2), the dimensionless input momentum has
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the expression of

P̂in(t)≡
xzpF̂(t)

h̄Γ
(2.7)

with F̂(t) being the thermal Brownian force. The optomechanical coupling rate g = g0N where the
vacuum optomechanical coupling rate g0 is defined to be linked with the optomechanical coupling
strength G as

g0 ≡ Gxzp. (2.8)

The set of mechanical equations of motion in Eq.(2.5, 2.6) shows that there is no obvious dependence
on the laser detuning. However, laser detuning is imprinted on laser amplitude quadrature X̂ and can
be transferred to mechanical momentum quadrature via Eq. (2.6). With laser detuning, mechanical
position imprinted on optical phase quadrature via Eq. (2.4) can be transferred to optical amplitude
quadrature via Eq. (2.3) and further influences mechanical momentum via Eq. (2.6) and thus position
quadrature via Eq. (2.5). Thus, optic field and mechanical motions are correlated.

Eq. (2.2) can be arranged for input and intra-cavity relation under the consideration of steady-state
solution where ˙̂a = 0 and taking the semi-classical approximation that α ≡ ⟨â⟩, as

αss =

√
κinαin

κ

2 + i(∆+
√

2g0Q̄)
(2.9)

where Q̄ is the time-averaged position ⟨Q̂⟩ in steady-state. In practice, the imaginary part ∆lock =

∆+
√

2g0Q̄ can be stabilized to ∆lock = 0 on resonance or other stabilized point, making the detuning
to be position dependent. The input-cavity photon number can be related by taking the modulus on
both side of Eq. (2.9) as

N ≡ |αss|2 =
4η0Nin

κ +4∆2
lock/κ

(2.10)

where ∆lock is labelled as ∆ in the following and Nin is the input photon number. Eq. (2.10) is important
in relating the input laser power to the intra-cavity photon number which interacts with the mechanics.

The interaction of photons and mechanics can be described by the optomechanical cooperativity
|C∆(Ω)| and effective cooperativity |C∆

eff(Ω)|. They can quantify the precision of the coherent light
detection and have the physical meaning of equivalent phonon number created by back-action heating
in this thesis, which are defined as

C∆
eff(Ω)≡

4g2
0|αss|2

κΓ(1−2iΩ/κ)2 =
16η0 g2

0Nin

κΓ(1−2iΩ/κ)2(κ +4∆2/κ)
(2.11)

C∆(Ω)≡C∆
eff(Ω)(1−2iΩ/κ)2 (2.12)

The unique thing here is that |C∆
eff(Ω)| can be determined accurately for a given device with the

mechanical property from Eq. (3.61) together with Eq. (2.8). As the numerical solution of Eq. (3.62)
is constant across a mechanical resonance as shown in Fig. 3.7d)-e), the effective optomechanical
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cooperativity across each mechanical resonance is assumed to be constant as

|C∆
eff(ΩM)|=

(
δL

max[u(r,ΩM)]

)2(ω0

L

)2 8η0h̄Nin

mΩMκΓ|1−2iΩM/κ|2(κ +4∆2/κ)
(2.13)

where δL,L, max[u(r,ΩM)], ΩM and m is taken as the effective motional mass as meff can be extracted
from COMSOL accurately, while κ and Γ can be taken empirically from experimental observations.
η0 and ω0 are treated as constant. With the input of photon number Nin in the unit of laser power (W)
and detuning ∆. The accuracy of the |C∆

eff(ΩM)| is only limited by the empirical optical and mechanical
damping, which depends on fabrication process and geometry.

Laser detuning would change the mechanical damping and the mechanical resonance frequencies
due to a delay for the photon to meet the new boundary condition created by the mechanical oscillation,
which is called dynamical back-action [49, 50]. It is interesting to know how the laser detuning affects
the bandwidth and sensitivity of our optomechanical magnetometers.

From Eq. (2.3, 2.4) the steady-state solution can be reached after applying Fourier transformation

X̃(Ω) =
−2g∆Q̃+

√
κX̃in

(
κ

2 − iΩ
)
+∆

√
κỸin(

κ

2 − iΩ
)2

+∆2
(2.14)

Ỹ (Ω) =
−2g(κ/2− iΩ)Q̃−∆

√
κX̃in +(κ/2− iΩ)

√
κỸin

(κ/2− iΩ)2 +∆2 (2.15)

From the input-output relation [49] and Eq. (2.14) followed by a Fourier transform to the frequency
domain leads to

X̃out(Ω) = X̃in(Ω)−
√

κX̃(Ω)

=
(κ/2− iΩ)2 +∆2 −κ(κ/2− iΩ)

(κ/2− iΩ)2 +∆2 X̃in(Ω)− ∆κ

(κ/2− iΩ)2 +∆2 Ỹin(Ω)

+
2
√

κ ∆ g
(κ/2− iΩ)2 +∆2 Q̃(Ω).

(2.16)

The equation of motion of the mechanical oscillator from Eq.(2.5, 2.6) is

¨̂Q+Γ
˙̂Q+

[
Ω

2
M − 4g2ΩM∆

(κ/2− iΩ)2 +∆2

]
Q̂ =

√
2ΓΩMP̂in −2gΩ

√
κX̂in(κ/2− iΩ)+∆

√
κŶin

(κ/2− iΩ)2 +∆2 (2.17)

From the mechanical position equation of motion, the modified mechanical susceptibility with
χ∆(Ω) and without χ(Ω) laser detuning can be obtained as:

χ(Ω) =
ΩM

−Ω2 − iΩΓ+Ω2
M

(2.18)

χ∆(Ω) =
ΩM

−Ω2 − iΩΓ+Ω2
M − 4g2ΩM∆

(κ/2−iΩ)2+∆2

≡ ΩM

−Ω2 − iΩ(Γ+Γopt)+(ΩM +δΩM)2 , (2.19)
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and the mechanical position operator can be obtained as:

Q̃(Ω) = χ∆(Ω)

[√
2ΓP̃in −2

√
C∆

eff(Ω) Γ
(κ/2− iΩ)2X̃in +∆ (κ/2− iΩ)Ỹin

(κ/2− iΩ)2 +∆2

]
(2.20)

where g = (κ/2− iΩ)
√

C∆
eff(Ω) Γ/κ is used for replacement. This equation shows that mechanical

position is related with input mechanical momentum, amplitude and phase information of the input
light. If the detuning factor ∆ = 0, then the mechanical position would be unaffected by the light phase
fluctuation, and thus in a spectrum analysis the mechanical position spectral density would only be
influenced by the correlations between input light amplitude and input mechanical momentum rather
than correlations among P̃in, X̃in and Ỹin. In the optomechanical magnetometers’ system considered
here, the fluctuations from the incoherent thermally driven input mechanical momentum are assumed
to have no correlations with either light amplitude or phase fluctuations. Also the correlations between
the light amplitude and phase quadrature is neglected for coherent light source.

From Eq. (2.19) the dynamical back-action modified mechanical damping and eigenfrequency
become

Γ∆(ΩM)

Γ(ΩM)
≡

Γ+Γopt

Γ
= 1+C∆(ΩM)

ΩM ∆ κ2

(κ2/4+∆2 −Ω2
M)2 +(κΩM)2 (2.21)(

Ω∆
M(ΩM)

ΩM(ΩM)

)2

≡ ΩM +δΩM

ΩM
= 1−C∆(ΩM)

κ∆ (κ2/4+∆2 −Ω2
M)

QM
[
(κ2/4+∆2 −Ω2

M)2 +(κΩM)2
] (2.22)

where QM = ΩM/Γ. With blue detuning ∆ < 0, the mechanical resonance spectrum peak reduces, and
eventually when Γ∆(ΩM)< 0 instability will occur leading to chaos [50]. Also the input laser power
should be limited to ensure that Eq. (2.22) stays positive.

2.3 Direct and homodyne detection techniques

There are several ways to detect the output light in Eq. (2.16), such as direct and homodyne detection
techniques for their signal-to-noise ratio (SNR) performance.

To be detected, light field has to be coupled to the system. Near field coupling scheme is used
in cavity optomechanical magnetometry where a tapered fibre is brought to close proximity in the
same order as the wavelength of the light to the device. The device could be a toroid surround with
magnetostrictive material Terfenol-D, whose artistic depiction is displayed in Fig. 2.2b). The near field
evanescent light field goes into the device via a coupling rate κin when the reflective index of the fibre
is larger than that of the device to avoid the total internal reflection from the fibre to the device.

Direct detection technique records intensity of the optical field on the detector, as a common way
of detecting optical signals: directing a signal from an optical fibre to a photon detector for instance.
The detected photon current can be written as

i(t) = η1 ·Nout(t) = η1 ·a∗out(t)aout(t) (2.23)
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b)

Fig. 2.2 Simplest Homodyne detection scheme. a) The device under test is immersed in magnetic
field shown as × symbol perpendicular to the plane. b) An artistic view of a magnetometer being
coupled to an optical fibre via an evanescent optical field.

where η1 is the detection efficiency counting the loss when transferring the photon to the electric
current at the photon diode, aout is the output field amplitude and N is the output photon flux. If
considering only the modulations on the optical field, aout(t) can be described as: aout(t)→ α +δa(t)
where ⟨δa(t)⟩= 0 and ⟨|δa(t)|2⟩= 0 describes that the modulation has zero mean but not zero over
time, and α is a positive complex number. When considering the modulation, Eq. (2.23) then becomes

i(t) = η1[|α|2 +αδa∗(t)+α
∗
δa(t)+ |δa(t)|2] (2.24)

= η1
|α|√

2

[
α

|α|
δa∗(t)+

α∗

|α∗|
δa(t)

]
= η1

|α|√
2

[
δa∗(t)eiθout +δa(t)e−iθout

]
≡ η1|α|X θout(t)

(2.25)

where X 0 (X
π

2 ) is the light amplitude (phase) quadrature. Noise product term in Eq. (2.24) is
negelected in Eq. (2.25). This approximation is valid when the optical coherent driving field is large
compared to the modulation. The constant term |α|2 in Eq. (2.24) is also neglected as its Fourier
transformation [51] writes:

ĩ(ω) ∝ |α|2δ (0)+αδ ã∗(ΩM)+α
∗
δ ã(ΩM) (2.26)

where the first term is the coherent average power centred at 0 modulated frequency is a DC signal
which can be filtered. ΩM is the modulation frequency, in our cavity optomechanical magnetometry
it’s the mechanical eigenfrequency and actuation frequency from the external AC magnetic field signal.
Under a spectrum analysis, the coherent power part can be distinguished from the rest. Though direct
detection is easy to be implemented, its measuring quadrature is limited to the direction of the coherent
field.

Balanced homodyne detection is an elegant technique to measure arbitrary quadrature of light
for optomechanical system. Shown in Fig. 2.2a), the simplest sketch consists of a 3 dB coupler mixing
signal beam with strong reference beam (local oscillator) at the same frequency (Eq.(2.27)), as can be
indicated from ’homo’ meaning the same. The signal beam consists of a tapered fibre evanescently
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coupling coherent light field to the device under test. The detected photon current takes the difference
from the two detectors as expressed as ± in Eq. (2.28). The strong local oscillator, as can be seen
in Eq. (2.30), boosts the small signal field. The modulated signal δa(t) is mixed with a strong local
oscillator field aLO = αLO +δαLO at the two detectors as:

a±(t) =
1√
2

[
aLO(t)±δa(t)

]
(2.27)

i(t) = i+(t)− i−(t) = η1

(
a∗+(t)a+(t)−a∗−(t)a−(t)

)
(2.28)

= η1

[
α
∗
LOδa(t)+αLOδa∗(t)

]
(2.29)

= η1
|αLO|√

2

[
α∗

LO
|α∗

LO|
δa(t)+

αLO

|αLO|
δa∗(t)

]
≡ η1|αLO|X θ (t) (2.30)

where the noise fluctuation from the local oscillator is ignored.
In contrast to direct detection, homodyne detection has the advantage of having access into all the

angles in amplitude-phase quadrature of the optical field by varying the phase of the local oscillator.
Therefore, direct detection is a special case for homodyne detection, and the following power spectral
density calculations will be based on the homodynes’ phase and amplitude quadrature operators.

2.4 Power spectral density with and without laser detuning

The photon current i(t) converted from the output photon is directed to electronic device for analysis.
To get power spectral density, a spectrum analyser is used which converts the time dependent signal
to a spectrum. According to Wiener-Khinchin theorem under stationary statistics the power spectral
density of a general time dependent signal O(t) is

SOO(Ω) =

ˆ
∞

−∞

dτeiΩτ
〈
O∗(t + τ)O(t)

〉
t=0 =

ˆ
∞

−∞

dΩ
′〈Õ∗(−Ω)Õ(Ω′)

〉
(2.31)

A current signal directed to a spectrum and network analyser can be expressed in the form of

i(t) = I(t)+ ε(t) (2.32)

where I is the DC part of the current having a mean of ⟨I(t)⟩ = αi, and αi is a complex constant.
⟨ε(t)⟩ = 0 for both incoherent noise and modulated coherent signal. The power spectrum density
measured by the spectrum analyser [52] from Eq. (2.26, 2.31, 2.32) then is

SA(Ω) =
〈

ĩ∗(Ω)ĩ(Ω′)
〉
=

〈(
Ĩ∗(Ω)+ ε̃

∗(Ω)
)(

Ĩ(Ω′)+ ε̃(Ω′)
)〉

(2.33)

=

 |αi|2δ
2(0)+α

∗
i η̃2(Ω)

〈
ε̃(Ω)

〉
+αiη̃2(Ω)

〈
ε̃(Ω)

〉
+
〈∣∣ε̃(Ω)

∣∣2〉, incoherent ε

|αi|2δ
2(0)+α

∗
i δ (ΩM)

〈
ε̃(Ω)

〉
+αiδ (ΩM)

〈
ε̃(Ω)

〉
+
〈∣∣ε̃(Ω)

∣∣2〉, modulated ε

(2.34)
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The first term in Eq. (2.34) is a peak centred at 0 frequency of the spectrum due to the auto-correlation
without modulation. The second and third terms are 0 as

〈
ε̃(Ω)

〉
= 0 and

〈
ε̃∗(Ω)

〉
= 0. η̃2(Ω)

counts for white noise spectrum if ε is incoherent noise. For a single modulation frequency ΩM,
terms with δ (ΩM are 0. Only the last term is what the spectrum analyser outputs, though

〈
ε(t)

〉
= 0,〈

ε∗(t)ε(t)
〉
> 0. This shows that spectrum analyser measures input with 0 mean no matter whether

the input is coherently driven or white noise. In the cavity optomechanical magnetometers system.
Spectrum analyser is used to measure noise source of thermal Brownian motion and laser noise, as
well as coherently driven reference magnetic field. The analysis of spectrum density considering
thermal and laser noise is as follows, while characterization of reference magnetic field is experimental
techniques can be referred to ref.[26].

