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Preface

The document in your hands is the culmination of three years of work. Work
that started out under a different title, but which has eventually nestled com-
fortably under the name ’Assessing the edible city: environmental implica-
tions of urban agriculture in the Northeast United States’. This dissertaion is
submitted in partial fulfillment of the requirements for the degree Doctor of
Philosophy in Management Engineering, as prescribed by the conferring insti-
tute, The Technical University of Denmark. Support and guidance through-
out the course of this project were provided by my principal supervisor Asso-
ciate Professor Morten Birkved, and co-supervisors Prof. Michael Hauschild
and Prof John Fernández, Massachusetts Institute of Technology.

The majority of this work was carried out at the Division for Quantitative
Sustainability Assessment of the Department of Management Engineering at
The Technical University of Denmark between December 2013 and November
2016. Approximately quarter of that time was spent at the Massachusetts
Institute of Technology’s Department of Architecture, Building Technology
Program under the supervision of Prof John Fernández.

The scaffolding of this project are the six articles contained as appendices
to the main report, four of which have been published, and two of which have
been submitted at the time of writing. The articles are as follows:

1. Goldstein, B., Birkved, M., Fernández, J., Hauschild, M. Surveying the
Environmental Footprint of Urban Food Consumption. J. Ind. Ecol.
2016.

2. Goldstein, B., Hauschild, M., Fernández, J., Birkved, M. Urban ver-
sus conventional agriculture, taxonomy of resource profiles: a review.
Agron. Sustain. Dev. 2016.

3. Goldstein, B., Hauschild, M., Fernández, J., Birkved, M. Testing the
environmental performance of urban agriculture as a food supply in
northern climates. J. Clean. Prod. 2016, 135, 984–994.
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4. Goldstein, B. Hauschild, M., Fernández, J., Birkved, M. Contributions
of local agriculture to urban sustainability in the Northeast United
States. Env. Sci. & Tech. 2017, 51, 7340-7349

5. Goldstein, B., Hansen, S. F., Gjerris, M., Laurent, A, Birkved, M. Eth-
ical aspects of life cycle assessments of diets. Food Policy 2016, 59,
139–151.

6. Goldstein, B., Moses, R., Sammons, N., Birkved, M. Potential to curb
the environmental burdens of American beef consumption using a novel
plant based beef substitute. PLoS One 2017. Submitted.
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Summary

One of the pivotal environmental challenges in the coming decades will be
feeding an increasingly wealthy and populated planet in a sustainable man-
ner. As industrialization and concomitant urbanization affects hitherto pe-
ripheral economies, much of this challenge will depend on the ability to
support the nutritional demands of a global urban population in a fashion
aligned with the biophysical capacity of the planet. Amongst the myriad of
solutions proposed to guide humanity towards more environmentally sustain-
able food system, co-locating food production and consumption in cities is
an area that has seen significant action in research, design and practice. In
the Northeast United States, where per capita diets are amongst the most
environmentally intensive globally, there is a growing interest in local food
production as a way to reduce the ecological burdens of food demand. Urban
farms and pro-urban agriculture planning agendas are proliferating through-
out many of the region’s cities, typically with urban agriculture’s environ-
mental sustainability evoked to varying degrees in support of these initia-
tives. However, environmental appraisals comparing urban and rural food
production are scarce in existing literature, leaving a number of lingering
questions surrounding urban agriculture’s environmental performance. In a
Northern context, it remains to be seen whether the benefits of reducing dis-
tance from farm to fork are outweighed by the energy demanded by year-
round growing systems. Even if urban agriculture does provide leaner re-
source intensities at the farm scale, do these add up to meaningful shifts in
a city’s environmental footprint at the urban scale? The aim of this project
was to begin removing these uncertainties using the Northeast United States
as a case study, since cities within that region have some of the most vibrant
and well-supported urban farming communities in the Global North. This
report is comprised of six chapters that probe and add to our current under-
standing of urban food systems.

Chapter one traces the historical development of the physical and psy-
chological rift between city dweller and farm. This rift obscures urbanites
from the ecological deterioration that results from their nutritional needs,
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which have come to pose challenges at the global level in terms of greenhouse
gas emissions, land occupation, water use and toxic chemical loading. Recent
years have seen some acknowledgment of these challenges, and many munic-
ipal governments, urban designers and citizens are championing local food
production as a means to ‘green’ urban food supply networks. I then define
urban agriculture as “local food production woven within the urban fabric
utilizing pre-existing material and energy flows” and the edible city as “the
proliferation of urban agriculture throughout a city to the extent that it be-
comes an integral part of that city, both in form and function”. I speculate
that there is a lack of knowledge at present to support the recent promotion
of the practice in cities in the Northeast United States, particularly given the
focus of previous urban agriculture research in milder climes. Lastly, the City
of Boston, Massachusetts is introduced as a case city, due to its built form
and climate, which are both relatively representative of many cities within
the Northeast Region.

Chapter two fills a key gap in the urban sustainability literature: the lack
of comprehensive review of environmental burdens from urban food consump-
tion. I use existing literature in the field of industrial ecology (the study of
material, energy and environmental performance of systems) to illustrate the
importance of urban food demands as a driver of a city’s overall environmen-
tal performance. My review looks at studies that used material flow analysis
(accounting of mass flows through a city), carbon footprint (greenhouse gases
from city activities) and ecological footprint (amount of land occupied in and
out of city to support city activities) to assess urban food systems. I find
that the environmental footprint from urban food consumption (‘the food-
print’) is often on par or greater than many other more recognized drivers of
urban environmental performance, such as transport, building heating and
water. Moreover, there is a tendency for these impacts to increase in concert
with per capita income, portending larger food-related environmental impacts
into the future as the world’s urban population continues to grow in numbers
and wealth. Of concern is the robust correlation between urban food waste
and wealth, both because the nutrients within the waste are often not recov-
ered and the environmental burdens embodied in producing food that does
not nourish urbanites. Lastly, my perusal of urban sustainability literature
finds that even though the urban foodprint has seen low priority on the sus-
tainability agendas of many cities, the past few years have seen cities making
the connection between food supply webs and their environmental perfor-
mance, including specific calls to improve the latter using local production.

Chapter three tests the environmental performance of urban agriculture
in Boston. It starts with a review of existing literature that has addressed
the environmental dimensions of urban food production. I find that despite
some evidence of urban agriculture’s superior environmental performance
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over conventional production in mild climates, support in many sustainability
dimensions are wanting. In particular, an assumption that local food is some-
how inherently sustainable is a common theme in much of the writing. More-
over, there are a number of claims regarding positive interactions between
urban farms and the surrounding environment (rainwater capture, organic
waste recycling, building energy use reduction) that are grounded in common
sense, but lacking empirical support. To overcome these data gaps, I develop
a basic taxonomy of the four different urban farm types that exist using their
siting within the built form (ground or roof) and status of the grow space
(conditioned and non-conditioned). I then use primary data from six farms
in Boston and New York City to quantitatively compare the environmental
performance of urban and conventional production. I find that the environ-
mental savings of reducing transport distance from farm to city can easily be
negated by energy inputs to some urban farm types. Simple open-air farming
in cities can have lower global warming impacts than conventional counter-
parts, but at the expense of land occupation and water consumption. Even
when urban farming does provide environmental benefits, these pale in com-
parison to the application of urban space for solar electricity production.

Chapter four takes the results from the individual farms and scales them
up to the city level to gauge the impacts of the edible city on Boston’s
baseline foodprint. I combine census data, nutritional surveys and the EX-
IOBASE 2.2 model of environmental burdens from production (including in-
ternational trade) to build environmental foodprints of the city’s 560 neigh-
borhoods in terms of land occupation and greenhouse gas emissions. The
average Bostonian causes the equivalent of 1.2 metric tons of carbon diox-
ide emissions and 1 hectare land occupation in relation to their food needs.
Fully employing urban agriculture to combat these pressures results in a 5%
reduction in food-related greenhouse gas emissions and a 1% increase in food-
related land occupation. Interactions with the urban environment are also
lackluster, mitigating 2% of the city’s surface runoff and absorbing less than
10% of household organic solid waste. More substantial are the practices po-
tential dietary contributions, where urban farming could provide a significant
proportion of the city’s vegetable nutritional needs. Market value of urban
farming in the Boston could be as much as $160 million, generating revenue
in some of the city’s poorest areas. The chapter closes with thoughts about
balancing the marginal environmental gains of urban agriculture against its
larger social and nutritional benefits.

Chapter five looks at complimentary methods to the edible city that
could reduce the urban foodprint. Specifically, I focus in on the fact that
most of the foodprint emanates from the animal-sourced products consumed
by city-dwellers, and that these are not tackled by urban farming. I build
environmental models of the average American, vegetarian and vegan diets
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to see how much lifestyle changes could affect Boston’s foodprint. Switching
to vegetarian and vegan diets result in environmental benefits that are sig-
nificantly greater than those provided with urban agriculture. For instance,
a move to vegetarian and vegan diets reduce the city’s carbon foodprint by
32% and 67%, respectively. Because it is not realistic to expect the entire
city to adopt a meat-free lifestyle, I also look at the ability of a novel plant-
based meat substitute (the ‘Impossible Burger’ from Impossible Food) to re-
duce foodprint. I find that substituting 10% of annual ground beef intake
with the plant based burger provides the same environmental benefits of a
fully edible city.

Chapter six concludes with a synthesis of the results and the short dis-
cussion of ideas for future research directions in quantifying the foodprint
and better assessing the environmental dimensions of urban food produc-
tion. I close this report with some thoughts on the necessity of quantitative
sustainability models to avoid poor urban design solutions to environmen-
tal challenges and the importance of urban agriculture’s social benefits as
these might ultimately be the most justified grounds for its proliferation in
the American Northeast.
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Resume

En af de centrale, miljømæssige udfordringer i de kommende årtier vil være
at ernære en stadigt mere velhavende og befolket planet p̊a en bæredygtig
m̊ade. Da industrialiseringen og simultan urbanisering p̊avirker selv hidtil
perifere økonomier, vil udkommet af denne udfordring hovedsageligt afhænge
af evnen til at understøtte de ernæringsmæssige krav fra en global bybe-
folkning p̊a en m̊ade, som er afpasset til den biofysiske kapacitet af planeten.
Blandt de utallige løsninger, der foresl̊as til at bringe menneskeheden i ret-
ning af et mere miljømæssigt bæredygtigt fødevaresystem, er samlokalisering
af fødevareproduktion og forbrug i byerne, som er et omr̊ade, der har set en
betydelig indsats, hvad ang̊ar forskning, design og praksis. I det nordøstlige
USA, hvor kostvanerne m̊alt per indbygger er blandt de mest miljøbelastende
globalt set, er der en stigende interesse for lokal fødevareproduktion som et
redskab til at reducere de økologiske byrder, som efterspørgslen p̊a fødevarer
medfører. Urbane landbrug og byplanlægning der tilgodeser urbane land-
brug, er tiltag som i stigende grad finder anvendelse i mange af regionens
byer, typisk med byernes miljømæssige bæredygtighed som argument for
introduktion af disse initiativer. Men miljøvurderinger som sammenligner
fødevareproduktion i byer og landdistrikter, er sjældent forekommende i
den eksisterende litteratur, hvilket efterlader en række grundlæggende,
ubesvarede spørgsm̊al omkring miljøgevinsterne ved urbant landbrug. I en
nordlig sammenhæng er det stadig uvist, om fordelene ved at reducere den
fysiske afstand fra jord til bord opvejes af den energi, der kræves til kon-
tinuerlig landbrugsproduktion i byer året rundt. Selv hvis urbane land-
brug reducerer landbrugsproduktionens ressourceforbrug, er det stadig et
spørgsm̊al, om disse fødevareproduktionstiltag leder til ønskværdige forskyd-
ninger i byers miljømæssige fodaftryk? Form̊alet med dette projekt er at
reducere usikkerheden relateret til de miljømæssige p̊avirkninger forbundet
med urbant landbrug. Til dette form̊al bruges det nordøstlige USA som case,
fordi byerne inden for dette omr̊ade har nogle af de mest levende og velun-
derstøttede, urbane landbrugssamfund i det globale nord. Denne rapport
best̊ar af seks kapitler, der hver især sonderer urbant landbrug og derved
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bidrager til vores nuværende forst̊aelse af byers fødevaresystemer.
Kapitel 1 klarlægger den historiske udvikling af den fysiske og psykiske

kløft mellem byboer og g̊ard. Denne kløft slører for byboerne den økologiske
forringelse, som er et resultat af deres ernæringsmæssige behov og som er
blevet en udfordring p̊a globalt plan med hensyn til udledning af drivhus-
gasser, arealanvendelse, vandforbrug og udledning af giftige kemiske stof-
fer. De seneste år er disse udfordringer blevet mere generelt erkendt, og
mange kommunale beslutningstagere, urbane designere og borgere har slut-
tet sig til kampen for den lokale fødevareproduktion, da denne produktions-
form opfattes som et middel til ”grønne” urbane fødevareforsyningsnetværk.
I den efterfølgende tekst definerer jeg urbant landbrug som ”den lokale
fødevareproduktion vævet ind i bystrukturer og som udnytter eksisterende
materiale og energistrømme” og den spiselige by som ”spredning af by-
ernes landbrug i hele byen, i det omfang spredningen resulterer i integra-
tion af landbrug som en del af byen, b̊ade hvad ang̊ar form og funktion”. Jeg
foresl̊ar derefter, at der p̊a nuværende tidspunkt er en udpræget mangel p̊a
viden, som kan understøtte den seneste fremme af landbrugspraksis i byer i
det nordøstlige USA, specielt da tidligere forskning inden for urbant landbrug
fokuserer p̊a urban landbrugsproduktion under mildere himmelstrøg. Slut-
teligt bliver byen Boston, Massachusetts, introduceret i dette kapitel som en
case-by p̊a grund af byens tæthed og klima, som begge regnes for forholdsvis
repræsentative for mange af de byer i den nordøstlige region.

Kapitel 2 udfylder et vigtigt hul i litteraturen omkring bæredygtigheden
af byer: manglen p̊a omfattende gennemgang af miljøbelastningen fra by-
ers fødevareforbrug. Hertil benytter jeg eksisterende litteratur inden for in-
dustriel økologi (studiet af materiale-, energi- og miljø-performance af sys-
temer) for at illustrere betydningen af byernes fødevareefterspørgsel som
en drivkraft for en bys samlede miljø-performance. Min litteraturgennem-
gang dækker relevante vurderinger af byer, der benytter massestrømsanalyser
(dvs. sammenstillinger af massestrømme gennem en by), carbon foot-
prints (sammenstillinger af drivhusgasudledninger som resultat af byens ak-
tiviteter) og økologiske fodaftryk (dvs. arealet af jord udnyttet inden- og
udenfor byen for at imødekomme byens funktioner og aktiviteter). Efter
en gennemgang af 132 byer n̊ar jeg frem til, at det miljømæssige fodaftryk
fra byernes fødevareforbrug (herefter benævnt ”foodprint” eller p̊a dansk
”fødevarefodaftryk”) ofte er p̊a samme niveau eller større end mange an-
dre aktiviteter, der ofte opfattes som mere direkte koblet til byers miljø-
performance, s̊asom transport, opvarmning af bygninger og vandforbrug.
Desuden er der en tendens til, at disse fødevarerelaterede p̊avirkninger
øges i takt med byers rigdom. Dette indikerer større miljøp̊avirkninger fra
fødevarerelaterede aktiviteter i fremtiden som resultat af, at verdens bybe-
folkning fortsætter med at vokse i antal og rigdom. Af konkret bekymring
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er den robuste korrelation mellem fødevarespild i byer og rigdom, b̊ade fordi
næringsstoffer i affald ofte ikke inddrives, og p̊a grund af de miljømæssige
byrder relateret til at producere fødevarer, der ikke ender med at ernære
den endelige forbruger. Slutteligt indikerer min gennemgang af litteraturen
omkring bæredygtighed i byerne, at selv om det urbane foodprint har opn̊aet
lav prioritet p̊a dagsordenen for mange byer med fokus p̊a bæredygtighed,
har der over de sidste par år udkrystalliseret sig byer, som helt klart prior-
iterer sammenhængen mellem fødevareforsyningsnetværk og byernes miljø-
performance, og som præsenterer specifikke tiltag til at afbøde yderligere for-
ringelse af byers miljø-performance ved hjælp af lokal fødevareproduktion.

Kapitel 3 undersøger miljø-performance af urbane landbrug i Boston. In-
dledningsvist præsenteres en gennemgang af eksisterende litteratur, der har
behandlet de miljømæssige dimensioner af urban fødevareproduktion. Jeg
finder ved denne litteraturgennemgang, at p̊a trods af sporadiske beviser
for urbant landbrugs overlegne miljø-performance relativt til konventionel
landbrugsproduktion i milde klimaer, er konkrete beviser for urbant land-
brugs overlegne miljø-performance mangelfulde. Især én antagelse om ”at
lokalt producerede fødevarer i sagens natur er bæredygtige” fremst̊ar som
et fælles tema i meget af den gennemg̊aede litteratur. Derudover er der en
række p̊astande om positive interaktioner mellem byernes landbrug og det
omgivende miljø (regnvandsopsamling, genbrug af organisk affald, reduktion
af byggeriets energiforbrug), som primært er funderet i sund fornuft, men
som mangler empirisk fundament. For at kompensere for de manglende data
relaterende til urbant landbrugs miljø-performance og struktur herp̊a, har
jeg udviklet en grundlæggende taksonomi best̊aende af fire forskellige urbane
landbrugstyper, der er baseret p̊a landbrugets fysiske placering i det urbane
system (dvs. placering p̊a jorden eller tagkonstruktion) og vækstbetingelserne
(konditioneret og ikke-konditioneret). Jeg bruger derefter primære data fra
seks landbrug i Boston og New York til at bygge modeller, der kvantita-
tivt kan sammenligne miljø-performance for urbane og konventionelle land-
brugsproduktioner. Jeg finder, at de miljømæssige besparelser, der opn̊as
ved at reducere transportafstand fra jord til byen let kan blive modvirket
af energitilførsel til f.eks. konditionerede urbane landbrugstyper. Simple
friluftslandbrug i byerne kan have lavere bidrag til den globale opvarmn-
ing end konventionelle landbrugsformer, dog p̊a bekostning af arealanven-
delse og vandforbrug. Selv n̊ar urbant landbrug giver miljømæssige fordele,
blegner disse i sammenligning med anvendelsen af byrum til elproduktion
baseret p̊a f.eks. solceller. Kapitel 4 skalerer resultaterne fra de enkelte land-
brug op til byniveau med henblik p̊a at kvantificere virkningerne af den
spiselige by p̊a Bostons baseline foodprint. Jeg kombinerer folketællings-
data relaterende til Bostons demografi, ernæringsmæssige undersøgelser og
EXIOBASE 2.2 modellen for miljøbelastningen fra produktion (herunder in-
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ternational handel) til at bygge det miljømæssige foodprint for Bostons 560
kvarterer i form af arealanvendelse og udledningen af drivhusgasser. Den
gennemsnitlige beboer i Boston har en årlig miljøp̊avirkning udelukkende
relaterende til deres ernæringsbehov, der svarer til udledningen af 1,2 tons
kuldioxid og 1 hektar arealanvendelse. S̊afremt man skifter til urbant land-
brug for at kompensere for disse p̊avirkninger resulterer dette i undseelige
reduktioner i drivhusgasemissionerne (2,5%), mens man, hvad arealanven-
delsen for fødevareproduktionen ang̊ar, vil forøge denne med 1%. Interaktion-
erne med bymiljøet er ogs̊a overskuelige med et potentiale til at afbøde 2% af
byens overfladeafstrømning og absorbere mindre end 10% af husholdningernes
organiske, faste affald. Mere væsentlig er det potentielle kostbidrag som ur-
bant landbrug kunne give i form af en betydelig procentdel af byens veg-
etabilske fødevarebehov. Markedsværdien af landbrug i Boston kan være s̊a
høj som $ 160.000.000, hvilket vil resultere i indtægter i nogle af byens fattig-
ste omr̊ader. Kapitlet slutter med en afvejning af de marginale miljømæssige
gevinster i byernes landbrug mod potentielt større sociale og ernæringsmæs-
sige fordele.

Kapitel 5 fokuserer p̊a andre tilgange til en spiselig by, som kan reduc-
ere det urbane foodprint. Konkret fokuserer jeg p̊a det faktum, at hoved-
fraktionen af urbane foodprint hidrører produkter med animalsk oprindelse,
og at dette faktum formentlig ikke ændres ved en overgang til urbant land-
brug. Jeg konstruerer derfor miljømæssige modeller af den gennemsnitlige
amerikanske kost, en vegetarisk og en vegansk kost for at se, hvordan disse
livsstilsændringer potentielt kan p̊avirke Bostons foodprint. Skift til vege-
tarisk og vegansk kost resulterer i miljømæssige fordele, der er betydeligt
større, end hvad kan opn̊as med urbant landbrug. For eksempel vil et skifte
til vegetarisk og vegansk kost reducere byens carbon foodprint med hhv. 32%
og 67%. Da det ikke er realistisk at forvente, at hele byen vil tilpasse sig en
kødfri ernæringsstrategi, ser jeg ogs̊a p̊a foodprint reduktionspotentialet ved
introduktion af en ny plantebaseret køderstatning (den s̊akaldte ”Impossible
Burger” fra Impossible Food). Selv ved en udskiftning p̊a blot 10% af hakket
oksekød med et plantebaseret produkt, som ligner og smager som hakket
oksekød, vil dette p̊a årsbasis medføre p̊avirkningsreduktioner svarende til
fordelene ved en fuldt spiselig by.

Kapitel 6 afslutter afhandlingen med en syntese af resultaterne og en kort
diskussion af potentielle fremtidige forskningsretninger i form af kvantificer-
ing af foodprints samt bedre kvantificering af de miljømæssige dimensioner
for urban fødevareproduktion. Jeg afslutter denne rapport med nogle tanker
om betydningen af at anvende kvantitative bæredygtighedsmodeller til at
imødeg̊a d̊arlige urbane designløsninger samt betydningen af byernes agrikul-
turelle, sociale ydelser, der i sidste ende kan være den mest berettigede grund
til det urbane landbrugs yderligere spredning i det amerikanske nordøst.
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Assessing the edible city

1.1 From forager to farmer to “foodie”

It is oft repeated that in 2008 human civilization passed an important mile-
stone: for the first time in history more than half of humanity lived in what
could be described as cities [57]. It has taken a long time to get to what has
been gilded by some scholars ‘the urban century’[23].

Most of humanity’s ≈100,000 years have been a placeless, nomadic en-
terprise of subsistence living supported by hunting wild animals and forag-
ing wild plants [30]. Man was limited to what nature’s bosom provided, and
was by default, forced to live within the local environments ability to replen-
ish and supply resources, its ‘carrying capacity’. The material and energy
appropriations from the environment needed to maintain these nascent so-
cieties - their “social metabolism” - was limited to immediate survival, with
little long-term storage [14]. The guesstimated 4 million foragers roamed the
planet; the vicissitudes of nature precluding permanent settlements [40].

The first agricultural (r)evolution in the ‘fertile crescent’of the Nile Delta
around 10,000 BC boded the end of the forager. By taming plant and ani-
mal, humans had reliable food sources for the the first time reliable. Instead
of foraging and hunting on the margins of survival, humans had more than
they needed. Much more, in fact: per capita social metabolism grew tenfold
[14]. Stable food supplies supported the first permanent settlements and over
a 6,000 year period, the majority of humans became farmers while the forag-
ing way of life withered [40]. This newfound stability and affluence allowed
portions of the population to expand their activities beyond those directly re-
lated to bare subsistence, undergirding the development of increasingly com-
plex social hierarchies, divisions of labor, art and technological innovations.
It was around this time that the first cities began to appear in Asia Minor
[36, 43]. The earth’s population began to grow modestly (≈24,000/year) [40],
which combined with the larger social metabolism to make man’s environ-
mental footprint felt in marginal ways - clearing vegetation, salting soils and
extinguishing fauna. Notwithstanding, agrarian societies were primarily lim-
ited to energy from the Earth’s solar budget, and hence, functioned within
the planet’s carrying capacity.

For thousands of years, cities housed the minority of humanity not in-
volved in extractive work. This began to change in the latter half of the 18th

century with the liberation of markets and new energy sources. The inven-
tion of the combustion engine in 1790 allowed humans to efficiently convert
hitherto unavailable solar energy stored in fossil fuels to motion [48]. Com-
bined with the disruptive forces of capitalism, fossil fuels led to a shift in
the economy from countryside to city, as factories sprung up to make new
goods for a diversifying economy. People followed suit. The process of urban-
ization took hold as people abandoned the country for the city in search of
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employment. Urbanization was (and is) also propelled by a second agricul-
tural revolution, whereby advances in soil chemistry, consolidation of small
landholdings and farming mechanization made large fractions of the rural
workforce redundant [33, 12, 45]. Harvesting stored solar energy provided
a tenfold increase in per capita energy use compared to previous agrarian
lifestyles, and a new social metabolic regime emerged: the industrial societies
[14]. It was the intertwined processes of urbanization and industrialization
that buttressed the emergence of the urban epoch we inhabit today.

Our relationship with our food supplies have altered with every social
metabolic bifurcation. The foragers were connected to their local ecosystems
as they required intimate knowledge of plant species and seasonal shifts to
follow edible plants and track prey. Farmers in agrarian societies were also
closely tied to their food, as they farmed the soil under their feet for survival.
Only with the advent of a predominantly urban society did the connection
between producer and consumer become severed. Food became an abstrac-
tion, produced ‘out there’ in the hinterlands and imported to the city. The
end result is that most humans living in the wealthier societies where urban-
ization first took hold are, in a very loose sense of the term, “foodies” - vora-
cious, hedonistic consumers of food - lacking the faintest knowledge of their
food’s origins.

1.2 The “metabolic rift”

In his writings Karl Marx coined a term that aptly describes the transi-
tion from forager to urban foodie: the metabolic rift [33, 16]. Although the
metabolic rift can be read from numerous angles (see McClintock [33]) its
essence is the dislocation of people from the natural resources that support
their daily sustenance and provide inputs to industry, as they are forced by
capitalism from working the land to working in factories in cities [37, 33].
An outcome of this is alienation of the urbanite from the natural world and
imagining of the self and urban society in contrast to nature [33].

Marx also pointed out the ecological impacts of the rift, using nutrient
flows as an example to show how the cleavage of production and consumption
areas led to resource degradation at the former and pollution at the latter
[33]. Marx was acutely aware of the problem of nutrient stripping of agri-
cultural soils, noting that “For a century and a half...England has indirectly
exported the soil of Ireland” [16]. Marx was also perturbed by the lack of re-
cycling of these resources, lamenting that “In London...they can do nothing
better with the excrement produced by 4.5 million people than pollute the
Thames with it” [16].

Today about one third of the world’s labor force is involved in agriculture
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[45], and hence, the remaining two thirds live in some state of cleavage from
the planet that sustains them. Another outcome of the rift and the industri-
alization of agriculture has been the loss of farming as a communal body of
knowledge passed down through generations, and the evaporation of farming
and stewarding the land as a culture (hence ‘agri’ + ‘culture’) [42, 29].

1.3 Industrialization and the environment

So what is the metabolic rift shielding urbanites from? For one, the extrac-
tive regions where non-renewable mineral and fossil fuel resources are mined.
With the concomitant drop in mortality rates and growth in food supplies,
humanity has ballooned from one to seven billion since the cusp of the indus-
trial revolution [40]. Supporting this population requires increasing amounts
of these resources, the extraction of which exacts large-scale scarring of the
landscape and intrusions into natural habitats that are hidden by global
trade networks [46, 12]. Importantly, the fossil-fuel combustion buttressing
the industrial age releases atmospheric warming gases that are now under-
stood to risk the stability of geochemical cycles. The affects of the warming
atmosphere are currently being experienced most acutely by those living on
the margins in rural societies, though predicted levels of sea rise will make
this a concern for coastal cities in the future [25]. In short, the resource de-
mands and pollution of a largely urban, industrial society are compromising
the planet’s long term ability to support our current numbers at present liv-
ing standards [52]

Agriculture might be the driver of global environmental change most
obscured from city-dwellers. The contribution of agriculture and deforesta-
tion to climate change is estimated at 25% of total anthropogenic emissions
[26]. The vast majority of human appropriated land is used for agriculture,
amounting to 12% and 26% of ice-free land for crops and grazing, respec-
tively [15]. Water use is also overwhelmingly driven by the needs of food pro-
duction, accounting for over 90% of anthropogenic withdrawals [24]. The nu-
trient stripping and pollution deplored by Marx is now at such a scale that
it has severely altered bio-geochemical cycles [52] and contributed to the de-
terioration of water quality in many watersheds and river basins [53, 13, 22].
Outside of the city, the link between current modes of food production and
environmental degradation are conspicuous, while urbanites remain insulated
due to geographic separation between city and supply region [47].
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1.4 Food and the city

The rift has not always been so pronounced between city, food production
and environmental burdens. Providing a stable food supply was typically
under the aegis of the local government in many cities into modern times
[27, 33]. Up until the turn of the 20th century food production was substan-
tial in many of today’s capitals of cosmopolitan urban living. Paris was once
renowned for its copious green-vegetable production using a system pred-
icated on the recycling of ‘night soil’ (sewage), even exporting across The
Channel to England [5, 3]. Boston Common, a verdant park on the outskirts
of Boston’s downtown, was exactly what its namesake evokes, a shared space
where residents of the incipient city could send their cows to pasture as late
as the mid 19th century[31]. Many cities in the Global South still maintain
such ties, with active urban farming and nutrient recycling schemes [39].

In the United States (US) Northeast, farming within the city has waxed
and waned with economic necessity or times of war. 40% of food in the US
was produced by 20 million urban “victory gardens” in 1944. Each economic
downturn has seen an uptake in urban food production as urbanites stave off
food insecurity, the latest round being the “great recession” of 2008 which
saw Michelle Obama planting vegetables in the White House garden [33]. De-
spite these scattered ‘green thumb moments’, food production was largely
driven from the regions cities in the previous century by modern urban plan-
ning practices focused on the strict separation of land uses and sanitizing the
city [33, 29]. Urban food production in the region is also usually expelled as
more profitable land uses emerge [33].

1.5 Connecting city with consumption

An important concept in understanding urban-rural linkages is the concept
of ‘teleconnections’ as articulated by Seto and colleagues as “the virtual
shrinking of distances between places, strengthening connectivity between
distant locations, and growing separation between places of consumption and
production...”[46, p. 7687]. Through the application of this concept to urban
systems, researchers hope to strengthen our understanding of how urban con-
sumption regimes translate into deforestation, pollution and water scarcity in
disparate supply regions, including impacts from urban food demands [47].

The food-water-energy nexus is another powerful concept framing the
current thrust of urban-food systems research [61]. ‘Nexus’ refers to the
property of inter-connectedness between seemingly weakly related or unre-
lated system components. For instance, modern sewage systems require large
amounts of potable water, act as the primary nutrient sink (and a potential
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source) for agricultural systems, and entail energy use for processing [61].

Equally salient to these theoretical developments are concrete actions by
city governments. Numerous cities in the Global North have been moving to-
wards urban food policies aimed at promoting healthy, stable and sustainable
diets [35]. Late 2015 saw the signing of the Milan Urban Food Policy Pact
at the Universal Expo in Milan, an agreement between 132 cities (combined
population > 460 million residents) recognizing the important role of munici-
pal governments in shaping healthy eating patterns of residents and ensuring
sustainable food supplies into the future [9]. This pact recommends actions
in a number of realms:

• Ensuring and enabling environment for effective actions
• Sustainable diets and nutrition
• Social and economic equity
• Food supply and distribution
• Food waste
• Food production

The last point explicitly says that cities should “Promote and strengthen
urban and peri-urban food production...” with a number of subsequent pro-
posals related to this and the proliferation of “short food chains” to reduce
the environmental burden of feeding cities [9]. Some cities have presaged this
pact through their own local studies and ordinances supporting urban food
production [8, 1, 33, 35].

This movement towards farming in cities dovetails nicely with recent ur-
ban design trends that wed farm and city such as ‘biophilic cities’[55] and ur-
ban agriculture[49, 11]. Hypothetical design proposals are buttressed by real
change on the ground through variegated urban farming schemes cropping up
in many wealthy cities that shunned the practice a generation ago [34].

Combining these trends in academia, urban planning and design with the
ever present work of ecologically concerned citizens on the ground, a narra-
tive coalesces espousing the need for cities to repair the metabolic rift and
mitigate their food related environmental impacts. A vital aspect of this is
the use local production, chiefly, urban agriculture (UA). Of key importance
is that this movement shares support amongst citizens and municipal gov-
ernments, as opposed to many previous pushes for UA that saw antagonisms
between farmers and local governments (excepting the extraneous situations
in Section 1.4).
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Figure 1.1: The different shapes and sizes of urban agriculture (Author’s own images)

1.6 Defining urban agriculture and the edible
city

UA is a term that has seen increasing use by urbanists and urbanites in the
past decade, despite a lack of formal definition. At its core it is a practice
carried out by city-dwellers, within cities, of producing food. Through a se-
ries of workshops Vejre and colleagues identified multiple definitions based on
one’s focus [60]:

• Spatial - based on location in space, in relation to urban area.
• Functional - based on activities performed, regardless of size, owner-

ship, barring activities beyond the immediate hinterlands.
• Externalities - based on the basket of goods provided by the farm and

their marketing towards urbanites.
• Market - division between farms operating for local urban and global

markets.

Out of these framings I blend spatial and functional approaches in my
definition of UA, since they align with the urban design and engineering ori-
entation of this dissertation. More concretely, I borrow from Koc and col-
league’s groundbreaking UA research to define UA as ‘the production of food
in and adjacent to cities, leveraging pre-existing urban material and energy
flows as farming inputs’[28]. I also limit this definition to exclude farming
beyond the urban boundary, as this is peri-UA from a strictly spatial per-
spective. In this definition I capture the essential characteristics relevant
to this work: siting within the city and interactions with a host city’s en-
ergy and mass flows. As will become clear over the course of this report, UA
comes in a variety of forms, and in line with this, my applied definition is
broad enough to encompasses them all (see Figure 1.1).

Others have envisioned the scaling up of UA in cities, where food produc-
tion becomes a ubiquitous aspect of the urban built form, enmeshed within
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the very essence of a city’s fabric. Such visions have been called continuously
productive urban landscapes or the edible city ; where food production be-
comes an integral part of a city, both in form and function [10, 6]. Hypothet-
ical assessments have shown that the edible city could produce a significant
portion of a city’s plant-based food requirements [32, 38, 35] (see Figure 1.2).
Much like UA, many urban designers and policy makers believe that the edi-
ble city will play an important role in a sustainable urban future [11, 49, 35].

1.6.1 Environmental dimensions of UA

UA and the edible city have emerged partially as responses to the metabolic
rift and to the ecological challenges facing current food systems. Edible cities
have been championed due to a number of perceived environmental benefits:

• Shorter transport distances and related greenhouse gas emissions.
• Improved production efficiencies compared to conventional farming.
• Reduced wastage and packaging.
• Positive interactions with the host city’s material and energy flows.

The predominant discourse surrounding the environmental impacts of ur-
ban food production has been pro-UA. It has only been in the past few years
that researchers have seriously started investigating the environmental im-
plications of urban food production [34, 50, 7]. A reoccurring trope within
UA literature is a focus on transport related impacts and the inherent be-
lief by many UA champions that reducing ‘food-miles’ is the most important
environmental challenge facing urban food supply networks, despite ample
evidence to the contrary [7, 17]. Moreover, the singular focus on food-miles
ignores the risk that urban farming might in fact provide disservices to the
local environment [41].

Figure 1.2: Visions of the edible city in New York City (left)[49] and Boston (right)[2]
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Reviews of UA literature have emphasized the need for increased research
into the environmental dimensions of the edible city. Recent assessment have
shown that in limited contexts, UA can produce food with lower embodied
environmental burdens than conventional agriculture [21, 44]. Evidence at
the scale of the edible city is scant, but an assessment of Lisbon, PT hinted
at environmental benefits at this scale [4].

Although a step in the right direction, these nascent assessments of UA’s
sustainability are wanting. Firstly, there is the challenge of scale. Where pri-
mary data have been collected to assess UA’s environmentally, they have
only covered single farms, missing the opportunity to see what a scaled-up,
edible city might look like. Moreover, these studies tend to focus on single
types of UA out of the multitude that exist. When the edible city has been
assessed, researchers used data from conventional farms as a proxy for UA,
eschewing potentially significant differences between the production methods.
Finally, although not a shortcoming of there previous work, there has been
the focus on UA in sub-tropical or Mediterranean climes that are amenable
to year-round production and low-energy demands for farming, limiting the
applicability of the results to other climes.

1.7 Research objectives

The overarching aim of this project was to provide a clear picture of the en-
vironmental performance of urban food production beyond the topic’s treat-
ment to date. This included the use of primary data from multiple types of
urban farms and the scaling up of that data to the city level to better under-
stand the edible city from an environmental angle. My geographic scope was
the US Northeast for reasons explained in Section 1.8.

In terms of explicit research questions, three related themes covering six
questions were intended to be tackled at the project outset:

1. Environmental impacts of urban food consumption.

(a) How large are the environmental impacts of urban food consump-
tion?

(b) What level of coverage is given to food related impacts by city
governments?

2. Urban agriculture.

(a) What is the current understanding of the environmental perfor-
mance of UA?

(b) What types of UA exist and can they be categorized based on ma-
terial and energy regimes?
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(c) What is the comparative environmental performance of urban and
conventional agriculture supplying food to the US Northeast?

3. To what extent would an edible city change its baseline food related
environmental burdens?

An additional research question arose out of my investigation of research
question 3:

4. What can be done to compliment the edible cities in the Northeast US
to further reduce their food related environmental pressures?

1.8 Why the American Northeast?

One of the first places to experience the metabolic rift was the American
Northeast, particularly the Northeast Megalopolis along the coast [16, 33].
The region was a first mover in changing to a manufacturing economy. West-
ward colonization revealed incredibly fertile soils that combined with an
expanding railroad network to bring the markets of the large cities of the
northeast within range of Midwest farmers [29]. As a result, agriculture
largely died out as a way of life for many in the Northeast, and the popu-
lation became predominantly urban by the end of the 1800s [54, 29]. The
divorce of city and supply-region has only become increasingly pronounced.
There now exist whole neighborhoods in the region’s cities that lack easy
access to many of the fresh fruits and vegetables that were once grown on
the same soil where those cities now stand [35, 20]. Marx’s observations sur-
rounding nutrients remain prescient, with many cities in the US Northeast
exhausting the bulk of their imported nutrients to landfills and sewage treat-
ment plants with little recovery and recycling [18].

The region is also an interesting case due to its enthusiasm for urban food
production. This enthusiasm translates into one of the most diverse and dy-
namic UA scenes in the Global North, where urban farming innovations are
born and advanced UA techniques tested. The region’s cities have taken an
active hand in promoting UA [8, 1, 19] and are therefore well suited to ben-
efit from their work here, hopefully providing a practical audience for this
study. The climate within the region, though varied, supports similar types
of crops (see Figure 1.3) and exhibits pronounced warm summers and cold
winters. As a result, operating conditions and inputs for farms roughly are
comparable throughout the region’s cities, expanding the applicability of this
report beyond a single city.

Lastly, the per capita food-borne environmental impacts of the United
States are amongst the largest on the planet [56, 51]. This makes the region’s
cities well suited to test the efficacy of UA as a green design intervention.
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Figure 1.3: USDA Northeast Region and plant hardiness map. Source: USDA [59]

1.8.1 Boston as a case city

I used Boston, Massachusetts as a case city for this study. I chose Boston
because of the municipal governments active support for UA, as enshrined
in recently passed ordinances [8]. This city of roughly 630,000 (≈6,000,000
in the metropolitan region) [58] also typifies the built-form of many cities
of the region in that it has a dense core and reducing population density as
one traverses the urban transect [31]. Lastly, it sits near the middle of the
United States Department of Agriculture (USDA) plant hardiness zone map
for the region (see Figure 1.3), providing an average climate for the assessed
geographic scope, particularly the Northeast Megalopolis.

1.9 Dissertation outline

The remainder of this dissertation is comprised of a five chapters, each sup-
ported by a published article or submitted manuscript, the exception being
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the final summary chapter. Chapter 2 focuses on research theme one: the
scale of environmental impacts of urban food demands and food on the urban
sustainability agenda, supported by article 1. Chapter 3 focuses on research
questions two: classifying different UA types and quantifying their effective-
ness as an alternative food supply, supported by articles 2 and 3. Chapter
4 focuses on research question three: the environmental performance of the
edible city, supported by article 4. Chapter 5 explores question 4, looking
at compliments to the edible city, supported by articles 5 and 6. Chapter 6
synthesizes the findings and proposes future research needs.
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2.1 Chapter overview

This chapter is a response to the two questions under the first research theme: What is the
scale of the environmental burdens from urban food consumption? What priority do mu-
nicipal governments place on food related impacts? I start with a definition of the ‘food-
print’ and proceed into the research questions in sequence. In this section I expand beyond
my stated geographic scope, as my goal in this chapter is to understand the general dis-
course surrounding food consumption and urban environmental sustainability. Limiting
this section to the Northeast US would also quickly exhaust the stock of relevant studies,
handicapping my review. Notwithstanding, I conclude this chapter by placing the findings
within the project’s geographic context. This chapter is a companion to Article 1 which
can be found in Appendix A of this report.

2.2 Quantifying the urban ‘foodprint’

2.2.1 Defining the urban ‘foodprint’

The “food-print” (here ‘foodprint’) was initially coined by researchers investigating nutri-
ent flows related to Paris’s food intake [7, 11]. It is a portmanteau of ‘food’and ‘footprint’;
encompassing the notion of food related environmental pressures. Here I define the ‘food-
print’ as the environmental burdens related to the provision of food for a city’s residents
and guests.

2.2.2 Quantifying the urban foodprint with ‘industrial
ecology’

In quantifying the urban foodprint I pull from the field of industrial ecology. Industrial
ecology is multidisciplinary field of study that can be defined in a rather open-ended man-
ner as “a metaphor for looking at our civilization” [53, p. 3] that helps us align our long-
term modes of resource use, production and consumption with the planet’s capacity to
support our civilization given continued economic, cultural and technological evolution [27].

Industrial ecology is unique in that it is normative, endeavoring to provide tools that
help industry benchmark and reduce pollution from production and transition to circular
material regimes that more efficiently use available resources (akin to nested material and
energy networks observed in natural systems, hence the ecological metaphor). The toolbox
of industrial ecology is primarily quantitative in nature, including varied methods such as
material flow analysis, life cycle assessment and exergy analysis. The field spills over into
other disciplines, employing pieces of network theory, graph theory, systems theory, tran-
sitions theory, ecology and economics to model products, consumers, industries, territories
and other systems in terms of their form, function and environmental performance [1].

2.2.3 ‘Urban metabolism’ as a metaphor

One popular focus of industrial ecology research is cities, as they are humanity’s hotspots
of consumption and pollution generation [61, 28]. Most of this work has fallen under the
umbrella term ‘urban metabolism’ (herein ‘UM’), itself a metaphor loaded with ontolo-
gies (fundamental truths and properties) based on the term’s user [40, 9]. In speaking of
UM, industrial ecologists evoke the flow and accumulation of materials and energy in cities
and the application of the field’s tools for quantitative analysis. Urban ecologists apply the
term to mean the interconnections and feedback mechanisms between different sub-systems
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that govern material and energy fluxes in a city, moving beyond the black-box models em-
ployed by industrial ecologists. Lastly, political ecologists look at urban space as a socio-
natural hybrid, concerned with the social and political processes that lead to the creation
and ossification of the ‘created landscape’that is the city, with a sub-set of this researchers
focused on Marx’s metabolic rift [40, 2].

