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Highlights: 

- Stochastic consumer phase models are compared with simplified surrogate models. 

- Case studies for consumer phase models for Campylobacter, Salmonella and Listeria 

are analysed.   

- The relative risk estimates after intervention in the food chain are higher for 

stochastic models. 

- Neglecting the variability between consumers may overestimate the predicted effect 

of intervention measures. 
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Abstract 

In quantitative microbiological risk assessment (QMRA), the consumer phase covers the 

part of the food chain following production and retail, where the consumer transports, 

stores, prepares and consumes the food products considered. These consumer practices 

have a crucial impact on exposure, and a consumer phase model (CPM) needs to be 

included in a QMRA to allow an evaluation of the effectiveness of intervention measures 

in food production and processing in terms of human health risk. However, the 

development of a CPM is complex because consumer practices can be highly variable 

and data are scarce. So far, it is unclear to which extent CPMs need to include data on 

variability and detailed descriptions of the stochastic processes that may result in 

exposure. We therefore compared the performance of published stochastic CPMs with 

a simple surrogate CPM that assumes a proportional linear relation between 

concentration at retail and ingested dose, described by a constant factor.  

A comparative study was performed for different pathogens and different food 

products: Campylobacter in broiler meat, Salmonella in minced pork and pork cuts and 

Listeria in smoked salmon. Published stochastic CPMs were re-implemented and their 

equivalent surrogate models were derived, basing the value of the constant surrogate 

model factor on the absolute risk estimate from the stochastic model. The performances 

of the models were evaluated by comparing the effects of hypothetical intervention 

measures that reduce the mean or the standard deviation of the distribution of 

concentrations at retail. These effects were expressed in terms of relative risk estimates, 

as estimated in the risk assessments using the simplified and the stochastic CPMs.  

Results showed that after interventions that result in a reduction of the mean or 

standard deviation of the distribution of concentrations at retail, the relative risk 

estimates obtained for the simple surrogate models are always lower than those of the 

stochastic CPMs, which means that simplified models tend to overestimate the effects 

of interventions. The difference was largest in the Listeria model, where growth during 

storage is expected to be the dominant process. It was found that for interventions 

affecting the prevalence only, a simplified surrogate CPM performs similarly to a 

stochastic CPM. 

We concluded that the use of a simple surrogate CPM, which does not include the 

variability inherent to consumer practices, may lead to an overestimation of the effect 
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of intervention measures in a QMRA, especially in these interventions affect the 

concentrations. For adequate risk assessment, it may therefore be necessary to include 

the variation in consumer practices (e.g. variation in storage time and temperature, 

cooking time and temperature and cross-contamination), as described in more realistic 

and more complex CPMs, definitely if this variation is expected to be large. 
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1. Introduction 

In quantitative microbiological risk assessment (QMRA), the consumer phase is the part 

of the food chain following the production and retail, when the consumer transports, 

stores, prepares and consumes produced food (Nauta & Christensen, 2011). This step is 

different from all the other steps of the food chain, because it is associated with high 

variability in human behaviour and because consumer food safety practices cannot be 

enforced by legislation (Nauta et al., 2009). Next, representative quantitative data on 

consumer food handling practices are scarce. This is due to the difficulty of obtaining 

unbiased, representative data on human behaviour in the domestic setting in general 

(Redmond & Griffith, 2003), which restrains research in the consumer phase. Also, there 

is a high variability in food handling practices, and cultural and social differences 

between the considered population groups in relation to food preparation practices 

need to be accounted for (Nauta et al., 2009). Despite these challenges, a consumer 

phase model (CPM) always needs to be included in a risk assessment: to allow an 

evaluation of the effectiveness of intervention measures in food production and 

processing in terms of human health risk, the step from contaminated food product to 

exposure has to be taken and always includes a consumer that handles the food product. 

In some cases, food handling may not impact the bacterial concentration in food and 

the consequential exposure, but most often it does. 

To this day, several CPMs have been developed. These may differ substantially in terms 

of complexity, depending on the purpose of the QMRA and the availability of data. Some 

may only include a few simplifying assumptions, while others may describe in detail the 

food handling practices, their frequencies of occurrence and use many data sources 

(Zwietering, 2009). 

An important question to answer in the development of CPMs is to what extent these 

models need to include a detailed description of the processes that may result in 

exposure (Nauta and Christensen, 2011). The study from Nauta et al. (2009) suggests 

that “there is no alternative but for a probabilistic approach to risk assessment models 

of the consumer phase”. This would imply that one should always use a stochastic CPM 

to obtain accurate risk estimates in QMRA. Yet, for practical reasons, the use of a 

simplified CPM may be preferable, so it would be important to know to what extend 

such surrogate models perform sufficiently for a reliable QMRA. 
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An example of a surrogate model is the one used by Duarte et al (2016) in a study about 

the effect of carcass decontamination on the risk for consumers, later applied by 

Bollerslev et al. (2017) as well.  In their model, it is assumed that the survival of 

