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Detection and characterization of aluminium-containing nanoparticles 

in Chinese noodles by single particle ICP-MS 

Abstract 

This study investigated Chinese noodles for the presence of aluminium-

containing nanoparticles by using inductively coupled plasma mass spectrometry 

in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The 

aluminium concentrations in the noodle samples, determined by conventional 

ICP-MS without or with the use of hydrofluoric acid for digestion, were 5.4 ± 1.9 

µg/g and 10.1 ± 2.2 µg/g (N=21), respectively. Aluminium-containing 

nanoparticles were detected by spICP-MS in all 21 samples. Depending on the 

assumed particle composition, Al2O3 or Al2O3·2SiO2·2H2O, the median particle 

diameters were either below or above 100 nm, respectively. The minimum 

detectable particle diameter by spICP-MS was between 54 and 83 nm. The mass 

recovery of aluminium in the form of particles was between 5 and 18%. The 

presented work reports for the first time the detection of Al-containing particles 

in food by spICP-MS. 

Keywords: aluminium, acid digestion, enzymatic digestion, food labelling, 

nanomaterials, nanoparticles, single particle ICP-MS  

Introduction 

Many diverse opportunities for nanotechnology exist in the food, feed and 

agricultural sector (Imran et al. 2010; Singh Sekhon 2014; Greiner et al. 2015; Belluco 

et al. 2016; Chen et al. 2016). Currently, food contact materials and food additives are 

the dominating applications of nanomaterials (R. Peters et al. 2014). As a consequence 

of this, different approaches have been taken in regulating nano-based products 

(Amenta et al. 2015) including labelling for the content of nanomaterials (as 

ingredients) in food, which is mandatory in the European Union (EU) since December 

2014 (The European Parliament and the Council of the European Union 2011). All 

ingredients present in the form of engineered nanomaterials have to be clearly indicated 

in the list of ingredients with the names of such ingredients followed by the word ‘nano’ 
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in brackets. Foods modified by nanotechnology and nanoscience as well as food, 

vitamins, minerals and other substances containing or consisting of engineered 

nanomaterials are covered by the ‘Novel foods regulation’ (The European Parliament 

and the Council of the European Union 2015). According to the European 

Commission’s (EC) recommendation on the definition of nanomaterial from 2011, a 

nanomaterial is defined as ‘a natural, incidental or manufactured material containing 

particles, in an unbound state or as an aggregate or as an agglomerate and where, for 

50 % or more of the particles in the number size distribution, one or more external 

dimensions is in the size range 1 nm - 100 nm’. A particle is defined as ‘a minute piece 

of matter with defined physical boundaries’ (The European Commission 2011). This 

recommendation is currently under review with the goal to identify issues encountered 

since its adoption and a possible revision of the definition as a result of the review 

(Rauscher et al. 2017). The EC intends to amend the sector-specific regulatory 

definitions of nanomaterials valid for foodstuff by harmonizing it with the EC’s 

recommendation, while still taking into account sector-specific needs (Rauscher et al. 

2017). 

In the context of these regulations and for risk assessment purposes, analytical 

methods for identifying nanomaterials (according to the EU definition) and for 

assessing whether or not a product contains nanomaterials are urgently required (Stamm 

et al. 2012; Mattarozzi et al. 2017). Several (review) papers have highlighted the 

challenges of analysing nanomaterials in food (Stamm et al. 2012; Szakal et al. 2014; 

Singh et al. 2014; Picó 2016; Mattarozzi et al. 2017). Among the currently most 

widespread techniques for the detection and characterization of nanoparticles (NPs) in 

food, inductively coupled plasma-mass spectrometry (ICP-MS) used in single particle 

mode (spICP-MS) appears to be closest to a routine application (Mattarozzi et al. 2017). 
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This technique has been shown to be a powerful tool for nanoanalysis, which uses the 

well-established technique of ICP-MS on a ‘particle by particle’ basis (Laborda et al. 

