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Abstract	
The association theory based advanced thermodynamic models gain more and more attention and 

applications in many industries. The Cubic Plus Association (CPA) and the simplified Perturbed-Chain 

Statistical Associating Fluid Theory (sPC-SAFT) equations of state (EOS) are two of the most widely 

used association models in the chemical and petroleum industries. The CPA model is extensively used 

in flow assurance, in which gas hydrate is one of the central topics. Experimental data play a vital role 

in validating models and obtaining model parameters. In this work, we will compare the performance 

of the CPA and sPC-SAFT EOS for modeling the fluid phase equilibria of gas hydrate related systems, 

and try to explore how the models can help in suggesting experimental measurements. These systems 

contain water, hydrocarbon (alkane or aromatic) and either methanol or mono-ethylene glycol. It is 

well-known that the determination of SAFT-type model parameters for associating fluids remains a 

challenge, since there are at least five pure component parameters for these compounds, and there is no 

property combination found yet to be enough to ensure the best parameter set. Therefore, in this work 

two parameter sets have been chosen for the sPC-SAFT EOS for a fair comparison. The comparisons 

are made for pure fluid properties, vapor-liquid equilibria and liquid-liquid equilibria of binary and 

ternary mixtures, as well as vapor-liquid-liquid equilibria of quaternary mixtures. The results show, 

from an overall point of view, that these two models have equally good performance, and the two 

parameter sets with the sPC-SAFT EOS are also comparable, especially for the vapor-liquid equilibria 

systems. Moreover, the modeling results suggest that some data are less reliable than others, which 

indicates the need for more measurements to further validate the models, especially for 

multicomponent systems. 

 

Keywords: Gas hydrate, inhibitor, CPA, sPC-SAFT, Vapor-liquid-liquid equilibria 
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1.	Introduction	
 Fair comparisons of thermodynamic models are rare in literature. When comparisons are only done 

for the correlative performance, e.g. binary phase equilibria, differences can be masked by the 

adjustable parameters which often play an important role. This is the case even when classical 

thermodynamic models like cubic equations of state (EOS) are compared against modern Statistical 

Associating Fluid Theory (SAFT)-type or similar EOS. Thus, the true value of thermodynamic models 

should be based on predictive calculations, e.g. multicomponent phase equilibria or prediction of 

properties other than those used in the parameter estimation, both of which are also important for 

engineering applications. In this work we focus on the multicomponent multiphase equilibria of 

systems of relevance to the petroleum industry (water-alcohols/glycols-hydrocarbons). While such 

multicomponent systems are of great importance, not many data are available, possibly due to the 

experimental difficulties, e.g. the detection of low solubilities in some of the phases. The corresponding 

author recalls a communication with Kenneth Marsh some years ago discussing a manuscript published 

in Journal of Chemical & Engineering Data. That manuscript contained experimental data for many 

water-glycol-hydrocarbon systems, but unfortunately they were not accurate. The corresponding author 

appreciated Kenneth Marsh’s interference in this case and with his continuous effort the authors 

repeated some of the measurements and today we have some of the best water-monoethylene glycol 

(MEG)-alkane LLE data available in the literature. 1  This is highly appreciated as such data are 

extremely rare and only very few laboratories can measure them. 

This work focuses on the fluid phase equilibria of gas hydrate related systems. A combination of 

appropriate temperature and pressure conditions as well as the presence of light gases may lead water 

molecules to reform into coplanar poly-membered (5 or 6) rings and create a 3D polyhedral shaped 

formations with the light gases trapped within it. In this way, the water acts like a cage. This 
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phenomenon is called gas hydrate formation, which is considered as one of the major concerns in 

production, transportation and processing in the petroleum industry. This is because, when it occurs, it 

can reduce the flow of the gas in the pipeline and eventually block the pipeline stopping the production, 

and it might also affect and damage the equipment.2 Addition of chemicals like alcohols and glycols, 

called thermodynamic gas hydrate inhibitors, is one widely used technique to prevent gas hydrate 

formation in the oil and gas industry. Methanol and MEG are common choices, while ethanol is an 

alternative. Methanol and MEG are both effective and reliable in preventing gas hydrate formation. 

MEG gains more attention nowadays, because it can be reused and regenerated with insignificant 

losses, and decreases the possibility of creation and occurrence of corrosion in the pipelines.3 

Thermodynamic models play a vital role in determining the minimum necessary amount of chemicals 

used as gas hydrate inhibitors. The Cubic Plus Association (CPA) EOS 4 has been shown to be very 

useful in predicting gas hydrate formation, based on extensive validations for many gas hydrate related 

systems.5-7 The CPA EOS uses the same association term of the SAFT models, 8-13 and one of the most 

widely used SAFT models, the Perturbed Chain-SAFT (PC-SAFT) EOS 14,15 and its simplified version 

(sPC-SAFT), 16  has gained more and more attention in the petroleum and chemical industries.5 

Therefore, a systematic investigation on the performance of the sPC-SAFT EOS in modeling the fluid 

phase equilibria of gas hydrate related systems might further contribute to the acceptance of this model 

in the petroleum industry, and it might provide an alternative to cubic EOS for engineers. Moreover, a 

thorough and fair comparison is believed necessary to conclude which model or modeling approach 

may be better, and it will also help in giving more confidence of existing and/or suggesting more 

experimental measurements, when necessary. 
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Many works have been done in modeling systems containing hydrocarbon, water, methanol or MEG 

with the association theory based models.17-22 However, only few comparisons among these models 

have been published for multicomponent multiphase equilibria, and one of the most recent studies was 

for water-methanol-hydrocarbons with the CPA and sPC-SAFT EOS.23 This work will focus on a fair 

comparison of these two models on their performance in modeling gas hydrate related systems in both 

correlation and prediction manners. The rest of the work is organized as (1) brief introduction of the 

two models in section 2; (2) presentation of the experimental data in section 3; (3) modeling results and 

discussion in section 4 and (4) conclusion and suggestions in section 5. 