Salmonella in pork meat, from the carcass to the consumed serving, is identical for all 

servings. A constant factor a summarises the reduction in concentration from carcass to 

ingested dose due to transfer, growth, cross contamination and survival of Salmonella 

in pork meat. The value for the a factor is obtained by linking the distribution of 

concentrations found on the raw meat with a dose-response relation and an 

epidemiological estimate of the incidence of salmonellosis attributable to pork. By using 

this surrogate, it is not necessary to make additional assumptions on the survival of the 

pathogen. However, it is stated in the study that the assumption of an identical effect of 

consumer food handling for all serving is unlikely to be correct (Duarte et al., 2016). This 

is based on the fact that for example studies for Campylobacter on broiler meat have 

shown that there is variation present in transfer and survival during the consumer phase, 

and that it is essential to consider this in a risk assessment (Duarte et al., 2016; Nauta 

and Christensen, 2011; Nauta et al., 2009). However, the performance of this surrogate 

model in comparison to a stochastic CPM has never been evaluated. 

The objective of this study is therefore to evaluate the performance of a simple 

surrogate model like the “a-factor” model (Duarte et al. 2016) by comparing it with 

previously published stochastic consumer phase models for different pathogens and 

different food products. As in Nauta and Christensen (2011), this evaluation is done by 

comparing relative risk estimates for the effects of hypothetical interventions that 

modify the distribution of concentration at retail (i.e. the last stage before the consumer 

phase). In this approach, similar relative risk estimates suggest that the performance of 

surrogate models is adequate, whereas dissimilar estimates show that simplification of 

the CPM may yield misleading conclusions in QMRA. 

 

2. Methods 

2.1. Generic Modelling approach 

 

In QMRA, the mean risk per serving is the mean probability of illness from all servings 
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𝑅𝑖𝑠𝑘𝐷 =  ∑ 𝑄𝑖𝑙𝑙(𝐷)𝑓(𝐷)∞
𝐷=0         (1) 

 

where D is the (discrete) dose, f(D) is the probability distribution of doses obtained 

from the exposure assessment (including uncontaminated servings, i.e. D=0) and Qill(D) 

is the probability of illness from exposure to dose D, i.e. the dose-response relation.   

Usually, the dose D on a serving cannot be measured and is obtained from a consumer 

phase model (CPM) where D is obtained from a concentration (C) higher up in the food 

chain (e.g. at retail). If CPM(C) represents the function that relates D to C: 

 

D = CPM(C)          (2) 

 

and consequently the mean risk 

 

𝑅𝑖𝑠𝑘𝐶 =  ∫ 𝑄𝑖𝑙𝑙(𝐶𝑃𝑀(𝐶))𝑔(𝐶)𝑑𝐶
∞

0
         (3) 

 

Here, g(C) represents the probability density function of the concentrations C (a real 

number). Note that the subscript for Risk only indicates how the risk is calculated, the 

value obtained for eq. (1) and eq. (3) should be the same (RiskD = RiskC).  

In this paper, we explore the impact of simplifying the consumer phase model as in 

Duarte et al. (2016), by using 

 

D= a C           (4) 

 

instead of eq. (2), where a is the “a-factor”, a surrogate for the CPM. 

 

Hence, 

 

𝑅𝑖𝑠𝑘𝑎 =  ∫ 𝑄𝑖𝑙𝑙(𝑎𝐶)𝑔(𝐶)𝑑𝐶
∞

0
          (5) 

 

To obtain an estimate for a for different CPMs and different dose-response relations 

(Qill(D)), we first calculate RiskC and then set RiskC = Riska,  
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𝑅𝑖𝑠𝑘𝐶 = ∫ 𝑄𝑖𝑙𝑙(𝑎𝐶)𝑔(𝐶)𝑑𝐶
∞

0
        (6) 

 

where a is the only unknown and can be obtained numerically, for example by 

approximating the integral and using the Excel Solver add-in, as in Duarte et al. (2016).  

 

To compare the performance of the CPMs and the surrogate models, we study the effect 

of hypothetical changes in the distribution of concentrations C. These changes can 

represent the effect of interventions implemented to reduce the risk. If the alternative 

risk estimate obtained by using an alternative distribution of concentrations is Risk*, we 

compare the relative risks RRa = Riska
* /Riska and RRC = RiskC

*/RiskC. (Note that Riska = 

RiskC after using the procedure described above, eq. (6), however Riska
* (eq. (5)) may be 

different from RiskC
* (eq. (3)) ). Such relative risks are frequently studied as an important 

outcome of QMRAs, and have the advantage that they are less uncertain than absolute 

risk estimates, as uncertainties are partially cancelled out. If the relative risks RRa and 

RRC are similar, the surrogate can be considered an appropriate alternative to the CPM, 

otherwise it can not. 

Four intervention scenarios are compared, where the control measures are assumed to 

be implemented somewhere along the food production chain, at primary production or 

during industrial processing. Therefore, they do not affect the CPM itself (Nauta & 

Christensen, 2011).  