2014). The technique can distinguish between ionic and nanoparticle forms of an 

element and provide (number-based) particle size distribution. For spICP-MS the 

sample needs to be in liquid suspension. Therefore, when applied to detection of NPs in 

semi-solid or solid foods, suitable sample preparation procedures are necessary for 

liberating the NPs into liquid suspension. Currently, the applications of spICP-MS to 

(potential) food matrices are limited and include game meat (PbNPs) (Kollander et al. 

2017), ground beef (AgNPs, AuNPs) (Gray et al. 2013), chicken meat (AgNPs) 

(Loeschner et al. 2013; R.J.B. Peters, Rivera, et al. 2014), garden cress (Lepidium 

sativum) (PtNPs) (Jiménez-Lamana et al. 2016), chewing gum (TiO2) (R.J.B. Peters, 

Bemmel, et al. 2014) and pastry decoration (AgNPs) (Verleysen et al. 2015). 

Aluminium (Al) is a silvery-grey, soft and nonmagnetic metal that occurs 

naturally in the environment (8 % of the earth crust by mass). In addition, Al is released 

into the environment due to anthropogenic activities, such as mining and industrial uses, 

in the production of aluminium metal and other aluminium compounds (EFSA 2008). 

The major route of exposure to Al for the general population is through food with 

additional (minor) exposure arising from drinking water and the use of aluminium 

compounds in pharmaceuticals and consumer products (EFSA 2008).  Most 

unprocessed foods typically contain less than 5 µg Al/g (EFSA 2008). Higher 

concentrations (mean levels 5 to 10 µg/g) were often found in breads, cakes and pastries 

(with biscuits having the highest levels) and a majority of flours (EFSA 2008). The 

individual Al compounds or species contributing to the Al content in particular foods 

were not determined. Al can be found in foods as a natural constituent taken up from 

soil or as a food additive. EU food additives containing Al are, e.g., metallic Al (E173; 
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for decorative purposes), Al sulphates (E520-523; as firming agent / stabilizer) and Al 

silicates (E554/E555; as anticaking agent) (DG Sante 2017). In addition, Al lakes are 

used in authorised water-insoluble food colours (EFSA 2008). Depending on its source, 

Al can be present as ions (complexed with organic molecules) or as particulates, a 

fraction of which may occur at the nanometre size scale. In 2008, EFSA published  a 

comprehensive report regarding the safety of Al from dietary intake (EFSA 2008) and 

established a tolerable weekly intake for Al of 1 mg Al per kilogram body weight per 

week. The EFSA Panel noted that Al-containing compounds have shown 

embryotoxicity in mice, have affected the developing nervous system in the offspring of 

mice and rats, have the potential to produce neurotoxicity (mice, rats) and to affect the 

male reproductive system (dogs). It was further noted that there are very few specific 

toxicological data for food additives containing Al.  

A few years ago, increased levels of Al in imported noodles attracted the 

attention of national food authorities in several countries (Laboratory of the 

Government Chemist (LGC) 2011). Based on these observations, an increased level of 

official controls for imported Chinese noodles in the European Union was decided in 

2010, meaning that 10 % of imported consignments should be sampled (The European 

Commission 2010). It has been speculated whether Al sulphates or other Al containing 

food additives in noodles gave rise to the elevated findings of Al in imported noodles or 

rather the natural concentrations of Al in Asian wheat flour (Laboratory of the 

Government Chemist (LGC) 2011).  

The presence of inorganic nano- and microparticles in wheat and wheat-based 

products was shown in previous studies. Particles containing Fe or Ti in the size range 

between 1 to 10 µm were detected in durum wheat seeds, wheat seeds, semolina, wheat 

flour, biscuits and pasta samples by scanning electron microscopy (SEM) in 
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combination with energy-dispersive X-ray spectroscopy (EDS) (Beltrami et al. 2011). 