2.	Models	
In the past three decades, the association theory based thermodynamic models have been gaining 

attention and applications in many areas, including oil & gas, chemicals, environments and 

pharmaceuticals. The CPA and sPC-SAFT EOS are, among the association models, two of the most 

widely used models in the chemical and petroleum industries.5  

2.1	CPA	EOS	
The CPA EOS was proposed by Kontogeorgis et al.4 and it is a combination of the SRK (or other 

cubic) EOS, widely used in the petroleum industry, and the association term of the SAFT type models. 

The CPA reduces to SRK in the absence of hydrogen bonding compounds, leading to a good balance 

between accuracy and simplicity, thus it helps in gaining easy acceptance in the oil, gas and chemical 

industries. In terms of pressure, the CPA EOS can be expressed for mixtures as: 

ܲ ൌ
ܴܶ

௠ܸ െ ܾ
െ

ܽሺܶሻ

௠ܸሺ ௠ܸ ൅ ܾሻ
െ
1
2
ܴܶ

௠ܸ
൬1 ൅ ߩ

߲݈݊݃
ߩ߲

൰෍ݔ௜
௜

෍ሺ1 െ ܺ஺೔ሻ
஺೔

 (1) 

where ߩ is the molar density (ߩ ൌ 1/ ௠ܸ). 
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2.2	sPC‐SAFT	EOS	
The PC-SAFT EOS was developed by Gross and Sadowski.14 In terms of the reduced residual 

Helmholtz free energy, it can be expressed as: 

ܽ௥ ൌ ൫ܽ௛௦ ൅ ܽ௖௛௔௜௡൯ ൅ ܽௗ௜௦௣ ൅ ܽ௔௦௦௢௖ (2) 

where ݄ܽݏ and ݄ܽܿܽ݅݊ are the contributions of the hard sphere segment-segment interaction and the 

chain formation, respectively. The dispersion force ܽ݀݅݌ݏ is built by extending the perturbation theory 

of Barker and Henderson24 to use the hard-chain as the reference term. The term ܽ௔௦௦௢௖represents the 

contributions of association forces of sites, which can be expressed as: 

 ܽ௔௦௦௢௖ ൌ෍ݔ௜ ቎෍ቆ݈݊ܺ஺೔ െ
ܺ஺೔

2
ቇ

஺೔

൅
௜ܯ

2
቏

௜

 (3) 

where ܯ௜  is the association site number of molecule i, and ܺ஺೔  is the fraction of molecules i not 

bonded at site A, given by: 

ܺ஺೔ ൌ ቎1 ൅෍෍ߩ௝ܺ
஻ೕ∆஺೔஻ೕ

஻ೕ௝

቏

ିଵ

 (4) 

where ∆஺೔஻ೕ is the association strength between the site ܣ௜ and site ܤ௝, which is obtained as: 

∆஺೔஻ೕൌ ௔ܰ௩ߪ௜௝
ଷ݃௛௦ߢ஺೔஻ೕ ቈ݁݌ݔ ቆ

஺೔஻ೕߝ

݇ܶ
ቇ െ 1቉ (5) 

In this work, the sPC-SAFT EOS proposed by von Solms et al.16 with both modifications is used. It 

simplifies the original PC-SAFT EOS and reduces the computational time, without loss of accuracy for 

many applications. The same pure component parameters can be used for both the original and 

simplified PC-SAFT EOS. The readers are referred to the literature5,14,16 for more details on equations 

and symbols. It is relevant to mention the combining rule of the association volume, which will be used 
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in some cases in the following discussion. For a binary system consisting of two associating 

compounds, e.g. water and methanol, the following combining rule is used 

൫ߪ௜௝
ଷߢ஺೔஻ೕ൯ ൌ ටሺߪ௜௜

ଷߢ஺೔஻೔ሻ൫ߪ௝௝
ଷߢ஺ೕ஻ೕ൯ (6) 

Between an associating compound and an aromatic one, e.g. water-benzene, however, the following 

combining rule is used 

൫ߪ௜௝
ଷߢ஺೔஻ೕ൯ ൌ ௖௥௢௦௦ߢ ቆ

௜௜ߪ
ଷ ൅ ௝௝ߪ

ଷ

2
ቇ	 (7) 

This combing rule is volume based, not the one commonly used for the diameters. It is inspired by 

the CPA EOS, in which the term ߪ௜௜
ଷ is replaced by the co-volume parameter b. However, people may 

expected that similar results are obtained after fitting the cross association volume to the experimental 

data. More details of the models, equations and symbols are referred to the literature. 4,5,14 

3.	Experimental	data	
In this work, we focus on the relationship among experimental data, models and modeling 

approaches, instead of providing a complete literature review on all pertinent experimental data. 

Therefore, we selected the mixtures of water, methanol or MEG and hydrocarbon(s), as the 

performances of the models for these systems (water-gas hydrate inhibitors-oil) may be crucial in 

determining their acceptance by the petroleum industry. When the pure compound model parameters 

are available, the phase equilibrium data of binary mixtures are helpful in the models’ correlative 

performance and testing the predictive capabilities of these pure component parameters, as well as in 

determining the binary interaction parameters which will be used in the next step for predictions of 

multicomponent systems. The collected data of binary and multicomponent mixtures of relevance to 

this study are listed in Table 1 and 2, respectively. Not all of these data are going to be used in the 
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modeling part, but they are useful in the discussion and in future studies. Some of the references 

contain data collections and recommendations, which may be useful as well. 