The power spectral density of the output X and Y quadrature of light is obtained by combining
Eq. (2.20, 2.16, 2.31) and neglecting the both the correlation between thermal Brownian noise and
optical shot noise and inside the optical amplitude and phase quadrature, as

S̄X̃out X̃out
(Ω) = B1 · S̄X̃inX̃in

+B2 · S̄ỸinỸin

+∑
ΩM

8ηΓ
2(ΩM)|C∆

eff(ΩM)|A2|χ∆(Ω)|2
[ kBT

h̄ΩM
+2|C∆

eff(ΩM)|
(

A1 · S̄X̃inX̃in
+A2 · S̄ỸinỸin

)] (2.35)

S̄ỸoutỸout
(Ω) = B2 · S̄X̃inX̃in

+B1 · S̄ỸinỸin

+∑
ΩM

8ηΓ
2(ΩM)|C∆

eff(ΩM)|A1|χ∆(Ω)|2
[ kBT

h̄ΩM
+2|C∆

eff(ΩM)|
(

A1 · S̄X̃inX̃in
+A2 · S̄ỸinỸin

)] (2.36)

A1 =
∣∣∣ (κ/2− iΩ)2

(κ/2− iΩ)2 +∆2

∣∣∣2 (2.37)

A2 =
∣∣∣ ∆ (κ/2− iΩ)

(κ/2− iΩ)2 +∆2

∣∣∣2 (2.38)

B1 =
∣∣∣1+ −κ2/2+ iΩκ

(κ/2− iΩ)2 +∆2

∣∣∣2 (2.39)

B2 =
∣∣∣ ∆κ

(κ/2− iΩ)2 +∆2

∣∣∣2 (2.40)

where η = η0 ·η1 is the efficiency counting the light escaping from the cavity as well as the conversion
of photons to electric current in detection process. The first term in the square bracket of Eq. (2.35)
is the number of phonons created under thermal bath at mechanical resonance frequency, and the
second term with a coefficient of |c∆

eff(ΩM)| has the physical meaning of equivalent phonon created by
back-action heating. To get Eq. (2.35), the power spectral density of P̂in(t) is used as a result of a bath
force from fluctuation dissipation theorem the same as in Eq. (2.7). Here the thermal noise dominates
bath fluctuation than photon noise, therefore n is the phonon number

SPinPin(Ω) =
Ω

ΩM

(
n̄+1

)
(2.41)

SPinPin(−Ω) =
Ω

ΩM
n̄ (2.42)
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SPinPin(Ω) and SPinPin(−Ω) have different expressions as a result of difference in upwards and down-
wards going transition rates [49]. For symmetrised bath power spectral density and at high temperature
limit

S̄PinPin(Ω) =
1
2
[
SPinPin(Ω)+SPinPin(−Ω)

]
(2.43)

=
Ω

ΩM

(
n̄+

1
2
)

(2.44)

≈ Ω

ΩM

kBT
h̄Ω

=
kBT
h̄ΩM

. (2.45)

When we consider the laser detuning, the mechanical position information encodes both to the
light amplitude and phase quadrature. Therefore, the homodyne detection angle can be relaxed.

For simple case of on-resonance optical driving when detuning ∆ = 0, there is no dynamical
back-action for the optomechancial system and the mechanical motion only imprints on the phase
quadrature of the light by its momentum. The power spectrum density for homodyne detection of the
light phase quadrature is given in [49] or set ∆ = 0 in Eq. (2.35, 2.36, 2.37, 2.38) as follows:

Ỹout(Ω) =−
(κ/2+ iΩ

κ/2− iΩ

)
Ỹin(Ω)+2Γ(Ω)

√
2Ceff(ΩM)χ(Ω)[P̃in(Ω)−

√
2Ceff(ΩM)X̃in(Ω)] (2.46)

Shomo
ii (Ω) = S̄ỸoutỸout

(Ω)

= S̄ỸinỸin
(Ω)+∑

ΩM

8ηΓ
2(ΩM)|Ceff(ΩM)| · |χ(Ω)|2

[
S̄P̃inP̃in

(Ω)+2|Ceff(ΩM)|S̄X̃inX̃in
(Ω)

]
(2.47)

=
1
2
+∑

ΩM

8ηΓ
2(ΩM)|Ceff(ΩM)| · |χ(Ω)|2

[
Ω

ΩM

(
n̄m(Ω)+

1
2
)
+ |Ceff(ΩM)|

]
(2.48)

=
1
2
+∑

ΩM

8ηΓ
2(ΩM)|Ceff(ΩM)| · |χ(Ω)|2

( kBT
h̄ΩM

+nba
)

(2.49)

where |Ceff(ΩM)| is obtained from Eq. (2.11) by setting the detuning ∆ = 0. From Eq. (2.48) to
Eq. (2.49), the high temperature limit is used where thermal noise excites the number of phonon
n̄(Ω)+1/2 ≈ kBT/h̄Ω ∼ 105 −106 for our devices by the 1st order RBM around 30 MHz is much
larger than the photon fluctuation S̄ỸinỸin

(Ω) = S̄X̃inX̃in
(Ω) = 1/2 for coherent light source.

To estimate how the back-action influences our system, the input measurement strength is chosen
to be at the standard quantum limit for mechanical position measurement.

The output mechanical position can be obtained through the combination of Eq. (2.46) and the
definition of the part of mechanical position without the influence of the measurement, as

Q̃0(Ω)≡
√

2Γχ(Ω)P̃in(Ω), (2.50)
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where the source of P̃in is from thermal bath, as

Q̃out(Ω) = Q̃0(Ω)− 1
2
√

ΓCeff(ΩM)

(
κ/2+ iΩ
κ/2− iΩ

)
Ỹin(Ω)︸ ︷︷ ︸

measurement noise

−2
√

ΓCeff(ΩM)χ(Ω)X̃in(Ω)︸ ︷︷ ︸
back−action noise

. (2.51)

The second term on the right hand side of Eq. (2.51) is linear with the phase quadrature of the light
counting for the imprecision noise due to the presence of laser phase noise, meaning the stronger the
input laser power cranked up to (Ceff → ∞), the more accurate the measurement will be (this term→ 0),
and η is introduced counting for measurement efficiency. However, the last term boosted by the laser
amplitude quadrature takes charge of the radiation back-action heating noise. Therefore, there is an
optimised input power for minimum combinations of impression noise and back-action heating noise
without taking thermal noise into consideration, which is called standard quantum limit. Normalising
the power spectral density of light into mechanical position unit gives

S̄Q̃out Q̃out
(Ω) =

1
8ηΓ|Ceff(ΩM)|︸ ︷︷ ︸
measurement noise

+2Γ|χ(Ω)|2|Ceff(ΩM)|︸ ︷︷ ︸
back−action noise

(2.52)

The minimum total optical noise from Eq. (2.52) is reached from mechanical position measurement
when the cooperativity is

|Ceff(ΩM)|= 1
4η1/2Γ|χ(ΩM)|

=
1

4η1/2 (2.53)

Assuming detection efficiency η = 1 gives |Ceff(ΩM)|= 0.25. This means back-action heating created
phonon number is 0.25, which is far less than thermally excited phonon number kBT/h̄ΩM ∼ 105−106

from Eq. (2.49) in our room temperature operated 100-micrometre sized devices. Therefore, noise
from back-action heating could be safely neglected.

2.5 Network response for exciting external magnetic field

Network analyser on the other hand has an inbuilt local oscillator mixing the incoming signal, and
the outcome is the Fourier transform of the mean mixture. The current signal of Eq. (2.32) can be
expanded to have an additional coherently modulated term |I1|e−iΩM at a frequency ΩM where |I1|> 0
and ε(t) is kept as incoherent noise as

i(t) = I + |I1|e−iΩM + ε(t). (2.54)

The function of local oscillator is to mix the input i(t) with eiΩt , therefore, a simplified network
response can be obtained as

NA(ω) = FT
(

eiΩt · i(t)
)
FT ∗

(
eiΩt · i(t)

)
(2.55)

= FT
(

αie−iΩt + |I1|e−i(ΩM−Ω)t + εe−iΩt
)
FT

(
c.c.

)
(2.56)
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= |αi|2δ
2(Ω)+ |I1|δ 2(Ω−ΩM)+ |ε|2δ

2(Ω) (2.57)

=


|I1|2 if Ω = ΩM,

|αi|2 + |ε|2 if Ω = 0,

0 otherwise.

(2.58)

Therefore, network analyser measures parameters which could be coherently driven and output the
phase and amplitude information of the driving. Though thermal Brownian noise has modulation
frequencies, its phase is random as it can not be fit into |I1|e−iΩM type. In cavity optomechanical
magnetometry, the displacement of the magnetometer driven by AC external magnetic field is measured
by network analyser.

To get the network response of the displacement driven by magnetic field, the thermal force
spectrum expressed in terms of kbT in Eq. (2.35, 2.36) derived from input mechanical momentum
spectrum with Eq. (2.41, 2.42) needs to be replaced with the mechanical momentum in Eq. (2.7)
purely driven by the coherent force Ffield = cactBref where Bref is the reference magnetic field used
to excite the displacement. Here the coherent force means that there exists correlations between
magnetic-force-driven mechanical displacement at different mechanical eigenfrequencies. And thus
the calculation should first take the sum of harmonic oscillator at all frequencies of interest, and then
take the modulus square. In contrast to the uncorrelated thermal force in Eq. (2.35, 2.36) where the
modulus square is taken at individual eigenmodes. Interference between the mechanical displacment
driven by coherent force at different mechanical eigenmodes is indeed observed in the experiment
driven by electric force [53]. The network response of mechanical displacement driven by magnetic
field force Ffield = cactBref in light amplitude and phase quadrature is

S̄BB
X̃out X̃out

(Ω) = 8 ·η ·A2

∣∣∣∣∣∑
ΩM

Γ(ΩM)
√
|C∆

eff(ΩM)| χ∆(Ω)
cact(ΩM)Bref√

4meffΩMh̄Γ(ΩM)

∣∣∣∣∣
2

(2.59)

S̄BB
ỸoutỸout

(Ω) = 8 ·η ·A1

∣∣∣∣∣∑
ΩM

Γ(ΩM)
√
|C∆

eff(ΩM)| χ∆(Ω)
cact(ΩM)Bref√

4meffΩMh̄Γ(ΩM)

∣∣∣∣∣
2

(2.60)

where the expression for A1 and A2 can be found in Eq. (2.37, 2.38), and the 4 on the denominator is
because the mechanical decay rate is taken as a full-width-half-maximum of the mechanical resonance.
Therefore, the classical thermal random force spectrum is S̄class

FF = 4mΓkBT .
The quotient of the network response measuring the magnetic field and noise power spectral density

gives a combination of SNR and resolution bandwidth (RBW). By checking the unit of the noise power
spectral density in Eq. (2.49), we found it has the unit of 1. While the network response driven by Ffield

in Eq. (2.59, 2.60) has the unit of F2
field/4meffΩMh̄ (Hz/2π) when taking parameters κ,Γ with unit of

(rad·s−1). RBW has the unit of Hz. The minimum detectable magnetic field is defined as

Bmin(Ω)≡ Bref√
SNR ·RBW

=
Bref√

S̄BB
X̃/Ỹout X̃/Ỹout

(Ω)

/
S̄X̃/Ỹout X̃/Ỹout

(Ω)

(
T√

Hz/2π

)
︸ ︷︷ ︸

unit

(2.61)
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which can be obtained from the quotient of Eq. (2.59)/(2.60) and Eq. (2.35)/(2.36). The sensitivity
calculated above has to be divided by a factor of

√
2π to reach the commonly used unit of sensing

community (T/
√

Hz).
For single mechanical mode, the minimum detectable magnetic field is square root of the force

noise spectrum divided by actuation constant cact . The power spectral density of the noise force
driving the mechanics can be related with the normalized power spectrum density of light in the unit of
mechanical position [49] as

S̄FF(Ω) =
h̄meffΩM

|χ(Ω)|2
S̄QQ(Ω). (2.62)

where the S̄QQ(Ω) includes the thermal noise from Eq. (2.45, 2.50) and measurement noise and
back-action noise from Eq. (2.52). There, the magnetic field sensitivity limited by the combination of
thermal, measurement and back-action noise can be written as

Bmin(ΩM) =
1√

2πcact(ΩM)

√√√√√√4meffΓkBT︸ ︷︷ ︸
thermal noise

+
meffh̄QM

8η |χ∆|2
∣∣∣C∆

eff

∣∣∣︸ ︷︷ ︸
measurement noise

+4meffΓh̄ΩM|C∆
eff|︸ ︷︷ ︸

back−action

(2.63)

where QM is the mechanical quality factor, and meff,Γ, |χ∆|,QM and C∆
eff in the square root are also

mechanical eigenmode ΩM dependent in addition to the actuation constant cact(ΩM). Note that if the
thermal noise dominates the sum of the thermal and laser shot noise, then it may be called thermal
noise limited. In our system, impression noise depends on the optomechanical coupling strength for
individual mechanical modes as well as the laser power.



Chapter 3

Mechanical Properties of Optomechanical
Magnetometry from Numerical Simulation

Bulk materials exhibit mechanical oscillations at their mechanical resonance frequencies when they
absorb energy from external fields and thermal environment. The behaviour of each mechanical
eigenmode can be well simplified as a damped harmonic oscillator. The smaller the damping parameter
Γ (rad·s−1) is, the longer the mechanical oscillation will sustain for a single pulsed input or the larger
the amplitude will be for a continuous driving. In this specific application of cavity optomechanical
magnetometry, the energy input comes from the magnetic field of the specimens while the noise
contributions come from the thermal bath at room temperature and the light bath introduced in the
process of detecting mechanical oscillation. Numerical solutions of elastic wave equation with a
driving term reveal the noise free sensors’ performance and give the three dimensional (3D) shape
deformation of the magnetometers, which is hard to solve analytically. Combined with the scalar
theory of optomechanics (discussed in Chapter 2), the shape deformation information helps to better
predict the performances of the magnetometers.

3.1 Time domain structural dynamics

Small mechanical oscillation of an elastic medium can be described by the elastic wave equation. We
start with the simple case where there is no driving term and an isotropic material is considered, and
later the external driving term will be included as a part of stress (see in Chapter 3.2). The elastic wave
equation [36] in the time domain is given by

ρ
∂ 2ui

∂ t2 =
∂σi j

∂x j
(3.1)

where ui = x′i − xi is the displacement with i indicating components in x, y and z directions in the
Cartesian coordinate. x′i and xi are the position vector after and before the mechanical deformation
describing the change of shape and volume of a medium. ρ is material density and σi j denotes stress
tensor. All ui, σi j and xi are both time and spatial dependent, and the time and spatial components are
separable as shown in the later part of this section (Eq. (3.20)).

