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Abstract 

Integrated hydrological models are usually calibrated against observations of river discharge 

and piezometric head in groundwater aquifers. Calibration of such models against spatially 

distributed observations of river water level can potentially improve their reliability and 

predictive skill. However, traditional river gauging stations are normally spaced too far apart 

to capture spatial patterns in the water surface, while spaceborne observations have limited 

spatial and temporal resolution. UAVs (Unmanned Aerial Vehicles) can retrieve river water 

level measurements, providing: i) high spatial resolution; ii) spatially continuous profiles 

along or across the water body; iii) flexible timing of sampling. A semi-synthetic study was 

conducted to analyse the value of the new UAV-borne datatype for improving hydrological 

models, in particular estimates of GW (Groundwater)- SW (Surface Water) interaction.  

Mølleåen River (Denmark) and its catchment were simulated using an integrated 

hydrological model (MIKE 11-MIKE SHE). Calibration against distributed surface water 

levels using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm 

demonstrated a significant improvement in estimating spatial patterns and time series of GW-

SW interaction. After water level calibration, the sharpness of the estimates of GW-SW time 

series improves of ca. 50% and RMSE (Root Mean Square Error) decreases by ca. 75% 

compared to a model calibrated against discharge only. 

 

Keywords: UAV, water level, groundwater surface water interaction, MIKE 11/ SHE, radar 

altimetry, DREAM algorithm 
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Key Points: 

 Spatially distributed UAV-borne water level observations are an innovative dataset in 

hydrology 

 A river model was calibrated against UAV-borne water level observations using the 

DREAM algorithm 

 Calibration against distributed water levels improved estimates of surface water 

groundwater interaction  

 

1. Introduction  

Calibration and validation of integrated hydrological models have traditionally focused on 

water balances, groundwater levels, and river discharge. However, hydraulic modelling of 

water levels within river channels and floodplains is essential to capture interactions between 

the river and its surroundings. Indeed, many local features and processes (e.g., channel 

bathymetry, vegetation, interaction of river with floodplains, river control structures) strongly 

influence water levels while only to a lesser extent river discharge (Yamazaki et al., 2012). 

For this reason, spatial coverage, accuracy and resolution of water level observations are 

essential for improving surface water management and flood prediction (Yan et al., 2015). 

Historically, water level and discharge measurements have been the backbone for 

hydrological modelling, and, in the last 20 years, remote sensing has contributed hydrological 

observations with improved spatial and temporal coverage (Alsdorf et al., 2007). However, 

obtaining comprehensive observational datasets of water level in medium and small sized 

rivers with optimal accuracy and spatial resolution is still an unresolved challenge. 

 



 

This article is protected by copyright. All rights reserved. 

1.1. In-situ measurements of water level 

River gauging networks are generally sparse. Discharge is often estimated from gauged water 

levels through rating curves; however, observed water levels are not recorded in a worldwide 

consistent dataset (Yamazaki et al., 2012). Furthermore, the number of operational and 

accessible river gauging stations has been decreasing in the last decade (Lawford et al., 

2013). 

1.2. Spaceborne measurements of water level 

Satellite altimetry data are generally processed and optimized for sea water levels and thus 

not useful for monitoring small continental water bodies (Legresy et al., 2005; Schumann and 

Domeneghetti, 2016). Thus radar altimetry has limited spatial resolution and may not always 

reliably map rivers that are less than 1 km wide (Domeneghetti et al., 2015). Indeed, popular 

satellite altimetry sensors, such as those on board Envisat, Topex, ERS2, Jason I and II, have 

ground footprints of several hundreds of meters, thus can accurately monitor water bodies 

only when their width is larger than the footprint (O’Loughlin et al., 2016). However, water 

levels of medium-large size rivers  (width between 100 and 1000 m) can be identified by 

incorporating a priori information such as the exact location, width, and shape of the river in 

the waveform analysis (Maillard et al., 2015).  

 The new generation radar altimetry such as Synthetic Aperture Interferometric Radar 

Altimeter (SIRAL) on board CryoSat-2 has an along-track resolution of ca. 250-300 m 

(Wingham et al., 2006). When operated in SARin mode, the use of a second antenna 

(interferometry) allows correction for the cross-track slope (Villadsen et al., 2015). 

Moreover, its waveform shape, which is different from conventional  altimeters, enhances  

separation  between water and surrounding topography through novel retracking algorithms  

(Kleinherenbrink et al., 2014). Nonetheless, observation of narrow rivers (less than 100 m 

wide) with an accuracy of better than 0.5 m, is still a major challenge. The Geoscience Laser 
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Altimeter System (GLAS), which has a footprint of 70 m and an along track distance between 

consecutive footprints of 170 m, has shown the possibility to retrieve water levels at 

decimetre accuracy (Baghdadi et al., 2011; Hall et al., 2012; Phan et al., 2012). However, the 

removal of bank and vegetation contamination is still challenging for spaceborne LIDAR. 

