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Highlights

• Methods to help universities make better strategic decisions.

• Mixed-integer formulations for two strategic measures used in timetabling.

• The trade-off between rooms, teaching periods and the quality of the timetable.
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Abstract

University Timetabling has traditionally been studied as an operational problem where the
goal is to assign lectures to rooms and timeslots and create timetables of high quality for
students and teachers. Two other important decision problems arise before this can be
solved: what rooms are necessary, and in which teaching periods? These decisions may have
a large impact on the resulting timetables and are rarely changed or even discussed. This
paper focuses on solving these two strategic problems and investigates the impact of these
decisions on the quality of the resulting timetables.

The relationship and differences between operational, tactical and strategic timetabling
problems are reviewed. Based on the formulation of curriculum-based course timetabling
and data from the Second International Timetabling Competition (ITC 2007), three new
bi-objective mixed-integer models are formulated. We propose an algorithm based on the
ε-constraint method to solve them. The algorithm can be used to analyze the impact of
having different resources available on most timetabling problems. Finally, we report results
on how the three objectives - rooms, teaching periods and quality - influence one another.

Keywords: Timetabling, Multiple objective programming, Integer programming

1. Introduction

Educational timetabling has gained a lot of attention within operations research and has
been studied for a long time; for an overview see (Kingston, 2013) and (Kristiansen and
Stidsen, 2013). Many variations of the problem exist as it varies between different educa-
tional stages and countries. A definition commonly used for timetabling comes from (Wren,
1996):

“Timetabling is the allocation, subject to constraints of given resources to objects being
placed in space time, in such a way as to satisfy as nearly as possible a set of desirable
objectives.”

This definition captures the timetabling problems that are usually investigated in the
literature. However, other important related decisions are rarely investigated. For example:
Which resources should be available? Where in space and time is it allowed to place these
objects? In this paper, we create models and methods to decide what room sizes and
teaching periods should be used by an organization, and analyzes how these decisions affect
the resulting timetable.

∗corresponding author
Email addresses: miclin@dtu.dk (Michael Lindahl), a.mason@auckland.ac.nz (Andrew Mason),

thst@dtu.dk (Thomas Stidsen), ms@macom.dk (Matias Sørensen)
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An overview of the decision problems that relate to timetabling are illustrated in Fig-
ure 1. The value of a timetable obtained by solving these problems is characterized by three
measures associated with the timetabling process:

Agility Responding to changes and quickly make alterations to the timetable.

Quality A timetable that gives a good work environment for employees and students.

Cost A timetable which uses costly resources efficiently.

We categorize each of these problems as either operational, tactical or strategic. The
strategic problems are the ones that are solved first and which then affect the tactical
problems that are solved next. Finally, the operational problems are solved last. The
problems we find at each level, as shown in Figure 1, are as follows:

Figure 1: Different variations of the timetabling problem occur at different strategic levels. Each problem
contributes with different value to the organization when solved. The top problems are long-term decisions
that have an impact on all timetables whereas the problems at the bottom have lower impact but are
decisions that need to be taken often.

Operational. The operational problems are the ones that result in final timetable, i.e. de-
ciding which lectures should be taught in what rooms and when. This main problem is
solved every semester, and we separate it into two closely related cases. The first case is the
assignment problem, which is the feasibility problem of finding a conflict-free timetable.

A common addition to this problem, which is the second case, is including quality mea-
sures that aim to make a desirable timetable for students and staff, i.e. the quality problem.
Soft constraints are used in this case, where the violation of these should be minimized.
Both course timetabling problems for the Second International Timetabling Competition,
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formulated in (Di Gaspero et al., 2007), fall into this second category.

After a timetable is put into production, disruptions will often occur during the semester
as alterations need to be made. Handling such disruptions requires solving the minimal
perturbation problems addressed in (Muller et al., 2005; Phillips et al., 2014). When decision-
support tools are used to solve these problems, it provides agility by being able to create
the timetable more quickly and respond faster to changes.

Tactical. The tactical problems involve the decisions that are taken before creating the
actual assignments. This includes, for example, to prioritize the different quality measures
or how to divide the timetabling workload between multiple planners. These decisions affect
the quality because a course could end up being taught in an undesired timeslot because
the planner does not have other rooms available, even though there may be free rooms in
another part of campus.

Strategic. The strategic problems are the long-term decisions that affect the timetable and
have a high impact on the organization. This could, for example, be to allow teaching to be
scheduled later in the day by adding additional timeslots, which we define as the Teaching
Periods problem. Adding extra timeslots has a high impact on the timetable for professors
and students and would therefore often be a decision made by the top management. Build-
ings and rooms are high-cost areas for universities because new buildings are expensive and
unused rooms can often be turned into offices or rented out. However, these decisions can
not be changed from year to year, and it is, therefore, crucial that new rooms are of the
actually needed size, and that a room is not rented out for five years if it is required in the
next semester. We refer to this problem as the Room Planning problem. The authors have
experienced great interest in these strategic problems from Aarhus University, Technical
University of Denmark and Roskilde University.