19
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Generally, stress is a function of strain, linked by a tensor coefficient as

σi j = λi jklεkl (3.2)

where λi jkl is a tensor of rank four, and is usually termed as elastic modulus tensor or elasticity matrix
in COMSOL. If a crystal material possesses any symmetry, the independent elements in the elasticity
matrix would be less than 21 [36]. For isotropic materials the stress-strain relation can be reformed
into

σi j = λ
∂uuuk

∂xxxk
δi j +µ

(
∂u j

∂xi
+

∂ui

∂x j

)
(3.3)

where λ and µ are Lamé constants taking charge of the diagonal and off-diagonal part of the strain.
∂uuuk/∂xxxk means the sum of the gradient adding all dimensions. The Lamé constants are given by

λ =
νE

(1+ν)(1−2ν)
(3.4)

µ =
E

2(1+ν)
(3.5)

where ν is Poisson’s ratio and E is Young’s modulus.
To derive the separation of time and spatial components, Eq. (3.1, 3.3) are expanded along x,y,z

directions for clearness and are further combined with the mathematical relations of gradient and
divergence. The expanded version of Eq. (3.1) is

ρ
∂ 2ux

∂ t2 =
∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂ z
(3.6)

ρ
∂ 2uy

∂ t2 =
∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂ z
(3.7)

ρ
∂ 2uz

∂ t2 =
∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂ z
(3.8)

with the expanded stress tensor σi j from Eq. (3.3) as

σxx = λ

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂ z

)
+2µ

∂ux

∂x
(3.9)

σyy = λ

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂ z

)
+2µ

∂uy

∂y
(3.10)

σzz = λ

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂ z

)
+2µ

∂uz

∂ z
(3.11)

σyz = µ

(
∂uy

∂ z
+

∂uz

∂y

)
(3.12)

σxz = µ

(
∂ux

∂ z
+

∂uz

∂x

)
(3.13)

σxy = µ

(
∂ux

∂y
+

∂uy

∂x

)
. (3.14)
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Using the mathematics relation of gradient and divergence

▽▽▽ f =
∂ f
∂x

eeex +
∂ f
∂y

eeey +
∂ f
∂ z

eeez (3.15)

▽▽▽ · fff =
∂ fx

∂x
+

∂ fy

∂y
+

∂ fz

∂ z
(3.16)

▽▽▽2 = ∂
2
x +∂

2
y +∂

2
z (3.17)

▽▽▽
(
▽▽▽ · fff

)
=

(
∂ 2 fx

∂x2 +
∂ 2 fy

∂x∂y
+

∂ 2 fz

∂x∂ z

)
eeex

+

(
∂ 2 fx

∂x∂y
+

∂ 2 fy

∂y2 +
∂ 2 fz

∂y∂ z

)
eeey +

(
∂ 2 fx

∂x∂ z
+

∂ 2 fy

∂y∂ z
+

∂ 2 fz

∂ z2

)
eeez,

(3.18)

Eq. (3.1) can be recast in to an equation having only one variable defined as uuu(rrr, t) indicating the
vectorial nature of the displacement after it is combined with the material dependent Lamé constants
and density as

ρ
∂ 2uuu(rrr, t)

∂ t2 = (λ +µ)▽▽▽
(
▽▽▽ ·uuu(rrr, t)

)
+µ▽▽▽2uuu(rrr, t). (3.19)

An Ansatz to Eq.(3.19), which separates of the time T (t) and spatial ψ(rrr) parts of the displacement
vector uuu(rrr, t) has the form of [35]

uuu(rrr, t) = T (t)ψ(rrr). (3.20)

Inserting the Ansatz. (3.20) into Eq. (3.19) results in

∂ 2T (t)
∂ t2 = T (t)

[
(λ +µ)▽▽▽

(
▽▽▽ ·ψ(rrr)

)
+µ▽▽▽2ψ(rrr)

ρψ(rrr)

]
(3.21)

where the term in the square bracket is time independent but spatial dependent. This demonstrates the
validation of the separability of the Ansatz.

In COMSOL implementation, mechanical eigenmode analysis uses Eq.(3.1) to predict the mechan-
ical eigenmode shape. However, as there is no driving term present, the amplitude of each mechanical
eigenmode is arbitrary. To obtain the amplitude, driving term needs to be included.

Summary of the notations

ui is one component of the time and spatial dependent displacement. A sum of all components could
be written compactly as

uuu(rrr, t) =∑
i

ui(rrr, t)eeei. (3.22)
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The compact version of diagonal strain is in the form of

∂uuuk

∂xxxk
=

∂ux

∂x
eeex +

∂uy

∂y
eeey +

∂uz

∂ z
eeez (3.23)

where the bold symbols always mean the sum in all dimensions.
Following the same rule that a bold symbol describes a sum over all dimensions and a symbol with

subscribes denotes the physical quantity projected onto a certain dimension, stress and strain can be
expressed as

σσσ =∑
i j

σi jeeei j =∑
k

σkeeek and εεε =∑
i j

εi jeeei j =∑
k

εkeeek (3.24)

where the relation between two and one subscripts in 3D by taking stress as an example lies in

σσσ =

σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

=

σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

 . (3.25)

3.2 Modelling magnetostrictive material

To include the driving term in Eq.(3.1), one straightforward way is to introduce an additional term with
the least modification to the original equation. Thanks to the divergence sum relation

▽▽▽ · ( fff 1 + fff 2) = ▽▽▽ · fff 1 +▽▽▽ · fff 2 (3.26)

that the driving term could be written in the form of an additional stress as

ρ
∂ 2uuu(rrr, t)

∂ t2 = ▽▽▽ ·σσσ total = ▽▽▽ ·σσσ ela +▽▽▽ ·σσσdriv. (3.27)

where σσσdriv is magnetic field dependent. Stress, strain and external driving magnetic field form the
so-called constitutional relation which is described in this section.

The constitutional relation depends on the applications. Therefore, the application required strain
property which is related to the choice of the material is discussed first. Terfenol-D and Galfenol are
widely used for building ultrasonic transducers, actuators [41, 42], energy harvester [44] etc thanks to
their large magnetostriction which enables large mechanical deformation in response to DC or AC
external magnetic field. For DC applications, the magnetostrictive saturated strain εmax defined as
the ratio of the maximum material elongation to its original length is important, while the so-called
magnetostrictive constant, magnetoelasticity or piezomagnetic constant (here we choose piezomagnetic
constant [37]), which is the slope on the strain magnetic field plot under a constant stress is key for
AC applications. Though Galfenol has good machinability in bulk, Terfenol-D exceeds Galfenol by
around 4 times in magnetostrictive saturated strain [45, 54] and more than 3 times in piezomagnetic
constant (6.3 nm/A to 310 nm/A vs. 2 nm/A) [46, 54]. For AC magnetometers in our case benefited
from the signal enhancement at the mechanical eigenfrequencies, Terfenol-D is chosen.



3.2 Modelling magnetostrictive material 23

When a ferromagnetic material is magnetized, its magnetization interacts with external magnetic
field causing a body force which can be described by divergence of Maxwell stress tensor [48]. A
magnetized material having aligned magnetic dipoles feels the force from the external magnetic field
similar to that of a charged particle feeling the force in electrical field. Described in the Lorentz
force density in magnetic field fff L = jjj ×BBB where jjj (A·m−2) is the current density. In a magnet
jjj = jjjM = ▽ ·MMM where MMM is the magnetization, and jjj can be further replaced with magnetic field
through Ampére’s circuital law as ▽×BBB = µ0 jjj. This body force can be recast into the form of the
Maxwell stress tensor [48, 55] as

σσσMaxw = HHH ⊗BBB− 1
2µ0

(
BBB ·BBB)I=

1
2µ0

(BxBx −ByBy −BzBz) HxBy HxBz

HxBy
1

2µ0
(ByBy −BxBx −BzBz) HyBz

HxBz HyBz
1

2µ0
(BzBz −BxaBx −ByBy) .

 (3.28)

Assuming the variation of the magnetic field is slow enough for the material to reach deformed
equilibrium before further field changes occur and Terfenol-D exhibits reversibility, the stress-strain
constitutional relation with modulated AC magnetic field becomes

∆σσσ total =
∂σσσ

∂εεε

∣∣∣∣
H

∆εεε +O(∆εεε
2)︸ ︷︷ ︸

∆σσσ ela

+
∂σσσ

∂HHH

∣∣∣∣
ε

∆HHH +O(∆HHH2)+∆∆∆σMaxw︸ ︷︷ ︸
∆σσσdriv

(3.29)

= λλλ
H
∆εεε + eeeε∆HHH +∆σσσMaxw (3.30)

where λλλ
H is the elasticity matrix measured under constant magnetic field in COMSOL and it consists

of Lamé constants defined by E and ν for isotropic material as can been in Eq.(3.3, 3.4, 3.5). For
anisotropic material, the matrix elements of λλλ

H is governed by Young’s molulus and Poisson’s ratio
with multiple components. eeeε is a matrix measured under constant strain linking the stress and magnetic
field inside the material. Linearised constitutional relation from Eq. (3.30) is under the condition that
the magnetic field modulation is small enough and operates far away from εmax, which is the case in
our magnetometers.

The Maxwell stress tensor is added for the sake of physical completeness, it is very small compared
with the driving stress. Rough estimation compares eee with ∆BBB as they can be think of the coefficients
before ∆HHH. Shown in Tab. 3.1, elements in eee has typical order of 103 T while the input AC magnetic
field in this thesis is in the order of micro Tesla. Therefore, the contribution from Maxwell stress tensor
is negligible.
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The expanded constitutional stress-strain and magnetic field relation combined with the elasticity
matrix in tensor form is

∆σtotal

∆σtotal

∆σtotal

∆σtotal

∆σtotal

∆σtotal


=



∆σ xx
ela

∆σ
yy
ela

∆σ
zz
ela

∆σ
yz
ela

∆σ
xz
ela

∆σ
xy
ela


+



∆σ xx
driv

∆σ
yy
driv

∆σ
zz
driv

∆σ
yz
driv

∆σ
xz
driv

∆σ
xy
driv


=



λ H
11 λ H

12 λ H
13 0 0 0

λ H
12 λ H

11 λ H
13 0 0 0

λ H
13 λ H

13 λ H
33 0 0 0

0 0 0 λ H
44 0 0

0 0 0 0 λ H
44 0

0 0 0 0 0 λ H
66


︸ ︷︷ ︸

elasticity matrix



∆ε1

∆ε2

∆ε3

∆ε4

∆ε5

∆ε6



+



0 0 eε
13

0 0 eε
13

0 0 eε
33

0 eε
15 0

eε
15 0 0
0 0 0


∆Hx

∆Hy

∆Hz

+



1
2µ0

(∆Bx∆Bx −∆By∆By −∆Bz∆Bz)
1

2µ0
(∆By∆By −∆Bx∆Bx −∆Bz∆Bz)

1
2µ0

(∆Bz∆Bz −∆Bx∆Bx −∆By∆By)

∆Hy∆Bz

∆Hx∆Bz

∆Hx∆By


︸ ︷︷ ︸

external driving stress

, (3.31)

In principle, the external magnetic field changes the material stress, and the additional stress alters
the magnetic field through

∆BBB =
∂BBB
∂HHH

∣∣∣∣
σ

∆HHH +
∂BBB
∂σσσ

∣∣∣∣
H

∆σσσ (3.32)

= µ0µµµ
σ

∆HHH +ddd
ᵀ
∆σσσ (3.33)

where ddd = [λλλ
H
]−1 ·eeeε is the piezomagnetic constant and ᵀ indicates the matrix transpose, which in turn

modifies the stress. The process then cycles until an equilibrium is reached. Here, equilibrium condition
is approximated when using the measurement elasticity and piezomagnetic constants summarized in
Tab. 3.1. Therefore, the constitutional relation of magnetic field as a function of stress is not used.
However, the relative permeability is still used in defining the Terfenol-D material property. For
completeness, the magnetic field stress relation is shown in Eq. (3.33).

In this thesis, measurement data of the elasticity matrix elements λλλ
H and piezomagnetic constant

eeeε are taken from ref. [56] biased at 60 kA/m and prestressed at 20 MPa summarized in Tab. 3.1.

Table 3.1 Coefficients in the magneto-mechanical coupling [56]

unit (GPa) λ H
11 λ H

12 λ H
13 λ H

33 λ H
44 λ H

66

107 74.8 82.1 98.1 60 161
unit (T) eε

13 eε
33 eε

15 no unit µσ
11=µσ

22 µσ
33

90 -166 -168 6.9 4.4

The discrepancy from the measurement conditions in ref. [56] leads to the shift of mechanical
eigenfrequency, as the eigenfrequency is determined by E and ν which form the elasticity matrix



3.3 Damping selection in COMSOL 25

elements. Nevertheless, the features of magnetomechanical coupling with regard to the driving
magnetic field direction are not affected. The axial piezomagnetic constant d33 [56] is 10.4 nm/A
which is quite conservative compared with other values in the literature (see, e.g. [54] for 310 nm/A).
The piezomagnetic constant affects the amplitude of the mechanical oscillation on resonance. The
larger the driven amplitude, the larger the actuation will be, thus gaining better thermal noise limited
sensitivity.

The external driving stress can be fitted into a 3×3 matrix shown in Eq.(3.25) into the COMSOL
solid mechanics module, and the expression for each matrix elements are detailed in Appendix.A.

3.3 Damping selection in COMSOL

In our modelling, damping is manually added to COMSOL to avoid an infinity in amplitude at the
mechanical resonance. The selection of damping influences the fitting equation in getting the actuation
constant cact in Chapter 3.5, therefore it’s important to know how each type of damping in COMSOL
affects the mechanical equation of motion.

Damping is added as stress term to Eq.(3.27) as

ρ
∂ 2uuu(rrr, t)

∂ t2 = ▽▽▽ ·σσσ total = ▽▽▽ ·σσσ ela +▽▽▽ ·σσσdriv +▽▽▽ ·σσσΓ

= λλλ
H
▽▽▽2 ·uuu(rrr, t)+▽▽▽ · eeeε∆HHH(rrr, t)+▽▽▽ ·σσσΓ.

(3.34)

There are a couple of choice of damping in COMSOL as listed below. In COMSOL the damping
stress as a function of damping parameters are given. However how the stress behaves in the equation of
motion is not directly known, which is crucial in performing Lorentzian fits in Chapter 3.5. Therefore,
the equation of motion in frequency domain including the damping stress term is derived in this section.