In my study I took the industrial ecologist’s view of UM, as my project concerned with
the scale of the urban foodprint, not the inter-workings of Boston’s food system nor identi-
fying the actors and processes that construct and reinforce these systems. More concretely,
I used Kennedy’s definition of UM as “the sum total of technical and socioeconomic pro-
cesses that occur in cities, resulting in growth, production of energy, and elimination of
waste” [36, p. 44].

UM is a metaphor for a phenomenon (the material and energy regimes of cities) and
not itself method, as it is occasionally misconstrued. Numerous methods have been ap-
plied to quantify this phenomenon [61], and I focused on the three most prolific to date:
material flow analysis (MFA), carbon footprint (CF) and ecological footprint (EF). These
methods also have individual strengths, compensating for the others weaknesses to pro-
vide a somewhat balanced analysis of the urban foodprint. MFA describes the form of the
foodprint in terms of pathways and fates of food and food waste.CF covers the foodprint’s
contribution to climate change and EF looks at the foodprints land occupation. A fourth
popular method is eMergy, but I chose to exclude it as it is poorly suited to account for
environmental impacts from solar derived resources, and by consequence food.

Material flow analysis

MFA is built around the 1st law of thermodynamics, in that at its core it is a general mass
balance of a material (e.g. steel) or substance (or element) (e.g. iron) through industrial
or socioeconomic process [3]. It is formalized through a number of metrics that describe
the material handling regime of a bounded system: domestic extraction (materials brought
under human control within the system), imports/exports (materials crossing the system’s
boundary), net additions to stock (balancing terms of mass balance) and domestic material
consumption (apparent consumption as domestic extraction plus imports minus exports)
amongst others [3].

When following strict MFA methodology, studies of UM tend to focus on calculating
domestic material consumption. Occasionally, total material requirements are estimated,
which is domestic material consumption plus the ‘hidden flows’ that arise during raw ma-
terial extraction (e.g. overburden removed during mining). Sometimes MFA based UM
accounts study a single substance such as a nutrient [35, 19] or metal [3], in which case one
is more likely to see the use of strict mass-balance principles, including chemical stoichio-
metric equalities.

In reality, researchers rarely follow strict mass balance methodologies (usually due to
data and computational challenges), and are more apt to perform a straightforward ac-
counting of material consumption in terms of mass per annum as imported into the sys-
tem, occasionally normalized to city population. The list of materials studied typically in-
cludes food, water, construction aggregates, fossil fuels, plastics, metals and wood [17, 61].
Electricity consumption is also commonly included [17]. These studies tend to either em-
ploy bottom up methods (scaling up individual activities to the city level, such as housing
construction starts times the amount of concrete per house) [49] or trade data to balance
material flows across a political boundary [48].

One strength of MFA is its lack of abstraction and clarity in describing fates of mate-
rials manipulated by human. Framing this in the context of my study, this included the
disposal pathways of nutrients from food imported into the city, identifying where to best
collect these resources for reuse. Conversely, MFA is at a disadvantage to quantify the en-
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vironmental burdens embodied within imported goods or from pollution within a city [13].

Carbon footprint

CF is a means to estimate the emissions of climate change inducing greenhouse gases
(GHGs) that result from the delivery of a product or service [33]. CF methodology has
three scopes of assessment: scope 1 (direct emissions from fossil fuel combustion by the
study system), scope 2 (indirect emissions from electricity consumption by the study sys-
tem) and scope 3 (emissions embodied within the good imported into the city) [33]. To
provide a clear metric, CF converts different GHGs from their mass to the mass of carbon
dioxide that induces an equivalent radiative forcing, expressed as carbon dioxide equiva-
lents (CO2e)[33].

The dominant methods for calculating CF are bottom-up (or process based) and top-
down. Bottom-up looks at the individual activities required to provide a good or service
and multiplies the amount of activity (e.g. kilometers driven by a specific truck) by a car-
bon intensity for that activity (e.g. CO2e/km driven), summing the emissions from all
activities to provide a life-cycle accounting of embodied GHG emissions [33]. When inves-
tigating UM, this typically means determining apparent masses consumed using MFA and
applying GHG intensities for those goods, calculating transport related GHG combustion
in the city and combining electricity consumption with carbon intensities for the under-
lying grid [45, 12]. Top-down CFs rely on economic supply-use tables to capture interde-
pendencies between economic sectors, which when combined with total sectoral estimates
of GHG emissions can be permutated to estimate embodied GHG emissions per unit eco-
nomic output [34]. The final economic demand of the residents is then used to ascribe the
GHGs of production to the city [34]. Occasionally both methods are applied in a hybrid
manner [46].

A strength of CF methodology is that it moves beyond mass accounting to communi-
cate a city’s potential contributions in terms of changes to the state of the environment.
At the same time, the focus on a single metric introduces the risk of promoting solutions
that lead to unforeseen, deleterious impacts in other domains (so called ‘burden shifting’)
[29].

Ecological footprint

EF methodology, although not explicitly a product of industrial ecology (it was developed
by landscape architects), approximates resource draws to support consumption activities,
and has seen wide application in the field. EF studies provide a weighted measures of land
occupation. Weighting is based on the ability of a piece of land to convert solar energy to
biomass (‘primary production’), with areas of high productivity (e.g. rainforests) weighted
higher than those of low production (e.g. arctic tundra). Different land types are converted
into “global average hectares (gha)” based on their ratio of production over a year relative
to a piece of land producing biomass at the global average (total global annual primary
productivity divided by total land area). The resulting metric estimates the share of the
Earth’s annual capacity for producing renewable resources and absorbing pollution appro-
priated by an activity [8, 23].

In the same manner this method can be scaled to a city using both the bottom-up and
top-down methods. The bottom-up methodology uses a bundle of goods consumed at the
city scale and individual EF intensities for those activities to estimate the gross impacts
from a population [38]. The top-down method combines national economic accounts and
land use data to estimate EF, using expenditures to ascribe the area of land appropriated
to the final consumer [6].
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The strength of the EF method is that by relating an activity’s impact to a con-
strained resource, land, a measure of carrying capacity appropriation is provided. If hu-
manity’s activities occupy more land than is available over the long term, say by harvest-
ing more timber in a year than can be grown in the next year, then the planet’s carrying
capacity has been short-circuited [8, 23]. EF methodology is powerful in its communica-
tive capacity, but its validity has been questioned. Firstly, it is argued that EF models do
not actually account for the Earth’s innate ability to regenerate natural resources, but
are more representative of man’s ability to boost biomass production using other non-
sustainable means, chiefly mineral fertilizers [8, 23]. Second, EF methodology only includes
carbon dioxide as a waste stream to be remedied [8, 23]. Notwithstanding these challenges,
I included EF studies here since they link urban food consumption to the hinterlands and
embodied resource draws.

2.2.4 Foodprint analysis

In my review I looked at three different metrics:

• The rank of a city’s foodprint relative to other important metabolic drivers (trans-
port, construction materials, energy, water provision).

• The foodprint as a percentage of total impacts for a given metric.
• The foodprint as a function of per capita gross metropolitan product (GMP), to

look for patterns between wealth and foodprint scale.

Foodprints included

In populating a list of candidate studies for this review I used online literature repositories
including but not limited to DTU’s own library system, ISI Web of Science, Google Scholar
and Scopus. My target studies were any MFA, CF or EF studies of UM. Searches were
performed throughout 2014 using relevant search terms such as ‘urban metabolism’, ‘ur-
ban carbon footprint’, ‘urban ecological footprint’ and the like. Using this method I found
206 initial studies. By limiting my review to those that explicitly accounted for food in a
transparent manner and excluding historical reconstructions, relevant studies were reduced
to 43. Accounting for studies that covered multiple years of the same city and/or multiple
cities, a total of 132 foodprints were reviewed. Figure 2.1 maps the included cities.

2.2.5 Material flow analysis findings

Twenty-five MFA foodprints were analyzed. To compare across assessments, all results
were converted to tons of annual, apparent per capita food consumption (tons/cap/a). Rel-
ative to other primary UM drivers (transport, building energy, etc.), food was most com-
monly the third largest, accounting for 10-20% of material consumption (see Figures 2a-b
in Paper 1), often overshadowed by fossil fuels and construction materials. Exceptions were
cities with extremely static built forms (e.g. Paris), where food was more conspicuous.

When wealth was considered, the relationship between per capita GMP and food was
moderate (R2=0.34), with a slight upward trend as shown in Figure 2.2a. This could very
well be a result of the self-limiting nature of food demand, since unlike other goods, a per-
son can only consume so much food. Once nutritional demands are satiated, food expen-
ditures appeared to start flattening. Evidence of this can be seen in US nutritional sur-
veys that have found little difference in the total amounts of food consumed between low
and high income Americans [39]. This is the basis behind Frederich Engel’s law: above
a certain income threshold, the share of household expenditures on food decreases [14].
Notwithstanding, a statistical difference at the 95% confidence level (p=0.0272) was found
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Figure 2.1: Cities included with the year of analysis and methodology.

between the mean foodprint of cities from Organization of Cooperation and Economic De-
velopment (OECD) member countries (0.93±0.33 ton/cap/a) and non-member countries
(0.60±0.15 tons/cap/a) (boxplots in Figure 2.2b).

Even though the past 20 years of global development has shifted wealth generation
away from the OECD countries and the distinction between non- and member countries
is shrinking [18], remaining gaps between these groups hint at the scale of increase of food
demands if the aspirational consumers in non-member countries start earning near OECD
levels. These findings align with other estimates of increasing per capita global food de-
mands in the coming decades if economic development continues apace [21]. Moreover, the
mean of all included foodprints was greater than the global average, hinting at potential
links between the urbanization process, increased purchasing power and growing food de-
mand [51].

Some of the MFA studies tracked the fate of food flows demanded by their respective
case cities, providing a glimpse into the foodprint form. Earlier work revealed predomi-
nantly linear foodprints, typified by food importing and waste exporting, with little recov-
ery and recycling of waste in most cities. Some cities appeared to be wasting over 40% of
their food stock[22], with wastage rates between 20% and 30% the norm (see Article 1 for
further details). Figure 5 of Article 1 plots food waste and per capita GMP, displaying a
robust relationship between the variables (R2=0.57). This is an unsettling pattern because
food waste in the upper income countries is largely due to over-production and unneces-
sary purchasing, combined with refrigerated storage capacity [30], as opposed to unreliable
supply chains in poorer countries [20]. In terms of percentages, both high and low income
countries waste approximately 1/3 of edible food, the difference being where along the life-
cycle the food spoils [20].

One could argue that it is preferable that food waste is generated in densely populated
cities, as this eases collection and further processing, but this overlooks a couple of key
points. First, collecting and re-processing the food waste can only recoup a portion of the
resources used during production and does not redress the pollution emitted on the farm
and during processing [3, 24]. Second, shifts towards meaningful circular urban metabolic
profiles should focus on the urban sewage streams that contain the bulk of nutrients exit-
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Figure 2.2: (a) MFA ‘foodprints’versus per capita income in cities. (b) Boxplots of per
capita food consumption in different cities based on OECD affiliation

ing the city [22, 35].

2.2.6 Carbon foodprint findings

Fifteen carbon footprints were assessed. In a similar fashion to the MFA studies, CF was
typically the 3rd largest driver of GHG emissions from the cities, contributing 10-20%
of city-wide impacts (see Figure 2 in Article 1 for further details). Article 1 plots GMP
against CF in full detail, including cities in non- and OECD member countries. Figure 2.3
displays a refined version of the original GMP against CF plot, dropping the OECD di-
chotomy (too few non-OECD cities) and removing the outlier Macao (see Article 1 for
reasoning). There was a robust correlation between CF foodprint and wealth (R2=0.65).
Studies comparing food-borne CFs between nations find comparable patterns, a result of
shifting towards GHG intensive animal-sourced foods with increasing income [56, 55]. This
is not surprising, as it has long been observed that one of the first lifestyle shifts to occur
when one moves out of abject poverty is a increased animal proteins consumption [43].

The CF impacts of this shift cannot be overstated. For instance the GHG emissions
imparted in delivery 1 kg of protein in the form of beef range between 60-640 kg CO2e
compared to under 20 kg CO2e for vegetal proteins [41]. Although other livestock prod-
ucts are less GHG intensive, it is beef that has seen the largest uptake in the developing
economies in recent decades [56].

The mean CF foodprint for all included studies was well above the global average in
2007 ( 2.0±1.1 vs 0.75 metric tons CO2e/cap/a). Maintaining or reducing global agricul-
tural GHG emissions will be a challenge if this is any indication of the scale of future food-
prints of currently urbanizing societies. Shifting from vegetal- to animal-sourced foods is
not in itself environmentally unsustainable; switching to lower GHG intensity meats (e.g
chicken) can actually improve dietary quality while avoiding profligate GHG emissions. It
is the trend of increased beef intake in particular that is challenging due to methane emis-
sions from enteric fermentation and deforestation for feed crops and grazing [32].
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Figure 2.3: CF in tons CO2e/cap/a plotted
against per capita GMP

2.2.7 Ecological foodprint findings

Twenty-one EF foodprints were reviewed. Food was the largest driver of EF impacts in
over 60% of the cities assessed, where it contributed more than 40% of the total urban EF
for more than 40% of the reviewed cities (see Figure 2 in Article 1 for more detail). The
conspicuous role of food in driving city-wide EF profiles was natural given that agriculture
dominates human occupation of land globally [21]. Again, the primary driver of the urban
EF foodprint were animal-sourced foods, most notably beef, which is well documented to
require the largest land use for production due to its feed and grazing demands [41, 21].

Plotting EF foodprint against wealth for the cities in Figure 2.4a revealed a modest
correlation (R2=0.35). This correlation was more logarithmic than linear, agreeing with
the earlier discussion surrounding saturating demand beyond a certain income level and
Engel’s law. The difference between the study average and global average was not as pro-
nounced as in the MFA studies. When comparing non- and OECD member cities, a bor-
derline statistical difference (p=0.0471) was found between the groups’ means (see Fig-
ure 2.4b). One reason for the narrowing of the gap could be the inclusion of several South
American cities in my review, which had elevated beef consumption relative to cities of
comparable income. These exceptional cities highlight that foodprint scale is an outcome of
a factors beyond wealth, including cultural proclivities, comparative advantages in produc-
tion and access to cheap food, both imported and local.

2.3 City governments and food sustainability

As my analysis showed, food consumption plays an important role in a city’s metabolism
and consequently, its CF, EF, and to a lesser extent, mass flows. However, given the
metabolic rift between city supply region, the environmental fallout of this consumption re-
mains obscured from city-centric planners, politicians, designers, residents and other actors
that influence urban sustainability. Other environmental challenges related to transport,
building energy and water are more easily grasped as they viscerally impact city-dwellers,
and are consequently well represented when cities discuss ‘greening’. Some have even gone
as far to call agriculture ‘climate change’s forgotten sector’, due to the relatively low num-
ber of climate change mitigation initiatives targeting the agricultural sector [4].

In this section I try to see if the prominence of the urban foodprint in the broader, ur-
ban sustainability agenda accords with its effects on urban environmental performance. By
urban sustainability agenda I refer to the discussions and concrete actions made explicitly
by cities under the auspices of understanding and reducing their environmental impacts, be
they multi-city agreements, climate change plans, municipal bylaws or the like.
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Figure 2.4: (a) Ecological foodprint versus income. (b) Boxplot of ecological foodprint
based on OECD membership

Instead of performing a formal review of environmental plans from all available cities,
I opted for a cursory analysis that consolidated earlier meta-analyses of such documents by
others. I strengthened this by looking at larger multi-city sustainability frameworks and
partnerships, and global sustainability ‘gray literature’. This was in no way a surrogate for
a full literature review, but it hopefully provided a useful glimpse of the degree to which
food and environmental sustainability have been connected in the policy arena.

2.3.1 Literature reviews of urban climate change plans

Climate change mitigation and adaptation plans have been the most pervasive type of en-
vironmental plan published by cities in recent years, and hence, I focused on these when
synthesizing the earlier literature. To date three comprehensive literature reviews have
been performed of urban climate change plans, each outlined below.

The earliest review, from 2001, looked at pre-millennial climate change plans in US
cities [5] for the 79 US members of the International Council for Environmental Initia-
tives (ICLEI), which as the name suggests is a coalition of cities dedicated to local action
on global environmental issues. The authors review of climate change mitigation actions
by membership cities identified neither food nor agriculture as concerted areas of climate
change mitigation activity.

The next review from 2008 revisited the US ICLEI cities and their “first generation”
climate change plans [59]. Aside from the author’s own conclusion that the “proposed mea-
sures are inadequate” and “implementation is a problem”[59, p. 487], the document failed
to identify concrete plans or actions to combat the climate change impacts of urban food
consumption in US cities.

A final review from 2013 took a more international scope, looking at climate plans and
experiments in 100 cities around the globe [10]. Like earlier climate change plans reviews,
the main targets for GHG mitigation were mobility and building energy. The words ‘food’
and ‘agriculture’ are absent from the review.
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2.3.2 Review of ‘gray’ literature

5th Intergovernmental Panel on Climate Change Report

The most recent Intergovernmental Panel on Climate Change (IPCC) report is a good
barometer of the predominant discourse surrounding climate change at the global level.
The IPCC 5th report contains a number of notable chapters that illuminate the degree
that the urban foodprint has been linked to global warming.

The second working group’s report concerns impacts, adaptation and vulnerability,
with dedicated chapters on agriculturally related activities [44] and urban settlements [47].
The chapter on agriculture discusses cities tangentially with a few scattered references of
the links between urbanization, shifting diets and rising food insecurity [44, p. 502]. The
report’s urban settlements chapter was much more explicit in both outlining the links of
urbanization and dietary transitions that exacerbate the urban foodprint [47, p. 568] and
introduces urban design interventions such as urban agriculture (UA) to help cities adapt
to a future climate, though primarily from a food security angle [47, p. 560, 562, 568, 591].

The third working group’s report addresses climate change mitigation, also containing
dedicated agriculture [52] and human settlement [50] chapters. The former chapter only
mentions cities in their capacity to infringe on peri-urban agricultural land as they expand.
The human settlements chapter is light on links between food and urban climate change
performance, but does contain a review of urban climate change plans. The authors found
that although UA was included in the climate change mitigation plans of over twenty 20
cities, it was overshadowed by transport, waste, building energy demand and other urban
climate change drivers [50, Fig. 12.22].

UN-Habitat World Cities Report 2016

The United Nations Human Settlements Programme releases ‘state of the world’s
cities’biennially and in 2016 released a maiden report covering the evolution of urbaniza-
tion and urban sustainability over a 20 year period, with chapter five focusing on environ-
mental sustainability [57]. The report mentions the need for local governments to play a
role in shaping sustainable food systems, including protecting agricultural land at the city
fringe and integrating ‘green’ infrastructure into land use planning schemes. Moreover, this
report advocates building stronger ‘urban-nature’ relationships in cities, tacitly invoking
the metabolic rift.

Milan Urban Food Policy Pact

As mentioned in Chapter 1, the Milan Urban Food Policy Pact emerged out of the Milan
Universal Exposition of 2015 [16] as a voluntary agreement between 132 cities around the
world. It recognizes the connectivity of urban food consumption and global environmental
challenges and is a strong proponent in the ability of cities to influence their food supply
networks in positive ways. This includes the proliferation of UA and shorter supply chains
as a means to reduce food waste and the urban foodprint [16].

Sustainable Food Cities Network

This network of over 50 cities in the United Kingdom committed to playing an active role
in a future food systems that are healthier and more environmentally sustainable. An ex-
plicit part of their agenda is the reduction of ecological footprints from urban food con-
sumption [54].
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2.3.3 Findings

The agenda surrounding contemporary urban sustainability appears to be in a state of con-
stant evolution. Reviews of climate change mitigation strategies in cities from 1990s up
until 2013 revealed little acknowledgment of food as an important driver of urban environ-
mental performance. Climate adaptation schemes in the assessed cities revolved around
energy and transport planning, and less so the impacts embodied within imported goods.
However, the past few years have seen a shift towards increased awareness and willing-
ness to engage in the complex challenges surrounding urbanization, food consumption and
the state of the earth system. The IPCC 5th report does this by linking urbanization and
changing diets, and whilst it does promote UA to strengthen food security, it stops short
of promoting urban design or local solutions to affect environmental performance. More
recent agreements between groups of cities directly link their food consumption with a host
of environmental challenges in their supply regions and to larger global environmental is-
sues such as global warming. Food is high on the agenda in participating cities and urban
planning and design are proposed as remedies to unsustainable food supply networks. Al-
though too early to tell, these observations portend a larger role of food in future urban
climate change and environmental plans.

2.4 Chapter conclusions
My analysis of UM in three metrics suggests that the foodprint is an important driver of
total urban environmental impacts, competing for top spot with transport and building-
energy related pressures in most of the reviewed cities. It appears to be primarily linear in
form, typified by large amount of food imported and the exhaust from food consumption
exported beyond city boundaries. The linear metabolic profiles of cities is challenging as
it precludes the collection of entrained nutrients in urban food waste, though this resource
stream is secondary to sewage in its ability to contribute to a more circular metabolism.
There is a tendency for the foodprint to grow with wealth, but a number of other factors
are likely required to more fully explain the evolution of a city’s foodprint. Article 1 and
its related appendices fleshes out this analysis further.

Although long acknowledged in academic literature as a key aspect of a city’s sustain-
ability, movement by city governments has lagged. Up until the past few years, scant at-
tention was given to the foodprint by cities in their sustainability plans. Recent develop-
ments such as the Milan Urban Food Policy Pact and the Sustainable Food Cities Network
hint that the foodprint might start playing a more prominent role in more cities’ environ-
mental considerations.

Framing these results within the Northeast US, the average wealth of residents in my
study region is well above the income threshold highlighted earlier, implying large food-
prints for the region’s residents. Assuming national estimates are representative of regional
food-borne GHGs, the CF foodprint for the Northeast US would between of 2-3 metric
tons CO2e/capita/a [31, 34, 58]. This is certainly above the global average and likely in
the same area as the largest foodprints unearthed by my review, which just so happened to
be other US cities. Looking at the regional food waste outlook, a report on organic solid in
the region found that many cities, including New York City, Boston and Philadelphia were
making concerted efforts to push for increased circularity and resource recovery, though
most projects were either in pilot stages or only relevant to commercial waste generators
[25].

Lastly, a read of the GHG emissions reduction plans from the larger cities in the region
showed that neither New York City [42], Philadelphia [37] nor the District of Columbia [26]
address food related emissions, with my observations supported by a recent World Wildlife
Federation report on climate change plans in US cities [60]. Of the action plans perused,
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only the City of Boston’s explicitly mentions food sustainability and UA as a means to
mitigate food-related GHG emissions [15]. It should be noted that New York City, Pitts-
burgh and Baltimore are all members of the Milan Urban Food Policy Pact [16]. It is likely
that these municipal governments are cognizant of the intersection of sustainability and
food, foreshadowing the emergence of the foodprint in their future environmental literature
and actions.

Bibliography
[1] Brad Allenby. The ontologies of industrial ecology? Progress in Industrial Ecology –

An International Journal, 3(1-2):28–40, 2006.

[2] Hillary Angelo and David Wachsmuth. Urbanizing urban political ecology: A critique
of methodological cityism. International Journal of Urban and Regional Research,
39(1):16–27, 2015.

[3] Peter Baccini and Paul H. Brunner. Metabolism of the Anthrophosphere. MIT Press,
Cambridge, US, 2nd edition, 2014.

[4] Rob Bailey, Antony Froggatt, and Laura Wellesley. Livestock – Climate Change’s
Forgotten Sector Global Public Opinion on Meat and Dairy Consumption. Technical
Report December, 2014.

[5] Michele M Betsill. Mitigating Climate Change in US Cities: Opportunities and obsta-
cles. Local Environment, 6(4):393–406, 2001.

[6] Kathryn B Bicknell, Richard J Ball, Ross Cullen, and Hugh R Bigsby. New method-
ology for the ecological footprint with an application to the New Zealand economy.
27:149–160, 1998.

[7] Gilles Billen, Sabine Barles, Josette Garnier, Joséphine Rouillard, and Paul Benoit.
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3.1 Chapter overview

This chapter is a response to the second research theme: What is known of
urban agriculture’s (UA) environmental performance? What types of UA ex-
ist and can they be categorized based on material and energy regime? What
is the comparative environmental impacts of urban and conventional agricul-
ture supplying food to cities on the US Northeast? My point of departure is
a review the literature surrounding UA’s environmental dimensions. I then
browse UA existing taxonomies and follow with my own attempt to provide
an alternative UA systematics suitable for environmental assessments. I fol-
low up with an application of this systematics to a comparative life cycle as-
sessment (LCA) of urban farms in Boston and New York City. This chapter
is a companion to Articles 2 and 3, which can be found in the appendices of
this report.

3.2 Review of urban agriculture’s environmen-
tal dimensions

It is worthwhile revisiting the definition of UA used here before delving into
a detailed discussion of its merits and challenges. Here I borrow heavily from
Koc et al’s work [38], defining UA as the production of food in and adjacent
to cities, leveraging pre-existing urban material and energy flows as produc-
tion factors.

As I showed in Chapters 1 and 2, food demand is a key driver of a city’s
environmental burdens in a variety of dimensions. Importantly, cities them-
selves are awakening to the connections between their food consumption and
many global, regional and local environmental challenges. One response has
been the promotion of UA by governments, academics, urban designers and
citizens alike [51, 66, 6]. Numerous reasons are cited to support increased
food production in cities.

Here I looked at the various arguments given in literature to justify UA.
The panoply of claims were grouped under four umbrella terms: urban sym-
biosis, supply-network efficiencies, in-situ environmental gains and ex-situ
environmental gains. This was simplified from the original five terms used
in Article 2, as hindsight allowed me to see that ‘building energy’ is an as-
pect of urban symbiosis. Relevant literature was perused between December
2013 to October 2015 to build the list of claims and look for supporting ev-
idence (electronic repositories included Google Scholar, Scopus, ISI Web of
Science, DTU Library, etc.) Here I present an abridged discussion of the cur-
rent knowledge of UA’s environmental performance, as this work is detailed
further in Article 2.
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3.2.1 Urban symbiosis

Urban symbiosis can be understood as the mutualisms between a farm and
host city’s material and energy systems afforded by the co-locating of food
production in an urban setting. The supposed outcomes of this coupling of
farm and city are reduced inputs for farming, attenuation of local pollution
loading and resource recycling amongst others.

Building energy was one area where a number of claims were found in lit-
erature. UA is supposed to passively reduce building energy demands by in-
creasing roof albedo (light reflection) [54], providing evaporative cooling of a
building’s micro-climate [54] and insulating the host building [65]. Models of
vegetated roofs supported these claims with 41% heating load [10] and 23%
cooling load reductions [4], though field trials revealed more modest decreases
(5-10%) [40]. Active benefits of coupling a buildings heating-ventilation and
air conditioning (HVAC) system with rooftop greenhouses have also been sur-
mised [1, 58], with a 79% cooling load reduction modeled in a Mediterranean
case [8].

Ample evidence was found supporting nutrient capture and recycling of
a host city’s organic solid waste, gray water (shower, sink) or black water
(sewage) for fertilizer. Sewage application on farms in 19th century Paris
[3] and contemporary African [59] and Asian [36] urban farms have been
observed. Solid waste derived compost is commonly used on Cuban [28],
British [14] and Parisian [21] urban farms. The benefits of alternative nu-
trient sources/waste attenuation should of course be weighed against the risk
of introducing pathogens and heavy metals to produce.

The ability for rainwater harvesting to reduce farm irrigation needs
while attenuating surface water runoff was also encountered in the litera-
ture [24, 11]. Support for this included rainwater harvesting by greenhouses
in New York City [47] and Barcelona, ES [61], although the impacts of such
exercises on city-wide hydrology remain untested. Moreover, the potential
disservices of nutrient and pollutant laden runoff have seen limited study to
date [50, 41]. Concerns regarding entrainment of airborne pollution in rain-
water should also be considered in relation to this mutualism [75].

Excess building heat utilization has also been proposed [1]. Energy model-
ing of a Mediterranean rooftop greenhouse revealed poor alignment between
periods of excess building heat and greenhouse heating needs, precluding this
benefit in that case [8]. In contrast the owners of a rooftop greenhouse in
Montreal, CA claimed to capture 50% of greenhouse heating needs from their
host building [42].
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3.2.2 Supply-network efficiency

Supply-network efficiency covers those claims related to UA’s supposed abil-
ity to provide food with a leaner material and energy regime relative to con-
ventional farming. Two main topics arise, the reduction of distance from
farm to fork and UA’s superior yields.

Ubiquitous in pro-UA literature was the emphasis on reducing distance
from farm to fork (“food-miles”) by co-locating production and consumption
[6, 1, 66]. Whilst logical if UA products are consumed within the producing
region, this overestimates the contribution of transport to the total environ-
mental burdens of food production for most foods, as this is typically under
10% [20, 72]. Perhaps more important is the ability for this co-location to re-
duce wastage along the supply chain [60, 61]. Distribution losses are more of
a challenge in the Global South [16] in contrast to wealthier societies where
wastage is predominantly an issue during retailing and final consumption
[27, 25, 71, 16]. Hypothetical UA work has assumed reduced edible losses
along the supply chain [60, 5], though actual accounting exercises have yet to
be done.

Another recurring claim surrounding UA supply-networks was UA’s su-
perior yields over conventional farming [65, 11], primarily based around as-
sumptions of advanced hydroponic applications in UA. A study of Japanese
“plant factory” utilizing hydroponics and automation revealed significantly
higher yields than conventional counterparts [63, 12], but such operations are
not constrained to urban areas and can sited in rural settings. Moreover, the
benefits of reduced direct, land occupation should be weighed against profli-
gate energy consumption and related greenhouse gas (GHG) emissions [63].

3.2.3 In-situ environmental benefits

In-situ environmental benefits are the improvements to a host city’s local en-
vironment from UA, including increased biodiversity, attenuated heat island
effect, soil quality upgrading and cleaner air.

Improved biodiversity is an ancillary benefit of UA as it provides a po-
tential refuge for wildlife, particularly pollinators [24, 37]. Vegetated roofs
planting multiple crops demonstrated improved flora diversity and increased
pollinator presence [29, 48], although mono-cropping and/or pesticide use
might have the opposite effect on urban biodiversity [56].

Attenuating the urban heat island effect (the combined increase in heat
absorption by black surfaces in cities) was a common claim found in liter-
ature, since the additive improvements to building micro-climate (see Sec-
tion 3.2.1) might lead to city-wide temperature reductions during summer in
an edible city scenario [51, 74]. Models of potential vegetated roof prolifera-
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tion in New York City and Toronto, CA supported this claim with potential
summer, peak temperature reductions estimated to be ≈2◦[1, 4].

Improvements in soil quality have been seen in UA operations, whereby
repeated compost applications led to a stabler soil structure, higher organic
carbon content and greater nutrient absorption [14]. Local air quality benefits
around urban forests supported this claim [33], although potential disservices
of toxin releases by stressed crops have not been studied in urban environ-
ments [50].

3.2.4 Ex-situ environmental benefits

Ex-situ benefits refer to claims surrounding the ability for UA to improve en-
vironmental conditions in supply-regions and beyond, including carbon se-
questration [64, 11], carbon footprint minimization [64], smaller ecological
footprints [58] and improved biodiversity [58].

Claims by UA champions surrounding carbon sequestration appear opti-
mistic. Firstly, meaningful carbon uptake results from significant long-term
additions to biomass and soil, which are largely absent in annual crops grown
and consumed within short time frames. Assessments of urban tree canopies
in Toronto, CA [35] and Salt Lake City, US [50] showed uptakes of <1% of
their the cities’ annual CO2 output, hinting at the limited capacity for UA to
directly affect a city’s carbon balance.

Carbon footprint minimization is a supposed consequence of the supply-
network efficiencies and urban symbioses of UA. Results have generally sup-
ported this claim; urban rooftop tomatoes in Barcelona, ES [61] and local
farms producing lettuce and chicken in Sydney, AU [57] had lower carbon in-
tensities than their conventional counterparts. Hypothetical exercises at that
city-level revealed potential reductions of embodied food-related GHGs in
Lisbon, PT (10%) [5] and London, UK (1%) [39].

Shrinking ecological footprints and improved soil quality from UA are
predicated on the assumption that UA will either help halt deforestation
or allow farmland to return to its natural state. Such assumptions are diffi-
cult to justify in light of changing dietary patterns, increasing affluence and
limited available land for agricultural expansion, portending either a stabi-
lization or increase in cultivated land into the foreseeable future [19, 70, 55].
Nonetheless, large scale UA could help a city reduce ecological burdens if UA
turns out to require less land, both directly and indirectly, than conventional
produce, but no support for this was found in my review.
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3.2.5 Findings

Evidence in support of UA as an environmental improvement over conven-
tional food supply networks appeared mixed. I classified literature support
for these claims as well supported, preliminary and conjectural :

• Well supported: urban stormwater management, building energy use
reductions, local biodiversity improvements, nutrient capture, carbon
footprint reduction

• Preliminary: improved air quality, carbon sequestration, urban heat
island attenuation

• Conjectural: ecological footprint reduction, soil upgrading and biodi-
versity gains in supply-region, higher yields

The uncertainty of this picture is enhanced by the fact that most assess-
ments of UA either assessed a single metric in isolation, making it difficult
to account for unintended environmental trade-offs from such limited opti-
mizations. Moreover, the number of studies on operating urban farms was
limited to three at the time of review [57, 61, 63]. Lastly, assessments were
on isolated types of UA, ignoring the wide variety of farms in operation and
their potential to have disparate environmental impacts. My findings are
supported by earlier reviews which identified uncertainty surrounding UA’s
environmental effectiveness as one of the largest data gaps in current UA re-
search [66, 51].

3.3 Varieties of Urban Agriculture

Farming in and around cities has occurred for centuries all over the world
[58, 65, 64]. Currently the balance of activity is in the Global South where
UA is a prominent, if unstable, source of about 15% of global food produc-
tion [49]. Wealthier countries moved away from UA with the advent of mod-
ern city planning and its penchant for separated land uses, though scattered
moments of popularity in recent times can be found [44].

Over time UA has evolved into a number of forms and practices. More-
over, within a single UA form, different methods and inputs are demanded
by local circumstances such as climate or ambient pollution. These consider-
ations are relevant here as they dictate a farm’s material and energy regime,
and the resultant embodied environmental impacts of its products [26].

In my goal of assessing the contributions of UA to a city’s environmental
performance, I decided to use a schema to segment UA types based on their
divergent material and energy needs. This was proposed in order to advance
this study beyond the previous literature which has tended to lump many

Chapter 3 Benjamin Goldstein 39



Assessing the edible city

different types of farming practices under the general term “urban agricul-
ture”. To avoid redundant work, I reviewed existing literature to see if such
an UA systematics already existed.

Study UA Characteristics UA Archetypes Typology Focus

[64] location, product des-
tination, production
scale/technology

(i) subsistence home produc-
tion (ii) farm-type commercial
production (iii) multi-cropped
‘rurban’ system

socioeconomic

[13] farmer gender, marital
status, formal education
level, contribution to
salary, crops, planted
area, experience

(i) commercial gardening (ii)
commercial gardening and live-
stock (iii) commercial livestock
plus subsistence field cropping
(iv) commercial gardening plus
semi commercial cropping (v)
commercial field cropping (vi)
commercial gardening

socioeconomic

[32] location, crops (i) High and low density home
gardening (ii) livestock produc-
tion (iii) community gardens
(iv) open space production (v)
peri-urban production

technological

[46] location, market, size,
crops, intensification,
gender

(i) home subsistence (ii) fam-
ily type commercial (iii) en-
trepreneurs (iv) multi-cropping
peri-urban farmers

socioeconomic

[22] production type, loca-
tion

(i) intensive gardening (ii) hy-
droponic rooftop gardening (iii)
occupied lots (iv) vacant lots
(v) rooftop farms (vi) conven-
tional

technological

[30] land tenure, end con-
sumer

(i) urban homesteads (ii) com-
munity gardens (iii) urban
farms

socioeconomic

[45] location, scale, products (i) peri-urban (ii) intra-urban
(iii) rural

spatial

[2] location (i) peri-urban (ii) vacant/open-
space (iii) household

spatial

[1] location, morphology (i) ground level farm (ii)
rooftop farm (iii) greenhouse

technological

[66] technology (i) edible green walls (ii) ver-
tical greenhouse (iii) vertical
farm (iv) rooftop farm (v)
rooftop greenhouse (vi) indoor
farm

technological

[49] location, technological
level, gender, location

(i) small-scale private (ii) small-
scale commercial (iii) large-scale
commercial (iv) non-specialized
farming

socioeconomic

[43] agricultural method (i) conventional (ii) low-
biointensive (iii) high-
biointensive

cultivation style

[69] species diversity, end
consumer, tenure

(i) field crops (ii) orchard (iii)
micro-orchard (iv) diverse gar-
den

socioeconomic

Table 3.1: Sample of existing UA typologies to date
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3.3.1 Previous systematics of UA

A quick review of UA literature revealed that a significant number of UA
systematics have been devised over the past two decades of UA research. Ta-
ble 3.1 outlines the basic elements of previous systematics and the types of
UA identified. The list is by no means exhaustive, but is meant to show the
perspectives that have been used to classify UA to date.

As Table 3.1 shows, there has been a fair amount of work to date towards
classifying UA. Most of the classifications fell into themes that I loosely de-
scribed as technological (tools used in production), socioeconomic (aims and
beneficiaries), spatial (location of UA) and cultivation style (organic, conven-
tional, etc.) Out of these themes, technologically focused taxonomies were
most relevant to my study, since different production modes such as green-
houses and open lots will have divergent material and energy needs, as op-
posed to, say, two greenhouses with different ownership structures. However,
existing UA systematics lack two key properties: completeness and exclusiv-
ity. Completeness refers to the ability to cover all possible of UA forms. For
instance, Specht et al.’s [66] taxonomy includes numerous building integrated
farming methods, but does not account for farms on the ground. Exclusivity
means that each UA form is unique and cannot be considered a permuta-
tion of another archetype. Ackermans’s [1] taxonomy treats greenhouses and
rooftop farms as separate types, even though greenhouses are found on roofs.

3.3.2 Environmentally relevant UA Systematics

Since none of the systematics found at the time of my review met my needs,
I developed my own taxonomy that is sensitive to farming energy and ma-
terial intensities and meets the completeness and exclusivity requirements
outlined above.

The primary purpose of this systematics was to capture the essential ma-
terial and energy aspects of different UA archetypes. The systematics also
aimed to differentiate between the level and types of interactions a farm can
have with a city’s metabolism. Instead of trying to account for every unique
permutation of UA, I opted for an approach that covered broad classes of the
phenomenon. The outcome was a heuristic tool to support quick analysis of
predicted UA environmental performance given two essential urban farm at-
tributes: siting and space-conditioning.

Siting is binary in UA: ground-based (GB) or building-integrated (BI).
This covers almost all types of urban farms (exceedingly rare floating farms
[47] excluded) including those situated inside buildings (e.g plant factories).
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Siting is critical because it has an important influence how a farm interacts
with a city’s metabolism. BI farms can be directly coupled with a building’s
energy and plumbing systems to utilize resources, while GB farms can have
higher capacity for solid waste assimilation as they are not limited by struc-
tural concerns. Siting also impacts capital requirements, such as structural
buttressing for rooftop farms or fencing for GB operations.

Space-conditioning is also binary: conditioned (C) or non-conditioned
(NC). Conditioning influences the operational inputs of a farm; heating fuels
to maintain greenhouse temperature in the winter or pesticide applications to
combat pests on outdoor farms. Conditioned farms also negate or minimize
dispersive losses (irrigation runoff, soil losses) that affect non-conditioned
forms. Obvious implications of conditioning on capital requirements include
the need for structural and glazing components, HVAC equipment and the
like when constructing a conditioned a space. From my review of literature
and visits to urban farms the C/NC distinction is also complete in describing
UA types currently operating.

Combining these two attributes produced four distinct UA forms: GB-
NC, GB-C, BI-NC and BI-C. In the following sections I will discuss there
predicted energy and material regimes in three realms for the four UA types:
operating characteristics, capital inputs and potential for urban symbiosis.
Within each of these three realms are a number of indicators. The predicted
characteristics of the UA forms for each are shown in Figure 3.1a-c. I will not
belabor this text with a detailed description of each indicator since Article 2
explains the typology development and indicators. Article 2 also presents a
cursory analysis of the typology’s performance using previous environmental
assessments of UA. Observations regarding the four systems were gleaned
from existing UA literature and site visits to urban farms in Boston and New
York City throughout 2015.

Ground-based, non-conditioned UA

GB-NC is arguably the simplest of the UA forms, typified by planting di-
rectly in topsoil of a site or raised containers (see Figure 3.2a). A combina-
tion of low yields and potential for high ambient losses of some inputs (wa-
ter, fertilizers) are expected to lead to significant operational inputs per mass
food delivered. Advantages are that GB-NC systems tend to require minimal
capital inputs (e.g. fencing, irrigation lines, wheelbarrows, small unheated
greenhouses, etc.) and do not use energy for heating. Urban symbiosis po-
tential appears to be medium since GB-NC operations can easily accept solid
waste and capture rainwater, but cannot directly interact with a buildings
energy system nor tap effortlessly into generated waste flows. Environmental
impacts for this UA types are expected to stem from the operational inputs.
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Ground-based, conditioned UA

GB-C contrasts with GB-NC in that by moving farming activities into a con-
trolled environment, water and nutrients are contained and less-prone to
losses. Optimized conditions will likely lead to high yields and year-round
growing. A downside of this is the risk of significant inputs of heating energy
in colder climates and auxiliary energy for mechanical equipment (pumps,
louvers, etc.) Capital inputs are greater for this farm type including HVAC
equipment and structural components. Automated control systems are be-
coming increasingly common for these types of operations. Potential for ur-
ban symbiosis is the lowest amongst the four UA forms. Compost usage is
limited due to the hydroponic nature of most conditioned operations. Con-
ditioned spaces also do not attenuate runoff and are limited in their capacity
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Figure 3.2: (a) GB-NC farm in Boston, (b) GB-C farm in Boston, (c) BI-NC farm in
New York City and (d) BI-C farm in New York City

to capture rainwater to whatever storage space can be found on site (see the
black water tank in the back corner of Figure 3.2b). Lastly, being isolated
from the surrounding buildings hinders material and energy exchanges with
the built environment. Environmental impacts for this form are expected to
center around those embodied within capital and energy inputs, particularly
heating inputs in cold climes.

Building-integrate, non-conditioned UA

BI-NC urban farms, similarly to GB-NC farms, are expected to have lower
yields and higher losses of water and fertilizer inputs, although there is pos-
sibility for dispersed losses to be captured at the building edge. Capital in-
puts are expected to be medium to high, since BI-NC operations require
green roof components (plastic barriers between soil and roof, edging, grow
medium, fencing, etc.), mechanical and electronic equipment (pumps, sensors,
computer), and conceivably, structural support to carry the added weight of
the farm. Urban symbiosis potential appears to be high, since this type can
accept solid waste, attenuate rainfall and couple directly with a building’s en-
ergy and material fluxes. The balance of environmental burdens of growing
on this type of farm are expected to lean more towards capital than operat-
ing inputs.