 

Table 1. Experimental data review of binary mixtures of relevance to this study (polar compounds 

like water, alcohols and MEG with hydrocarbons and cross-associating systems of the polar 

compounds) 

1st comp. 2nd comp. T range (K) P range (bar) Ref. 
Methane Water 274.19-483.15 0.07-1334 25-32 
Methane Methanol 200.0-502.2 6.9-2935 25,32-35 
Methane Ethanol 298.15-498.15 5.0-364.2 36-38 
Methane MEG 283.2-398.15 1.1-396.2 32,39,40 
Ethane Water 274.26-373.15 3.2-49.5 28,32,41,42-44 
Ethane Methanol 283.2-303.2 5-67.7 32,45 
Ethane Ethanol 298.15-498.15 2.5-117.7 36,38 
Ethane MEG 283.2-303.2 5-40 32 

n-Hexane Water 270.0-490.0 3.4-29.6 46,47 
n-Hexane Methanol 245.15-339.60 0.1-1500 48-54 
n-Hexane Ethanol 328.15-351.45 0.5-1.0 55,56 
n-Hexane MEG 307.95-330.35 1.0 57 
n-Octane Water 310.9-539.1 0.1-784.5 58,59 
n-Octane Methanol 288.91-372.3 0.1-1500 60-62 
n-Octane Ethanol 313.15-348.15 0.04-0.95 63,64 
Benzene Water 279.15-453.15 0.06-20.2 65,66 
Benzene Methanol 298.15-363.15 0.1-3.1 67-72 
Benzene Ethanol 293.15-353.26 0.06-1.0 56,65,73-76 
Benzene MEG 279.2-342.1 1.0 77 
Toluene Water 273.15-458.15 0.02-17.0 66 
Toluene Methanol 313.15 0.08-0.37 76 
Toluene Ethanol 308.15-328.15 0.06-0.41 78,79 
Toluene MEG 279.1-361.0 1.0 77 
Water Methanol 298.15-523.15 0.04-85.1 80-83 
Water MEG 343.15-363.15 0.06-0.7 84 
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Table 2. Experimental data review of multicomponent mixtures of type water-alcohol/MEG/TEG-

hydrocarbons and methanol/MEG-hydrocarbons. 

1st comp. 2nd comp. 3rd comp. 4th comp. T range (K) P range (bar) Ref. 
Water Methanol Methane  267.55-313.45 42-400.5 25,28,85 
Water Methanol Ethane  283.2-303.2 5-40 28 
Water Methanol Propane  269.35-293.15 2.3-63.2 85,86 
Water Methanol n-Butane  273.15-293.15 1.0 85 
Water Methanol Hexane  293.2-323.15 1.0 87-89 
Water Methanol Heptane  298.2 1.0 90 
Water Methanol Benzene  293.15-333.15 1.0 87,91 
Water Methanol Toluene  303.15 1.0 92 
Water MEG Methane  283.2-303.2 50-400.6 28 
Water MEG Ethane  283.2-303.2 5-40 28 
Water MEG Hexane  283.15-323.15 1.0 1,93 
Water MEG Nonane  313.15 1.0 94 
Water MEG Benzene  298.2-323.2 1.0 77 
Water MEG Toluene  298.2-323.2 1.0 77 
Water MEG Ethylbenzene  313.15 1.0 94 
Water Ethanol Propane  313-403 99.05 95 
Water Ethanol Hexane  329.26-349.66 1.0 96 
Water Ethanol Heptane  298.2 1.0 90 
Water Ethanol Benzene  293.15-328.15 1.0 97,98 
Water Ethanol Toluene  303.15 1.0 92 
Water TEG Toluene  368.75-412.55 0.85 77,99 

Methanol Methane Ethane  275.2-283.2 50-400 28 
Methanol Benzene Heptane  298.15 1.0 61 
Methanol Benzene Octane  298.15 1.0 61 
Methanol Benzene Nonane  298.15 1.0 61 
Methanol Benzene Decane  298.15 1.0 61 
Methanol Toluene Heptane  298.15 1.0 61 
Methanol Toluene Octane  298.15 1.0 61 
Methanol Toluene Nonane  298.15 1.0 61 
Methanol Toluene Decane  298.15 1.0 61 

MEG Methane Ethane  275.2-283.2 49.9-400 28 
Water Methanol Methane Ethane 275.2-283.2 13-400 28 
Water Methanol Methane Propane 281.37-310.93 34.47-208.77 100 
Water Methanol Methane Heptane 263.15-323.15 69.02-70.74 101 
Water Methanol Methane Toluene 263.15-323.15 80.05-96.11 101 
Water MEG Methane Ethane 275.2-283.2 5-400 28 
Water MEG Methane Propane 273.15-283.15 69.02-70.39 102 
Water MEG Methane Hexane 263.15-283.15 68.95-69.02 102 
Water MEG Methane Octane 281.1-363.2 31-150 103 
Water MEG Methane Toluene 263.15-323.15 69.22-69.5 101 
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4.	Modeling	results	and	discussion	

4.1	Pure	component	parameters	
The first step in modeling fluid phase equilibria using EOS is to obtain the pure component 

parameters. The CPA and sPC-SAFT EOS have the same number of pure component parameters, i.e. 