The viscous damping with manual input parameters ηb and ηv in COMSOL has the form of an
additional stress as

σσσΓ = ηbε̇εεbulk +ηvε̇εεshear (3.35)

in which ηb is the damping coefficient accounting for the part of the deformation where the volume
changes, while ηv is for the part where the material volume stays constant and its shape alters. If
we separate Eq. (3.3) into one shear part and the other part of hydrostatic compression with bulk
coefficient, one can arrive at [36]

σi j = K
∂uuuk

∂xxxk
δi j +2µ

(
εik −

1
3

∂uuui

∂xxxi
δi j

)
(3.36)

where K and µ are bulk and shear coefficients. For simplicity, we consider one dimensional case where
σ = ηε̇ = η ·∂u(x, t)/∂x, together with the one dimensional displacement u(x, t) and magnetic field
H(x, t) to examine the influence of viscous damping on the equation of motion in Eq. (3.34). As the
separation of bulk (K = λ + 2

3 µ) and shear (µ) part are the linear combinations of Lamé coefficients
(λ and µ), it should be safe to simplify the one dimensional stress-strain relation as σ = λ Hε .
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The integral form of the elastic wave equation is given by

ˆ
S

σσσ · n̂nndS =

ˆ
V

ρ
∂ 2uuu
∂ t2 dV (3.37)

where n̂nn is the unit vector perpendicular to the surface S.
Taking the Fourier transform of u(x, t) and the driving stress term H(x, t) by inserting

u(x, t) = 2ℜ

[ˆ
∞

0
ũ(x,ω)e−iωtdω

]
, H(x, t) = 2ℜ

[ˆ
∞

0
H̃(x,ω)e−iωtdω

]
, (3.38)

where the tilde H̃(x,ω) denotes the AC modulation in frequency domain replacing the ∆H. Then
the integral from of the elastic wave equation from Eq. (3.37) when considering the one-dimensional
stresses from Eq. (3.34) becomes

λ
H
ˆ

S

∂ ũ(x,ω)

∂x
· n̂dS+ eεH̃(x,ω)S⊥− iωη

ˆ
S

∂ ũ(x,ω)

∂x
· n̂dS =−ω

2mũ(x,ω) (3.39)

where S⊥ denotes the area perpendicular to the magnetic field. To simplify the equation, the frequency
domain separation of the displacement, analogous to Eq. (3.20), u(x,ω) = X(ω)ψ(x) is used, which
results in

λ
HX(ω)

ˆ
S

∂ψ(x)
∂x

· n̂dS+ eεH̃(x,ω)S⊥− iωηX(ω)

ˆ
S

∂ψ(x)
∂x

· n̂dS =−ω
2mX(ω)ψ(x). (3.40)

Comparing with the standard equation of motion with cact being the actuation constant having the
unit of (N/T) as

−ω
2ũ(x,ω)− iΓω ũ(x,ω)+Ω

2
Mũ(x,ω) = cact B̃(x,ω)/m, (3.41)

where ΩM is defined as the mechanical eigenfrequency and Γ (rad·s−1) is the damping parameter, we
define the following relation as

mΩ
2
M =−λ

H 1
ψ(x)

ˆ
S

∂ψ(x)
∂x

· n̂dS (3.42)

Γ =−η
1

mψ(x)

ˆ
S

∂ψ(x)
∂x

· n̂dS. (3.43)

As the elements of elasticity matrix λ H have the unit of Pa, the units of the COMSOL input viscous
damping η are Pa·s, and that of ψ(x) is m, the derived unit for mΩ2

M and Γ from Eq. (3.43) is consistent
with the defined unit for mechanical eigenfrequency and damping parameter. cact can be found to be

cact =
eεS⊥
µ0µr

, (3.44)

where the relation B̃(x,ω) = µ0µrH̃(x,ω) is used. It can be seen that the actuation constant is
determined by the piezomagnetic constant, the area to which the magnetic field is perpendicular and
the relative magnetic permeability.
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Rayleigh damping also has two input parameters: αM mass damping coefficient and stiffness
damping coefficient βK. Their roles in the standard equation of motion are in the form of

−ω
2ũ(x,ω)− i(αM +βKΩ

2
M)ω ũ(x,ω)+Ω

2
Mũ(x,ω) = cact B̃(x,ω)/m (3.45)

Loss factor damping is added as external stress with input parameter η as

σΓ = λ
H(1+ iη)ε (3.46)

Following the same procedure as in viscous damping: performing Fourier transform to Eq. (3.34)
with additional damping stress and followed by an integral, the equation of motion including η then
becomes

−ω
2
ρ ũ(x,ω)+ k2

λ
H(1+ iη)ũ(x,ω)+ρΩ

2
Mũ(x,ω) = ikH̃(x,ω)eε . (3.47)

As can be seen the damping term (second term on the right-hand side) is independent of ω , while for
both viscous and Rayleigh damping, the damping term is linearly dependent on the velocity. In this
model, viscous damping is chosen for the sake of the Lorentzian fitting function in Chapter 3.5.

In later part of the thesis, ΩM is the mechanical eigenfrequencies.

3.4 Magnetic field

The reference magnetic field, which serves as the signal driving the mechanical oscillation of the
optomechanical magnetometer, is generated by a pair of Helmholtz coils. As shown in Fig. 3.10, the
diameter of the coils is 16 times larger than the lateral size of the device in the centre to ensure that the
Terfenol-D in the magnetometers feels the uniformity of the reference magnetic field both in direction
and intensity. Therefore, the magnetic field can be simplified to spatial independent expression as
B̃0(ω). A subscript 0 indicates the reference magnetic field is characterized in the air media at the
location of Terfenol-D.

In COMSOL, the amplitude of the magnetic field is viewed by projection onto the three orthogonal
slices. The axis of the pair Helmholtz coils in the Fig.3.1 is in z direction. A sphere filled with air is
created to support the generation of the magnetic field as shown in the layout in Fig. 3.10.

A concern with the magnetic field inside the magnetostrictive material is the appearance of eddy
current at high frequency driven by the reference magnetic field. When the intensity/direction of the
reference magnetic field BBB0 changes, there creates an induction current. This induction current creates
a magnetic field opposing the reference magnetic field and causes most of the magnetic field to exist
only between the surface and the skin depth δskin [57] of the magnetostrictive material. A general form
of skin depth is

δskin =
1√

π f µ0µµµrσc

(3.48)
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Fig. 3.1 A pair of Helmholtz coils for generating reference magnetic field. The intensity of the
magnetic field is viewed by colormap projected on three orthogonal slices. As an example, the AC
magnetic field is driven by AC current at 7.4 MHz in z direction. The micro device at the center of the
intersection of the slices is around 16 times smaller than the coils’ diameter.

where σc is the conductivity, 1.67×106 S/m for Terfenol-D and µµµr uses the value from Tab. 3.1.
Eq. (3.48) is plotted against driving frequency in Fig. 3.2.

Fig. 3.2 Skin depth vs. the frequency of the reference driving magnetic field.

The simulated magnetic field inside Terfenol-D using the COMSOL AC/DC module can be found
in Fig. 3.4. The skin effect induced by eddy current starts to play a role when the driving frequency
is larger than 1 GHz for a 10s-of-micrometer-sized Terfenol-D droplet, which is consistent with the
simple model in Fig. 3.2. For these type of devices whose artistic view in shown in Fig. 3.3, the first
order radial breathing mode (RBM) is around 40 MHz, and mechanical modes with eigenfrequency
larger than that of the RBM show a decreasing trend of magnetomechanical coupling. Thus, in the
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frequency spectrum of interests where mechanical eigenmodes boost the magnetomechanical coupling,
the effect of eddy currents can be safely neglected.

Fig. 3.3 Cross-sectional view of magnetometers following ref. [26, 27]. Here the Terfenol-D is
modelled as a smooth semi-ellipsoid or an ellipsoid.

Fig. 3.4 The effect of eddy current on magnetometers of two geometries as sketched in Fig. 3.3a)-
b). The external magnetic field of a)-c) modulates in y direction (the axis of the pair of Helmholtz
coils aligns in y direction), while that of d)-f) is in z direction. The magnetic field intensity is viewed
by orthonormal slices same as in Fig. 3.1.

Another concern with the internal magnetic field lies in the fact that the internal magnetic field
deforms the magnetostrictive material. Therefore, it is important to know the reference magnetic field
polarized the internal magnetic field which is geometric dependent.

Analytical solutions can solve the relation between internal and reference magnetic field in cylin-
drical geometry. For derivation details of how HHH0 is related to HHH, please refer to Appendix B. The
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result for two simple extreme cases: an infinite long magnetic rod with relative permeability µµµr has the
internal reference magnetic field relation of

HHH inf rod = HHH0 (3.49)

BBBinf rod = µµµrBBB0 (3.50)

where subscript 0 is the reference magnetic field in the air and this notation is kept throughout this
thesis, while the left-hand side is the magnetic field inside the material. And in the other case of thin
film with zero thickness, the relation of the reference and internal magnetic field is

HHH thin film = HHH0/µµµr (3.51)

BBBthin film = BBB0. (3.52)

For COMSOL implementation, the magnetic field in Eq. (3.30) uses the internal magnetic field.
The measurement eeeε parameters summarized in Tab. 3.1 is measured in a cylinder with large axial
and traversal aspect ratio [41], where the internal polarized magnetic field is the same as the reference
driving magnetic field. When we apply these parameters to our geometry where the scale of the each
three dimensions is almost equivalent, the internal and reference magnetic field differs. The COMSOL
implementation of internal magnetic field agrees well with the analytical solution.

3.5 Obtaining actuation constant

Actuation constant cact converts the signal magnetic field to a force, which is the key parameter in
determining the minimum detectable magnetic field. The way to obtain cact is to fit parameters drawn
from COMSOL with modified scaler form of equation of motion from Eq. (3.41) as

max[ũ(r,Ω)] ·meff

B̃(Ω)
=

cact

−Ω2 − iΓΩ+Ω2
M

(3.53)

where max[ũ(r,Ω)] is the maximum displacement of the whole magnetometer. Though it is a vector,
for extracting cact by fitting the vectorial information is not important. Ω is adopted instead of previous
ω . Maximum displacement and effective mass meff reduces the calculation for different parts of the
whole magnetometer to just one point, which makes the calculation more tangible. meff quantifies the
amount of mass that experiences the maximum displacement in a harmonic oscillation and is calculated
through all parts of different material [58, 59]. In one mechanical eigenmode, meff has the expression
of

meff =

´
V ρiũ(r,Ω)2dV
max[ũ(r,Ω)]2

=

´
V ρiψ(r)2dV
max[ψ(r)]2

(3.54)

where ρi is the material density indicating different parts of the device. For devices whose artistic
views are shown in Fig.3.3, ρi consists of Terfenol-D, silica and silicon pedestal. On the right-hand
side of Eq. (3.54), the separation ũ(r,Ω) = T̃ (Ω)ψ(r) is assumed based on the time domain separable
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displacement in Eq.(3.20). This separation making the effective mass depends only on the mechanical
eigenmodes but not frequency.

All parameters on the left-hand side of Eq. (3.53) can all be drawn from COMSOLs simulation
results, while the right-hand side is left for a Lorentzian fit with fitting parameters cact , Γ, and ΩM.
As Γ is deliberately input to get rid of unrealistic infinite amplitude, it is chosen to be very small to
get rid of possible mechanical interference from neighbouring eigenmodes. However, it is limited by
the computer memory and COMSOL numerical tolerance. Then the question can be asked how much
would cact change when the input damping varies. Fig. 3.7 a)-c) show the Lorentzian fits for obtaining
cact with different input damping parameters to COMSOL. It can be found the relative difference of
cact with over 104 times variations of the input damping parameters is less than 10%. Therefore, the
Lorentzian fitting method in obtaining cact is quite robust against manually input damping. The fitting
is based on the toroidal geometry of the magnetometer similar to the art view in Fig. 3.3a). Terfenol-D
is modelled as a semi-ellipsoid with transverse radius of 18.5 µm and a height of 5 µm sitting on
top of the silica glass. The silica layer has a major radius of 33 µm, thickness of 2 µm and silicon
under cut of 9 µm supported by a silicon pedestal. Different from Fig. 3.3a), the Terfenol-D has an
offset of 6 µm from the centre. The input elasticity matrix element has the same value as shown in
Tab. 3.1, while the magnetostrictive part uses 4 times larger the value of eε

i j than those in Tab. 3.1. The
mechanical mode chosen for the analysis is shown in the inset of Fig. 3.7b) with scaling factor ≫ 1.
Fitted parameters and the corresponding input damping is summarised in Tab. 3.2.

Table 3.2 Fitted parameters with damping for Fig. 3.7 a)-c)

a) b) c)

input ηb (Pa·s) 2×10−4 2.5×10−3 2.5
input ηv (Pa·s) 1.28×10−4 1.6×10−3 1.6

fitted Γ (rad/s) 3.2×2π 44×2π 44000×2π

fitted cact(ΩM) (N/T) 3.9×10−5 4.2×10−5 4.2×10−5

In COMSOL implementation, both sides of Eq.(3.53) need to be taken as absolute values. This is
due to the phase on a mechanical resonance in COMSOL cannot be written in the form of imaginary
part of [−Ω2 − iΓΩ+Ω2

M]−1 across a mechanical resonance. To extract the COMSOL phase scheme,
trigonometry of displacement is used on one or several points on the magnetometers as

φ(Ω) = arctan
ℑũuu(rrr,Ω)

ℜũuu(rrr,Ω)
= arctan

ℑT̃ (Ω)

ℜT̃ (Ω)
(3.55)

thanks to the decoupling nature of the displacement that the phase and spatial profile are independent.
The COMSOL phase across two mechanical resonance is shown in Fig. 3.5 with a zoom-in plot at one
mechanical resonance.

To duplicate the numerical phase spectrum across one mechanical resonance. Analytical solution is
performed. For frequencies lower than the resonance frequency, the right-hand side of Eq.(3.53) stays
as it is by choosing cact = 1, while for frequencies higher than the resonance frequency, a π phase shift
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Fig. 3.5 Phase spectrum across mechanical resonances extracted from COMSOL. At the exact
mechanical resonance frequency, the phase is either 90o or -90o. The left plot shows two mechanical
resonances while the right one is zoomed into one of the resonances. Proper damping is added to
prevent extreme narrow linewidth at the mechanical resonance frequencies.

is multiplied to the right-hand side as

amplitude =


1

−Ω2 − iΓΩ+Ω2
M
, Ω < ΩM

exp(iπ)
−Ω2 − iΓΩ+Ω2

M
, Ω > ΩM.

(3.56)

Taking the real part of Eq.(3.56) results the blue scatters in Fig. 3.6d) and taking the absolute value of
that gives the orange scatters spectrum. The phase is extracted using Eq.(3.55) as shown in Fig. 3.6c).
These analytical plots match the numerical results extracted from COMSOL as shown in Fig. 3.6a)-b).
Therefore, taking a modulus to Eq. (3.53) is necessary when one uses COMSOL.

When performing the numerical calculation of the elastic wave equation, damping is chosen to be
as small as possible not only to get rid of undesired mechanical interference from neighbouring modes,
but also for a clean Lorentzian distributional fit of mechanical displacement spectra.