1.3. Airborne measurements of water level 

Airborne LIDAR  has been successful for water surface elevation measurements in narrow 

rivers (Schumann et al., 2008). However, Digital Elevation Models (DEMs) retrieved by 

airborne LIDAR have limited spatial coverage and do not capture temporal dynamics. This is 

mainly because airborne surveys are expensive. In addition, the accuracy of the airborne 

LIDAR system depends on the surveying environment, e.g. size of the water surface, 

vegetation cover, topography, geometry (Mason et al., 2007). Airborne LIDAR surveys over 

water showed offsets from -0.22 to +0.04 m,  with an overall mean offset of ca. -0.06 m 

(Hopkinson et al., 2011).  

1.4. UAV-borne measurements of water level 

Only UAVs ensure the accuracy and spatial resolution to monitor small terrestrial water 

bodies, including narrow rivers (less than 100 m wide). To date, few studies have analysed 

the potential of UAVs in retrieving water level observations. Photogrammetry is a well-

known technique  (Giordan et al., 2016), but has low accuracy in identifying water surface 

(e.g. decimetre-metre level) because it is strongly influenced by water turbidity, sun and 

shadow conditions, vegetation, GNSS (Global Navigation Satellite System) and IMU (Inertial 

Measurement Unit) inaccuracies, distortion of the camera lens, etc.. To account for some of 

these problems the orthophoto generation requires ground control points (GCPs).  A slightly 

different approach is proposed by Niedzielski et al. (2016), who intentionally omit the use of 

GCPs.  In this case, a previous airborne LIDAR survey was used to provide a spatial fix and 

correct for errors during orthomosaicking of the UAV images. The authors documented that 
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they can observe the extent of the water surface and can classify river stages in low, normal 

and high-flow situations. 

Bandini et al. (2017) adopted a different approach, documenting the possibility of measuring 

accurate orthometric water levels from UAVs by using a system comprising a differential 

GNSS system and a sensor to range water surfaces (radar).  

 

1.5. Rationale 

We conduct a semi-synthetic study to analyse the potential of the new datatype, UAV-borne 

river water level observations, for improving hydrological models. With our framework, we 

demonstrate that spatially distributed UAV-borne observations can improve knowledge of the 

probabilistic distribution of the river model parameters, and enhance sharpness and reliability 

of GW (Groundwater) - SW (Surface Water) interaction estimates. River–aquifer exchange 

flow is governed by the head difference between the two systems, by the river geometry and 

by the hydraulic conductivity (Munz et al., 2011). Therefore, accurate observations of the 

river water level are essential to determine the direction and magnitude of the exchange flow. 

For this case study, estimating GW-SW exchange flow is important to evaluate impacts of 

e.g. groundwater abstraction on streamflow. Indeed, as demand for groundwater increases 

and groundwater levels decrease around pumping wells, the resulting hydraulic gradients, can 

draw water from the surface water body into the aquifer (“stream depletion”). Furthermore, 

pump-induced drawdowns in the aquifers can make the direction of the exchange flow 

variable at short spatial scales.  
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2. Materials and methods 

First, we show the potential of UAV-borne water level monitoring at specific locations of 

Mølleåen River, Denmark.  Second, a synthetic study was performed to analyse the value of 

this new data for hydrological model calibration and prediction. 

2.1. UAV-borne water level monitoring technology 

Bandini et al. (2017) describe a UAV-borne system for retrieving orthometric water levels. 

The system comprises a GNSS system and a ranging sensor.  The ranging sensor measures 

the range to the water surface, whilst the flight altitude above mean sea level is retrieved by 

the GNSS system. The difference between the two yields the elevation of the water surface. 

The ranging sensor consists of a 77 GHz (W band) radar sensor with a mechanical scanning 

antenna and a reading rate of 15 Hz. It is able to retrieve multiple targets in its field of view 

with a resolution of 10 cm. Accurate horizontal and vertical positions are retrieved using a 

carrier phase differential GNSS system with a position acquisition rate of 5 Hz. The radar is 

able to measure the range and angle of each of the multiple targets in its field of view. Thus, 

it is expected to be able to retrieve highly spatially distributed water level observations also in 

narrow rivers.  The measuring accuracy of the integrated system, which includes the GNSS 

receiver and the radar sensor, is within 5-7 cm. 

2.1.1. Distributed water level observations 

For this case study, water level observations were retrieved in the downstream branch of 

Mølleåen River, as shown in Figure 1. Mølleåen is a Danish stream that has a total length of 

around 30 km and a width that varies from a few meters to some tens of meters.  