Building-integrated, conditioned UA

The BI-C form is expected to be very efficient in using water and nutrient
flows, because of the contained nature of the growing environment, high
yields and the propensity for hydroponic cultivation, which allows for re-
cycling of these inputs. Like the GB-C, the need for stable temperatures
in colder climates portends high energy related inputs. Capital require-
ments are also expected to be greater than the other UA forms, includ-

44 Chapter 3 Benjamin Goldstein



Assessing the edible city

ing all of the inputs of a GB-C farm plus the potential for structural but-
tressing to the host building. The trend in BI-C operations is towards in-
creasing ‘datafication’ and computer monitoring of growing conditions (see
http://openag.media.mit.edu or www.farmedhere.com), meaning that com-
puter components may take on a larger importance in capital inputs in the
future. Urban symbiosis appears to be medium since BI-C forms naturally
interact well with the host building (including active coupling between grow-
ing environment and building HVAC). Conversely, BI-C farms are not ideally
suited to accept compost nor rainwater.

3.4 Environmental performance of UA in the
Northeast US

To date the majority of environmental assessments of UA have centered
around a single UA form and have been performed in temperate climate
zones (Barcelona, ES and Sydney, AU). I built on these foundational stud-
ies and modeled six urban farms in Boston and New York City. I compared
the environmental impacts between the identified UA forms and tested asser-
tions surrounding UA’s environmental superiority over conventional farming.
I reached into the industrial ecology toolbox to perform my analysis, using
life cycle assessment (LCA) to appraise the relative environmental impacts of
vegetables produced using the different systems. Article 3 was the outcome of
this portion of the project.

3.4.1 Methodology

LCA is a continually evolving methodology to estimate the environmental
implications over the life-cycle of a provided good or service. The ‘life cycle’
aspect references the different stages common to most economic activities:
raw material extraction and forming, production and assembly, distribution,
use and end-of-life (final disposal or recycling) [18]. By accounting for re-
source draws and pollution emissions over all (or some) of these stages, a
holistic estimates of environmental burdens and resource depletion are pro-
vided for a defined product or service. Although methodological details are
constantly in flux, the basic LCA framework is stable and codified through
international standards [31] and best-practice documents [15].

Two main streams of LCA exist: process-based and input-output. I em-
ployed process-based LCA to compare the UA systems and all following
discussion in Section 3.4.1 refers to this method (see Chapter 4 for an ex-
planation of input-output LCA methodology). Process-based LCA divides
the life-cycle of a product into distinct steps of ‘processes’. Resource inputs
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Figure 3.3: Life cycle of a generic good. In an LCA the amounts of different substances
emitted to air would be converted to CO2 equivalents and summed over for all processes.
Likewise with the resource inputs which would be converted to metrics for water use,
non-renewable resource depletion, etc.

and chemical emissions for each process are inventoried, and like emissions
or inputs are converted to a common proxy related to different environmen-
tal/resource challenges. For example, all GHGs are converted to CO2 equiv-
alents to account for global warming potential. By summing these proxies
over all steps, estimates of a product’s complete environmental impacts or
resource depletion are provided [18]. These indicators are called midpoint im-
pact potentials, since they communicate a value of estimated environmental
loading. Further manipulations can be performed to move to endpoint im-
pact potential that from loading to damage (e.g. lost healthy years of living
in the human population, species extinction, etc.) By performing these steps
on different systems that provide the same product or service (e.g. provide
1 kg of protein to the US market using beef or tofu), termed the functional
unit, a snapshot of comparative environmental performance of the systems is
provided. Figure 3.3 provides a system diagram for a generic product.

Like any modeling framework, in simplifying the physical world LCA
comes with a number of caveats. Firstly, summing impacts across all prod-
ucts ignores the spatially explicit nature of chemical pollution and the varied
capacities of receiving environments to assimilate different substances. This
is not so crucial in modeling global pollution challenges like global warm-
ing, but it is important when looking at agriculturally related pollution such
as nutrient runoff and biocide application [26]. A similar challenge exists in
modeling agriculturally related land occupation and water consumption [26].

Goal and scope

The goal of this assessment was to provide comparative environmental foot-
prints of six UA systems and two conventional production systems from farm
to point of purchase. This was analogous to drawing the system’s bound-
aries around the two leftmost boxes and arrows in Figure 3.3. Although this

46 Chapter 3 Benjamin Goldstein



Assessing the edible city

assessment did not account for food preparation, cooking and disposal, by as-
suming that these practices are identical for the food produced in all systems,
I could ignore the related environmental burdens. System modeling was per-
formed in SimaPro 8.0.2 using the ecoinvent 3.1 database (most recent ver-
sion at time of modeling). Ecoinvent 3.1 includes inventories of emissions and
resource draws for a number of background process (energy provisions, fertil-
izer application, irrigation) that can be combined to develop complete models
of product-service systems.

The unit of comparison employed here was 1 kilogram of fresh vegetables
delivered to the point of purchase in Boston. Two vegetables were studied
here: tomatoes and lettuce. These vegetables are chosen as they are both
the most consumed in the US diet [27] and have the 2nd (tomato) and 3rd

(lettuce) largest harvested areas in the US [17].

As mentioned earlier, LCA is an evolving field with a constantly shifting
state-of-the-art. Most germane to my study were the methods of converting
from raw pollution to midpoint impacts, since I only modeled to this step in
the environmental cause-effect chain (see Article 5 for a discussion of differ-
ence between midpoint and endpoint and subjectivity in LCA). Competing
chemical fate and impact modeling schools exist, each with their own sets
of indicators and conversion factors to move from raw pollutant releases or
resource draws to midpoint metrics [23]. I modeled midpoint impacts in six
areas where food systems make significant contributions globally [68]: climate
change (CC), freshwater ecotoxicity, marine eutrophication, water resource
depletion (WRD), land use (LU) and mineral, fossil and non-renewable re-
source depletion (RD). I used the ILCD method to convert from elementary
flows of pollutants and resources to midpoint indicators, since it includes the
most advanced publicly advanced models for this purpose at present [23].

Consequential LCA method was applied in this study. This method ac-
counts for expected changes at the market level based on ‘marginal produc-
ers’ available to supply the next unit of demand for a good. For instance,
demanding palm oil at the market is modeled as production in Thailand and
Malaysia since these are the two suppliers expanding their output to meet
growing global demand, instead of a mix of historical palm-oil producers [73].
Moreover, in consequential modeling, system expansion is used to account
for processes that produce multiple goods. Taking UA as an example, a BI
farm would provide energy savings to the host building. In this study, the
impacts from the energy that would have been demanded by the building in
the absence of the farm were subtracted from the BI system. The other op-
tion would have been to divide the impacts of running the farm between food
production and the service of insulating the host building using economic val-
ues or some other allocation key [15].
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ID Area (m2) Technology Grow season Profit? Crops(s)

GB-NC1 560 low-tech field Apr to Oct no tomato, arugula
GB-NC2 1269 average field Apr to Oct no tomato, lettuce
GB-C1 558 soil media in heated greenhouse Year round no tomato, salad greens
GB-C2 30 automated hydroponics Year round yes tomato
BI-NC 1469 soil media Apr to Oct yes tomato, lettuce
BI-C 3493 heated hydroponic greenhouse Year round yes tomato

Table 3.2: Attributes of the farms included in this LCA

Case farms

All four UA types from my taxonomy were included. Data on material and
energy consumption were collected during the 2015 growing season. Where
data were lacking, the most reasonable estimation methods were used. These
data included structural buttressing for BI farms, energy savings to build-
ings and water consumption for some of the farms. I was not able to secure
a BI-C operation for this study (fiduciary responsibilities, labor burdens).
As such, a hypothetical BI-C farm was used here based on an operating
farm in Montreal, CA. Full details on the material and energy inventories
for the studied farms can be found in the appendices of Article 3. The single
farm operating in New York City (GB-NC2) was assumed to be operating in
Boston, since the climates and growing seasons are similar.

Conventional agriculture

Primary data was not collected for the conventional tomato and lettuce sys-
tems. Instead the ‘tomatoGLO’ and ‘lettuce GLO’ processes were taken from
the ecoinvent 3.1 database, which modeled European greenhouse production.
Although representative in terms of the technologies used in North Ameri-
can production, these processes likely overestimate heating inputs compared
to US counterparts using similar technologies or field tomatoes. Nonetheless,
these proxies provide results in line with other LCAs of these products for
land [70] and GHGs [27]. Final transport distances were taken from earlier
work [53] and edible losses during the retail phase assumed to be 11% [71].

3.4.2 Results

Here I focus on CC, WRD and LU as they adequately describe the most
important trends between the systems. CC was measured using the IPCC
2013 methodology outlined in Chapter 2. WRD used the Swiss Ecoscarcity
method, which measures withdrawn water against local scarcity [23]. LU was
accounted as the measure of fertile agricultural and forest occupied converted
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Figure 3.4: Potential CC impacts in terms of kg CO2e for UA and conventional (a)
tomatoes and (b) lettuce. Triangle identifies the total CC impacts for the BI-NC farm.
Tomato icon source: The Noun Project - Zoran Djordjijevic. Lettuce icon source: The
Noun Project: mmejules.

to organic carbon equivalents [23]. A short synopsis of the other indicators
concludes this section to present any other interesting findings. The full LCA
including all six metrics is available in Article 3. Figures 3.4-6 show the com-
parative life cycle impacts from the different production systems. UA results
are broken down into the three areas covered by my UA taxonomy (see Fig-
ure 3.1). Results for conventional counterparts are broken down into cultiva-
tion and distribution impacts, as this was the amount of detailed afforded by
the supporting ecoinvent processes.

Climate change

Figure 3.4 presents CC results. Not surprisingly the energy inputs for condi-
tioned systems dominated predicted CC impacts, elevating both the tomato
and lettuce producing systems well above other UA types, and importantly,
higher than conventional methods. The latter fact is notable since the mod-
els of the conventional counterparts are likely elevated. Strikingly, the GB-C1
produced lettuce with a similar CC potential to steak [70, 27]. This was a
combination of low yields and high energy inputs, hinting that if growers are
going to proceed with conditioned UA in northern climes, choosing high pro-
ducing crops will at least attenuate CC burdens.
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Figure 3.5: Estimated WRD impacts in terms of cubic meter equivalents (m3 eq.) for
UA and conventional (a) tomatoes and (b) lettuce. Black boxes outline the predicted
range of values if runoff returned to the surrounding environment are discounted from the
predicted impacts.

Results suggest that NC forms provide leaner production pathways than
conventional methods. For the BI-NC, the appreciable embodied CC impacts
in the steel needed for structural strengthening of the roof were tempered by
the heating savings to the supporting building. None of the other farms ben-
efited to an appreciable degree from their interactions with the surrounding
material and energy flows. The GB-NC operations had low CC burdens due
to the low capital and operational inputs.

It is also key to note that the benefits of eliminating ‘food miles’ were
completely wiped out by heating costs, belying the conventional wisdom of
many UA champions [6]. Choosing appropriate crops and UA forms for the
local climate are ways to avoid these pitfalls as the NC farms demonstrate
here.

Water resource depletion

Figure 3.5 focuses on predicted WRD impacts. Here the conditioned spaces
tended to have an advantage in their ability to contain and efficiently use ir-
rigation inputs. Both the BI-C and GB-C2 were the only systems with com-
parable footprints to conventional agriculture. GB-C1 is an anomaly for con-
ditioned farms since it is used soil as a growing medium, and despite the sup-
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Figure 3.6: Predicted LU impacts in terms of kilograms carbon deficit (kg C deficit) for
UA and conventional (a) tomatoes and (b) lettuce.

posedly efficient drip irrigation system, the farm’s meager yields elevated its
WRD above its conventional counterpart.

Non-conditioned farms appear hampered by high ambient losses yielding
WRD results that are several factors larger than conventional produce. The
large impacts from urban symbiosis were due to the harvesting of rainwater.
The reason that these impacts were modeled as positive is that water incor-
porated into the plant instead of reaching the local environment can exacer-
bate local scarcity and degrade ecosystem functionality. In reality, some of
the water is leaching off the site and reaching the local environment (≈50%)
and hence I have used black boxes in Figures 3.5a-b to outline an alternative
range of WRD results when ambient losses reach the ecosystem. Even with
this generous reading of the results, predicted WRD for these farms would re-
main greater than conventional produce. Increased WRD impacts should be
weighed against the attenuation of stormwater sewer loading, which might
help Boston avoid the sewer overflow events that occasionally release raw
sewage into local waterways [7].

Land use

None of the urban farms performed markedly better than conventional pro-
duction, especially considering the uncertainties inherent in LCAs (a factor
of two difference is warranted with this indicator before conclusions can be
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made). Even when UA was not directly occupying land for cultivation, the
systems had indirect land use greater than or equal to conventional produc-
tion. For the BI-NC this was due to the embodied land use in the extraction
of iron ores and conversion to structural steel. The BI-C was burdened by
from fossil fuel extraction for the electrical grid. Fossil fuel extraction was
also the driver of the operational land use from both GB-C farms. The low
yields of both GB-NC farms meant that their direct land occupation is equal
(tomato) or greater than (lettuce) conventional production.

Other metrics

Of note were the low predicted impacts of all urban farms for toxicity and
eutrophication impacts when growing tomatoes. This was a result of the very
low artificial fertilizer application rates and near-ubiquitous eschewing of bio-
cides by all the farms. Resource depletion was driven by the farm capital and
heating inputs, though these only elevated the urban farms above conven-
tional agriculture in a couple of instances (BI-NC tomato and lettuce, GB-C1
lettuce).

Alignment with UA taxonomy predictions

It is worthwhile to ground truth the proposed UA taxonomy in relation to
the LCA findings, both to strengthen the taxonomy and to be able to provide
assurance to potential practitioners of its dependability. It should be noted
that this is not an exercise in post-rationalization since the taxonomy (Arti-
cle 2) was published 6 months prior to the LCA results (Article 3).

An obvious but important observation is that no two UA types performed
the same across all indicators, lowering the chances that I proposed redun-
dant UA forms. Conversely, some of the farms within the same UA form
showed divergent performance in some indicators (GB-C1 and 2), hinting
that the taxonomy might require expansion to include UA sub-types (GB-
C soil and GB-C soilless). A cautionary note surrounding these claims is the
small sample size of this study, a problem that will hopefully be solved as the
number of LCAs of urban farms grows.

Looking at the operational inputs the predicted results tend to hold up
to what was observed. My conditioned cases were burdened by heating en-
ergy, but efficient in terms of water use. The outlier here is GB-C1, which in
addition to high heat inputs, also had elevated water use. This was a result
of the low yields which may be atypical for other conditioned farms that are
operating for financial gain. The non-conditioned farms mirrored each other
with their high water use, although the taxonomy was incorrect in assuming
higher water use efficiency for the BI-NC form. A deviation was the BI-NC’s

52 Chapter 3 Benjamin Goldstein



Assessing the edible city

Figure 3.7: Marginal shift in Boston’s climate change performance per square meter land
use for (a) tomatoes and (b) lettuce. Terms in brackets outline the background electrical
source. NPCC is the Northeastern Power Coordinating Council, the current grid supplying
Boston.

soil erosion, which was actually higher than its ground-based counterpart due
to losses from wind.

Capital inputs lined up quite well with Figure 3.1b, but the observed
share of burdens resulting from capital for the conditioned systems was lower
than expected. Moreover, though the taxonomy foresaw the important of
capital in the BI-NC form, it was surprising to see steel buttressing play such
a prominent role in the impacts. The near absence of capital in the GB-NC
impacts agreed with the taxonomy.

Finally, given that urban symbiosis played a minimal role in the results
it was difficult to compare with taxonomy predictions. Runoff capture was
the highest for the non-conditioned farms, aligning with the taxonomy. The
BI-NC was the most prolific in its coupling with the city, netting consider-
able energy savings to the host building and assimilating a fair amount of
solid waste (redressing soil erosion), which also dovetailed with my initial ap-
praisal of the systems. The BI-C also aligned with the taxonomy in that it
captured half of its heating demand by coupling directly with the host build-
ings HVAC system. Liquid waste assimilation remains untested at present, so
no comparisons can be gleaned in that direction.

3.4.3 Alternatives to UA in the city

UA appears to occasionally provide environmental gains to the host city over
conventional agriculture, but often with trade offs between metrics. In Arti-
cle 3, I tested the effects of changing the background electricity grid for the
BI-C and GB-C2 farms (see Article 3, Table 5) to see if these high produc-
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tion systems could provide sustainable produce in the future. When pow-
ered by wind, solar or hydro, these UA forms performed better than con-
ventional agriculture by some metrics and produced in significant quantities.
Despite these positive signs, it is important to test the ability of UA to com-
pete against alternative land applications that could also bring environmental
benefits to the city. I compared the marginal shift in Boston’s CC impacts
per square meter urban land used for solar energy generation (substituting
for the current grid) or UA (BI-C and GB-C2 substituting for tomatoes and
lettuce, respectively). Appendix I of Article 3 details the assumptions in cal-
culating the benefits of the solar panels and alternative energy grids.

Figures 3.7a-b compare the marginal climate change shifts with the differ-
ent land uses. Although both the BI-C and GB-C2 appeared to provide some
benefits to Boston’s environmental profile when utilizing low carbon intensity
electrical sources, their gains paled in comparison to installing solar panels on
the same area.

3.4.4 Assessment shortcomings

A number of shortcomings of this assessment should be mentioned to allow
for a balanced interpretation of the findings. One challenge was that the re-
sults were based off a single growing season. A longitudinal study would have
captured both good and bad harvests, while also testing the evolution in re-
source intensities as younger farms matured. Such a data set would have also
provided the opportunity for me to perform Monte-Carlo simulations of the
LCA results given uncertainties on yields and farm inputs. In a similar vein,
more case farms would have helped me identify outlier farms or better iden-
tify shortcomings with my taxonomy.

An important consideration is the risk for UA to be impacted by toxic
chemicals, either taken up from the soil or aerial deposition [75, 62]. Near-
field chemical exposure in consumer products, including foods, is a devel-
oping area of LCA [34], which could help strengthen future LCAs of UA.
Boston, like many US cities, has a long history of soil contamination from
metals, degreasers and hydrocarbons [9]. Elevated lead levels have been ob-
served in vegetables unwittingly cultivated in contaminated soil in Boston
[67], and this should be considered when appraising UA’s application in the
region. Northeastern cities are acutely aware of this challenge and have man-
dated soil testing for commercial urban farms in hopes of avoiding contam-
inated produce [52, 9]. Raised bed farming and only using compost from
trusted sources are two ways to reduce the risk of farming in contaminated
soil. Moreover, pollutants tend to accumulate best in certain parts of the
plants (roots and sometimes tops), meaning that the edible portions of some
plants can still be consumed as long as the offending portions are removed
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and residual soil is washed off during preparation [75].

Lastly, I did not consider social and economic benefits in this assess-
ment. This is key since three of the included case farms were operating as
community programs to provide food security, foster nutritional literacy and
strengthen communities at the time of assessment (GB-C1, GB-NC1 and GB-
NC2). These intangible benefits to the city are not captured in CC or LU
indicators. Meager performance by non-profit farms in environmental terms
should be situated relative to the stated objectives of those farm when assess-
ing their success or failure. Contrasting not-for-profit farms to market-bound
conventional operations might have also been a poor appraisal of UA’s en-
vironmental promise. However, my GB-NC cases are representative of the
majority of farms currently producing in my study region. As such, it might
be reasonable to extrapolate my results to hypothetical scenarios of greater
UA penetration in the Northeast US, since GB-NC operations appear to be
the most likely UA form that would crop up given current conditions.

3.5 Chapter Conclusions

It appears that there are a lot of expectations surrounding the environmen-
tal performance of UA. From my review and earlier work by others, a definite
gap exists between the claims and knowledge surrounding UA’s environmen-
tal services and disservices [66, 51]. The dominant narrative in UA literature
is an inherent belief in the sustainability of local food. Looking deeper into
the literature revealed pro-UA claims in a multitude of dimensions: urban
symbiosis, supply-network efficiencies, in-situ environmental gains and ex-
situ environmental gains, with varying degrees of support for them.

To better quantify the environmental outcomes of UA and test the claims
of others I developed a simple taxonomy to act as a heuristic for urban de-
signers and to aid in a more structured analysis of the variety of forms of
urban farming. Applying LCA to six farms in Boston and New York City
showed that the environmental dimensions of the practice are more complex
than has been stated in much of the literature, since the ability to produce
more sustainable food than conventional farming varied with UA form. In
the Northeast US, impacts for the high-tech, conditioned UA forms were
larger than those of conventional farms, due to heating inputs. This con-
trasted with earlier studies in temperate climates [60, 61], underscoring the
need to consider the climactic context when discussing UA. Low-tech UA had
diminished CC potential, but at the expense of the LU and WRD metrics.
The LCA also emphasized the pitfalls of equating local production with envi-
ronmental sustainability, since the fuel savings from obviated transport were
eclipsed by the heating impacts for conditioned farms. Even when UA was

Chapter 3 Benjamin Goldstein 55



Assessing the edible city

found to have advantages over conventional supply networks, these results
should be placed in relation to the larger CC reductions provided by solar
energy production on an equivalent area.

My findings suggest that UA interacts positively with Boston’s
metabolism, supporting assertions about the co-location benefits of urban
farming. Nonetheless, the influence of these material and energy exchanges
on the results for most farms tended to be weak. An exception to this was
the coupling of farm and building energy system for the BI cases. UA inter-
actions with the hydrological system may also be important, but my results
pose more questions than answers, hinting at the need for future explorations
of this potential nexus.

This work has only explored individual farms. A lingering question is
what UA’s environmental contributions might be when scaled up in a North-
east US city, both in terms of substituting conventional produce and affect-
ing the pre-existing urban metabolism. The next chapter will address these
unknowns, hypothesizing Boston as an ‘edible city’ and applying industrial
ecology tools to test the environmental outcomes in my study region.
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4.1 Chapter overview

This chapter responds to research question 3: to what degree can the ed-
ible city affect the environmental foodprint of a city? The chapter is split
into three parts. The first concerns estimating the baseline foodprint for my
case city Boston. The second portion estimates the available space for UA
in Boston. The final section takes the LCAs of UA from the previous chap-
ter and scales them up to the city level to test the environmental impacts of
the edible city. The companion publication for this chapter is Article 4 and
its appendices. Note that background EXIOBASE v3.2 data used at
the time of the dissertation publication were flawed and have since
been updated. Please see online version of article for correct re-
sults.

4.1.1 Previous assessments of the edible city

To date only two studies have explicitly tested the impacts of UA above the
farm scale: Kulak et al.’s study of a London, UK neighborhood [23] and Be-
nis and Ferrão’s assessment of Lisbon, PT [1]. Both methods relied on es-
timates of UA’s environmental performance instead of using primary data.
Moreover, baseline foodprints were assumed to be equal to the national aver-
age. This study differed from earlier work by (i) using actual data on urban
farms, (ii) combining nutritional survey and demographics data to provide
baseline foodprints at the sub-urban level, and (iii) including UA interactions
with Boston’s energy and material metabolism.

4.2 Quantifying Boston’s foodprint

As outlined implicitly in Chapter 2, two methods are typically used to esti-
mate a city’s environmental burdens: top-down, input output and process-
based, bottom-up models. Here I applied the top-down, input-output LCA
(IO-LCA) method in estimating the foodprint of Boston. IO-LCA was chosen
here because of its improved completeness over process-based LCA [34, 17].
Process-based-LCA has been applied at the urban scale [12], but the high
level of detail it provides is not necessarily a benefit when looking at a city or
neighborhood composed of aggregated consumers.

The foundation of IO-LCA are supply-use tables linking economic activ-
ities of different sectors within an economy. Given a single economy this can
be represented as a matrix, A, where each entry in this matrix, ai,j , is the
monetary units demanded by sector j from sector i per unit output j. The
total output from the economy, X, is then represented as combination of
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inter-sectoral exchanges to meet final demand, X · A, and the final demand
itself, Y . This can be represented as equation (4.1):

X = X ·A + Y (4.1)

Re-arranging the above and solving for X yields (4.2), where I is the identity
matrix of diagonal ones:

X = [I −A]−1 · Y (4.2)

The emissions (or resource use) from each sector i per unit output, ri, are
calculated as the total emissions from the sector, Ri, divided by that sector’s
total output xi:

ri =
Ri

xi
(4.3)

Thus a vector containing the emissions per unit output for all sectors, R, can
be multiplied by total demand to determine total economy-wide pollution, B:

B = R · [I −A]−1 · Y (4.4)

As the matrices are linear in nature, this framework can be used to estimate
incremental emissions, ∆b, resulting from incremental changes in final de-
mand, ∆y:

∆b = R · [I −A]−1 · ∆y (4.5)

Equations 4.1-5 describe the steps to develop an IO model for a single econ-
omy. It is conceptually simple (but computationally taxing) to extend this
model to include multiple trading economies as (4.6) [39, 34, 17], given that
dissimilarities between accounting methods for the different economies can be
reconciled:

B11 · · · B1n

...
. . .

...
Bn1 · · · Bnn

 =

R1 · · · 0
...

. . .
...

0 · · · Rn

·

I −A11 · · · −A1n

...
. . .

...
−An1 · · · I −Ann


−1

·

Y11 · · · Y1n

...
. . .

...
Yn1 · · · Ynn


(4.6)

Bij are the emissions resulting from goods produced in economy j to satisfy
the final demand of economy i, Yij . Ri are the emissions per unit output for
the sectors in economy i. Aij are the interindustry dependencies of economy
i for products from economy j.
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Over the past two decades numerous multi-region (MRIO) models based
on this structure have been developed. The general trend in recent years has
been convergence of results between the competing models [30]. Given their
relatively equal performance, I chose the EXIOBASE 2.2 MRIO-LCA model,
which includes 43 trading regions accounting for ≈90% of global economic
activity in the year 2007. EXIOBASE 2.2 was used due to its high level of
product disaggregation (over 200 unique industries) [52].

My application of EXIOBASE 2.2 was limited to its global warming po-
tential (GWP) and land use extensions (R matrices). The GWP extension
includes CO2, CH4, N2O and SF6 emissions, converted to CO2 equivalents
(CO2e) using the IPCC 2013 method. The land use extension is unweighted
so that a m2 occupied in the amazon is considered equivalent to a m2 occu-
pied in the northern boreal forest.

4.2.1 Overcoming challenges in linking IO to food de-
mands

A challenge in using IO-LCA to assess the foodprint is that in IO models the
final demand vector (Y ) and all of the interindustry dependencies (A) are in
monetary terms. Determining the marginal impacts from economic activity
requires a shift in final demand expressed in dollars. This intimates that a
doubling of food expenditures results in a doubling of food production and
resultant environmental burdens or resource use. There exists no evidence
of a strictly linear relationship between expenditures and the volume of food
purchased. Looking at nutritional surveys of the US shows that low income
residents consume similar masses of food to high income residents [26] despite
a clear incongruence between household food expenditures for the two groups
[43]. The plateauing of the foodprint found in Chapter 2 belies this assump-
tion further.

A different currency is needed to describe Boston’s food demands. Calo-
ries are a suitable proxy for this currency, since they are common for all food
items. Moreover, satisfying calorific needs is a common goal of all consumers,
in contrast to intakes of macro- and micro-nutrients, which deviate consid-
erably between different demographics [4]. That is, regardless of economic
level or race, two consumers with a similar mass and physical activity will
consume comparable amounts of calories per day [4, 26]. This logic has been
applied successfully in a similar manner to calculate foodprints in studies of
US households [20, 19]. I took this simplification and combined it with the
EXIOBASE model to develop Boston’s foodprint.
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4.2.2 Linking EXIOBASE and the National Health and
Nutrition Examination Survey

The Center for Disease Prevention and Control’s National Health and Nutri-
tion Examination Survey (NHANES) generates usual daily intakes of well-
defined food groups (e.g. grains, dairy, dark green vegetables, etc.) for differ-
ent demographics (sex, age, race) [26, 4]. The United States Department of
Agriculture’s (USDA) loss adjusted food availability (LAFA) data tracks food
available to end consumers and lost throughout the supply network for ≈250
individual foods in the US [49].

Foods monitored in the LAFA project include data in kilo calories (kcal)
and “serving equivalents”. Serving equivalents come from the USDA dietary
guidelines, which recommend the number of servings per day to consume
within each food group. The unit allows foods to be understood in terms of
their contributions to those recommended intakes. For instance, in the pro-
tein food group, both 31 grams of beef and 38 grams of lamb provide a single
“ounce equivalent” of meat, and contribute the same nutritional value to the
consumer [50]. NHANES usual daily intakes are also expressed in serving
equivalents.

Using LAFA data I calculated the average kcal per serving in each food
group. These conversion factors were weighted averages of individual foods
within each group based on kcal available at the US market, accounting for
losses between producer and plate. Scaling up from per capita calorific avail-
ability to total kcal available on the US market, and equating these with the
carbon and land impacts calculated by EXIOBASE 2.2 for total US final de-
mand, I developed embodied carbon and land impacts per kcal brought to
market. Embodied impacts per kcal were combined with the conversion fac-
tors between kcal and serving equivalent to get the embodied impacts per
serving. Multiplying these factors by the usual daily intakes from NHANES,
I estimated the impact profiles for different demographics based on age and
sex. Figure 4.1 outlines this work flow. Detailed explanations and calcula-
tions are in the supplementary information of Article 4, including descrip-
tions of additional steps (linking food groups to products in EXIOBASE 2.2,
determining transport impacts, etc.)

Foodprints at the sub-urban scale

I supplemented the food-borne environmental impact profiles of different de-
mographics with population data to estimate Boston’s foodprint. The 2010
US census provided population estimates of different demographic groups
at the ‘block-group’ level, which are the most granular level available to the
general public (typically 600 to 3000 residents). Wedding these two data
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Figure 4.1: Work flow followed in linking USDA LAFA, EXIOBASE, NHANES, US
Census and Boston Open Data Initiative data to develop foodprints. Grain consumption
by adolescent boys used as an example. Database icon source: The Noun Project - Shmidt
Sergey.

sources resulted in foodprints at the block-group level for Boston in the year
2010, including breakdowns of foodprint components. This model focused
on the City of Boston, and did not include the bordering municipalities that
comprise the Boston Statistical Metropolitan Area. The workflow in Figure
4.1 includes these final two steps and illustrates the cartographic output of
my model.

4.2.3 Boston’s baseline carbon and land foodprints

Figures 4.2a-b show the baseline average foodprint for the entirety of Boston
in terms of (a) GWP and (b) land occupation for the year 2010. Figure
4.2c shows the average block-group carbon foodprint for Boston’s 560 block-
groups.
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Carbon foodprint

Boston’s baseline carbon foodprint in 2010 averaged 1179±20 kg
CO2e/cap/a, although block-group averages ranged between 1122 to 1342
kg CO2e/cap/a. The percentage of adults had a strong impact on a block-
group’s burdens, particularly adult males, as their larger calorific needs ele-
vated carbon foodprints above the average Bostonian. More youthful block-
groups sat at the lower end of the carbon foodprint spectrum.

Meat and dairy were the major drivers of Boston’s foodprint, accounting
for more than 40% of total impacts, aligning with the urban foodprints re-
viewed in Chapter 2 and earlier assessments of the US diet’s carbon impacts
[16, 20, 51, 38, 37]. Conspicuously, beverage impacts contributed 16% to the
total, which follows directly from the EXIOBASE sector ‘Beverages’ itself
accounting for 19% of total impacts when the unaltered MRIO model was
run at the national level. This finding agrees with Jones and Kammen’s IO-
LCA based work on US households [20], but deviates from the process-based
work on the US diet where beverages are not explicitly included [16]. Until
process-based LCA work including beverages of the US diet is performed, it
is difficult to conclude on whether this is an indication of IO-LCA’s superior
coverage over process-based methods or a modeling aberration.

In terms of scale, the foodprint is smaller than other studies that have
modeled average US carbon food impacts, which is surprising considering
the completeness espoused by IO-LCA proponents. Heller and Keoleian’s use
of process-based LCA to gauge GHG emissions from US food consumption
pegged average impacts at around 2000 kg CO2e/cap/a with a possible range
of 912 to 3358 kg CO2e/cap/a [16]. Jones and Kammen estimated the food-
print of the average US citizen at approximately 3000 kg CO2e/cap/a [20]
using IO-LCA (Carnegie-Mellon 2002 US model: www.eiolca.net), agreeing
with similar work of Weber and Matthew’s [51]. Although my estimate fell
within the lower range of possibilities estimated by Heller and Keoleian, it
was markedly below earlier IO work. Discussions with the EXIOBASE de-
velopers at the Norwegian University of Science and Technology confirmed
that my manipulations of the EXIOBASE 2.2 model were correct (pub-
lished studies by this group calculated average US food impacts at 1200 kg
CO2e/cap/a[18]), and hence the gap between my work and the other studies
lay within the database itself. This is a finding that warrants some reflexive
thinking by IO-LCA model developers and users, as it does not jibe with the
usual narrative of inventory completeness surrounding the work.
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Figure 4.2: Baseline average foodprint for the entirety of Boston in terms of (a) cli-
mate change in CO2e/cap/a and (b) land occupation in m2/cap/a. (c) shows the average
block-group carbon foodprint for Boston’s 560 block-groups

Land use

Embodied land use in Boston’s food consumption averaged 9077±198
m2/cap/a, with range of 8600 to 10000 m2/cap/a found amongst block-group
averages. Demographic trends mirror those seen with the carbon foodprint.

Impacts emanated from animal-sourced foods (≈50%). Findings were on
the lower end of predicted meat and dairy land use contributions relative
to Peters et al’s estimate of 75% [33] or Eshel and colleagues’ finding of 1
ha/a/cap for meat and dairy alone [9], both for the average US consumer.
This could have been an outcome of the large impacts of the ‘General food
nec’ sector in the EXIOBASE model, which was allocated amongst multi-
ple food categories when calculating per kcal embodied impacts (see Article
4 supporting information). This division might have taken some of the land
use impacts for animal-sourced foods that were bundled within this catch-all
product category - it includes frozen and highly processed foods of all types
- and allocated an unnecessarily large quota of land occupation to vegetal
foods. Unfortunately, given the high degree of product aggregation in IO
models, this type of mis-allocation was unavoidable using my method.

Model performance

It is worth stepping back from the numbers to consider the outcomes of cou-
pling NHANES and EXIOBASE 2.2 to model urban foodprints. Aside from
the apparent underestimation of food-related climate change impacts by EX-
IOBASE 2.2, the general conclusions appear to be defensible in that the
sources of impacts aligned with patterns seen in other diet studies. Chal-
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lenges exist in allocating the impacts of the highly aggregated food prod-
ucts in EXIOBASE between different food groups in NHANES. Different de-
composition methods could include weighting of the calorific contributions of
food groups (e.g. beef calories get a higher percentage of ’General food nec’
impacts than their straight proportion of total calories), but this veers in to a
subjective space that could further compromise the results.

It is also worth considering whether the data gathering, parsing and pro-
gramming work necessitated in building the model actually resulted in a bet-
ter estimate of the urban foodprint. The tight spread around the mean of
both the carbon and land foodprints suggests that one can get away with
using average consumption data to model a city’s food consumption, be
they national or at a more granular level. A caveat is that this simplifica-
tion is likely only reasonable for societies where the majority of residents lie
above or below the level of wealth where the foodprint plateaus. Studies in
highly ‘mixed’ societies should aim to stratify the city population into sub-
populations so contrasting consumption profiles can be captured, as has been
done for Beijing, CN [53].

4.3 Capacity for UA in Boston

No formal method exists for determining the amount of space available for
UA in a city. In determining space on the ground, some researchers have
used simple visual inspection of aerial photography to estimate latent UA
area [29]. Others have taken a more advance approach, utilizing machine-
learning algorithms to teach a computer to identify potential area from aerial
photographs [36]. Estimating available UA space on buildings has seen even
less study. Most researchers circumnavigate the challenge by assuming all
buildings can support UA [14, 32].

I estimated ground UA area in Boston using a method that fell in the
middle range of the technological complexity of earlier UA estimates. I em-
ployed what I call ‘subtractive’ and ‘additive’ approaches to arrive at lower
and upper bounds of UA amenable land in the city. For building UA space,
a combination of datasets were used to estimate available roof area given a
number of constraints.

4.3.1 Additive estimate of UA ground area

The additive approach started from a total of 0 acres UA space and added
UA amenable space to arrive at an estimate for the city. Data retrieved
from the City of Boston Open Data Initiative [6] allowed me to analyze over
165,000 individual parcels from the city’s 2016 Tax Assessment. The areas of
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Figure 4.3: Illustrating additive(+) and subtractive(-) methods for estimating UA space
in Boston

those properties with land use classification codes suggestive of UA poten-
tial were then added to the running total of UA space for Boston. Acceptable
land uses were typically various marginal land applications (e.g. vacant resi-
dential, commercial, industrial, etc.) that were devoid of structures. Table 35
in the supplementary information of Article 4 outlines these in detail. Park-
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ing lots were also accounted as available UA space, the ramifications of which
are considered in the final UA optimization model. Other types of marginal
land outside the tax assessment data as determined by the Massachusetts
2005 land use map were also included (e.g. cropland, pasture, transitional,
etc.) Figure 4.3 illustrates the method.

Some data manipulation was necessary, including the removal of double-
counted parking lots that occupy the same tract of land (common for apart-
ments) and removing pieces of land with slopes above 10◦. Overlapping areas
from the various data sources were disaggregated to avoid double counting
(see Figure 7 of Article 4’s supplementary information).

The additive method should be taken as the lower limit of UA available
space, since there is certainly more ‘open’ land in the city than this method
can identify. That being said, because I chose to ignore building shading and
contamination, this is an upper limit on this estimate.

Available UA Space

Figure 4.4a presents the additive estimate of UA space. 2000 acres for UA
were found in the city using the additive method. Parking lots accounted for
191 acres of UA land, and hence, the impacts of their inclusion should be
marginal relative to total results.

4.3.2 Subtractive estimate of UA ground area

The subtractive approach started with the assumption that the entire land
area of Boston was suitable for UA and then proceeded to subtract those ar-
eas with poor UA adaptability, chipping away until a final estimate was ar-
rived at. Infrastructure (e.g. roads, sidewalks, airports) and buildings were
by default subtracted from Boston’s total area. Protected open spaces (per-
manent and temporary), parks and sports fields, as well as cemeteries were
also removed from the city’s footprint. Land with slopes greater than 10◦

were also excluded. The full list of UA incompatible land types and their
data sources is available in Table 38 of Article 4’s supporting information.
Intersecting pieces of land were handled in the same manner as the additive
method to avoid double counting. Figure 4.3 illustrates the method.

This method provided an upper limit on the land theoretically avail-
able for UA, in that it represented the area that could be cultivated with-
out disrupting Boston’s current spatial configuration. Moreover, this method
ignored shading effects from buildings, and therefore provided an absolute
upper limit on UA space. Another detail is that contaminated land was not
accounted here, although this would not necessarily preclude any of the es-
timated space, but necessitate remediation or farming methods that avoid
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Figure 4.4: Estimated of ground space for UA in Boston using (a) additive methods and
(b) subtractive methods.

contact with native soils.

Available UA Space

Total UA area was estimated at 8846 acres (1 acre ≈ 4047 m2) in the city
(≈29% of total city land), about four times greater than the additive esti-
mate. Figure 4.4 shows how this land is dispersed amongst the city’s block-
groups. Naturally, block-groups outside of the denser, older parts of the
city tended to have greater UA capacity, but some exceptions were present
around the city’s port. Conversely, some of the less-dense periphery block-
groups had low UA space estimates due to significant park and protected
green space coverage.

4.3.3 Building capacity for UA

The suitability of a building for UA is dependent on a myriad of factors: roof
pitch, structural stability, historical considerations and the like. Unfortu-
nately, such a dataset containing all of this information does not exist and
so a roundabout method was employed to estimate Boston’s UA roof space.
Firstly, all buildings in historical preservation areas were excluded from host-
ing UA, since major alterations to building exteriors are not permitted in
those neighborhoods. Essential transport infrastructure such as airport build-
ings were also precluded. Three criteria were used to determine the potential
for UA on the remaining buildings: building age, roof pitch and height.
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Building age is relevant since there is ostensibly some relation between a
building’s structural attributes and its age, given the gradual establishment
and maturation of building codes throughout the 20th century. Since these
codes resulted in the introduction of standards dictating minimum capacities
for snow and wind loads, it can be reasonably assumed that older buildings
are less able to support urban farms (19th century warehouses and factories
may be notable exceptions to this). Instead of picking an arbitrary construc-
tion year as a cutoff, I modeled cutoff years ranging from 1900 to 2000 in
decade intervals to see how this choice affected the results.

Roof pitch is an obvious design constraint, as slanted roofs largely pre-
clude farming due to access limitations and challenges with growing media
stability (edible walls are not considered in this study). As such, only flat
roofed buildings were considered for UA here. Height is another natural lim-
iting factor in the application of UA. Farming on buildings above a certain
height may be unsafe (or simply uncomfortable) and/or complicated by un-
stable growing media from intense winds. An analysis of Boston’s built stock
found that over 90% of the buildings are less than 30 meters tall (see Figure
7 in Article 4’s supplementary information), and thus, this was taken as a
threshold for the maximum acceptable building height.

Developing dataset of Boston’s buildings

In order to apply this criteria to Boston’s built stock, data for all of the city’s
buildings were needed. To develop this dataset I adapted the method of Dev-
ila et al. [5] to develop a clean, consistent geospatial dataset of Boston’s built
stock that included roof pitch, height, age and historical designation. The
entire process is detailed fully in the supplementary information of Article
4, but a quick overview is in order. First, the aforementioned tax data were
cleaned to remove multiple entries for the same building and then linked with
spatially explicit tax assessment parcel maps from the city’s open data ini-
tiative [6]. The resulting data set contained mappable building ages, heights,
roof types, use (residential or commercial) and heating/cooling system in-
formation. This dataset was then spatially joined with Boston’s building
dataset using the Geographic Information System software QGIS 2.4.0 and
cleaned of unsuitable building types (e.g. ruins, foundations, infrastructure,
etc.) or entries lacking essential information. The end result was a dataset
of approximately 75,000 buildings in Boston that could be assessed for UA
suitability.

Only a proportion of the entries in the tax assessment data included in-
formation on roof type. Where roof data was absent, a roof type was as-
signed probabilistically based on known information about Boston’s resi-
dential (21.3% flat roofs) and commercial (25.2% flat roofs) building stocks.
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Figure 4.5: Estimated building space with a building construction cutoff years of (a) 1900
and (b) 2000 over 100 Monte-Carlo trials.

These probabilities taken from the US commercial building energy survey
[47] or tax assessment data. Because of these uncertainties, 100 runs for each
building age cutoff were completed with the roof type assigned to candidate
buildings when they lacked roof data.

Available rooftop UA space

Figure 4.5a-b show average UA space over 100 Monte-Carlo runs for all of
Boston’s block-groups given building construction cutoffs of 1900 and 2000,
respectively (results for all years are in Figure 12 of Article 4’s supplemen-
tary information). Building space decreased from 424±8 acres with a cutoff
year of 1900 to 26±3 acres with a 2000 limit. The decrease was concentrated
in the older parts of the city, which change from red to green between Fig-
ures 4a and b. Block-groups with newer building stocks remained relatively
stable in terms of rooftop space over the different cutoffs. At most, rooftop
UA accounted for 20% of Boston’s total UA space.