3.6 Towards obtaining the optomechanical coupling strength

The optomechanical coupling strength G (rad·s−1·m−1) quantifies the shift δω0 of optical resonance
frequency in an optical cavity by the mechanical displacement as

G(ΩM) =
δω0(ΩM)

max[u(r,ΩM)]
(3.57)

The dependence of cavity length change and the shift of optical resonance frequency and thus
G is demonstrated via a Fabry-Pérot cavity as shown in Fig. 3.8. Take a lateral breathing mode as
an example, standing wave forms when the length L of the cavity equals integer number a of the
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Fig. 3.6 Real and absolute value of the displacement based on COMSOLs’ phase spectrum. a)
Phase spectrum extracted from COMSOL across a mechanical resonance. b) Real and absolute
amplitude of the maximum displacement extracted from COMSOL. c) Analytical reproducing of the
phase spectrum and d) the corresponding real and absolute displacement.

wavelength λo as

no ·L = a ·λo = a · 2πc
ω0

(3.58)

where no ·L is the optical path in the cavity counting the refractive index n0 of the cavity material, c is
the vacuum speed of the light. The differential form of Eq. (3.58) is

no ·δL = a · 2πc ·δω0

ω2
0

. (3.59)

The additional introduced length could be interpreted as a result of breathing mode oscillation. Taking
the quotient between Eq.(3.58) and Eq.(3.59) leads to

δL
L

=
δω0

ω0
. (3.60)

Inserting Eq.(3.60) into the expression of G in Eq.(3.57) results in

G =
δL ·ω0

L ·max[u(r,ΩM)]
≡ ω0

L
·ξ (3.61)
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Fig. 3.7 a)-c)Typical Lorentzian fits for mechanical equation of motion with increasing input
damping parameters. The input damping parameter in b) is 12.5 times larger than in a), and that
of in c) is 12500 times larger than in a). d)-f) Quadratic and linear ξ (2ΩM) and ξ (ΩM) with
increasing input damping. d), e), f) has the same input damping as a), b), c), respectively. The
smaller the damping, the larger the quadratic effect, while the linear rate is constant. In extremely large
damping case as displayed in f), some numerical error may be responsible for the unusual ξ value. The
mechanical mode used in this analysis has the shape shown in the b) inset with scaling factor ≫ 1 for
the displacement.

ξ ≡ δL
max[u(r,ΩM)]

. (3.62)
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δω0ω0

L δL

Fig. 3.8 The relationship between cavity length change and the optical resonance frequency shift
illustrated via a Fabry-Pérot resonator.

For Fabry-Pérot resonator, the maximum displacement is δL, therefore ξ = 1 and G = ω0/L.

Comsols’ synchronizing point left from the resonance

Synchronizing point right from the resonance

Left half of blue filled dot

Right half of blue filled dot

Red filled dot

COMSOLs’synchronization point left from the resonance

COMSOLs’synchronization point right from the resonance

red filled dotsleft half of  the blue filled dots

right half of  the blue filled dots

Fig. 3.9 COMSOL synchronization mechanism within a mechanical resonance. For frequencies
lower than the resonance frequency, the maximum displacement within a period of harmonic oscillation
is synchronized to the positive maximum amplitude, while for frequencies higher than the resonance
frequency, the amplitudes of which are synchronized to the negative maximum amplitude. The splitting
of the synchronization can be understood by the splitting of phase spectrum on resonance as shown in
Fig. 3.5. The text explanation is prepared for Fig. 3.7 d)-f).

To obtain ξ , the change of the optical cavity length at the mechanical eigenmodes needs to be
extracted from COMSOL. In COMSOL implementation, the optical cavity is in a circular shape which
locates at the outermost circumference. The change of the optical cavity length is then equal to the
change of the outermost circumference. This is obtained by performing a line integral with integrand
1 along the outermost circumference. However, since it is performed in frequency domain and the
change of the circumference needs to be extracted rather than the static geometrical circumference,
therefore phase synchronization technique has to be implemented.

The phase synchronization technique is to synchronize the frequency domain amplitudes to the
maximum or minimum point of the harmonic oscillation (the synchronization points are show as •
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in Fig. 3.9) across the mechanical resonance spectrum. Therefore, the expected outcome from the
synchronization is a flat amplitude spectrum instead of a Lorentzian function. The implementation
is performed using "moving mesh" in mathematics module of COMSOL. In COMSOL syntax, the
implementation is

dx=u*exp(-i*atan(imag(u)/(real(u)+1e-16)))

dy=v*exp(-i*atan(imag(v)/(real(v)+1e-16)))

dz=w*exp(-i*atan(imag(w)/(real(w)+1e-16)))

(3.63)

where dx,dy,dz and u, v, w are the displacement after and before synchronization in x,y,z direc-
tions. 1e-16 in the bracket is an example of adding a small value to eliminate the error of dividing by
0. The circumference obtained from the synchronization of Eq. (3.63) is labelled as L(0). To get a
circumference having the phase shift of π a multiplication of exp(iπ) to each terms in Eq. (3.63) is
needed. The difference of the two circumferences L(0) and L(π) results the circumference change
at the mechanical frequency. The resulting ξ spectrum is shown in the red dot in Fig. 3.7d)-e) with
variations of input damping. The results shows ξ is constant across a mechanical resonance and stays
the same for a small variations of input damping with a factor of 12.5 difference. For extremely large
damping as shown in Fig. 3.7f), the numerical error is easy to be spotted as ξ is no longer flat.

Out of curiosity, I performed quadratic ξ (2ΩM) spectrum as shown in blue dots Fig. 3.7d)-f)
by calculating L(0)− L(π/2) and L(π)− L(π/2). Two traces are present due to the asymmetry
during the oscillation to the maximum and minimum amplitude. Think of a disk (Fig. 3.3) flapping
up and down, the disk bending upwards and downwards encounters different boundary conditions
(up-Terfenol-D, down-pedestal). Hollow and filled blue dots represent the COMSOL phase splitting
scheme which is analytically described by Eq.(3.56). ξ (2ΩM) is not spectrally flat which is interesting.
For high mechanical quality factor, 3×106 in the numerical simulation in Fig. 3.7d), the quadratic
optomechanical coupling is stronger than the linear coupling. Further studies could be conducted on
the quadratic numerical optomechanical coupling combined with experimental observations [60, 61].

3.7 Magnetomechanical coupling

To investigate the mechanical response as a function of the direction of the exciting magnetic field
termed as magnetomechanical coupling, the pair of Helmholtz coils used to generate the reference
external magnetic field is modelled as having the ability to rotate freely, as shown in Fig. 3.10.
Here, the magnetomechanical coupling is demonstrated via a model of Terfenol-D ellipsoid with
non-isotropic material nature. Non-isotropy is presented in the elements in elasticity matrix λλλ . Unlike
isotropy material where λλλ is defined by a single-valued Young’s modulus E and a single-valued
Poisson’s ratio ν , the number of irreducible λλλ elements depends on how asymmetric the material is.
Terfenol-D is regarded as transversely isotropic, and thus a little bit complicated than isotropy. The
magnetomechanical coupling is performed on transverse isotropic Terfenol-D, and the mechanical
eigenmode shape and eigenfrequency are further studied in isotropic consideration of Terfenol-D for
comparison.

The Terfenol-D ellipsoid has a radius of 13.4 µm and a height of 14 µm. The transverse isotropic
λλλ matrix elements are taken from Tab. 3.1. Mechanical eigenmode is performed based on the λλλ input,
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Fig. 3.10 COMSOL layout of a pair of Helmholtz coils which can rotate freely. Examples show
the ability of coils to produce magnetic field in y, y− z and z directions. The outermost spheres is
created to be filled with air to support the generation of magnetic field in COMSOL. The centre spots
are the devices under test.

two types of eigenmodes are selected as shown in Fig. 3.11: radial breathing mode (RBM) where most
of the mechanical motion takes place in radial direction for a thin disk and due to Poisson’s ratio the
maximum displacement has both axial and radial components as shown in Fig.3.11b); and Rugby-ball
mode where the axial motion swaps orthogonally indicated as dotted line in Fig. 3.11a).

The evaluation parameter of the magnetomechanical coupling is the maximum displacement for
simplicity. A complete analysis should be calculating cact as detailed in Chapter 3.5. The tilted
rugby-ball mode and RBM are investigated under the excitation of magnetic field in the direction of y,
y− z and z axes. The results are summarised in Tab. 3.3.

Table 3.3 Magnetomechanical coupling. Maximum displacement amplitude as response to the
variation of reference external magnetic field direction for transversely isotropic modelling of Terfenol-
D.

tilted rugby-ball mode at 25.33 MHz RBM at 29.20 MHz
coil axial direction max|ũ(r,Ω)| (µm) max|ũ(r,Ω)| (µm) ξ (ΩM)

y 8.6 1.5×10−6 3.4
y-z 4.8 7.8×10−3 6.1
z 3.1×10−4 1.1×10−2 6.1

For the tilted rugby-ball mode, there is a four orders of magnitude increase in the maximum
displacement when there is y component of the magnetic field, indicating that an in-plane magnetic
field induced stress profile has the similar mode shape as the tilted rugby-ball mode. However, the z
direction drive leads to bad magnetomechanical coupling, this is because z direction drive introduces
RBM-like stress shape profile having poor mode overlap with the rugby-ball mode. In the case of RBM
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isotropy 

a) b)

c)                        d)

Fig. 3.11 Spatial shapes of the mechanical RBMs and rugby-ball modes. a) Rugby-ball modes
and b) a radial breathing mode from the Terfenol-D modelled as transversely isotropic material. c)
A RBM and d) rugby-ball modes modelled as isotropic material with Young’s Modulus of 30 GPa,
density of 9250 kg/m3 and Poisson’s ratio of 0.25. A material with isotropic modelling exhibits more
degenerated modes for the rugby-ball mode. The black dotted lines indicate mode shape oscillations at
mechanical eigenmodes. From left to right the frequency of the mechanical eigenmodes increases.

there is also a four orders of magnitude difference in axially driving and in-plane driving showing a
good mode overlap between the driven stress induced RBM-like spatial profile and the mechanical
eigen RBM. As well as a poor mode overlap between the in-plane drive induced stress shape and
mechanical internal RBM. Note the relative displacement between the rugby-ball mode and RBM is
incomparable due to the difference in input damping here.

Though this rough evaluation of magnetomechanical coupling acts on transversely isotropic
modelling of Terfenol-D, it can be seen from Fig. 3.11c)-d) that the 1st order RBM and tilted rugby-
ball mode indeed exist in isotropic modelling of Terfenol-D where instead of input 6×6 matrix
elements (with 12 non-zero) only E and ν is used. The obvious difference lies in the shift of their
eigenfrequencies. And for isotropic material, the number of degenerated modes for rugby-ball modes
are more than that of in transversely isotropic material, which is reasonable as the axial difference in
material crystalline structure lifts the degeneracy for transverse isotropic materials.

The magnetomechanical coupling response is highly sensitive to the direction of the magnetic field
as demonstrated with RBM and rugby-ball mode, indicating a possible extension of optomechanical
field magnetometer into vectorial magnetometers. The difference of mechanical eigenmode shape
between transverse isotropic and isotropic material is relative small for RBM and rugby-ball modes.
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However, the eigenfrequency shifts largely. The eigenfrequency of isotropic materials can be analyti-
cally solved for thin disk [62, 63] and ellipsoid [33], for traverse isotropic material analytical solution
does not necessarily exist [64].





Chapter 4

Numerical Prediction of Bandwidth and
Sensitivity

The mechanical properties derived from the numerical simulation in Chapter 3 combined with the
optomechanical anaylsis for homodyne detection scheme in Chapter 2 are applied to previous experi-
mental devices [26, 27, 32] showing that the predicted sensitivity is still one order of magnitude better
than the experiments have achieved. This analysis is further applied to study the effect of bending and
the size of the magnetostrictive material on sensitivity and optomechanical coupling rate, as well as
whether the bandwidth can be improved as a result of laser detuning and increased optical power for
different geometries.

4.1 Single mechanical mode analysis

For a single isolated mechanical eigenmode without interference from other eigenmodes, the minimum
detectable magnetic field in the presence of thermal Brownian noise, imprecision noise and back-action
noise in homodyne detection scheme is given by Eq.(2.63) with the mechanical susceptibility in
Eq. (2.19) and the effective cooperativity expressed in Eq. (2.13). In this section I use these equations
to determine the idealized single-mode performance of the optomechanical magnetometer assuming
the overall detection efficiency η = 1, which leads to the input laser power being smaller than real
situations when loss is considered.

The first edition magnetometer developed in our laboratory [26] is a standard toroid resonator with
a silica major radius of 33 µm, torus radius of 3 µm, thickness of 2 µm and silicon undercut of 9 µm,
and with an empirical optical quality factor of 2×107 after a CO2 laser reflow process. The Terfenol-D
blob sitting on top of the silica is modelled as a semi-sphere with a transverse radius of 18.5 µm
and a height of 15 µm. The mechanical quality factor is assumed to be 200 for all modes which is a
simplification compared to experimental observations, but is broadly in line with the experimentally
observed quality factors. A cross-sectional art view is shown in Fig. 4.1c) for Terfenol-D in the centre
and being displaced.

Mechanical properties including eigenfrequency ΩM, actuation constant cact , the ratio of circum-
ference change to maximum displacement ξ and effective mass meff are extracted from COMSOL
where the magnetometer is driven by an external reference magnetic field Bref with a direction in

41
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Fig. 4.1 Single mechanical mode analysis for a) the sensitivity and b) the vacuum optomechanical
coupling rate in the presence of Terfenol-D position offset. c) An illustration of the 1st generation
optomechanical magnetometer with the evolution of Terfenol-Ds’ position. d) Actuation constant
and noise contributions from e) thermal bath, f) back-action and g) measurement imprecision for the
degeneracy-lifted two 2nd order crown modes. Inset between a) and b) is the spatial profile induced by
the reference magnetic field.

plane. With the input of laser power, detuning from the optical cavity and wavelength, we can arrive
at the quantitative contribution from each noise source, and thus the noise limited sensitivity of the
magnetometer can be derived.

Start with centred Terfenol-D, without loss of generality, a pair of frequency-degenerated 2nd order
crown modes are chosen because they have been experimentally observed quite often [65, 66]. The
mechanical mode shape shown in Fig. 4.1a) upper inset is called mode 1, and in Fig. 4.1b) lower
inset is called mode 2. The scaling factor of the eigenmodes are ≫ 1 demonstrating only the relative
displacement amplitude in the device matters. The difference between the two modes lies in the torus
displacement amplitude at the location highlighted by a blue and orange rectangular. The usage of the
color in the plots of Fig. 4.1 is associated with the mechanical mode: mode 1 for blue and mode 2 for
orange. The effective motional mass is meff = 3.9 pg with eigenfrequency at 10.1 MHz and ξ < 10−3,
cact ∼ 10−6 (N/T) for the magnetometer with centred Terfenol-D. This ξ is 104 smaller than that of
the thin disk radial breathing mode which is 4π , showing the hardness of the optical detection of the
mechanical motion of the 2nd order crown mode. The numerical accuracy affected by the mesh is
characterized using a thin isotropic disk where no less than 10 mesh points are distributed along the
radius, a half cycle ξ (2Ω) parameter is used for characterization with the numerical value of 6.194.
Compared with analytical value of 2π , mesh induced inaccuracy is as low as a relative 1.4%, thus this
fineness of the mesh is kept.