 Scenario 1: 0.5 log reduction in the mean of the concentration at retail. 

 Scenario 2: 1 log reduction in the mean of the concentration at retail. 

 Scenario 3: 0.5 decrease in the standard deviation of the concentration at retail. 

 Scenario 4: 0.5 increase in the standard deviation of the concentration at retail. 

Scenarios 1 and 2 represent practical control measures that are believed to affect the 

mean concentrations of the pathogen, like for example, decontamination of broiler 

meat during industrial processing to reduce Campylobacter (Gellynck et al., 2008; 

Havelaar et al., 2007). Scenario 3 simulates, for example, implementation of protocols 

where heavily contaminated meat products are diverted from the fresh broiler meat 

production chain to reduce Campylobacter, which results in a decrease of the standard 
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deviation (Nauta et al., 2009; Nauta & Havelaar, 2008). Scenario 4 could, for example, 

represent a situation of protocols where less control samples are taken, which results in 

more variation in the concentration of the pathogen in food, and increases the standard 

deviation. 

 

2.2 Selection of case studies 

 

Five case studies were performed, on the basis of CPMs and dose response models 

found in the literature, covering three well known foodborne pathogens with different 

characteristics in the consumer phase: typically, during transport and storage, 

Campylobacter does not grow, Salmonella has a growth potential with temperature 

abuse, and Listeria can even grow at low temperatures. For all pathogens cross 

contamination and inactivation may occur, but for Listeria the selected CPM only 

included growth during storage.  

The first case study applied the Campylobacter in broiler chicken CPM published by 

(Nauta et al., 2008). This study considered bacterial transfer from inoculated chicken 

breast fillets to salads in ready-to-eat chicken salad prepared at home by consumer 

volunteers, and  relied on other studies (De Jong et al., 2008; Van Asselt et al., 2008) 

that used Lactobaccili as a tracer for Campylobacter. This CPM performed as a 

representative CPM in the analysis of Nauta and Christensen (2011) and it has been used 

in other studies as well (EFSA 2010, Nauta et al 2012, Nauta et al 2015). 

For Salmonella in pork, we used two CPMs based on Swart et al (2016). These CPMs are 

part of a full risk assessment model for Salmonella in the pork production chain in 

selected European Union member states (Hill et al., 2011; Swart et al., 2016; Snary et 

al., 2016). In this model three types of pork meat are considered: minced pork, pork cuts 

and fermented sausages. Here we use the CPMs for minced meat and pork cuts, which 

allows us to compare the effect of using different meat products derived from the same 

raw material. Fermented sausages are not included as their risk mainly originates from 

failed fermentation, which falls outside the consumer phase. 

For Listeria monocytogenes, we used a CPM based on the exposure assessment of a 

study performed by Berjia et al. (2013), a risk-benefit assessment of cold-smoked 

salmon (CSS). In this study, the risk of Listeria monocytogenes is evaluated against the 
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benefits of the intake of omega-3 fatty acids in Denmark. The model described is 

deterministic, and was made stochastic by using a growth model described by Pouillot 

& Lubran (2011). Two different dose-response models are used, one for the healthy 

population and one for the sensitive population, therefore for Listeria two different case 

studies can be compared as well.  

 

2.3 Case studies 

 

For each case study, we describe (1) a distribution of the concentrations at retail, g(Cret), 

including the prevalence, as input for the CPM; (2) the stochastic CPM, CPM(Cret); and 

the dose response relation Qill(D).  

To get a risk estimate, RiskC (eq. (3)) is estimated by Monte Carlo simulation, using the 

Excel add in @Risk, version 6.1 (Palisade). 100,000 samples are taken from g(Cret), given 

that the product at retail is contaminated as indicated by the prevalence, and used as 

input in the stochastic CPMs. The doses obtained from the CPM (one per sampled Cret) 

are fed into the dose-response relation Qill(D). The mean of all resulting probabilities of 

illness are multiplied with the prevalence, which provides the mean risk of illness.    

Next, by solving eq. (6), values for a are obtained for each case study, to use in the 

surrogate models. Relative risks are calculated for the four intervention scenarios, for 

both the stochastic CPMs and the surrogate models before and after intervention, using 

1,000,000 iterations in @Risk. 

 

2.3.1. Campylobacter 

 

As in Nauta and Christensen (2011), with a probability equal to prevalence pprev = 0.25, 

the 10-based log of the concentration at retail log Cret is sampled from a Normal 

distribution with mean= 1.5 log cfu/g and standard deviation (SD)= 1.2, otherwise Cret is 

0 cfu/g. According to the CPM, the number of Campylobacter (cfu) on one portion of 

consumed meat, Nportion, is defined by a Poisson distribution  

 

𝑁𝑝𝑜𝑟𝑡𝑖𝑜𝑛 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝐶𝑟𝑒𝑡 × 𝑊𝑐)    (7) 
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where ∼ represents “is a sample from,” and  portion sizes, Wc, are sampled from a 

lognormal distribution with mean= 189 g, SD =127,

 

and maximum portion size of 1 kg. 