three and five parameters for non-associating and associating fluids, respectively. In general, these 

parameters are obtained by fitting to vapor pressure and liquid density. It is well-known that the 

determination of SAFT parameters for associating fluids is a challenge, since there are at least five pure 

component parameters for these compounds, and there is no property combination found yet to be 

enough to ensure the best parameter set.104-106 Several parameter sets have been published for water, 

methanol and MEG107 with the sPC-SAFT EOS. Two of these sets, while having rather different 

parameter values, provide equally good representation of vapor pressures and liquid densities, have 

been chosen for the sPC-SAFT EOS for a fair comparison. Based on our experience, the two-site 

association scheme 2B108 is used for methanol in this work, while more sophisticated developments 

may be needed for the cross association for alcohol containing mixtures.109  The pure component 

parameters are given in Tables 3 and 4 for the CPA and sPC-SAFT EOS, respectively.  

Firstly, these parameters of the associating fluids are validated against the vapor pressure and liquid 

density data from the DIPPR110 and NIST111,112 databases in Table 5. The percentage average absolute 

deviations (%AAD), defined in the following equation 

%AADሺΩሻ ൌ
1
݌ܰ

෍ቤ
Ω௖௔௟

Ω௘௫௣
െ 1ቤ ൈ 100%

ே௣

௜ୀଵ

 (8) 

where Ω is vapor pressure, liquid density or solubility used in the following sections. Np is the 

number of experimental data points. 
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In addition, an average %AAD is defined for each model and each phase 

average	%AAD ൌ
∑%AAD

AAD%	݂݋	ݎܾ݁݉ݑܰ
 (9) 

The vapor pressures of water from the CPA and sPC-SAFT EOS are also plotted in Figure 1. It can 

be seen from Table 5 and Figure 1 that these two models and the two parameter sets of the sPC-SAFT 

EOS have quite similar performance, and in general the data from the two databases are consistent with 

each other. 

Table 3. The CPA parameters of relevant compounds 

Comp. 
ܾ Γ ൌ ܽ଴ ܴܾ⁄  ܿଵ ߝ஺೔஻೔ ݇⁄ ஺೔஻೔ߢ   Scheme 

Ref. 
(L/mol) (K) (-) (K) (-) (-) 

Methane 0.0291 959.028 0.44718 - - - 113 
Ethane 0.04288 1544.55 0.58463 - - - 113 

n-Hexane 0.10789 2640.03 0.8313 - - - 114 
Benzene 0.07499 2867.19 0.7576 - - - 115 
Toluene 0.09214 3051.36 0.8037 - - - 115 

Methanol 0.030978 1573.71 0.43102 2957.78 16.1 2B 114 
MEG 0.0514 2531.71 0.6744 2375.75 14.1 4C 116 
Water 0.014515 1017.34 0.67359 2003.25 69.2 4C 114 

 

Table 4. The sPC-SAFT parameters of relevant compounds 

Comp. 
m σ ߝ ݇/ߝ஺೔஻೔ ݇⁄ ஺೔஻೔ߢ   Scheme 

Ref. 
(-) (Å) (K) (K) (-) (-) 

Methane 1.0 3.7039 150.03 - - - 14 
Ethane 1.6069 3.5206 191.42 - - - 14 

n-Hexane 3.0576 3.7983 236.77 - - - 14 
Benzene 2.4653 3.6478 287.35 - - - 14 
Toluene 2.8149 3.7169 285.69 - - - 14 

Methanol (#1) 1.5255 3.23 188.9 2899.50 0.035176 2B 15 
Methanol (#2) 1.8824 3.002 181.77 2738.03 0.0547 2B 117 

MEG (#1) 1.90878 3.5914 325.23 2080.03 0.0235 4C 118 
MEG (#2) 2.3535 3.3186 280.29 2006.60 0.04539 4C 119 
Water (#1) 1.5 2.6273 180.3 1804.22 0.18 4C 120 
Water (#2) 2.0 2.3449 171.67 1704.06 0.1596 4C 106 
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Table 5. %AAD of vapor pressure and liquid density against the data from DIPPR and NIST* 

Comp. 
Tr 

range 

Vapor pressure Liquid density 

CPA 
sPC-SAFT 

(#1) 
sPC-SAFT 

(#2) 
CPA 

sPC-SAFT 
(#1) 

sPC-SAFT 
(#2) 

Water 0.5-0.95 0.72 (0.73) 0.87 (0.96) 1.39 (1.48) 1.19 (1.10) 3.40 (3.36) 2.20 (2.12) 
Methanol 0.5-0.95 1.18 (0.75) 1.72 (1.60) 1.32 (1.23) 0.53 (0.61) 0.65 (0.73) 0.36 (0.50) 

MEG 0.5-0.65 1.45 (1.65) 0.35 (0.58) 1.28 (1.07) 0.65 (-) 1.76 (-) 1.76 (-) 
* The values inside the parentheses is the %AAD calculated based on the data from NIST.111 

 
Figure 1. Vapor pressure of water versus temperature (1/T) from the CPA and sPC-SAFT EOS. The 
experimental data are from NIST.111 

 

4.2	Binary	Vapor‐Liquid	Equilibria	(VLE)	
The modeling results of selected binary mixtures are presented in Table 6. The prediction result of 

each system is given inside parentheses after the correction one, which needs the binary interaction 

parameter ݇௜௝. The average %AADs of each model are also given in the last row of the table for the 

correlation results. It can be concluded that the three models show quite similar performance in 
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correlating data, even though they predict different results in some cases. It is interesting to notice that 

negative values of ݇௜௝ are needed for both models to correlate the systems of water-methanol/MEG. 