Compared to the operational and tactical problems, strategic problems have received
little attention in the literature. The Room Planning problem was first explored in (Fizzano
and Swanson, 2000), where they show how their assignment model can be used to find the
minimum number of rooms necessary to create a feasible schedule. This is done iteratively by
removing rooms until the problem becomes infeasible. (Beyrouthy et al., 2007) analyze how
available rooms affect the utilization and visualize this in multiple ways. They then show how
the room profile can be adjusted to maximize utilization. They investigate room robustness
by sampling the sizes of the courses under different scenarios. They do not, however, include
timetable constraints such as curricula or teachers that can make it impossible to create a
timetable that does not conflict with the given rooms.

(Beyrouthy et al., 2009) include timetabling constraints and examine the utilization of
rooms by determining how many courses can be planned with a given room profile. They
conclude that different constraints contribute to lower utilization. (Beyrouthy et al., 2010)
investigate space type planning, where space types refer to various kinds of rooms such as
lecture halls and tutorial rooms. The total capacity is fixed. They do not look into how the
room profile affects the quality of the timetable for students.
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The Teaching Periods problem of choosing the number of timeslots has not previously
been investigated. Decision-support tools for management that support these important
decisions are limited, or rather non-existent.

The purpose of this paper is to create new insights into how these strategic decisions
affect the timetable and to lay the foundation for future research within this area. We
will investigate the two strategic decisions of deciding which rooms to use and how many
timeslots there should be. We will also analyze how these decisions affect the quality of the
timetable by using bi-objective optimization and mixed-integer programming.

In section 2 we define the strategic problems and in section 3 we show the method used
to solve these problems. The results are shown in section 4, and finally conclusions and
suggestions for future research are given in section 5.

2. Curriculum-based Course Timetabling

University Timetabling differs a lot between universities due to differences between ed-
ucational traditions in different countries. Therefore, it has been difficult for researchers to
compare their work, as they were solving different problems. To overcome this problem,
timetabling competitions have been held where common problem formulations and bench-
mark instances have been formulated.

As a basis for this analysis, we use the data-sets and problem formulation of Curriculum-
based Course Timetabling (CB-CTT) from the Second International Timetabling Competi-
tion ITC-2007 stated in (Di Gaspero et al., 2007). For an overview of the research done on
this problem, we recommend (Bettinelli et al., 2015). As discussed, this is an operational
problem, and we will now give the formulation of the original problem and then show how
it can be used as a basis to solve the strategic problems.

The original curriculum-based course timetabling problem is formulated as follows: A set
of courses is given, and each course consists of a number of lectures that should be planned.
A timeslot and a room should be assigned to each lecture without causing conflict, where a
timeslot is a time on a particular weekday. Two lectures from one course cannot take place
in the same timeslot, as this will cause a conflict. Besides courses and timeslots, a list of
rooms is also given, and only one lecture can be taught in a room in one timeslot. Each room
also has a certain size, and it is a requirement that a room should be able to accommodate
all the students following a given course allocated in that room. Each course is associated
with a teacher, and a teacher can only teach one course at the time. Finally, we also have a
set of curricula that consist of a set of courses that cannot be placed in the same timeslot.

The original formulation includes four different quality measures (soft-constraints): Room-
Capacity, stating that the room should be able to accommodate all students; RoomStability
that states that all lectures from the same course should be planned in the same room;
MinimumWorkingDays ensures that a lecture is spread over a minimum number of days spec-
ified in the data, where a penalty is paid for each day not used, and finally, Curriculum-
Compactness, where a penalty is paid if a lecture from a curriculum is not scheduled next
to a course from the same curriculum. To create our models, we define the following sets:
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C: Set of courses

CU : Set of curricula

P: Set of timeslots across the week

D = {PMo, PTu, PWe, PTh, PFr}, set of timeslots belonging to each day of the week e.g. PMo

is all the timeslots on Mondays.

