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ABSTRACT 

Using GMNIA and shell finite element modelling of steel columns it is ascertained that the 

buckling curves for given imperfections and residual stresses are not only dependent on the relative 

slenderness ratio and the cross section shape but also on the magnitude of the yield stress. The 

influence of the yield stress is to some inadequate degree taken into account in the Eurocode by 

specifying that steel grades of S460 and higher all belong to a common set of “raised” buckling 

curves.  This is not satisfying as it can be shown theoretically that the current Eurocode formulation 

misses an epsilon factor in the definition of the normalised imperfection magnitudes. By 

introducing this factor it seems that the GMNIA analysis and knowledge of the independency of 

residual stress levels on the yield stress can be brought together and give results showing 

consistency between numerical modelling and a simple modified Ayrton-Perry formulation. In this 

paper magnitudes of imperfections and residual stresses in relation to the Eurocode will be 

discussed. It will be shown that the use of equivalent imperfections may be very conservative if 

considered by finite element analysis as described in the current Eurocode code. A suggestion is 

given for a slight modification of the Eurocode formulations of imperfections leading to adequate 

inclusion of modern high grade steels within the four bucking curves.  
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1 INTRODUCTION 

This paper deals with the current formulation of the European column buckling curves, its inherent 

assumptions related to imperfections and yield stress and the manner in which column stability is 

generally treated in the context of finite element modelling. While, in recent decades, interest has 

indeed shifted towards lateral torsional buckling and axial force – bending moment interaction in 

steel members, several points still remain open regarding the benchmark column case and are 

addressed in this paper. A great deal of the background research regarding column stability is 

gathered in the ECCS ‘Manual on Stability of Steel Structures’ from 1976 [1], with the ECCS 

recommendations arriving in the form of four buckling curves two years later [2]. These buckling 

curves were represented by tabulated values, with no related analytical references. Subsequently, in 

1978 Maquoi & Rondal [3] gave 7 different proposals for an equivalent imperfection with which 

the Ayrton-Perry approach could finally be incorporated into the buckling curves. One of the 

proposals corresponds to the analytical column buckling curves, which have remained nearly 

unchanged until this day.  

The equivalent imperfection which practically defines the buckling curves represents a very 

successful attempt of combining the negative effect of initial geometric imperfections and locked in 

residual stresses, while recognizing that their impact on column stability is highly dependent on the 

members’ slenderness. With respect to actual initial geometric imperfections, there has been a 

general consensus since the early 70’s that the assumption of an initial sinusoidal curvature with a 

maximum amplitude of L/1000 in steel columns is perfectly justified. Most documented numerical 

investigations performed on columns include the initial geometric imperfection in this form. As far 

as residual stresses are concerned, two important points are worth noting. A self-equilibrating 

parabolic distribution of residual stresses for European hot-rolled members, often approximated 

with a linear distribution seems to fit best to experimental results and measurements, see Alpsten in 
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[1]. Secondly, both the residual stress magnitude and pattern is largely independent of material 

properties, with the most important impact arising from the geometrical properties of the cross-

section. The independence from material properties directly leads to the fact that yield stress 

variability does not influence residual stresses; this concept is addressed later in this paper. 

The next section presents a brief overview of the assumptions for the numerical simulations used in 

this paper in order to establish buckling curves for columns with different imperfections, 

slenderness and steel grades. Subsequently, current Eurocode 3 provisions for column stability are 

presented, with the two main issues being identified, both from a theoretical perspective and in the 

context of numerical simulations. Finally, a slight modification of the equivalent imperfection 

formulation is proposed, which would lead to certain steel grades no longer being penalized in 

flexural buckling. A comprehensive historical review is given in [4], which also includes further 

details on finite element modelling of columns. 