4.4 Assessing the edible city

The LCA of urban farms in Chapter 3 provided the foundation of my edi-
ble city model. Although only tomatoes and lettuce were assessed in that
chapter, my collaborations with the farms produced primary data on fifteen
different vegetables grown in Boston and New York City. In scaling up to the

Chapter 4 Benjamin Goldstein 77



Assessing the edible city

Vegetable UA Type Yield (kg/m2

UA)
Marginal
climate
change shift
(CO2e/m2

UA)

Marginal
land use shift
(m2/m2 UA)

Beet GB-NC 2.26 -0.57 0.70
Bell pepper GB-NC 2.30 -2.29 1.84
Bell pepper BI-NC 2.44 -0.15 -0.65
Cabbage GB-NC 4.70 0.43 0.36
Carrot BI-NC 1.59 1.47 0.16
Carrot GB-NC 1.63 -0.51 1.16
Collard greens GB-NC 0.41 0.10 1.14
Cucumber BI-NC 5.28 -1.11 -1.73
Cucumber GB-NC 3.34 -2.46 -0.01
Eggplant GB-NC 2.27 -4.04 2.24
Green beans GB-NC 4.27 -3.06 -4.36
Green beans BI-NC 1.12 1.57 -1.56
Kale BI-NC 1.26 1-57 -0.35
Kale GB-NC 4.72 -4.24 -1.96
Lettuce GB-NC 0.80 -0.90 2.61
Lettuce BI-NC 0.80 0.49 0.14
Radish BI-NC 3.11 0.45 -3.29
Scallion BI-NC 0.93 2.22 0.43
Scallion GB-NC 0.76 -0.25 1.42
Squash GB-NC 2.54 -0.08 -0.01
Tomato GB-NC 2.94 -2.50 0.80
Tomato BI-NC 4.70 -1.61 -0.99
Turnip BI-NC 1.84 1.63 -0.86
Turnip GB-NC 3.50 -1.39 -1.17

Table 4.1: LCA results for different vegetables grown in Boston and New York City using
ground-based (GB) and building-integrated (BI), non-conditioned (NC) UA forms. BI-NC
results shown below do not include any interactions with the host building’s energy system.

city I included all of these vegetables, since it is not reasonable to expect a
city to either sustain itself nor significantly reduce its environmental impacts
by only producing tomatoes and lettuce. Table 4.1 outlines the attributes
of these vegetables, including yield and farm type. The table also presents
the marginal shift in Boston’s carbon and land foodprints per square meter
UA space employed to grow each vegetable (see Article 4’s supplementary
information for detailed calculation method and data for conventional coun-
terparts).

I only included the GB-NC and BI-NC UA forms (see Chapter 3 for de-
scriptions) for multiple reasons. Firstly, these were the only two forms that
were modeled to have environmental benefits over conventional production
modes. Including the other UA forms would have been counterproductive
since the edible city’s negative impacts would have been all but guaranteed.
Including the poorer performers might have provided a ‘worst case scenario’
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for the edible city, but this would have been a misrepresentation of future UA
scenarios given the constant innovations in urban farming and the predicted
evolution of the region’s electricity grid. The UA types included here were
also, anecdotally, the predominant UA forms found in my study region, and
hence, a better barometer of what the edible city could resemble in the short-
term. At the same time, I have included individual vegetables with marginal
increases in burdens when substituting for conventional agriculture, since this
captured some of UA’s unintended adverse effects. This also simulated a sce-
nario where my ‘farmers’ were free to choose their crops within the limited
set of UA forms I provided. For a further discussion of the challenges of us-
ing these data, please see Article 4.

4.4.1 Optimizing UA

In quantifying the edible city’s environmental promise I applied ‘greedy’ al-
gorithms to optimize separately for GWP and land use reductions. The al-
gorithm were greedy in that they attempt to maximize the volume produced
of those vegetables that have the largest marginal environmental benefits.
Although greedy algorithms are not guaranteed to find the global optimum
solution, it can identify local optimums and give a reasonable estimate of the
global optimum [25]. In the simplest case, the greedy algorithm would result
in the production of one vegetable, that with the largest environmental re-
ductions, until all UA space was occupied in the city. In order to avoid this
unrealistic scenario, constraints needed to be introduced. Here, the global
constraint was that edible city was not allowed to produce a vegetable in vol-
umes greater than it is currently being consumed in Boston. This provided
an upper bound for all of the included vegetables and assured that my simu-
lation was grounded in reality.

Figure 4.6 shows the structure of the program’s optimization algorithm.
In short, the program cycled through each block-group in Boston checking for
unused UA space. Block-groups with free UA space were then tested to see if
their needs for all vegetables in Table 4.1 were met. This local constraint en-
sured that the global constraint - city-wide production ≤ city-wide demands -
was not violated. Block-groups that had space, but no longer needed vegeta-
bles were set aside. Block-groups with unmet demands attempted to produce
the best available vegetable using their available space in 100 m2 chunks,
until UA space was exhausted or block-group vegetable demands were met.
Once all block-groups were cycled through, if city-wide demands remained
unsatisfied, block-groups with extra capacity produced (while optimizing for
GWP or land use) until UA space was exhausted or city-wide vegetable de-
mands met. Supplementary information of Article 4 describes the algorithm
further and calculations undergirding my estimates of city-wide vegetable de-
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mands.

Figure 4.6: Optimization method employed in assessing the edible city

The optimization program was written in Python 2.7 and implemented
throughout the fall of 2016. The program was run for both subtractive and
additive UA space estimate methods. For each ground-UA space method 100
round Monte-Carlo simulations for each building age cutoff were also per-
formed. Given the two indicators and two space estimation methods, four
scenarios were run. Within each scenario building space was estimated for
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the different cutoff years as outlined above in Section 4.3.3. Table 4.2 below
describes the four scenarios.

4.4.2 Interactions with Boston’s metabolism

I accounted for three types of interaction between UA and Boston: build-
ing energy, waste assimilation and runoff avoidance. Building energy was
calculated for each individual building based on the current heating system
(natural gas, heating oil, electric, propane), insulation level (good, adequate,
poor, none) and presence of air conditioning. Building data were taken from
tax assessment data, and where lacking, stochastically assigned in a simi-
lar manner to roof type, using data for New England from the residential
[48, 46] and commercial [48] building energy consumption surveys. Heating
and cooling intensities were also retrieved from the building energy consump-
tion surveys. Estimated energy savings from UA placement were taken from
La Roche and Bernardion’s field trials of green roofs in different US climate
zones [24].

Waste assimilation capacity was taken directly from primary observations
of compost uptake at the case farms [2]. Avoided runoff was estimated as
the amount of impermeable space converted to UA, taken here as rooftops
and parking, times the 15 year average annual rainfall [3]. Upper [31] and
lower runoff [40] attenuation factors were used to test a range of results. the
supplementary information of Article 4 further details the accounting of all
three urban metabolic interactions.

Scenario Scenario Details Construction Cutoff Years

GWP(+) Optimization for GWP reduc-
tion using additive method to
estimate UA space

1900, 1910, 1920, 1930, 1940,
1950, 1960, 1970, 1980, 1990,
2000

GWP(-) Optimization for GWP reduc-
tion using subtractive method
to estimate UA space

1900, 1910, 1920, 1930, 1940,
1950, 1960, 1970, 1980, 1990,
2000

Land(+) Optimization for land use re-
duction using additive method
to estimate UA space

1900, 1910, 1920, 1930, 1940,
1950, 1960, 1970, 1980, 1990,
2000

Land (-) Optimization for GWP reduc-
tion using subtractive method
to estimate UA space

1900, 1910, 1920, 1930, 1940,
1950, 1960, 1970, 1980, 1990,
2000

Table 4.2: Four scenarios tested during the optimization of the edible city.
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4.4.3 Results

In the following sections, all additive scenarios included parking as latent UA
space. Tables 52, 56 and 60 in Article 4’s supplementary information present
additive scenarios excluding parking.

GWP and land use results

Figure 4.7a-b present the results for the four optimization scenarios averaged
over all construction cutoff years (all tons are metric, in both text and fig-
ures). Error bars represent the standard error over all trials for each opti-
mization. The GWP(+) optimization reduced Boston’s foodprint by ≈18000
tons CO2e/year or approximately 2.5% of the total carbon foodprint of the
city (17% of fruits and vegetable impacts). This was 20% greater than the
reductions from the Land(+) optimization. UA actually resulted in a net
increase of Boston’s land foodprint, although optimizing the Land(+) sce-
nario was able to attenuate these by 40% compared to the GWP(+) trials.
Relative to the baseline land foodprint presented in Section 4.2.3, this was
less than 1%. The increase was a result of the mass application of GB-NC
across the city and its tendency to produce in low yields. In terms of meet-
ing Boston’s vegetable demands, neither of the additive scenarios reached this
goal.

The GWP(-) and Land(-) programs converged towards the same GWP
and land use shifts, since they both met Boston’s demands for the produced
vegetables. The minor differences arose from the slightly different paths the
algorithms traversed to meet the city-wide constraint (slightly more vegeta-
bles on the roof in the Land(+) scenario). Food-borne GWP impacts shrank
by 24000 tons CO2e/year (3.4% of foodprint) while land increased by 6400
acres/a (<1% total land foodprint). In the subtractive scenarios, about 50%
of Boston’s total UA space was utilized, intimating that an even larger vol-
ume of the city’s nutrition could be procured locally. It should be kept in
mind that this was only a fraction of Boston’s vegetable demands (32% by
mass and 24% by calories), and therefore, results do not necessarily predict
that Boston can achieve complete vegetable self-sufficiency.

Across all scenarios, UA appeared to change baseline food related GWP
and land use by marginal amounts in Boston. My findings agree with earlier
studies of London [23] and Lisbon [1] that predicted baseline carbon food-
print reductions of less than 10% from UA. The increased land use observed
in Boston contradict the findings of the Lisbon study [1]. Although there are
a number of factors that could explain this difference, one key aspect might
be the the reliance on conventional agriculture life-cycle impacts to develop
proxies for UA performance in Lisbon. If I had made the same simplification,
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Figure 4.7: Pre-
dicted (a) GWP and
(b) land use shifts of
Boston’s foodprint
for all optimization
scenarios. Each opti-
mization is averaged
over all construction
cutoff years (100 runs
per year). See Table
4.2 for scenario de-
scriptions. Error bars
show standard error
around the mean.

my land use results would have also suggested that the edible city in Boston
reduced land occupation. Here I have shown that simply removing transport
burdens and assuming no wastage in distribution may not be an accurate
substitute for farm level data, since the modes of production between urban
and conventional agriculture practices can diverge markedly.

Urban metabolic interactions

Figures 4.8a-b show the interactions of UA with Boston’s material and en-
ergy metabolism. Only the 1900 and 2000 construction cutoff years are
shown as they demonstrate the key impacts of changing this parameter (full
results in Figure 13 of Article 4’s extra material). The combined results for
the GWP(+) and Land(+) trials are shown for runoff retention as their ef-
fects on the city were nearly identical. Similarly, Figure 4.6b combines the
GWP and land for the additive and subtractive scenarios.

Building energy was subsumed within the results of Figure 4.7a contribut-
ing 3200 CO2e/year of the foodprint shift for the 1900 cutoff year in the
GWP(+) and Land(+) scenarios. At its greatest, building energy reductions
accounted for 19% of the total GWP shift, bottoming out at 1% when the
rooftop area was at its minimum (year 2000). For the GWP(-) and Land(-)
scenarios, building energy contributed less than 5% to total GWP savings.
In terms of contributions to reducing Boston’s total building energy use and
related GHG impacts, the savings were in the single digits [5].

Runoff retention was also closely related to building space, since buildings
represented the majority of area converted from impermeable surfaces. UA
appeared to reduce surface runoff by 2.0 Mm3, which accounted for less than
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Figure 4.8: Pre-
dicted (a) runoff
reduction and (b)
waste assimilation
of UA in Boston us-
ing years 1900 and
2000 as construction
cutoffs. GWP(+)
and Land(+) were
averaged for runoff
reduction. The ‘addi-
tive’ and ‘subtractive’
scenarios represent
the averages of the
GWP(+)/Land(+)
and GWP(-)/Land(-)
scenarios, respectively.
Error bars represent
the standard error
over 100 runs. See
Table 4.2 for scenario
descriptions.

2% of the city’s annual total (see Article 4 for estimate). Maximization of
the runoff reduction occurred during the GWP(+) and Land(+) scenarios for
cutoff year 1900, since these employed the greatest roof area. Waste assimila-
tion was highest for the GWP(-) and Land(-) trials, hitting its peak of 12000
tons solid waste/annum when the building cutoff year was 1900, and drop-
ping to about 4000 tons solid waste/annum for the GWP(+) and Land(+)
scenarios for year 2000. At most, UA waste assimilation accounted for under
10% of Boston’s total organic solid waste production [27].

The degree to which UA can shift the energy and material metabolism
of an edible city appears meager in the context of baseline material and en-
ergy flows. The fundamental nature of the claims by UA proponents remain
unchallenged, but my models do hint that the contribution of UA to more
sustainable urban metabolisms is limited using the UA forms I modeled. For
instance, even in capturing one tenth of organic solid waste flows in Boston,
this would still likely represent little more than a couple percent of total nu-
trient fluxes through the city, since the primary mode of exhaust is human
waste [11, 10, 21]. Even my own work in Article 3 that highlighted the im-
portance of building energy interactions for the BI-NC farm appeared in-
significant when scaled up to the context of a large, modern city’s total en-
ergy demands.
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4.4.4 Beyond environmental motives

The edible city appears to have limited ability to reduce the GWP and land
foodprints of its residents or shift the baseline material and energy flows of
the city. Notwithstanding, UA may be able to contribute in other manners to
a more sustainable urban future, albeit in different realms. To explore this, I
made a cursory analysis of how the edible city would influence its nutritional
intake and generate income for UA practitioners, as these are two motives
often invoked in promoting UA in the Northeast US [13].

Nutritional contribution

In appraising UA’s nutritional aspects I considered UA’s ability to help
Boston meet the USDA recommended dietary intakes for dark green, red and
orange and other vegetables. USDA guidelines outline suggested consump-
tion in these three areas for different ages and levels of physical activity [45].
Starchy vegetable and legume needs were excluded, as none of the farms pro-
duced these during the 2015 growing season. The vegetables were classified
as follows:

• Dark green: collard greens, kale
• Red and orange: bell pepper, carrot, tomato
• Other: beet, cabbage, cucumber, eggplant, green beans, lettuce,

radish, scallion, squash

The optimization algorithm was altered to change the boundary condi-
tion from current vegetable demands to vegetable needs. Demographics data
were combined with the recommended USDA guidelines to estimate Boston’s
nutritional needs for the three vegetable sub-groups. See the supplementary
information of Article 4 for the calculation of nutritional needs and a richer
discussion of the alterations to the optimization script. Two nutrition sce-
narios were modeled: Nutrition(+) and Nutrition(-) for the additive and sub-
tractive UA area estimation methods, respectively. Once again, construction
cutoff years between 1900 and 2000 were tested.

Economic contribution

The potential market value of vegetables was chosen to gauge the economic
contributions of UA. This was taken as the production volume of a given
product times its market price [41, 42].

I considered both intra-city trade and exporting. Intra-city trade occurred
when block-groups with extra capacity sold to those lacking self sufficiency.
Exporting modeled the production of food for sale outside the city, a practice
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Figure 4.9: The
nutritional contri-
bution of the edible
city given different
optimization and
UA space estimation
scenarios averaged
over all construction
cutoff years. Error
bars represent the
standard error over all
years and runs within
each scenario. See
Table 4.2 for scenario
descriptions.

modeled to occur on excess land after Boston had satisfied its own vegetable
or nutrition needs. See Article 4’s supplementary material to better under-
stand how the optimization script was adapted to monitor the market value
production. Parking was excluded from the simulations using additive UA
space estimates, since this is already a revenue generating land application.

Results

Figure 4.9 displays the edible city’s nutritional contributions for all all con-
struction cutoff years within each scenario. Firstly, when optimized for land
and GHGs, the edible city supplied other and red and orange nutritional
needs to a greater degree than the dark green needs, a reflection of the cit-
izens natural proclivity for those vegetable types. When producing to meet
vegetable demands in the GWP(-) and Land(-) runs, UA can meet 1/2 and
3/4 of red and orange and other vegetable guidelines, respectively. The Nu-
tritional(+) scenario increased the dark green consumption at the expense of
red/orange and other vegetables, providing approximately 40% of nutritional
guidelines for all three. The edible city met USDA guidelines for all three
vegetable types using 64% of UA space in the Nutritional(-) scenario.

Figure 4.10a shows the market value of UA in Boston when limited to
intra-city transactions. The upper limit was around $50 million (all figures in
US dollars) in the Nutrition(-) scenario, as the number of block-groups with
deficits was at the maximum. Of interest is that the GWP(+) and Land(+)
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scenarios provided the larger market values than their subtractive counter-
parts, a result of the higher number of block-groups that could not meet
their own demands.

The results for an exporting edible city are shown in Figure 4.10b. The
market value in these scenarios hovered around $160 million, with the pro-
portion exported varying depending on whether the city was growing to
meet its current vegetable demands (≈90%) or nutritional recommendations
(≈67%). Maximum market value coincided with Boston satiating its nutri-
tional needs for the three vegetable groups, a side-effect of the large volume
of high-yield dark green vegetables needed to meet USDA guidelines, which
led to the largest yields of all the scenarios.

Situating the market value in terms of the Boston metropolitan area,
$160 million amounts to less than 1% of the regions gross economic activ-
ity [44]. Whilst insubstantial in this context, the ability of UA to provide
revenue and employment in some of Boston’s poorer areas is certainly note-
worthy as shown in Figure 4.10c where UA value in each block-group is over-
laid with the city’s poverty rates. There already exists evidence of UA in the
Boston neighborhood of Dorchester being used to generate jobs for lower in-
come residents, both through direct sales at farmers markets and community
supported agriculture (monthly/seasonal vegetable deliveries to subscribers)
[22]. It has been estimated that a $5-10 investment (discounting the land
value) in UA in New York City can result in $500-700 in fruits and vegeta-
bles [35]. Kaufman and Bailkey discussed the challenges of entrepreneurial
UA, citing lack of institutional support in the US, unstable land tenure and
low economic returns [22]. Although UA is increasingly supported and rec-
ognized by cities in the Northeast US, obstacles persist in finding permanent
spaces for UA and consistently turning a profit with the practice. Moreover,
city bureaucrats in the US tend to see UA as a transitional land use, prefer-
ring that vacant lots be developed into uses that generate more profitable tax
receipts for the city [22]. Figure 4.11 presents how UA can quickly appear
and disappear in a dynamic urban context.

4.4.5 Beyond quantifying UA

I have tried my best to outline in quantitative terms the performance of UA
in environmental, and to a limited extent, nutritional and economic spheres.
It is, however, essential to acknowledge that UA performs many intangible
benefits that cannot be captured in my calculus. These benefits might repre-
sent more defensible justifications for implementing and promoting UA than
those I have focused on in my review in Chapter 3 or tested in this chapter.

To a certain degree, I have already captured one of the intangibles: nu-
trition and physical health. However, simply counting nutritional units fails
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Figure 4.10: Market value of UA when (a) restricted to intra-city trading and (b) export-
ing to the Boston conurbation. (c) The market value of UA in different block-groups in the
Nutrition(-) scenario.

to recognize the richer contribution that UA can make to the health of a
community. Participation in UA is linked to sustained increases in fruit and
vegetable consumption for urban farmers and non-farming members of their
households [8]. Notably, much of the UA practiced in the US is in lower in-
come neighborhoods that are disproportionately lacking in affordable and
convenient access to fresh fruits and vegetables (‘food deserts’) [7, 8]. The
ability of UA to play a role in redressing unequal food distribution and com-
bat food insecurity in these neighborhoods should be emphasized given the
elevated rates of diabetes and other lifestyle related diseases in the US’s poor
urban areas [7]. Another ancillary health benefit is the exercise that practi-
tioners get while tending to their farms/gardens [8].

Psychological wellbeing of urbanites is another known benefit of urban
farming. Numerous studies have found that urban farmers report lower lev-
els of stress and dis-ease while farming, and that these positive impacts fol-
lowed them off the farm into other aspects of their lives [15]. Urban farms
and community gardens are also often used as spaces for families to spend
leisure time and relax together [8]. Equally important are the reported con-
nections that urbanites make to nature while farming [15] and increased agri-
cultural literacy amongst youths participating in UA programs [8]. Perhaps
these simple connections between food and nature can be built upon to help
city-dwellers understand the teleconnections between cities and their supply
regions. McClintock and colleagues have already advocated that UA could be
a means to close the metabolic rift, galvanizing a more ecologically engaged
urban population [28].

Crime prevention has also been linked to the presence of urban farms,
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Figure 4.11: The transitory nature of vacant urban land in Newark, NJ. Moments of
urban agriculture/gardening in 1985 and 1995. (photo credit: Camilo José Vergara)

with numerous anecdotal reports of positive changes to the surrounding
area’s character after the establishment of communal urban farming activi-
ties [8]. UA is also practiced explicitly as a youth education exercise in many
instances [8], with the added benefit of providing social activities and alter-
native spaces in crime-plagued areas. Connected to this is the fact that many
urban farms are communal spaces that encourage interaction between partic-
ipants [8]. It is this type of contact that is the glue of neighborhoods, trans-
forming strangers living in proximity to a community with shared hopes and
ambitions, without which, stability and safety are difficult to maintain.

Finally, the aesthetic benefits of UA are also an area where quantitative
tools are at a disadvantage to make judgments. Studies have shown that
many UA practitioners and neighbors of urban farms preferred the farm to
what was in its place beforehand (typically an empty lot) [8, 15]. UA’s abil-
ity to secure open space in growing cities is also of note, provided much need
verdant, moments in juxtaposition to buildings and infrastructure [8]. How-
ever, as Figure 4.11 reveals, these spaces require formalization and protection
if they are to become permanent components of the urban fabric.
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4.5 Chapter conclusions

Here I have attempted to look at some aspects of what I and others have
called ‘the edible city’. In my assessment I have tested the ability of scaled-
up UA to affect carbon and land foodprints, finding that the contributions of
UA in reducing these is meager using those UA practices that currently have
some environmental advantages over conventional agriculture. Interactions
with Boston’s building energy, surface runoff and organic waste were also lit-
tle more than superficial. Thus, the only conclusion one can draw from this
work is that UA does not, in its current form, make a significant impact on
the city of Boston, and by extension, similar cities in the Northeast US. A
main reason for this is that by substituting vegetables (and ostensibly fruits),
UA does not tackle the animal-sourced foods that are the primary drivers of
the urban foodprint. Fruits and vegetables combined account for less than
14% and 20% of climate change and land use occupation burdens, respec-
tively, limiting the scope of potential positive changes that UA can make
to urban supply networks. As such, other means of reducing the foodprint
should be explored.

At the same time, UA holds benefits in multiple other dimensions. Nutri-
tional contributions could be significant to the residents of an edible city, par-
ticularly those in food deserts. Moreover, there appears to be a limited argu-
ment in favor of UA. The true strengths of UA may lie on the social side, as
extensive research has revealed that urban farming can have positive impacts
on physical health, psychological wellbeing, crime levels, community cohe-
siveness and neighborhood aesthetics. Lastly, if UA can in some small way
bridge the psychological gap between urbanites and their supply regions, as
has been suggested by some, then it might have the positive side-effect of a
more ecologically minded population.
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5.1 Chapter Overview

Chapters 3 and 4 found that urban agriculture (UA) and the ‘edible city’ ap-
pear to provide limited environmental benefits in Boston given current UA
practices in the region. My results are likely transferable to many other cities
in the Northeast US with comparable climes and built forms. This chapter
is a response to those findings, asking an additional research question: what
types of activities can compliment the edible city to lead to a more environ-
mentally sustainable city? I start by revisiting the main drivers of the food-
print. Afterwards I explore the power of dietary changes to reduce Boston’s
urban foodprint. I then look at the ability of a novel, plant-based protein
substitute to shift the foodprint. I close with a short discussion of the role
that city governments can play in addressing the foodprint by stewarding the
behavior of their residents. This chapter is supported by Articles 5 and 6,
both of which can be found in the appendices.

5.2 Revisiting foodprint drivers

My review of previous urban foodprint estimates showed that animal-sourced
foods are, without exception, the largest components of a city’s foodprint.
This corroborates with my own modeling of Boston’s where meat and dairy
consumption played the largest role in the greenhouse gas (GHG) and land
foodprints of the city. Jones and Kammen’s work on US households aligns
with my findings, where they estimate that meat and dairy account for ≈50%
of food related carbon emissions [22]. Similarly, Heller and Keoleian found
that meat and dairy generated 60% of average US dietary GHGs [17]. UA
diet related land use is also disproportionately a result of meat and dairy,
accounting for approximately 3/4 by recent estimates [31, 7].

At the global scale, agriculture and related land use change account for
a quarter of total anthropogenic GHG emissions [20], themselves primarily
stemming from meat and dairy [20, 30, 39]. The reasons for this are mani-
fold, including inefficient conversions from feed to animal mass, enteric fer-
mentation by ruminants, manure management practices and deforestation for
feed and grazing [20, 39]. Agricultural occupies nearly 40% of ice-free land
area, with the bulk of this allocated to livestock grazing (40% of global cereal
production is also destined for animal feed) [11]. Global water appropriation
is primarily driven by agriculture, with the largest proportion of this going to
animal feed crops and direct consumption on livestock farms [27, 19]. Lastly,
livestock is associated with nutrient runoff from excrement that is having
deleterious environmental impacts on local watersheds, soils and river basins
[13, 7, 37].
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With the bulk of food-borne environmental impacts beyond the grasp
of solutions such as reducing ‘food miles’or leaner production networks, my
findings of the edible city’s meager environmental contributions appear rea-
sonable.

5.3 Mitigating the urban foodprint with alter-
native diets

Humans are blessed with a remarkably robust digestive tract that can ex-
tract nutrients and energy from a plethora of foods. As a result humans can
survive on diets with little or no animal product intake. Numerous studies
in the past fifteen years have shown that these types of diets are markedly
leaner in their environmental burdens compared to typical diets in wealthy
nations that lean heavily on animal products [39, 11]. A recent systematic
review of over 60 studies found nearly unanimous agreement that switch-
ing from baseline diets to those with reduced animal-sourced intake netted
median reductions of 20-30% GHG, land use and water impacts, although
estimated shifts greater than 50% were common in all three indicators [1].
Please see Table 1 in Article 5 for my own short synopsis of such studies.

An intense area of study has been the shift to diets with no meat con-
sumption (vegetarian) or animal products (vegan) [35]. Switches from base-
line diets in wealthy countries to vegan were predicted to provide median
reductions of 45% and 55% for GHG and land use, respectively [1]. In the
same manner, vegetarian diets might result in reductions of 31%, 51% and
37% for GHGs, land use and water, respectively [1]. In a US context, shifts
from average US food demands to vegetarian and vegan were estimated to re-
duce dietary GHGs by 33% and 53%, respectively [17], and vegetarian diets
could attenuate the US diet’s water footprint by 52% [33].

Given the above, it is worthwhile to estimate the degree that dietary
shifts could reduce Boston’s foodprint. Rather than extrapolating from pre-
vious work, I performed my own analysis and applied it to the city’s popula-
tion. I did this so I could model the diets at a detailed enough level to test
the impacts of substituting individual foods with novel protein sources.

5.3.1 Method

I combined process-based with input-output (IO) life-cycle assessment and
built a hybrid-LCA model of the US diet. I chose this LCA method due to
the high level of detail that it afforded and the ability to include impacts
from processing beyond the farm gate. I modeled three diets here: the mean
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US (MUD), vegetarian (VEG) and vegan (VGN) diets. I used the MUD in-
stead of Boston specific numbers due to the proximity of the city and na-
tional means found in the previous chapter. Moreover, intakes of the most
environmentally intensive foods have been observed to be similar across
income and ethnic categories [23], supported by the tight spread I found
around the Boston’s mean.

The functional unit - the basis of comparison between diets - was taken as
the fulfillment of the food demands of the respective diets over the course of a
year. This functional unit was left purposefully open-ended since the intakes
of calories, masses and nutrients in the diets deviated from each other, as will
be explained below. The scope of the assessment was from farm to factory
gate, including the environmental impacts of post-harvest processing, but ex-
cluding final distribution and preparation. Impact categories covered were
climate change (IPCC 2013 method) and area of organic land occupied (Im-
pact 2002+ method) [21]. The land use impact assessment method was used
at the behest of our industrial collaborator, and hence, the deviation from
the unweighted land use methods applied in Chapters 3 and 4.

Hybrid LCA

Hybrid LCA combines the best aspects of process-LCA (detail) and IO-LCA
(completeness). The foundation of this assessment was a process-based LCA
that inventoried on-farm resource draws and emissions. The majority of the
life cycle inventories were taken from earlier LCAs of individual food prod-
ucts. Ecoinvent 3.2 database background processes were then combined to
model individual foods, or when available and appropriate in the database,
provide complete LCAs of food products.

Environmental burdens from processing of the food beyond the farm
gate were estimated with the Carnegie-Mellon IO-LCA database. This was
a tiered hybrid approach, where the process- and IO-LCA results were sep-
arately calculated and then summed at the end. For instance, to determine
the impacts of processed beef involved taking the impacts from livestock
rearing on the farm as determined from the process-LCA and adding these
to the impacts from the ‘Animal (except poultry) slaughtering, rendering and
processing’ sector in the IO database. To avoid double counting of the up-
stream impacts of livestock rearing included in the IO-LCA, I removed inputs
from the agricultural sectors in the supply-use table (A). The IO manipu-
lations were then performed using the altered matrices and a final demand
vector, Y , of 1 USD for the ‘Animal (except poultry) slaughtering, rendering
and processing’ sector to estimate the impacts from a single unit off process-
ing. Equations 5.1-6 outline these steps

For a hypothetical economy that only contains ‘steel’, ‘electricity’, ‘farm-
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ing’ and ‘slaughter’, final demands for all sectors are set to 0 except ‘slaugh-
tering’ which is set to 1 so that Y1 is given by Equation 5.1:

Y1 =


ysteel

yfarming

yelectricity
yslaughter

 =


0
0
0
1

 (5.1)

X1 then corresponds to the market-wide reaction to a single USD of final
demand from the ‘slaughter’ sector:

X1 = [I −A]−1 · Y1 (5.2)

To exclude impacts from infrastructure during slaughtering, one modifies the
interindustry dependency matrix, A, where each entry, ai,j , represents the
final demand from sector i per unit output sector j:

A =


asteel,steel asteel,farming asteel,electricity asteel,slaughter

afarming,steel afarming,farming afarming,electricity afarming,slaughter

aelectricity,steel aelectricity,farming aelectricity,electricity aelectricity,slaughter
aslaughter,steel aslaughter,farming aslaughter,electricity aslaughter,slaughter


(5.3)

The necessary modification is to set asteel,slaughter to 0 so that the direct de-
mands for ‘steel’ by the ‘slaughter’ sector are excluded.

A∗ =


asteel,steel asteel,farming asteel,electricity 0

afarming,steel afarming,farming afarming,electricity afarming,slaughter

aelectricity,steel aelectricity,farming aelectricity,electricity aelectricity,slaughter
aslaughter,steel aslaughter,farming aslaughter,electricity aslaughter,slaughter


(5.4)

In a similar manner, the inputs from ‘farming’ are also removed to avoid the
double counting of those impacts covered by the process-LCA portion of the
assessment:

A∗ =


asteel,steel asteel,farming asteel,electricity 0

afarming,steel afarming,farming afarming,electricity 0
aelectricity,steel aelectricity,farming aelectricity,electricity aelectricity,slaughter
aslaughter,steel aslaughter,farming aslaughter,electricity aslaughter,slaughter


(5.5)

The end result is an equation of the form:

X∗
1 = [I −A∗]−1 · Y1 (5.6)
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Equation 5.6 can then be combined with the pollution intensity vector (see
Equation 4.4) to estimate impacts from sectors that directly react to the de-
mand for a single unit final demand for ‘slaughter’.

In my model, only the inputs related to energy and chemical inputs were
kept in the supporting IO-LCA processes, to the effect that infrastructure
impacts were excluded since these are typically not relevant for high-volume
food processing operations.

A link needed to be made between the IO model which was expressed in
monetary units and the process-LCA model which used physical units. Thus
the total economic output from relevant sectors were divided by the total
physical production of the US economy to provide the dollars per mass pro-
duced. For instance the total value of the ‘Poultry processing’ sector in 2002
(the base year for the IO model) was 4.52x1010 2002 USD [42], which when
divided by a poultry output of 2.36x1010 kg for 2002 [40] provided a ratio of
1.92 2002 USD/kg output.

The supplementary information (S3) from Article 6 outlines the hybrid
LCA methodology, including the IO sectors included, the calculation of the
conversion factors and the inventories for the process based models.

Diets

The MUD was taken from the United States Department of Agriculture
(USDA) loss-adjusted food availability (LAFA) numbers for the year 2010
[43]. Losses during the retail and consumption stages were included, so to-
tal production upstream of the final consumer were accounted. The LAFA
data includes apparent consumption of over 250 individual food items, many
of which are not consumed in substantial volumes by Americans. To lower
the modeling burdens, those food items that contributed less than 1% to the
nutritional intake of a given food group were excluded from the assessment.
The food groups are listed in the LAFA data and are commensurate with
those used in Chapter 4 in the development of the Boston foodprint model.

VEG and VGN diets were taken from 2010 USDA dietary guidelines,
as the 2015 guidelines do not contain specific recommendations for a vegan
diet [41]. The USDA guidelines provided recommended intakes in terms of
servings of broad food groups (e.g. dark green vegetables). Consumption
of vegetables within each food group were taken as their final share in the
consumption of the MUD. Thus, if the 10% of the MUD’s dark green veg-
etable intake came from spinach, the same was assumed for VEG and VGN
dark green vegetable intakes. This resulted in VEG and VGN diets that were
sensitive to US preferences. The VEG and VGN were scaled to the 2000
kcal/day, as this aligned with actual calorific intakes observed for US veg-
etarians [16]. Although this was less than the MUD LAFA values (≈2400
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kcal/day) it represented a more realistic facsimile of US meat-free diets than
if they had been aligned with the MUD’s energy consumption.

Two methods were used to model ground beef intake, as this was the fo-
cus of the second part of the study. An upper limit of ground beef intake
used industry data on the percentage of ground beef on the market combined
with a low estimate on the carcass yield from live cow to final product. The
lower limit used US nutritional survey data which gave a lower estimate of
consumption and a more positive estimate of carcass yield. The full details of
the diet development and estimates of ground beef intake are in the supple-
mentary material (S1 and S3) of Article 6.

5.3.2 Results

Figure 5.1a shows the result for climate change impact for the three diets.
Estimated annual climate change impacts of the MUD were 2032±32 kg
CO2e/a, with the variance a result of the different ground beef estimates.
This was significantly higher than my estimate from the previous chapter for
Boston using EXIOBASE 2.2, but in line with other process-LCA work on
the US diet [17]. Switching from the MUD to the VEG and VGN reduced
these impacts by 32% and 67%, respectively. Meat and dairy accounted for
over 60% of total climate change impacts, up from the ≈40% in the previous
chapter, but still in agreement on the main drivers of GHG impacts. To re-
iterate my observation from the previous chapter, the low estimate from the
EXIOBASE is embedded within the database itself, and should be reason to
pause for concern for practitioners employing EXIOBASE. One explanation
for this could the exclusion of land use change from the current EXIOBASE
inventories, although these would not be large enough to account for the dis-
crepancy between the hybrid and IO assessment [10, 20].

Land occupation for the MUD was 4165±17 m2/a as shown in Figure
5.1b. The hybrid LCA predicted 50% lower land occupation than my pre-
vious chapter and top-down estimates by others [31]. This could be a result
of the top-down IO methods inclusion of ultra low intensity grazing schemes
(see Eshel at al. [7]). Here I estimated that over 80% of land use was at-
tributable to animal products, higher than the 50% from the previous chap-
ter, and more in line with previous work on the US diet [31]. Switching from
the MUD to the VEG and VGN diets resulted in land use reductions of 70%
and 79%, respectively. These findings were the high end of results by others,
but not unreasonable [1]. See Article 4’s supplementary information (S4) for
a complete breakdown of the LCA. A quick check using an unweighted land
use indicator (ReCiPe midpoint [14]) reinforced the findings with the MUD
requiring 3947 ±16 m2/a and the VEG and VGN reducing this by 73% and
84%, respectively.
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Figure 5.1: (a) cli-
mate change and (c)
land occupation for
the mean US (MUD),
vegetarian (VEG) and
vegan (VGN) diets.
Error bars around
the MUD show the
range of results given
different ground beef
demands.

The results were only at individual scale. Figure 5.2 shows the result of
a city-wide switch from the MUD to the VEG and VGN, respectively (all
results in text and figures expressed in metric tons). In comparison to the
GWP(-) scenario, switching diets led to 16 and 35 times the predicted GHG
reductions. Curtailing the MUD’s meat impacts by only 2.6% would have
the same benefits as peppering Boston with UA in all of the city’s interstitial
spaces. Even a modest switch to ‘meatless Mondays’ would likely provide
greater gains then UA. Comparisons with land are not necessary since UA
actually caused increased land use.

In addition to the significant reductions in climate change and land use
impacts through less intensive food choices, other environmental improve-
ments are possible. Article 5 explores dietary shifts in a Danish context (sim-
ilar to the US in general consumption patterns) using more indicators. There
I found that impacts from nutrient runoff were also reduced with lower an-
imal product intakes although uncertainties remained in some other realms
(toxicity, ozone depletion, non-renewable resource scarcity). Article 6 also
includes an assessment of water use, finding significant 70% and 75% reduc-
tions in shifting to the VEG and VGN patterns.

The benefits of such hypothetical dietary shifts are well known. Espous-
ing the benefits of such shifts is easier than actually getting people to trade
beef for beans. The consumption of meat is wrapped up in a whole host of
psychological, social and hedonic factors that normalize the practice in our
daily lives [6, 34, 32, 24]. Piazza and colleagues summed the rationalization
of meat eating up as “the 4 Ns”: normal, natural, necessary and nice. When
directly confronted with facts about linkages between climate change and
meat consumption, the common response is typically skepticism or a cogni-
tive dissonance between stated meat and actual intake [24]. Other avenues to
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Figure 5.2: Potential
shifts in Boston’s food-
print by means of the
edible city (GHG opti-
mized, subtractive UA
space estimate) and by
shifting diets. Results are
in metric tons.

help reduce the foodprint, aside from waiting for people to change their diets,
should be explored.

5.4 Tackling the foodprint with a novel pro-
tein substitute

An alternative to radical alterations of the Bostonian diet might be the sub-
stitution of meat for some of the novel protein sources that have appeared
on the market in recent years. These deviate from typical meat substitutes
(e.g. tofu, seitan, etc.) in that they mimic the gustatory and cooking expe-
rience of meat consumption. This is different than taking tofu and forming
it into the shape of a burger and putting some grill marks on the sides. New
generation meat substitutes combine advanced bioengineering and food sci-
ence to make plant-based burgers that bleed when cooked or grow meat in
labs. Production methods vary, including ‘cellular agriculture’, yeast culture
and ‘bioprinting’, but the products are similar in that they hold the potential
to circumnavigate some of the psychological hangups that have limited the
adoption of earlier meat substitutes by omnivorous.

5.4.1 Beef as a hotspot in the MUD

Of all of the foods consumed in the MUD, beef imparted the largest envi-
ronmental burdens by a wide margin. In the above results beef accounted
for 40% of total climate change impacts. Two thirds of all land impacts also
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stemmed from beef. There is ample literature support for these findings
[7, 37, 30, 13, 8, 13] including my own work in Article 5 [15]. The reasons
for beef’s environmental intensity are manifold: ill-suited diets for ruminants
and the related methane emissions from enteric fermentation, poor conver-
sion rates from feed to flesh, deforestation for grazing and feed, as well as lax
excrement management [13].

Despite declining beef consumption in the US in recent decades, beef re-
mains a key component of the MUD [44]. Nonetheless, the apparent elasticity
of beef intake bodes well for proponents of novel protein substitutes, as there
might be segments of the population willing to shift from beef to other pro-
tein sources.

Impossible Foods

One of the new generation meat substitutes is Impossible Foods out of Cali-
fornia. Impossible Foods has recently developed a plant based burger (PBB)
that is intended to mimic and replace meat on the market. A modified yeast
culture is utilized to produce leghemoglobin from vegetal inputs, a protein
found in beef that gives it its distinctive olfactory qualities. The result is a
plant sourced ground beef substitute that smells and tastes like beef, and
even bleeds in a similar manner to beef. The main ingredients of the PBB
are wheat protein, potato protein and coconut oil, resulting in a resource in-
tensity of less than one quarter of that required for the same mass of ground
beef [36].

I utilized primary data from Impossible Food’s PBB pilot-scale produc-
tion facility (136 kg/day) provided by the company. I used this data to test
the impacts of the products diffusion into the MUD, VEG and VGN and to
understand these shifts at Boston’s scale.

5.4.2 Method

The hybrid-LCA used above was augmented to include the PBB in the three
diets. PBB impacts were calculated using process-based LCA from farm to
factory gate, with infrastructure at the PBB production facility ignored. To
validate the PBB numbers, independent checks were performed by Berkeley
Labs and the independent LCA consultant Quantis.

Penetration rates in the MUD, VEG and VGN of 10%, 25% and 50%
were tested. The PBB replaced ground beef on a 1:1 mass basis in the MUD,
since the nutritional quality is comparable with the exception of increased
sodium levels and reduced cholesterol (see Article 6 supplementary informa-
tion (S2) for more details). For the VEG and VGN, the PBB substituted for
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Figure 5.3: (a) climate change and (b) land occupation shifts with penetration of PBB in
the the mean US (MUD), vegetarian (VEG) and vegan (VGN) diets

total protein intake, spread amongst the different recommended protein con-
stituents outlined in the USDA guidelines. Supplementary information (S1)
of Article 6 fully outlines the altered diets.

5.4.3 Results

Figures 5.3a-b display the change in impacts from the MUD, VEG and VGN
at increasing diffusion rates of the PBB for climate change and land use. A
10% replacement rate reduced climate change impacts by approximately 25
kg CO2e/a, similar to those provided by to the GWP(-) and Land(-) sim-
ulations (≈30 kg CO2e/a). However, the 25% and 50% scenarios provided
markedly greater reductions over UA. Land use impacts were reduced by 2-
12% compared to baseline MUD levels, a clear improvement over the land
use increases brought on by UA in Boston. Of interest was the PBB’s abil-
ity to exacerbate the VEG and VGN climate change and land use impacts.
However, given that less than 3% of the US population ascribes to a strict
meat-free diet [5], the chance of a net increase in food related burdens in the
US are low (see Article 6 for a richer discussion and analysis).

Figure 5.4 presents predicted reductions in climate change impacts for
the City of Boston for different diffusion rates of the PBB into the MUD. In-
creases for the VEG and VGN were considered negligible and ignored here.
At the 10% PBB substitution rate, UA provided a slight advantage in cli-
mate change reduction over the best UA scenario. At higher PBB intakes,
estimated reductions were two to four times greater than the GWP(-) sce-
nario.

The marginal foodprint improvements or disservices (land use) provided
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by UA should be considered by urban designers given these findings. If a
switch to a plant-based meat substitute for a meager proportion of the diet
can exact the same environmental benefits as the edible city, then the suit-
ability of UA in Northeast US urban spaces needs to be revisited by those
who are promoting UA as a means to reduce the foodprint. Moreover, the
results here are for PBB at the pilot scale. Significant improvements can be
expected due to mixing and heat transfer efficiencies at industrial scale, simi-
lar to what has been witnessed in bio-energy and materials [4].

Figure 5.5 shows the climate change impacts of the PBB against other
protein sources per kilogram protein delivered to the consumer. Not only was
PBB equal to or significantly better than animal-protein sources at present,
but the predicted final climate change burdens after improvements with up-
scaling (shown by the black box around the PBB column), could make the
PBB similar to eggs or insect protein in the future. Furthermore, reducing
the impact of animal-sourced foods is biologically constrained (feed and wa-
ter needs, digestion byproducts, etc.), and hence, these foods will not be able
to evolve in the same manner as the PBB.