 

As a proof of concept, this paper reports the actual water level observations that were 

retrieved by the UAV platform over some stretches of the river in Figure 1. However, in other 
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river stretches, a flight survey was not possible, due to both legislation and safety issues. The 

main issues are the difficulty to maintain constant visual contact with the flying platform (as 

required by current Danish legislation) and a limited number of areas where the drone is 

permitted to land. For this reason, to cover all the areas not surveyed by the UAV, ground-

based measurements were retrieved using an RTK (Real Time Kinematic) GNSS rover 

station. 

Figure 2 shows the water level profile of the downstream branch of the river.  

Figure 2 displays the river water profile, obtained by integrating ground-based and UAV-

borne water level observations. Water slope is controlled mainly by the river structures 

(weirs). The uncertainty of ground-based observations is due to the accuracy of the RTK 

rover station, which achieves a vertical accuracy of 5-6 cm under clear-sky conditions. The 

standard deviation of the UAV-borne observations depends on the positioning and ranging 

performance of the UAV-borne measuring system (Bandini et al., 2017). UAV-borne water 

level observations retrieved in one of the stretches are presented in Figure 3, together with the 

flight path. 

 

Figure 3 shows that the water level observations were retrieved by flying the drone above the 

river, approximately above the centre line, with a flight time of ca. 400 s. The drone flew at 

an altitude of ca. 30 m above ground level. The radar is able to retrieve up to 32 targets in 

near range field, thus the target representative of the water surface needs to be identified. The 

recorded target angle allows a pre-screening of the targets. Indeed, since the drone IMU 

records the drone pitch and roll angles, the expected angle of the water surface with respect to 

the drone (e.g. water at nadir angle) is known for each observation.  This expected angle of 

the water surface is then used to predetermine the radar targets that should be representative 
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of the water surface (i.e. water target within ±2º of the expected angle). If multiple radar 

targets are in this ±2º range, the exact target is selected by taking into account spatial 

continuity of the water surface observations. This procedure removes peaks due to 

interference from the surroundings, such as vegetation canopy. Climbs and dives in the water 

level observations seen in Figure 3 are due to GNSS-derived position inaccuracies and to 

multipath distortion of the radar signal; however, the slope of the river can be clearly 

determined after a filter is applied to the observations. The filter consists of a centred moving 

average. For computation of the moving average, the river was first subdivided into 1-m 

intervals and all measurements falling on the same interval were averaged.  Subsequently, a 

50-points moving average filter was applied to the 1-m resolution water level dataset.  

2.2. Analysis of data value 

In the synthetic study, we investigate whether calibration of an integrated hydrological model 

against synthetic spatially distributed water levels improves reliability and sharpness of GW-

SW exchange flow estimates.  

2.2.1. Model setup 

Mølleåen River was simulated together with its hydrological catchment with the hydrological 

model MIKE 11-MIKE SHE   (Sole and Zuccaro, 2003; Graham and Butts, 2005; Hughes 

and Liu, 2008). Mølleåen river was chosen for this study because the exchange flow direction 

varies both spatially and temporally, especially due to pumping-induced hydraulic gradients.  

The catchment area is shown in Figure 4: it comprised Mølleåen, the main river included in 

the model, some large lakes (Lyngby Sø, Bagsvaerd Sø, Furesø, Farum Sø, Vejlesø and 

Søllerød Sø) and other minor creeks. The hydrodynamic river model is informed with in-situ 

observed river cross-sections at spatial intervals of hundreds of meters.  The integrated 
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hydrological model was calibrated against the piezometric head and discharge observations 

shown in Figure 4.    

 

We evaluate the potential of spatially distributed water level observations for the branch 

flowing from Lyngby Sø to the sea, by comparing two different calibrations of the river 

model: i) calibration only against discharge observations, which we will refer to as discharge 

calibration (DC), and ii) calibration against discharge and spatially distributed water level 

observations, which we will refer to as discharge and water level calibration (DWLC).  The 

simulation period consisted of a warm-up period of around 5 years to reduce sensitivity to 

initial conditions, a calibration period of the river model of ca. 3 months and an evaluation 

period of ca. 3 months. 

 

2.2.2. Synthetic observations  

Spatially distributed measurements of GW-SW interaction were not available. However, 

observations of GW-SW flow were necessary for evaluating the improvement on GW-SW 

estimates after model calibration against water level observations. Therefore, synthetic 

observations had to be used.  The synthetic truth model had a very high spatial resolution for 

the simulation of the Mølleåen River with river cross sections spaced 10 m from each other. 