2 FINITE ELEMENT MODEL  

The commercial software program ABAQUS [5] has been used for the finite element analyses. The 

columns with I-shaped cross-sections are modelled using general purpose S4 shell elements, with 4 

nodes and 6 degrees of freedom per node. This shell element is applicable for analyses involving 

finite member strains and large rotations. One inherent disadvantage of using shell elements is 

represented by a small area of material overlap at the web-flange junctions, while the fillet radius is 

not accounted for; in instances in which numerical simulations are used for comprehensive reports, 

the accurate geometry of the cross-section can be fully reproduced with the use of beam elements at 

web-flange intersection points [6]. Results are presented in this paper for the IPE 160 and HEB 300 

profiles with the cross-section properties used being shown in Table 1. The finite element analyses 

and analytical computations have been limited to strong-axis buckling, with the failure criterion 

used being the one recommended in Eurocode 3 part 1-5, [7], for structures susceptible to buckling, 

i.e. the point at which the maximum load is attained. 

Table 1. Cross-section properties used in analytical calculations 

 

 

2.1 Boundary conditions and material model 

The modelled columns are considered simply supported; kinematic coupling constraints which 

relate the motion of groups of slave nodes to a master node are applied to nodes at the end of the 

member in order establish these boundary conditions and in order to ensure that all end nodes 

remain co-planar at all times. These constraints are shown in Fig. 1, along with the coordinate 

system used and the manner in which axial force is applied to the column; the main global boundary 

conditions and application of load are required only at the master nodes. Furthermore, these end 

conditions allow the free warping and ‘expansion’ of end sections, while flange and web nodes are 

constrained to remain on straight lines. Finally, since only major axis buckling is investigated in this 

paper, transverse deflection is restrained for web-flange junction nodes along the whole length of 

the member. The material model used in the present numerical simulations is the elastic-plastic 

bilinear model, with a strain hardening slope of E/100, as recommended in Annex C of Eurocode 3 

part 1-5, case c). 

2.2 Residual stress 

The basis for the European buckling curves and the most commonly used residual stress pattern for 

hot-rolled I profiles in numerical simulations is the simplified, linear model [8]. The detrimental 

effect on column stability is caused by compressive residual stresses which lead to premature 

yielding of certain parts of the cross-section; therefore, assuming same maximum levels of residual 

stresses, the linearized pattern is slightly more conservative than the parabolic one, since a larger 

Profile A [103mm2] Wel,y [103mm3] Wpl,y [103mm3] Iy [106mm4] 

IPE160 1.98 107 121.8 8.56 

HEB300 14.5 1640 1820 246 
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area in the flanges have residual stresses in compression. In the present paper, this linearized pattern 

is used in numerical simulations, although it is worth noting that the use of this residual stress 

distribution may slightly underestimate buckling capacities [4, 9]. 

 

 

Figure 1.  FE model boundary conditions.  

 

Figure 2. Residual stress patterns, where fy*=235MPa for non-scaled and fy*=fy for scaled values. 

 

The magnitude and distribution of the residual stresses are illustrated in Fig. 2. The common 

methodology of referring to the magnitude of residual stresses as a fraction of yield stress can 

unfortunately be misleading and may represent one of the reasons as to why conflicting 

assumptions can be found throughout the literature regarding this issue. Residual stresses are 

included in the numerical model through an initial thermal step, with the appropriate temperature 

change at any point given by 

Δ RσT
Eβ

    (1) 

where ΔT is the required temperature change, σR is the intended residual stress magnitude at flange 

tip, E is Young’s modulus and β is the temperature expansion coefficient. 

The magnitude of the geometric imperfections, when accompanied by a residual stresses, is given as 

a maximum bow imperfection of L/1000. 

3 EQUIVALENT IMPERFECTION AND BUCKLING CURVES IN EC3 

Column buckling curves are expressed through the so-called column reduction factor χ, which in 

turn is highly dependent on the assumed expression and magnitude of the initial bow imperfection; 

this initial bow imperfection is considered ‘equivalent’, since it includes all possible effects which 

could lead to a reduction in capacity. The current Eurocode code seems to be ‘split’ between two 

different approaches regarding the equivalent imperfection, which, as will be shown below, lead to 

significantly different results. On one hand, the Ayrton-Perry type of approach primarily relates the 

initial imperfection to the non-dimensional slenderness of the column and leads directly to the well-

known buckling curves. On the other hand, Table 5.1 in Eurocode 3 part 1-1, [11], specifies 

different initial imperfection magnitudes for each buckling curve as a fraction of member length. 
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There is a significant difference in equivalent imperfection magnitudes between the two 