(Christensen et al. 2001). 

 

In an observational study, Nauta et al  (2008) obtained a data set describing the 

variability of transfer rates from raw meat to salad  and an empirical distribution of 55 

transfer rates ptr  was provided (described in Nauta & Christensen (2011)). This yields a 

distribution of doses by applying 

 

𝐷 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙[𝑁𝑝𝑜𝑟𝑡𝑖𝑜𝑛, 𝑝𝑡𝑟]     (8) 

 

A Beta-Poisson dose-response model from FAO/WHO (2009) is used to describe the 

probability of infection from an ingested dose D. As the classic Beta-Poisson model 

describes the response in terms of probability of infection, a standard multiplier of Pill|inf 

is used to calculate the probability of illness Qill., based in studies from Black et al. (1988) 

and from FAO/WHO (2009). 

 

𝑄𝑖𝑙𝑙(𝐷) = 𝑃ill |𝑖𝑛𝑓 × (1 − (1 +
𝐷

𝛽
)

−𝛼

)   (9) 

 

Where, based in studies from Black et al. (1988), FAO/WHO (2009), α = 0.145 and β= 

7.59 and Pill|inf = 0.33.         

 

2.3.2.  Salmonella 

 

The inputs applied to Salmonella CPM were obtained from Bollaerts et al. (2009):  with 

a probability equal to prevalence pprev = 0.12, the 10-based log of the concentration at 

retail,  log Cret, is sampled from a Normal distribution with mean= 1.4 log cfu/g and SD= 

0.7, otherwise Cret is 0 cfu/g. As in Swart et al. (2016), portion sizes Ws are fixed at 146 g 

for pork cuts and 125 g for minced meat, so the initial number of cfu per portion N0 = 

Cret × Ws. Both CPMs, for pork cuts and minced meat, as described by Swart et al 2016, 

consider three processes: transport and storage, preparation and heating, and are 
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presented in Figure 1. The transport and storage process is modelled identically for both 

products. Swart et al. (2016) use Baranyi’s dynamic growth model. As it is difficult to 

apply this specific model in @Risk and the specific choice of the growth model is not of 

great importance for our purposes, we apply an exponential growth model as a primary 

growth model and a square root model for the temperature (Ratkowsky 1982) as a 

secondary growth model in this study:  

 

𝐿𝑜𝑔 𝑁𝑠𝑡 = 𝐿𝑜𝑔 𝑁0 + (𝑏(𝑇𝑡𝑟 − 𝑇𝑚𝑖𝑛))2𝑡𝑡𝑟 + (𝑏(𝑇𝑠𝑡 − 𝑇𝑚𝑖𝑛))2𝑡𝑠𝑡   (10) 

 

where Ttr, Tst, ttr and tst are the randomly sampled temperature (T) and time (t) during 

transport (tr) and storage (st), using the same distributions as Swart et al. (2016). Nst is 

the number of cfu per portion after transport and storage. The constant b and minimum 

growth temperature Tmin are parameters obtained from the data on measured growth 

rates at four different temperatures, presented by Swart et al. 2016 (see their table 1). 

Values Tmin= 4.00 °C for pork chops and  Tmin= 2.48 °C for minced meat were obtained by 

extrapolation of the regression line between the measured growth temperatures and  

the associated square roots of the growth rate (Swart et al 2016); values b = 0.0360 for 

pork chops and b= 0.0261 for minced meat were obtained by taking the average of the 

four estimates of b obtained from the four observations. 

Preparation and heating are modelled differently in both Salmonella CPMs: 

 

Pork cut model 

 

The preparation of pork cuts considers that the product is prepared in a domestic 

environment. A ready-to-eat salad may be prepared as a side dish along with the pork 

cut. Transfer of Salmonella can occur via a cutting board, knife and hands that are not 

washed, and via the water tap. The likelihood of washing is defined, and transfer 

coefficients are used that describe the fraction of Salmonella that migrates from one 

object to another. Survival rates describe the effectivity of the washing steps. 

The transfer matrices containing transfer rates between knife, board, hands and tap , 

are described in detail by Swart et al. (2016).More specific references are given in Figure 

1. Inadequate heating (i.e. heating that does not inactivate all Salmonella bacteria) is 
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not considered for pork cuts, as it is assumed that Salmonella is completely inactivated 

since it is only present on the outside of the product (step 5 in Figure 1). For this reason, 

it is assumed that only Salmonella present in the side dish are ingested. 

 

Minced meat model 

 

The preparation of minced meat is divided in two steps: the meat is handled to prepare 

hamburger patties or meat balls and afterwards a salad is prepared. As in Swart et al. 

(2016), the cross-contamination process for minced meat was a simplified version of the 

pork cuts model, since in this model a knife is not used, the survival rates on board and 

hands were set to zero, and the tap was not included as a transfer route. Details on the 

final model are given by Swart et al (2016). 