The synthetic truth observations used for calibration, i.e. discharge and water level, and the 

target predictions, i.e. GW-SW exchange flows, were obtained from this synthetic truth 

model. Synthetic discharge observations were obtained for the gauging station highlighted 

with a magenta triangle in Figure 4. Water level observations were extracted for the branch of 

the Mølleåen River, downstream of Lyngby Sø, as highlighted by the black rectangle in 

Figure 4. Discharge and water level observations were perturbed with noise to represent the 

uncertainty of the measuring system. Discharge observations were corrupted with a 10% 
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Gaussian Noise to represent the inaccuracy of the rating-curve (Domeneghetti et al., 2012); 

while water level observations were perturbed with 5 cm Gaussian noise to include the 

measuring errors of the UAV-borne ranging system (Bandini et al., 2017). 

The synthetic truth observations of GW-SW exchange flow are shown in Figure 5.  In MIKE 

SHE, exchange flow is the portion of river discharge that originates from both shallow and 

deep subsurface flow. The exchange flow is computed as the amount of water per unit of time 

normalized by the unit of length of river segment.  

 

Figure 5 shows a spatial series of GW-SW exchange flow observations, averaged over the 

evaluation period of the simulation. Sharpness and reliability of the GW-SW estimates are 

evaluated for: i) the spatial series, averaged over the evaluation period, along the entire 

branch; ii) the time series in the specific river stretch highlighted with a blue rectangle in 

Figure 5. This river stretch was chosen because the direction of the exchange flow is not 

constant but changes over time.  

 

2.2.3. Calibration methodology 

 

Calibration was performed with DREAM (DiffeRential Evolution Adaptive Metropolis) 

algorithm (Vrugt et al., 2008) using MATLAB software. DREAM has the ability to separate 

between the different sources of uncertainty: input, such as boundary and initial conditions, 

parameters and structural errors.   
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2.2.3.1 Calibration parameters 

 Since the integrated hydrological model has a very large number of parameters, a primary 

one-at-a-time (OAT) sensitivity test was necessary to reduce the effort required for 

calibration by focusing on the most sensitive parameters, i.e. parameters causing significant 

uncertainty in the water level of the branch shown in Figure 5.  Local sensitivity analysis 

showed that the most sensitive parameters were i) parameters affecting the free overflow 

discharge through river structures ii) Manning number, and iii) datum of two river cross 

sections.  

Figure 5 shows the two cross sections at which the uncertainty in geodetic datum causes most 

uncertainty in water level. A constant Manning number was assigned to the entire branch. In 

Mike 11 the open channel resistance is defined as the roughness coefficient “Ks
” (Strickler-

Manning coefficient), which is simply the inverse of the Manning coefficient (generally 

referred to as “n”). The coefficient Ks varies from 6  to 40 
𝑚

1
3

𝑠
  for natural channels (Chow, 

1959).  

In addition, the river structures have an important function in regulating river water level and 

require detailed modelling to improve the simulation of the river dynamics.  The free 

overflow factors showed a larger impact on the water slope than the coefficients determining 

the head loss across the river structures. In MIKE 11 the free (critical) overflow over a 

structure is affected by the free overflow factor, ac, as shown in equation (1). 

                                                                        𝑄 = 𝑎𝑐 ∙ 𝑄𝑐 

 

(1) 

  

In equation (1) the critical flow discharge, Qc, is multiplied by the free overflow factor to 

obtain the actual discharge, Q. The factor ac is generally set as one, but can assume different 

values to represent that actual river cross sections are generally irregular. Indeed, in case of 

non-uniform cross sections, water level is not horizontal and the velocity distribution is not 
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uniform. In case of non-parallel flow (curved streamlines) over the weir, e.g. sharp-crested 

weir, a value greater than one can be applied, while, in case of side effects in the proximity of 

the weir, a value less than one should be considered. The first six upstream structures in the 

branch of Figure 5 significantly affect water level, thus their overflow factors were chosen as 

calibration parameters. 

Table  displays the list the calibration parameters and their prior uncertainty ranges, initial 

values and boundary handling as discussed below. 

 

The range of the parameters defines the feasible parameter space from which the initial state 

of each of the chains is drawn with Latin hypercube sampling.   Indeed, the DREAM 

algorithm runs multiple different chains simultaneously for global exploration of the 

parameter space (Beven, 2008). The total number of model runs is equal to N∙T, where N is 

the number of chains and T is the number of generations. For this model calibration, we use a 

number of chains, N, equal to the number of parameters (9) and a number of generations, T, 

equal to 900. Thus, the total number of model runs was 8100.  

Vrugt (2016) states that during chain evolution, the bound has to be actively enforced, since 

candidate points can fall outside the hypercube defined by the defined range, albeit the initial 

state of each chain is within bounded search domain. In this case, when a proposal falls 

outside the range, it is reflected backwards into the parameter space with an "amount" equal 

to the boundary violation.  

  

2.2.3.2 Discharge calibration (DC) 

 

The vector of residuals, ei, can be computed by subtracting the synthetic truth discharge, 𝑄̂𝑖, 

from the model-simulated discharge, 𝑄𝑖, for each of the N observations. For discharge, 82 
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synthetic daily consecutive observations were considered for the in-situ discharge measuring 

station represented by a magenta triangle in Figure 4.   