 

Table 6. Binary interaction parameters and both the correlated and predicted %AAD Pressure* 

Np T (K) System 
kij/κୡ୰୭ୱୱ & %AAD Pressure 

CPA sPC-SAFT (#1) sPC-SAFT (#2) 

287 
274.19- 
444.26 

Methane 
Water 

0.7988 
െ236.5 ܶ⁄  

6.3(42) 
0.2967 

െ89.61 ܶ⁄  
11(37) 

0.2306 
െ92.62 ܶ⁄  

9.3(>100) 

165 
274.19- 
344.26 

Methane 
Water 

0.7988 
െ236.5 ܶ⁄  

7.0(33) 
0.3768 

െ114.0 ܶ⁄  
5.6(30) 

0.2846 
െ109.2 ܶ⁄  

6.0(>100) 

97 
220.00- 
338.20 

Methane 
Methanol 

0.053 12(27) 0.041 8.0(39) 0.01 11(19) 

85 
298.15- 
398.15 

Methane 
MEG 

0.18 8.0(56) 0.070 5.4(49) 0.064 7.2(47) 

153 
274.26- 
444.26 

Ethane 
Water 

0.5437 
െ143.3 ܶ⁄  

27(64) 
0.2224 

െ52.42 ܶ⁄  
27(75) 

0.1773 
െ53.97 ܶ⁄  

27(55) 

33 
283.2- 
303.20 

Ethane 
Methanol 

0.028 6.1(16) 0.031 6.1(24) 0.020 5.9(19) 

162 
293.15- 
333.15 

Hexane 
Methanol 

0.01 4.3(6.4) 0.027 4.9(12) 0.021 4.4(11) 

128 
298.15- 
363.15 

Benzene 
Methanol 

0.0068 3.2(3.7) 0.0093 5.9(6.6) 0.011 5.2(6.3) 

128 
298.15- 
363.15 

Benzene 
Methanol 

0.02/0.01 1.9(3.7) 0.045/0.11 1.4(6.6) 0.04/0.11 1.3(6.3) 

78 
313.15- 
318.15 

Toluene 
Methanol 

-0.01 9(10) -0.0067 15(15) -0.0013 13(13) 

78 
313.15- 
318.15 

Toluene 
Methanol 

0.034/0.029 3.3(10) 0.045/0.13 3.0(15) 0.040/0.13 3.0(13) 

130 
298.05- 
523.15 

Water 
Methanol 

-0.09 2.7(13) -0.059 2.8(14) -0.066 2.5(19) 

40 
343.15- 
363.15 

Water 
MEG 

-0.115 2.8(26) -0.05 2.5(20) -0.057 3.5(27) 

average %AAD 
(only for correlation) 

 7.2  7.6  7.6 

* The value inside the parenthesis is from prediction, i.e. ݇௜௝ ൌ 0 and κୡ୰୭ୱୱ ൌ 0; Np is number of data 
point. 
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Figure 2 presents the correlated results of the solubility of methane in water using CPA and sPC-

SAFT EOS, which clearly shows similar performance from these models. Since the gas hydrate 

formation usually occurs below 310K, we developed also a temperature dependent ݇௜௝ by correlating 

the data below 350K only. These two ݇௜௝ sets are compared in Figure 3, together with a constant ݇௜௝, 

which are calculated from the correlations in the first row of Table 6 at temperature 313.45K. It can be 

seen from Figure 3 that a temperature dependent ݇௜௝ is necessary for this binary mixture, while the two 

temperature dependencies show similar performance. We have previously observed that a temperature 

independent ݇௜௝ works reasonably for the solubility of methane in methanol or MEG.107 

 

Figure 2. The correlated solubility of methane in water from the CPA and sPC-SAFT EOS. The binary 
interaction parameters are shown in Table 6. The experimental data are from Frost et al.,25 Lekvam et 
al.,27 Wang et al.,28 Gao et al.29 and Culberson et al.30 
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Figure 3. The solubility of methane in water from the sPC-SAFT EOS with three different ݇௜௝ 
approaches. The experimental data are from Frost et al.,25 Lekvam et al.,27 Wang et al.,28 Gao et al.29 
and Culberson et al.30 
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impact on the solubility of ethane in water above 50bar, while the solubility of methane increases 

gradually. There are not many data available for the solubility of ethane in water under high pressures. 

This suggests the need for more experimental measurements of this system under high pressures, which 

will help us understanding the different behaviors of methane and ethane in water. 

 

Figure 4. The solubility of ethane in water from the CPA and sPC-SAFT EOS. The binary interaction 
parameters are shown in Table 6. The experimental data are from Wang et al.,28 Culberson et al.41 and 
Mohammadi et al.42 
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Figure 5. Comparison of experimental solubilities of methane and ethane in water at two temperatures. 
The experimental data are from Culberson et al.30,41 
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Physically the interaction between methanol and benzene is stronger than that of methanol and n-

hexane, because we do not see liquid-liquid phase split of methanol and benzene (as shown in Figure 6) 

while we have LLE of methanol and n-hexane under some circumstances (see below e.g. Figure 7). It 

can be seen from Table 6 that an extra adjustable parameter for the cross association volume can 

slightly reduce the %AAD for the binary of methanol and benzene. With or without the cross 

association volume, however, it can be seen from Figure 6 that the modeling results are quite similar. In 

this sense, we may consider that solvation might not be necessary for modeling this binary.  

