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Abstract  

Zooplankton and microbes play a key role in the ocean’s biological cycles by 

releasing and consuming copious amounts of particulate and dissolved organic matter. 

Additionally, zooplankton provide a complex microhabitat rich in organic and 

inorganic nutrients in which bacteria thrive. In this study, we assessed the 

phylogenetic composition and metabolic potential of microbial communities 

associated with crustacean zooplankton species collected in the North Atlantic. Using 

Illumina sequencing of the 16S rRNA gene we found significant differences between 

the microbial communities associated with zooplankton and those inhabiting the 

surrounding seawater. Metagenomic analysis of the zooplankton-associated microbial 

community revealed a highly specialized bacterial community able to exploit 

zooplankton as microhabitat and thus, mediating biogeochemical processes generally 

underrepresented in the open ocean. The zooplankton-associated bacterial community 

is able to colonize the zooplankton’s internal and external surfaces by using a large 

set of adhesion mechanisms and to metabolize complex organic compounds released 

or exuded by the zooplankton such as chitin, taurine and other complex molecules. 

Moreover, the high number of genes involved in iron and phosphorus metabolisms in 

the zooplankton-associated microbiome suggests that this zooplankton-associated 

bacterial community mediates specific biogeochemical processes (through the 

proliferation of specific taxa) that are generally underrepresented in the ambient 

waters. 
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Introduction 

Zooplankton and microbes are fundamental components of the ocean’s lower food 

web. Crustacean zooplankton release copious amounts of particulate organic matter 

(POM) originating from phytoplankton, heterotrophic microzooplankton and detritus 

into the ambient water (Heinle et al., 1977; Calbet, 2001). Heterotrophic microbes are 

responsible for most of the dissolved organic matter (DOM) mineralization in the 

open ocean (Azam et al., 1983; Cherrier et al., 1996). These two components of the 

marine food web are generally treated as separate entities only connected through the 

trophic cascades, albeit, microbes and zooplankton are dynamically linked at different 

ecological levels (Azam and Malfatti, 2007; Tang et al., 2010). For example, 

microbes may exploit zooplankton as a nutrient- and carbon-enriched microhabitat by 

colonizing its exoskeleton and/or gut (Carman and Dobbs, 1997; Tang et al., 2010). 

Additionally to the nutrient-enriched conditions, the zooplankton’s gut provides a 

hypoxic environment that may facilitate marginal but important anaerobic processes 

such as denitrification, dissimilatory nitrate or nitrite reduction and methanogenesis in 

the oxygenated open waters (De Angelis and Lee, 1994; Tang et al., 2011; Glud et al., 

2015; Stief et al., 2017). Finally, the zooplankton’s acidic digestive tract may promote 

iron recycling and solubilization via multiple pathways involving microbes (Tang et 

al., 2011; Nuester et al., 2014; Schmidt et al., 2016). These processes deliver 

bioavailable iron to the ambient water that can be utilized by phytoplankton, thus 

promoting iron fertilization (Schmidt et al., 2016).  

Even though the majority of microbes are free-living, several studies have 

shown that the abundance of zooplankton-associated bacteria can be orders of 

magnitude higher than free-living bacteria on a per volume base (Tang et al., 2006; 

Tang et al., 2010; Tang et al., 2011; Schmidt et al., 2016). Culture-based studies 
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indicated that zooplankton-associated microbial (i.e., bacterial and archaeal) 

communities consist of similar taxa as ambient water communities (Delille and 

Razouls, 1994; Hansen and Bech, 1996). However, recent culture-independent studies 

reveal a strong niche partitioning of bacterial communities between the zooplankton 

and the surrounding waters probably driven by the different physico-chemical 

conditions (Grossart et al., 2009; De Corte et al., 2014). These findings also suggest 

an active microbial exchange between the two habitats in which each environment 

favours the proliferation of specific taxa generally underrepresented in the other 

environment (Grossart et al., 2009; De Corte et al., 2014).  

The aim of this study was to compare the phylogenetic composition of the 

bacterial community inhabiting the ambient water with that associated with different 

crustacean zooplankton species collected in the North Atlantic Ocean using 16S 

rRNA gene Illumina sequencing. Zooplankton individuals were collected during day 

and night to assess whether the feeding status influences the zooplankton-associated 

bacterial community. Finally, metagenomic analyses provided insights into the yet 

underexplored metabolic interaction between the zooplankton and the associated 

bacterial community. 

 

Results 

Bacterial community richness and diversity 

Rarefaction analyses [phylogenetic diversity (PD), Chao richness and 

observed operational taxonomic units (OTUs)] showed clear differences between 

zooplankton-associated and ambient water bacterial communities (Fig. S1). The 

rarefaction curves for zooplankton-associated bacterial communities approached a 
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plateau, however, the rarefaction curves of the ambient water communities did not 

level off (Fig. S1). Additionally, the PD and Chao richness were significantly higher 

(T-test, P<0.001) for the ambient water than the zooplankton-associated bacterial 

community (Fig. 1a, b, c, Table S1). Furthermore, the Simpson evenness was 

significantly higher in the zooplankton-associated than in the free-living bacterial 

community (Fig. 1d, Table S1). No significant differences were found between 

diversity, richness and evenness indexes of ambient water bacterial communities 

collected at different depth layers or between zooplankton–associated communities 

collected during the day versus night (ANOVA on rank, P>0.001) (Figs. 1 and S1, 

Table S1). Members of the zooplankton-associated bacterial community were more 

evenly distributed than those of the ambient water and exhibited a comparatively low 

diversity with few but abundant OTUs. 