For this case study, we assume that initial conditions do not affect the model outputs, since a 

long warm-up period (5 years) is used to decrease the sensitivity to state-value initialization. 

Moreover, boundary conditions do not influence the outputs, since the synthetic truth model 

and the model to be calibrated share the same forcing boundary conditions. Assuming that the 

residuals are mutually independent and Gaussian distributed, the posterior pdf of the 

parameters, p(θ/𝑄̂), is described by equation (2). 

 

                                                                              p(θ/𝑄̂) = p(θ) ∙ ∏
1

√𝜎𝑖
2∙2𝜋

∙𝑁
𝑖=1  exp (−

𝑒𝑖
2

2𝜎𝑖
2)                        

==============  

(2) 

 

 

In  equation (2) p(θ) is the prior distribution of the model parameters, σi is an estimate of the 

standard deviation of the ith measurement. 

However, it was more convenient to maximize the natural logarithm of the likelihood 

function shown in (3).  

 

                                                                                   l (θ/𝑄̂) = −
𝑁

2
∙ ln(2𝜋) − ∑ ln(𝜎𝑖) −

1

2
∙ ∑(

𝜀𝑖

𝜎𝑖
)2 

                   ==============  

(3) 

  

The logarithm is a monotonically increasing function; thus, it achieves its maximum value at 

the same points as the likelihood function itself.  

 

 

 

https://en.wikipedia.org/wiki/Monotonically_increasing
https://en.wikipedia.org/wiki/Maximum
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2.2.3.3  Discharge and water level calibration (DWLC) 

 

In this case, the model is calibrated against both discharge and spatially distributed water 

level observations. For discharge, 82 daily observations, identical to the ones in the first 

calibration methodology, were used.  A total number of 69 water level observations were 

retrieved from the high-resolution model. These synthetic observations were extracted during 

three different time steps, in each of the 23 simulated river cross sections that define the river 

geometry of the branch flowing from Lyngby Sø to the sea. 

When both discharge and water level observations are available, the assumption that the 

residuals are still mutually independent and Gaussian distributed can be formulated. Thus the 

vector of the residual, ei, is obtained by subtracting each of the model responses, Yi, from the 

observations, 𝑌̂𝑖, which consists of either discharge or water level. The variable N in this 

calibration case is equal to 151: the total amount of discharge and water level observations. 

Discharge and water level residuals, as shown in (3), are normalized by dividing by the 

variance. Different weights were tested for the two different hydrological datasets, however 

they did not significantly improve the posterior distribution of the model parameters. Thus, 

uniform weights were adopted.  

 

2.2.3.4 Predictive uncertainty of the model response  

 

The convergence of each Markov chain to a stationary distribution was evaluated using 

Gelman-Rubin R-statistic (Gelman and Rubin, 2007). Then, from the ensemble obtained after 

convergence, the 2.5% and 97.5% percentiles of each of the models outputs are computed by 

analysing the distribution of model responses. The generated model response distribution 

only includes the uncertainty in the parameters. To include also the other error sources, such 
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as uncertainty in forcing conditions, measurement errors and model structure, the residual 

error is added to the model prediction for each MCMC (Markov Chain Monte Carlo) sample. 

To implement that, first, the RMSE (Root Mean Square Error) of the maximum a posteriori 

estimation (MAP) is computed.  For the calibration against discharge and water level, two 

different RMSE values were computed, one value for water level and one value for discharge, 

since the assumption of homoscedasticity cannot be formulated. A residual error that is 

normally distributed, with zero mean and standard deviation equal to RMSE of the MAP, is 

added to each posterior estimation of the model response. When DWLC is performed, 

residual errors are added to the two different model outputs (discharge and water level), 

taking into account the two different RMSE values.  Then, the 95% posterior confidence 

interval due to the total uncertainty can be computed. 

In addition to investigating the model response in terms of discharge and water level, the 

effectiveness of the two calibration methodologies is evaluated by investigating the model 

estimation of the GW-SW interaction. GW-SW exchange flow observations are compared 

with synthetic truth simulation outputs. Sharpness and reliability of estimates are assessed 

with multiple scoring functions and statistics. 

 

3. Results & Discussion 

UAV-borne water level observations were retrieved in a specific river stretch. Then a 

synthetic study is conducted to analyze the potential of these spatially distributed water level 

observations in hydrological modelling. 
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3.1. UAV-borne water level observations 

Figure 3 showed a water level that decreases by ca. 10 cm in the surveyed stretch. Despite 

local inaccuracies in water level determination, the water profile can be obtained with high 

spatial resolution and an accuracy of few cm.  This slope is in agreement with the in-situ 

ground truth measurements conducted in that stretch, which were retrieved with the RTK 

GNSS station. UAV-borne observations showed an RMSE of ca. 4.1 cm, an MAE (mean 

absolute error) of 3.8 cm and an MBE (mean bias error) of 3.4 cm in the surveyed stretch. 