approaches. Over the past decades, European specifications for magnitudes of the equivalent 

imperfection expressed as fractions of column length L/ have varied to a significant degree, as 

shown in Table 2. The values given for the (provisional Eurocode 3) the ENV, see [10], are for 

weak axis buckling and they are here in Table 2 given without the influence of the safety factor 

influence. As for the case of major axis buckling the ENV prescribed equivalent imperfections 

back-calculated from the buckling curves (which is the logical direct approach). Furthermore, no 

clear background seems to be available regarding the choice of column length ratios assigned to 

each buckling curve in the current code. 

Table 2. Equivalent imperfection magnitudes for plastic capacities 

Buckling curve Extracted from EC3 Table 5.1 in EC3 Table 5.5.1 in ENV ECCS 1984 

a αa(λ-0.2)k L/250 L/600 L/500 

b αb(λ-0.2)k L/200 L/380 L/250 

c αc(λ-0.2)k L/150 L/270 L/200 

d αd(λ-0.2)k L/100 L/180 L/150 

 

The difference between equivalent imperfections back-calculated from the European buckling 

curves and the ones specified in Table 5.1 is shown in Fig.3a, with the former imperfection being 

expressed as a fraction of member length: 

 
 

0.2           
0.2

L L
α λ k ξ

ξ α λ k
   


  (2) 

Fig. 3b shows the analytical buckling curves obtained using these different imperfection 

specifications; the buckling curves obtained using the imperfections specified in the ENV have been 

added to the figure, in order to highlight the fact that these older imperfections result in column 

reduction factors which are far closer to the current, EC3 reduction factors. Fig. 4 presents GMNIA 

‘obtained’ buckling curves for the IPE160 and HEB300 profiles, with the steel grade used being 

S235. The figures show that the analytical buckling curves are correctly re-established when using 

back-calculated equivalent imperfections. More importantly, the extent to which a too large global 

bow imperfection results in a significant lowering of the curves is seen. The results are fully 

consistent with the analytically derived buckling curves shown in Fig. 3b. A possible reconciliation 

between expressing equivalent imperfections as fractions of member length and the equivalent 

imperfection included in the buckling curves may be inferred from [12]: the equivalent imperfection 

may be extracted from each buckling curve at a relative slenderness of =1 and expressed in the L/ξ 

format using Eq. (2). However, this would still lead to a lack of consistency as the plateau before λ 
= 0.2 will not be reproduced. 

4 YIELD STRESS INFLUENCE  

The equivalent imperfection which forms the basis of the current buckling curves is dependent on 

the non-dimensional slenderness and thus dependent on material yield stress, as follows:  

2 2

1


  


 
  where  

21
1

2

e

k

 
   

 
    and  

W
k

A
  (3) 

where the kernel radius k is given by the section area A and the appropriate section modulus W. The 

relative slenderness is depends on yield stress and the buckling stress: 

y

cr

f
λ

σ
     where   

2

2cr

π Ei
σ

L
  and  

I
i

A
   (4) 

In which we have introduced E as Young’s modulus, i as the radius of inertia and I as the second 
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Figure 3. a) Equivalent imperfections in Table 5.1 and inherent to the buckling curves;  

          b) Analytical buckling curves based on different equivalent imperfections. 

 

Figure 4. GMNIA results with the two equivalent imperfections. 

 

moment of area corresponding to the axis of bending.  The relation between buckling length and 

normalized slenderness follows: 

          
y

y

fL E
λ L πi λ

πi E f
     (5) 

Bow imperfections have been historically expressed as fractions of column length L/ξ, where most 

commonly ξ = 1000 for purely geometric initial imperfections and ξ takes lower values when the 

imperfection considered is equivalent, i.e. residual stresses are also accounted for. Therefore, the 

normalized imperfection can be expressed as 

y

e L ξ πi E
λ αελ

k k ξk f
     (6) 

where the imperfection coefficient α and material factor ε are given by 

235

π i E
α

ξ k MPa
   and  

235MPa

y

ε
f

   (7) 