Bacterial community composition in zooplankton versus ambient water 

Principal Coordinates Analysis (PCoA) using weighted Unifrac distances 

(Lozupone et al., 2011), was used to statistically explore and visualize the similarity 

between the different bacterial communities. PCoA analysis clearly separated ambient 

water and zooplankton-associated bacterial communities (Fig. 2), with the first 

coordinate accounting for 61% and the second for 11% of the variance. Zooplankton-

associated communities clustered together and, within them, clustered according to 

the taxon of the zooplankton individuals (Fig. 2a) and to the sample location (Fig. 2b). 

We did not observe clustering associated to the time of collecting (day vs. night) the 

zooplankton (Fig. 2c). The shared OTUs among groups of samples (surface and 

mesopelagic free-living bacterial communities and zooplankton-associated bacterial 

communities collected during day and night) were determined with Mothur (Schloss 

et al., 2009) from the OTU distribution obtained in QIIME. Only 0.7% of the OTUs 
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were shared and ubiquitously present in the zooplankton-associated and ambient 

water communities (Fig. S2). The zooplankton samples (day vs. night) shared only 

~10% of the total OTUs, whereas the communities from the two depth layers 

(subsurface and mesopelagic) shared ~18% of the OTUs. Therefore, the number of 

shared OTUs was higher within ambient water bacterial communities than within 

zooplankton-associated bacterial communities. In addition, the contribution of unique 

OTUs was higher in the ambient water than in zooplankton-associated bacterial 

communities (Fig. S2).  

Taxonomic characterization of the bacterial communities  

The phylogenetic analysis of the 16S rRNA gene sequences performed in 

QIIME using the Greengenes database revealed the dominance of three bacterial 

phyla in ambient water communities (Proteobacteria, Bacteroidetes and 

Marinimicrobia (SAR406)) and of two bacterial phyla (Proteobacteria and 

Bacteroidetes) in the zooplankton-associated communities (Fig. 3a). At the family 

level (Fig. 3b), Flavobacteriales and Rhodobacterales dominated the zooplankton-

associated communities (32.3±11.8% and 33.7±8.2%, respectively), followed by 

Burkholderiales and Pseudoalteromonadales (ranging between 2 and 10% of the total 

community). There were no significant differences observed between day and night 

samples (Fig. 3, Table 1). In the ambient water, the bacterial community consisted of 

Flavobacteriales (11%), Rickettsiales (10%), Deltaproteobacteria (7%), 

Oceanospirillales (7%) and Acidimicrobiales (6%), followed by Chloroflexi 

(SAR202) (5%), Marinimicrobia (SAR406) (4%), Rhodobacteriales (3%) and 

Alteromonadales (3%) (Fig. 3b, Table 1). Three taxa (Flavobacteriales, 

Rhodobacterales, Alteromonadales) contributed significantly to both the ambient 

water and zooplankton-associated bacterial communities; however, their relative 
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contribution to the respective bacterial community differed between the two 

environments (Fig. 3, Table 1). Conversely, some phylogenetic groups, such as 

Rickettsiales (SAR11), Acidimicrobiales, SAR202, Sva0853 and Arctic96B-7 were 

specific for the ambient water (Fig. 3, Table 1). 

Ecotypes in the zooplankton-associated bacterial community 

Oligotyping, a supervised computational method to investigate the diversity of 

closely related but distinct bacterial organisms, was used to classify selected bacterial 

phylogenetic groups. Oligotyping analysis at the nucleotide level of the 

Flavobacteriaceae and Rhodobacteraceae (the two dominant families in the 

zooplankton-associated bacterial community) identified 15 quality-controlled 

oligotypes selected from the highest entropy values (using 16 and 53 components for 

Flavobacteriaceae and Rhodobacteraceae, respectively) (Fig. 4a, b). The 

zooplankton-associated oligotypes largely differed from the bacterioplankton 

oligotypes in the ambient water (Fig. S3). The z-score distribution of the 

Rhodobacteraceae oligotypes resulted in two main clusters, in agreement with the 

clustering of samples obtained according to the Bray Curtis similarity index. The first 

cluster grouped samples obtained from Calanus sp. and Paracalanus sp., and the 

second one grouped samples obtained mainly from Paraeuchaeta sp. (Figure 4a, c). 

Flavobacteriaceae oligotypes did not cluster according to zooplankton species, 

location or time of the day (Fig. 4 b, d).  

Metagenomic analysis of the zooplankton-associated microbial community  

The metagenomic data obtained from the copepod-associated (Calanus sp. and 

Paraeuchaeta sp.) microbial community were used to characterize the potential 

metabolic pathways present in the microbial consortium associated with the 

zooplankton’s gut and/or carapace. 

This article is protected by copyright. All rights reserved.



 

Genes indicative for membrane-associated proteins  

Several carbohydrate binding domain (CBD19) sequences such as chitinase 

and chitin recognition protein-encoding genes were found in the metagenome (Figs. 5, 

6). Genes from peptide binding domains encoding for proteins that facilitate binding 

of the cells to a saccharide-based surface such as chitin (the main component of the 

zooplankton’s carapace) were also abundant in the metagenomes from zooplankton-

associated bacterial communities (Fig. 5). Other genes involved in microbial 

adherence processes, such as pilus and fimbriae-encoding genes, were also found in 

the zooplankton-associated microbial community. Pilus protein-encoding genes were 

mainly associated with Gammaproteobacteria (100% of the PilF genes and 17% of 

the PilC genes), Bacteroidetes (26% PilC genes), Planctomycetes (23% of the PilC 

genes), whereas, fimbriae protein-encoding genes were affiliated to Bacteroidetes 

(27%) and Planctomycetes (23%) (Figs. 5, 6, Table S2). Genes involved in gliding 

motility were the most abundant membrane associated genes with 1053 assigned 

reads (gldA, gldD, gldF, gldG, gldH, gldI, gldJ, gldK, gldL, gldM, gldN, gldO, remB, 

sprA, sprB), predominantly associated to the Bacteroidetes phyla (98% of the total 

reads) (Fig. 5, Table S2). 