The water level observations reported in this paper are presented as an integration of ground-

based and UAV-borne observations retrieved in multiple flights. With the current technology 

and legislation, airborne observations of the entire branch could not be obtained. However, in 

the last years, navigation systems, such as GNSS receivers, inertial measurement units and 

autopilots, have advanced (Watts et al., 2012) and furthermore legislation is in continuous 

evolution. Therefore, with the state-of-art technology, a single flight covering the entire 

branch, exploiting BLOS (beyond line-of-sight) VTOL (vertical take-off and landing) UAVs 

(Watts et al., 2012), is expected to be feasible. 

Consistent and accurate UAV-borne measurements of floodplain and braided rivers can be 

used to inform calibrate and validate hydrological models, for example, to improve 

estimation of the amount of water stored in a river and floodplain and of its exchange with its 

main channel. Timing of the sampling can allow retrieval of measurements of water level and 

surface extension during extreme events, during which spaceborne observations are generally 

not available. Thus, we can expect that also flood mapping would be significantly improved 

by this innovative distributed water level datatype, because of the increasing potential of 

UAVs in the field of disaster prevention and mitigation (Zhang and Wu, 2014; Luo et al., 
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2015).  In this framework, we evaluated the potential of UAV-borne water level observations 

to improve estimation of GW-SW interaction.  

 

3.2. DC vs DWLC results 

Convergence was reached after around 5000 model runs in DC case, while was reached after 

around 4000 model runs in the DWLC case. Figure 6 (a) shows the a posteriori distribution of 

the model parameters after DC.  While Figure 6 (b) shows the a posteriori distribution of the 

model parameters after DWLC. 

Figure 6 (a) shows that only parameters ac1, ac6 and Ks have distributions with a clear high-

probability peak near the MAP. Instead, ac3 and gd1 have a distribution with a slightly higher 

marginal probability in a region far away from the MAP. Thus the maximum a posteriori 

probability is reached for values of ac3 and gd1 parameters that are not in the highest 

probability area. Parameter ac2 shows a distribution consisting of two disconnected modes 

with in between a region of low probability. Bimodality of this distribution slightly slowed 

convergence time. Indeed, covariance based MCMC methods suffer from multimodal target 

distribution since transition between probability regions is infrequent.  

Figure 6 (b) shows that, for most of the parameters, the a posteriori distribution of the model 

parameters is better defined after DWLC. The distribution is unimodal, with a higher 

probability value close to the MAP for all the parameters, except for gd2, which is a parameter 

determining the geodetic datum in one cross section.   

 

The model response, in terms of discharge, is plotted in Figure 7 (a) for DC and in 7 (b) for 

DWLC.  
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Figure 7 shows that the model is able to simulate both the rising and falling limb of the 

streamflow hydrograph. Parameter uncertainty is less significant than remaining uncertainty 

(in this case model structure uncertainty and measurement errors). The impact of the 

MIKE11/SHE model structure on streamflow uncertainty has already been addressed in other 

studies (Butts et al., 2004). 

The parameter uncertainty range reliably predicts observations during low-flow days. 

However, during high-flow days, only few observations are contained within the parameter 

uncertainty range and even the light-grey remaining uncertainty range does not include some 

of the observations. However, the large spread in observations for the highest flows is also 

due to the synthetic measurement error for discharge, which is 10% of its absolute value.  

Figure 7 (b) shows a parameter uncertainty that is narrower than in Figure 7 (a): i.e. sharpness 

in discharge estimation was improved.  

Figure 8 represents the uncertainty in water depth estimations. Water depth is plotted instead 

of water level, since plotting water depth allows having a smaller range of values on the y-

axis. Since the geometry of the 23 cross sections in the river branch can be accurately 

extracted from the in-situ bathymetric measurements, water depth can be directly computed 

from water level. 

 

Figure 8 displays the uncertainty in water depth over the river branch for three different 

simulation time steps. Thus, the sharpness of the uncertainty range can be compared only for 

the dark grey range (parameter uncertainty). In the first time step, parameter uncertainty is 

significantly lower than in the remaining two time steps. This is also a consequence of the 

first time step being a dry day, with considerably lower water depth.  
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The total uncertainty range in water level can be computed only in case of DWLC, thus total 

uncertainty is shown only in the Figure 8 (b). Figure 8 (b) shows a parameter uncertainty 

significantly reduced after DWLC, especially in the second and third time step. Parameter 

uncertainty, at least in the upstream part of the river during the second and third time steps, 

comprises a large part of the total uncertainty.  In this second and third time steps DWLC 

significantly reduces parameter uncertainty. However, in the first time step, the impact of the 

DWLC is lower.  