R: Set of rooms

We then have the following parameters:

l(c): The number of lectures for course c ∈ C

mnd(c): The minimum number of weekdays on which there must be a lecture for course
c ∈ C

dem(c): The demand for course c ∈ C, i.e. the number of students in that course.

cap(r): The capacity of room r ∈ R

We also define helper sets that are used to formulate the model:

S = {cap(r) : r ∈ R} ∪ {0}, set of unique room capacities, including zero

S≥s = {s′ ∈ S : s′ ≥ s}, set of room capacities larger than or equal to s ∈ S

C≥s = {c ∈ C : dem(c) ≥ s}, set of courses with a demand larger than or equal to s ∈ S

R≥s = {r ∈ R : cap(r) ≥ s}, set of rooms with a capacity larger than or equal to s ∈ S

2.1. Quality Problem

The quality problem is the standard problem in timetabling where the goal is to create a
feasible timetable of high quality. A number of soft constraints are defined, and the quality
is measured by the number of violations of these. Compared to the original description
of CB-CCT we make two changes. Because we want to explore the trade-off between the
number of rooms, we turn RoomCapacity into a hard constraint, meaning that rooms cannot
be overbooked with more students than there can be seated. The second change is that the
soft objective RoomStability is removed. This is to reduce the computational complexity,
because, as shown in (Lach and Lübbecke, 2012), preventing lectures from being assigned
to specific rooms can reduce the number of decision variables significantly. The penalty
for RoomStability is also the smallest of the soft constraints and contributes the least to
the objective. Note that this simplification does not alter the general applicability of our
method.

The mixed integer model we use is based on the one proposed in (Lach and Lübbecke,
2012) and is seen in Model 1. It includes the following variables and constraints: The
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min fqual =
∑

c∈C
5 · wc +

∑

cu∈CU ,p∈P
2 · vcu,p (1a)

s. t.
∑

c∈C≥s

xc,p ≤ |R≥s| ∀s ∈ S, p ∈ P (1b)

∑

p∈P
xc,p = L(c) ∀c ∈ C (1c)

∑

p∈d
xc,p − zc,d ≥ 0 ∀c ∈ C, d ∈ D (1d)

∑

d∈D
zc,d + wc ≥ mnd(c) ∀c ∈ C (1e)

∑

c∈CU
xc,p − qcu,p = 0 ∀cu ∈ CU , p ∈ P (1f)

− qcu,p−1 + qcu,p − qcu,p+1 − vcu,p ≤ 0 ∀cu ∈ CU , p ∈ P (1g)
∑

c∈C(t)
xc,p ≤ 1 ∀t ∈ T , p ∈ P (1h)

xc,p ∈ B ∀c ∈ C, p ∈ P (1i)

wc ∈ R+ ∀c ∈ C (1j)

zc,d ∈ [0, 1] ∀c ∈ C, d ∈ Pd (1k)

qcu,p ∈ [0, 1] ∀cu ∈ CU , p ∈ P (1l)

vcu,p ∈ [0, 1] ∀cu ∈ CU , p ∈ P (1m)

Model 1: The MIP model for the Quality Problem.

decision variable is the binary xc,p that indicates if course c ∈ C is planned in timeslot
p ∈ P . Constraint (1c) ensures that all lectures are planned. The constraint (1b) ensures
that the rooms are able to accommodate all students in each course. Constraint (1h) ensures
that a teacher has only one course in a timeslot.

The two objective terms in (1a) are calculated the following way: To calculate Minimum-

WorkingDays we introduce a positive variable zc,d which takes the value 1 if course c ∈ C
is planned on day d ∈ D and otherwise zero. This is ensured by constraint (1d) and the
objective pressure that pushes zc,d to one, if possible. The violation is then calculated by
constraint (1e) and the variable wc. To calculate CurriculumCompactness we introduce the
positive variable qcu,p, which takes the value 1 if curriculum cu ∈ CU is planned in timeslot
p ∈ P and zero otherwise; this is ensured by constraint (1f). Constraint (1g) then ensures
that the variable vcu,p then takes the value 1 if there is a violation in curriculum cu ∈ CU in
timeslot p ∈ P .

8
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2.2. Room Planning Problem

The second problem we will consider is the Room Planning Problem where the objective
is to find the minimum number of rooms to use to accommodate all courses to be taught.
In this section we will introduce the simplest form of this problem, as given in Model 2.

min fseats =
∑

s∈S
s · rs (2a)

s. t. |P|
∑

s∈S≥s

rs ≥
∑

c∈C≥s

l(c) ∀s ∈ S (2b)

rs ∈ Z+ ∀s ∈ S (2c)

Model 2: Set covering MIP-Model for the Room Planning Problem.

Instead of having a fixed set of rooms we introduce a decision variable rs ∈ Z+ that
determines the number of rooms of size s that should be used. The capacity of a room is
correlated with the physical size, and therefore, also with the cost of a room. Thus, we will
seek to minimize the total number of seats as defined in Equation (2a).

A commonly used metric is the utilization defined in (Beyrouthy et al., 2007). This
utilization calculates the proportion of time, on average, that a seat is occupied. It should
be noted that minimizing the number of seats will maximize the utilization.