Genes indicative of pH homeostasis  

The metagenomic analysis indicated the presence of genes encoding proteins 

involved in cellular pH regulation mechanisms such as potassium/proton antiporter 

and proton conducting membrane transporters balancing [H
+
] ion concentrations 

within the cell to control acidity accounting for 289 reads (Fig. 5 and 6, Table S2). 

These transporter-associated genes were mainly affiliated with the 

Alphaproteobacteria (54%) and Bacteroidetes (32%) (Fig. 5, Table S2). The uptake 

of ammonium or release of ammonia may also be used to raise the cell’s pH to control 
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its cytoplasmic acidity. In this context, ammonia transporter and several metabolic 

genes, such as serine dehydratase (SDH), ornithine cyclodeaminase (OCD), alanine 

dehydrogenase (ALD) and dissimilatory nitrite reductase (NIRB, NIRD) were also 

found in the metagenome of zooplankton-associated bacteria (Fig. 6, Table S2). The 

ammonium transporters accounted for a similar number of reads as the 

potassium/proton antiporter and proton transporters, mainly associated with 

Alphaproteobacteria (26%) and Flavobacteriaceae (47%), the two dominant groups 

of the zooplankton-associated bacterial community (Fig. 5, Table S2). Additionally, 

several other genes, such as glutamate decarboxylase (GAD) (present in diverse 

phyla), arginine decarboxylase (mainly in Bacteroidetes 64%) and carbonic anhydrase 

(mainly associated with Bacteroidetes 72%) (Fig. 5, Table S2) may also play an 

important role in regulating the cellular pH by utilizing [H
+
] ions in their metabolic 

reactions and thus increasing the cytosol pH. 

Energy transduction- and cell protection-related genes 

Several genes related to glycosyl hydrolase (GH), such as chitinase encoding 

genes (GBD19), were found in the metagenome (Fig. 6). Chitinase encoding genes 

were widespread among the bacterial community (Fig. 5) while chitin deacetylase 

was associated exclusively to Bacteroidetes (100% of the chitin deacetylase reads). 

Other genes involved in the degradation of complex molecules released by the 

zooplankton through digestive processes were also found. Cellulase accounted for 200 

reads mainly associated with Bacteroidetes (53%), while amylase accounted for 431 

reads mostly related to Bacteroidetes (42%) and Gammaproteobacteria (31%) (Fig. 5, 

Table S2). These two genes encode enzymes primarily involved in the degradation of 

cellulose, starch and other related polysaccharides of phytoplankton origin. 
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Additionally, metagenomic analysis revealed several genes encoding proteins 

involved in anaerobic metabolic pathways. Genes indicative of fermentative pathways 

were also present in the metagenomes, e.g., genes encoding enzymes involved in the 

transformation of pyruvate into lactate (pyruvate ferredoxin oxidoreductase; PFOR) 

and acetyl CoA into ethanol (aldehyde dehydrogenase, alcohol dehydrogenase and 

acetyl CoA synthase; ALDH, ADH) (Fig. 6), potentially generating oxidizing agents 

such as NAD
+
 for redox reactions (Fig. 6). Lactate dehydrogenase (LDH, Fig 6) and 

alcohol dehydrogenase (ALDH and ADH, Fig. 6) encoding genes were distributed 

amongst Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes (Fig. 5).  

Genes associated with denitrification and dissimilatory nitrate and nitrite 

reduction to ammonium (DNRA), such as narG, narH, narI, napA, napB, nirB, nirD, 

nirK, nirS, norB, nosZ (Fig.6, Table S2) were also found in the metagenome of the 

zooplankton-associated microbial community. These genes were mainly associated 

with Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. Furthermore, a 

few genes usually associated to oxygen-limited environments, such as pyruvate 

ferredoxin oxidoreductase (PFOR, Fig. 6), citrate transporter (Cit, Tct), cytochrome c 

peroxidase and nitrite reductase (NIR, Fig. 6), were also detected in the metagenome. 

All these genes related to oxygen-limited environments were mostly associated to 

Bacteroidetes (Fig. 5, Table S2). The zooplankton-associated bacterial community 

also harbored genes involved in reductive TCA and anaplerotic carbon fixation 

pathways (isocitrate dehydrogenase, aconitase, citrate lyase; IDH, ACO, CL, Fig. 6), 

mainly associated with Bacteroidetes and Alphaproteobacteria groups (isocitrate 

dehydrogenase (IDH) genes, Fig 5). We also found genes encoding taurine-pyruvate 

aminotransferase (Tpa) and sulfoacetaldehyde acetyltransferase (XsC) related to 

taurine metabolism and belonging mostly to Alphaproteobacteria (Figs. 5, 6), and 
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genes indicative for cellular detoxification, such as laccase and cytochrome P450, 

peroxidase (Fig. 6). We also detected several genes involved in phosphorus utilization 

such as phosphate transporters, exopolyphosphatase (ExoP), alkaline phosphatase 

(AP) and polyphosphate kinase-encoding (PPK) genes mainly associated to 

Bacteroidetes and Alphaproteobacteria (Figs. 5, 6, Table S2). 