3.3. Estimates of GW-SW exchange flow 

 

Figure 9 shows the time series of exchange flow in the selected river stretch. Figure 9 clearly 

shows that, after DWLC, the width of the confidence interval significantly decreases and the 

50th percentile becomes a better estimator of the observations. 

 

Figure 10 displays the spatial series of exchange flow in the entire river branch, averaged 

over the evaluation period of the simulation.  

 

Figure 10 shows that DWLC has a positive effect in both decreasing uncertainty and 

improving reliability of the estimates. For instance, the uncertainty range of estimates is able 

to include the observations around chainage 1.66∙104 m only after the second calibration.  

Statistics are reported in Table  to compare the two calibration methodologies. 
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Regarding the time series of the exchange flow (Figure 9), the improvement in the sharpness 

and reliability is clearly highlighted by the ISS. Indeed, the ISS rewards narrow confidence 

intervals and penalizes confidence intervals which do not include observations. The ISS is 

approximately halved between the two calibrations, i.e. the model has improved sharpness 

without losing reliability. This is also confirmed by the approximately halved sharpness 

index, without any significant loss in coverage. Sharpness index represents the average width 

of the confidence interval, thus a decrease in sharpness index indicates narrower confidence 

bounds (i.e. sharpest estimates).  The CRPS shows a radical improvement between the two 

calibrations. The CRPS is a generalization of the mean absolute error for probabilistic 

estimates: lower CRPS values indicate that the forecasts, expressed as probability 

distributions, are matching observed outcomes.  The binary outcome of the mutually 

exclusive prediction of the exchange flow direction, i.e. gaining or losing stream, was 

evaluated using the Brier Score.  The Brier score showed an improvement in predicting the 

direction of the exchange flow after DWLC. 

Regarding the spatial series of the exchange flow (Figure 10), sharpness index improves of 

ca. 50%, but coverage results are worse in the second calibration methodology. However, that 

should not be interpreted as a loss of reliability. Some observations are only slightly outside 

the uncertainty range after the second calibration. However, observations with large 

prediction errors after DC are correctly estimated after DWLC. The decrease in RMSE and 

CRPS confirms this assumption. The Brier score shows a significant improvement. 
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4. Conclusions 

 

UAVs can retrieve water level of small rivers at a spatial resolution of ca. 1 metre and with 

an accuracy of 5-7 cm. Furthermore, narrow rivers (few meters wide) can be accurately 

monitored.  

The potential of this new datatype in improving river hydrological models was explored by 

presenting a synthetic study and investigating the improvement in the estimates of GW-SW 

interaction. The synthetic study consisted of the following steps: 

i. An integrated hydrological model, MIKE 11-MIKE SHE model, was used to simulate 

a small river and its catchment.   

ii. Calibration against highly spatially distributed water levels, has been compared with 

calibration only against discharge observations.  

iii.   GW-SW estimates of the hydrological model were compared after the two 

calibration methodologies. The sharpness and reliability of GW-SW estimates were 

investigated for i) the spatial series of GW-SW exchange flow in the entire investigated river 

branch ii) the time series of GW-SW exchange flow time in a selected river stretch.  

After the calibration against UAV-borne synthetic water level observations, sharpness and 

reliability of the estimates substantially improved: 

• Sharpness improves of ca. 50% 

• The Brier Score shows a significant improvement. This suggests that the model is 

better at predicting the direction of the exchange flow. 
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• The RMSE substantially decreases. The RMSE is reduced to ca. 25% of the initial 

RMSE, which was computed after discharge calibration, for the time series of GW-SW 

interaction. Thus, the model predictions are generally more reliable after water level 

calibration. This was confirmed also by other statistics such as the CRPS. 
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Table I. Definition of the parameters and of their location, range and initial sampling distribution 

 

Parameter 

symbol 

Parameter 

description 

Location 

in the branch shown 

in Figure 5 

Range Initial 

sampling 

distribution 

Boundary 

handling 

ac1, ac2, 

ac3, ac4, 

ac5, ac6, 

Free overflow 

factor 

Six upstream 

structures 

0.3<𝑎𝑐 <1.8 

Latin 

hypercube 

 

reflection 

gd1 

Geodetic 

datum 

Upstream  

cross section  

-0.3<gd1<0.3 

Latin 

hypercube 

 

reflection 

gd2 

Geodetic 

datum 

Downstream cross 

section  

-0.15<gd2<0.15 

Latin 

hypercube 

 

reflection 

Ks 

Strickler-

Manning 

coefficient 

Entire branch 6<Ks<40 

Latin 

hypercube 

reflection 
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Table II. Statistics computed for GW-SW exchange flows to compare the two different calibration methodologies. 

