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Abstract A machine learning framework for predicting auto-correlation functions of inter-channel non-
linearities within the uncompensated optical fiber link is proposed. Low generalization error is obtained
on the test data.

Introduction

In wavelength division multiplexed (WDM) op-
tical communication systems intra- and inter-
channel nonlinear distortions pose the major lim-
iting factor for increasing the spectral efficiency1.
Intra-channel nonlinear distortion can be effec-
tively compensated by employing digital back-
propagation (DBP). However, inter-channel non-
linear distortions such as cross-phase and cross-
polarization modulation (XPM and XPolM) and
four wave mixing (FWM) cannot be compensated
by DBP due to the absence of the interfering
channels (ICs). An approach for compensating
and also investigating the impact of inter-channel
nonlinearities is to model the nonlinear interfer-
ence as a stochastic process. An important step
in modeling a stochastic process, is identifying
its underlying auto-correlation function (ACF). For
inter-channel nonlinearities, the ACF is a function
of the physical layer parameters such as: Input
power, channel spacing, span length and propa-
gation distance.

Inter-channel nonlinearities lead to a long-
correlated memory effect. The Gaussian noise
(GN) model2 ignores this effect while proposed
models based on perturbation theory describe
it3,4. The ACF can thereby be computed by
employing one of those models. However, the
computational time of those models may be pro-
hibitively large if we want to investigate the entire
space and all possible combination of the physi-
cal layer parameters. A more effective approach
is presented in this paper as follows: first a per-
turbation model is employed for a sparse set of
input configurations of the physical layer to em-
ulate the signal propagation through the nonlin-
ear channel, then a machine learning framework5

is employed to learn the ACF from the data and
finally, the learned model is used to predict the
ACF for a new set of configuration of the input
physical layer parameters. More specifically, we

Fig. 1: Setup.

use tools from the machine learning community,
such as principal component analysis (PCA) and
neural network (NN), to analyze and predict the
properties of this long correlated memory effect
in terms of ACFs.

Machine Learning Framework
The employed machine learning framework is
shown in Fig. 1 and is described as follows. First,
the perturbation model presented by Tao et al.4 is
extended to accommodate for signal propagation
through the uncompensated optical fiber link. The
data from the perturbation model is then used to
compute ACFs. In principle, since the input phys-
ical layer parameters are known, one could use
supervised learning, such as neural networks, to
learn the nonlinear mapping between the input
parameters and the generated ACFs. The prob-
lem is that the dimensionality (length) of the ACF
spans among many symbols. If the entire ACF is
to be taken as output (target) values of the neu-
ral network, this would result in a highly complex
neural network with a large number of trainable
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Fig. 2: Three principal components (PCd[k]) whose linear
combination recover all ACFs with an accuracy of 99.3%. An

accuracy of 88.5% is obtained by solely using the first PC.

weights. Instead, it would be favorable to reduce
the number of output units of the neural network
by transforming the ACFs such that less variables
carry most of the information. This is achieved
with the PCA, which performs a change of basis
on the ACFs. The new basis vectors are called
principal components (PCs). They are chosen
such that few of them cover most of the variance
of the ACFs. With this trick a linear combination of
a significant subset of the PCs still approximates
the ACFs. Although discarding insignificant PCs
introduces information loss, it often reduces the
dimensionality of the problem notably. Recover-
ing the ACFs with a subset of D = 3 PCs main-
tains 99.3% of the variance of the ACFs and is
given by

Rn[k] =

D∑
d=1

cn,dPCd[k], (1)

where Rn[k] is the n-th ACF of the data set,
PCd[k] is the d-th PC and cn,d are the coeffi-
cients of the PCA. Each ACF Rn[k] is now de-
scribed by three coefficients {cn,1, cn,2, cn,3}. The
PCs, which represent pseudo ACFs, are shown in
Fig. 2. Next, physical layer parameters such as:
launch power, channel spacing, span length and
propagated distance, are used as an input to the
NN and the coefficients of the PCA are used as
the output. Thus, the above prohibitive problem
is resolved, since the number of NN output units
is cut down to 3. Fig. 3, shows one example of a
true ACF obtained by the perturbation model and
its counterpart obtained by the trained machine
learning framework.

Even though we make sure that the most impor-
tant PCs are used, the discarded PCs also hold
information about the ACFs. The information lost
during the PCA cannot be recovered by the NN.
Meaning, there are two independent sources of
error, the dimensionality reduction itself and the
possibility of an insufficient NN fit.
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Fig. 3: ACF as a function of symbol delay, obtained from the
model and the machine learning framework. The latter is a

linear combination of the three PC in Fig. 2.