In the Eurocode Eq. (6) is modified by introducing the plateau and neglecting the influence of the 

material factor so that the normalized imperfection takes the form: 
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 0.2
e

α λ
k
    (8) 

In which α is given by the EC3 dependent on cross-section type and on whether the yield stress is 

below that of S420 grade steel or not. It is important to note that, based on the assumptions that the 

member initial imperfections are dependent on cross-section properties and column length, Eq. (6) 

is the theoretical format, in which the square root dependency of the equivalent imperfection on 

material yield stress is removed through the material parameter ε. The actual format of the 

equivalent imperfection which forms the basis of the buckling curves in the Eurocode is given in 

Eq. (8), where the plateau for stocky members has been introduced and the material parameter has 

been omitted; this deliberate omission is attributed to ‘simplicity reasons’ in the recent Consistency 

report. [12]. For hot-rolled profiles susceptible to buckling about the minor axis, the choice between 

buckling curves, based on the material yield stress is presented in Table 6.2 in EC3: all steel grades 

up to and including S420 are assigned to the same buckling curve, while higher steel grades ‘jump’ 

one curve [11]. It is important to note at this point that the main reason for assigning different 

buckling curves for lower and higher steel grades is the same as the differentiation between cross-

sections at a h/b ratio of 1.2: the influence and magnitude of residual stresses [1]. The general 

consensus since the 60’s has been that the magnitude of residual stresses is largely independent 

from the material yield stress; thus, the higher the steel grade, the lower the negative influence of 

residual stresses. Most available numerical simulations for flexural and lateral torsional buckling, 

see for example [9], which include a residual stress pattern are performed on the standard grade 

S235 steel, with the maximum magnitude of compressive residual stress at flange tips being defined 

as a fraction (usually 0.3 or 0.5) of yield stress. In most cases, it is not clear if this assumption is 

related to the actual material yield stress or to a standard reference yield stress of 235 MPa. This 

may represent one of the reasons why conflicting assumptions can be found throughout the 

literature regarding the issue of residual stress proportionality with material yield stress. 

Due to the fact that yield stress is inherently related to the pattern and magnitude of residual stresses 

in the context of member stability, GMNIA results are first given below in order to show the non-

negligible difference between two sets of basic assumptions. Fig. 5a shows the natural increase in 

buckling capacity if the magnitude of residual stresses is not considered to scale with material yield 

stress. In Fig. 5b, the deviation between the two assumptions is shown for each steel grade. In both 

cases the differences are larger for the HEB300 section due to the larger relative magnitude of 

residual stresses and the well-known sensitivity to imperfections around a non-dimensional 

slenderness of one is seen. 

The numerical simulations results presented in Fig. 6 show the gradual increase in capacity as 

material yield stress increases. Simulated curves are shown only for the standard S235 steel grade 

and S420 and S700. This is due to the fact that these steel grades represent the ‘upper bounds’ of 

the two groups of steel grades given in Table 6.2 in EC3, with the jump to the higher, a0 buckling 

curve being performed at S460. Assigning one unique buckling curve to multiple steel grades 

directly implies that the ‘upper bound’ of the group will be the most penalized. 

GMNIA results presented in Fig. 7 reinforce the point made in the previous section, with the 

addition of higher steel grades and also show the raise of the simulated curves with the increase in 

yield stress, when assuming equivalent imperfections as given in Table 5.1 in EC3.  

As mentioned in the Introduction, it was remarked by Dwight as early as 1975 that there is no 

reason for multiple steel grades to be placed on the same buckling curve. From a theoretical 

perspective, due to the fact that the current equivalent imperfection is proportional (through λ) to 

yield stress, higher strength steel members are assumed to contain a larger initial bow imperfection 

and / or higher residual stresses. This is not only unrealistic, but one would expect the trend to be 

quite the opposite, as the manufacturing process for high-strength would be more tightly controlled. 

5 PROPOSAL OF MODIFIED EQUIVALENT IMPERFECTION 

It has been shown in the previous section that the equivalent imperfection’s square root dependency 

and the placement of several steel grades on the same buckling curve leads to the penalization of.   
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Figure 5. GMNIA results for different steel grades and residual stress magnitude a) Simulated buckling curves; 

 b) Relative deviation between the two assumptions for each steel grade. 