The parameters of the coherent input laser is chosen to be: a wavelength of 980 nm, a power of
2 µW, and the laser frequency is locked on one resonance of the optical cavity. The power spectral
density of the noise force can then be calculated via Eq. (2.63), so that the dominant noise source can
be derived. The thermal noise force spectral density of 2·10−26 rad·s·N2 (Fig. 4.1e)) is more than 5
orders of magnitude smaller than the back-action noise (Fig. 4.1f)) around 10 ·10−38 rad·s·N2 for mode
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1 (2 ·10−31 rad·s·N2 for mode 2), and more than 1 order of magnitude smaller than the measurement
imprecision noise (Fig. 4.1g)) around 1 ·10−27 rad·s·N2 for mode 1 (1 ·10−28 rad·s·N2 for mode 2),
showing a thermal noise dominated nature of this optomechanical magnetometers system. Though
vacuum optomechanical coupling rate g0 (Eq. (2.8)) is independent on the input laser power, it relies
on the laser wavelength and geometry of the device, and it is replacing ξ in the following as g0 is
one of the key parameters in the optomechanical community quantifying how well the mechanical
motion can be optically read out. An exampled conversion between optomechanical coupling strength
and ξ parameter for the 2nd crown modes is g0/2π = 8.5 ·103 Hz for ξ = 4π for the 1st generation
optomechanical magnetometer’s geometry. The thermal noise limited sensitivity for the two 2nd crown
modes are around microtesla, which can be viewed from Fig. 4.1a).

As Terfenol-D is moved away from the centre, mode 1 experiences a monotonous increase in
sensitivity while an overall increasing trend is visible for the mode 2 as shown in Fig. 4.1a). The
evolution of the offset of the Terfenol-D is depicted in Fig. 4.1c). Fig. 4.1b) shows more than 2 orders
of magnitude enhancement in g0 with only a few micrometre Terfenol-Ds’ offset. The improvement
in sensitivity and optomechanical coupling rate is likely due to the bending effect taking place at the
edge of the pedestal. Similar to the bimetallic bending effect, Terfenol-D with offset gives additional
strain to silica during the downwards flipping thus increasing the flipping amplitude and consequently
sensitivity. While the Terfenol-D helps increase silica amplitude when flipping downwards, it obstructs
silica to flip upwards, thus creating a large circumference difference between flipping upwards and
downwards and consequently increasing g0. Mode 1 has better optomechanical coupling than mode
2, which depends on the position of the Terfenol-D as well as the direction of the external magnetic
field. The reference-magnetic-field-induced mode profile can be viewed in Fig. 4.1a)-b) inset. It has
a maximum displacement towards the direction of Bref creating a single direction height slope along
Bref. And crown mode 1 with Terfenol-D offset (see in Fig. 4.1a) lower inset) where the neighbouring
quarters of torus having opposite flipping directions also have a height slope along the direction of
Bref, while in Bref direction mode 2 has quarter toruses both flipping in the same direction (see in
Fig. 4.1b) upper inset) having no height slope across the device. On the other hand, mode 2 has better
g0 because the Terfenol-D (highlighted with white dot line on the shape of the mechanical eigenmodes
in Fig. 4.1a)-b) inset) is moving towards the torus amplitude anti-node where the highlighted rectangle
is. Thus, the Terfenol-D enhances the the amplitude of the displacement of the quarter torus nearby
more efficiently than in mode 1 where the Terfenol-D is moving towards the node of the displacement
amplitude of the torus when the torus flips downwards, and the Terfenol-D suppresses the torus
motion more efficiently when the tours flips upwards in mode 2 than in mode 1, thus creating larger
circumference change and larger g0 in crown mode 2 than in mode 1.

The numerical results predict that sub-nano T/
√

Hz sensitivity is possible with optimal offset,
which is 3 orders of magnitude better than experimental result [26]. The experimental results are likely
to be degraded not only due to a lack of Terfenol-D offset, but also by the glue associated with the
Terfenol-D deposition, which reduces the expansion of the silica disk.

Linear optomechanical coupling depending on g0 should be 0 for perfect symmetrical crown
modes of the toroidal/disk structure as there is no change of circumference in one harmonic oscilla-
tion. However, thermal noise of crown mode is observed with very high signal-to-noise ratio (SNR)
[66, 65], the uniformity of mass and geometrical symmetry broken by defects [67] could be one
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explanation. Fig. 4.1b) offers a numerical proof of the fact that symmetry break of the devices enhances
optomechanical coupling. Quadratic optomechanical coupling of a lower frequency mode could be
an alternative explanation of resolvable thermal noise spectrum for crown modes. However, it is very
hard to distinguish between the contributions from the quadratic optomechanical coupling of a lower
order crown mode at half the eigenfrequency and the linear optoemechanical coupling thanks to the
defects. For instance, the 2nd order and 3rd order crown modes in ref.[66] are of half the frequency
from one to the other.

10 15 20 25
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Fig. 4.2 Single mechanical mode analysis for sensitivity as a function of the radius of the Terfenol-
D

The single mechanical mode analysis is then applied to a thin disk structure with 1-µm-sputter-
coated-Terfenol-D film on top of a 400-nm-thick silica disk. Magnetometers with sputter coated
Terfenol-D have the advantage of high repeatability ready for characterization of elasticity matrix ele-
ments and piezomagnetic constants under experimental environment for accurate modelling prediction
and for further improvement. The silica disk has a radius of 30 µm and the pedestal has a top facet
of 15 µm in radius which serves as a vertical guideline in Fig. 4.2 for comparison with the size of
Terfenol-D. The optical quality factor is set to be 1×106, and 12.8 µW of input laser at 1550 nm is
sent to the homodyne detection with zero detuning. The effective mass, meff, extracted from numerical
simulation various from 1 pg to 3.8 pg with the expansion of Terfenol-D size of the radial breathing
mode.

Fig. 4.2 shows the relation of sensitivity and Terfenol-Ds’ size for the 1st order RBM. The external
reference magnetic field sweeps in the axial direction to create a stress-induced-profile having a large
mode overlap with RBM, thus boosting the amplitude of radial displacement. The part of Terfenol-D
(highlighted with white dotted line in mechanical eigenmode simulation) inside the top pedestal facet
is motionless, while the rim outside the top pedestal facet of the Terfenol-D has the mechanical motion
hybridized with the silica disk mode. The sensitivity scales with the motional part of the Terfenol-D in
addition to the magnetomechanical coupling. Sub-hundred pT/

√
Hz sensitivity is predicted when the

diameter of the Terfenol-D disk covers more than 2/3 of the silica disk. A powers fit (y(x)=a·xb with
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fitting results of a=2×10−8 and b=−1.7) is exploited to the data with Terfenol-D radius larger than
the pedestal, indicating that a 300-µm-radius of Terfenol-D would lead to 1 pT/

√
Hz sensitivity. To

get better sensitivity, the size of the Terfenol-D has to be larger than the pedestal so as to have large
portion of motional Terfenol-D, which could be realised by increasing the silicon pedestal undercut
and the size of Terfenol-D.

4.2 Multiple mechanical modes analysis

Depending on the relative g0(ΩM) among multiple mechanical eigenmodes, the thermal Brownian
motion of some of the mechanical modes with small optomechanical coupling would be buried under
that of other mechanical modes in a broad spectrum. That is to say even if one mechanical mode
has high coupling to the force from the magnetostrictive material, it might still be unresolvable due
to the large thermal mechanical noise of nearby mechanical modes imprinted on the optical field.
Fortunately, in experiments those high actuation mechanical modes are still resolvable thanks to the
defects and asymmetry discussed in Chapter 4.1. To gain the knowledge of optomechanical coupling
strength in a broad spectrum consisting of multiple mechanical eigenmodes, the thermal noise spectral
density of the light phase quadrature (Eq. (2.36)), the network response (Eq. (2.60)) and the minimum
detectable magnetic field (Eq. (2.61)) is calculated accordingly. The calculation is based on accurate
extraction of mechanical properties from COMSOL, combined with input laser parameters. Only
optical and mechanical quality factors are empirically determined. The network response is the sensor
response spectrum to the magnetic field including mechanical interference among eigenmodes induced
by coherent magnetic force driving.

Fig. 4.3a) shows the thermal noise spectral density when the input 980 nm laser is locked on the
optical cavity resonance with 2 µW of power for a 1st generation magnetometer. Shot noise from a
coherent laser is 1/2 uniformly across all frequencies, because the optical field having high frequency
is assumed in a vacuum state and normalised to zero point motion [49]. Mechanical eigenmodes for
the first five low frequency modes are simulated in the inset (scaling factor ≫1) with the Terfenol-Ds
centre position offset. Without offset, the mechanical modes with frequency from low to high is shown
in Fig. 4.3f). Fig. 4.3b) ensures that the silica RBM having a high optomechanical coupling rate g0

hybridized with the Terfenol-D motion does not cover the thermal motion of the first five modes. As
there seems to be existing of infinity number of mechanical eigenmodes for a given geometry and
the number of eigenmodes being analysed is limited, it is important to include high g0 mode even if
it’s not within the region of interest to make sure the thermal noise peak of the modes of interest can
be resolved. The network response is obtained with the external reference magnetic field sweeping
in plane. Black triangles in the sensitivity spectrum are calculated for individual modes (Eq. (2.63))
neglecting the back-action noise, while the blue continuous line presents the sensitivity as a result
of interference in the signal between different mechanical modes. Fig. 4.33) shows comparison of
cooperativity C (Eq. (2.12)) which is the approximation with bad cavity limit and effective cooperative
|Ceff| (Eq. (2.11)) for each individual eigenfrequency, showing a bad cavity limit is not very accurate
here, therefore Ceff is used. The vacuum optomechanical coupling rate of several hundred on average
for the first five mode is comparable to the radial breathing mode thanks to the enhancement for
the Terfenol-Ds offset (Fig. 4.3d)). The predicted sensitivity is 100 pT/

√
Hz at 12 MHz among the
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Fig. 4.3 Sensitivity spectrum prediction for the 1st generation magnetometers. a)Top: thermal
noise spectral density SΩΩ(Ω) (blue) is the sum of individual thermal noise peaks (grey) and the
normalized (to optical zero-point motion) laser shot noise (red). Middle: network response NBB

ΩΩ

records the magnetomechanical coupling under in-plane reference magnetic field driving. Bottom:
black triangle is the sensitivity for individual mechanical modes. b) Thermal noise spectral density
shows the first five mechanical modes are not buried under the silica RBM at 42.7 MHz. c) Actuation
constant, d) vacuum optomechanical coupling rate, e) cooperativity and effective cooperativity of each
individual mechanical eigenmodes. f) Mechanical eigenmodes without Terfenol-D offset from left to
right corresponding to eigenfrequencies from low to high.

first five modes, which is consistent with its highest actuation constant cact as shown in Fig. 4.3c).
Mechanical eigenmodes with high SNR of thermal Brownian motion and high cact lead to resolvable
high sensitivity.

Mechanical modes upto 45 MHz are selectively analysed in three windows (in the inset of Fig. 4.4a)
displays thermal noise around ∼7 MHz, ∼26 MHz and ∼43 MHz) of interest with external reference
magnetic field sweeping in plane, the same condition in experiments [27, 32] of the 2nd edition
magnetometers, the artistic view of which is shown in Fig. 3.3b) and the geometry of which is labelled
in Fig. 3.4. High order mechanical modes (eigenfrequency > 1st silica RBM) are difficult to drive,
leading to relative poor sensitivities. Though these modes have small thermal noise, it it unlikely for
them to have large g0 to stand out among other thermal noise peaks. Therefore, they are not here for
consideration in this numerical simulations.
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Fig. 4.4 Thermal noise spectral density, network response and sensitivity for the 2nd generation
magnetometers driven by an in-plane a)-d) and axial e)-h) reference magnetic field with cooperativity,
vacuum optomechanical coupling rate and actuation constant on mechanical resonances of interest. An
art view of the cross section is shown in e) inset for the 2nd generation magnetometers [27].

From mechanical property analysis, the effective mass meff is obtained as 13.4 pg, 10.4 pg, 39 pg,
25 pg and 18 pg for the resolved thermal noise peak at 4.8 MHz, 26 MHz, 27 MHz, 43.2 MHz and
43.4 MHz. The larger the Terfenol-D motional part is, the heavier the effective mass would be, which
is consistent with the material density that ρTerfenol−D (9250 kg·m−3) > 3ρsilica (2203 kg·m−3). If the
Terfenol-Ds’ eigenmode motion could be coupled well to the driven induced spatial profile, then that
eigenmode would leads to high sensitivity.

The coherent input laser has parameters: 5 µW input power, 1550 nm wavelength and on-resonance
homodyne detection scheme. Analysis shows that though a single mechanical mode (dominated by
Terfenol-D motion) at ΩM/2π=23 MHz having large c∥act =0.058 N/T reaches 5.6 pT/

√
Hz thermal

noise limited sensitivity, this particular mode with heaviest meff=57 pg indicating a largest portion of
motional Terfenol-D has very weak optomechanical coupling when the device is modelled uniformly
and transverse-symmetrically (see Fig. 4.4a) inset for (scaling factor ≫1) numerical mechanical
eigenmode). Note this Terfenol-D mode is termed as tilted rugby-ball in Chapter 3.7.
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Mechanical modes having radial breathing motion components stand out in the thermal noise
spectrum shown in Fig. 4.4a) inset, for their large vacuum single photon optomechanical coupling rate
g0 as shown in Fig. 4.4b), e) on the order of 100-1000 Hz. Without modelling the influence of defects
in increasing the optomechanical coupling, we focus on RBMs driven with reference magnetic field
in the axial direction. Stress induced spatial profile exhibits RBM-like motion under axial magnetic
field driving due to Poisson’s ratio in elastic materials, having a good spatial mode overlap with
the mechanical radial breathing eigenmodes to boost radial displacement amplitude thus achieving
large cact(ΩM). Thermal noise spectral density, signal response and minimum detectable magnetic
field plots with axial reference magnetic field driving are shown in Fig. 4.4d). Among the 5 high g0

mechanical modes, the Terfenol-D RBM at ΩM/2π = 27 MHz reaches a sensitivity of 5 pT/
√

Hz (see
Fig. 4.5 for the zoom-in sensitivity of the same mechanical mode) where single (in black triangle using
Eq. (2.63)) and multiple (in blue line using Eq. (2.61)) mode analysis overlaps. The corresponding
c⊥act(ΩM/2π=27 MHz)=0.064 N/T for axial reference magnetic field sweep, while the same mode has
a c∥act(ΩM/2π=27 MHz)=2×10−5 N/T for in-plane sweep, showing a substantial difference of good
and bad magnetomechanical coupling. A hybridized Terfenol-D RBM (large cact) with silica RBM
(large g0 for being resolved) is an idea case, which needs carefully matching the sound propagation
time in different part of the materials in the magnetometer for future design.

Several interesting parameters of each individual modes are shown in Fig. 4.4b)-d),f)-h). Note
that thermal noise spectral density, g0 and Ceff are independent on the reference magnetic field driving
direction, while cact strongly relies on the driven direction dependent mode overlap.

The discrepancy between numerical simulation and experimental results [27, 32] of the eigenfre-
quency of the most sensitive mechanical mode driven with in-plane magnetic field signal mainly lies
in the value of input elasticity matrix elements, which share matrix relation with Young’s Modulus,
Poisson’s ratio and piezomagnetic constants, rely strongly on operation conditions including initial
mechanical prestress, DC bias magnetic field, external load, temperature, and external driving magnetic
field [68, 69]. With high repeatable sputter coating method and elasticity measurement technique under
experimental condition rather than use literature parameters, the eigenfrequency mismatch would be
solved.