Parameter Min. Max.
IC launch power P -2 dBm 4.5 dBm
IC channel spacing Ω 35 GHz 350 GHz
Span length z′ 40 km 120 km
Propagated distance L 0 km 2000 km

Tab. 1: Range of physical layer parameters for the generated
ACFs

Training and Prediction

In order to perform the PCA, we generated two
data sets of 3000 ACFs, for the XPM and the
XPolM processes. In this paper we only show
results and figures regarding the XPM process.
Differently shaped ACFs are obtained by chang-
ing the four physical layer parameters within the
ranges given in Tab. 1. Where one ACF describes
a XPM process, generated by an IC within a z′

long span, starting at L into the link, with Ω chan-
nel spacing and a launch power of P . Other pa-
rameters, such as the modulation format, sam-
ple frequency, CD coefficient D, nonlinear coeffi-
cient γ, attenuation α and roll-off factor are set to
16 QAM, 32 GHz, 17 ps/(km nm), 1.2 (W km)−1,
0.2 dB/km and 0.1, respectively.

The NN is trained to learn a continuous non-
linear mapping from the input space of physical
layer parameters {P,Ω, z′, L} to the output space
of three coefficients {c1, c2, c3} determining the
actual ACF. During the training of a NN the nor-
malised data set is randomly split up in training
and test data. While the training data is used to
learn the nonlinear mapping, the test data is used
to evaluate the robustness of the fit. The NN pro-
duces a good fit when the mean squared error
(MSE) is low. Especially the MSE of the test set,
since these ACFs have not been seen by the NN
during training. A MSE of 6.4 · 10-3 and 7.8 · 10-3

are reported on the training and test set, respec-
tively, which shows the high accuracy which can
be achieved with the NN. It also justifies using the
NN for the continuous analysis below.
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Fig. 4: (top) PC coefficients {c1, c2, c3} measuring the contribution of their respective PC to the overall ACF as a function of the
physical layer parameters. (bottom) The ACF peak R[0] and the HWHM as a function of the physical layer parameters for model

(squares) and prediction (solid lines).

Analysis
The PCA extracts the main features of the ACFs
from the data set as PCs, see Fig. 2. The first PC
PC1[k] is most important. It depicts a quickly de-
caying always positive ACF with short tail. This
feature models the power of the XPM process.
The second and third PCs, PC2[k] and PC3[k],
model the long tail caused by CD. Since the PCs
are multiplied by the coefficients, the sign of the
coefficients are important. For instance, a posi-
tive coefficient c2 and its PC results in a correla-
tion function with local minima, whereas a neg-
ative c2 results in a local maxima. Further, the
reconstruction of arbitrary ACFs also enables the
analysis of the peak at R[0] and the half width half
maximum (HWHM) of the ACF.

Every column in Fig. 4 shows how the contribu-
tion of the PC coefficients change (top) and how
the peak R[0] and HWHM of the ACF changes
(bottom) with continuously changing the parame-
ters. When sweeping one of the four parameters
the others are set to the center of their respective
range.

Column (a) considers the IC launch power.
More power results in increased absolute value
of the contribution of all coefficients in all cases.
The first PC is effected more drastically which is
associated with its feature of modeling the power.
This is also reflected in the increasing peak R[0]
of the ACF. Column (b) depicts the dependency of
the channel spacing. Here, ICs which are further
away from the channel of interest interfere less.
The coefficients c2 and c3 change their sign with
increasing channel spacing at around 100 GHz.
The HWHM value shows that this behaviour of the
coefficients contributes to a longer tail in the re-
sulting ACF. This is explained by the longer walk-
off of the IC with higher channel spacing. Col-
umn (c) shows that the span length has minor
effects on the ACF, especially because all nonlin-
ear interactions occur in the beginning of the span

where the power is still high. Increasing the span
length beyond a certain point has no effect as the
IC does not interact anymore. Column (d) shows
that without CD there is hardly any memory and
with increasing CD the three coefficients and the
HWHM find themselves on saturated levels.

Conclusion
We have proposed a method of determining com-
plex high dimensional properties of the nonlinear
fiber channel, where an analytical description is
not available. Based on a training set, the PCA
enables us to extract the most important features
of the ACF of the nonlinear interference and the
NN predicts the solution in between data points.
Together they become a tool to analyze the ef-
fects on a system when physical layer parame-
ters are changing. Further research includes how
sparse the data set may be while maintaining ro-
bust predictions at the same time.
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