Particles of other metals, like copper and zinc, were only occasionally found, but Al was 

not mentioned. A decrease in the concentration of Ti and Fe particles from wheat to 

flour and from durum wheat to semolina samples was observed, indicating an external 

contamination of grains by metal particles. In the finished food products, pasta 

(spaghetti and biscuits), the number of Fe and Ti particles was in the same order of 

magnitude as in some of the studied samples of wheat and wheat flours. It was 

concluded that the detected inorganic nano- and microparticles could be attributed 

mostly to natural sources or anthropomorphic combustion and, only to a minor part, to 

food processing. In a similar study, 86 samples of wheat bread and 49 of wheat biscuits 

from 14 different countries were analyzed by environmental SEM in combination with 

EDS (Gatti et al. 2009). 38.5% of the samples were contaminated with inorganic 

particles in the size range of 100 nm to 100 µm. Also clusters of NPs were found with a 

maximum size of 26 µm. The major elements found in the particles were iron, lead, 

tungsten, titanium, aluminum, silicon and silver. As potential origin of the particles, 

industrial processing (wear of industrial tools) or the environment (where crops are 

grown and particle contamination occurs from incinerators, power plants, domestic 

heating, car traffic etc.) were listed. 

Because of relatively high concentration of Al in Chinese noodles compared 

with most other foods, in combination with toxicological concern about the dietary 

intake of Al, a set of 21 samples of noodles were collected as part of the Danish 

monitoring program. The aim of the work was develop a method for analysis of Al-

containing NPs and to investigate whether the noodle samples contained nanoparticles 

or not. 
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Materials and methods 

The samples were taken as import controls by the Danish Veterinary and Food 

Administration with a frequency of 10%. Sample-taking was performed as a result of 

Commission Regulation (EU) No 878/2010 amending Annex I to Regulation (EC) No 

669/2009. The samples were taken in the wholesale chain of different importers. 

Initially the samples were crushed in a bag with a rubber mallet. Then the samples were 

further ground in a Retch centrifugal mill, and from there two subsamples of 50-100 g 

were taken and transferred to plastic bags. Based on the ingredient list, none of the 

samples contained food additives based on aluminium-containing compounds. A total of 

21 samples of imported Chinese noodles were studied.  

The total Al content of the noodle samples was determined by conventional ICP-

MS using two sample preparation methods and based on standard procedures for metals 

in food (European Committee for Standardization 2010; European Committee for 

Standardization 2014): a) microwave-assisted acid digestion by nitric acid (HNO3), and 

b) acid digestion by a mixture of nitric acid, hydrogen peroxide (H2O2) and hydrofluoric 

acid.  

For investigating the presence of Al-containing particles by spICP-MS, samples 

were prepared using microwave-assisted acid digestion (HNO3 + hydrogen peroxide 

H2O2) and additionally enzymatic digestion. Enzymatic digestion with α-amylase (30 

U/mg, from Aspergillus oryzae, Sigma Aldrich product number 10065) was applied by 

modifying the protocol of  Beltrami et al. Briefly, 0.03 g of sample were mixed with 10 

mL of 40 mM TRIS buffer and 0.03 g of α-amylase. A test portion of 0.1 g led to 

incomplete digestion. As a sample preparation blank, the same mixture but without 

added sample was prepared. The Standard Reference Material (SRM) 1567a Wheat 

Flour from the National Institute of Standards and Technology (NIST, Gaithersburg, 

MD, USA) was included in the analysis and prepared in the same way as the samples. 
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The certified Al concentration was 5.7 ± 1.3 µg/g dry weight. The ICP-MS results after 

total digestion with HF (5.7 ± 0.3 µ/g, N=2) were in good agreement with the certified 

value. 

The mixture was incubated at 40°C in a water bath using continuous stirring 

overnight. Samples were diluted 30-times with ultrapure water prior to analysis. This 

dilution factor assured that at least 1000 particles were detected during one acquisition. 

At the same time, the number of readings/data points with particle events was limited to 

5 % to keep the contribution of multiple particle events (more than one particle reaching 

the plasma during the dwell time of 3 ms) to the size distribution below 3 % according 

to Poisson statistics. 