Utilization =

∑
c∈C l(c) · dem(c)

|P|∑s∈S s · rs
We need to decide which room sizes the model should be able to choose from, i.e. sizes

included in the set S. In an optimal room profile, a room will always have the same size as
the largest course assigned to it, otherwise it would be wasted capacity. Therefore S should
include the sizes of all courses. Because the number of variables, and thus the size of the
solution space, depends on the size of S, it is desirable to keep this set small. In a practical
setting it is unlikely that a manager would distinguish between rooms of 22 and 25 seats.
Consequently, to make the set smaller, we define a parameter δ and only use room sizes
that are multiples of the value of this parameter. The largest room will have the size of
the largest course rounded up to the nearest multiple of δ. The set S can subsequently be
generated in the two following ways:

Soptimal = {dem(c) : c ∈ C}

Sapprox. =

{
δ ·
⌈
dem(c)

δ

⌉
: c ∈ C

}

When we decide to use a room, we can plan as many lectures in it as we have timeslots
(|P|). To have enough rooms to plan all lectures we define the set covering constraint (2b).

9
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This gives a mixed integer programming formulation of the problem described in (Beyrouthy
et al., 2007) for the single scenario case. Beyrouthy et al. prove that this model can easily
be solved to optimality in linear time using the following greedy algorithm:

1. Sort lectures according to their size, dem(c).

2. While lectures are unassigned to rooms:

Take the largest unassigned lecture and assign it to a room with free timeslots.
If no such room exists, add the smallest room that fits the lecture.

2.3. Teaching Periods Problem

Another important factor that impacts on the capacity of a university is the number of
timeslots that are available for teaching; this is explored in the Teaching Period problem,
shown in Model 3, which decides how many timeslots there should be.

min ftime =
∑

p∈P
tp (3a)

s. t. |R≥s|
∑

p∈P
tp ≥

∑

c∈C≥s

l(c) ∀s ∈ S (3b)

tp+1 − tp ≤ 0 ∀p ∈ P (3c)

tp ∈ B ∀p ∈ P (3d)

Model 3: MIP-model Teaching Periods problem.

The mixed-integer model is seen in Model 3. A binary variable, tp determines if timeslot
p ∈ P is allowed. We then define the new objective ftime to be the total number of used
timeslots as defined in (3a).

The set-covering constraint (3b) ensures there are enough timeslots, and that there is a
timeslot and a room of matching size for each lecture.

In practice, timeslots are chosen so that they are consecutive, as empty timeslots in the
middle of the day are unwanted (except for other events like lunch breaks, meetings etc.).
Constraint (3c) ensures that a new timeslot can only be used if the previous one is also used.
Timeslots are ordered starting from Monday morning with the addition of a new timeslot
each day, and then back to Monday; this order is illustrated in Table 1.

2.4. Room Planning vs. Quality

The previous Room Planning model does not consider if it is possible to create a feasible
timetable as no timeslots are assigned. Neither does it take the quality of the resulting
timetable into account. We will do this in the Room Planning vs. Quality model. Because
the available rooms restrict the quality model, it is necessary to take this into account when
deciding what rooms to use, otherwise, it might result in a timetable of unacceptable poor
quality. To analyze this, we use bi-objective optimization. Bi-objective optimization is a
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Mon Tue Wed Thu Fri
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

...

Table 1: The indexing order of the timeslots.

way to explore the trade-off between two objectives by generating multiple so-called Pareto-
optimal solutions. A Pareto-optimal solution is a solution where one of the objectives cannot
be improved without making the other worse; for further reading see Ehrgott (2000).

min fseats : (2a) (4a)

fqual : (1a) (4b)

s. t.
∑

c∈C≥s

xc,p − r+s ≤ 0 ∀s ∈ S, p ∈ P (4c)

r+s −
∑

s′∈S≥s

rs′ = 0 ∀s ∈ S (4d)

(1c)− (1m) (4e)

(2b)− (2c) (4f)

Model 4: MIP-model for the Room Planning vs. Quality Problem.

Model 4 is made by merging Model 1 and Model 2. The two models are connected by
constraint (4c) which replaces (1b) and ensures that there can not be more lectures planned
in a timeslot than rooms available. The r+ variables have been added, because experiments
show that they help the solver make stronger branches during the branch-and-bound search.

2.5. Teaching Periods vs. Quality
Similar to the previous problem, we want to explore the trade off between teaching

periods and quality, as it is expected that more timeslots will give more freedom in the
planning process. We do this by merging Model 1 and Model 3, which results in Model 5.
The two models are connected by constraint (5c) which replaces (3b) and states that lectures
only can be assigned to a timeslot available for use.