For heating, the cooking model described by Bergsma et al. (2007) is used, which 

includes the following steps (Figure 1, step 5): 

- Cooking of one side of the patty for one minute at high temperature. 

- The product is turned, and it is assumed that a crust has formed, creating a 

perfectly insulating patty. 

- The product is cooked for a few more minutes at a lower temperature. 

 

The model used describes a polynomial fit of the data (Swart et al 2016) 

 

Log(Nmcook) =log(Nmcc)  - 4.36×10-3 t3 - 1.02×10-2t2 + 4.73×10-2t  (11) 

 

Where Nmcc is the number of Salmonella per patty after handling the product with 

transfer of some cells to the hands and the cutting board, t is the cooking time, and 

Nmcook is the number of cfu per patty after cooking.   

For each CPM (pork cut and minced meat), the dose D is obtained as indicated in step 

7 of Figure 1. 

 

The Beta-Poisson dose-response model from FAO/WHO (2002) is used to describe the 

probability of infection from an ingested dose D, i.e. the same model as in eq. (9), with  

α = 0.1324 and β= 51.45. As the parameters of the dose-response model were obtained 
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from outbreak data,  the results can be interpreted to describe the probability of illness 

from a certain dose so Pill|inf = 1. 

 

2.3.3. Listeria 

 

In the study of Berjia et al (2012), the initial concentrations of L. monocytogenes in cold 

smoked salmon are {0.5, 1.5, 2.5} log cfu/g with prevalences {0.28, 0.05, 0.01}  

(Jørgensen and Huss 1998). These initial concentrations C0 were modified to better 

describe the variability in the model and are now defined by a Normal distribution with 

mean=1.2189 log cfu/g and SD= 0.8. Here, the mean was calculated by adding the 

products of the indicated initial concentrations and their respective prevalences, 

(Jørgensen and Huss 1998). The value of standard deviation (SD) = 0.8 log10 units was 

chosen based on ILSI (2010), where it is suggested to use this value as a default value to 

describe the standard deviation of a batch, when no better data or more specific 

information on a batch is available. 

 

In the CPM, the portion size has a fixed value of WL = 23 g. Next, growth during storage 

is modelled by applying a three-phase linear primary growth model (Buchanan et al., 

1997), model  # 4 published by Pouillot & Lubran (2011) : 

 

𝐶𝑒𝑛𝑑 = 𝑚𝑖𝑛 (𝐶0 +
𝜇

𝑙𝑛 (10)
× max (𝑡 − 𝜆 , 0), 𝑀𝑃𝐷 )   (12) 

    

where C0 (log10 cfu/g) is the initial concentration of L. monocytogenes in the CSS at the 

beginning of the storage; μ is the specific growth rate of L. monocytogenes per day (d-1); 

t is the duration of the storage (d); λ is the lag time (d); MPD is the maximum population 

density (log10

 
cfu/g). As in (FDA/FSIS, 2003), model #4 used λ = 0 days and MPD = 7.27  

(Delignette-Muller et al., 2006). As a secondary model for μ a square root model 

(Ratkowsky et al., 1982) was used: 

 

𝜇 = 𝜇𝑟𝑒𝑓 × (
𝑇 −𝑇𝑚𝑖𝑛

𝑇𝑟𝑒𝑓−𝑇𝑚𝑖𝑛
)

2

      (13) 
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with μ ref

 
=6.19 d-1 (FDA/FSIS, 2003) for Tref =

 
25 °C (Delignette-Muller et al., 2006) and a 

constant Tmin= -1.18 °C (FDA/FSIS, 2003).  

The storage temperature (T) was obtained from FAO/WHO (2004; Table A5.3). The 

storage time t is described by a Normal distribution with mean=14 days (Berjia, 2013) 

and SD = 3.5 (assumption) 

In this case, the expected dose is obtained by 

 

D = WL* Cend        (14) 

 

An exponential dose-response model is used to estimate the probability of infection by 

L. monocytogenes (FAO/WHO 2004): 

 

𝑃𝑖𝑙𝑙 = 1 − 𝑒−𝑟𝐷       (15) 

 

where, Pill is the probability of severe illness, D is the dose, and 

r is the parameter that defines the dose–response relation for the population being 

considered. As in (FAO/WHO 2004) and Ross et al. (2009), for the healthy population r = 

2.37 × 10-14,

 

for the susceptible population r = 1.06×10-12. 

 

3. Results 

 

3.1 Risk estimates and a-factors 

 

Using the modelling approach as explained in 2.1, values of the a-factor are derived for 

each of the five case studies. First the mean risk RiskC is estimated by combining the 

input distribution of concentrations, the CPM and the dose-response relation, and using 

eq. (3) Then, a is obtained from numerically solving eq. (6). The results are given in Table 

1. It shows that the risk estimates for Campylobacter and Salmonella are larger than 

those for Listeria, but the values for the a-factor are much larger for Listeria. The first is 

mainly due to the dose-response relations, the second is due to the fact that the Listeria 

CPM describes growth (an increase in concentration), whereas those for Campylobacter 

and Salmonella describe inactivation and transfer as dominant processes, which give a 
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decrease in concentration. 