An iCAP Q ICP-MS instrument (Thermo Fisher Scientific GmbH, Bremen, 

Germany) was used for all spICP-MS experiments. Instrument tuning was performed 

prior to analysis by using a tuning solution according to the manufacturer’s 

recommendation. Instrument settings are given in Table 1.  

[Table 1 near here] 

 
Data processing was performed as described previously (Loeschner et al. 2015). 

The peristaltic pump of the inlet system of the ICP-MS was set to 40 rounds per minute 

for all experiments, which corresponded to a sample flow rate of approximately 0.4 

mL/min, which was accurately determined daily by weighing using pure water at room 

temperature as sample. A calibration curve was constructed by analysis of an acid blank 

solution and five Al standards ranging from 0.2 to 5.0 ng/L diluted in ultrapure water 

prepared from a certified solution. The 27Al intensity for each solution was then 

averaged from the entire length of the analysis (60 s). The transport efficiency of the 

liquid samples through the sample introduction system was determined by measuring a 

NIST gold NP suspension with an average particle diameter of 56.0 nm (based on 

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 0

1:
52

 0
3 

O
ct

ob
er

 2
01

7 



Acc
ep

ted
 M

an
us

cri
pt

measurements by transmission electron microscopy provided by NIST) and a gold mass 

concentration of 51.86 ± 0.64 µg/g (information value provided by NIST), diluted 106-

times with ultrapure water. The transport efficiency was calculated as the percentage of 

all Au nanoparticles detected by spICP-MS versus the theoretical (calculated) particle 

number. 

For each sample the 27Al signal intensity was recorded for 180 s using a dwell 

time of 3 ms, which corresponded to 60,000 recorded data points. Following the 

analysis of each sample, ultrapure water was analysed for 60 s to illustrate if carry-over 

from the previous measurement could be excluded. For all analyses, the recorded signal 

intensity data were plotted (in cps) versus number of ‘events’, to create a signal 

distribution. The low, stable and relatively noise-free signal intensities were considered 

to be caused by instrument background and polyatomic interferences or, for slightly 

higher intensity values, also caused by dissolved Al (ions and molecules) in the sample. 

An iterative algorithm was applied where particle events were distinguished as outliers 

from the polyatomic background and dissolved metal signal if the measured intensity 

was more than five times the standard deviation of the whole data set. This criterion 

ensured that only NPs and no instrumental background signal or signal from Al ions or 

molecules were included in the dataset. Particle size histograms were plotted using 

OriginPro 2016 (OriginLab Corporation, MA, USA). For the calculation of particle 

diameter from particle mass, we assumed a spherical shape of the particle and 

considered two potential compositions: Al2O3
 and Al2Si2O5(OH)4 (Al2O3·2SiO2·2H2O). 

Particle densities of 3.97 and 2.61 g/cm3, respectively, were used for the calculations 

assuming similar densities as the bulk material. Results are in general presented as mean 

± 1 standard deviation. 

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 0

1:
52

 0
3 

O
ct

ob
er

 2
01

7 



Acc
ep

ted
 M

an
us

cri
pt

Results and discussion 

The Al concentrations determined without or with the use of HF for digestion 

were 5.4 ± 1.9 µg/g and 10.1 ± 2.2 µg/g (N=21), respectively. In 11 of the 21 samples, 

the Al concentration exceeded 10 µg Al/g dry sample after HF digestion, which is the 

current recommended EU limit. The consistently higher (about 2-fold) concentrations 

obtained after using HF suggested that some of the Al in the noodles was present as 

compounds which are only soluble in HF, such as aluminium silicate, which could be 

present in particulate form.  

spICP-MS analysis demonstrated the presence of Al-containing particles after 

both sample preparation procedures, acid digestion (HNO3 + H2O2) and enzymatic 

digestion, although at a much larger number concentration following enzymatic 

digestion (Figure 1). Consequently, enzymatic digestion was chosen as a sample 

preparation method for spICP-MS of the 21 noodle samples.  