Additionally, the zooplankton-associated bacterial community harbored many 

genes involved in iron utilization, primarily associated with Bacteroidetes, 

Alphaproteobacteria and Gammaproteobacteria. Iron ABC transporter and Fe
3+

-

dicitrate transporter fecA genes accounted for a large fraction of the iron related genes 

(with 200 and 1900 reads respectively, Fig. 5) whereas, iron chelation-associated 

genes such as ferrochelatase gene were present only at moderate abundance (141 

reads, Fig. 5). We have also detected a ferric reductase gene that encodes for an 

oxidoreductase to inter-convert ferric (Fe
3+

) and ferrous (Fe
2+

) ion (Fig. 6). 

 

Discussion  

Bacteria-mesozooplankton associations 

Studies have shown that the bacterial community associated with crustacean 

zooplankton resides on the exoskeleton (epibiont) and/or is associated with the 

zooplankton’s gut (endosymbiont) (Tang et al., 2010; Eckert and Pernthaler, 2014). 

Culture-independent studies showed Alphaproteobacteria and Actinobacteria are the 

most abundant members of the bacterial community associated with marine and 

freshwater zooplankton, followed by Bacilli and Gammaproteobacteria (Grossart et 

al., 2009; De Corte et al., 2014). These previous findings are in partial agreement with 

those obtained in this study. We found that in the temperate and sub-arctic North 

Atlantic Ocean, the zooplankton-associated bacterial community is mainly composed 
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of Flavobacteria, Alphaproteobacteria (particularly Rhodobacterales) and 

Gammaproteobacteria (Fig. 3). Flavobacteria represent the second most abundant 

clade after Proteobacteria in marine ecosystems (Glockner et al., 1999; Gomez-

Pereira et al., 2010). Members of this bacterial clade are able to degrade high 

molecular weight organic matter, such as cellulose and chitin, suggesting a 

commensal or parasitic interaction between Flavobacteria and zooplankton (Cottrell 

and Kirchman, 2000; Beier and Bertilsson, 2013). Zooplankton’s molts and carcasses 

are also a major source of chitin in the ocean, and their colonization by bacteria may 

also play a key role the C and N cycling of the ocean (Tang et al., 2010). 

Rhodobacteraceae, the second most abundant family found in the zooplankton-

associated bacterial community (Fig. 3), have been reported to live associated with 

marine organisms, such as coral, sponges and microalgae (Ridley et al., 2005; Burke 

et al., 2011; Roder et al., 2014) and to contribute to biofilm formation (Pujalte et al., 

2014), indicating that this group may play a major role in the colonization of the 

zooplankton exoskeleton.  

The microbial community associated with the zooplankton’s gut might consist 

of a transient (passing through the digestive system of the host) and a persistent 

bacterial community (Grossart et al., 2009; Tang et al., 2010). To test whether the diel 

cycle (which can be related to the feeding status) might influence the bacterial-host 

interactions, zooplankton samples were collected at different times of the day (day vs. 

night). In contrast to a previous report (Grossart et al., 2010), our results do not 

indicate significant diel differences in the composition of the zooplankton-associated 

bacterial community (Fig. 2). Therefore, the zooplankton-associated bacterial 

community might have been shaped by other factors rather than the diel migration 

and/or feeding status. The taxa-specific microbiome and the strong dependence on the 
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sampling location (Fig. 2) suggest that the ambient water microbial community and 

the presence of a suitable host are likely the main factors determining the composition 

of the zooplankton-associated bacterial community.  

However, only a few 16S rRNA gene oligotypes within the specific bacterial 

taxa analyzed (i.e., Flavobacteriaceae, Rhodobacteraceae) dominated the 

zooplankton-associated communities. This suggests that the zooplankton-associated 

bacterial community consists of specialized ecotypes belonging to only a few 

phylogenetic groups that act as an interactive community (such as a consortia) able to 

metabolize different compounds released by the zooplankton, either as exudates from 

the body surface or as a by-product of the digestion processes occurring in the 

zooplankton gut. 

Zooplankton-associated bacterial community and its implication in the global 

biogeochemical cycles 

The zooplankton-associated microbial community exploits zooplankton as a 

microhabitat. In this microhabitat, genes indicative for surface attachment and 

encoding for pili, fimbrae and chitin-recognition proteins are used to colonize the 

zooplankton’s internal and/or external surface (Tran et al., 2011; Bodelon et al., 

2013).  

The high number of glycosyl hydrolase encoding genes (mainly associated 

with the Flavobacteria clade, Fig. 5) suggests the capability of the zooplankton-

associated bacterial community to metabolize polysaccharides and amino-sugars, such 

as cellulose or chitin, respectively (Beier and Bertilsson, 2013). In agreement with our 

findings, Flavobacteria have been shown to be able to utilize chitin and N-acetyl 

glucosamine (Cottrell and Kirchman, 2000). Taken together, these results suggest a 

tight association between crustacean zooplankton and Flavobacteria, the latter being 
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able to metabolize high molecular weight organics from the zooplankton’s 

exoskeleton. Intriguingly, we did not obtain sequences related to Vibrio spp., another 

important player in chitin mineralization often associated with crustacean zooplankton 

(Erken et al., 2015) in contrast to previous studies conducted in coastal systems 

(Montanari et al., 1999; Turner et al., 2009). This discrepancy could be explained by a 

relatively lower abundance of Vibrio ssp. in cold open ocean waters as compared to 

warm coastal regions (Vezzulli et al., 2012). Additionally, the presence of amylase 

and pectin esterase-encoding genes suggests the capability of zooplankton-associated 

bacteria to metabolize starch and pectin (Moal et al., 1987; Alderkamp et al., 2007) 

derived from crustacean zooplankton grazing on phytoplankton.  