5.5 Study challenges

Aside from the typical data and modeling challenges associated with all LCA
studies a few thoughts about the application of LCA to diets are warranted.
Firstly, setting a proper functional unit where all three diets provide the
same nutritional content is nearly impossible. Heller and Keoleian found that
most practitioners rely on calories to set equivalent diets, but this ignores
micro- and macro-nutrient content [18]. They went on to suggest the appli-
cation of nutritional indices that consider calories and other nutritional com-
ponents. However, one shortcoming of these indices is that they only consider

Figure 5.4: Potential shifts in
Boston’s foodprint by means of
the edible city (GHG optimized,
subtractive UA space estimate)
and increasing intake of the plant
based burger. Results are in
metric tons.
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Figure 5.5: Climate change impacts per kilogram protein delivered to consumer for
typical protein sources.

the presence or absence of various nutrients and lack any weighting of the
relative importance of different components within the diet. In this study,
I avoided this challenge to an extent by using the USDA guidelines which
should provide roughly equivalent nutrient intakes for the VEG and VGN,
but discrepancies are unavoidable.

Article 5 explores numerous additional challenges in using LCA, including
the choice of impact assessment methodology, system boundaries and scope.
One interesting observation in the LCA of the Danish diet was the challenges
related to including agrichemicals in LCA assessments. In that study, the
VGN diet ended up having the largest toxicity impacts since soybean feed for
livestock was credited for avoided palm oil production. The life cycle impact
assessment method I used in that assessment (ReCiPe [14]) included palm
related pesticides, but not those used in soybean cultivation, resulting in a
large negative toxicity result for the soybean feed needed to support the om-
nivorous diet. The occurrence of these types of challenges in LCA are one of
the reasons that I limited the bulk of my work on the urban foodprint to cli-
mate change and land use, since these are two of the areas with more robust
accounting methods and straightforward readings of the results.

5.6 Cities affecting diets

The extent that cities can directly influence the diets of its residents is lim-
ited in a free society. New York City’s ban on extra-large soda servings in
a bid to combat diabetes, aside from smacking of paternalism and being
deeply unpopular, was eventually ruled unlawful for the state supreme court
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[12]. Notwithstanding, opportunities to use less invasive means to change di-
ets abound insofar as government run meal programs for inner-city children
could be designed to minimize or exclude meat. The dietary guidelines used
in this study are another example of such maneuvers, with explicit guide-
lines for Mediterranean (low-meat), vegetarian and vegan diets. The USDA
guidelines also outlines the types of shifts needed to move from the MUD to
a more balanced diet and includes instructions for influential actors (school
principals, cafeteria workers, community leaders) on how to steward the pub-
lic towards meaningful, long lasting dietary changes [28].

Dietary guidelines tend to be driven by public health concerns. Fortu-
nately, this dovetails nicely with environmental goals, since healthier diets
prescribe lower red meat and dairy intake [39, 1]. China’s new diet guide-
lines aim to reduce meat intake by 50% by the year 2030 for health reasons,
which would also reduce GHG emissions by 109 tons annually. By invoking
health as a reason to change diets as opposed to ecological concerns, cities
could reap double dividends of lower public-health burdens and a reduced
foodprint. Studies have found that health is the most cited motivation for es-
chewing meat [35]. Cities interested in reducing their foodprint would be wise
to take note of these findings in order to maximize the likelihood of galvaniz-
ing meaningful behavioral shifts in their populations.

Recently, cities have begun wading into the environmental impacts of
meat. Numerous cities have signed up to the “Meatless Monday” initiative,
promising to provide vegetarian menus at city-run facilities and promote the
practice amongst the general population in a bid to reduce their foodprints
[26, 38, 2]. A more ambitious example comes from the Italian city of Turin,
where the mayor recently advocated that the city go vegan to save the en-
vironment [25, 2]. What such a scenario actually entails remains to be seen,
but the broaching of a dialog surrounding the ecological responsibility of ur-
banites in wealthy, high meat consuming countries is a positive sign [29, 9].
What has previously been a “the forgotten climate change sector” by cities is
now coming to the fore [3].

5.7 Chapter Conclusions

The edible city is not the only option for a city trying to reduce its foodprint.
As shown here, changing diets to common non-meat patterns is predicted to
meaningfully reduce the foodprint in multiple dimensions. Dietary shifts need
not be so drastic as completely eschewing meat, since marginal decreases in
total meat or adoption of novel protein sources could provide equal or greater
foodprint reductions than the edible city.

Controlling the diet of residents is clearly not under the aegis of the cities
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in my study region. However, a city need not rule by fiat to reduce the de-
mand for animal-sourced foods in its borders. Softer methods such as “Meat
Free Mondays” or promoting healthy eating patterns that also align with en-
vironmental goals can have positive impacts on a city’s foodprint while re-
specting the rights and freedoms of its dwellers.

Implementing the edible city and influencing diets are not mutually exclu-
sive initiatives. An edible city with easy access to fruits and vegetables could
very well be ideally situated to promote reduced meat or meat-free diets.
However, given UA’s low environmental returns per area cultivated, urban
designers should keep in mind alternative uses for urban spaces if a primary
design motive is environmental sustainability.
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6.1 Summarizing the project outcomes

Chapters 2-5 attempted to address the questions that were laid out in the
introduction. The general goal was to provide a glimpse of what the edible
city’s environmental performance might look like in the Northeast US. Al-
though I have parceled the problem up into smaller, more digestible pieces, I
hope that the common thread remained clear and that any detours were both
necessary and kept to a minimum. Here I will revisit the outcomes of each
research question and its sub-questions.

Research questions 1.1 and 1.2 focused on the urban foodprint. Question
1.1 asked what was the scale of the urban environmental foodprint. Chapter
two explored this with a review of available studies that quantified the food-
print using the techniques of industrial ecology. My review found that food
consumption is often one of the more important drivers of a city’s environ-
mental burdens in terms of climate impacts and land use. Moreover, there is
a tendency for the foodprint to increase alongside income, which foreshadows
increasing food-related ecological burdens as many hitherto rural societies ur-
banize and become wealthier. Question 1.2 dealt with the awareness of the
foodprint by cities. From my cursory review, it seems that cities have been
slow to tackle the foodprint, but the last few years have seen increasing ac-
knowledgment of the issue and efforts to redress it. Many of the proposed
solutions have been technology driven, including a push for local agriculture
(UA), but as chapter 5 showed, changing diets has also recently emerged on
the agenda.

Research questions 2.1-3 were centered on understanding urban agricul-
ture (UA). Question 2.1 asked what was known about UA’s environmental
characteristics. My review showed that there is a data gap in this domain
and that many of the supposed benefits of UA are based on a mix of com-
mon sense and conjecture. Some evidence was found of UA having reduced
embodied greenhouse gas emissions relative to conventional agriculture, but
these findings were from mild climates, and were not applicable to my study
region. Question 2.2 asked what types of UA existed and if classification
schemes were applicable to environmental assessments. A review of existing
UA work showed that despite the plethora of attempts to document the dif-
ferent forms of UA, those schemes were predicated on social and economic
aspects. In response I developed a simple schema that generated four UA
forms based on the conditioning of grow space and interactions with the sur-
rounding built form. Question 2.3 tested the environmental performance
of UA in the Northeast UA. Here I operationalized my UA taxonomy using
primary data from urban farms in Boston and New York City, finding that
conditioned UA forms are not suited for the climate given the underlying en-
ergy grid in the Northeast US. Burden shifting was found between indicators,
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whereby those farms with superior climate change impacts to conventional
agriculture were at odds with land use and water consumption. As an appli-
cation of urban land, UA paled in its climate change benefits relative to solar
electricity generation.

Question 3 looked at the big picture, wondering how the edible city
applied to Boston would alter the environmental performance of the city.
Answering this first involved the development of a method to apply input-
output life cycle assessment (LCA) to urban foodprints. Scaling up the UA
assessments from chapter 3 and looking at changes to the baseline carbon
and land foodprints showed that UA caused marginal benefits in the (<5%
reduction) former and disservices in the latter (1% increase). Interactions be-
tween UA and the city were also found to be insubstantial, with the largest
benefits being the ability to absorb 10% of Boston’s household, solid organic
waste. My findings suggest that at present the edible city is not well suited
for the Northeast US as an exercise in environmental sustainability. Despite
edible city’s lackluster environmental gains, the concept does align with pub-
lic health, and to a limited degree, economic motivations; filling nutritional
gaps and providing a potential revenue source in my case city. All things con-
sidered, I suggest that UA be promoted largely under the auspices of edu-
cational, nutritional and community building agendas. Conversely, claims
about environmental benefits in the Northeast US should be tempered until
stronger evidence in their favor can be mustered.

Chapter 5 looked at how the urban foodprint could be tackled by alterna-
tive or concurrent activities to the edible city. Applying process-based LCA
found that shifts to meat or animal-product free diets could result in car-
bon foodprint reductions that 16 to 34 times larger than those of the edible
city in the US Northeast. Large savings in land use were also found. Despite
these positive outcomes, changing diets on paper is a lot easier than in real
life, where such diets are culturally ingrained and ossified through daily prac-
tices. An alternative is to meet people half way with products that mimic
the sensory experience of preparing and eating meat. I tested the environ-
mental impacts of one such product, Impossible Foods’s Plant Based Burger,
finding that the diffusion of this product at minor levels into the Bostonian
diet resulted in predicted benefits equal to or beyond those of the edible city.
Cities concerned about the foodprint would be wise to promote healthy eat-
ing habits as a ‘sustainable trojan horse’, since health is the primary motiva-
tor for reducing meat intake.

116 Chapter 6 Benjamin Goldstein



Assessing the edible city

6.2 Future work

The environmental dimension of urban food consumption and the interlink-
ages between urbanization the foodprint are both two areas ripe for further
investigation. Having toiled in the data and tried to make my own small con-
tribution to the literature, I hope I have some insights into the direction that
could help push the ball forward.

1. Food consumption data: Despite the minimal variation seen across
demographic groups in my model of Boston’s baseline foodprint, I
firmly believe that future studies should still explore this avenue fur-
ther. Even if the main foodprint drivers are consumed in similar levels
by most demographics in the US, this does not preclude important find-
ings at the intersection of public health and environmental studies. Un-
equal access to fresh fruits and vegetables, and higher prevalence to fast
food consumption in poorer urban neighborhoods in the United States
result in less-balanced diets and lifestyle related diseases [7]. Combin-
ing nutritional indices with LCA, as espoused by Heller Keoleian [5],
would juxtapose nutritional quality and environmental impacts, show-
ing how despite inordinate environmental burdens, such diets still fail
to meet the nutritional needs of a consumer [10]. Such data can be
sourced from the National Health and Nutrition Examination Survey,
but as this is prone to underreporting of less healthy foods [1], primary
data from field would be preferable. Another option is to mine social
media for consumption trends, as has been done to estimate the nutri-
tional content of meals using the photo sharing platform Instagram [3]
and and other social media sources [8].

2. Relating the foodprint to the built form: Foodprints should be
related to spatial configuration of the city. I made a coarse move in
that direction with my mapping of the foodprint for Boston using cen-
sus data. Similar methods could be employed that use the NHANES
data, including ethnic breakdowns, combined with census data to de-
velop a more nuanced picture of the foodprint. Ideally, data would be
collected in neighborhoods and geo-tagged to allow for accurate car-
tographic representations. Maps of eating establishments and grocery
stores taken from Google Maps or tax registries could be used to clas-
sify food sources (e.g fast food, fine dining, full-scale grocery store, cor-
ner store) and relate foodprint/nutritional content to proximate eating
opportunities. This has already been done to a limited extent for obe-
sity rates in Los Angeles neighborhoods [7], and expanding such work
into the foodprint realm would make explicit the connections between
form and foodprint that have been intimated by others [9].
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3. Better urban farm data: Given more time I would have collected
data from more farms over multiple years in order to improve the ro-
bustness of the UA assessments. Relying on data from one or two farms
over a single growing season to represent the general performance of an
UA form was a gross, but unfortunately, necessary simplification given
budget and time constraints. Furthermore, primary data on water use
efficiency, nutrient loading in runoff, agrichemical emissions, building
energy interactions and crop pollutant uptake are needed to support fu-
ture environmental assessments of UA. Studies would be wise to pursue
partnerships with urban farms on the technological vanguard, to see if
the constant improvements in the field can overcome the burdens of the
background energy grid.

4. UA Space: Future research should also include models of potential
contamination based on adjacent land uses. 3D models of shading ef-
fects would help anchor such estimates in reality.

5. Dynamic modeling: Harvest on urban farms comes in waves as the
different crops mature. Future studies could incorporate these dynamics
into the assessment, looking at the changing ability of the edible city to
feed itself throughout the growing months.

6.3 Final thoughts

The original motivation of this project was not antipathy towards to the idea
of the edible city, but a concern for the environmental sustainability of fu-
ture cities. Given future demographic shifts, the only sustainable future for
humanity will be a sustainable urban future. Great care needs to be taken
in the design of new cities and evolution of existing cities so the city’s latent
potential as a sustainable built form is maximized and not squandered. The
20th century was host to a litany of questionable urban planning ideas born
into practice under the broad banner of ‘modernism’. In a bid to rid the city
of the squalor and vice that plagued 19th cities and to make space for the
automobile, many cities in the United States were sanitized of life and devel-
oped in a manner out of scale with human needs.

At the time, urban designers thought that they were the harbingers of
a better urban future. One need only look at the 1939 World’s Fair in New
York, where Norman Geddes (and General Motors) presented the Futurama
exhibition. Here they introduced to an eager public the glories of such new-
fangled ideas as the limited access freeway, tower in a park and the highway
rest station [4]. Under numerous names - “the radial city”, “broadacre city”,
“the garden city” - a new urban form emerged that was sold as progress.
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However, with 60 plus years of hindsight on our side, we can now see that
this form of development - call it “sprawl”, “suburbia”, etc. - has contributed
to the erosion of social ties wherever it has proliferated [6]. From an ecologi-
cal perspective, 20th century urban planning was responsible for the conver-
sion of some of the United State’s most fertile farmland to tract housing and
a reliance on automobile transport with all its associated environmental ills
[6].

Large scale socio-technological systems are ‘sticky’[2]. That is, once in
place, incumbent systems tend to be difficult to change, since people become
normalized to their presence and perceive costs of moving away from the sys-
tem as being too great. Urban designers and environmentalists have seen this
with the spatial configurations that cities took on throughout the 20th cen-
tury: once a highway is built, it is very difficult to remove no matter the en-
vironmental or social costs of the infrastructure.

I am concerned that their might be some parallels between the unbridled
enthusiasm for the edible city and the urban planning follies of the previ-
ous century. UA is espoused to be a way forward to a more harmonious re-
lationship between city and nature, both within the city and as a result of its
leaner supply chain. However, at least in a Northeast US context, the edible
city is at best an infinitesimal environmental gain or at worst a step in the
wrong direction environmentally. To pepper UA throughout the scarce free
space available in Boston and similar cities in the name of environmental sus-
tainability could lock those spaces into sub-optimal or even deleterious uses
for decades to come. At the same time, given that some UA forms can be set
up as quick temporary land uses, the edible city could be a more fluid urban
form that is sensitive to evolving perspectives on the practice and needs of
the host city.

Perhaps my framing has been too limited, with the outcome that I have
inadvertently engaged in hyperbole. It is certainly reasonable to imagine that
UA could be practiced alongside micro solar power generation or other land
uses. This mixed-use scenario would let UA provide the social and health
benefits that appear to be its strength, while providing space for other tech-
nologies that can make larger contributions to a city’s environmental sustain-
ability. Such a setup would also allow urbanites to engage in the act of culti-
vating food or simply witness this practice passively, and although maybe not
completely suturing the metabolic rift, at least acting as a salve.
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Summary 

Assessments of urban metabolism (UM) are well situated to identify the scale, components and 
direction of urban and energy flows in cities, and have been instrumental in benchmarking and 
monitoring the key levers of urban environmental pressure such as transport, space 
conditioning and electricity. Hitherto, urban food consumption has garnered scant attention 
both in UM accounting (typically lumped with ‘biomass’) and on the urban policy agenda, 
despite its relevance to local and global environmental pressures. With future growth expected 
in urban population and wealth, an accounting of the environmental footprint from urban 
food demand (‘foodprint’) is necessary. This paper reviews 43 UM assessments including 100 
cities, and a total of 132 foodprints in terms of mass, carbon footprint and ecological footprint 
and situates it relative to other significant environmental drivers (transport, energy, etc.) The 
foodprint was typically the 3rd largest source of mass flows (average – 0.8 ton/capita/annum) 
and carbon footprint (average – 1.9 tons CO2 equivalents/capita/annum) in the reviewed 
cities, while it was generally the largest driver of urban ecological footprints (average - 1.2 global 
hectares/capita/annum), with large deviations based on wealth, culture and urban form. Meat 
and dairy are the primary drivers of both global warming and ecological footprint impacts, with 
little relationship between their consumption and city wealth. The foodprint is primarily linear 
in form, producing significant organic exhaust from the urban system that has a strong, positive 
correlation to wealth. Though much of the foodprint is embodied within imported foodstuffs, 
cities can still implement design and policy interventions such as improved nutrient recycling 
and food waste avoidance to redress the foodprint. 
 
Introduction 

Modern cities neither supply their bulk resource needs nor have the capacity to assimilate their 
wastes within their borders (Hodson et al. 2012; Chrysoulakis et al. 2013), which given the 
predominance of urban economies characterized by linear flows (material needs imported, 
waste produced exported) (Barles 2007; Swaney et al. 2011), has left them physically reliant on 
their hinterlands and beyond (Rees and Wackernagel 2008). As cities now accommodate the 
bulk of humanity and economic activity, they exercise environmental pressures at a global scale 
through impacts embedded within supporting supply chains and waste management conduits 
(Weisz and Steinberger 2010; Goldstein et al. 2013; Grubler et al. 2012).  
 
Through the maelstrom of global trade, urban food consumption exerts pressures in terms of 
greenhouse gases (Dias et al. 2014; IPCC 2014a), land occupation (Moore et al. 2013; Warren-
Rhodes and Koenig 2001; WWF 2013; Foley et al. 2011), resource exhaustion (Cribb 2010, 
FAO 2006), biodiversity loss (Jansson 2013) and a host of other impacts at global as well as 
regional scales (Heller and Keoleian 2003; Gliessman 2015). It is estimated that the global food 
system causes, directly and indirectly, between 20% and 50% of total anthropogenic 
environmental pressures (Roy et al. 2012; Notarnicola et al. 2012; McLaren 2010), with the 
majority attributable to the demands of cities by virtue of their population and wealth. The 
environmental impacts resulting from a city’s food demands have been termed by some its 
‘foodprint’ (Billen et al. 2008; Chatzimpiros and Barles 2013), a phrase which will be adopted 
here.  The urban foodprint is a term used to capture the various elements of diverse resource 



consumption and environmental impacts associated with the production, processing, 
distribution and waste generation of food demanded by urban residents. The foodprint may be 
measured in a variety of ways and include units of mass, embodied carbon, ecological footprint, 
nutrient flows or other relevant indicators. 
 
Despite the strong link between food and the environment, urban foodprints have been largely 
absent in urban environmental policy, excepting the drive to reduce the distance from farm to 
city (‘food miles’)(Hara et al. 2013; Edwards-Jones et al. 2008; Born and Purcell 2006). A recent 
analysis of climate change initiatives in 12 key areas by 59 cities ranked ‘food and agriculture’ 
the third least addressed issue in terms of the number of policy interventions (C40 2014). Broto 
and Bukleley’s review of climate change mitigation interventions in 100 cities does not even 
contain the word ‘food’ (2013). The environmental integrity of the food system is viewed by 
most urban dwellers (and policy makers) as operating independently of urban built form, and 
therefore, only tangentially affected by urban environmental policies (Brunori and Di Iacovo 
2014), and consequentially, receives limited attention from urban decision-makers (Grewal and 
Grewal 2012). This rift is the outcome of fossil fuel based agriculture and transportation 
systems that have shifted food production well beyond municipal borders since 
industrialization, effectively obscuring urbanites from much of the land use conversion, climate 
change impacts, biodiversity losses, eutrophication and non-renewable resource exhaustion that 
stem from urban food demands (Cribb 2010; Marx 1976), though cities do deal with food 
waste (and will have to contend with future climate change impacts). This rift is further 
intensified by the expansion of urban areas into urban agriculturally productive urban 
hinterlands that could provide local food to cities (Seto et al. 2011).  
 
The low prioritization of foodprints on the urban agenda represents a lost opportunity to 
address significant urban environmental pressures as cities continue to grow in size and wealth ( 
Kennedy et al. 2014a), and adopt more environmentally intensive diets predicated on increased 
animal product consumption (Tilman and Clark 2014). An accounting of the scale and nature 
of the foodprint is required to highlight the need to explore potential urban design and policy 
interventions to tackle it at the city level. Currently a knowledge gap persists since only a 
handful of studies of urban nutrient flows have directly addressed the issue (e.g. Færge et al., 
2001; Forkes, 2007 or Kennedy et al., 2007’s grazing of the subject in their review of urban 
material and energy flows). Moreover, though overviews exist for other important urban 
pressures such as building energy (Grubler et al. 2012; Steemers 2003), transport energy 
(Grubler et al. 2012; Kenworthy and Laube 1996) and water use (Darrel Jenerette and Larsen 
2006), but urban food has not received congruent treatment. Thus, the motivation for cities to 
properly acknowledge, and consequently mitigate, their foodprints is diminished.   
 
Though a gap is present in this sphere of urban sustainability research, much work has been 
done to document the foodprint of urban systems. For decades, environmental scientists have 
been documenting the energy and material metabolism of cities (Kennedy et al. 2007). Of the 
dozens of studies of cities, many have included food, yielding considerable data on individual 
urban areas, but this piecemeal manner of quantifying the foodprint on a study-by-study basis 
has not coalesced into a cohesive conversation about the this important driver of urban 
environmental burdens. A survey of this body of literature is an ideal starting point from which 
to begin this dialogue.  Through a comprehensive literature review, this paper consolidates the 
results of urban foodprints to develop a broader narrative surrounding the environmental 
impacts of food consumption in cities. Through this synthesis we will sketch how urban food 
demands translate to environmental impacts and highlight future challenges in managing and 
reducing the urban foodprint.  
  
Quantifying Urban Foodprints – Review Methodology 



 
Providing a synopsis of the urban foodprint requires a methodology to measure urban food 
flows, and potentially, the embodied environmental burdens of upstream production. The field 
of industrial ecology is well situated to address this need, with its focus on the scale, nature and 
interconnections of material and energy exchanges between different socio-technical systems 
and the environment (Ferrão and Fernández 2013). It is from this discipline that the urban 
metabolism (UM) concept arose (Kennedy et al. 2007b).  
 
UM applies industrial ecology principles to the geographic region (city, conurbation, 
commutershed), accounting for selected material and energy exchanges (Kennedy et al. 2014b), 
and occasionally, using network analysis, between sub-urban systems (e.g. heavy industry and 
waste management) (Li et al. 2012). Since Wolman’s (1965) seminal publication, the material 
flow analysis (MFA), mass based framework has been complimented by other methodologies. 
Carbon footprinting (CF) (Ramaswami et al. 2011) and water footprinting (Vanham and 
Bidoglio 2014) account for UM related greenhouse gas (GHG) emissions and embodied water 
flows, respectively, while ecological footprinting (EF) quantifies the bioproductive area 
underpinning consumption and sequestration of CO2 (Wackernagel 1998). Emergy accounts 
for embodied energy in UM flows (Stanhill 1977), while the life-cycle-assessment (LCA) tool 
estimates the environmental impact potentials of UM in a broad range of indicators throughout 
the supply and waste management chains (Goldstein et al. 2013).  
 
This review is focused on MFA, CF and EF assessments of the foodprint, as these assessment 
methods are the most represented in the literature. The MFA studies were not limited to 
complete accounts of all major UM flows, but also include substance flow analyses of nitrogen 
or phosphorous through urban systems, if urban food needs were also included. Each of the 
three methods has its strengths and weaknesses, complimenting each other to provide a 
balanced perspective of the foodprint. Urban-scale MFA accounts for physical flows through 
cities, avoiding the uncertainties of abstracting out to other indicators further along the 
environmental cause-effect chain. Conversely, the scale of mass flows say little about the 
environmental impacts embodied within mass, though it can highlight deleterious exchanges 
between socio-technical systems and the ecosphere. CF provides both an indication of an 
actions contribution to society’s largest environmental challenge, while it is also easily 
understood within policy, economic and public spheres, however as a single indicator, it can 
ignore other potentially negative environmental impacts (‘burden shifting’). EF quantifies the 
amount of global average bioproductive land and sea commandeered by humanity, providing 
an indication of ‘ecological overshoot’ and encroachment on animal habitats. However, EF is 
limited in the variety of waste flows it captures (only CO2) and that it is usually based on land-
use data at national levels, ignoring the considerable heterogeneity of bioproductivity within 
countries. Table 1 outlines the essential properties of these indicators as they pertain to the 
foodprint.  
  
Table 1 - Properties of the study categories considered in the review 

Study 
Category 

Indicator Method Relation to the foodprint 

Material 
Flow 
Analysis 
(MFA) 

Per capita annual 
mass of food 
demanded by a 
city (t/cap/a)  

Household: statistics 
of per-capita food 
demands at city, 
regional or national 
resolution  
 

Strengths:  
 Measures the amount 

of environmentally 
intensive foods 
demanded 

 Can map food waste 



Trade: balances of 
imported and 
exported foodstuffs at 
city, regional or 
national level 

and nutrient flows in 
urban systems 

Shortcomings:  
 Ignores environmental 

impacts embodied in 
food products 

Carbon 
Footprint 
(CF) 

Per capita 
embodied CO2 
equivalents in 
annual food 
demanded by a 
city (t CO2 
eq/cap/a) 

Process-based: 
summing of 
emissions from 
processes (farming, 
transport, etc.) along 
supply-chain 
 
Input-output (IO): 
coupling of local food 
expenditures with 
environmentally 
extended IO tables to 
capture direct and 
inter-sectoral GHG 
flows  

Strengths: 
 Quantifies GHG 

emissions embodied in 
food and identifies 
burdensome dietary 
choices 

Shortcomings: 
 Land use changes 

(LUC) and farm-
related land 
management strategies 
(e.g. tilling) typically 
not included in CF 
studies  

 Focus on single 
indicator ignores other 
food related impacts 
(eutrophication, soil 
degradation, etc.) 

Ecological 
Footprint 
(EF) 

Per capita global 
average 
bioproductive 
land 
requirements to 
support annual 
food demands 
(gha/cap/a) 

Component: 
summing of land use 
requirements from 
processes (farming, 
transport, etc.) along 
supply-chain 
 
Compound: coupling 
of local food 
expenditures with 
environmentally 
extended IO tables to 
capture direct and 
inter-sectoral land 
demands 

Strengths: 
 Links foodprint to 

Earth’s biocapacity and 
potential 
encroachment on 
habitat from dietary 
choices 

Shortcomings: 
 Single indicator 
 Accounts for single 

waste flow (CO2) 
ignoring other GHGs 
and important food-
system waste streams 

 Land based indicator 
biased towards 
agriculture, 
potentially inflating 
foodprint relative to 
other UM drivers  

     
 
Identification of Studies 

 
The review began by isolating comprehensive literature reviews of UM studies. For UM, Decker 
et al.’s (2000), Kennedy et al.’s (2007b, 2011), Zhang’s (2013) and Stewart et al.’s (2014) all 
provide good lists of essential UM studies at their respective publishing dates. Private and 



public databases were also utilized to find material within the review scope. Though the focus 
was on peer-reviewed material, other grey literature document types were considered for 
inclusion (e.g. theses, reports, etc.) Strategic key terms related to UM (e.g. ‘urban metabolism’, 
‘urban substance flow analysis’, ‘urban ecological footprint’) were used to probe 15 databases  
(e.g. ISI Web of Science, Google Scholar, Oxford Journals, science.gov, Technical University of 
Denmark, Scopus, etc.)  
 
UM Studies Included  

 
A total of 206 texts on UM were found. This number was reduced to the pertinent literature 
through a number of limiting criteria: (i) food flows were included in the study, (ii) the 
foodprint was separately presented or disaggregated using minimal manipulation (reducing risk 
of error and/or misinterpretation), (iii) a demand-side urban foodprint was calculated related to 
urban food demands (the sum of food consumed and wasted) not urban food production (e.g. 
scope 1 and 2 CFs), and (iv) literature was published in or translated to English. Moreover, 
primarily qualitative historical narratives or highly speculative forecasts were excluded. With all 
criteria applied, 43 studies were reviewed, covering 100 cities, sometimes over multiple years or 
UM types within the same year, resulting approximately 132 foodprints. Figure 1 shows the 
geographic distribution of the foodprints considered, while tables S1-S3 in the supplementary 
material provides an overview of where they are used in the meta analysis.   
 
Some data pruning was performed prior to the analysis of the foodprints. Li et al.’s (2013) CF 
of Macao from 2005-2009 was taken as the average foodprint over the study period to avoid the 
biasing effect of including five nearly identical data points. Similarly, the results for Rosado et 
al.’s (2014) and Niza et al.’s (2009) MFA of Lisbon from 2003-2009 were also averaged due to 
the similarity of their methods (regional trade balance) and findings. Calcott and Bull’s (2007) 
EF study of UK cities accounted for 60 of the foodprints and was taken here as the average for 
those cities in the study for which city-level GDP data was available (see table S6). For the four 
studies for which averages were taken, no large changes in consumptive patterns or foodprints 
were seen for those assessments (over years or between cities), making the means fair 
representations of their respective studies. Aside from these exceptions, no manipulations of 
the original data were performed.  
 
Despite efforts to maintain consistency between studies, discrepancies were unavoidable. The 
inclusion of tourist and/or commuter activities in the studies was not universal.  Differences in 
study scope between ‘household’ (residents) and ‘city-wide’ (residents and businesses) were also 
seen, whereby the urban foodprint was underestimated in studies where the scope of urban 
metabolic activities beyond the household boundary were excluded. System boundaries were 
also occasionally misaligned for CF and EF studies, whereby impacts from cooking and food 
waste were typically, but not always, unaccounted. Lastly, the different methodologies outlined 
in table 1 were encountered for all the three indicators.  
 



Tables S1-S3 in the supplementary material provides an overview of the included studies their 
data sources and methodologies. OECD Statistics (2015) provided much of the GDP data that 
was used in the analysis, but where these were lacking tables S4-S6 outline estimation methods. 
 
Results - The Urban Foodprint 

Figure 2 – Importance of the foodprint in the urban metabolic profile of the reviewed cities: a) 
percentage of cities with foodprint impacts as a distinctive fraction of total impacts b) Histogram of 

foodprint’s rank compared to other main urban metabolic categories (e.g. transport, building energy, etc.) 

as a contributor to gross urban environmental pressures measured through MFA, EF or CF. Ignores 
studies solely studying food. Sample sizes disagree for CF and MFA because some studies did not 

disaggregate total impacts into categories in a way that would support ranking. See supplementary 

material Table S1-S3 for clarification.   



Figure 3 – The urban foodprint vs GDP per capita with 
foodprint in terms of: a) mass b) ecological footprint c) 

carbon footprint. Sample size disagrees with Figure 2 since 
additional studies that only included food flows are now 

included.  

Figure 2A displays the percentage 
contribution of the foodprint to the 
reviewed cities aggregate 
metabolisms for the reviewed 
assessments. Figure 2B presents a 
histogram of the  foodprint ranks in 
comparison to other commonly 
accounted urban metabolic flows 
such as the consumption of 
transport fuels, building energy, 
aggregates, and metallic minerals. 
The mode of the foodprint’s rank as 
a contributor to the cities’ 
environmental impacts are first for 
62% of the EF studies and third for 
more than 50% of the CF and MFA 
studies. It is natural that the 
foodprint tends to dominate EF 
studies, a consequence of the 
method’s focus on land use, where 
agriculture is a dominating activity, 
while its CF and MFA pressures are 
significant, but less intense. Food 
production is actually estimated to 
contribute 24-50% of global 
greenhouse gas emissions (IPCC 
2014b; Schmidt and Merciai 2014) 
which hints that the reviewed 
foodprints may be underestimated 
since most of the observed carbon 
foodprints fall below this range. 
Looking at the CF methods in table 
S5 we find that none of the CF 
studies included GHG emissions 
related to LUC (e.g. shifting from 
forest to pasture releasing carbon 
stored in biomass) or tilling 
(activating bacteria which produces 
CO2 and N2O). GHG emissions 
data on the latter is scarce, but 
estimates of LUC ranges from 6% to 
20% of global CO2 emissions 
(Hörtenhuber et al. 2014; Garnett 
2010), providing evidence that more 
inclusive CF methodologies might 
elevate the importance of the 
foodprint in a city’s overall GHG 
burdens. The foodprint ranks lower 
in the MFA studies as transport 
fuels and construction materials 
flows are much greater. Irrespective 
of assessment method, the foodprint 



is generally an important driver of urban environmental impacts. 
 
Figure 3A shows a scatter plot of mass foodprints (determined by MFA) versus per capita GDP, 
with detailed data in Table S5 in the supplementary material. The average per capita annual 
mass foodprint for the studies is approximately 0.80.3 ton/annum (t/cap/a – where ton refers 
to metric tons, as will be the case for all other uses in the article). Wealth affects a rise in food 
demand, echoing others’ findings (Cirera and Masset 2010) supported by the moderate 
correlation (R2=0.34). The study average and almost all of the case cities are above global per 
capita (0.5 t/a), implying that continued economic growth and urbanization may intensify 
global bulk food demands. However, it is clear that food demands cannot grow ceaselessly with 
income after nutritional needs have been met, which means that a logarithmic relationship 
between mass foodprint and wealth might also be expected, potentially explaining some of the 
weak correlation here. A modest difference was observed between OECD and non-OECD 

cities, where a number of the 
former lie above the study average. 
The daily per capita food 
consumption in the OECD cities 
is 2.5 kg, greater than the amount 
of food a human can realistically 
consume on a daily basis (Barles 
2009), hinting at excessive 
demand and food generation, 
particularly with increased 
incomes.  
 
Paris’s foodprint represented 36% 
of total regional material 
consumption since it is a dense, 
mature city with high non-durable 
goods consumption, while 
Limerick’s foodprint was only 4% 
due to a metabolism defined by 
large construction aggregate 

additions to stock. The largest mass foodprints  (Paris; 1.8 t/cap/a, Lisbon; 1.4-2 t/cap/a) 
utilized urban level trade statistics to generate a more inclusive assessment (Barles 2009; Rosado 
et al. 2014; Niza et al. 2009), as opposed to foodprints calculated from household consumption 
data or national level food availability balances (e.g. FAOSTAT) which may underestimate the 
gravitational pull of resources to cities or domestic purchasing power inequalities. Moreover, 
the Lisbon study also included biomass imported into the metropolitan area for feed, certainly 
playing an important role in the elevated numbers. The significant error-bars around the Lisbon 
also show how food demands can fluctuate across years. Nonetheless, the Paris and Lisbon 
studies suggest that a number of cities may have much higher mass foodprints than indicated in 
Figure 3A.  
 
Figure 3B shows carbon foodprint as a function of per capita GDP (details in supplementary 
material Table S6). Average per capita annual carbon foodprint was 2.3 t CO2 eq./cap/a, 
representing a carbon intensity of 2.8 t CO2 eq./t urban food demand. Similar to the MFA 
assessment, a modest relationship is seen between income and carbon foodprint (R2=0.30). 
Though the non-OECD countries generally perform lower, this is is not always a result of 
economic necessity. For instance, despite its wealth, Macao has markedly lower bovine product 
intake (Macao 2005-2009 average - beef; 13 kg/cap/a, dairy; 49.9 kg/cap/a) relative to similarly 
wealthy populations (US 2005-2009 average – beef; 41 kg/cap/a, dairy; 135 kg/cap/a) (FAO 
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2014). These differences strongly affect the carbon foodprint since bovine products have large 
embodied GHG emissions (FAO 2006). Conversely, London’s and Cardiff’s carbon foodprints 
were low for their relative wealth (0.9 and 1.1 t CO2 eq./cap/a, respectively), though these 
foodprints are likely an underestimated considering recent findings that peg the average UK 
resident’s carbon foodprint at 2.7 t CO2 eq./cap/a (Berners-Lee et al. 2012). Macao’s 
development is divergent from the findings of longitudinal studies at the global level that have 
found shifts in diets from traditional food systems towards highly processed foods and 
increased meat intake (Tilman and Clark 2014; Monteiro and Cannon 2012). Figure 4 
corroborates this finding by removing the outlier Macao, providing a strong positive correlation 
between the carbon foodprint and GDP at the urban level (R2=0.65). This finding combined 
with the fact that the CF models in the reviewed foodprints ignore LUC and tilling related 
GHGs, means not only that the CF plays a larger role in a cities embodied GHG emissions 
than is currently acknowledged, and that these emissions are poised to grow lockstep with 
economic development in many countries. Geography should not be discounted, since cities 
located in regions with longer growing seasons or highly productive agricultural lands might be 
able to locally supply more of their nutritional needs, thereby reducing food-miles and 
embodied energy, though the sample size precludes an analysis of this. 
 
Ecological foodprint as a function of per capita GDP is shown in Figure 3C. Average per capita 
annual ecological foodprint is 1.2 gha/cap/a, with an eco-efficiency of 1.5 gha/t urban food 
demand. The scatter plot was found to best fit a logarithmic curve (R2=0.35), with EF quickly 
growing with income and then leveling off above 10 000 USD. Moreover, even though the 
study average GDP was more than 2.5 times the global average the global and study averages 
were comparable (0.9 and 1.2 gha/cap/a, respectively), showing that economic development 
quickly leads to demands for higher quality protein from animal products with large land use 
needs for feed and grazing, but that these demands saturate at modest income levels. This is in 
agreement with UNEP (2012) work showing that per capita meat consumption follows a 
logarithmic trend that saturates around 10 000 USD for national populations. The modest 
correlation also means that other factors contribute to the EF. Comparative regional market 
advantage can make environmentally burdensome foodstuffs affordable to less-wealthy urban 
consumers (Popkin 2006; Darmon and Drewnowski 2008), such as the cheap beef abundant in 
South America which fuels that large EF of Sao Paulo (WWF 2012). In close to 50% of the 
cities, EF foodprints accounted for 20-30% of the overall EF of the cities, with foodprints 
approaching 50% of total EF burdens for multiple cities. In some unique instances the EF-
foodprint played a minor role in the overall UM foodprint, for instance in Shenyang, CN and 
Kawasaki, JP, where the majority of both cities’ EFs originate from industrial energy 
consumption (Geng et al. 2014).  
 
Discussion  

The importance of the foodprint’s in the total environmental impacts of the reviewed cities 
warrants a deeper look. This section highlights study shortcomings that must be kept in mind 
in interpreting the results, identifies foodstuffs that strongly influence the foodprint, how the 
consumption of these evolves with the economic development of cities, and how the design of 
urban systems can exacerbate foodprints.  
 
Review Shortcomings  

This review has relied on a number of disparate studies to assemble an overview of the urban 
foodprint, with these supporting studies using equally distinct methodologies within assessment 
study categories (e.g. IO vs. process), entity accounted (household vs. city) and data sources 
(national, regional or city). This is an obstacle when trying to compare across studies and make 
inferences on the influence of economic development on the foodprint, because it is hard to 
disentangle where differences between cities arise due to methodological bias or lifestyle drivers. 



As such, the correlations of the scatter plots were tested against the influence of these different 
modeling choices to understand how they affected the results.  
 
Figures S8 and S9 test the effect of the application of IO and process based methodologies on 
the carbon and ecological foodprints, respectively (not applicable to the included mass 
foodprints). The IO method shows a tendency to be higher than process-based carbon 
foodprint methods for cities of high incomes (no low income IO foodprints were available for 
comparison), a consequence of the recursive GHG flows between sectors captured by the 
method. Ecological foodprints were insensitive to the different methods. Figures S10-S12 show 
that some methodological bias is present for carbon and mass, but not ecological foodprints 
when the unit of analysis is shifted from the household to the city. Household level studies 
showed lower impacts compared to the city level assessments at comparable income brackets, 
demonstrating that food consumption outside of the house needs to be accounted to accurately 
reflect urban food pressures. Figures S13-S15 show the effects of different data sources on the 
results, with little discernable difference between city, regional or national data, except in the 
Paris and Lisbon studies which had noticeably higher mass foodprints. Most importantly, the 
observed trends in the results remained robust, though income ranges of foodprints within 
some of the methodologies were not broad enough to test correlations between foodprint and 
wealth.   
 
In terms of the effect of scope, documenting the foodprint was not the goal of many of the 
studies, causing some aspects of the foodprint to be excluded or conflated with other impacts. 
Some of the reviewed foodprints allocated energy used in preparation (Wu et al. 2012), and the 
waste management burdens (collection, processing and disposal) to building and transport 
energy segments of the UM studies, increasing those drivers, while diminishing the foodprint. 
This misallocation is noteworthy since studies have found that household-side food preparation 
can (contingent on food and preparation method) represent a significant share of a food 
product’s life-cycle primary energy demands, and ergo, its environmental burdens (Muñoz et al. 
2010; Davis et al. 2010).  
 
A couple of caveats should also be kept in mind when reading the results. Calculating per 
capita GDP at the city level is a complex exercise with numerous assumptions that can also 
ignore economic disparities within city regions. Nonetheless, the GDPs here can be broadly 
interpreted as the purchasing power of the average residents in the cities included. Lastly, that 
the majority of foodprints included represent middle- and high-income cities, which may skew 
the observations upwards and make statements about foodprints in the Global South difficult 
to extract from the data. More foodprints from lower income cities would strengthen the 
observations from made here.   
 

Foodprint Drivers 

Much like their citizens each city has a unique foodprint. Notwithstanding, a clear connection 
between increasing animal product consumption and foodprint was observed, with this trend 
being ubiquitous across UM methods. Authors of the Cardiff and London carbon foodprints 
identified dairy and meat products as large contributors to overall CF (Best Foot Forward Ltd. 
2002; WWF 2005). The other CF studies did not describe foodprint contributors, either by 
agricultural source or supply-chain process. The exception was Wu et al.’s (2012) study of 
Beijing household food consumption, which identified food preparation as the largest 
contributor to the foodprint (60%), likely due to Beijing’s fossil fuel dominated energy 
production. Goldstein et al.’s (2013) UM-LCA study found that air transport of seafood was an 
important factor in the GHG foodprint of Hong Kong residents. UM studies neglected to 
mention GHG impacts from deforestation, enteric methane generation or long distance 



refrigerated transport, though these impacts can be considerable (Foley et al. 2011; Born and 
Purcell 2006).    
 
With the EF studies, animal products feature prominently due to their grazing territory and 
arable land requirements. In Belfast, meat and dairy accounted for over two-thirds of the 
foodprint (Walsh et al. 2006). A study of Beijing found that the pork consumption was the 
origin of 65% of the household urban foodprint, increasing to 70% for wealthier households 
(Zhang et al. 2012). In the London EF study, meat and milk were respectively responsible for 
28% and 12% of the total foodprint (itself 41% of the city’s total EF), with additional 
significant impacts from other dairy products (Best Foot Forward Ltd. 2002). Beef production 
requires direct land occupation for feed production, and often, grazing, and indirect land to 
offset methane production from cattle and deforestation, making it the agricultural product 
with the highest unit EF (though it would be larger if EF accounted for soil erosion which 
reduces the land productivity). This causes high beef consuming cities to have corresponding 
EF foodprints. Sao Paulo residents, with a propensity for beef consumption had a similar per-
capita foodprint to citizens from the UK studies, despite the average Brazilian’s comparatively 
lower impacts in many other respects (WWF 2012). Where longitudinal studies of a single city 
were performed, it was found that the share of these burdensome foods were only increasing 
(Warren-Rhodes and Koenig 2001; Sahely et al. 2003; Alfonso Piña and Pardo Martínez 2014; 
Wang et al. 2013), excepting Macao (Li et al. 2013). This was true for advanced and emerging 
economy cities alike, keeping with global trends of urbanization, economic development and 
the shift towards processed, high-energy density foodstuffs (Popkin 2006; Tilman and Clark 
2014). 
 