4.3 The effects of laser detuning and power on bandwidth

The mechanical mode at ΩM/2π=27 MHz is further chosen for analysis of the influence of bandwidth
as a result of laser power variation and detuning (∆ = ω0 −ωL). Bandwidth is defined as a 3 dB decay
of the minimum detectable magnetic field from the mechanical resonance. Laser detuning would
change the mechanical damping as well as mechanical resonance frequencies (refer to Eq.(2.19))
physically due to a delay (caused by finite κ) for the photon to meet the new boundary condition
created by the oscillation mechanics termed as dynamical back-action [50, 49]. Input laser power is
controlled below 20 µW for blue detuning when ∆ =−κ as further cranking the laser power would
cause instability (Γ < 0). Both red ∆ = κ and blue detuning has the same effect on bandwidth and
sensitivity as shown in Fig. 4.5. The bandwidth saturates with the increasing laser power due to the
presence of the neighbouring thermal noise (peak at ΩM/2π = 26 MHz and 43 MHz in Fig. 4.4a)).
For linear oscillators, sensitivity doesn’t benefit from cooling or heating with increasing laser power
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Fig. 4.5 The effect of laser detuning from optical cavity and power on bandwidth and sensitivity
Dots with blue edges represent for cooling with the red detuned factor ∆ = κ , while red edges of
those are for heating effect when the laser is blue detuned ∆ = −κ . Input laser power larger than
20 µW would cause instability due to heating effects. Locking the laser on optical resonance frequency
with the input power 5 times smaller than in the detuning ∆ =±κ cases results the same bandwidth
increasing trend as shown in the inset.

as the action of feedback, equivalent to filtering, prevents the enhancement in sensitivity [70], with
which our sensitivity plot as a function of laser power agrees. Lock the laser on optical resonance
frequency and set the power to be 5 times smaller than in the case when the detuning factor is set to be
∆ =±κ ensures the same amount of intra-cavity photon numbers (Eq. (2.13)). This in turn results the
same bandwidth increasing trend as shown in the inset of Fig. 4.5. This result demonstrates that the
increase of bandwidth relies on the input laser power which can be implemented both in detuned and
on resonance manner.

A few MHz bandwidth is reachable within one single mechanical mode, which is quite impressive
for micro optical magnetometers of pT/

√
Hz sensitivity operated at room temperature. Large band-

width enables faster readout of NMR signals of different materials with the frequency separation of
their fingerprints. If the Lamor frequency is polarized to the best sensitivity region of our magnetometer
∼ 20 MHz and with MHz bandwidth, the chemical contrast NMR signal of 19F and 1H in ref. [71] can
be read out simultaneously rather than using multiple microwave pulse sequences to map the signals as
the operational scheme from nitrogen-vacancy centres based magnetometers.





Chapter 5

Conclusion and Outlook

5.1 Conclusion

To summarize, by implementing the linear constitutional stress-magnetic field relation of magnetostric-
tive materials as external stress into the elastic wave equation, together with magnetic fields with
changeable directions, as modelled by a pair of Helmholtz coils in COMSOL, sensitivity for magne-
tometers with geometries both experimentally demonstrated and not-yet fabricated have been predicted.
The sensitivity from the modelling is within one order of magnitude better than the experimental
result [32], showing the potential for improvement. With the help of highly repeatable sputter coated
fabrication of Terfenol-D as well as measurements of the elasticity matrix elements and piezomagnetic
constants, we expect the method developed here to accurate predict both in terms of the sensitivity and
frequency response of optomechanical magnetometers.

Possible ways to improve the sensitivity of optomechanical magnetometers are to increase the
size of the Terfenol-D and to use the bending effect which arises from a magnetic equivalent of the
bimetallic strip effect. The bandwidth can be broadened by increasing the laser power on resonance
and using the optomechanical dynamic back-action which arises from detuning the laser from cavity
resonance.

5.2 Outlook

The method developed here is applicable to other geometries of magnetostrictive material based
optomechanical magnetometers, and can be extended to include quantum noise analysis for quantum
enhanced optomechanical sensors [14].

A full characterization of the response of magnetomechanical coupling to the variation of reference
magnetic fields direction may allow vectorial optomechanical magnetometry, as complementary to the
vectorical optomechanical force sensors [72, 73]. In ref. [73] the vectorial force sensor is realized by
using two orthogonal quasi-frequency-degenerate mechanical modes in a one-dimensional nanowire.
The direction of the force signal alters the ratio of the thermal noise peaks and the eigenfrequency of
the two nearly degenerated mechanical modes. A full characterization of the variations of the force
vector in two dimensions gives a thermal noise peak ratio map, which could serve as a reference
for force signals to be measured. In our case, the magnetomechanical coupling changes the height
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of the signal peak under driving. We could use two or more mechanical eigenmodes as references,
and fully characterize how their peak changes under a reference magnetic field as a function of field
direction. In this way, a 4π solid angle might be achievable due to the combinational response at
multiple eigenfrequencies.

Optimizations of the Terfenol-D annealing process may lead to sensitivity below 500 fT/
√

Hz,
given the axial piezomagnetic constant used (10.4 nm/A) is still 30 times smaller than in ref. [54]
(6.3 nm/A-310 nm/A). To test the nonlinear stress-magnetic field behaviour of optomechanical field
magnetometer where Terfenol-D is operated near saturated strain εmax, numerical methods such as ref.
[48] can be implemented with optomechanical analysis. Micro-optomechanical field magnetometers
with pT/

√
Hz sensitivity can be applied to detect signals from micrometre neurons similar to recent

results with nitrogen-vacancy centres based magnetometers [23] and atomic magnetometer [74], but
with benefits of a simpler and energy-saving scheme, as well as a large bandwidth capacity.



References

[1] W. L. Webb. Aircraft navigation instruments. Electrical Engineering, 70(5):384–389, 1951.

[2] M. Diaz-Michelena. Small magnetic sensors for space applications. Sensors (Basel), 9(4):2271–
88, 2009.

[3] Matti Hämäläinen, Riitta Hari, Risto J. Ilmoniemi, Jukka Knuutila, and Olli V. Lounasmaa.
Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of
the working human brain. Reviews of Modern Physics, 65(2):413–497, 1993.

[4] A. Mehlin, F. Xue, D. Liang, H. F. Du, M. J. Stolt, S. Jin, M. L. Tian, and M. Poggio. Stabilized
skyrmion phase detected in mnsi nanowires by dynamic cantilever magnetometry. Nano Lett,
15(7):4839–44, 2015.

[5] K. V. R. Chary and Girjesh Govil. NMR in Biological Systems-From Molecules to Humans. Focus
on Structural Biology 6. Springer, the Netherlands, 2008.

[6] L. M. K. Vandersypen and I. L. Chuang. Nmr techniques for quantum control and computation.
Reviews of Modern Physics, 76:1037–1069, 2004.

[7] Asaf Grosz, Michael J. Haji-Sheikh, and Subhas C. Mukhopadhyay, editors. High Sensitivity
Magnetometers, volume 19 of Smart Sensors, Measurement and Instrumentation. Springer
International Publishing, 2017.

[8] M. Simmonds, W. Fertig, and R. Giffard. Performance of a resonant input squid amplifier system.
IEEE Transactions on Magnetics, 15(1):478–481, Jan 1979.

[9] A. Guedes, J. M. Almeida, S. Cardoso, R. Ferreira, and P. P. Freitas. Improving magnetic field
detection limits of spin valve sensors using magnetic flux guide concentrators. IEEE Transactions
on Magnetics, 43(6):2376–2378, 2007.

[10] A. Persson, R. S. Bejhed, F. W. Østerberg, K. Gunnarsson, H. Nguyen, G. Rizzi, M. F. Hansen,
and P. Svedlindh. Modelling and design of planar hall effect bridge sensors for low-frequency
applications. Sensors and Actuators A: Physical, 189:459–465, 2013.

[11] C. C. Lu, J. Huang, P. K. Chiu, S. L. Chiu, and J. T. Jeng. High-sensitivity low-noise miniature
fluxgate magnetometers using a flip chip conceptual design. Sensors (Basel), 14(8):13815–29,
2014.

[12] Slawomir Tumanski. Induction coil sensors—a review. Measurement Science and Technology,
18(3):R31–R46, 2007.

[13] R.J. Prance, T.D. Clark, and H. Prance. Ultra low noise induction magnetometer for variable
temperature operation. Sensors and Actuators A: Physical, 85(1–3):361 – 364, 2000.

[14] C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. arXiv:1611.02427v1, 2016.

[15] J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J.
Wind. High-resolution scanning squid microscope. Applied Physics Letters, 66(9):1138–1140,
1995.

53



54 References

[16] F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar. Monolithic low-transition-
temperature superconducting magnetometers for high resolution imaging magnetic fields of room
temperature samples. Applied Physics Letters, 82(20):3487, 2003.

[17] W. Clark Griffith, Svenja Knappe, and John Kitching. Femtotesla atomic magnetometry in a
microfabricated vapor cell. Optics Express, 18(26):27167–27172, 2010.

[18] M. S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M. D. Lukin, R. L. Walsworth, and A. Yacoby.
Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Physics,
9(4):215–219, 2013.

[19] Fazhan Shi, Qi Zhang, Pengfei Wang, Hongbin Sun, Jiarong Wang, Xing Rong, Ming Chen,
Chenyong Ju, Friedemann Reinhard, Hongwei Chen, Jörg Wrachtrup, JunfengWang, and
Jiangfeng Du. Single-protein spin resonance spectroscopy under ambient conditions. Science,
347(6226):4, 2015.

[20] I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K. De Greve, R. Evans,
R. Gertner, E. Bersin, C. Müller, L. McGuinness, F. Jelezko, R. L. Walsworth, H. Park, and M. D.
Lukin. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum
logic. Science, 2016.

[21] A. O. Sushkov, I. Lovchinsky, N. Chisholm, R. L. Walsworth, H. Park, and M. D. Lukin.
Magnetic resonance detection of individual proton spins using quantum reporters. Phys Rev Lett,
113(19):197601, 2014.

[22] Thomas Wolf, Philipp Neumann, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi
Isoya, and Jörg Wrachtrup. Subpicotesla diamond magnetometry. Physical Review X, 5(4), 2015.

[23] J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L.
Walsworth. Optical magnetic detection of single-neuron action potentials using quantum defects
in diamond. Proc Natl Acad Sci USA, 113(49):14133–14138, 2016.

[24] P. Kehayias, A. Jarmola, N. Mosavian, I. Fescenko, F. M. Benito, A. Laraoui, J. Smits, L. Bougas,
D. Budker, A. Neumann, S. R. J. Brueck, and V. M. Acosta. Solution nuclear magnetic resonance
spectroscopy on a nanostructured diamond chip. ArXiv: 1701.01401v1, 2017.

[25] Chang S. Shin, Claudia E. Avalos, Mark C. Butler, David R. Trease, Scott J. Seltzer, J. Pe-
ter Mustonen, Daniel J. Kennedy, Victor M. Acosta, Dmitry Budker, Alexander Pines, and
Vikram S. Bajaj. Room-temperature operation of a radiofrequency diamond magnetometer near
the shot-noise limit. Journal of Applied Physics, 112(12):124519, 2012.

[26] S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P.
Bowen, and H. Rubinsztein-Dunlop. Cavity optomechanical magnetometer. Physical Review
Letters, 108(12), 2012.

[27] S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and
W. P. Bowen. Ultrasensitive optomechanical magnetometry. Adv Mater, 26(36):6348–53, 2014.

[28] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala. Analysis of radiation-
pressure induced mechanical oscillation of an optical microcavity. Phys Rev Lett, 95(3):033901,
2005.

[29] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui. Single spin detection by magnetic
resonance force microscopy. Nature, 430(6997):329–332, 2004. 10.1038/nature02658.

[30] Marcelo Wu, Nathanael L. Y. Wu, Tayyaba Firdous, Fatemeh Fani Sani, Joseph E. Losby,
Mark R. Freeman, and Paul E. Barclay. Nanocavity optomechanical torque magnetometry and
radiofrequency susceptometry. Nature Nanotechnology, 2016.



References 55

[31] W. Muessel, H. Strobel, D. Linnemann, D. B. Hume, and M. K Oberthaler. Scalable spin
squeezing for quantum-enhanced magnetometry with bose einstein condensates. Phys Rev Lett,
2014.

[32] Beibei Li, Eoin Sheridan, Stefan Forstner, Halina Rubinsztein-Dunlop, and Warwick Bowen.
Ultrasensitive cavity optomechanical magnetometry. In Conference on Lasers and Electro-Optics,
page STu1E.8. Optical Society of America, 2016.

[33] Xufeng Zhang, Chang-Ling Zou, Liang Jiang, and Hong X. Tang. Cavity magnomechanics.
Science Advances, 2016.

[34] S. Forstner, J. Knittel, H. Rubinsztein-Dunlop, and W. P. Bowen. Model of a microtoroidal
magnetometer. In Francis Berghmans and Anna Grazia Mignani, editors, SPIE Proceedings:
Optical Sensing and Detection II, volume 8439, 2012.

[35] Stefan Forstner, Joachim Knittel, Eoin Sheridan, Jon D. Swaim, Halina Rubinsztein-Dunlop, and
Warwick P. Bowen. Sensitivity and performance of cavity optomechanical field sensors. Photonic
Sensors, 2(3):259–270, 2012.

[36] L. D. Landau and E. M. Lifshitz. Theroy of Elasticity, volume 7 of Course of therotical physics.
Pergamon Press, 3rd edition, 1986.

[37] G. Engdahl. Handbook of Giant Magnetostrictive Materials. Academic Press, 1999.

[38] Jonathan G. Benatar. FEM implementations of magnetostrictive-based applications. Masters
thesis, University of Maryland, 2005.

[39] Kidambi S. Kannan. Galerkin finite element scheme for magnetostrictive structures and compos-
ites. Phd thesis, University of Maryland, 1997.

[40] X. J. Zheng and X. E. Liu. A nonlinear constitutive model for terfenol-d rods. Journal of Applied
Physics, 97(5):053901, 2005.

[41] F. Claeyssen, N. Lhermet, R. Le Letty, and P. Bouchilloux. Actuators, transducers and motors
based on giant magnetostrictive materials. Journal of Alloys and Compounds, 258(1):61 – 73,
1997.

[42] E. Quandt. Giant magnetostrictive thin film materials and applications. Journal of Alloys and
Compounds, 258:126–132, 1997.

[43] Marcelo J. Dapino, Ralph C. Smith, and Alison B. Flatau. Structural magnetic strain model for
magnetostrictive transducers. IEEE TRANSACTIONS ON MAGNETICS, 36(3), 2000.

[44] J. H. Yoo and A. B. Flatau. A bending-mode galfenol electric power harvester. Journal of
Intelligent Material Systems and Structures, 23(6):647–654, 2012.

[45] Arthur E. Clark, Marilyn Wun-Fogle, James B. Restorff, and Thomas A. Lograsso. Magne-
tostrictive properties of galfenol alloys under compressive stress. MATERIALS TRANSACTIONS,
43(5):881–886, 2002.