Metagenomic and -proteomic studies revealed that taurine might be an 

important substrate for heterotrophic marine bacteria (Poretsky et al., 2010; Sowell et 

al., 2011; Williams et al., 2012). The importance of taurine for bacterial growth has 

primarily been demonstrated using SAR11 cultures (Carini et al., 2013). The 

concentration and turnover rate of dissolved taurine in the ocean have only recently 

been determined (Clifford et al., 2017). Taurine is an organo-sulfonate found in the 

tissues of marine invertebrates such as zooplankton and is a potential source of 

carbon, nitrogen and sulfur for heterotrophic bacteria (Williams et al., 2012; Carini et 

al., 2013). Thus, the copepod-associated bacterial community is in close proximity to 

the primary source of taurine, the copepod’s body. The presence of taurine catabolic 

genes in the metagenomes such as the taurine-pyruvate aminotransferase and sulfo-

acetaldehyde acetyltransferase indicates the potential importance of taurine as a 

substrate for zooplankton-associated bacterial communities (Figs. 5, 6). Surprisingly, 

even though most of the taurine catabolic genes were associated with 
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Alphaproteobacteria, none were affiliated to SAR11, likely due to the low 

contribution of this clade to the zooplankton-associated bacterial community. 

The copepod’s hindgut exhibits low oxygen concentrations (from suboxic to 

anoxic) and low pH (Tang et al., 2011) suggesting that copepods’ guts are 

microhabitats suitable for anaerobic microbes able to tolerate acidic conditions. The 

metagenome of the zooplankton associated community harbors genes indicative for 

pH regulation of the cytosol’s acidity by removing protons or by using ammonia as 

proton scavenger to produce ammonium (Booth, 1985; Slonczewski et al., 2009).  

Recent publications have documented not only high level of dissimilatory nitrate and 

nitrite reduction activity but also the presence of genes involved in DNRA pathways 

in marine zooplankton-associated microbial communities (Glud et al., 2015; Stief et 

al., 2017). Genes encoding enzymes for DNRA were also retrieved in the 

metagenome presented here. However, our data (based on the relative gene 

abundances) point towards ammonium biosynthesis (thus, assimilatory nitrate/nitrite 

reduction) rather than N2 gas dissipation by bacteria (Table S2). In contrast to 

previous reports on the presence of anammox and anaerobic methane oxidation on 

zooplankton’s carcasses sinking through oxygen minimum zone (Stief et al., 2017), 

the metagenome of zooplankton-associated microbial communities from the open, 

well-oxygenated Atlantic lacked genes indicative for these anaerobic pathways.  

Microbes living at neutral or basic pH, such as marine free-living bacteria, are 

exposed to low iron availability due to the insolubility of ferric iron (Fe
3+

). However, 

the environmental conditions in the copepod’s gut, characterized by low pH and low 

oxygen (Tang et al., 2011), favor the bioavailable ferrous form (Fe
2+

) and thus have 

the potential to facilitate iron remineralization (Tang et al., 2011; Nuester et al., 2014; 

Schmidt et al., 2016). Therefore, ferrous ions could be directly available for the 
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cytochrome c production without the need of ferric-reductase (Schroder et al., 2003). 

However, the gene encoding this latter enzyme was relatively abundant in the 

copepod-associated bacterial community (Fig. 5, Table S2), suggesting that iron is 

present in different forms in the zooplankton microhabitat. Thus, the zooplankton-

associated bacterial metabolic pathways could play an important role in the recycling 

of iron following the zooplankton grazing of diatoms in the euphotic layers in iron 

limited regions of the global ocean (Hutchins and Bruland, 1994; Hutchins et al., 

1995). Moreover, the zooplankton grazing on phytoplankton may also play an 

important role in the phosphorus recycling of the open ocean (Corner, 1973; Olsen et 

al., 1986). The bioavailable phosphorus released by the zooplankton (mainly in form 

of inorganic phosphate) could be directly metabolized by the copepod-associated 

bacterial community, which harbors a large number of genes encoding for phosphate 

transporters (Fig. 5, Table S2). Hence, gut associated bacteria might scavenge 

phosphate within the gut and consequently reduce the amount of phosphorous 

compounds released via fecal pellet production into the environment. Additionally, 

the presence of detoxification genes implies that the zooplankton-associated bacterial 

community responds to the presence of toxic by-products derived from digestive 

processes occurring in the host’s gut. 

The contribution of archaea to the zooplankton-associated microbial 

community was negligible in the present study. Only a low number of reads 

associated to amylase of archaeal origin were found (Table S2). Our results suggest 

that in the zooplankton’s gut, bacteria outcompete archaea. However, a previous study 

showed that zooplankton digestive tracts are most likely sites for methanogenesis (De 

Angelis and Lee, 1994), a process mediated by archaea. Our results further suggest 

that methane production by zooplankton-associated communities is most likely a 
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species-specific process. Thus, only specific zooplankton species might be suitable 

hosts for methanogenic archaea and fuel methane production in oxygenated waters. 