2.6. Room Planning vs. Teaching Periods
When universities want to increase the number of courses above their current capacity,

they can either build more rooms or increase the number of timeslots. In the Room Planning
vs. Teaching Periods problem we investigate how these two objectives influence each other.
This is done by merging Model 1, Model 4 and Model 5 into the new Model 6.
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min ftime : (3a) (5a)

fqual : (1a) (5b)

s. t. xc,p − tp ≤ 0 ∀p ∈ P , c ∈ C (5c)

(1b)− (1m) (5d)

(3c)− (3d) (5e)

Model 5: MIP-model for the Teaching Periods vs. Quality Problem.

min fseats : (2a) (6a)

ftime : (3a) (6b)

s. t. (1c)− (1m) (6c)

(3c)− (3d) (6d)

(4c)− (4d) (6e)

(5c) (6f)

Model 6: MIP-model for the Rooms vs. Teaching Periods problem.

3. Solution Methods

In this section, we propose an algorithm for solving our three bi-objective models. The
original quality problem in Model 1 is still hard to solve, and at this time 4 out of the
21 instances are still not solved to optimality; for the current status of this see http:

//satt.diegm.uniud.it/ctt/. The hardness also shows in (Cacchiani et al., 2013) where
six hours of running time are used for each instance to find good lower bounds. Because of
this, we do not expect to solve these problems to optimality when making them bi-objective.

Many methods exist for solving bi-objective methods. A popular one is the ε-constraint
method from (Haimes et al., 1971) that has been applied to many different problems.

Both fseats and ftime only takes discrete integer values and fseats can only take values
that depend on the size of potential rooms. From experiments, it is observed that the span
between the minimum and maximum value of these two objectives is relatively small, which
implies that a only a limited discrete set of values of fseats and ftime exists. We, therefore,
choose to use the ε-constraint method, where an artificial constraint is put on one of the
objectives while minimizing the other. Because of the small set of potential values we only
have to solve a small number of MIPs to explore all potential values of interest.

Let fx be the objective with a limited discrete set of values, in our case fseats or ftime,
and let fy be the other objective. The algorithm for solving objective fx vs. fy is shown
on Algorithm 3.1 and illustrated in Figure 2. The algorithm first calculates a lexicographic
solution and uses this to put a feasibility limit on each objective. This is done by first finding

12
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a lower limit on fy and then using this to calculate an upper feasibility limit for fx. The
main loop of the algorithm then starts by setting the ε-constraint right hand side to the
minimum value of fx and then repeatedly steps it up by the amount ∆. Limits on objectives
are used to terminate the algorithm when one of them are exceeded. The reason for also
having a limit on fx and not only fy is that we enforce a timelimit and do not expect to solve
each problem to optimality. As shown in (Lodi, 2013), modern MIP solvers are heuristic
and use randomness. Because of this, the algorithm can turn out in a lucky way and find
a close to optimal value for miny, which it would then not be able to find later due to this
randomness.

This method is generic for hard bi-objective problems where there is a limited set of
values for one objective. Therefore, it can be used with different timetable constraints and
quality measures. It should also be noted that if each subproblem is solved to optimality,
this method will produce the optimal Pareto-front.

Algorithm 3.1 ε-constraint method - fx vs. fy
1: Parameters: ∆ . Discretization of fx
2: miny ←Minimize(fy) . Lower limit on fy
3: Add constraint: fy = miny

4: maxx ←Minimize(fx) . Upper limit on fx
5: Remove constraint: fy = miny

6: ε←Minimize(fx)
7: Add ε-constraint: fx ≤ ε
8: repeat
9: (f̂x, f̂y)←Minimize(fy) . Find Pareto-solution

10: ε← ε+ ∆
11: Update ε-constraint: fx ≤ ε
12: until ε > maxx or f̂y < miny . Only continue inside limits

4. Results

To show the results obtained by the proposed models and solution methods we use
the instances from ITC2007 based on real-world examples from the University of Udine.
All instances are available from tabu.diegm.uniud.it/ctt/. The complete source-code
to make the computations is available on github.com/miclindahl/UniTimetabling. All
computations are made on a 64 bit Windows machine with a 4 GHz Intel Core i7 CPU and
32 GB of memory. To solve the integer programs, we use Gurobi 6.5 with standard settings.

Because this is a strategic problem not often solved, the timelimit for each iteration is
set to 15 minutes. To generate the set S in the Room Planning problem, we use δ = 25,
that is a often practically used granularity.