 

Figure 6. VLE of methanol-benzene from the CPA EOS with or without solvation. The binary 
interaction parameters are given in Table 6. The experimental data are from Toghiani et al.70 and 
Scatchard et al.71 
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4.3	Binary	Liquid‐Liquid	Equilibria	(LLE)	
It is well-established that it is difficult to predict the LLE of binary polar + hydrocarbons systems. 

The results of some representative binary mixtures with correlated binary interaction parameters are 

presented in Table 7. Two adjustable binary interaction parameters are used when the hydrocarbon is 

aromatic. The %AAD corresponds to compounds in the order listed in Table 7, i.e. the first row is for 

the deviation of the solubility of the hydrocarbon in the aqueous phase, and the second row is for the 

deviation of the solubility of the polar compound in the organic phase. The average %AADs for each 

model and each phase are given in the last row of the table. Apparently the correlations of these binary 

mixtures are not as good as what have been seen in the VLE systems in Table 6. The results, however, 

can still be considered satisfactory. Again the CPA and sPC-SAFT EOS show quite similar 

performance in an overall point of view, while the first parameter set #1 of the sPC-SAFT EOS gives a 

slightly larger overall deviation. 

Table 7. LLE of polar-hydrocarbon systems with the CPA and sPC-SAFT models 

Np Temp. (K) System 
݇௜௝ %AAD (mutual solubility) 

 ௖௥௢௦௦ߢ
CPA sPC-SAFT (#1) sPC-SAFT (#2) 

23 270.0-490.0 
n-Hexane 

Water 
0.0355 35 0.0488 49 0.0021 46 

 9.9  13  6.1 

6 278.15-303.15 
n-Hexane 
Methanol 

0.01 47 0.0272 43 0.022 42 
 12  33  12 

5 307.95-330.35 
n-Hexane 

MEG 
0.059 5.9 0.043 9.7 0.040 3.7 

 11  19  4.2 

15 279.15-453.15 
Benzene 

Water 
0.0355 23 0.058 13 0.023 11 
0.079 8.9 0.15 16 0.15 17 

6 279.2-342.1 
Benzene 

MEG 
0.049 14 0.020 9.1 0.029 9.4 

0.0393 3.8 0.043 9.6 0.080 12 

16 273.15-458.15 
Toluene 
Water 

0.019 22 0.049 16 0.014 14 
0.071 4.7 0.145 17 0.145 18 

10 279.1-361.0 
Toluene 

MEG 
0.049 11 0.026 3.4 0.030 4.4 
0.039 4.3 0.051 6.1 0.083 8.6 

average %AAD  15  18  15 
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The LLE data of methanol-n-hexane have been reported by many groups.48-54 Figure 7 presents three 

data sets from different sources and the modeling results with the CPA and sPC-SAFT EOS. The data 

set 1 was measured under pressure 14bar,52 and the other two sets are at atmospheric pressure.51,53 It 

can be seen that the data are consistent with each other on the methanol rich polar phase, while there 

are significant differences on the n-hexane rich phase, especially when the methanol concentration is 

lower than 0.15. This suggests a need for more systematic evaluation of the experimental data. It can 

also been seen that the CPA EOS presents larger deviations on the methanol rich side close to the cloud 

point, while the first parameter set #1 of the sPC-SAFT EOS has difficulties in modeling the methanol 

lean branch. 

 

Figure 7. LLE of methanol-n-hexane from the CPA and sPC-SAFT EOS. The experimental data are 
from Blanco et al.,52 Hradetzky et al.51 and Matsuda et al.53 The binary interaction parameters are 
shown in Table 7. 
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Figure 8 presents the LLE of the binary mixture of water and benzene. The CPA EOS performs 

better in modeling the solubility of water in the organic phase, while PC-SAFT shows smaller 

deviations in modeling the solubility of benzene in the aqueous phase, especially at low to moderate 

temperatures with the currently investigated parameters. It should be pointed out that neither model can 

have correctly capture the minimum in the solubility of benzene, and the sPC-SAFT EOS shows larger 

deviations at higher temperatures. 

 

Figure 8. LLE of water-benzene from the CPA and sPC-SAFT EOS. The binary interaction parameters 
are shown in Table 7. The experimental data are from Jou et al.66 
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The models show similar behavior for the LLE of MEG-hydrocarbon, and one typical example for 

MEG-toluene is given in Figure 9. It shows that toluene is more soluble in MEG than MEG in toluene. 

With the given parameters, the CPA EOS performs better in modeling the solubility of MEG in 

toluene, while the sPC-SAFT EOS seems to be better for the other phase. The overall performance of 

the two models is again considered to be rather similar and quite satisfactory. 

 

Figure 9. LLE of MEG-toluene from the CPA and sPC-SAFT EOS. The binary interaction parameters 
are shown in Table 7. The experimental data are from Folas et al.77 
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4.4	Multicomponent	fluid	phase	equilibria	
When the pure component parameters and binary interaction parameters are available, we can 

investigate the predictive capabilities of the models, i.e. the predictions of multicomponent multiphase 

equilibria using solely binary parameters estimated from binary data. The predicted results of the VLE 

of water-methanol/MEG-methane are given in Table 8. Apparently the two models show quite similar 

performance with all parameter sets. 