 

Conclusion 

In the North Atlantic Ocean, the bacterial community associated with 

crustacean zooplankton is mainly shaped by the zooplankton host (taxa-specific 

interactions) and the bacterial community of the ambient water to which the 

zooplankton host is exposed. The zooplankton-associated bacterial community is 

highly specialized, able to adhere and colonize internal and/or external surfaces, and 

to utilize high molecular weight organic compounds and metabolites, such as taurine 

released by zooplankton. Therefore, the zooplankton-bacteria consortium can mediate 

specific biogeochemical processes (through the proliferation of specific bacterial taxa) 

that are generally underrepresented in the ambient waters. However, further studies to 

quantitatively assess the contribution of these communities to the global 

biogeochemical cycles are required. 

 

Material and Methods 

Study area and sampling 

Water samples were collected during the MEDEA-II cruise (June-July 2012) 

at four different stations located between 50º51’N 28º51’W and 66º01’N 02º41’W 

(Fig. S4). Seawater samples were collected with a rosette sampler equipped with 25L 

Niskin bottles. To characterize the bacterial community of the ambient waters, 10 L of 

seawater were sampled from the lower euphotic layer (100 m) and the upper (300-500 

m) and lower (1000 m) mesopelagic layer. The seawater was filtered onto 0.2 μm 

GTTP membrane filter (Millipore) and the filters stored at −80°C until further 
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processing in the laboratory. Mesozooplankton samples were collected twice per day 

at the same station as the ambient water using vertical plankton tows (200 μm mesh 

size, hoisted at 30 m min
−1

) from 200 m during the night, and from 750 m depth 

during the day. These are the depth layers within which the majority of the 

crustaceous zooplankton migrates over a diel cycle (Steinberg et al., 2000; Tang et al., 

2010). The content of the cod end of the plankton net was transferred into a plankton 

splitter and concentrated over a 70 μm mesh Nitex screen. The zooplankton samples 

were then transferred into 50 mL Greiner tubes and stored at −80°C until sorting. 

Once at the home laboratory, zooplankton individuals were thawed at room 

temperature and transferred to a Petri for sorting the dominant crustacean zooplankton 

taxa (i.e., Calanus, Paracalanus, Paraeuchaeta, Themisto, Evadne and Oncaea). To 

evaluate the zooplankton species-associated bacterial community, 10 individuals of 

each taxon were collected under a dissecting microscope using clean forceps or a 

sterile pipette and transferred into sterile Eppendorf tubes for nucleic acid extraction.  

DNA extraction 

The DNA of the ambient water samples was extracted using Ultraclean Soil 

DNA isolation Kit (MoBIO Laboratories). Zooplankton DNA was extracted using the 

phenol-chloroform extraction protocol (Weinbauer et al., 2002), preceded by a bead-

beating step to facilitate lysis of the zooplankton individuals. NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies) was used to check the quality of the 

extracted DNA. 

Next generation sequencing and bioinformatics analyses of the bacterial 16S 

rRNA genes.  

The 16S rRNA genes of the zooplankton-associated and ambient water 

bacterial communities were PCR amplified with the bacterial primers 341F (5’- 
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CCTACGGGNGGCWGCAG-3’) and 805R (5’-GACTACHVGGGTATCTAATCC -

3’) (Klindworth et al., 2013). PCR amplification of the 16S rRNA gene was carried 

out in 25 μL reaction volume using Fermentas Taq polymerase (Thermo Scientific) in 

a Mastercycler (Eppendorf) with the following parameters: initial denaturation at 

95°C for 5 min, followed by 30 cycles of denaturation at 94°C for 1 min, annealing at 

57.5°C for 30 seconds, and extension at 72°C for 45 seconds, with a final extension at 

72°C for 7 min. The PCR products were additionally purified with a PCR purification 

kit (5-Prime). The quality of the PCR product was checked on 2% agarose gel. The 

16S rDNA amplicons were subsequently sequenced with Illumina Miseq high-

throughput sequencing (2×250 bp paired-end platform) at IMGM Laboratories GmbH 

(Martinsried, Germany). 

The bioinformatic analysis of the 16S rRNA gene sequences followed the 

standard operating procedure pipeline of QIIME (Caporaso et al., 2010). Rarefaction 

curves, phylogenetic diversity (PD), Chao1, OTU richness, Shannon index of 

diversity and the Simpson evenness index were calculated with QIIME. Pairwise 

UniFrac distance and principal coordinate analysis (PCoA) (Lozupone et al., 2011) 

were used to compare the bacterial community composition between the samples 

(implemented in QIIME). A t-test (implemented in Sigma Plot v.11) was used to 

assess differences between samples. Oligotyping analysis of Flavobacteriaceae and 

Rhodobacteraceae families was conducted following Eren’s lab pipeline (available 

from http:// oligotyping.org) (Eren et al., 2013). 

Prokaryotic DNA isolation, whole genome amplification and metagenomic 

analysis 

Forty copepod individuals (20 Calanus sp. and 20 Paraeuchaeate sp.) were 

used for the metagenomic analysis of the zooplankton-associated bacterial 
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community. Since the genomic material extracted from the zooplankton-associated 

samples contained both eukaryotic and prokaryotic DNA, DNA extracts were treated 

with the Looxster Enrichment kit (Analytikjena, Germany) following the 

manufacturer’s protocol to enrich the bacterial DNA and remove the eukaryotic DNA. 

The resulting genetic material (enriched in prokaryotic DNA) was subsequently 

amplified with GenomePlex whole genome amplification kit (Sigma-Aldrich) 

following the manufacturer’s instructions. The quality of the amplified DNA was 

checked on 2% agarose, and the DNA was afterwards purified with a PCR 

purification kit (5-Prime). The isolated DNA was used to construct a Nextera library 

(San Diego, USA). The obtained library was subsequently sequenced with Illumina 

Miseq high-throughput sequencing (2×250bp paired-end platform) at IMGM 

Laboratories GmbH (Martinsried, Germany).  