 

 

Figure 6. GMNIA results for different steel grades (L/1000 and a linear residual stress distribution). 

 

 

Figure 7. GMNIA results for different steel grades using Table 5.1 equivalent imperfections. 
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higher strength steels. The introduction of the a0 buckling curve only partly overcomes this issue 

With continuity becoming an increasing focus in European standards in recent decades and with the 

use of high-strength steels increasing considerably since the 70’s, it is suggested that the expression 

of the equivalent imperfection used in the buckling curves become dependent on the slenderness 

L/i, instead of the relative slenderness, through the introduction of the well-known material 

parameter , as shown in Eq. (6), but including a plateau as follows (Note the introduction of 

material parameter , see Eq. (7) ): 

  2

235MPa
0.2 0.2eq

L
e α λε k α k

i π E

 
     

 

  (9) 

A similar proposal was made by Maquoi in 1982 [13], which included the expression  

ε = (235MPa / fy)
0.8 for the material factor ε, together with slightly modified imperfection factors α. 

The proposal made in this paper does not change resulting buckling reduction factors for the 

standard S235 steel grade and thus, imperfection factors should require no modifications.  

 

Figure 8. a) Analytical buckling curves for S420 using the proposed expression for the equivalent imperfection;  

b) Relative deviation between the proposal and current EC3 specifications. 

 

The current proposal would lead to the automatic raise of buckling curves, as yield stress is 

increased; the resulting modified analytical buckling curves are shown for the S420, S460 and S700 

steel grades in Fig. 8, Fig. 9 and Fig. 10. On the right-hand side of the figures the percentage 

deviation of the modified curves from the EC3 curves is illustrated. Numerical simulation results 

are compared in Fig. 11 to the modified buckling curves and good agreement is seen between 

GMNIA results and the analytical modified buckling curves.   

The present study, has been limited to strong axis buckling of hot-rolled I profiles; as in numerous 

other papers, the inclusion of an initial geometric bow imperfection of L/1000 and a linear 

distribution of residual stresses, independent of yield stress, have been considered to lead to the 

modelling of a realistic column. Although a new formulation has been proposed, investigations 

should be performed in order to confirm this holds true for other cross-section shapes and weak axis 

buckling. 

6 CONCLUSION 

It has been shown in the present paper that the current Eurocode 3 recommendations for equivalent 

imperfections are inconsistent with the well-known column buckling curves and lead to overly 

conservative results. Furthermore, the equivalent imperfection formulation which represents the 

basis of the buckling curves incorrectly increases the imperfection magnitude based on material 

yield stress, due to its direct dependence on the non-dimensional slenderness. As residual stresses 
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are mainly independent of yield stress, it has thus been proposed that the equivalent imperfection 

expression should include the material factor ε, which would lead to a uniform raise of the buckling 

 

Figure 9. a) Analytical buckling curves for S460 using the proposed expression for the equivalent imperfection;  

b) Relative deviation between the proposal and current EC3 specifications. 

 

 

Figure 10. a) Analytical buckling curves for S690 using the proposed expression for the equivalent imperfection;  

b) Relative deviation between the proposal and current EC3 specifications 

 

 

Figure 11. a) GMNIA results using L/1000 and a linear residual stress distribution are compared to the analytical 

buckling curves obtained using the proposed equivalent imperfection. 
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curves, as material yield stress increases and which would no longer require an artificial ‘jump’ in 

buckling curve selection at steel grade S460. A large number of columns have been analysed 

through fully non-linear numerical simulations using different initial imperfections, residual stress 

patterns and yield stress magnitudes. The proposal for the slightly modified equivalent imperfection 

leads to very good agreement with GMNIA results and it would eliminate the current lack of 

continuity currently inherent to the buckling curves and would lead to (higher) steel grades no 

longer being penalized. Finally, it is worth noting that it is rather likely real column capacities could 

still be underestimated, as the assumption of a linear residual stress pattern seems slightly 

conservative and due to the fact that the assumed imperfections, which are mostly based on 

experimental research dating back to the 70’s are outdated due to modern manufacturing processes 

of today’s high end products.   
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