 

3.2 Relative risk estimates 

 

The relative risk estimates for the stochastic CPM and the surrogate model are given in 

Figure 2. It shows that the surrogate models always give a lower estimate of the relative 

risk than the CPMs, if the mean or standard deviation of the distribution at retail is 

reduced. The difference between the two relative risk estimates is largest in the Listeria 

models. The relative risks obtained with the Salmonella models for pork cuts and minced 

pork patties are identical, even though they represent different products. Similarly, the 

relative risks of the two Listeria models are shown to be the same for the healthy and 

the susceptible population. For Salmonella and Campylobacter, the difference between 

the stochastic- and surrogate-CPM relative risks in the interventions with 0.5 and 1 log 

reduction of the mean initial concentrations are similar, whereas for Listeria this 

difference increases with increased reduction of the mean. An increased standard 

deviation (sd) gives larger relative risk values for the surrogate models, which is 

consistent with a smaller relative risk for a reduction in sd.  

 

3.3 Stochastic CPMs and surrogate models compared 

 

To understand the difference between the performance of the stochastic CPM and the 

surrogate model, they are compared in more detail. 

In the stochastic CPMs, the relation between the ingested dose and the concentration 

at retail is not a constant factor (a), but it varies stochastically between servings, 

depending on the CPM models used to describe transfer, cross-contamination 

inactivation and/or growth. So instead of D = a Cret (eq. (4)), D = CPM(Cret) (eq.(2)). For 

the surrogate model D/Cret = a is constant, but for the stochastic model  D/Cret will vary 

between model iterations, i.e. between servings. Figure 3 shows the cumulative 

distributions of the values of log (D/Cret) for the four indicated CPMs. The a- factor 

value for each model is given by the black dot. Note that log (D/Cret)= 0 implies that D = 

Cret, log (D/Cret)> 0 implies D > Cret and log (D/Cret)< 0 implies D < Cret. Here, D is 

expressed per serving, Cretail is expressed per g. 
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Figure 3 reflects that the Listeria CPM is a growth model that gives a variable increase 

in concentration. In the other CPMs, inactivation and transfer are the predominant 

factors, and values log (D/Cret)> 0 are only found in cases where the effect of growth 

and the serving size are dominant (< 10% of the exposures). In the Salmonella models, 

cross-contamination can be absent and inactivation can be complete (for PC, not for 

MM, which explain the difference in shape of the curves); in the Campylobacter model 

transfer is always present (although in practice the transfer rate may be too low to 

transfer any cfu). In all models, the a-factor values do not correspond to the median 

(or mean) of the distribution, but correspond to an upper percentile (67% for the 

Campylobacter CPM, > 80% for the other CPMs).  

 

4. Discussion 

 

Consumer phase models (CPMs) are an essential step in Quantitative Microbiological 

Risk Assessment (QMRA), linking the prevalence and concentrations at retail to the 

ingested doses.  The large variation in consumer food handling practices and scarcity of 

data to use in a risk assessment imply that several subjective and simplifying 

assumptions are made when a CPM is constructed. It is unclear to what extent these 

simplifications are justified. In this study, we therefore compared the performance of 

some published stochastic CPMs with a highly simplified CPM (the “a-factor” model) that 

ignores the variability in the effect of food handling, storage and heat treatment by 

consumers.  

If the mean or standard deviation of the distribution of bacterial concentrations at retail 

is reduced, a comparison of the stochastic CPMs and the surrogate “a-factor” models 

shows that the surrogate models always give a lower estimate of the relative risk than 

the stochastic CPMs. This means that the simplified approach, that neglects the 

variability between consumers, leads to an overestimation of the effect of interventions 

in the food chain before retail, that reduce the mean and/or standard deviation of 

concentrations. Hence, a simplified approach may result in an over-optimistic 

assessment of the effect of risk mitigation strategies. 

The finding that variability negatively impacts the expected effect of interventions is in 
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agreement with the result of Duarte et al. (2016) who found that inclusion of variation 

in the effect of decontamination negatively affects its impact in terms of risk reduction. 

Our results suggest that the use of a stochastic CPM, which includes the effect of 

variability at the consumer phase, will only strengthen this impact and result in a risk 

reduction that is lower than the one predicted in that study.   

The microbial dose-response models used are linear at low doses (Haas 2002). This 

implies that, for interventions reducing the mean concentration by 0.5 and 1 log, at low 

doses one might expect relative risk estimates of 0.316 and 0.1. Figure 2 shows that 

these predictions are very close to the values found for the “a-factor” model for Listeria, 

but all other relative risk estimates are larger. Apparently, in the other models the doses 

found in the exposure assessment are not low enough to assume linearity and the 

variability in doses includes too many high doses where the linearity is violated, 

especially for the stochastic models. 