 

Table 8. %AAD of composition in the VLE of ternary mixtures 

T (K) 
(Np) 

Systems 
Aqueous phase  Vapor phase 

CPA 
sPC-SAFT 

(#1) 
sPC-SAFT 

(#2) 
 CPA 

sPC-SAFT 
(#1) 

sPC-SAFT 
(#2) 

280.25- 
313.45 

(Np=105) 

Methane 35 26 32  0.009 0.011 0.007 
Water 0.4 0.3 0.3  22 19 15 

Methanol 0.7 0.5 0.7  2.8 6.6 1.2 
݇ଵଶ the first case in Table 6 

Methane 35 30 35  0.009 0.011 0.007 
Water 0.4 0.3 0.4  22 18 14 

Methanol 0.7 0.6 0.7  2.8 6.7 1.2 
݇ଵଶ the second case in Table 6 

Methane 18 14 18  0.009 0.0112 0.007 
Water 0.2 0.2 0.2  25 20 17 

Methanol 0.5 0.4 0.5  3.1 6.5 1.2 
݇ଵଶ 0.0443 0.0108 -0.0649     

283.2- 
303.2 

(Np=92) 

Methane 24 30 29  - - - 
Water 0.1 0.1 0.1  - - - 
MEG 0.1 0.1 0.1  - - - 
݇ଵଶ the first case in Table 6 

Methane 24 33 31  - - - 
Water 0.1 0.2 0.1  - - - 
MEG 0.1 0.1 0.1  - - - 
݇ଵଶ second case in Table 6 

Methane 15 20 18  - - - 
Water 0.1 0.1 0.1  - - - 
MEG 0.1 0.1 0.1  - - - 
݇ଵଶ 0.0443 0.0108 -0.0649  - - - 

average 
%AAD 

 8.6 8.7 9.2  8.6 8.5 5.5 
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Three options of the binary interaction parameter between water and methane, i.e. a temperature 

dependent ݇௜௝ covering data up to 450K, a temperature dependent ݇௜௝ covering data only up to 350K 

and a constant ݇௜௝ , have been investigated. The two temperature dependent ݇௜௝  sets show similar 

performance as seen for this binary mixture. However, we have surprisingly found that a constant ݇௜௝ 

significantly improves the predictions of the solubility of methane in the aqueous phase without 

deteriorating the other phase. It is important to recall that a constant ݇௜௝ does not describe the binary 

mixture of water and methane well, as discussed in Figure 3 above. This might be a coincidence, as we 

see from Figure 10 that the constant ݇௜௝ underpredicts and overpredicts the solubility of methane in the 

liquid phase at 283.2K and 303.2K, respectively. Therefore, a temperature dependent ݇௜௝  is still 

recommended if wide temperature applications are concerned.  

 
Figure 10. The solubility of methane in the solution of methanol and water from the sPC-SAFT EOS 
(set #2) with different ݇௜௝ approaches. The experimental data are from Wang et al.28 
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The deviations of the predicted LLE results of water-methanol/MEG-n-hexane/benzene/toluene are 

presented in Table 9. The deviations are given corresponding to the component list as in Table 8. The 

average %AADs for each model and each phase are added in the last row of the table as well. The 

models again show comparable performances, even though a slightly larger deviation is seen for the 

first parameter set #1 of the sPC-SAFT EOS. 

 

Table 9. %AAD of composition in the LLE of ternary mixtures 

T (K) Systems 
Aqueous phase  Organic phase 

CPA 
sPC-SAFT 

(#1) 
sPC-SAFT 

(#2) 
 CPA 

sPC-SAFT 
(#1) 

sPC-SAFT 
(#2) 

293.15- 
318.15 
Np=81 

n-Hexane 29 22 22  2.0 2.1 1.6 
Water 8.0 4.5 5.8  69 75 68 

Methanol 1.9 1.2 1.4  56 30 35 
283.15- 
323.15 
Np=24 

n-Hexane 37 23 20  0.017 0.019 0.010 
Water 0.012 0.009 0.015  43 50 31 
MEG 0.029 0.021 0.031  17 42 23 

293.15- 
333.15 
Np=62 

Benzene 31 40 39  6.5 6.3 5.7 
Water 7.9 9.2 9.8  33 35 34 

Methanol 4.8 6.3 6.4  42 44 44 
Solvation is used for methanol and benzene 

Benzene 28 28 30  6.9 9.1 7.6 
Water 6.2 4.2 5.2  32 37 33 

Methanol 3.6 2.3 2.7  44 54 48 
No solvation is used for methanol and benzene 

298.2- 
323.2 

Np=10 

Benzene 19 27 21  0.012 0.013 0.016 
Water 0.2 0.3 0.2  8.0 6.3 5.2 
MEG 0.2 0.2 0.2  14 7.9 19 

298.2- 
323.2 
Np=8 

Toluene 18 15 15  0.006 0.016 0.014 
Water 0.044 0.026 0.025  3.9 4.6 2.6 
MEG 0.11 0.07 0.066  7.6 9.1 12 

average %AAD 11 10 10  21 23 21 
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The performances of the models are generally considered to be satisfactory, but it can be seen that 

deviations of the solubilities of water and methanol in the n-hexane rich organic phase are relatively 

large. The modeling results of this system at two conditions are presented in Figures 11 and 12, for 

which the data are from different sources. The models give very satisfactory predictions for all the 

components in Figure 11, while they poorly predict the solubilities of water and methanol in the 

organic phase in Figure 12. It can be recognized that the solubility of water shown in Figure 12 is 

almost one order magnitude higher than those shown in Figure 11, and it is closer to the solubility of 

water in benzene, as given in Figure 13. This suggests once again the need for further data validation, 

e.g. for making new and systematic measurements for this system under these conditions. 