Foodprint Form 
MFA and nutrient balance literature (see supplementary material S4) revealed a linear 
foodprint, in line with the general observations of UM studies and other socio-economic 
systems (Kennedy et al. 2010; Barles 2010; Huang and Hsu 2003; Ferrão and Fernández 2013). 
This linearity is defined by the importation of food from beyond the urban boundaries, its 
ingestion by inhabitants, and the solid and liquid waste (digested and discarded food) sent to 
repositories typically beyond municipal limits. This contrasts with a natural ecosystem’s cyclical 
metabolism, where material and energy exchanges between components are symbiotic (one sub-
system’s effluent is another’s feedstock), mitigating the concept of ‘waste’, avoiding long-term 
buildup of noxious substances (Korhonen 2001).  
 
Linear metabolism was observed in the majority of studies, as communicated by the significant 

solid waste flows destined for city landfills, 
with biomass being a weighty portion of 
this. Figure 5 outlines per capita food waste 
found in the reviewed literature, with all of 
the data points except two based from 
urban level waste statistics.  Codoban and 
Kennedy (2008) found that 44% of food 
imported in to Toronto in 2000 
households did not actually nourish 
residents. With the inclusion of 
commercial activities on a city-wide level, 
the percentage of total food sent to landfill 
were 19%, 20%, 26% and 31% (0.2, 0.2, 
0.3 and 0.2 t/cap/a) in Hong Kong, 
Vancouver, Toronto and Limerick, 
respectively (Warren-Rhodes and Koenig 

Figure 5 – Per capita waste foodprint in tons/annum 

(t/cap/a) as a function of per capita income 



2001; Moore et al. 2013; Forkes 2007; Walsh et al. 2006). Food waste from the study cities as 
well as additional urban waste studies cited in UM literature (see table S7 in supplementary 
literature) were plotted against wealth showing  significant positive correlation (R2=0.57), which 
has also been observed for waste in general at the global scale (IPCC, 2014c) and urban food 
waste (Adhikari et al. 2006). Global per capita food waste over the processing, distribution and 
consumption stages was approximately 0.1 t/cap/a (FAO 2013), lower than the 0.2 t/ cap/a 
average food waste for the reviewed cities which ostensibly covers a consumption waste and a 
portion from processing and distribution. The FAO number is likely overestimated compared 
to the UM studies, since significant food processing and distribution (and related waste 
generation) occurs outside cities. Thus, cities as accumulators of wealth also appear to become 
centers of excess consumption with economic development, though future research is need to 
understand if the organic waste in cities is comprised of high-impact food (meat and dairy) let 
alone edible food. Even the relatively middle income city of Bogota relegated 140 kg/a/capita 
of food to landfills (Alfonso Piña and Pardo Martínez 2014); elevated well above global average.  
 
Food waste is not only an issue because of the embodied environmental impacts in discarded 
edibles, but also because organic waste not recycled within the economy escalates nutrient 
removal and soil degradation at farms, increasing the reliance on fossil fuel and mineral based 
fertilizers to maintain yields (Jones et al. 2013) and further perturbing global nutrient cycles 
(Steffen et al. 2015). Another concern are the methane emissions from urban food waste, which 
are set to grow under current management scenarios leave food to anaerobically degrade in 
landfills (Adhikari et al. 2006). Highly developed cities with their advanced infrastructures can 
collect and control their food waste, but despite a renaissance in organic waste diversion the 
efficiency of such systems has been mixed (Slater and Frederickson 2001). For instance, 
Toronto’s household compost collection captured only 4.7% of nitrogen, failing to include 
businesses nor the apartments that make up a large portion of the housing stock (Forkes 2007), 
while Paris’s food waste was relegated primarily to toxic incinerator fly and bottom ashes, 
precluding recovery (Barles 2009). Where waste collection infrastructure is lacking, nutrient 
recycling is not only limited, but also a potential contributor to nutrient driven algal blooms, as 
witnessed in the waterways of Bangkok (Færge et al. 2001). Solid food waste has also posed a 
challenge in cities in the emerging economies, where rotting food has been known to pile in the 
streets causing both a nuisance and public health hazard (Hazra and Goel 2009; Hasan and 
Mulamoottil 1994).  
 
The reviewed cities showed the same pattern in their handling of liquid waste from households 
and businesses, also an readily accessible source of nutrients (Forkes 2007). Toronto was 
capturing approximately 90% of digested nitrogen at the wastewater treatment plant, but this 
was redirected back to landfills due to public health concerns (IBID). Stockholm more 
successfully pelletizes sewage sludge to make fertilizer, recycling 60% of phosphorous contained 
in imported food (Burstrom et al. 1997); a more common practice in Europe. In cities lacking 
infrastructure, significant household wastewater flows were sent directly to local water bodies 
harming the ecosystem, as was the case in Bangkok (Færge et al. 2001), Beijing  and Cape Town 
(Goldstein et al. 2013). Since the 1940s human waste from cities has been one of the dominant 
sources of nutrient discharge to global surface waters (Morée et al. 2013).  
 
Urban Design and Policy Interventions 
The clear trend of urban foodprints dominated by animal products is a challenge for policy 
makers trying to affect sustainable urban development. Moreover, the relation between 
economic growth and the increased consumption of these compounds the complexity of the 
issue. Having cities intervene in what is largely a matter of personal preference, cultural practice 
and politics is likely a political non-starter in most societies due to the paternalistic undertones 
of such tactics. New York City’s foray into behaviorally inspired regulation that banned 



oversized soft drinks in hopes of combating obesity in the city was both publically abhorred and 
ruled unlawful (Galle 2014), though the city has made strides in reducing food packaging waste 
(Stringer 2015). A more tractable aspect of behavior to address is edible food waste generation, 
either through awareness campaigns, organic waste fraction disposal fees or legislation that 
curtails food waste generation at commercial operations, such as France’s law forcing 
supermarkets to donate edible food waste to charities or sell it for biofuel production (Chrisafis 
2015). 
 
Though admittedly cities have limited influence over the types of foods imported or personal 
waste production, design interventions are still available at the urban level to redress the linear 
nature of the foodprint. Intercepting the nutrients contained in solid food waste and 
wastewater for reuse in the agricultural system before they are sent to the landfill or surface 
waters provides double dividends of reducing eutrophication and avoiding the production 
agricultural inputs reliant on non-renewable resources (fossil fuels and mineral phosphorous) 
that are likely to see a 60% increase in demand over coming decades (Tilman et al. 2011). 
 
Historical cities are instructive in this regard through their circular metabolisms that coupled 
nutrient recycling with food production. In 19th century Paris latrine residues and horse 
manure were used as inputs to an extensive horticulture system that produced leafy greens in 
excess of local needs (Barles 2007). More recently, 1970s Hong Kong pig farming in the 
territory had a mutualistic relationship with local produce production within the city limits, 
whereby pigs consumed food waste, while producing high quality manure and protein (Warren-
Rhodes and Koenig 2001). In present-day African cities low-tech, informal nutrient recycling 
systems are commonly employed to combine sewage with urban food production, but improper 
pathogen eradication remains a threat to viability (Srikanth and Naik 2004; Qadir et al. 2010). 
A more sustainable solution has been found in Kolkota, India, where for over a hundred years a 
3000 ha wetlands has process 550 000 m3 of the city’s raw sewage daily, simultaneously 
producing 16% of the city’s fish needs and fertilizer for fields, demonstrating ecologically 
sensitive use of landscape as infrastructure (Carlisle 2013).  
 
Because of the risk of pathogens in nutrients mined from human waste a multi-forked set of 
solutions to the linear foodprint is required. This is already present in the way that a number of 
cities apply nutrients in wastewater sludge to fields producing feed crops for livestock, as 
opposed to crops for direct human consumption (Miljøministreriet 2005). Nutrients collected 
at wastewater plants are also entrained with heavy metals and other pollutants from industrial 
wastewater and surface water runoff, portending the need to separate nutrient rich human 
waste streams (or effluent from food processing plants) before the wastewater treatment plant 
(Forman 2014). A potentially effective strategy is the point source collection of bulk of nutrients 
expelled by humans using urine diversion toilets (IBID, Baccini and Brunner 2014), however 
the large sunk costs, slow replacements rates and centralized structures of urban wastewater 
collection and treatment systems means that this type of intervention will be difficult in cities 
with mature wastewater handling infrastructure. Source segregated urban food waste is 
pathogen-free when correctly cured and is thus better suited for human food production. The 
generation of compost from organic waste both recycles nutrients and enriches soil with organic 
carbon, however concerns about toxic metals concentrations remain a challenge (Hargreaves et 
al. 2008). Composting must also overcome public resistance to sorting and separating food 
waste and the aversion of municipalities to its perceived higher costs over landfilling (Decker et 
al. 2000), putting compost at a disadvantage even in developed cities with sufficient technical 
capacity. 
 
Regardless of the design interventions employed, it is essential that the foodprint be 
understood from a system-wide perspective. Reducing urban foodprints by moving towards 



cyclical UM most avoid the pitfalls of focusing on single waste streams, since this increases the 
potential for ignoring key food related flows and reduces the environmental efficacy of these 
strategies (Kalmykova et al. 2012). Furthermore, cyclical UM remains a challenge since 
nutrients embedded in food imports represent a fraction of the nutrients used in production, 
since swathes are lost in agricultural runoff and microbial action (Baccini and Brunner 2014; 
Gliessman 2015), necessitating actions at the urban scale and beyond to redress nutrient losses. 
It should also be noted that cyclical UM schemes need not ‘close the loop’ by coupling with 
food production near cities (hypothetically, nutrients could be captured in cities and sold on 
the global market), but such programs have the added benefit of reducing the significant 
distance that food travels to urban markets (Born and Purcell 2006). Metson et al. (2012) 
documented the symbiotic relationships between the urban dairies in the Phoenix Metropolitan 
Area and alfalfa farmers which used waste from the dairies and bio-solids from treated 
wastewater to recycle phosphorous.  
 
Urban development as a foodprint driver 

From the data obtained from the literature review, there seems to be a tenable linkage between 
economic activity and the mass, carbon and ecological foodprints, as well as the food waste 
generation. Due to the higher per-capita economic activity in cities, the average urbanite is likely 
to have more income to spend on food than their rural counterpart, supporting the assertion 
that cities eat better than the countryside (Hoornweg et al. 2012). OECD estimates that the 
share of global GDP from agriculture will continue to decrease, along with crop prices, which 
would act to decrease the cost of food to many urbanites (OECD and FAO 2015) hinting at 
further divergence of purchasing power between rural and urban inhabitants. Combining 
cheaper food with the superlinear economic growth related to urbanization (Bettencourt and 
West 2010), it seems possible that bulk food demands may also follow a suite as rural 
populations continue to migrate into cities. Kennedy et al.’s (2015) review of megacities has 
already revealed this superlinear scaling in the metabolism of certain metabolic flows (waste, 
gasoline and electricity), and future research should explore if the urban foodprint shares this 
property.  
 
Urbanization also affects consumption patterns and household food management practices. 
Figures 3A and 3C show that the ecological foodprint increases at a quicker pace with wealth 
than the mass foodprint, as evidenced by the former’s logarithmic correlation to GDP. This 
could indicate that beyond once nutritional demands are met, the increase in the 
environmental burden from food consumption is not caused by bulk, but by shifts towards 
foods with higher land use and embodied energy demands. Additionally, as figure 5 revealed, 
increasing wealth is coupled with a surge in food waste. That is, the increase in the 
environmental burden seen for increasing GDP is most likely caused by household food 
management practices and shifting consumption patterns towards expensive food items with 
larger environmental burdens. 
 
Linkages between economic development and increasing intake of high-burden foods by others 
support this (Tillman et al., 2014). Recent UN reports also show that food waste in wealthy 
nations originates largely at the consumer end (FAO, 2013). This evokes an accelerating 
pattern: as incomes rise, people tend to consume more environmentally burdensome foods, but 
at the same time consume less of the total food they purchase. Looking deeper into global food 
waste data, disposal rates of edible food by consumers in wealthy countries are 19%, 8%, 26%, 
31% and 32% for meat, dairy, fruits and vegetables, cereals, and roots and tubers, respectively 
(IBID). Fruits, vegetables, grains and tubers are most commonly castaway at the household level; 
exactly the foods that studies have shown to be more easily accessible in wealthy areas of US 
cities (Shove and Walker 2010; Algert et al. 2006; Gordon et al. 2011). Wealth is not the sole 
reason that consumers discard fruits, vegetables and grains (education, storage options and 



other factors are important), but the fact that these foods are more available might promote 
excessive purchasing by wealthy urbanites.  
 
Lastly, the spatial characteristic of urban development has an effect on the foodprint, since low-
density growth potentially consumes productive agricultural land at the per-urban fringe. This 
type of development reduces local capacity for food production locking residents into increased 
consumption of food transported over long distances.  
 
Conclusions 

Through an assemblage of earlier quantifications of UM, this review demonstrates that 
environmental impacts from urban food demands are not only non-trivial, but sometimes the 
largest contributor to a city’s environmental loading. In light of this, researchers and cities 
should be compelled to further develop methods and better quantify the urban foodprint. Such 
a task is easier said than done considering the complexities of the food system and its many 
interfaces with other systems of production and consumption. Notwithstanding these 
challenges, it is clear that future assessments should leverage multi-metric approaches to gauge 
environmental impacts, since differences between the three examined metrics in this study 
mirror the fact that they are linked to different drivers.   
 
The main drivers of urban foodprints are animal based food products. Consumption of these, 
and resultantly foodprints, generally increase with co-mingled urbanization and economic 
development, though a number of other important factors assert influence (cultural 
preferences, lower prices, etc.) The UM was also found to be linear in form with low 
production of food within cities and usually marginal recycling of nutrients in food and human 
waste back to the agricultural system. Moreover, where proper waste management facilities are 
lacking, the foodprint can manifest within urban regions in the form of nutrient fed algal 
blooms that damage local aquatic life. Thus the foodprint is a multi-scale issue exerting pressure 
at the city level and beyond.  
 
Given the numerous challenges facing the long-term sustainability of the global food system in 
the coming decades both in terms of resource availability (land, fossil fuels) and minimizing the 
collateral environmental damage of agricultural production (biodiversity loss, eutrophication), it 
is essential for cities to evaluate how they can actively contribute to positive change. Since the 
food choices of urbanites largely influence the food-related environmental impacts of a city, 
combating it at the city level requires urban design interventions that redirect the current linear 
UM to better recycle valuable nutrients and organic carbon within the agricultural system, both 
locally and abroad. Though many cities already do this to some capacity, there is room for 
improvement through expanded organic waste diversion and human waste management 
schemes that reduce the spread of pathogens and toxic chemicals. Behavioral changes should 
also be explored even if limited in purview. Attacking edible food waste through awareness 
campaigns and user fees to discourage generation reaps double dividends of landfill diversion 
and circumventing the environmental loading embodied within food production.  
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Table S1 - MFA Studies 

Study City Year 
In 
Figur
e 2A 

In 
Figur
e 2B 

Figur
e 3A 

Reason for 
Discrepancy 

Warren-Rhodes and 
Koenig (2001) 

Hong Kong 1971 1 1 1   

Warren-Rhodes and 
Koenig (2001) 

Hong Kong 1997 1 1 1   

Browne et al. (2009) Limerick 1996 1 1 1   

Browne et al. (2009) Limerick 2002 1 1 1   

Rosado et al. (2014) Lisbon 2004 1 1 0 In average 

Niza et al. (2009) Lisbon 2003 1 1 0 In average 

    2004 1 1 0 In average 

    2005 1 1 0 In average 

    2006 1 1 0 In average 

    2007 1 1 0 In average 

    2008 1 1 0 In average 

    2009 1 1 0 In average 

Niza et al. (2009) 
and Rosado (2014) 

Lisbon Average 
2002

-
2009 

0 0 1   

Barles (2009) Paris 2006 1 0 1 

MFA was not 
broken down 
into different 
consumption 
categories 

Swilling (2006) Cape Town 2006 1 1 1   

Sahely (2003) Toronto 1987 0 0 1   

Sahely (2003) Toronto 1999 0 0 1   

Pina and Martinez 
(2013) 

Bogota 2010 1 1 1   

Barrett (2002) York 2000 1 1 1   

Emenegger (2002) Geneva 2000 1 1 1   

Moore (2014) Vancouver 2013 1 1 1   

Best Foot Forward 
(2002) 

London 2000 1 1 1   

Ngo and Pataki 
(2008) 

Los Angeles 1990 0 0 1 

MFA only 
covered 
water and 
food 

Ngo and Pataki 
(2008) 

Los Angeles 2000 0 0 1 

MFA only 
covered 
water and 
food 

Metzger (2013) Durham 2000 0 0 1 

MFA was not 
broken down 
into different 
consumption 
categories 

Forkes (2007) Toronto 1990 0 0 1 
MFA only 
covered food 

Forkes (2007) Toronto 2001 0 0 1 
MFA only 
covered food 

Forkes (2007) Toronto 2004 0 0 1 
MFA only 
covered food 

Newman (2000) Melbourne 1990 0 0 1 

MFA was not 
broken down 
into different 
consumption 



categories 

Codoban (2008) Toronto 2008 0 0 1 

MFA was not 
broken down 
into different 
consumption 
categories 

Chavez (2012) Delhi, IN 2009 0 0 1 

Complete 
MFA not 
published, 
but food 
consumption 
given 

Reddy (2013) Mumbai, IN 2010 0 0 1 
Masses of 
fuels not 
presented. 

Hoornweg (2012) Manila, PH 2010 0 0 1 

Assessment 
not broken 
down into 
clear UM 
drivers 

Total - - 19 18 25   

Table S1 - Included mass foodprint 
studies 
 

     

Table S2 - CF Studies 

Study City Year 

In 
Figur
e 2A 

In 
Figur
e 2B 

Figur
e 3B 

Reason for 
Discrepancy 

Ramaswami (2008) Denver 2005 1 1 1   

Wu (2011) Beijing 2006 1 1 1   

Heinonen (2011) Helsinki 2006 1 0 1 

Food not 
disaggregate
d into own 
consumption 
category 

Chavez (2012) Delhi 2009 1 0 1 

CF was not 
broken down 
into different 
consumption 
categories 

Hillman (2010) Colorado 2000 1 1 1   

  Boulder 2000 1 1 1   

  Fort Worth 2000 1 1 1   

  Arvada  2000 1 1 1   

  Portland  2000 1 1 1   

  Seattle 2000 1 1 1   

  Minneapolis 2000 1 1 1   

  Austin 2000 1 1 1   

Dias (2014) Aveiro 2005 1 1 1   

Cardiff Council 
(2001) 

Cardiff 2001 1 1 1   

Best Foot Forward 
(2002) 

London 2000 1 1 1   



Li (2013) Macao 2005 1 0 1 

CF was not 
broken down 
into different 
consumption 
categories 

    2006 1 0 1   

    2007 1 0 1   

    2008 1 0 1   

    2009 1 0 1   

      20 13 20   

Table S2 - Included MFA foodprint 
studies 

      
  



Table S3 - EF Studies 

Study City Year 
In 
Figur
e 2A 

In 
Figur
e 2B 

Figur
e 3C 

Reason for 
Discrepanc
y 

Klinksy et al. (2009) Montreal 
Early 
2000

s 
1 1 1   

Tavallai (2009) Tehran 2005 1 1 1   

Zhang et al. (2013) 
Banqiao, Keifing 
City 

2009 1 1 1   

  
Kangping, 
Keifing City, CN 

2009 1 1 1   

  

Longcheng 
xiangxieli 
garden, Keifing 
City 

2009 1 1 1   

Walsh et al. (2010) Limerick 2002 1 1 1   

  Belfast 2001 1 1 1   

Wackernagel (1998) Santiago 1993 1 1 1   

Kissinger and Haim 
(2008) 

Ra'anana 2002 1 1 1   

Moore et al. (2013) Vancouver 2006 1 1 1   

Hubacek et al. 
(2009) 

Beijing 2001 1 1 1   

Razack and Ludin 
(2014) 

Minna 2012 1 1 1   

WWF (2007) Newport 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Plymouth 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Salisbury 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  
Kingston upon 
Hull 

Mid 
2000

s 
0 0 0 

Lack of GDP 
data 

  Stoke on Trent 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Gloucester 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Wakefield 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Sunderland 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Truro (Carrick) 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Wolverhampton 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Salford 
Mid 

2000
0 0 0 

Lack of GDP 
data 



s 

  Swansea 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Coventry 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Exeter 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Cardiff 
Mid 

2000
s 

0 0 0 
Included in 
average 

  Glasgow 
Mid 

2000
s 

0 0 0 
Included in 
average 

  Bradford 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Lincoln 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Birmingham 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Bristol 
Mid 

2000
s 

0 0 0 
Included in 
average 

  Liverpool 
Mid 

2000
s 

0 0 0 
Included in 
average 

  Nottingham 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  
St Davids 
(Pembrokeshire
) 

Mid 
2000

s 
0 0 0 

Lack of GDP 
data 

  
Bangor 
(Gwynedd) 

Mid 
2000

s 
0 0 0 

Lack of GDP 
data 

  Worcester 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Leicester 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Carlisle 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Derby 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Sheffield 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  York  
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Leeds 
Mid 

2000
0 0 0 

Lack of GDP 
data 



s 

  Dundee City 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Peterborough 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Norwich 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Preston 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Inverness 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Manchester 
Mid 

2000
s 

0 0 0 
Included in 
average 

  Ripon 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Bath 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Weels 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  
Newcastle upon 
Tyne 

Mid 
2000

s 
0 0 0 

Lack of GDP 
data 

  Lancaster 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Lichfield 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  London 
Mid 

2000
s 

0 0 0 
Included in 
average 

  Stirling 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Hereford 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  
Ely (East 
Cambs) 

Mid 
2000

s 
0 0 0 

Lack of GDP 
data 

  Aberdeen 
Mid 

2000
s 

0 0 0 
Included in 
average 

  Chester 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Edinburgh 
Mid 

2000
s 

0 0 0 
Included in 
average 

  Portsmouth 
Mid 

2000
0 0 0 

Lack of GDP 
data 



s 

  Cambridge 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Durham 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Southampton 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Oxford 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Canterbury 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  
Brighton and 
Hove 

Mid 
2000

s 
0 0 0 

Lack of GDP 
data 

  Chichester 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  St. Albans 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Winchester 
Mid 

2000
s 

0 0 0 
Lack of GDP 
data 

  Average 
Mid 

2000
s 

1 1 1   

WWF (2012) Campo Grande 2008 1 1 1   

Best Foot Forward 
Ltd. (2002) 

London 2000 1 1 1   

WWF (2012) Sao Paulo 2011 1 1 1   

Global Footprint 
Network (2011) 

San Francisco-
Oakland-
Fremont 

2007 1 1 1   

WWF (2013) Hong Kong 2011 1 1 1   

Cardiff Council 
(2005) 

Cardiff 2001 1 1 1   

Barrett (2002) York 2000 1 1 1   

Global Footprint 
Network (2010) 

Curitiba 2006 1 1 1   

      21 21 21   

Table S3 - Included EF foodprint studies 
      

  



Table S4 - Mass foodprints  

Study City Ye
ar 

Unit of 
Analysi

s 

Food 
Data 

Boundar
ies 

t/cap
/a (% 

of 
ciite

s 
CF) 

[rank 
as 
UM 

drive
r] 

Per 
capi
ta 

GDP 
(200

5 
USD 
PPP

) 

GDP 
Data 

OECD 

Codoban 
and 
Kennedy 
(2008) 

Toronto, 
CA 

200
8 

Househ
old  

National 
statistics 
scaled to 
populatio
n 

Ostensibl
y 
includes 
residenti
al and 
commerc
ial 

1.1 (-
) [-] 

3600
4 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

Ngo and 
Pataki 
(2008) 

Los 
Angeles, 
US 

199
0 

Househ
old 

Scaled 
from 
national 
data (LA 
has 
similar 
househol
d income 
to 
national) 

Ostensibl
y 
includes 
residenti
al and 
commerc
ial 

0.8 (-
) [-] 

3195
0 

Per 
capita 
GDP 
taken 
from 
California 
Economi
c 
Forecast 
(2011) in 
2010 
USD and 
adjusted 
for 
inflation 
using 
World 
Bank 
(2014) 

200
0 

0.9 (-
) [-] 

4036
4 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

Browne et 
al. (2009) 

Limerick
, IE 

199
6 

City National 
statistics 
scaled to 
Limerick 
based on 
ratio of 
city to 
national 
average 
weekly 
expenditu
res 

Residenti
al and 
commerc
ial 

0.5 
(5%) 
[3] 

2387
2 

Same as 
in Table 
2, but 
adjusted 
for an 
assumed 
1% 
growth 
rate 

200
2 

0.6 
(4%) 
[3] 

2534
0 

See 
Table 2 

Niza et al. 
(2009) 

Lisbon, 
PT 

200
4 

City Metropolit
an 
balance 

Residenti
al and 
commerc

2.8 
(14%
) [2] 

3082
7 

Taken as 
2005 
USD 



using 
trade 
statistics 

ial PPP from 
OECD 
(2015) 

Rosado et 
al. (2014) 

Lisbon, 
PT 

200
3 

City Metropolit
an 
balance 
using 
trade 
statistics, 
including 
feed 
biomass 
for 
livestock.  

Residenti
al and 
commerc
ial 

1.3 
(16%
) [4] 

3028
6 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

200
4 

1.7 
(16%
) [3] 

3082
7 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

200
5 

1.7 
(16%
) [3] 

3098
3 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

200
6 

1.5 
(17%
) [4] 

3105
2 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

200
7 

1.8 
(18%
) [3] 

3162
8 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

200
8 

1.5 
(19%
) [2] 

3150
8 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

200
9 

1.4 
(18%
) [2] 

3054
9 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

  Average   1.6 ± 
0.3 

3095
8 ± 
449 

  

Barles 
(2009) 

Paris, 
FR 

200
3 

City Metropolit
an 
balance 
using 
trade 
statistics 

Residenti
al and 
commerc
ial 

1.8 
(81%
) [-] 

4540
7 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

Newman 
(1999) 

Melbour
ne, AU 

199
0 

Unknow
n 

Unknown Unknown 1.0 (-
) [-] 

2503
7 

Taken as 
national 
average 
from 
World 
Bank 
(2014) 



Sahely et 
al. (2003) 

Toronto, 
CA 

198
7 

City National 
statistics 
scaled to 
populatio
n 

Residenti
al and 
commerc
ial 

0.9 
(49%
) [1] 

2724
8 

Taken 
from 
article, 
adjusted 
for 
inflation 
with 
World 
Bank 
(2014) 
and 
converte
d to PPP 
with 
World 
Bank 
(2014) 

199
9 

0.9 
(46%
) [1] 

2899
5 

See 
above 

Barrett et 
al. (2002) 

York, 
UK 

200
0 

City Regional 
(Yorkshir
e and 
Humbersi
de) food 
data from 
National 
Survey 

Residenti
al and 
commerc
ial 

0.6 
(5%) 
[5] 

3107
2 

See 
Table 2 

Emmeneg
ger and 
Frischnec
ht (2003) 

Geneva, 
CH 

200
0 

City Canton 
level 
statistics 

Residenti
al and 
commerc
ial 

0.7 
(16%
) [3] 

3774
2 

Same 
method 
as 
Lisbon, 
PT in 
2003, but 
with an 
annual 
growth in 
GDP of 
2% 
assumed 
to 
backcast 
from 
2002 to 
2000 

Metzger 
(2013) 

Durham-
Wake-
Orange 
Countie
s, US 

200
0 

City National 
statistics 
scaled to 
populatio
n 

Residenti
al and 
commerc
ial 

0.7 (-
) [-] 

4271
7 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

Moore et 
al. (2013) 

Vancouv
er, CA 

200
6 

Househ
old 

Scaled 
from 
national 
data 

Residenti
al and 
commerc
ial 

0.8 
(25%
) [3] 

3622
4 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

Best Foot 
Forward 
Ltd. 
(2002) 

London, 
UK 

200
0 

City City level 
trade 
statistics 

Residenti
al and 
commerc
ial 

1.0 
(15%
) [2] 

4155
7 

Taken as 
2005 
USD 
PPP from 



OECD 
(2015) 

Forkes 
(2007) 

Toronto, 
CA 

199
0 

City National 
statistics 
scaled to 
populatio
n 

Residenti
al and 
commerc
ial 

0.9 (-
) [-] 

2834
9 

Adjusted 
from 
1987 with 
a 2% 
assumed 
real 
growth 
rate 

200
1 

1.1 (-
) [-] 

3763
4 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

200
4 

1.1 (-
)] [-] 

3772
5 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

non-OECD 

Warren-
Rhodes 
and 
Koenig 
(2001) 

Hong 
Kong, 
CN 

197
1 

City City level 
statistics 

Residenti
al and 
commerc
ial 

0.7 
(20%
) [3] 

7535 GDP in 
1971 
taken in 
2013 
USD 
from UN 
Data 
(2015), 
converte
d to RMB 
from 
World 
Bank 
(2014), 
adjusted 
for 
inflation 
to 2005 
(2014d) 
and 
converte
d to PPP 
using 
World 
Bank 
(2014) 

199
7 

0.8 
(10%
) [3] 

2190
4 

Taken 
from 
World 
Bank 
(2014) 

Pina and 
Martinez 
(2013) 

Bogota, 
CO 

201
0 

City City level 
statistics 

Residenti
al and 
commerc
ial 

0.4 
(32%
) [2] 

1353
3 

Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 



Swilling 
(2006) 

Cape 
Town, 
ZA 

200
6 

Househ
old 

Unknown Unknown 0.5 
(14%
) [3] 

1218
3 

Per 
capita 
taken 
from 
OECD 
(2008) in 
2006 
USD 
PPP, 
converte
d to ZAR 
from 
World 
Bank 
(2014), 
adjusted 
for 
inflation 
from 
World 
Bank 
(2014), 
and 
converte
d to PPP 
using 
(2014b) 

Chavez 
(2012) 

Delhi, IN 200
9 

Househ
old 

FAO 
scaled to 
city level 
by 
populatio
n 

Residenti
al 

0.8 (-
) [-] 

6712 Taken as 
2005 
USD 
PPP from 
OECD 
(2015) 

Reddy 
(2013) 

Mumbai, 
IN 

201
0 

Househ
old 

Maharas
htra state 
level for 
urban 
residents 

Residenti
al 

0.5 (-
) [-] 

4413 Taken as 
the same 
as 
Maharas
htra State 
per 
capita 
GDP in 
2005 
PPP 
USD 
from 
OECD 
(2015) 

Hoornweg 
(2012) 

Manila, 
PH 

201
0 

Househ
old 

City level 
statistics 

Residenti
al 

0.2 (-
) [-] 

4424 Country 
GDP 
taken in 
2005 
USD 
PPP from 
World 
Bank 
(2014), 
scaled to 
the 
región 
from 
Brooking



s Institute 
(2010) 
and then 
divided 
by 
populatio
n from 
Hoornwe
g et al. 
(2012)  

Study 
Average 

- - - - - 1.0 ± 
0.5 

2798
8 ± 

1119
0 

- 

Global 
Average 

- 200
7 

  - Global 
average 
taken 
from 
Schmidtt 
(2014) 

0.5 7585 Taken 
from FAO 
(2014) as 
global 
GDP in 
2005 
PPP 
divided 
by global 
populatio
n 

Table S4 - Mass 
foodprints  

       



Table S5 - CF Studies 

Study City 
Yea

r 

Unit of 
Analys

is 

Food 
Data 

Method 
and 

Boundari
es 

t CO2 
eq/ca
p/a 

(% of 
ciites 
CF) 

[rank 
as 
UM 

driver
] 

Per 
capi
ta 

GD
P 

(200
5 

US
D 

PPP
) 

GDP Data 

OECD 

Ramasw
ami et al. 
(2008) 

Denver, 
USA  

200
5 

City County 
househo
ld 
expendit
ure 
survey 

EIO 
model at 
sector 
level - 
farm to 
fork. No 
LUC 

2.5 
(10%) 

[4] 

495
70 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Heinone
n et al. 
(2011) 

Helsinki, 
FIN   

200
6 

House
hold 

Regional 
househo
ld 
consum
ption 
survey 

EIO 
model at 
sector 
level - 
farm to 
fork. No 
LUC 

1.9 
(13%) 

[-] 

424
42 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Hillman 
and 
Ramasw
ami 
(2010) 

Denver, 
US 

Earl
y 
200
0s 

City City 
specific 
consum
er 
expendit
ure 
surveys 

EIO 
model at 
sector 
level - 
farm to 
fork. No 
LUC 

3.1 
(13%) 

[3] 

499
67 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Boulder, 
US  

3.1 
(13%) 

[3] 

502
22 

2002 Per 
capita 
GDP 
taken in 
2009 USD 
from U.S. 
Departme
nt of 
Commerc
e (2014) 
and 
adjusted 
for 
inflation 
from 
World 
Bank 
(2014) 

Fort 
Worth, 
US  

3.1 
(17%) 

[3] 

416
09 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Arvada, 
US  

2.5 
(16%) 

[3] 

499
67 

Assumed 
to be the 
same as 
Denver 
since 



Arvada is 
a wealthy 
portion of 
the 
Denver 
agglomer
ation.   

Portland, 
US  

3.1 
(18%) 

[3] 

392
49 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Seattle, 
US 

3.8 
(12%) 

[3] 

474
84 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Minneap
olis, US 

3.2 
(12%) 

[3] 

436
32 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Austin, 
US 

2.5 
(14%) 

[3] 

446
35 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Dias 
(2014) 

Aveiro, 
PT  

200
5 

House
hold 

National 
consum
er 
expendit
ure 
survey 
scaled to 
area 
based 
on age 
group 

EIO 
model at 
sector 
level - 
farm to 
fork. No 
LUC 

1.8 
(20%) 

[2] 

276
24 

Taken as 
the 
national 
per capita 
GDP from 
World 
Bank 
(2014) 
and 
adjusted 
for 
purchasin
g power 
with World 
Bank 
(2014) 

Cardiff 
Council 
(2005) 

Cardiff, 
UK  

200
1 

City Consum
er 
expendit
ure data 
at the 
'local 
level' 

Product 
level 
embodied 
energy in 
manufact
uring and 
transport. 
No LUC 

1.1 
(9%) 
[6] 

280
95 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Best 
Foot 
Forward 
Ltd. 
(2002) 

London, 
UK  

200
0 

City City 
level 
trade 
statistics 

Product 
level 
embodied 
energy in 
manufact
uring and 
transport. 
No LUC 

0.9 
(14%) 

[2] 

415
57 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

non-OECD 



Li et al. 
(2013) 

Macao, 
CN 

200
5 

City City 
level 
statistics 
from 
Yearboo
k of 
Statistics 

MRIO 
model 
(China 
and 
ROW) at 
sector 
level - 
farm to 
fork. No 
LUC 

0.8 
(12%) 

[-] 

570
88 

Per capita 
GDP 
taken in 
2005 USD 
from 
World 
Bank 
(2014), 
converted 
to RMB 
using 
World 
Bank 
(2014) 
and then 
converted 
to PPP 
using 
World 
Bank 
(2014).  

200
6 

0.9 
(9%) 

[-] 

637
33 

200
7 

1.0 
(11%) 

[-] 

708
87 

200
8 

1.0 
(11%) 

[-] 

712
23 

200
9 

1.2 
(22%) 

[-] 

704
84 

200
5-
200
9 

Average 1.0 ± 
0.1 

666
83 ± 
619
5 

  

Wu et al. 
(2011) 

Beijing, 
CN 

200
6 

House
hold 

City 
level 
statistics 
from 
Yearboo
k of 
Statistics 

Product 
level 
process 
LCA - 
cradle to 
grave. No 
LUC 

0.3 
(23%) 

[1] 

136
17 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Chavez 
(2012) 

Delhi, IN 200
9 

House
hold 

FAO 
scaled to 
city level 
by 
populati
on 

Product 
level LCA 
of 
unknown 
type 

0.16 
(20%) 

[2] 

671
2 

Taken as 
2005 USD 
PPP from 
OECD 
(2015) 

Study 
Average 

- - - -   1.9 ± 
1 

454
90 ± 
168
92 

- 

Global 
Average 

- 200
7 

  - Global 
agricultur
al 
emissions 
from 2007 
with 
global 
populatio
n from 
2007 both 
from FAO 
(2014) 

0.9 758
5 

Taken 
from FAO 
(2014) as 
global 
GDP in 
2005 PPP 
divided by 
global 
population
.  

Table S5 - Carbon 
foodprints  

       

 
  



Table S6 - EF Studies 

Study City 
Yea

r 

Unit of 
Analy

sis 

Food 
Data 

Method 
and 

Boundari
es 

gha/c
ap/a 
(% of 
ciites 
CF) 

[rank 
as UM 
driver] 

Per 
capit

a 
GDP 
(2005 
USD 
PPP) 

GDP 
Data 

OECD 

Klinksy et 
al. (2009) 

Montreal, 
CA 

Earl
y 
200
0s 

House
hold 

National 
level per 
capita 
data 
scaled to 
region 

Generic 
EF factor 
for 
Canada. 
Likely 
only 
includes 
direct 
agricultur
al land 
occuptati
on. 
Compone
nt 
method. 

0.8 
(12%) 

[5] 
30700 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

Walsh et 
al. (2010) 

Limerick, 
IE 

200
2 

City Average 
per 
capita 
Irish data 
from EU 
expendit
ure 
report 

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d. Hybrid 
compoun
-
compone
nt. 

1.0 
(16%) 

[3] 
25340 

Per 
capita 
GDP 
assum
ed to 
be 
same 
as 
regiona
l 
averag
e. 
Region
al GDP 
and 
populat
ion 
taken 
in from 
The 
Irish 
Region
s Office 
(2014) 
in 2002 
euros. 
Inflatio
n 
adjuste
d using 
World 
Bank 
(2014) 
and 
convert



ed to 
PPP 
using 
World 
Bank 
(2014) 

Belfast, 
IE 

200
1 

  Regional 
data for 
North 
Ireland 
used 

1.4 
(16%) 

[3] 
40232 

GDP 
taken 
from 
Belfast 
City 
Council 
(2004) 
2001 
euros, 
adjuste
d for 
inflation 
using 
World 
Bank 
(2014) 
and 
convert
ed to 
PPP 
using 
World 
Bank 
(2014) 

Wackern
agel 
(1998) 

Santiago, 
CL 

199
3 

House
hold 

Scaled 
from 
national 
data 

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d. 
Compoun
d. 

1.5 
(55%) 

[1] 
10186 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 
for year 
2000 
and 
adjuste
d by 
2% 
annual 
growth 
rate to 
1993 
Univers
ity of 
Ontario 
Institut
e of 
Techno
logy 
(Unkno
wn 
Date)   



Kissinger 
and Haim 
(2008) 

Ra'anan
a, IL 

200
2 

House
hold 

City level 
consump
tion data 

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d. 
Compono
nent. 

1.8 
(45%) 

[1] 
19807 

Assum
ed 
same 
as 
Israeli. 
Per 
capita 
GDP 
taken 
from 
World 
Bank 
(2014) 

Moore et 
al. (2013) 

Vancouv
er, CA 

200
6 

House
hold 

Scaled 
from 
national 
data 

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d. 
Compone
nt. 

2.1 
(45%) 

[1] 

36224 Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

WWF 
(2007) 

Cardiff, 
UK 

Mo
d 
200
0s 

House
hold 

Unknown 
data 
source 

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d. Hybrid 
compoun
d-
compone
nt. 

1.2 
(23%) 

[1] 
28095 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

Glasgow, 
UK 

1.1 
(22%) 

[1] 
32885 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

Bristol, 
UK 

1.2 
(22%) 

[1] 
34897 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

Liverpool
, UK 

1.2 
(23%) 

[1] 
24974 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

Manches
ter, UK 

1.2 
(22%) 

[1] 
34684 

Taken 
as 
2005 
USD 
PPP 
from 



OECD 
(2015) 

London, 
UK 

1.3 
(24%) 

[1] 
42162 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

Aberdee
n, UK 

1.2 
(21%) 

[1] 
40286 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

Edinburg
h, UK 

1.2 
(22%) 

[1] 
37902 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

Average         1.2 ± 
0.05 
(22) 
[1] 

34485 
± 

5835 
  

Best Foot 
Forward 
Ltd. 
(2002) 

London, 
UK 

200
0 

City City level 
trade 
statistics 

Product 
level 
embodied 
energy in 
manufact
uring and 
transport. 
Compone
nt. 

2.7 
(41%) 

[2] 

41557
.04 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

Global 
Footprint 
Network 
(2011) 

San 
Francisc
o-
Oakland-
Fremont, 
US 

200
7 

House
hold 

City level 
expendit
ure data 

EIO 
model 
with US 
economy 
at sector 
level - 
farm to 
fork. 
Compoun
d. 

1.0 
(13%) 

[1] 
34780 

GDP 
taken 
from 
report 
in 2007 
USD 
and 
adjuste
d for 
inflation 
using 
World 
Bank 
(2014) 

Cardiff 
Council 
(2005) 

Cardiff, 
UK 

200
1 

House
hold 

Consum
er 
expendit
ure data 
at the 
'local 
level' 

EIO 
model 
with UK 
economy 
at sector 
level - 
farm to 
fork. 

1.3 
(24%) 

[1] 
32885 

See 
above 
table 



Hybdrid 
compoun
d-
compone
nt. 

Barrett 
(2002) 

York, UK 200
0 

House
hold 

Regional 
(Yorkshir
e and 
Humbers
ide) food 
data from 
National 
Survey 

Embodie
d energy 
for 
productio
n, 
transport, 
waste 
manage
ment. 
Sequestr
ation of 
CO2 
equivalen
ts from 
cattle. 
Direct 
land use. 
Compone
nt. 

2.3 
(32%) 

[1] 
31072 

2007 
per 
capita 
GDP 
taken 
from 
OECD 
(2011) 
in 2000 
USD 
PPP. 
Conver
ted to 
GBP 
with 
World 
Bank 
(2014), 
adjuste
d for 
inflation 
with 
World 
Bank 
(2014), 
correct
ed to 
2001 
using 
an 
assum
ed 2% 
growth 
rate 
and 
convert
ed 
back to 
PPP 
using 
(IBID) 

non-OECD 

Global 
Footprint 
Network 
(2010) 

Curitiba, 
BR 

200
6 

Unkno
wn 

Unknown Compone
nt 

1.4 
(41%) 

[1] 
14555 

Taken 
in 2007 
USD 
from 
City of 
Curitiba 
(2014) 
and 
convert
ed to 
Real 
using 
World 
Bank 



(2014), 
adjuste
d for a 
year of 
growth 
assumi
ng a 
3% 
growth 
rate, 
adjuste
d for 
inflation 
using 
World 
Bank 
(2014) 
and 
convert
ed to 
PPP 
using 
World 
Bank 
(2014) 

Tavallai 
(2009) 

Tehran, 
IR 

200
5 

City Unknown Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d. 
Compone
nt. 

0.9 
(24%) 

[2] 
13990 

Metro 
GDP 
and 
populat
ion 
taken 
from 
PWC 
(2009) 
in 2008 
PPP 
USD, 
convert
ed to 
Rial 
from 
World 
Bank 
(2014), 
adjuste
d for 
growth 
at 
assum
ed 
1.5% 
rate, 
inflation 
taken 
from 
World 
Bank 
(2014) 
then 
adjuste
d for 



PPP 
using 
World 
Bank 
(2014) 

WWF 
(2013) 

Hong 
Kong, 
CN 

201
1 

City City level 
consump
tion data 

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d. 
Compone
nt. 