[Figure 1a+b near here] 

After enzymatic digestion, the number of detected particles during one 

acquisition (180 s) was in the range of 1527 to 2668 particles. Mass recoveries of Al in 

the form of particles were 12.2% in comparison to Al concentrations determined in HF-

digested samples, indicating that a large fraction of Al in the samples was either not 

present as NPs or NPs below/above the detectable particle size range. Particle diameters 

were calculated for two possible compositions, Al2O3 or Al2O3·2SiO2·2H2O, to illustrate 

the influence of the (assumed) particle composition on the determined size distributions 

(Figure 2). Commonly used Al compounds, which are water insoluble or poorly soluble, 

include Al hydroxide, Al oxide (Al2O3, selected possible composition 1), Al phosphate, 

calcium Al silicate (E556), Al silicate / kaolin (E559, Al2O3·2SiO2·2H2O, selected 

possible composition 2), sodium Al silicate (E554), potassium Al silicate / natural mica 

(E555), acidic sodium Al phosphate (E541) (EFSA 2008). Only the last three are 
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authorized food additives in the EU. As the shape of the NPs was unknown, spherical 

particles were assumed, which is currently the common assumption in spICP-MS 

measurements (Mattarozzi et al. 2017).  

The number-based size distributions, which were obtained for the case of Al2O3 

NPs in the enzymatically digested samples (N=21), had diameters ranging from 68 ± 7 

nm (corresponding to the lower size limit of detection) up to 595 ± 90 nm  with median 

diameters of 86 ± 8 nm (Figure 2 and Table 2). With decreasing particle mass density 

and decreasing molar fraction of the analyte in the particle, the particle sizes increase 

(e.g. by a factor or 1.57 in the case of Al2O3·2SiO2·2H2O NPs). Depending on the 

selected particle composition, the median particle diameters were either below (Al2O3) 

or above 100 nm (Al2O3·2SiO2·2H2O NPs). Following the EC´s recommendation for 

the definition of a nanomaterial, this would mean presence or absence of a nanomaterial 

in the food sample, respectively. 

The finding of relatively large particles, i.e. particles of several 100 nm, could 

explain to some extent the observed low Al mass recoveries. It should be mentioned that 

these large ‘particles’ can also be aggregates of smaller NPs. Large particles/aggregates 

can settle during sample preparation/analysis. They contain a large mass but their 

number is very low, and the likelihood of detecting such a large ‘particle’ during a 

measurement is low. Additionally, at high particle sizes / masses incomplete particle 

vaporization and non-linear detector responses can occur leading to an underestimation 

of particle size and mass (Lee & Chan 2015). 

[Figure 2 near here] 

In the sample preparation blanks, around 140 NPs with median diameters of 61 

to 74 nm were detected during the analysis time of 180 s. The finding of NPs in the 

sample preparation blanks suggests some carry-over of NPs from previous analyses or 
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formation of NPs in the sample introduction system from remaining Al ions. As the 

minimum detected number of NPs in the samples (same dilution factor) was 1527, the 

influence of carry-over can be considered negligible. The LOD for the mass 

concentration of the ‘Al background’ (ionic Al, other Al species and Al-containing NPs 

below the minimum detectable size) was calculated to be 2.7 µg/g (3 times the standard 

deviation of sample preparation blank; N=2). The LOD was slightly exceeded for three 

samples (2.8, 3.1, 3.5 µg/g).  

Interestingly, a significant number of NPs (1774 ± 59 during 180 s; N=2) was 

detected in the SRM Wheat Flour. This supports the suggestion that Al findings in 

noodles are caused by the natural concentrations of Al in wheat flour (Laboratory of the 

Government Chemist (LGC) 2011). The presence of inorganic nano- and microparticles 

in wheat and wheat-based products was shown in previous studies but not for the case 

of Al (Gatti et al. 2009; Beltrami et al. 2011).  