The largest difference between the two relative risk estimates is found in the Listeria 

models that exclusively describe growth. Listeria is also characterized by a low virulence 

(a low value of the r-parameter in the dose response relation) and as a consequence the 

risk estimate will be sensitive to high exposures, which occur more frequently when the 

variability in doses, expressed on the log-scale, increases. This result indicates that using 

a simplified surrogate model for Listeria, where the tail of the distribution of exposures 

is cut down, could have great impact on the assessed effect of interventions.  

Another observation made for Listeria is that, in terms of relative risks, the results for 

the healthy population and the sensitive population are highly similar. This is expected, 

as the models only differ in the dose response, and this difference is only proportional. 

For Salmonella, we used different stochastic CPMs for two different pork products: 

minced meat and pork cuts. For these two products, the prevalence and concentrations 

at retail and the dose-response relations are identical. The results show that these two 

CPMs perform very much similar when relative risk estimates after intervention are 

compared (see Figure 2). This is probably a consequence of the fact that the right hand 

tails of the distributions shown in Figure 3 are overlapping, i.e. similarly high doses 

(which have most impact on the risk) occur a similar number of times in both products.  

This result suggests that, for the relative risk estimate after intervention, the precise 

definition of the stochastic CPM is less relevant than the question whether variability is 
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included in the CPM at all. It may even imply that, for this purpose, it is not necessary to 

develop specific CPMs for all specific pork products. However, as the risk estimate for 

the two pork products are almost the same (See table 1), and pork products that are 

processed differently may yield different risks, this hypothesis demands further 

research. 

In this study, the value of the a-factor is derived from a risk estimate that is obtained 

from a QMRA that includes a stochastic CPM. This is different from the approach used 

by Duarte et al. (2016), who use an independent epidemiological risk estimate to derive 

the value of a. The value obtained by them for Salmonella in pork in Denmark is 

0.000031 (Bollerslev et al. 2017), which is considerably lower than the values obtained 

by us (0.0798 and 0.0770, see Table 1). This confirms that QMRA risk estimates are often 

higher than those derived from epidemiological data (Havelaar et al. 2008). In addition, 

one might argue that the relationship between the stochastic and deterministic results 

could change if the a-factor value was obtained from epidemiological data as in 

Bollerslev et al. (2017). Therefore, Salmonella model was run with a-factor value of 

0.000031 and the corresponding relative risks were calculated. The relative risks 

obtained using this approach were, however, very similar to the ones obtained with a-

factors calculated by us (data not shown). 

Figure 3 illustrates that the a-factor values obtained from numerically solving eq. (6) do 

not correspond to the median (or mean) values of the distributions of values obtained 

for D/Cret describing the effect of the stochastic CPMs, but are located in one of the 

upper percentiles. One reason for this finding is that there is no analytically solvable 

relation between a C and CPM(C). However, the fact that the numerically obtained value 

of the a-factor lies in the upper percentiles confirms the notion that the high value tail 

of the distribution of concentrations is of crucial importance for the mean risk estimate, 

and therefore confirms that variability should be taken into account in risk assessment. 

One could argue that the relationship between the stochastic and deterministic results 

could change if the a-factor value was closer to the mean or median of the distributions 

in Figure 3. For this reason, Salmonella model was run with a-factor values 

corresponding to the median of the distributions in Figure 3 and relative risks were 

calculated. The relative risks obtained were very similar to the ones obtained with 

previous a-factors, so we can conclude that using the median of the distributions doesn’t 
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impact the relative risks (data not shown). 

In this study, we focus our analysis on interventions targeting the bacterial 

concentrations on food products, not the prevalence of contaminated products. 

However, risk mitigation strategies may be specifically directed at reducing the 

prevalence, for example by reducing the prevalence of contaminated broiler flocks or 

slaughter animals. For interventions affecting the prevalence at retail only (and not the 

distribution of concentrations in the contaminated products at retail), the simplified “a-

factor” CPM is expected to perform equally well as a stochastic CPM. This can be 

explained as follows:       

First, note that g(C) in eq. (3) and further includes uncontaminated products. If only 

contaminated products are considered, with distribution of concentrations g*(C), and 

the prevalence of these contaminated products is p, eq. (3) becomes   

 

𝑅𝑖𝑠𝑘𝐶 =  𝑝 ∫ 𝑄𝑖𝑙𝑙(𝐶𝑃𝑀(𝐶))𝑔∗(𝐶)𝑑𝐶
∞

0
       (16) 

 

Similarly, eq. (5) becomes 

 

𝑅𝑖𝑠𝑘𝑎 =  𝑝 ∫ 𝑄𝑖𝑙𝑙(𝑎𝐶)𝑔∗(𝐶)𝑑𝐶
∞

0
        (17) 

 

with the prevalence outside the integral in both equations, the estimated effect of any 

intervention affecting the prevalence only will have the same proportional effect on the 

risk estimate of both the stochastic and the surrogate CPM. It is easy to see that this 

proportionality remains when relative risk estimates are considered. 