1.1 
(23%) 

[1] 
32608 

World 
Bank 
(2014) 

WWF 
(2012) 

Sao 
Paulo, 
BR 

201
1 

House
hold 

Househol
d budget 
survey at 
the Sao 
Paulo 
State 
level 

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d. MRIO 
compoun
d. 

2.1 
(49%) 

[1] 
15832 

Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 

WWF 
(2012) 

Campo 
Grande, 
BR 

200
8 

House
hold 

Househol
d budget 
survey 
from the 
State of 
Mato 
Grosso 
adpated 
to 
Campo 
Grande  

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d, based 
on land 
use per 
sector. 
Compoun
d.  

1.4 
(45%) 

[1] 

8122 Per 
capita 
GDP 
taken 
from 
IBGE 
(2014) 
in 2006 
Real, 
adjuste
d to 
2008b 
using 
4% 
assum
ed 
growth 
rate 
and 
inflation 
rate 
taken 
from 
World 
Bank 
(2014) 
and 
then 
convert
ed to 
PPP 
using 
World 
Bank 
(2014) 



Hubacek 
et al. 
(2009) 

Beijing, 
CN 

200
1 

House
hold 

Province 
level 
economi
c IO 
table 

EIO 
model 
with US 
economy 
at sector 
level - 
farm to 
fork. 
Compoun
d. 

1.1 
(22%) 

[3] 

10749 Taken 
as 
2005 
USD 
PPP 
from 
OECD 
(2015) 
for 
2003 
and 
adjuste
d for 2 
years 
growth 
at 
assum
ed 7% 

Zhang et 
al. (2013) 

Banqiao, 
Keifing 
City, CN 

200
9 

House
hold 

Neighbor
hood 
level 
primary 
data 

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d based 
on 
product 
level. 
Compone
nt. 

0.2 
(42%) 

[1] 
3698 

Per 
capita 
GDP 
taken 
from 
China 
Knowle
dge 
(2013) 
in 
RMB, 
adjuste
d for 
growth 
assumi
ng 8% 
rate, 
adjuste
d for 
inflation 
using 
World 
Bank 
(2014) 
and 
convert
ed to 
PPP 
using 
World 
Bank 
(2014) 

Kangping
, Keifing 
City, CN 

0.3 
(28%) 

[2] 
5612 

Same 
as 
above 

Longche
ng 
xiangxieli 
garden, 
Keifing 
City, CN 

0.4 
(16%) 

[2] 
9508 

Same 
as 
above 



Razack 
and 
Ludin 
(2014) 

Minna, 
NI 

201
2 

House
hold 

City level 
primary 
data 

Land to 
sequester 
embodied 
energy 
and direct 
land use 
accounte
d. 
Compoun
d. 

0.4 
(39%) 

[1] 
1030 

Taken 
as 
nationa
l 
averag
e from 
World 
Bank 
(2014) 

Study 
Average 

- - - - 
- 

1.2 ± 
0.6 

21570 
± 

13140 

- 

Global 
Average 

- 200
7 

  - 

EF taken 
from 
WWF 
(2010). 
GDP per 
capita 
same as 
above 
table.  

0.9 7585 

Taken 
from 
FAO 
(2014) 
as 
global 
GDP in 
2005 
PPP 
divided 
by 
global 
populat
ion. 

Table S6 - Ecological 
foodprints  

       

 
  



Table S7 - Urban Food Waste 

Study City Year Unit of 
Analysis 

Waste 
Data 

t/cap/a Per 
capita 
GDP 
(2005 
USD 
PPP) 

GDP Data 

OECD               

WWF 
(2013) 

Hong Kong 2011 City City 
MSW 
Stats 

0.2 32608 See table S5 

Kanat 
(2010) 

Istanbul, TR 2005 City City 
MSW 
Stats 

0.2 15692 Taken as 
2005 USD 
PPP from 
OECD(2015) 

Codoban 
and 
Kennedy 
(2008) 

Toronto, CA 2008 Household City-wide 
municipal 
solid 
waste 
statistics 

0.3 36004 See table S4 

Browne et 
al. (2009) 

Limerick, IE 1996 City National 
waste 
inventory  

0.1 23872 See table S4 

2002 0.2 25340 See table S4 

Moore et al. 
(2013) 

Vancouver, 
CA 

2013 Household Regional 
food 
waste 
data 

0.2 36224 See table S6 

Forkes 
(2007) 

Toronto, CA 1990 City City level 
statistics 

0.3 31950 See table S4 

2001 0.3 37634 See table S4 

2004 0.3 37725 See table S4 

Warren-
Rhodes and 

Koenig 
(2001) 

Hong Kong, 
CN 

1999 City City level 
statistics 

0.2 21904 See table S4 

1971 0.1 7535 See table S4 

Damghani 
(2007) 

Tehran, IR 2005 City City level 
statistics 

0.1 13990 See Table 
S6 

non-OECD 

Pina and 
Martinez 
(2013) 

Bogota, CO 2010 City City level 
statistics 

0.1 13533 Taken as 
2005 USD 
PPP from 
OECD(2015) 

Talyan 
(2008) 

Delhi, IN 2002 City City level 
statistics 

0.1 3041 Taken as 
2010 rupees 
from Anand 
(2010), 
converted to 
2005 rupees 
from World 
Bank (2014) 
and 
converted to 
2005 USD 
PPP from 
World Bank 
(2014)  

Yi (2011) Seoul, SK Mid 
2000s 

City City level 
statistics 

0.1 22890 Taken as 
2005 USD 
PPP from 
OECD(2015) 



Lee (2007) Seoul, SK 2005 City City level 
statistics 

0.1 22890 Taken as 
2005 USD 
PPP from 
OECD(2015) 

Yoon (2002) Tokyo, JP 1999 City City level 
statistics 

0.2 33339 Taken as 
2005 USD 
PPP for year 
2001 from 
OECD(2015) 
and adjusted 
for growth to 
1999 
assuming 
3% growth 
rate.  

Li (2009) Beijing, CN 2006 City City level 
statistics 

0.2 15044 Taken as 
2005 USD 
PPP from 
OECD(2015) 

Study 
Average 

- - - - 0.2 ± 
0.1 

23956 
± 

10766 

- 

Global 
Average 

- 2007   Taken as 
consumer 
waste 
from FAO 
(2011) 

0.1 7585 Taken from 
FAO (2014) 
as global 
GDP in 2005 
PPP divided 
by global 
population. 

Table S7 - Waste foodprints        
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Urban agriculture appears to be a means to combat the environmental pressure of increasing 

urbanization and food demand. However, there is hitherto limited knowledge of the efficiency 

and scaling up of practices of urban farming. Here we review the claims on urban 

agriculture’s comparative performance relative to conventional food production. Our main 

findings are: 1) benefits such as reduced embodied carbon, urban heat island reduction, and 

storm water mitigation, have strong support in current literature. 2) Other benefits such as 

food waste minimization and ecological footprint reduction require further exploration. 3) 

Urban agriculture benefits to both food supply chains and urban ecosystems vary considerably 

with system type. To facilitate the comparison of urban agriculture systems we propose a 

classification based on: 1) conditioning of the growing space, and 2) the level of integration 

with buildings. Lastly, we compare the predicted environmental performance of the four main 

types of urban agriculture that arise through the application of the taxonomy. The findings 

show how taxonomy can aid future research on the intersection of urban food production and 

the larger material and energy regimes of cities (the ‘urban metabolism’). 

 

Keywords: urban agriculture; quantitative sustainability assessment; urban food systems; life 

cycle assessment; building integrated agriculture 

1. Introduction 

Recent scientific consensus is that humanity is skirting the planet’s safe boundaries 

to sustainably supply resources to and assimilate society’s waste (Krausmann et al. 2009; 

Steffen et al. 2015). As centers of population and economic activity, cities have a dominant 

influence on the scale and form of anthropogenic material and energy flows, consequently 

playing a central role in any shifts towards sustainability (Dearing et al. 2014; Pincetl et al. 

2014). Hitherto, the general tenor in promoting urban sustainability has been a focus on 

minimizing fossil fuel intensive transport, reducing the energy consumption of buildings and 

shifting cities towards renewable energy sources (Grubler et al. 2012; IPCC 2014a).  These 

transitions are all important pieces in the sustainable urban development mosaic, but they 

disregard one of the largest environmental pressures of cities: urban food consumption. 



Supplying food to cities is one of the key contributors to greenhouse gas (GHG) emissions, 

biodiversity loss, water pollution, land use change, non-renewable resource exhaustion and a 

host of other pressing environmental challenges at the global scale (Foley et al. 2011; Tilman 

et al. 2011; Gliessman 2015). Therefore, transitions towards sustainable urban systems must 

include the mitigation of environmental impacts from urban food consumption.  

 Multiple angles exist to address the environmental burden of urban food demands. 

Internalizing environmental burdens of food production within prices using Pigovian taxes 

has been suggested to nudge consumers away from environmentally burdensome foods (e.g. 

meat and dairy) (Edjabou and Smed 2013). Others have emphasized transitions to diets that 

combine seasonality of local food production, selectively consume organic, and contain 

reduced animal protein (Saxe 2014). Another option at the demand side is to reduce food 

waste in cities, lowering gross urban food demands and solid waste burdens (FAO 2013). 

Cities have also banned certain types of food packaging (see New York City’s sanction 

against polystyrene) to reduce the environmental impacts of the food system at this end 

(Stringer 2015). Conversely, supply side interventions promote eco-efficiency gains within 

existing production systems (e.g. reducing fertilizer per unit economic output) (Tilman et al. 

2011; Davis et al. 2012).  

1.1 Urban agriculture to promote environmental sustainability 

While the bulk of food production is exogenous to the city, urban agriculture (UA) 

has been touted as a supply-side urban design intervention that can give cities agency over the 

environmental performance of some of their food demands (Pearson et al. 2010; Hampwaye 

2013; IPCC 2014b). Though many definitions exist (see Vejre’s outlining of the spatial, 

functional, market, and other dimensions of defining UA; Vejre 2012), the most salient 

features are that is consists of food production in and around cities, weaving this practice 

within the urban form, such that it interacts with the host city’s material and energy 

metabolism (Koc et al. 1999).  

Recent estimates peg urban farmers at 25-30% of global urban dwellers (Orsini et 

al. 2013). Most of these practitioners operate in emerging economies as an informal means of 

income and subsistence (Smit et al. 2001), however there has been increasing interest in 

intensifying and formalizing UA globally as part of a more sustainable and resilient global 

food system (Pearson et al. 2010). Very optimistic estimates assert that UA could supply 

100% of global urban vegetable needs with 40% of urban land at current yields (Martellozzo 

et al. 2014), while others have estimated that UA already produces 15-20% global food 

(Abdulkadir et al. 2012). Shanghai and Beijing stand-out as examples in that their 

metropolitan regions supply the majority of their produce (Lee-Smith and Prain 2006), and 

Shanghai most of its dairy demands (Orsini et al. 2013). The potential in post-industrial cities 

is believed to be high but untapped (Grewal and Grewal 2012; Taylor and Lovell 2012; 

Haberman et al. 2014); rooftop UA could provide 77% of Bologna’s vegetable needs (Orsini 

et al. 2014) or 36% of Singapore’s vegetable intake (Astee and Kishnani 2010). Other 

assessments are less optimistic, such as Oakland’s potential to supply between 0.6-1.5% of 

recommended vegetable needs (McClintock et al. 2013). A the institutional level, a departure 

from the farming-antagonistic land-use planning that dominated the 20th century (Brunori and 

Di Iacovo 2014) towards active promotion by cities (City of Boston 2014; Five Borough Farm 

2014) punctuates a new narrative, supporting the re-integration of food production within the 

contemporary city.  

1.2 Urban agriculture’s environmental performance 

Large scale implementation of UA within cities may be a vital step towards 

improving urban environmental performance, but many claims of UA’s improved 

environmental sustainability relative to conventional agricultural remain premature given the 

paucity of field verification and quantitative sustainability assessment (QSA) of UA systems 



(Pearson et al. 2010; Pataki et al. 2011; Specht et al. 2013). To date, much of the discourse 

around UA’s environmental potential focuses on its ability to reduce distance from farm to 

fork, ignoring how such systems may be maladaptive when other aspects of urban food 

production are considered (e.g. warming greenhouses in northern climes to avoid transport 

from southern countries) (Born and Purcell 2006). Recent QSAs have begun to address the 

gaps in knowledge surrounding UA’s environmental performance. Sanyé-Mengual and 

colleagues studies of urban rooftop greenhouses showed these systems can provide tomatoes 

with lower embodied environmental burdens relative to traditional supply chains (2012; 

2015b). On the other hand, Kulak et al. (2013) reduced climate change impacts for UA in 

London relative to conventional supply chains for some produce, but not others.  

These initial environmental evaluations of UA simultaneously provide answers and 

raise questions.  Sanyé-Mengual et al.’s work on soil-less rooftop UA revealed major 

differences in environmental performance between the different cultivation methods (2015). 

If there are noticeable differences in environmental performance between cropping systems 

on a single rooftop, how large are the differences between UA systems with fundamentally 

dissimilar characteristics (integrated with buildings vs. grown on land) and are there general 

trends in environmental performance between these types of systems? Kulak et al. (2013) 

found that capital inputs for low-tech greenhouses deleteriously affected the environmental 

performance of UA in London. If modest inputs are influential, how do these inputs affect the 

performance of UA systems with markedly contrasting material needs (raised beds vs. 

greenhouses) and are there general performance trends between UA types? Lastly, there has 

been only tangential discussion about how large-scale UA would influence citywide material 

and energy fluxes (its ‘urban metabolism’) if it were scaled up within a given city (Pataki et 

al. 2011; Cerón-Palma 2012). 

The propensity to consider single UA types out of the multitude that exist 

(greenhouse, raised-beds, vacant lot, etc.) overlooks the non-trivial energy and material 

profiles of different UA systems, leaving an incomplete picture of UA’s environmental 

strengths and weaknesses. As a result, it remains unclear whether installing different forms of 

agricultural production forms en masse in cities across the globe constitute a net reduction in 

food related environmental impacts from cities, necessitating a holistic and systematic look at 

UA’s environmental performance. If there were patterns of environmental performance for 

different types of UA, the development of a heuristic to support future research and urban 

design decisions would be of utility to academics, policy makers and UA champions alike. To 

date, such a system has been lacking, with previous work in cataloguing UA centered around 

social and economic concerns (Jacobi et al. 2000; Smit et al. 2001; Brock and Foeken 2006; 

Dossa et al. 2011; Orsini et al. 2013; Thomaier et al. 2015). Moreover, researchers of urban 

environmental performance lacking an agricultural background (e.g. industrial ecologists, 

urban planners, landscape urbanists, etc.) lack a tool to organize and assimilate the 

environmental performance of UA within their own assessments of the larger urban 

environment.  

1.3 Study goal and scope 

This article consolidates and expands on earlier reviews of UA’s environmental 

sustainability (Pearson et al. 2010; Pataki et al. 2011; Specht et al. 2013) with an updated 

appraisal of the myriad environmental claims surrounding UA and their existing levels of 

support. We then distill these findings into an UA taxonomy based on UA system material 

use, energy consumption, and interaction with the built form. This taxonomy will provide an 

organizing framework for future QSA research and deliver clarity to non-agronomists. 

Through a focus on those aspects of UA most salient to researchers of urban environmental 

performance, the taxonomy will also act as a device to scale up from studies of 

environmentally sustainable at the individual UA project level to assessments of food 

production networks at the city-scale.  



2. Environmental Performance of Urban Agriculture – Disaggregating Claims and 

Evidence 

Using the aforementioned literature reviews as a point of departure, both peer-

reviewed and grey literature were perused throughout 2014 and 2015. The reviewed material 

illuminated a patchwork of qualitative and quantitative environmental declarations 

surrounding UA. Table 1 presents these claims along with any support across five umbrella 

terms that encompass them: building energy, urban symbiosis, supply-chain efficiencies, in-

situ and ex-situ environmental improvements. 

2.1 Building energy 

The potential benefits of UA in relation to building energy consumption are some of 

the best documented due to previous research on green roofing that can reasonably be 

extrapolated into the realm of UA. UA is posited to reduce building energy in a number of 

ways: 

 

1. Passive methods - increasing building albedo (light reflection), endothermic 

plant/substrate evapotranspiration (Qiu et al. 2013) or improving building 

insulation (Smit et al. 2001); 

2. Active methods – cooling building space with evaporative cooling in 

greenhouse (Ackerman 2012) or exchanging excess heat between building and 

greenhouse to reducing building energy needs (Cerón-Palma 2012).  

 

Field trials of green roofs in Canada and China support the passive benefits along 

with a model of green roofs in the US (Bass and Baskaran 2003; Kokogiannakis et al. 2011; 

Jaffal et al. 2012). Conversely, increasing accessible roof area significantly diminished life-

cycle energy savings (16% to 4%) for green-roofs in Singapore (Wong et al. 2003), a 

challenge considering UA operations require space for maintenance, harvesting, packaging, 

etc. Looking at rooftop greenhouses, a US analysis showed that potential to cool the host 

building is present, but in a diminished capacity compared to standard green roofs, also due to 

light absorbing maintenance areas (Delor 2011) with Cerón-Palma modelling annual energy 

savings from insulation at less than 5% in a Mediterranean climate (2012). Climate was also 

important, with green roofs reducing summer indoor temperatures in Stockholm and Athens, 

lowering winter heating load in Stockholm through insulation, but increasing winter heating 

load in Athens due to evapotranspiration (Jaffal et al. 2012). Moreover, these benefits to 

building energy diminish when well insulated buildings considered (Castleton et al. 2010; La 

Roche and Berardi 2014). 

Less explored are UA’s active benefits. Cerón-Palma (2012) integration of the 

energy systems of a rooftop greenhouse and an office building in a Mediterranean climate, 

showing that heat recovery from the greenhouse using ventilation could reduce indoor heating 

requirements by 79%, though it should be considered that heating requirements in the 

Mediterranean are already generally low.  

2.2 Urban symbiosis 

Urban symbiosis is UA’s potential to leverage proximate urban residual material 

and energy fluxes as production factors, attenuating urban waste and avoiding virgin material 

inputs to food production. Three dominant claims emerged: 

 

1. Waste assimilation – the use of waste with high organic carbon or nutrient 

content to supplement UA substrate or nutrient demands (Grewal and Grewal 

2012); 



2. Rainwater harvesting – reducing runoff to sewers and reducing irrigation 

demands (Nelkin and Caplow 2008); 

3. Building Energy – utilizing excess building energy to reduce greenhouse 

energy inputs (Cerón-Palma 2012). 

 

Waste assimilation is a recurring claim, since cities import large amounts of 

synthetically produced nutrients embedded within food that usually end up in waste streams 

for emission to local water bodies (Morée et al. 2013) or partial recovery during waste 

management (Larsen et al. 2001; Kalmykova et al. 2012). UA could act as a sink for nutrient 

rich grey-water (baths and sinks), black-water (toilets), and organic solid waste (household, 

commercial or industrial), providing the basis for a closed-loop urban food production system 

(Grewal and Grewal 2012).  

In practice, cities have leveraged black-water for UA historically (Barles 2007) and 

in present day emerging economies (Qadir et al. 2010; Forman 2014), though the public 

health risks from pathogens and heavy metals remain high (Cofie et al. 2006; Qadir et al. 

2010). Nutrients are also captured downstream at wastewater treatment plants where sewage 

sludge is pelletized to fertilize animal feed or energy crops (skirting the issue of direct human 

pathogen consumption) (Miljøministeriet, 2005), largely excluding usage in UA.  

Two forms of organic solid waste are available to generate nutrient rich compost in 

cities; food scraps and yard detritus. Food scraps have long been utilized in UA with recent 

examples being in Cuba (Hernandez et al. 2014), the UK (Edmondson et al. 2014) and New 

York City (City of New York 2014), though policy-makers in the latter have actively fought 

against implementing household organic waste collection due to perceived costs (Decker et al. 

2000). A rooftop, raised-bed farm in Paris used 100% local organic waste fractions (food 

waste, coffee grounds and mycelium, crushed wood, wood chips and potting soil) as a 

substrate, producing lettuce in yields comparable to commercial operations (Grard et al. 

2015). Yard refuse derived compost is actively distributed to UA sites by New York City 

(City of New York 2014). Although composting reduces pathogen related health risks, 

potential contamination from heavy metals remains challenging (Hargreaves et al. 2008), 

while carbon-nitrogen ratios of the different waste streams must also be considered to 

maintain soil health and productivity (Komilis et al. 2012; Awasthi et al. 2015). The 

aforementioned UA project in Paris is a positive example in this regard, getting 100% of 

nutrient demands through a balanced waste blend, whilst producing food in line with EU 

pollutant regulations (Grard et al. 2015).   

Other urban symbiosis potentials include rainwater harvesting and excess building 

energy capture. The former has been implemented (Nelkin and Caplow 2008), with over 100 

operations in New York City utilizing this practice (Cohen et al. 2012), though risks exist for 

rain to deliver airborne contaminants acidifying the soil or depositing heavy metals (Forman 

2014). Rainwater collection has also been seen in rooftop greenhouses, such as the Fertilicity 

project in Barcelona, ES reducing water impacts by 98% compared to a traditional tomato 

(Sanyé-Mengual et al. 2015b), the Arbor House in New York City (Green Home NYC 2011) 

and Lufa Farms in Montreal, CA (Lufa Farms 2014). Benefits of rainwater capture must be 

balanced against the embodied burdens additional structural buttressing, which can be 

significant depending on the installed system, and pumping energy requirements. Angrill et 

al. (2012) found that rainwater harvesting for non-potable use reduced local water demands, 

but had higher global warming impacts compared to municipal water supply in some 

instances. It remains unknown how these tradeoffs influence the overall performance of 

rooftop farms. Excess building energy can be used to moderate growing space temperature, 

therefore, it is only of utility to greenhouse systems, and though conceptually sound, lacks 

application. Cerón-Palma (2012) modelled using excess building energy as a means to warm a 

rooftop greenhouse, finding that periods of greenhouse heating demand were misaligned with 

periods of excess building heat over diurnal cycles, precluding use of the this energy.   



2.3 Supply Chain Efficiencies  

Efficient supply chains are the streamlined needs of UA compared to typical urban 

food supply chains. Claims in this regard appear to focus on three points: 

 

1. Reduced ‘food miles’ – shorter distance between producing and consumer 

(Born and Purcell 2006); 

2. Increased yields – improved farm performance over conventional supply 

chains (Despommier 2013); 

3. Distribution efficiencies – reduced packaging and spoilage (Sanyé-Mengual et 

al. 2012). 

 

By reducing the distance from producer to market (‘food-miles’) environmental 

sustainability claims relating to transport naturally arise, which at first glance appears 

defensible assuming a priori that food grown within a city is consumed locally. 

Notwithstanding, the focus on ‘food-miles’ may be misplaced, due to transport’s relatively 

small environmental impacts over food supply-chains (Born and Purcell 2006; Edwards-Jones 

et al. 2008), except where air transport or long distance refrigerated freight occurs (FAO 

2011a). A model of local vegetable production around Osaka found that local vegetable 

production could reduce 25% of food production energy (Hara et al. 2013), lending credence 

to ‘food-miles’. However, energy is not a holistic indicator for environmental performance 

since increased impacts in other aspects of production could erase reductions in transport 

energy (‘burden shifting’).  

The efficiency claim of improved yields of UA greenhouses, achieved by shielding 

crops from moderating variables (pests, extreme weather, etc.) is true for all greenhouses (von 

Zabeltitz 2011), and is not a unique benefit of UA. This claim may be justified in the context 

of vertical farms (stacked greenhouses), since they produce more food per unit area, such as 

the Mirai project in Japan which produces 10 000 lettuce heads a day with under 2500 m2 

(Dickie 2014). Vertical farms (or ‘plant factories') continue  to proliferate with examples in 

South Korean (Suwon Farm), the Netherlands (PlantLab) and the United States (Green Spirit 

Farms) (Marks 2014), though it remains unknown whether the increased yields offset the 

potentially high capital and energy requirements of these systems. At the other end of the 

spectrum, low-tech UA systems in sub-Saharan Africa had poor practices and profligate 

pesticide usage well above recommended rates, leading to yields below conventional supply-

chains and increased public health risks (Perrin et al. 2015).   

Lastly, analyses of rooftop greenhouses posits that UA could reduce both packaging 

and food waste (Sanyé-Mengual et al. 2012; Sanyé-Mengual et al. 2015b). The former is a 

logical consequence of lower food miles and is potentially important in reducing selected 

environmental impacts (IBID). Food waste is more complex since it is primarily generated at 

the retailer and consumer in wealthy populations, versus the at the farm or in transit in poorer 

countries (FAO 2011b), meaning that UA could better reduce losses in a developing context. 

Notwithstanding, if earlier assessments are correct, food losses might be reduced by UA 

relative to the conventional supply-chain.     

2.4 In-Situ Environmental Improvement 

In-situ environmental improvement outlines beneficial environmental amenities 

brought to the urban environment by UA. From the literature review, the following claims 

were identified: 

 

1. Increased biodiversity (Havaligi 2011); 

2. Reduced urban heat island (UHI) – lower temperatures due to increased albedo 

and evapotranspiration (Oberndorfer et al. 2007); 

3. Reduced stormwater runoff – retention by substrate and filtering of pollutants 

(IBID); 



4. Soil improvements – improved stability, organic carbon content (Jansson 

2013); 

5. Air quality – filtration of airborne pollution by plant matter (Hampwaye 2013). 

 

Claims regarding UA’s improvement of local biodiversity are supported by 

experiments with vegetated roofs where poly-cropping (multiple crop species) and predatory 

pest control (e.g ladybugs) were used (Hoffman 2007; Oberndorfer et al. 2007), but could be 

reversed if mono-culture cropping were implemented (Reidsma et al. 2006). UA is believed to 

provide refuge for keystone pollinators (e.g. bees) further enhancing urban ecosystem 

resilience through promoting functional diversity (IBID) and may provide green corridors for 

animal movement through cities when linked to larger parks systems (Forman 2014).  

Two areas where the local environmental benefits of UA are well documented are 

UHI and urban runoff attenuation (Oberndorfer et al. 2007). UHI results from the propensity 

of low-albedo dark surfaces to trap solar radiation and transform it to heat, which UA 

mitigates by substituting these surfaces with plants that absorb sunlight for photosynthesis and 

provide shade (Li et al. 2014), a benefit that will reap dividends with the increasing frequency 

of heat-waves (Jansson 2013). UA substrates retain stormwater runoff for plant uptake or 

provide climate change adaptation by buffering the surges to local water systems (IBID). 

Moreover, ground-based UA opens a permeable hydraulic-bridge between storm-water and 

groundwater systems attenuating sewer systems stressed by the prevalence of impermeable 

surfaces in cities (Oberndorfer et al. 2007). These benefits are dependent on the UA form 

practiced, with shallow soil beds on green-roofs reducing the attenuation UHI and storm-

water (deep substrate green roofs can become waterlogged, eliminating runoff retention) 

(Luckett 2009), while greenhouses without rainwater capture have little benefits towards 

urban runoff management. Moreover, UA in low-lying areas of the cities may be inundated 

with polluted runoff from adjacent impermeable surfaces (Forman 2014). A negative 

consequence of UA is that runoff from urban farms may contain high nutrient loads that could 

exceed local assimilative capacity if these systems are scaled up within cities (Emilsson et al. 

2007; Li and Babcock 2014). 

For the soil quality claims, UA must be planted in local soils (eliminating most 

greenhouses from this benefit) and the soils must avoid the contamination common in cities 

(Meuser 2010; Li and Babcock 2014). With these conditions met, UA may improve soil 

stability and fertility, contingent on harnessing ecological principles to maintain organic 

carbon and nutrient levels (Gliessman 2015), as demonstrated in some British allotment 

gardens (Edmondson et al. 2014). Lastly, air quality improvements have been seen in a 

number of models of green areas in cities (Yang et al. 2008; Jim and Chen 2009), though the 

potential for numerous plant species to emit toxic compounds when stressed (Pataki et al. 

2011) requires more attention.   

2.5 Ex-situ Environmental Improvement 

Ex-situ environmental improvement relates to benefits conferred by UA beyond the 

city-region. In the reviewed material, the following claims were identified: 

1. Carbon sequestration – removal and storage of CO2 from the atmosphere (Sida 

2003); 

2. Reduced carbon footprint – lower embodied greenhouse gas emissions for 

production and distribution of food compared to conventional supply chains 

(IBID); 

3. Reduced ecological footprint – lower agricultural land occupation for 

consumers (RUAF 2006); 

4. Improved biodiversity – return of marginal agricultural land to nature (Knowd 

and Mason 2006); 

5. Improved soil quality - return of marginal agricultural land to nature (Smit et 

al. 2001). 



 

The first is that of the carbon sequestration, whereby UA fixates atmospheric 

carbon through photosynthesis. Li and Babcock’s (2014) review of green roofs carbon 

sequestration highlighted shows the potential for this type of infrastructure to accumulate 

biomass. Notwithstanding the claim’s veracity, UA’s true contribution towards carbon 

sequestration may ultimately be marginal, as shown by studies of Toronto, CA (a city with 

considerable foliage) (Kennedy 2012) and Salt Lake City, US (Pataki et al. 2009) where the 

urban tree canopy sequestered <1% of urban carbon emissions.  

For carbon footprint assessments of rooftop greenhouse tomato production in 

Barcelona, ES showed 33-62% reduction in embodied carbon impacts relative to conventional 

supply chains, a result of the reduced transport, packaging and predicted food distribution 

losses (Sanyé-Mengual et al. 2012; Sanyé-Mengual et al. 2015b). An assessment of food 

produced in London allotment gardens revealed significant embodied carbon reductions (25-

99%) for fruits in vegetables (Kulak et al. 2013). UA performed worse for strawberries grown 

in low-tech greenhouses, showing that UA’s benefits hinged on low material intensity 

methods producing local foods, or the substitution of high impact foods with UA (e.g. foods 

air freighted to the UK). Comparing carbon sequestration of typical urban landscaping 

projects (parks and forests) to reduced climate change impacts from UA, consumption of UA 

has a greater impact per unit-cultivated area (IBID). Research has also shown that crop choice 

is an important aspect of greenhouse gas emissions, with high-yield fruits and vegetables 

(tomatoes, eggplants) having superior performance to low-yield leafy vegetables (Sanyé-

mengual et al. 2015).   

The other three extended environment assertions of improving biodiversity, soil 

quality and the ecological footprint of cities remain difficult to prove or disprove. They 

appear predicated on the assumption that UA will displace farming outside of cities, allowing 

succession of agricultural land to mature ecosystems; a shaky contention in a globalized 

world with increasingly affluence, growing population (Foley et al. 2011; World Bank 2013) 

and limited options to expand conventional agricultural production areas (FAO 2006). 

However, if UA were to play a larger role in global food production, it may stymie the 

conversion of natural habitats and even allow for conversion of farmland back to natural 

ecosystems, with the added benefit of sequestering carbon within soil and mature habitat.   

2.6 Urban Agriculture – Where Do We Stand? 

The literature revealed a muddled picture of UA’s ability to reduce the 

environmental impacts from urban food demands and positively contribute to the urban 

ecosystem. Some claims are demonstrated to varying degrees (urban storm-water 

management, building energy use reductions, UHI, local biodiversity, nutrient recycling and 

soil quality, carbon footprint reduction), others prematurely (carbon sequestration, improved 

yields, air quality), while a few are of more speculative nature (EF reduction, soil upgrading 

outside the city, biodiversity gains, avoided food waste). UA could provide some of the more 

conjectural benefits, but there currently remains little proof-of-concept of those gains, 

meaning that conclusions about UA’s general environmental efficacy are a priori.   

What is clear is that UA’s capability to increase the sustainability of urban food 

systems is contextual, based on UA method, product and location. The case study of carbon 

sequestration in London, UK allotment gardens exhibited all of these traits, with changing 

conclusions for different UA types growing the same product, since UA type dictated the 

supporting infrastructure (structure, HVAC, etc.) and operating inputs (chemicals, water, 

energy, etc) (Kulak et al. 2013). Kulak et al. (2013) found that switching from outdoor to 

polytunnel strawberries reversed carbon footprint reductions over conventional production (-

53% to +12% compared to base case). Interestingly, tomatoes did not show the same 

behavior, with significant embodied carbon reductions over conventional supply-chains using 

outdoor or polytunnel methods. Recent assessments of rooftop soil-less production in 

Barcelona, ES also showed how environmental impacts for different growing techniques can 



vary for production on the same roof (Sanyé-mengual et al. 2015), with soil-less production 

methods of leafy greens having significantly superior environmental performance compared 

to soil cultivated counterparts. Performance on local environmental indicators (UHI, 

stormwater retention, etc.) also varies according to UA scheme, highlighting that the 

relationship UA to the larger urban ecology also depends on the UA type employed.  

At the urban scale, it remains unknown how some of the benefits and shortcomings 

of UA might affect the greater urban system. Nutrient runoff from UA has been studied at the 

individual farm level, but the effects of the aggregate runoff from urban scale UA 

implementation are not known. UA benefits of waste assimilation and UHI mitigation are also 

minimally understood at the city-level.    

3. Developing a taxonomy to support the environmental assessment of UA  

 

It has already been voiced by several researchers that further QSAs of UA are 

required before the environmental sustainability claims of UA champions can be verified 

(Ackerman 2012; Specht et al. 2013). Notwithstanding the need for more assessments, such 

explorations would be most effective with an organizing framework, such as a systematics of 

UA types based on environmental performance. 

 Kostrowicki started his 1977 definition of agricultural typologies with, 

 
‘An attempt at ordering the investigated facts and/or processes according to a certain system 

is a characteristic stage of development of any scientific discipline.’ (Kostrowicki 1977) 

 

This paper is not proposing anything as ambitious as a scientific discipline, but we do 

aim to provide a heuristic, in the form of a UA taxonomic scheme to order existing 

knowledge and future assessments of the environmental performance of UA. A taxonomic 

scheme (systematics, taxonomy and typology are used interchangeably hereafter) is a grouping 

of individuals in a population based on the similarity of their attributes (e.g. organic, 

conventional and biodynamic agriculture). This grouping does not ignore the uniqueness of 

the individuals (e.g. mono and poly-crop organic), but focuses on essential characteristics 

(e.g. organic prescribes no synthetic fertilizers or pesticides) to make a complicated reality 

comprehensible. It is for this reason that typologies are also hierarchical in nature, with sub-

typologies belonging to higher order typologies (Kostrowicki 1977).  

To date, taxonomies of UA have had a valence towards cataloguing based on socio-

economic criteria (see: Brock & Foeken, 2006; Dossa, Abdulkadir, Amadou, Sangare, & 

Schlecht, 2011; Drechsel & Dongus, 2009; Jacobi, Amend, & Kiango, 1997; Smit et al., 

2001). The social and economic aspects of UA are essential aspects of sustainability, but 

systematics framed around these attributes do not provide a clear picture to researchers or 

decision makers about the environmental performance of different UA types.  

The aim of the systematics introduced here is to provide a simple, overarching scheme of 

the different combinations of essential attributes of UA that have important influences on the 

environmental dimensions of urban food production. At the base of it, the environmental 

performance of any production system hinges on the energy and material regime that supports 

the good or service it generates (Smil 2013). In agricultural it is the production factors 

(fertilizers, land, fossil fuel energy, pesticides, irrigation, farming structures and mechanized 

equipment) that influence the environmental burdens of food system (Davis et al. 2010; Roy 

et al. 2012; Meier and Christen 2013), and in rare instances transport (FAO 2011a). Our 

endeavor is to identify the broad characteristics of UA systems these capital inputs. 

Considering the limited number of studies of UA’s material and energy demands, a first 

impression of these was gathered from earlier assessments of isolated UA systems (Wong et 

al. 2003; Astee and Kishnani 2010; Sanyé-Mengual et al. 2012; Kulak et al. 2013; Sanyé-

Mengual et al. 2015b) as well as green roof (Luckett 2009), greenhouse (von Zabeltitz 2011) 



and UA (Philips 2013) design books. To support the literature findings we visited UA 

operations and performed interviews urban farmers in Northeastern United States during the 

Spring and Summer of 2015. From these, we identified two organizing principles emerged 

that strongly influence UA energy and material regimes, forming the basis of the typology: 

building integration and space conditioning.  

3.1 Building Integration 

The first organizing principle is how physically embedded the UA form is within the 

built environment. Designs that leverage residual UM flows (nutrients, building heat, etc.) are 

at an advantage to avoid/share virgin resource inputs over less immersed UA forms. For 

optimal access to residual UM flows and to potentially have direct energy exchange with 

buildings, UA is best situated on buildings where waste flows emerge and conditioned space 

is able to act as a source and/or sink for energy. This is most applicable to heat, which due to 

its dispersive nature, requires direct coupling of the UA and building energy systems in order 

to share excess energy (attenuating temperatures of growing and occupied space). Moreover, 

attaching UA to the built environment also insulates the host building, reducing building 

energy consumption. This intimate coupling can also bring benefits through the circulation of 

CO2 rich building exhaust into the greenhouse to promote growing (Sanyé-Mengual et al. 

2014).  The advantages of direct placement on buildings is less vital for nutrients, since 

nutrient rich waste can potentially be collected at any place between point of generation and 

place of disposal for application as greywater, blackwater, compost or other form, though 

proximity to generation points could be beneficial (IBID). Moreover, soil-based UA is best 

suited for urban nutrient recycling, since composting of solid organic waste the commonest 

recycling method is, though examples of application of waste-derived liquid growth 

stimulator may also be viable (Hernandez et al. 2014). Rainwater harvesting is not dependent 

on building integration. Because of these observations, we introduce building integrated and 

ground-based UA types, where the former is merged with existing building structures, while 

the latter occurs directly on the ground in a manner physically disconnected from surrounding 

buildings.  

3.2 Space Conditioning  

The second consideration was the degree of interaction between UA systems and 

ambient environment. UA systems with conditioned growing spaces (e.g. greenhouses) allow 

year-round operation, capture and more efficiently recycle resources, minimize weather 

related crop losses, and reduce pest invasion in contrast to open systems (e.g. vacant lot 

farming). Conversely, conditioned UA types also require large resource inputs in terms of 

building components, mechanical equipment and embodied energy within capital equipment. 

Energy for space conditioning (light and temperature) is also paramount as the environmental 

performance of food production systems in some indicators (fossil fuel consumption, global 

warming forcing) are dependent on whether the conditioned space is heated or not (Stoessel et 

al. 2012). Non-conditioned systems contrast with this in that they usually have higher losses 

of resources to the ambient environment, but are less capital intensive, and have lower direct 

operational energy inputs. Non-conditioned systems also have higher risks of being negatively 

affected by local pollution (Antisari et al. 2015) and contributing to local pollution (Emilsson 

et al. 2007). The result being that these two classes of UA could have markedly different 

environmental performance. Therefore, we introduce the notions of conditioned and non-

conditioned UA, where the former is quasi-closed system and the latter exposed to the 

elements.  



3.3 Urban Agriculture Types 

Because building integration and conditioning are not mutually exclusive, we 

derived four overarching UA types: ground-based-non-conditioned, ground-based-

conditioned, building-integrated-non-conditioned and building-integrated-conditioned. As 

mentioned above, the taxonomy is a simple tool for a rough organization of findings, so it 

does not describe the minutia of different sub-types. For instance, the building-integrated-

conditioned could encompasses rooftop greenhouses and vertical farms, since they both are 

integrated within the built environment, have substantial capital inputs and use large amounts 

of operational energy, all important factors that will differentiate their resource regimes and 

environmental impacts from a farm on an empty lot (ground-based-non-conditioned). Figures 

1a to 1d show identified UA forms. From a quick glance, it is evident that actual UA systems 

mirror the qualities outlined in Sections 3.1 and 3.2:  conditioned spaces have high capital 

inputs but reduced chances of ambient resource losses, while the non-conditioned spaces are 

lower intensity in terms of capital inputs and operational energy, but with diminished ability 

to minimize resource losses.    

3.4 Predicted attributes of urban agriculture Types 

Figures 2a to 2c outlines a comparison of the material and energy needs of ground-

based-non-conditioned, ground-based-conditioned, building-integrated-non-conditioned and 

building-integrated-conditioned UA types based on our cursory analysis, and table 2 provides 

deeper details about these properties. Indicators are grouped into three broad categories 

covering operating characteristics (efficiency of supply use, external energy inputs, potential 

for crop losses, yields and growing season length), capital inputs (typical equipment and 

structures), urban symbiosis potential (possible coupling with urban material and energy 

flows), and other general traits (economic and social motivators). This represents a very 

rough overview of predicted operating characteristics and material and energy needs of these 

systems given the same growing location, product and agricultural practice (organic, 

conventional, mono cropping, etc.) Despite the elementary nature of this assessment, it 

highlights some divergent environmental aspects of the systems.  

3.4.1 Ground-Based-Non-Conditioned Systems 

 In terms of operating characteristics, low resource use efficiency and yields due to 

dispersive losses of inputs and the potential for crop losses, countered by low external energy 

inputs are expected. Capital inputs are also low (fencing, small tools, irrigation lines and 

sometimes low-tech greenhouses for seedlings). Kulak et al.’s (2013) work on London 

allotment gardens confirms that the low nutrient and water efficiency of ground-based-non-

conditioned UA, but lower capital inputs counteracted this, resulting in a reduced carbon 

footprint over conventional supply chains. Ground-based-non-conditioned UA also show 

medium performance in the realm of urban symbiosis potential, whereby it can act as a 

significant assimilator of urban solid waste as compost, demonstrated in the UK (Edmondson 

et al., 2014) and Cuba (Hernandez et al., 2014), or additionally reduce stormwater runoff 

(Gliessman, 2015). However ground-based-non-conditioned is at a disadvantage to couple 

with the liquid waste or energy systems of the city, though site walkovers in NYC did 

demonstrate hookups with adjacent buildings to capture runoff from roofs for irrigation (see 

Grow NYC: http://tinyurl.com/q9cm4ba). Lastly Figure 1 also shows that the growing 

seasons and yields of the NC forms are less than their conditioned counterparts, which is 

evident when one considers that all the pictures were taken in May 2015 (except 1D which 

was captured in March 2015). Because of the low-tech nature and low yields of this type, it 

lends itself to non-profit operation (or supplemental income generation) and high levels of 

community engagement (nutritional education, after-school programs, etc.) 



 3.4.2 Ground-based-conditioned Systems 

    Ground-based-conditioned contrasts with ground-based-non-conditioned in almost 

all indicators. Containment of growing medium and recycling makes for high efficiency of 

water and nutrients, concomitantly reducing potential losses from pests and weather. 

Conversely, operating energy is much higher to run equipment (pumps, heaters, mechanical 

louvers). Capital inputs are also high since ground-based-conditioned requires structural 

components, mechanical and irrigation equipment, and increasingly common, sensors and 

computers. The mix of high efficiency, high-energy inputs and substantial built capital can 

have conflicting effects. Kulak’s (2013) work in London shows that even using low-tech 

greenhouses without mechanical inputs or hydroponics can increase water efficiency, but the 

capital inputs actually caused UA strawberries to have higher embodied carbon impacts than a 

conventional supply-chain.  