As stated, each course is associated with a number of timeslots in which they cannot be
taught. In the Teaching Periods Problem we want to explore what happens when additional
timeslots are added. To mark some of these timeslots as unavailable for courses we simulate
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Figure 2: An illustration of Algorithm 3.1, where the ε-constraint moves in steps of ∆. The algorithm
terminates when it finds a solution where f̂x > maxx or f̂y < miny.

it by using the following model: The probability that a course is unavailable in a new timeslot
is equal to the fraction of timeslots that the course already is unavailable in. This way we
ensure that the new timeslots are realistic and have unavailabilities similar to the real data.

In this section, we will first discuss some attributes of the problem that makes it com-
putationally difficult and afterward we show results for the three different problems. The
trade-offs between the objectives will be reported with plots of the Pareto-solutions including
bounds and a table with the lexicographic solutions.

4.1. Computational Difficulties

Solving the mixed integer programs shows that the problems are difficult to solve. Two
factors for this are poor LP solutions and the impact of the ε-constraint.

LP-Bound. MIP solvers start by relaxing the integer and binary constraints and solving the
resulting LP relaxation that it uses to find integer solutions. Figure 3 shows a plot of the
Pareto-optimal solutions for the original integer version and the LP relaxation of Model 4.
It is seen that there is a large gap between these two solutions. A weak LP relaxation makes
it more difficult to find good integer solutions, as the relaxed solutions are used to guide the
solver.

In Figure 3 we observe that, as expected, we get better integer solutions (smaller fqual
values) as fseats increases. We also observe that for all integer-feasible solutions the LP
relaxation of fqual is zero, which implies that the ε-constraint does not influence the LP-
bound. This is seen in Figure 4, where Gurobi’s current lower bound on fqual is plotted over
time for different ε-constraints on fseats. For every value of the ε-constraint, the lower bound
starts at zero, and it is not until after thirty seconds that the bound differs significantly
between the different values of the ε-constraint right hand side. This behavior helps explain
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Figure 3: Example from comp18 where it can be seen that the gap between the solution-frontier and the
LP-relaxation is large and does therefore not give much help to the solver.

the long run times we observed. The main contributor for this behaviour is the curriculum-
compactness constraints, and it should be noted that if these are removed an optimal solution
can be found in seconds.
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Figure 4: Example from comp18 that shows the bounds improvement over time for different ε-constraints.
It cane be seen that it starts at zero, and it takes 30 seconds before the ε-constraint has a significant effect
on the lower bound.

Threshold Behaviour. Another issue which creates difficulties is the so called threshold be-
haviour. An example of this is seen in Table 2, where comp18 is solved with three different
ε-constraints on fseats. The original problem with 405 seats is easy and can be solved to
optimality in 33 seconds. We define the critical number of seats as the minimum number of
seats that are needed for the problem to be feasible; this can easily be found by minimizing
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fseats in Model 4. If the ε-constraint is reduced to the critical number, it becomes a lot more
difficult and after 30 minutes of run time the gap is still 81%. If the number of available seats
is then reduced by only one seat, the problem becomes infeasible and this can be proven in
less than a second.

Case ε-constraint Time Gap Difficulty
Under-Constrained fseats ≤ 405 33s 0% Easy
Critical-Constrained fseats ≤ 300 =⇒ 30m 81% Hard
Over-Constrained fseats ≤ 299 0s - Easy

Table 2: Example of how the threshold effect shows on comp18. In the base case the optimal solution can
be found in 33 seconds. When setting the maximum number of seats to the critical value, the problem gets
difficult and the gap is still 81% after 30 minutes. If one seat is subtracted, the problem is proved infeasible
instantly.

This easy-hard-easy behaviour in timetabling is described in (Beyrouthy et al., 2008)
and is also seen in many other problem types. (Beyrouthy et al., 2008) encounters this
phase shift when the utilization has a critical value, and, as shown in section 2.2, this is
directly correlated with fseats. If the number of seats is significantly bigger than the critical
number of seats, this gives an under-constrained problem that is relatively easy to solve.
Usually, heuristics can find good solutions to this problem because there is a lot of freedom
to move lectures around without the problem becoming infeasible. In the other case, where
the number of seats is smaller than the critical number, the problem is infeasible. This is also
an easy problem, as a MIP-solver can prove this infeasibility fast, often in the pre-solve stage.
The last case is the critical-constrained, which can be seen as almost infeasible problems.
These are the difficult cases, as heuristics have difficulties in finding good solutions, and
MIP-solvers will have trouble with large branch-and-bound trees.

4.2. Room Planning vs. Quality

To solve the bi-objective fseats vs. fqual optimization problem we use Model 4 and solve
it by using Algorithm 3.1 where fx = fseats is the objective with a limited set of values. To
explore all combinations of the given rooms we set ∆ = 25. The Pareto fronts we generated
for all 21 ITC datasets are shown in Figure 5 together with the lower bounds returned by
the solver; and the two lexicographic solutions are shown in Table 3. The original number
of seats and the total running time of generating the Pareto front in minutes is also given.