The main implication of our findings in this study is that a simplified approach towards 

the CPM, which ignores the variability in effect of consumer food handling, storage and 

heat treatment, may be insufficient for QMRA. The question that comes up next is to 

what extent the overestimation of the effect of interventions is relevant for risk 

management (which is the same question as “when should we consider the difference 

between the relative risk estimates of the stochastic CPM and the simplified model too 

large?”). One might argue that, given the uncertainties attending QMRA in general, a 

relatively small overestimation of this effect does not justify the effort of developing a 
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stochastic CPM that undoubtedly needs simplifying assumptions as well. This clearly 

depends on the specific purpose of the risk assessment, as well as on pathogen and food 

product considered, as illustrated by the differences observed for the case studies 

described in this paper.  

The case studies were chosen based on existing published stochastic consumer phase 

models (CPMs). Even though they represent different pathogens and processes, they 

may not be representative for all potential CPMs, for example because they only involve 

one or a few processing steps and were built in the context of developed countries, 

accounting for western handling practices. One could therefore argue that our case 

studies are too similar and too simple, and that results might change if CPMs built for a 

wider range of food storage an preparation practices were used instead (eg. different 

refrigeration or different cooking approaches). Although these different practices may 

undoubtedly have an important impact on the risk estimates (RiskC), the impact on the 

relative risk estimate after intervention (RRC) will be smaller, because the impact on the 

risk estimates will be somehow proportional before and after intervention, so they 

largely cancel out. Our results suggest that the precise definition of the stochastic CPM 

is less relevant for the relative risk estimate after intervention than the question 

whether variability is included in the CPM.    

Also, future research may identify “rules of thumb” that indicate how much the relative 

risks are overestimated if a simplified CPM is used. “Simpler but not too simple” CPMs 

may be defined that catch the essential impact of the CPM, without making them 

unnecessarily complex.  

 

Conclusion 

In this study, we compared the performance of some published stochastic CPMs with a 

highly simplified CPM, the surrogate “a-factor model”, which ignores the variability in 

the effect of food handling, storage and heat treatment by consumers. The main results 

of this work showed that the “a-factor model” overestimated the effect of intervention 

measures in a QMRA, especially if these interventions affect the concentrations. 

Therefore, the usage of such models may be insufficient for QMRA. We concluded that 

for an appropriate risk assessment, it may be necessary to include the variation in 

consumer practices (e.g. variation in storage time and temperature, cooking time and 
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temperature and cross-contamination), as described in more realistic and more complex 

CPMs. 
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Figure captions 

 

Figure 1 Schematic representation of the Salmonella CPM, adapted from Swart et al. 

2016, as explained in 2.3.2. Equivalent parameter names used by Swart et al. (2016) 

are given in italics, between brackets.   

 

Figure 2 Relative risk estimates obtained after 1,000,000 model iterations for the five 

case studies: Campylobacter in broiler meat (Campy), Salmonella in pork cuts (Salm PC) 

and minced pork patties (Salm MM)  and Listeria in the healthy population (List HP) and 

the sensitive population (List SP). Results are given for the stochastic models and the 

simplified models using the “a-factor”, for interventions reducing the mean 

concentration at retail with 0.5 log and 1 log, and reducing and increasing the standard 

deviation with 0.5. 

 

Figure 3 The effect of the CPMs in terms of the change in log concentration between 

retail (Cret, cfu/g)  and exposure (dose D, cfu/serving). The simplified surrogate models 

are characterised by the a-factors, given by the black dots. For the stochastic models the 

change in concentration is variable, given by the cumulative distributions for the four 

CPMs used. 
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Table 1 Overview of the case study models, the mean Risk estimate RiskC obtained from eq. (3), and the estimated value for the a-factor. 26 

Case study Campylobacter Salmonella 

pork cut 

Salmonella minced meat Listeria  

healthy population 

Listeria  

sensitive population 

Prevalence 0.25 0.12 0.12 38.5 38.5 

Inital concentration 

C0   (log cfu/g) 

Normal (1.5,1.2)  Normal (1.4, 0.7) Normal (1.4, 0.7) Normal (1.2189, 0.8) Normal (1.2189, 0.8) 

Portion size W (g) Lognormal (189, 

127) max=1000. 

146 125 23 23 

Consumer phase 

process used for 

CPM 

Inactivation and 

transfer from 

meat to salad 

Growth and cross 

contamination 

Growth, 

inactivation and transfer 

from meat to salad 

Growth Growth 

Dose response 

model Qill 

BetaPoisson,  

α = 0.145  

β= 7.59 

BetaPoisson, 

α = 0.1324 

β= 51.45 

BetaPoisson, 

α = 0.1324 

β= 51.45 

Exponential 

r = 2.37 × 10-14 

Exponential 

r = 1.06 × 10-12 

Mean Risk  RiskC 0.0038 0.00161 0.00156 3.43 x 10-7 1.54 x 10-5 

a-factor 0.01427 0.0798  0.0770 425340 425910 
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