The filtered prokaryotic reads obtained from the Illumina sequencing were 

screened for sequence similarity against KEGG GENES protein database using the 

DIAMOND BLASTX (Buchfink et al., 2015) with an e-value cutoff of 10
-5

 and a 

minimum alignment length cutoff of 30 amino acids. Subsequently, the resulting 

reads were compared to NCBI non-redundant database using DIAMOND BLASTX 

with default parameters. Taxonomic classification and functional annotation to KEGG 

functions was analyzed using MEGAN v5.10 (Huson et al., 2007) with 50 LCA 

minimum score, 10
-5

 maximum expected and minimum support set to 1. 

The sequence data generated are publicly available in the DDBJ database under the 

accession numbers DRA005574 (metagenome) and DRA005573 (amplicons). 
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Table.1 Relative contribution (%, SD) of the most abundant family to the total number of sequences associated with zooplankton samples 

collected during day (750 m) and night (250 m) and from ambient water samples collected from the subsurface and upper (300-500 m) and 

lower (1000 m) mesopelagic layer. 

                      

Taxon 
Zooplankton Samples Water Samples 

Day Night 100 m 300-500 m 1000 m 

Average SD Average SD Average SD Average SD Average SD 

Bacteroidetes_Flavobacteriia_Flavobacteriales 32.3 11.8 33.7 8.2 16.0 8.3 9.5 5.7 8.8 5.8 

Proteobacteria_Alphaproteobacteria_Rhodobacterales 23.8 10.6 20.9 6.8 5.0 3.2 1.3 1.0 2.1 3.6 

Proteobacteria_Betaproteobacteria_Burkholderiales 10.7 16.8 9.1 14.0 0.0 0.0 0.0 0.0 0.0 0.0 

Proteobacteria_Gammaproteobacteria_ Pseudomonadales 8.0 3.5 5.1 4.7 0.0 0.0 0.0 0.0 0.0 0.0 

Proteobacteria_Gammaproteobacteria_Alteromonadales 2.4 1.0 3.6 2.6 3.1 1.5 2.7 1.4 2.9 1.6 

Proteobacteria_Gammaproteobacteria_Oceanospirillales 0.3 0.5 1.1 2.5 7.8 1.7 7.0 3.3 6.4 2.3 

Proteobacteria_Alphaproteobacteria_Rickettsiales 0.1 0.1 0.5 1.1 12.0 2.1 10.1 2.9 6.8 1.5 

Actinobacteria_Acidimicrobiia_Acidimicrobiales 0.0 0.0 0.1 0.0 7.5 3.7 4.9 3.5 5.8 4.8 

Chloroflexi_SAR202 0.0 0.0 0.0 0.0 3.1 5.8 5.5 5.1 6.4 5.0 

Proteobacteria_Deltaproteobacteria_Sva0853 0.0 0.0 0.0 0.0 4.4 5.1 7.8 2.4 8.9 5.9 

SAR406_Arctic96B-7 0.0 0.0 0.0 0.0 3.1 1.5 4.2 1.5 4.8 1.4 
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Figure Legends 

 

Figure 1. Box plot of data of phylogenetic (a) and Shannon (b) diversity indexes, 

Chao species richness (c) and Simpson evenness index (d) obtained from ambient 

water (collected at three different depths layers) and zooplankton-associated (sampled 

during day and night) bacterial communities. The bottom and the top of the box 

represent the first and the third quartiles, while the thick horizontal line represents the 

median.  

 

Figure 2. Principal coordinates analysis (PCoA) of zooplankton-associated and 

ambient water bacterial communities from individual samples. Bacterial 

communities isolated from a specific zooplankton group and depth in the water 

column (a), station (b), or time of the day (c) are represented by the different 

symbols. 

 

Figure 3. Relative contribution of the more abundant phylogenetic classes (a) and 

orders (b) to the total number of 16S rDNA sequences obtained from zooplankton-

associated bacterial communities sampled during day and night, and from ambient 

water bacterial communities collected at three depths (100 m, 500 m and 1000 m).  

Figure 4. Contribution of Rhodobacteraceae (a) and Flavobacteriaceae (b) 

oligotypes obtained from different zooplankton species collected at specific stations 

and time of the day. Different colors represent specific oligotypes for each 

phylogenetic group. Heatmap showing the z-score (numerical representation of a 

value’s relationship to the mean of a group of values) distribution of 

Rhodobacteraceae (c) and Flavobacteriaceae (d) oligotypes among specific 
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zooplankton species. The dendogram clusters the samples according to the Bray 

Curtis similarity index. 

Figure 5. Number of reads (left panel) and their phylogenetic affiliation expressed in 

relative abundance (right panel) of genes associated to the main metabolic pathways 

obtained from the copepod-associated bacterial communities (Calanus sp. and 

Paraeuchaeata sp.). 

Figure 6. Metabolic interpretation of the copepod-associated bacterial metagenome 

obtained from two copepod species (Calanus sp. and Paraeuchaeata sp.). 