 
Figure 11. LLE of water-methanol-n-hexane at 293.2K from the CPA EOS. The experimental data are 
from Skrzecz et al.87 The binary interaction parameters are shown in Tables 6 and 7. 
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Figure 12. LLE of water-methanol-n-hexane at 318.15K from the CPA EOS. The experimental data are 
from Liu et al.88 The interaction parameters are shown in Tables 6 and 7. 
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As discussed above (e.g. in Figure 6), solvation between methanol and benzene has insignificant 

effects on the VLE of the binary mixture. It is shown in Figure 13 that the solvation can slightly move 

the solubility lines, i.e. bringing more methanol into the organic phase and less benzene into the 

aqueous phase. As indicated by the %AAD given in Table 9 solvation between methanol and benzene 

has a small impact on modeling the system of water-methanol-benzene as well from an overall point of 

view. Therefore, as an alternative, solvation could be used for water and benzene only. As shown in 

Figure 6, more measurements for the binary methanol and benzene at low concentration range of 

methanol may be useful and may actually lead to somewhat different conclusions. 

 

Figure 13. LLE of water-methanol-benzene from the CPA EOS with or without solvation between 
benzene and methanol at 318.15K. The interaction parameters are shown in Tables 6 and 7. 
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The performance of these models and parameters are further tested in predicting the fluid phase 

equilibria of quaternary mixtures. The results for two mixtures are presented in Figures 14 and 15 and 

the deviations are listed in Table 10. Both systems contain water, MEG and methane. The last 

component is n-hexane in the first mixture and toluene in the second one. Solvation is used for both 

MEG-toluene and water-toluene. The two models show similar performance for these systems, 

especially for the vapor phase and the aqueous phase, and the only exception might be an 

underprediction of the solubility of MEG in the organic phase of the second quaternary mixture from 

the CPA EOS. The modeling results, in general terms, are satisfactory, except both models 

underpredict the solubility of n-hexane in the aqueous phase, as shown in Figure 14. Both models 

overpredict the solubility of toluene in the aqueous phase at 263.15K in Figure 15, in which case the 

qualitative behavior is opposite against the data. This suggests that more measurements are needed to 

further verify the data and validate the model.   

 

Table 10. Vapor-liquid-liquid equilibria of two quaternary mixtures 

Temperature 
(K) 

Comp. 

%AAD of mole fraction 
Vapor Organic Aqueous 

CPA 
sPC-SAFT 

(#2) 
CPA 

sPC-SAFT 
(#2) 

CPA 
sPC-SAFT 

(#2) 

263.15- 
283.15 

H2O - - 38 14 0.06 0.05 
MEG - - 52 34 0.49 0.49 

C1 0.04 0.03 1.4 5.3 33 35 
nC6 9.8 4.2 2.4 4.5 94 88 

263.15- 
323.15 

H2O 44 38 18 13 0.06 0.06 
MEG - - 90 23 0.12 0.02 

C1 0.02 0.03 13 17 11 14 
Toluene 3.0 10 2.9 3.6 1121 2152 

average %AAD*  11 10 27 14 20 20 
* The average %AADs of the aqueous phase do not count the solubility of toluene, since one point 
largely overpredicted. 
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Figure 14. VLLE of water-MEG-methane-n-hexane at 263.15K and 283.15K. Solid and dash-dot lines 
are modeling results from the CPA and sPC-SAFT EOS, respectively. The parameter set #2 is used for 
the sPC-SAFT EOS. 
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Figure 15. VLLE of water-MEG-methane-toluene from 263.15K to 323.15K. Solid and dash-dot lines 
are modeling results from the CPA and sPC-SAFT EOS, respectively. The parameter set #2 is used for 
the sPC-SAFT EOS. 
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5.	Conclusion	
In this work, a systematic and fair comparison has been conducted for the CPA and sPC-SAFT 

EOS by applying them into modeling the fluid phase equilibria of gas hydrate related systems. The 

results show that these two models perform quite similarly in both correlating binary mixtures and 

predicting multicomponent multiphase equilibria, and the modeling results are satisfactory in most 

cases. Experimental data are ultimate criteria in process and product design, and they are also 

necessary for obtaining model parameters and validating model’s performance. We show in this 

work that thermodynamic models can in reverse help in suggesting experimental measurements. For 

example, more measurements are needed for ethane-water system under high pressures, for 

methanol-n-hexane LLE data at low concentration of methanol, for water-methanol-n-hexane LLE 

data and for water-MEG-methane-toluene at low temperatures.  
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sPC-SAFT = Simplified Perturbed-Chain Statistical Associating Fluid Theory  
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௠ܸ = Molar volume  

R = Ideal Gas constant 

Tr = Reduced temperature (T/critical temperature) 

ar = Reduced residual Helmholtz free energy  

aHS = Reduced residual Helmholtz free energy from hard-sphere 

aHC = Reduced residual Helmholtz free energy from chain formation 

adisp = Reduced residual Helmholtz free energy from dispersion  

aassoc = Reduced residual Helmholtz free energy from association (hydrogen-bonding) 

ܾ = The co-volume parameter 

ܽሺܶሻ = The van der Waals energy parameter 

g = Radial distribution function 

m = Segment number 

 ௜ = Molar fraction of component iݔ

 ௜ = Association site type A of component iܣ

X୅౟ = Free site fraction of molecules i not bonded at site A 

Greeks Letters 

 Molar density = ߩ

 Segment diameter (T independent) = ߪ

ε  = Segment energy 

∆୅౟୆ౠ = Association strength 

ε୅౟୆ౠ = Association energy between sites ܣ௜and ܤ௝ 

 ௝ܤ ௜andܣ ୅౟୆ౠ = Association volume between sitesߢ

 ୡ୰୭ୱୱ = Adjustable cross association volumeߢ
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