Statistic 

Time series of exchange 

flow in the selected river 

stretch 

Spatial series of exchange 

flow in the entire branch  

Reference 

for specific statistic 

 

                  DC          DWLC             DC          DWLC 

ISS [m3/(s∙m)] 1.81∙ 10-5 7.77∙ 10-6 7.89∙ 10-5 1.17∙ 10-4 (Gneiting and 

Raftery, 2007) 

CRPS [m3/(s∙m)] 2.65 ∙ 10-8 9.36∙ 10-9 1.57∙ 10-7 1.21∙ 10-7 (Gneiting et al., 

2005) 

RMSE [m3/(s∙m)] 8.39∙ 10-8 1.95∙ 10-8 2.97∙ 10-7 2.77∙ 10-7 (Ritter and Muñoz-

Carpena, 2013) 

Sharpness [m3/(s∙m)] 2.88 ∙ 10-7 1.21∙ 10-7 5.71∙ 10-7 1.97∙ 10-7 (Breinholt et al., 

2012) Coverage [%] 100 98.41 47.82 17.39 

BS [-] 2.36 0.66 2.83 ∙10-4 1.88∙10-6 (Brier, 1950) 

 

ISS is Interval Skill Score, CRPS is Continuous Ranked Probability Score, RMSE is Root Mean Square Error, BS is Brier 

score. Statistics were evaluated at the 0.05 significance level. 
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Figure 1. Branch of the Mølleåen River in which water level observations were obtained. The 

river branch includes eight structures (weirs). Along this branch, there are in-situ stations 

measuring discharge, but none of these are measuring water levels in real-time. 
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Figure 2. Water level (meters above mean sea level) is plotted against river chainage. UAV-

borne observations are shown with a red rectangle, the height of which shows the average 

standard deviation. Black error bars shows standard deviation of ground-based observations. 
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Figure 3. UAV measurements for a specific river reach. (a) Blue dots represent UAV-borne 

water level observations; red line shows the filtered UAV-borne water level observations; 

green dots represent in-situ observations retrieved with GNSS rover station. (b) Flight path 

above the river reach and flight way-points labelled with flight time elapsed since take-off. 

  



 

This article is protected by copyright. All rights reserved. 

 
Figure 4. The entire catchment area, including the Mølleåen River, the lakes and other minor 

creeks. The integrated hydrological model was initially calibrated against the aquifer head 

observations (black dots) and the discharge observations (black triangles). A calibration of 

the river model, using DREAM algorithm, was performed against water levels and discharge. 

Water levels were retrieved in the branch highlighted with the black rectangle. While 

synthetic discharge observations were extracted from the gaging station highlighted with the 

magenta triangle. 
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Figure 5. Synthetic GW-SW exchange flow observations, averaged over the evaluation 

period. The eight river structures are indicated with black up-pointing triangles. Black down-

pointing triangles highlight the two cross sections of which the geodetic datum will be used 

as calibration parameter. 

  



 

This article is protected by copyright. All rights reserved. 

 
Figure 6.Marginal posterior density of model parameters after DC (a) and after DWLC (b). 

Blues cross indicates the parameter value identified by the MAP. 
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Figure 7: Posterior simulation of the uncertainty range after DC (a) and after DWLC (b). Red 

dots are the perturbed synthetic discharge observations used in the calibration. Magenta 

asterisks are the unperturbed synthetic observations. Day numeration: day 1 is 09-09-1999. 

The dark grey color is the 95% confidence intervals of the output prediction due to parameter 

uncertainty. Light grey region represents the remaining 95% prediction uncertainty. 
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Figure 8: 95% Posterior simulation uncertainty ranges for water depth for the three different 

time steps, after DC (a) and after DWLC (b). For both (a) and (b), the top left panel 

represents day 7 (15-09-1999), the top right panel day 49 (27-10-1999) and the bottom panel 

day 82 (29-11-1999). The green dots are the perturbed synthetic water depth observations 

used for the calibration. Magenta asterisks are the unperturbed synthetic observations. The 

dark grey color is the 95% confidence intervals of the output prediction due to parameter 

uncertainty. Light grey region represents the remaining 95% prediction uncertainty. 
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Figure 9. 95% Posterior simulation uncertainty ranges for exchange flow (m2/s) for specific 

river reach. (a) is after DC and (b) is after DWLC. Day numeration: day 83 is 30-11-1999. 

The green dots are the synthetic observations of exchange flow. The dark grey color is the 

95% confidence intervals due to parameter uncertainty. 
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Figure 10. 95% Posterior simulation uncertainty ranges for exchange flow (m2/s) for entire 

branch averaged over the evaluation period (from 30-11-1999 to 1-2-2000). (a) is after DC 

and (b) is after DWLC. The green dots are the synthetic observations of exchange flow for 

each of the cross sections. The dark grey color is the 95% confidence intervals due to 

parameter uncertainty. 

 
 