Abbreviations are as follows: ACO, aconitase; ADH, alcohol dehydrogenase; ALD, 

alanine dehydrogenase; ALDH, aldehyde dehydrogenase; AMT, ammonium 

transporter; AP, alkaline phosphatase; CBD, carbohydrate binding domain; Cit, citrate 

transporter; CL, citrate lyase; Co-A, Coenzyme-A; Dct, C4-dicarboxylate transport; 

ExoP, exopolyphosphatase; Fec, ferric dicitrate transport system; GABA, gamma 

aminobutyric acid; GAD, glutamate decarboxylase; GDH, glutamate 

dehydrogenase; GH, glycosyl hydrolase; IDH, isocitrate dehydrogenase; LDH, lactate 

dehydrogenase; ME, malic enzyme; NIR, nitrite reductase; Nrt, nitrate/nitrite 

transport system; Nar, nitrate reductase; Nap, periplasmic nitrate reductase; NirA, 

nitrite reductase (related to assimilatory nitrite reduction); NirB, NirD, nitrite 

reductase (associated to dissimilatory nitrite reduction); NirK, NirS, nitrite reductase 

(related to denitrification processes); Nor, Nitric oxide reductase (denitrification); 

Nos, nitrous-oxide reductase (denitrification); OCD, ornithine cyclodeaminase; 

PEPC, phosphoenolpyruvate carboxylase; PEPCK, phosphoenolpyruvate 

carboxykinase; PFOR, pyruvate ferredoxin oxidoreductase; PK; pyruvate kinase; 

PPK, polyphosphate kinase; Pta, phosphate acetyltransferase; SDH, serine 
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dehydratase; SMase, sphingomyelin phosphodiesterase; TauC, ABC-type taurine 

transporter permease component; Tct, tricarobxylate transporter; Tpa, taurine-

pyruvate aminotransferase; URE, urease; Xsc, sulfoacetaldehyde acetyltransferase. 
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Figure 1. Box plot of data of phylogenetic (a) and Shannon (b) diversity indexes, Chao species richness (c) 
and Simpson evenness index (d) obtained from ambient water (collected at three different depths layers) 
and zooplankton-associated (sampled during day and night) bacterial communities. The bottom and the top 

of the box represent the first and the third quartiles, while the thick horizontal line represents the median.  
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Figure 2. Principal coordinates analysis (PCoA) of zooplankton-associated and ambient water bacterial 
communities from individual samples. Bacterial communities isolated from a specific zooplankton group and 
depth in the water column (a), station (b), or time of the day (c) are represented by the different symbols.  
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Figure 3. Relative contribution of the more abundant phylogenetic classes (a) and orders (b) to the total 
number of 16S rDNA sequences obtained from zooplankton-associated bacterial communities sampled 

during day and night, and from ambient water bacterial communities collected at three depths (100 m, 500 

m and 1000 m).  
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Figure 4. Contribution of Rhodobacteraceae (a) and Flavobacteriaceae (b) oligotypes obtained from different 
zooplankton species collected at specific stations and time of the day. Different colors represent specific 

oligotypes for each phylogenetic group. Heatmap showing the z-score (numerical representation of a value’s 

relationship to the mean of a group of values) distribution of Rhodobacteraceae (c) and Flavobacteriaceae 
(d) oligotypes among specific zooplankton species. The dendogram clusters the samples according to the 

Bray Curtis similarity index.  
 
 

209x296mm (150 x 150 DPI)  

 

 

This article is protected by copyright. All rights reserved.



  

 

 

Figure 5. Number of reads (left panel) and their phylogenetic affiliation expressed in relative abundance 
(right panel) of genes associated to the main metabolic pathways obtained from the copepod-associated 

bacterial communities (Calanus sp. and Paraeuchaeata sp.).  
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Figure 6. Metabolic interpretation of the copepod-associated bacterial metagenome obtained from two 
copepod species (Calanus sp. and Paraeuchaeata sp.). Abbreviations are as follows: ACO, aconitase; ADH, 
alcohol dehydrogenase; ALD, alanine dehydrogenase; ALDH, aldehyde dehydrogenase; AMT, ammonium 

transporter; AP, alkaline phosphatase; CBD, carbohydrate binding domain; Cit, citrate transporter; CL, 
citrate lyase; Co-A, Coenzyme-A; Dct, C4-dicarboxylate transport; ExoP, exopolyphosphatase; Fec, ferric 

dicitrate transport system; GABA, gamma aminobutyric acid; GAD, glutamate decarboxylase; 
GDH, glutamate dehydrogenase; GH, glycosyl hydrolase; IDH, isocitrate dehydrogenase; LDH, lactate 

dehydrogenase; ME, malic enzyme; NIR, nitrite reductase; Nrt, nitrate/nitrite transport system; Nar, nitrate 
reductase; Nap, periplasmic nitrate reductase; NirA, nitrite reductase (related to assimilatory nitrite 

reduction); NirB, NirD, nitrite reductase (associated to dissimilatory nitrite reduction); NirK, NirS, nitrite 
reductase (related to denitrification processes); Nor, Nitric oxide reductase (denitrification); Nos, nitrous-

oxide reductase (denitrification); OCD, ornithine cyclodeaminase; PEPC, phosphoenolpyruvate carboxylase; 
PEPCK, phosphoenolpyruvate carboxykinase; PFOR, pyruvate ferredoxin oxidoreductase; PK; pyruvate 
kinase; PPK, polyphosphate kinase; Pta, phosphate acetyltransferase; SDH, serine dehydratase; SMase, 

sphingomyelin phosphodiesterase; TauC, ABC-type taurine transporter permease component; Tct, 
tricarobxylate transporter; Tpa, taurine-pyruvate aminotransferase; URE, urease; Xsc, sulfoacetaldehyde 

acetyltransferase.  
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