[Table 2 near here] 

Summary and conclusions 

To the best of our knowledge, this is the first study that shows the potential 

presence of Al-containing nanoparticles in a food product by spICP-MS. Further, our 

study demonstrated that it is relatively simple to detect NPs in a food sample by spICP-

MS and that it is possible to obtain reproducible results for particle mass concentration 

and particle size. However, accuracy of the results could not be evaluated due to the 

lack of suitable reference materials. Several assumptions had to be made to convert the 

obtained particle mass into particle size, including assumptions for particle composition, 

shape and density. It was shown that these assumptions can be decisive when evaluating 

whether a sample contains a nanomaterial or not. The lower limit of size detection (i.e. 

the smallest detectable size) was another clear limitation of the spICP-MS method. For 
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the presented case of Al-containing NPs, the minimum detectable particle size by 

conventional (quadrupole-based ICP-MS) was, depending on the particle composition, 

in the range of 50-60 nm. The presence of large particles or NP aggregates challenged 

the upper size limit of spICP-MS.  

Even if the found Al-containing particles could be categorized as a 

nanomaterial, it remained unclear whether the particles were intentionally added to the 

noodles as a food additive (and not listed on the ingredient list), whether they were the 

result of contamination during food processing or storage or whether the particles 

originated from a natural source. This poses a big challenge when investigating the 

proper labelling of food containing nanomaterials as ingredients. Future work needs to 

study the shape and chemical composition of the detected NPs by additional methods 

like field flow fractionation or transmission electron microscopy in combination with 

energy-dispersive X-Ray spectroscopy. 
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Table 1. spICP-MS settings 

Parameter (unit) Value 
RF power (W) 1,550 
Plasma gas flow rate (L/min)  13.9 
Nebulizer gas flow rate (mL/min) 1.07 
Auxiliary gas flow rate (mL/min) 0.79 
Cell gas (flow rate) (mL/min) n/a 
Sample uptake flow rate (mL/min) ~ 0.3a 
Monitored isotopes (m/z) 27Al, 197Aub 
Dwell time (ms) 3 
Analysis time (s) 60-180 
Nebulizer type Low-flow concentric nebulizer 
Spray chamber type Cyclonic, Peltier-cooled 
aDetermined on a daily basis (corresponding peristaltic pump speed was 40 rounds/min) 
b For determination of transport efficiency 
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Table 2. Results of the spICP-MS analysis of enzymatically digested noodle samples 

(N=21) assuming Al2O3 NPs. The relative standard deviation (RSD) of repeatability 

was determined as the pooled RSD from seven double determinations. For 

Al2O3·2SiO2·2H2O NPs particle diameters are larger by a factor of 1.57 and particle 

mass concentrations larger by a factor of 2.53 (recovery of Al in particles remains the 

same). 

 

Minimum 
detectable 

particle 
diameter 

(nm) 

Median 
particle 
diameter 

(nm) 

Maximum 
particle 
diameter 

(nm) 

Particle mass 
concentration 
(µg Al2O3 per 

g sample) 

Relative 
recovery 
of Al in 
particles 

in 
relation 
to HF 

digestion 
(%)* 

Noodlesamples (N=21)      
Minimum 54 70 443 0.9 5.3 
Maximum 83 105 739 4.3 18.4 

Mean 68 86 595 2.4 12.2 
Standard deviation 7 8 90 0.8 3.3 
Repeatability RSD 1.8% 2.7% 33.5% 10.8% - 

SRM (N=2)      
Mean 62 78 788 1.5 36.1 

Standard deviation 1 3 138 0.3 19.9 
*Or certified Al concentration in the SRM 
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Figure 1a: Time resolved spICP-MS signal for m/z 27 for a noodle sample after acid 

digestion with HNO<sub>3</sub> (a) and after enzymatic digestion with ?-

amylase (b)  
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Figure 1b: Time resolved spICP-MS signal for m/z 27 for a noodle sample after acid 

digestion with HNO<sub>3</sub> (a) and after enzymatic digestion with ?-

amylase (b)  
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Figure 2: Number-based particle size distribution for one noodle sample after enzymatic 

digestion assuming spherical Al<sub>2</sub>O<sub>3</sub> particles or 

Al<sub>2</sub>O<sub>3</sub>?2SiO<sub>2</sub>?2H<sub>2</sub>O 

particles 
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