It is seen that comp01, comp04 and comp11 only have one solution meaning that there is
no benefit from adding extra seats. The other instances only have little quality improvement
from adding additional seats. But it can also be seen that the datasets comp02, comp03,
comp15 and comp18 have a big trade-off between seats and quality. Comparing with the
number of seats in the original instances it is seen that there is an average of 84% more
capacity than where a feasible solution can be obtained.

The lower bounds from the solver are also shown. It can be seen that the gap is large
due to the reasons discussed in section 4.1.
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Figure 5: The solution frontier for the Room Planning vs. Quality problem. The x-axis is fseats and the
y-axis is fqual. In general, the gaps are large. Notice that three of the problems only have one solution.
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instance runtime fewest seats best quality
fseats min. fseat fqual fseat fqual

comp01 389 0 350 0 350 0
comp02 2350 165 1350 170 1550 49
comp03 2360 120 1175 167 1325 72
comp04 2119 7 925 35 925 35
comp05 1083 226 850 502 1175 358
comp06 2204 120 1225 73 1375 29
comp07 2342 31 1300 24 1325 6
comp08 1936 45 950 44 1000 37
comp09 2440 60 1050 106 1100 96
comp10 2179 75 1075 15 1150 4
comp11 222 0 200 0 200 0
comp12 717 105 475 1193 600 458
comp13 2282 33 1150 75 1175 59
comp14 1913 83 900 109 1000 51
comp15 2360 120 1175 167 1325 72
comp16 2366 96 1125 67 1250 18
comp17 2199 60 1125 101 1175 68
comp18 543 180 300 221 550 59
comp19 2350 91 1125 67 1225 57
comp20 2222 90 1350 37 1450 6
comp21 2480 190 1250 132 1400 84

Table 3: The two lexicographic solutions for the Room Planning vs. Quality problem and the original
number of seats.

Which rooms. To get more insights into why a certain solution is chosen as the optimal
room configuration we analyze the solutions. A metric for the overcapacity can be deduced
from Constraint (2b), allowing us to calculate the overcapacitys for a given size s ∈ S as
follows:

overcapacitys =
|P|∑s∈S≥s

rs∑
c∈C≥s

l(c)
− 1

This metric gives the average number of empty timeslots with available rooms for each
lecture. A negative number will violate Constraint (2b) and, will therefore, be infeasible. A
positive number indicates how much freedom there is to move lectures around. An example
of the overcapacity for the solutions is seen in Table 4. It is seen that the solver finds
solutions that add additional room capacity where the overcapacity is smallest. This metric
can be used as a rule of thumb for managers to give them an indication about what rooms
to add to increase quality.
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overcapacitys summary
fseats s = 0 25 50 75 100 125 avg. min1 min2

300 0.30 0.33 0.24 1.57 11.00 11.00 4.07 0.24 0.30
325 0.30 0.33 1.48 1.57 11.00 11.00 4.28 0.30 0.33
350 0.83 0.33 0.24 1.57 11.00 11.00 4.16 0.24 0.33
375 0.57 0.78 1.48 1.57 11.00 11.00 4.40 0.57 0.78
400 0.57 1.22 1.48 1.57 11.00 11.00 4.47 0.57 1.22
450 0.83 1.67 1.48 1.57 11.00 11.00 4.59 0.83 1.48
475 0.83 1.67 2.72 1.57 11.00 11.00 4.80 0.83 1.57
500 1.09 2.11 1.48 1.57 11.00 11.00 4.71 1.09 1.48
525 1.09 2.11 2.72 1.57 11.00 11.00 4.92 1.09 1.57
550 1.35 2.11 2.72 1.57 11.00 11.00 4.96 1.35 1.57
575 1.35 2.11 2.72 4.14 11.00 11.00 5.39 1.35 2.11

Table 4: The overcapacity for different solutions to Comp18. It can be seen that average overcapacity (avg.)
increases by increasing fseats. min1 and min2 denote the smallest and second smallest value. It is seen that,
in general, when more seats are added the minimum overcapacity is also increased.

4.3. Teaching Periods vs. Quality

To analyze the trade-off between ftime and fqual we use Model 5 and solve it with Al-
gorithm 3.1. We apply the ε-constraint on ftime and use ∆ = 1 so that we add only one
timeslot in each iteration to investigate all possibilities. Pareto plots showing the trade-off
between ftime and fqual for all 21 ITC instances are shown in Figure 6. The two lexicographic
solutions are given in Table 5 together with the running time. Similar to the previous re-
sults, it can be seen that six of the datasets do not benefit from getting extra timeslots.
On the other datasets there are significant quality improvements generated by adding extra
timeslots. Comparing with the original instances, it is seen that they have an average of
13% more timeslots than the minimum.