[46] J. P. Domann, C. M. Loeffler, B. E. Martin, and G. P. Carman. High strain-rate magnetoelasticity
in galfenol. Journal of Applied Physics, 118(12):123904, 2015.

[47] P. R. Downey and A. B. Flatau. Magnetoelastic bending of galfenol for sensor applications.
Journal of Applied Physics, 97(10):10R505, 2005.

[48] Suryarghya Chakrabarti. Modeling of 3D Magnetostrictive Systems with Application to Galfenol
and Terfenol-D Transducers. Thesis, Ohio State University, 2011.

[49] W. Bowen and G. Milburn. Quantum Optomechanics. CRC, 2015.



56 References

[50] Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt. Cavity optomechanics.
Reviews of Modern Physics, 86(4):1391–1452, 2014.

[51] H.-A. Bachor and T. C. Ralph. Quantum Noise Transfer Functions: A Practical Tool in Quantum
Optics. Directions in Quantum Optics. Springer, 1999.

[52] Warwick Bowen. Experiments towards a Quantum Information Network with Squeezed Light
and Entanglement. Phd thesis, Australia National University, 2003.

[53] K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen. Cooling and control of a cavity
optoelectromechanical system. Phys. Rev. Lett., 104(12):123604, 2010.

[54] J.D. Verhoeven, E.D. Gibson, O.D. Mcmasters, and J.E. Ostenson. Directional solidification and
heat treatment of terfenoi-d magnetostrictive materials. Metallurgical Transactions A, 21A:2249–
2255, 1990.

[55] David J. Griffiths. Introduction to Electrodynamics. Prentice Hall International. Inc., 3rd edition,
1999.

[56] F. Claeyssen, R. Bossut, and D. Boucher. Modeling and characterization of the magnetostrictive
coupling. In B. F. Hamonic et al, editor, Power Transducers for Sonics and Ultrasonics, pages
132–151. Springer-Verlag Berlin Heidelberg, 1991.

[57] John Buck William Hayt. Engineering Electromagnetics, 8th Edition. McGraw-Hill, 2011.

[58] Simon Groeblacher. Quantum opto-mechanics with micromirrors: combining nano-mechanics
with quantum optics. Thesis, University of Vienna, 2010.

[59] B. D. Hauer, C. Doolin, K. S. D. Beach, and J. P. Davis. A general procedure for thermomechanical
calibration of nano/micro-mechanical resonators. Annals of Physics, 339:181–207, 2013.

[60] G. A. Brawley, M. R. Vanner, P. E. Larsen, S. Schmid, A. Boisen, and W. P. Bowen. Nonlinear
optomechanical measurement of mechanical motion. Nature Communication, 7:10988, 2016.

[61] Rick Leijssen, Giada La Gala, Lars Freisem, Juha T. Muhonen, and Ewold Verhagen. Nonlinear
cavity optomechanics with nanomechanical thermal fluctuations. ArXiv:1612.08072, 2016.

[62] Morio Onoe. Contour vibrations of isotropic circular plates. The Journal of the Acoustical Society
of America, 28(6):1158–1162, 1956.

[63] Christopher Baker. On-chip nano-optomechanical whispering gallery resonators. Thesis, Univer-
site Paris-Diderot - Paris VII, 2013.

[64] Haojiang Ding, Weiqiu Chen, and L. Zhang. Elasticity of Transversely Isotropic Materials,
volume 126 of Solid Mechanics and It’s Applications. Springer, 2006.

[65] D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg. Measurement-
based control of a mechanical oscillator at its thermal decoherence rate. Nature, 524(7565):325–9,
2015.

[66] A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg. High-sensitivity
monitoring of micromechanical vibration using optical whispering gallery mode resonators. New
Journal of Physics, 10(9):095015, 2008.

[67] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala. Modal coupling in traveling-wave resonators.
Optics Letter, 19(27):1669, 2002.

[68] M.J. Dapino, A.B. Flatau, and F.T. Calkins. Statistical analysis of terfenol-d material properties.
Journal of intelligent material systems and structures, 17(7):587–599, 2006.



References 57

[69] R. Kellogg and A. Flatau. Experimental investigation of terfenol-d’s elastic modulus. Journal of
Intelligent Material Systems and Structures, 19(5):583–595, 2007.

[70] G. I. Harris, D. L. McAuslan, T. M. Stace, A. C. Doherty, and W. P. Bowen. Minimum
requirements for feedback enhanced force sensing. Phys Rev Lett, 111(10):103603, 2013.

[71] T. Haberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup. Nanoscale nuclear magnetic
imaging with chemical contrast. Nat Nanotechnol, 10(2):125–8, 2015.

[72] N. Rossi, F. R. Braakman, D. Cadeddu, D. Vasyukov, G. Tutuncuoglu, I. Morral A. Fontcuberta,
and M. Poggio. Vectorial scanning force microscopy using a nanowire sensor. Nat Nanotechnol,
2016.

[73] L. M. de Lepinay, B. Pigeau, B. Besga, P. Vincent, P. Poncharal, and O. Arcizet. A universal and
ultrasensitive vectorial nanomechanical sensor for imaging 2d force fields. Nat Nanotechnol,
2016.

[74] K. Jensen, R. Budvytyte, R. A. Thomas, T. Wang, A. M. Fuchs, M. V. Balabas, G. Vasilakis,
L. D. Mosgaard, H. C. Staerkind, J. H. Muller, T. Heimburg, S. P. Olesen, and E. S. Polzik.
Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near
quantum limited sensitivity. Sci Rep, 6:29638, 2016.

[75] Kaihua Zhao and Ximou Chen. Electromagnetism (in Chinese), volume 3 of New concept physics.
Higher Education Press, 2003.





Appendix A: Input parameters and variables
to COMSOL

Table 1 Input global parameters to COMSOL

Name Value [unit] Description
I0 1.25e-3[A] Coil current

theta0 0[deg] Coil direction
ch11 10.7e10[Pa] Elasticity matrix element 11
ch12 7.48e10[Pa] 12
ch13 8.21e10[Pa] 13
ch33 9.81e10[Pa] 33
ch44 0.6e10[Pa] 44
ch66 1.61e10[Pa] 66
e31 -0.9e2[Pa*m/A] magnetostrictive coefficent 31
e33 1.66e2[T] 33
e15 1.68e2[T] 15
mu0 4*pi e-7 [N/A2] vacuum permeability

muT11 6.9*mu0 [N/A2] relative permeability matrix element 11
muT33 4.4*mu0 [N/A2] 33

f 0[Hz] sweeping frequency

Table 2 Input variables to COMSOL

Name Expression [Pa]
sigma1 e31*mf.Hz+mf.Hx*mf.Bx-0.5/mu0*(mf.Bx*mf.Bx+mf.By*mf.By+mf.Bz*mf.Bz)
sigma2 e31*mf.Hz+mf.Hy*mf.By-0.5/mu0*(mf.Bx*mf.Bx+mf.By*mf.By+mf.Bz*mf.Bz)
sigma3 e33*mf.Hz+mf.Hz*mf.Bz-0.5/mu0*(mf.Bx*mf.Bx+mf.By*mf.By+mf.Bz*mf.Bz)
sigma4 e15*mf.Hy+mf.Hy*mf.Bz
sigma5 e15*mf.Hx+mf.Hx*mf.Bz
sigma6 mf.Hx*mf.By
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Appendix B: Magnetic Field Inside Magnets

The magnetic current and dipole models for insight into the magnetic field inside ferromagnet is based
on textbook [75].

Fig. 1 Magnetic field inside a magnet rod using textbook toy models of magnetic current and
magnetic dipole. After applying an external magnetic field B0 from a current flowing solenoid, (a)
the aligned magnetic current ensemble shows a total effect equivalent to circular current around the
edge (a thin line in the middle) in the magnetic current model. (b) In the magnetic dipole model, the
total effect of applying BBB0 is equal to creating negative and positive magnetic charges on the left and
right side surfaces of the magnet.

Magnetic current point of view

From magnetic current point of view, the total magnetic field strength BBB inside the cylindrical
magnetic rod as shown in Fig. 1a) is

BBB = BBB0 +BBB′ (1)

where BBB0 is the external magnetic field strength and BBB′ is the additional magnetic field strength resulting
from the alignment of the magnetic currents. This alignment cancels the current loops inside the
magnet leaving only the current flowing around the edges of the cylinder displayed as a thin line in
the middle of the cylinder in Fig. 1a). Defining magnetization vector MMM as MMM = nIaaa, where n is the
density of the current loops, aaa is the loop covered area and I is the current of each tiny loops. Given a
close path with length of ∆l and negligible height across the magnet edge as shown in the red rectangle
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in Fig. 1a), the integration of MMM along the closed path L across multiple current loops leads to
˛

L
MMM ·dlll = ∑

inside L

III′ (2)

in which III′ = iii′∆l with iii′ being the surface current density at the edge of the magnet cylinder. The
integrand is only none zero inside the magnet, written as a vectorial equation:

MMM×nnn = iii′. (3)

BBB′ at the centre of the magnet can be calculated as the magnetic field created by a solenoid with current
density of MMM as

BBB′ = µ0MMM
l/d√

1+(l/d)2
(4)

with 2l and d being the length and diameter of the magnet rod.

Fig. 2 The calculation scheme of the magnetic field in the axial direction of a single current
loop and solenoid. a) The current at position A creates a magnetic field dBBB at the location • on the
horizontal axis. The current in a single loop generates a magnetic field δBBB. b) The direction of the
magnetic field dBBB is clarified where the single current loop is viewed from a front angle. Note that the
scale of the red loop shrinks a bit. c) A solenoid is modelled as as array of single current loops along
the axial direction. The array produces a magnetic field BBB on the axis x distance away.

Note that the magnetic field created by a solenoid above is calculated first from the contribution
from a single current loop with a current density III and a circumference L as shown in Fig. 2a)-b) by
applying Biot-Savart law as

δBBB =

˛
dBBB · cosβ =

µ0

4π
· IIIdL

l2 cos2
β sinβ

ˆ
dL =

µ0d2III
2(d2 + l2)3/2 (5)

where d is the radius of a loop and l is the distance between the loop centre and the observation point.
The sum of the contributions from an array of single current loops is

BBB =

ˆ l

−l

µ0d2III
2(d2 + x2)3/2 dx =

µ0III
2

ˆ
β2

β1

sinβdβ =
µ0III
2

(cosβ1 − cosβ2) (6)
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where the relation shown in Fig. 2c) r2 = x2 + d2 and x/d = cotβ , as well as the differentiation
dx/d = dβ/sin2

β are used. At the centre of a solenoid, β1,β2 have the relation of

cosβ1 =
l√

d2 + l2
, cosβ2 =− l√

d2 + l2
. (7)

Therefore, the total magnetic field BBB at the centre of the solenoid has the expression of

BBB = µ0III
l/d√

1+(l/d)2
. (8)

Magnetic dipole point of view

In light of magnetic dipole point of view, the total magnetic field HHH inside a magnet rod is the vector
sum of the external magnetic field and the polarized magnetic field as

HHH = HHH0 +HHH ′. (9)

As shown in Fig. 1b), we assume the direction of the external magnetic field pointing to the right, then
the effect of all aligned tiny magnets equals to the distribution of negative magnetic charge on the
left surface and positive on the right. This magnetic charge distribution creates a magnetized field HHH ′

in opposite direction to the external magnetic field. Therefore, HHH ′ is also termed as demagnetization
field. According to Coulomb’s law, HHH ′ at the axial centre with magnetic charge density of σm on
each surfaces is first calculated through one circular surface shown as in Fig. 3. The magnetic field
generated by an area ds at the location A from the charged surface detected on the axis l distance away
fro the centre of the surface is

dHHH =
1

4πµ0
· σm

l2 + r2 ·ds. (10)

For the convenience of integration, ds is chosen to be the area of a ring r distance away from the centre
of the charged circular plate. The magnetic field from ds then is

δHHH =
1

4πµ0
· σm

l2 + r2 ·
2πldr√
l2 + r2

. (11)

The magnetic field contributed from the whole circular plate to a specific location on the axis is the
integral over the radius of the plate as

HHH =
2πlσm

4πµ0

ˆ d

0

rdr
(l2 + r2)3/2 =

σm

2µ0

(
1− 1√

l2 +d2

)
. (12)

Adding another magnetically charged circular plate on the other side with opposite charges is equivalent
to multiplying a factor of 2 in Eq.(12).
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Fig. 3 Magnetic field in the axial direction of a magnetically charge circular plate.

The relationship between the magnetic charge density σm and magnetization JJJ can be derived
from Gauss’s law, where JJJ is defined as volume averaged vector sum of magnetic dipole momentum.
Similar to Gauss’s law for electric charges, a closed surface integral of magnetization JJJ equals to the
magnetic charges inside the surface.

‹
s
JJJ ·dsss =−∑

s

qm =

‹
s
σmdsss, (13)

which results the relation σm = JJJ cosθ .
Replacing JJJ with the expression of σm for Eq.(12) results in

HHH ′ =
JJJ
µ0

[
1− l/d√

1+(l/d)2

]
≡ JJJND

µ0
(14)

in which ND is a geometry dependent demagnetization factor having a value between 0 and 1. Generally
speaking, ND is a tensor for 3D object.

From Eq. (4) and Eq. (14), the link between the magnetic current and magnetic dipole models can
be drawn as

HHH ′ = MMM− BBB′

µ0
. (15)
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Link between the two models and the resulting internal external
magnetic field relation

Given the ad hoc assumption for the magnetization defined from magnetic current and dipole point of
views as

JJJ = µ0MMM (16)

the BBB-HHH relation for both magnetic current and magnetic dipole models becomes

BBB = µ0(HHH +MMM) = µ0HHH + JJJ. (17)

With the knowledge of Eq. (14, 15, 16, 17) and the relative permeability in a tensor form defined as

BBB = µ0(HHH +MMM)≡ µ0µµµrHHH, (18)

the magnetic field inside a magnet can be finally written as

HHH =
BBB
µ0

−MMM =
BBB0 +BBB′

µ0
−MMM =

BBB0

µ0
−HHH ′ (19)

=
BBB0

µ0
− NDJJJ

µ0
=

BBB0

µ0
−NDMMM =

BBB0

µ0
−HHH ′−ND(µµµr −1)HHH. (20)

Rearranging the internal magnetic field HHH to one side results in

HHH =
BBB0

µ0
[
ND(µµµr −1)+1

] = HHH0

ND(µµµr −1)+1
(21)

where BBB0 can be obtained by replacing air with the Terfenol-D at the location of Terfenol-D in
numerical simulation. When the magnet is a infinite long rod, ND approaches to 0, then the inside
magnetic field HHH equals the external field HHH0. This is probably the case when the value of the elasticity
matrix elements and piezomagnetic constants are measured in the literature [41] from which we take
the value. For thin film structure, ND=1 for the extreme case when the thickness is 0. This results the
internal magnetic field to be

HHH thin film =
HHH0

µµµr
. (22)

Magnetic field inside Terfenol-D in the numerical simulation is checked by the value from several
selected points in Terfenol-D with Eq. (21), showing excellent agreement with the simulation results
from COMSOL.
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