The lower bounds are closer to the solutions and seven problems are solved to optimality.
Some of the instances do, however, still have large gaps.

4.4. Teaching Periods vs. Room Planning

To analyze how the two objectives, ftime and fseats affect each other we show the trade-off
by using the Model 6.

Figure 7 shows the Pareto front and the two lexicographic solutions, and the running
time are shown in Table 6. It is seen that this problem is faster to solver, and that optimal
Pareto frontiers can be generated in less than a minute for all instances. This also shows
that the soft constraints have the biggest impact on the difficulty of solving these problems.

The trade-off between ftime and fseats is significant on all datasets. Because the utilization
U is linear proportional with |P|∑r∈R cap(r) the trade-off is almost linear.
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Figure 6: The solution frontiers for the Teaching Periods vs. Quality problem. The x-axis is ftime and the
y-axis is fqual. The gaps are smaller than in the Room Planning vs. Quality problem. Six of the instances
only have one Pareto-optimal solution.
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instance runtime fewest timeslots best quality
ftime min. ftime fqual ftime fqual

comp01 30 0 32 8 36 0
comp02 25 255 22 49 36 30
comp03 25 45 23 80 23 80
comp04 25 22 20 48 44 32
comp05 36 75 33 369 35 344
comp06 25 315 21 48 39 25
comp07 25 35 22 6 22 6
comp08 25 21 21 45 45 32
comp09 25 58 23 100 24 96
comp10 25 28 21 8 25 4
comp11 45 0 40 0 40 0
comp12 36 180 27 553 36 385
comp13 25 128 19 70 45 48
comp14 25 343 20 53 44 43
comp15 25 45 23 80 23 80
comp16 25 95 19 48 24 18
comp17 25 45 23 65 23 65
comp18 36 195 17 192 27 72
comp19 25 150 23 58 45 42
comp20 25 90 24 12 27 8
comp21 25 45 24 97 24 97

Table 5: The lexicographic solutions for the Teaching Periods vs. Quality problem. The run times (in
minutes) and the original number of timeslots (ftime) are also given for each instance.

5. Conclusions

University management needs to continuously manage their resources efficiently. Re-
sources like teachers, rooms and teaching periods cannot be increased or decreased on short
notice. These management decisions have a high impact on the cost of running a university
and also on how good the resulting timetables will be.

Analyzing how strategic decisions affect timetabling quality is both important to help
make these high-impact decisions better and to get a better understanding of the structure of
the timetabling problem and see how the availability of these resources affects the solution.
This paper presents the first attempt to investigate these trade-offs. We propose a method
that can potentially solve these problems to optimality and create the entire frontier. Our
method is applicable to most timetabling problems.

Finally, we have shown how the three objectives - rooms, teaching periods, and quality -
have an impact on one another, and we have shown that this interaction between competing
objectives varies between the different instances. We have analyzed optimal room profiles
to give managers a rule of thumb that can be used to help make decisions better.
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Figure 7: The solution frontiers for the Teaching Periods vs. Room Planning Problem. The x-axis is ftime

and the y-axis is fseats. Notice that all of these solutions are optimal. There is an almost linear relationship
between these two objectives.

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

instance runtime fewest timeslots fewest seats
min. ftime fseat ftime fseat

comp01 0 24 400 54 250
comp02 0 22 1550 49 775
comp03 0 23 1250 50 700
comp04 0 20 1125 48 525
comp05 0 33 850 54 600
comp06 0 18 1625 48 675
comp07 0 20 1575 50 675
comp08 0 21 1125 48 550
comp09 0 23 1100 47 575
comp10 0 19 1375 47 625
comp11 0 28 275 55 150
comp12 0 27 575 59 300
comp13 0 18 1525 50 650
comp14 0 20 1100 46 525
comp15 0 23 1250 50 700
comp16 0 19 1475 46 625
comp17 0 23 1200 49 625
comp18 0 17 475 53 225
comp19 0 23 1175 47 625
comp20 0 18 1800 49 750
comp21 0 24 1250 48 700

Table 6: The lexicographic solutions of the results of the Teaching Periods vs. Room Planning Problem.

Future research. This paper explored two soft constraints as quality metrics that both fo-
cused on the timeslots in which lectures were planned. Exploring these trade-offs with other
metrics could be interesting. Another simplification is that all rooms are considered to be
identical except for capacity. In practice, rooms often have certain attributes requested by
some courses. Many campuses are so large that the location of the rooms matters; this
would give some different trade-offs that would be of interest.

The authors hope that this paper can generate interest in finding and answering more of
the strategic questions that are occurring in timetabling.
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