In terms of operational energy, the importance of passive conditioned spaces (light 

and heat provided by solar) and active (light and heat provided through fuels or electricity) on 

environmental performance necessitates the need for two sub-categories in within the ground-

based-conditioned type: active and passive. Active types have environmental impacts driven 

by operational energy, in line with QSAs of buildings, since the one-time impacts of 

constructing durable building components diminishes compared to the perennial energy inputs 

over the extended lifetime of the project (Scheuer et al. 2003). In contrast, capital inputs play 

a stronger role in the environmental performance of passive types, because operating inputs 

are relatively lower. The lack of studies comparing passive and active ground-based-

conditioned operations makes it difficult to conclude on the tension between operational 

inputs and capital inputs.  

Urban symbiosis potential for ground-based-conditioned is low compared to other 

UA types, since the primarily hydroponic nature of greenhouses complicates organic-waste 

recycling, whilst their detachment from buildings makes interactions with building and energy 

flows difficult. Site-specific storage capacity puts a cap on rainwater capture, further 

constricting potential symbiotic relationships with the city. Increased capital inputs mean that 

these farms typically operate to generate profit (see: www.farmedhere.com or 

www.freightfarms.com), though non-profit projects with high levels of community 

engagement can also be found (see: www.thefoodproject.org/dudley-greenhouse).  

 3.4.3 Building-Integrated-Non-Conditioned Systems 

 Building-integrated-non-conditioned mirrors the ground-based-non-conditioned in 

that its’ exposed environment lowers the efficiency of water and nutrients at the farm 

compared to conditioned UA, though building-integrated-non-conditioned could potentially 

recoup some losses at the building edge. Some building-integrated-non-conditioned systems 

actually utilize soil-less cultivation (perlite substrate) with high operational efficiency (Sanyé-

mengual et al. 2015), though this practice is not yet pervasive in UA. Our interviews with 

rooftop farmers also revealed that soil erosion due to winds is a chronic issue. Looking at 

figure 1c we can also see that though these systems have the potential for a considerable 

amount of capital inputs (irrigation networks, layers to protect roofing, sensors and 

computers, etc.), and potentially structural buttressing.  

The urban symbiosis potential of building-integrated-non-conditioned is very high 

as it can assimilate solid organic waste from the urban system (limited by load bearing 

capacity), directly affect building energy (providing insulation, increasing roof albedo and 

capturing residual building energy to lengthen growing season) and water systems, and 

mitigate stormwater runoff. The numerous examples of green roofs in Table 1 attest to this 

with their positive contributions to building energy consumption (Bass and Baskaran 2003), 

stormwater mitigation (IBID) and also urban biodiversity (Gliessman 2015). Of course, these 

benefits are design-dependent, whereby less-intensive installations (e.g. raised beds) would 

show diminished building energy synergies compared to a building with the intensive UA. 

Lastly, building-integrated systems (non- and conditioned) create cultivable space out of the 



built urban form, providing a net increase in gross agricultural area; a benefit that the GB 

systems cannot accrue. Much like the ground-based-conditioned type, higher capital inputs 

generally restrict this type of farm to for-profit operation and lower community engagement 

in the examples that we have found (see: www.brooklyngrange.com and 

www.greencitygrowers.com).  

 3.4.4 Building-Integrated-Conditioned Systems 

 Building-integrated-conditioned systems are similar to the ground-based-

conditioned systems in almost all aspects.  Operational characteristics for these systems are 

identical to ground-based-conditioned farms, with the effect that passive and active sub-types 

must be included under this umbrella. Capital inputs are also very similar to the ground-

based-conditioned type, except that structural reinforcement of the supporting building might 

be necessary. Urban symbiosis potential appears to be high since building-integrated-

conditioned can directly couple with the energy and water systems of its host building. 

Symbiosis potential is not as high as building-integrated-non-conditioned since the common 

usage of hydroponics (nearly ubiquitous in order to provide high enough efficiency to offset 

capital costs) limits waste assimilation abilities, whilst challenges to large-scale stormwater 

assimilation are also prevalent due to structural costs and on-site storage capacity. Sanyé-

Mengual and colleagues’ (2012) work on building-integrated-conditioned grown tomatoes 

shows that despite substantial capital inputs, these systems can have superior environmental 

performance over conventional methods, though this was a result of reduced packaging and 

distribution spoilage, and less production efficiency. Again, the high capital and operating 

costs of these types of operations have largely limited them to for-profit operation with 

limited community engagement (see: www.gothamgreens.com or www.lufa.com).       

4. Applying the UA taxonomy in future assessments 

The dearth of quantitative studies of UA environmental performance hampers 

testing of the developed taxonomy, however we apply it to Sanyé-Mengual et al.’s (Sanyé-

mengual et al. 2015; Sanyé-Mengual et al. 2015b) analysis of tomatoes grown on Barcelona 

rooftops. System 1 is a building-integrated –non-conditioned system using raised beds with 

soil substrate (Sanyé-mengual et al. 2015). System 2 is a building-integrated-conditioned 

passive system using hydroponics. Table 3 shows that the material and energy profiles align 

with the predictions of the taxonomy. Capital inputs are greater per-unit output for the 

conditioned system, with the exception of wood, though wood has substantially lower 

embodied environmental burdens relative to the steel and aluminum in the conditioned 

system. This was echoed by the lower contribution of the cultivation system to total climate 

change impacts for system 1 (<10%) relative to system 2 (~30%). Operational characteristics 

generally agreed with the UA systematics. Lower water demands contrast with higher energy 

demands for the system 1 (electricity for pumps), however, against our predictions, nutrient 

demands were higher for the conditioned system (particularly phosphorous), though the 

unaccounted nutrients in the soil and compost imported to system 2 might reverse this 

comparison. Yields are greater for the conditioned system (~25 kg/m2) than the non-

conditioned (13-14 kg/m2). Contributions to the climate change impacts of the two systems 

also agree with the systematics: system 1’s impacts stemmed from operational inputs, while 

capital inputs had a larger influence on system 2. 

The previous example shows that our system, though simple, predicted the energy 

and material burdens of two UA systems, although it requires further tests of its robustness. 

However, after future verification, this taxonomy could emerge as a simple way to gauge the 

efficacy of UA as an urban design intervention to mitigate the environmental burdens of 

urban food provision.  For instance the, urban designers looking to improve a city’s 

environmental performance with UA could use the taxonomy to understand the various 



tradeoffs between the systems and answer questions about the appropriateness of technologies 

for a clime given the operational characteristics of a proposed system. With a larger base of 

studies to choose from, architects and designers could look at the types of produce that would 

fit within a local context given a chosen UA type, such as the choice to produce fruits over 

leafy greens in soil-based building-integrated-conditioned systems considering the lower 

yields of the latter (Sanyé-mengual et al. 2015). Next steps will involve building on the 

nascent QSAs that have shown the benefits and occasional shortcomings of UA in the 

environmental arena (Sanyé-Mengual et al. 2012; Kulak et al. 2013; Sanyé-mengual et al. 

2015; Sanyé-Mengual et al. 2015b). Future studies could employ the life-cycle assessment 

(LCA) methodology used in the aforementioned study, material input per service, material 

flow accounting or any other number of methods to assess the environmental sustainability of 

product systems. 

 The taxonomy aligns particularly well with LCA for a number of reasons. Firstly, 

LCA is a tool for comparing the environmental performance of different systems delivering a 

comparable function. The UA systematics here describe four UA types with markedly 

different attributes, facilitating LCA studies to compare four varied ways to produce food in 

cities that cover the broad spectrum of current UA forms. LCA is also methodologically 

mature; with its own international standards, a discipline specific journal, significant industry 

application and wide set of indicators to assess environmental performance (climate change, 

eutrophication, land occupation, toxicity, etc.) (Finnveden et al. 2009).  

4.1 Application to studies of urban systems  

For researchers in urban systems, the growing interest in the environmental aspects 

of urban food procurement highlights the need for a standard lexicon with which to organize 

dominant UA types. Moreover, the systematics underlying the vocabulary should be 

compatible with the perspective of urban systems researchers, that of urban metabolism.     

Urban metabolism is the sum of material and energy produced or imported, as well 

as waste produced by a city in order to support its daily activities (Kennedy et al. 2007). It is a 

rapidly maturing area of study that continues to see growing interest from governments as a 

benchmarking method of urban environmental performance and methodology to quantify the 

environmental changes imparted by an urban design or policy decision (Kennedy et al. 2010; 

Clift et al. 2015). Studies of urban metabolism are typically an accounting exercise of the 

material and energy flows using bottom statistical data or top down national economic data, 

which can then be coupled with other methods to gauge urban environmental performance 

(Goldstein et al. 2013). This raises another benefit of LCA as an UA environmental 

assessment tool; it is seen as the natural choice by urban researchers to couple with studies of 

urban metabolism (Chester et al. 2012; Goldstein et al. 2013; Clift et al. 2015). 

By using material and energy flows as an organizing principle, the UA taxonomy 

can be easily coordinated within metabolism assessments of neighborhoods or cities, helping 

understand how an up-scaled UA system would interact with this metabolism to affect urban 

sustainability. Urban systems researchers have already looked at food and nutrient flows 

through cities, but prospective urban food production has not yet to be assessed, raising 

questions regarding UA’s potential synergies (Sanyé-Mengual et al. 2014) and antagonisms 

with the larger urban environment (Pataki et al. 2009). The UA operational inputs, capital 

inputs and urban symbiosis potential that inform the typology begin to highlight the 

interconnectedness of the urban system and the built environment. The indicators for solid 

and liquid waste assimilation align well with the numerous urban nutrient flow studies (Færge 

et al. 2001; Billen et al. 2008; Kalmykova et al. 2012), since the varied capacities of the UA 

systems to absorb these streams could cause important shifts to this metabolic aspect in an 

agriculturally productive city.    

In general, the taxonomy would allow for a scaled up test of UA’s environmental 

sustainability. A study could use satellite imagery and software to identify available space for 

ground-based UA within a case city (see Taylor and Lovell 2012). Geographic information 



systems software could also determine the suitability of buildings for UA incorporation based 

on age and design. The different material and energy flows associated with the chosen UA 

systems could then be framed within the larger urban metabolism to predict the material, 

energy, food and waste regime of the altered system. Lastly, an LCA could estimate the 

environmental consequences of the new metabolism.       

 4.2 Shortcomings of the proposed taxonomy   

One major disadvantage of the UA taxonomy is the small number of studies on 

which it relies and its anecdotal nature. Modern statistical methods that use significant sample 

populations to ‘bin’ like-types are the norm for developing typologies. This was the method 

promoted by Kostrowicki (1977) in his foundational paper, and has been employed by others 

in demarcating the different social and economic aims of UA (Dossa et al. 2011). Because of 

this shortcoming, the developed UA taxonomy is propositional in nature; able to evolve 

dynamically as new findings arise, or be cast aside if its utility is ultimately low.  

Another major caveat is the proposed taxonomy is singular in focus, ignoring the 

equally important socio-economic characteristics of UA. There are many reasons to practice 

UA besides environmental food production; leisure, community building, education and food 

equity to name but a few (Sanyé-Mengual et al. 2015a; Thomaier et al. 2015). Decisions 

surrounding the implementation should equally weigh economic, social and environmental 

outcomes where relevant though this might not always be the case. For instance, social and 

environmental performance might be secondary to economic returns in private business 

scenarios, or environmental and economic performance might be secondary to community 

building for a more socially oriented project.  

It is also by viewing UA projects with competing motives (primarily economic vs. 

primarily social) through the lens of the proposed UA taxonomy that interesting observations 

might emerge. For instance, what are the environmental tradeoffs between high-efficiency, 

high-input economically driven building-integrated, conditioned projects, and low-efficiency, 

low-input socially focused ground-based, non-conditioned operations? How do the auspices 

of an UA project affect environmental performance? Can we generalize their material and 

energy throughputs of these operations? These questions remain largely unanswered to date 

and warrant exploration if UA is going to scaled-up in cities, usually in concert with a larger 

environmental sustainability agenda.       

5. Conclusion 

 The environmental impacts from food consumed in cities are large, but cities have 

design tools to address them. However, urban design interventions should be adopted after 

due consideration of whether they actually achieve the expressed goal of increasing the 

sustainability of urban systems. This review shows that if UA is to promoted on 

environmental grounds, then there remain a number of unanswered questions about the 

environmental performance of individual systems and less certainty regarding how an ‘edible 

city’ would perform. Where solid evidence does exist it has normally been performed on only 

one type of UA out of the panoply that exist, leaving a bric-a-brac picture of the larger 

environmental impacts of food production in cities. Significant differences in environmental 

performance of similar systems illustrate this well (Sanyé-mengual et al. 2015), and in at least 

one study UA was not preferable to conventional supply chains for specific products and 

methods (Kulak et al. 2013). Though environmental benefits may very well be conferred to 

UA adopting cities, it would be wise to test these assertions deeper before committing to 

scaling-up.  

This paper compliments earlier work to develop a structured understanding of UA’s 

environmental integrity. We have developed a taxonomy of four general UA types based on 

their operating characteristics, capital inputs and how they interact with urban systems. The 



types have significantly different behavior across these echoing the need for an organizing 

typology for and further assessment of UA. The proposed taxonomy is illustrative in its focus 

on important drivers behind the overall environmental performance of the UA systems, and 

covers the majority of UA operating styles. The typologies differentiate between material and 

energy loading, but not how these are provisioned, and therefore, sub-types exist within the 

derived framework for ‘organic’, ‘conventional’, ’integrated’ or other cultivation techniques. 

Nonetheless, keeping product and location the same, combining the framework with 

environmental assessment methods would allow comparisons of the relative environmental 

performance of UA systems or conventional urban food supply-chains. We have also outlined 

a path forward to apply the typology to a larger urban system to assess the environmental 

consequences of an altered urban metabolism through coupling with LCA, and better 

understand whether UA is in fact a good environmental initiative. Such an appraisal is 

essential at this critical juncture where a fecundity of UA cases exist for analysis but 

expensive and potentially deleterious experiments at the urban scale have not yet come to 

fruition.     

Society should not solely seek technological fixes to the environmental challenges 

feeding an increasingly urban planet will entail. Simple actions such as reducing animal 

product consumption, increasing seasonal and local consumption and stymieing edible food 

waste will also having significant positive environmental benefits (Saxe 2014; Tilman and 

Clark 2014; Heller and Keoleian 2015). However, if cities can evolve to shoulder some of the 

burdens of their food provision, while concomitantly providing ancillary environmental, 

social and economic benefits to the city with UA, then this strategy is worth pursuing.   



Table 1 - Summary of sustainability claims and quantitative support surrounding urban 

agriculture. Asterisks (*) indicate a field trial.  

Sustainability Claim Support 

Building Energy 

Heating load reduction (Smit 

et al. 2001) 

-Green roofs on Chinese buildings appreciably reduced 

heating loads, benefits diminished with building insulation 

(Kokogiannakis et al. 2011)* 

-Green roofs found to be beneficial in cold European climates 

(Jaffal et al. 2012) 

-41% heating energy reduction modeled with rooftop urban 

agriculture in northern climate (Delor 2011) 

-5% reduction through insulation, 79% reduction through air 

Exchange from rooftop greenhouse in Mediterranean 

environment (Ceron 2012) 

Cooling load reduction 

(IBID; Ackerman, 2012; 

RUAF, 2010) 

-Modeled 23% cooling reduction with rooftop greenhouse in 

Toronto, CA (Bass and Baskaran 2003)* 

-Indoor temperature and annual building energy reduced by 

2°C and 6%, respectively (Jaffal et al. 2012)  

-Life-cycle building energy for diminished from 16% in 

extensive to 4% in intensive green roofs (Wong et al. 2003) 

Urban Symbiosis 

Nutrient capture and 

recycling (RUAF 2006; 

Mougeot 1994; Specht et al. 

2013) 

-Wastewater recycling performed in African (Ruma and 

Sheikh 2010)*, Asian urban agriculture (Khai et al. 2007)* 

and 1800s Paris (Barles 2007) 

-Compost application to urban agriculture in Cuba 

(Hernandez et al. 2014)* and UK (Edmondson et al. 2014)* 

-Rooftop farm in Paris utilized local food waste to generate a 

compost substrate (Grard et al., 2015)* 

Rainwater capture and use 

(Havaligi 2011; Despommier 

2010) 

-Osmosis filtration and rainwater capture satisfied water 

needs of greenhouse in Manhattan, US (Nelkin and Caplow 

2008)*  

-Hypothetical storm-water farm outside of Melbourne, AU 

had numerous benefits to local water management (Liebman 

et al. 2011)  

-Fertilecity rooftop greenhouse in Barcelona, ES collects 

rainwater for irrigation reducing water impacts by 98% 

compared to conventional tomato production (Sanyé-

Mengual et al. 2015)* 

Excess building heat 

utilization (Ackerman 2012) 

-Modeled urban greenhouse showed potential benefits of 

using air from host building for heat in Barcelona, ES (Sanyé-

Mengual et al., 2015)  

-Lufa Greenhouses in Montreal, CA utilizes energy of site 

building for heating*  

Supply-Chain Efficiencies 

Reduced food-miles (Knowd 

and Mason 2006; Ackerman 

2012; Specht et al. 2013) 

-Local production around Osaka, JP reduced embodied 

energy in vegetables by 25% (Hara et al. 2013) 

Improved yields (Smit et al. 

2001; Despommier 2013a; 

Besthorn 2013) 

-Urban greenhouse in NL provided improved yields above 

traditional agricultural for numerous products (Besthorn 

2013)* 

Reduced food waste (Sanyé-

Mengual et al. 2012, 2015) 

-Assumed 17% reduction in food losses over distribution 

(Sanyé-Mengual et al. 2012) 



Reduced packaging (IBID) -Packaging savings potentially reduce carbon footprint with 

urban agriculture in Barcelona, ES (Sanyé-Mengual et al. 

2012, 2015)  

In-situ Ecosystem Improvement 

Improved biodiversity 

(Knowd and Mason 2006; 

Havaligi 2011) 

-Green roofs shown to increase local biodiversity (Hoffman 

2007; Oberndorfer et al. 2007; Forman 2014) 

Urban heat island 

attenuation (Pearson et al. 

2010; Wong et al. 2003) 

-Satellite models showed appreciable UHI reduction in New 

York City, US with hypothetical urban agriculture scenario 

(Ackerman 2012) 

-50% green roof cover could reduce ambient temperatures by 

2°C in Toronto (Bass and Baskaran 2003) 

Storm-water attenuation 

(Ackerman 2012; Sida 2003) 

-Significantly slower runoff rate and runoff retention 

observed at green roofs around North America (Oberndorfer 

et al. 2007)*  

-Green roof significantly mitigated runoff in Mediterranean 

(Fioretti et al. 2010)*  

Soil quality (Smit et al. 

2001; Jansson 2013) 

-Compost on UK urban agriculture improved soil structure 

and nutrients (Edmondson et al. 2014)* 

Air quality Improvement 

(Hampwaye 2013) 

-Models linked urban forest cover in China (Jim and Chen 

2009)and Green roofs in Chicago (Yang et al. 2008) with 

reduced local NOx, SOx, O3 and particulates  

Ex-situ Ecosystem Improvement  

Carbon sequestration (Sida 

2003; Despommier 2013b) 

-Urban green infrastructure in Toronto, CA and Salt Lake 

City, US sequestered <1% of urban CF (Kennedy 2012; 

Pataki et al. 2009) 

Carbon Footprint Reduction 

(IBID) 

-Significant greenhouse gas reduction for urban agriculture 

except for polytunnel strawberries (Kulak et al., 2013) 

-Rooftop greenhouse tomatoes in Barcelona showed lower 

embodied carbon than conventional supply chain from 33%  

(Sanyé-Mangual et al., 2015) to 63% (Sanyé-Mengual et al., 

2012) 

Lower ecological footprint 

(RUAF 2006) 

-None encountered 

Improved biodiversity (same 

as above) 

-None encountered 

Soil quality (same as above) -None encountered 

 
  



 GB-NC GB-C BI-NC BI-C 

Examp

le 

Edgemere Farm: 

http://www.edgem

erefarm.org 

Bright Farms: 

http://www.bright

farms.com 

Brooklyn Grange: 

http://brooklyngran

gefarm.com 

Gotham 

Greens: 

http://gothamgr

eens.com 

Operating Characteristics 

Water 

Use 

Efficie

ncy 

Low: runoff and 

evaporation 

 

High: contained 

environment with 

recycling 

Moderate: runoff 

control possible 

 

Same as GB-C 

Nutrien

t Use 

Efficie

ncy  

Low: lost in runoff 

or bacterial 

digestion 

High: contained 

environment with 

recycling 

Moderate: lost in 

runoff or bacterial 

digestion 

Same as GB-C 

Potenti

al Soil 

Erosio

n 

High Low High Low 

Light 

Inputs 

None Passive: None 

Active: At night 

or overcast 

None Same as GB-C 

Heat 

Input 

None  Passive: None 

Active: At night 

or winter 

None Same as GB-C 

Other 

Energy 

Inputs 

Low   High: pumps, 

computers, 

louvers  

Low to High: 

potentially pumps, 

computers 

Same as GB-C 

Substra

te 

Soil  Soil or soil-less Soil or soil-less Soil-less 

Pest 

Risks 

High  Low High Low 

Ambie

nt 

Polluti

on Risk  

High Low High Low 

Growin

g 

Season 

Seasonal: extended 

with hoop houses 

Year-round  Same as GB-NC Year-round 

 Yields Low High Low High 

Capital Inputs 

Suppor

ting 

Structu

re 

None None Low to High: 

reinforcing building 

or adding extra 

capacity to new 

building 

 Same as BI-

NC 

Conditi

oned 

Space 

Low: potentially 

small hoop houses 

High: greenhouse 

frame and 

cladding 

Same as GB-NC Same as GB-C 

Roof 

Protect

ion 

None  None High: Root barrier, 

waterproof 

membrane and 

drainage layer 

Moderate: 

Potentially 

waterproof 

membrane 

Substra None to Low: Low to High: Same as GB-NC High: 



te 

Contai

ners 

potential raised 

beds 

raised beds or 

hydroponic 

tables/towers 

hydroponic 

tables/towers 

Irrigati

on 

Equip

ment  

Low to medium: 

potentially 

distribution system 

and pumps 

High: pumps and 

distribution 

system 

Same as GB-NC Same as GB-C 

Mecha

nical 

Compo

nents  

Low 

 

High: motors, 

fans, heater/air-

conditioning 

Low Same as GB-C 

Comput

ers and 

Sensors 

Low Low to High Low to High  High  

Urban Symbiosis Potentials 

Solid 

Waste 

Assimila

tion 

High: compost Low to High: 

compost derived 

nutrient solution 

or compost 

Moderate: compost 

(within roof’s 

capacity) 

Low: compost 

derived 

nutrient 

solution 

Liquid 

Waste 

Assimila

tion 

Low Low High: direct access 

to building 

gray/black water 

Same as BI-

NC 

Building 

Energy 

Couplin

g 

Low: indirect UHI 

mitigation 

Same as GB-NC Moderate: increase 

roof albedo, 

insulation 

High: same as 

BI-NC, 

evaporative 

cooling, heat 

capture in 

winter  

Runoff 

Mitigati

on 

High: over entire 

site 

Low: limited 

rainwater capture 

High: over entire 

site 

Low to 

Medium: 

potential 

recycling from 

building gutter  

Other General Traits  

Econom

ic 

Motivati

on 

Likely non-profit 

or supplemental 

income 

Likely profit 

driven  

Very likely profit 

driven 

Very likely 

profit driven 

Commu

nity 

Engage

ment 

High Low to High Likely low Likely low 

Table 2 - Properties of the developed urban agriculture typologies: ground-based-non-

conditioned (GB-NC), ground-based-conditioned (GB-C), building-integrated-non-

conditioned (BI-NC) and building-integrated-conditioned (BI-C). Note that the GB-C and BI-

C have passive and active sub-types for light and heat inputs.  

 

 

 

 



 
Figure 1. (A) ground-based-non-conditioned, (B) ground-based-conditioned, (C) building-

integrated-non-conditioned and (D) building-integrated-conditioned systems in the 

Northeastern United States. First author’s own photographs. 

 



 

Water Use Efficiency

Nutrient Use

Efficiency

Soil Erosion

Lighting Energy

Heating Energy

Other Energy

Pest Risks

Ambient Pollution

Risks

Growing Season

Yields

A 

building-integrated-
non-conditioned 

ground-based-condtioned and 
building-integrated-conditioned 

ground-based-non-
conditioned 

Supporting

Structure

Conditioned

Space

Roof

Protection

Substrate

Container

Irrigation

Equipment

Mechanical

Components

Computers

and Sensors

B building-integrated-
conditioned 

ground-based-non-
conditioned 

building-integrated-
non-conditioned 

ground-based-conditioned 

Solid Waste

Liquid Waste

Building Energy

Runoff

Mitigation

C 

Figure 2 - A) Operational characteristics B) Capital Inputs 

and C) Urban symbiosis potential. Note that in (A) 

conditioned types can have a large operational energy 
inputs, though this might be contingent on the climate and 

lattitude, which would affect the amount of external energy 

to supply lighting and heating. Comparisons based on the 
site-visits to urban farms in 2015, the results of Sanye-

Mengual et al. (2015a, 2015b), and the findings of Kulak et 

al. (2013).  

      Building 

      Energy    

      Coupling  

Liquid Waste 

Assimilation 

Solid Waste Assimilation 

ground-based-non-
conditioned 

building-integrated-non-
conditioned 

building-integrated-
conditioned 

ground-based-non-
conditioned 



 

Table 3: Comparison of a building-integrated-non-conditioned operation (system 1) with a 

building-integrated-conditioned (passive) operation (system 2). CO2 eq. represents the 

equivalent amount of CO2 to have the same radiative forcing effect on the atmosphere as the 

greenhouse gases released during the production of the tomato. Cumulative energy demand is 

the total amount of energy embodied within the production of materials and energy directly 

consumed by the UA system. As can be seen, the capital inputs and energy demands of the 

conditioned system are higher. Water use is lower for the conditioned system. The energy and 

capital inputs for the conditioned system make it less favorable in terms of carbon footprint, 

despite the higher yields.  

 Unit System 1: building-

Integrated-non-conditioned 

(Sanyé-mengual et al., 

2015) 

System 2: building-

integrated-conditioned 

(Sanyé-Mengual, Oliver-

sola, Montero, & 

Rieradevall, 2015) 

Capital Inputs 

Metals  kg/kg tomato 0.004 0.037 

Aluminum kg/kg tomato - 0.003 

Steel kg/kg tomato 0.004 0.034 

Biomaterials kg/kg tomato 0.26 - 

Wood kg/kg tomato 0.25 - 

Bamboo kg/kg tomato 0.01 - 

Plastics kg/kg tomato 0.0002 0.017 

LDPE kg/kg tomato 0.0001 0.004 

HDPE kg/kg tomato - 0.004 

Polycarbonate kg/kg tomato - 0.006 

Polyester kg/kg tomato - 0.0003 

Polystyrene kg/kg tomato - 0.001 

Polypropylene kg/kg tomato 0.001 - 

PVC kg/kg tomato 0.0003 0.002 

Aggregates kg/kg tomato - 0.02 

Perlite kg/kg tomato - 0.02 

Operational Inputs 

Water m3/kg tomato 0.5 0.03 

Electricity kWh/kg 

tomato 

0.0002 0.04 

Fertilizer (N)  g/kg tomato 0.33 0.39 

Fertilizer (P2O5) g/kg tomato 0.25 2.47 

Fertilizer (K2O) g/kg tomato 0.53 0.76 

Compost  g/kg tomato 16 - 

Soil g/kg tomato 155 - 

Outcomes 

Yields kg tomato/m2 13-14 25 

Carbon 

Footprint 

kg CO2 

eq./kg 

tomato 

0.068-0.075 0.22 

Cumulative 

Energy Demand 

MJ/kg 

tomato 

1.14-1.26 3.25 
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Abbreviations1 

1. Introduction 

Food consumption is a major driver of a city’s total environmental burdens; often on par 

with mobility, building energy and construction activities (Goldstein et al., 2016a). By virtue 

of their majority shares of both population and wealth, cities consume the bulk of global food, 

the production of which is a leading cause of greenhouse gas (GHG) emissions, natural 

habitat appropriation, chemical pollution (nutrients and pesticides) and water consumption 

(Foley et al., 2011; Gliessman, 2015). Agriculture is also resource intensive; dependent on 

non-renewable fossil fuels and minerals for agrichemicals to meet growing food demands on 

approximately 36% of the globally available ice-free land, with scarce room for sustainable 

expansion (Foley et al., 2011; Steffen et al., 2015). For cities to become sustainable, 

environmental impacts from their food demands must be reduced, especially considering 

predicted urbanization, economic development and increasing consumption of 

environmentally-burdensome animal-proteins for an increasing share of humanity (Goldstein 

et al., 2016a; Tilman and Clark, 2014). 

Urban agriculture (UA) , the production of food in and adjacent to cities, leveraging pre-

existing urban material energy flows as production factors (Koc et al., 1999), is commonly 

touted as an urban design solution to the environmental impacts of urban food needs (IPCC, 

2014; Pearson et al., 2010). A recent review by Goldstein et al. (2016c) found that UA is 

posited to have numerous advantages over conventional agriculture that will supposedly result 

in UA’s superior environmental performance, grouped here into three categories: 

1. Supply-chain efficiency; reduced distance from farm to consumer (‘food miles’), 

attenuating overall environmental burdens from production and distribution; 

2. Urban symbiosis potential; interacting with a city’s material and energy fluxes, 

reducing a farm’s operational inputs, absorbing urban waste flows (e.g. food waste), 

lowering building energy demand (i.e. through insulation or reducing the urban heat 

                                                      

1 UA – urban agriculture, BI-C – building-integrated-conditioned, BI-NC – building-integrated-non-

conditioned, GB-C – ground-based-conditioned, GB-NC – ground-based-non-conditioned, LCA – life 

cycle assessment, IP – impact potential , CC – climate change, FE – freshwater ecotoxicity, ME – marine 
eutrophication, WRD – water resource depletion, LU – land use, RD – minerial and fossil resource 

depletion 



island effect) and other local environmental benefits (e.g. tempering stormwater 

runoff); 

3. Ex-situ environmental benefits; supposed reductions in agricultural land occupation, 

carbon sequestration and other benefits to ecosystems beyond the city boundary.         

Despite the fanfare, a paucity in evidence exists where literature reviews of UA been 

performed (Born and Purcell, 2006; Goldstein et al., 2016c; Specht et al., 2013).  

Sanye-Mengual and colleagues’ recent work on UA in Barcelona, ES has started 

addressing this, comparing the environmental performance of rooftop greenhouse tomatoes 

against conventional supply chains, finding that the former can have lower life-cycle GHG 

emissions and toxicity impacts (2015b, 2012). Rothwell and colleagues also found that lettuce 

from local farms could reduce GHG impacts compared to conventional produce in Sydney, 

AU (2015). Though promising, both studies considered UA in warm climes, more amenable 

to food production than many of the wealthy, northern cities where food related 

environmental impacts are typically highest and UA is often promoted to reduce these 

burdens.  

Year-round UA in colder cities will likely rely heavily on controlled agriculture (i.e. 

greenhouses) to produce food to potentially negative environmental results. Leafy greens 

from a Japanese automated, conditioned, indoor farm (‘plant factory’) produced lettuce at 6.4 

kg CO2 equivalents per kg fresh lettuce, well above conventional production due to the 

system’s energy demands (Shiina et al., 2011), due to the high energy requirements for 100% 

artificial lighting and temperature control. Kulak and colleagues found that low-tech 

greenhouse UA strawberries in London, UK , had a higher carbon footprint than conventional 

counterparts (2013) showing that embodied impacts in capital and equipment can also drive 

burdens. 

Our contention here is that UA might not always have the intended positive effect on a 

city’s environmental performance, particularly in a northern context. The generality of UA as 

an environmentally preferable urban food supply chain is questionable, since its three general 

environmental benefits may be largely contextual. UA’s environmental efficacy is a pressing 

question in northern cities considering its renaissance at a grassroots level (Mok et al., 2014), 

active promotion by many northern cities through the Milan Urban Food Policy pact (City of 

Milan, 2015) and codification in land use policies (City of Boston, 2014). Further 

consideration of UA’s environmental performance could help balance what has hitherto been 

a pro-UA narrative and assuage data gaps in an evolving dialogue. In this study we test the 

performance of six UA systems, covering four distinct UA types, in Boston, US using 

environmental life cycle assessment (LCA), to see whether UA is a true environmental benefit 

to Boston, and by proxy, similar cities.      

2. Methods 

LCA is applied here to compare the potential environmental benefits of lettuce and 

tomato production with UA and conventional farming. Here we focus on the aspects most 

relevant to the study at hand. For a richer treatment of LCA methodology, see existing 

standards (ISO, 2006a, 2006b) and the European Commission’s LCA handbook (European 

Union Joint Research Council, 2011).     

2.1. Modelling Framework 

Process-based LCA is applied here using detailed data for the processes throughout the 

life cycle (e.g. fertilizer application, freight transport, etc.), maximizing geographic, temporal 

and technological representativeness. A consequential LCA (CLCA) approach is used here as 

opposed to attributional-LCA (ALCA). CLCA models consumption as a mix of 



‘unconstrained suppliers’ that respond to the next unit demand (‘marginal producers’), not the 

average mix of historic suppliers as in ALCA (Weidema et al., 2013). In keeping with CLCA 

practice, we model multi-functional processes using system-expansion, and not the allocation 

approach of ALCA. For example, rooftop farms produce food and also minimize the energy 

consumption of the building on which they are situated; CLCA credits the farm for the 

avoided energy consumption, while ALCA uses economic value to allocate the environmental 

burdens between the energy savings (taken as the price of the energy that would have been 

consumed otherwise) and the value of the food. CLCA aligns best with ISO recommendations 

(ISO, 2006b) and is implemented here using the ecoinvent 3.1 database embedded within 

SimaPro 8 product system modelling software. 

2.2. System boundaries and functional unit  

Our scope is cradle-to-shelf; cultivation, harvesting and distribution of food to market 

are modeled. This is justified given that these aspects of the product system are controlled by 

producers and the study aim of comparing relative environmental performance (post purchase 

transport and preparation are identical and can be excluded).  

Tomato and lettuce production using UA and conventional methods are modeled here. 

The functional unit is 1 kg of fresh food item delivered to the point of purchase in Boston, for 

each item (tomato or lettuce). Tomatoes and lettuce were chosen as subjects of study due to 

their prominence in the North American farming system and diet. According to the FAO 

(2016), in the US tomatoes and lettuce account for 14% (2nd) and 10% (3rd) harvested 

vegetable area, respectively, and 37% (1st) and 10% (3rd) harvested vegetable mass, 

respectively. In the US diet they both the most consumed fresh vegetables by mass, with 21% 

a piece (Heller and Keoleian, 2015). 

2.3. UA cases and life cycle inventory  

Goldstein et al. (2016c) identified four overarching UA types based on material and 

energy regimes and expected disparate environmental performance: building-integrated-

conditioned (BI-C), building-integrated-non-conditioned (BI-NC), ground-based-conditioned 

(GB-C) and ground-based-non-conditioned (GB-NC). Building-integrated identifies whether 

the farm is standalone or physically attached to a building, while conditioning refers to 

control of growing space variables (light, temperature, CO2 levels, etc.) System particularities 

are outlined in Table 1, while detailed descriptions can be found in the aforementioned 

review.  

Six urban farms were assessed; four in Boston,  one in New York City (assumed to 

operate in Boston), and a single hypothetical rooftop greenhouse in Boston. Six examples 

were chosen to capture the potentially disparate environmental performances between 

architectures as hinted by Sanye-Mengual et al. (2015) results, allowing a richer discussion of 

UA’s environmental performance, departing from previous work on single UA types. Table 2 

outlines the studied farms’ characteristics. Two of the UA cases (GB-NC1 and GB-C1) 

produce leafy greens (arugula) instead of lettuce. We assume here that leafy greens are 

directly substitutable for lettuce, fulfilling the same function (salad or sandwich topping), 

despite potential nutritional mismatches in terms of calories, micronutrients, macronutrients, 

etc. This is acceptable since the assessment is performed on a mass basis, but future studies 

could look into the environmental impacts per unit of nutritional value generated, as has been 

recommended by Heller et al. (2013).  

The LCIs for the studied UA operations were based on primary data collected through 

site visits, interviews, financial records and, where necessary, estimation. For the BI-C, a 

rooftop greenhouse designer was consulted to develop a reasonable facsimile of the operation, 

complimenting this with publically available data from an operating rooftop greenhouse in 



Montreal, Canada. For detailed case descriptions and LCIs see appendices A-F. There were 

some important data gaps that could not be filled. Information for structural buttressing of the 

supporting buildings for both BI systems was not available. A licensed structural engineer 

was employed to make reasonable estimates of these inputs based on site photos (see 

appendix A), but the findings should be viewed with this caveat in mind. The lack of a 

participating BI-C farm in the project also meant that the LCI for this system was built using 

expert input from a greenhouse designer and publically available information. Finally, data 

was not available for irrigation in many instances, which meant this information was 

estimated. 

 

The UA produce are compared to conventional tomato and iceberg lettuce production. 

Tomatoes and lettuce were modeled from the ‘Tomato {GLO}’ and ‘Lettuce {GLO}’ unit 

processes in the ecoinvent 3.1 database, respectively. These processes represent LCIs for 

current conventional farming technologies in Europe which will result in an overestimation of 

heating inputs, it is assumed that they are technologically representative of North American 

production  (Stoessel et al., 2012). Of note is that the conventional tomato used here was 

modeled on a heated greenhouse.  An unheated greenhouse would improve the relative 

performance for energy related impacts, though the countering effect of the lower yields 

remains unknown. In the same vain, field tomatoes have significantly lower yields than their 

greenhouse counterparts, which would have an impact on land use related indicators. 

Nonetheless, keeping these study limitations in mind, the conventional cases should provide 

robust enough yardstick of comparison to test UA’s environmental performance.  

Distances from conventional farms are taken as weighted average source distances for 

US tomatoes (2550 km) and lettuce (2962 km) to Iowa (Pirog and Benjamin, 2003), since 

food miles for the Northeast US are unknown. These values represent intermediate estimates 

considering the coast to coast distance of United States (~5000 km). Post-harvest, pre-

consumer losses of 11% are assumed for both products (USDA, 2014). For more information 

on the conventional produce see appendix G. 

   

2.4. Impact categories included  

Six metrics that are broadly representative of agriculture’s environmental impacts were 

included: climate change (CC) from agricultural land expansion, energy inputs, enteric 

fermentation; freshwater ecotoxicity (FE) from fertilizer and biocide application; marine 

eutrophication (ME) from fertilizer application; water resource depletion (WRD) from 

irrigation; land use (LU) from agricultural land expansion and degradation; and mineral, fossil 

and renewable resource depletion (RD) from agrochemical consumption. There exists 

numerous methodologies to convert LCIs to impact categories of potential impacts (herein 

‘impact potentials’ or ‘IPs’), opting here for the ILCD method.  

It should be noted that the study boundary of the point of purchase ignores potential 

contamination in the UA from local pollution and its adverse effects on human health. 

Though human health IPs were not assessed here, precluding contamination impacts from 

showing up in the results, it is important to note that UA is susceptible to local contamination, 

either in soil or from aerial deposition (Säumel et al., 2012; Wortman and Lovell, 2013), 

hinting that this may be an important factor in future LCAs of UA.    

3. Results 



Table 3 shows the results for the UA and conventional product systems for tomatoes and 

lettuce across all impact categories, while appendix H situates these relative to previous 

studies. No UA system is superior to conventional production across all impact categories, 

although select UA systems may appear preferable (based on equal weighting of considered 

impact categories) in that they have lower IPs for a majority of impact categories. The reasons 

for the disparate performance vary by system, but trends exist. For conditioned UA systems, 

energy consumption for space conditioning drives most IPs; CC (> 90%), FE (> 70%), ME (> 

80%) and RD (> 70%) for both tomato and lettuce UA systems. Capital inputs seldom 

mattered with the exception of the BI-NC system’s structural steel which was more than half 

of the IPs for CC, FE, ME, LU and RD impact categories. GB-NC systems are inefficient in 

land and water use, but low intensity for other aspects. Between tomatoes and lettuce, UA 

generally performs better when producing the former, as the greater yield of tomatoes per unit 

area ensures that capital and energy inputs, which are applied evenly across the case farms, 

are best utilized, reducing IPs. The following sections detail the findings for the food 

products.       

3.1. Tomatoes  

Figure 1 outlines findings for tomatoes. UA IPs are classified as related to capital inputs 

(equipment and structures), operational inputs (supplies and distribution) and urban symbiosis 

(interaction between farm and built environment’s material and energy fluxes). IPs for 

conventional tomatoes are classified as related to cultivation or distribution.  

UA was found to be ubiquitously superior for freshwater ecotoxicity, FE and marine 

eutrophication, ME (Figures 1b and c), a consequence of the use of inorganic fertilizers for 

nutrients and pesticides during conventional tomato production. All the UA cases generally 

avoid pesticides using beneficial insects for pest control, though GB-C1 was applying small 

doses of natural pesticides to combat aphids (this was not modeled, decreasing this IP). 

Fertilization levels were generally low for the UA cases (typically with fish emulsion), 

recycled in closed hydroponic systems (BI-C) or even zero (GB-NC1), though natural gas for 

operational energy elevates the conditioned urban farms above their counterparts for ME due 

to NOx emissions. Notably, BI-NC’s FE and ME IPs deviate from most agricultural LCAs, 

driven not by operations, but capital; structural steel affects FE while natural gas to produce 

expanded shale/clay growth medium drives ME.  

Conversely, for both water resource depletion, WRD and mineral and fossil resource 

depletion, RD (Figures 1d and f) the UA systems generally perform equally or worse than the 

conventional tomato cultivation. WRD, driven by irrigation, puts inefficient soil based 

systems at a handicap compared to the BI-C and market hydroponic systems. Of note is that 

rainwater irrigation, reducing municipal water demands, nonetheless deprives the surrounding 

catchment of water; depleting local water resources. This captured rainwater is called ‘green 

water’ in the water footprint method of embodied water impacts (Mekonnen and Hoekstra, 

2011), its presence here highlighting that harvesting flows from the built-environment can 

come at a price, potentially reducing ecosystem quality or redirecting potentially potable 

water. For RD, the main driver of the UA systems’ poorer performances varies. For the BI-C 

it is the natural gas for operational energy. For the BI-NC system it is the capital inputs that 

drive RD IPs, particularly additional steel for structural buttressing. The GB-C1 is influenced 

strongly by produce distribution, which despite the short distance, is done in small batches by 

pickup truck resulting in high capital inputs for the vehicle, contradicting claims that reducing 

‘food miles’ is a universal environmental good (Born and Purcell, 2006; Sanyé-Mengual et 

al., 2012). Contributions from the greenhouse structure (steel) and irrigation (piping in 

municipal water system) also hamper the GB-C1 system. Similar to the GB-C1 the GB-NC1 

RD IP is driven by distribution, and less so, the plastics for the irrigation system. The GB-



NC2 performs on par with the conventional tomato, having minor impacts for nutrient 

demands.  

For climate change (CC) IPs (Figure 1a), no general pattern between UA and 

conventional production is seen. Energy space heating leads to discouraging CC results for 

the conditioned UA types. Clearly heating greenhouses to grow tomatoes over winter in a 

northern clime has a high energy cost, with commensurate CC IPs if fossil fuels are relied on, 

as in Boston (natural gas as marginal fuel for heat and electricity). Comparing these 

greenhouse tomatoes to those from earlier LCAs in appendix H shows that our results align 

well with previous findings (1.27-1.97 kg CO2 eq/kg tomato in heated greenhouses). 

Moreover, the BI-C is modeled as procuring half of its heat through symbiosis with its host 

building (in the same manner as  Montreal farm on which selected system aspects were 

taken), hinting at the true unsuitability of this UA practice in Boston where free, dissipative 

energy is lacking. Alternatively, both GB-NC farms are markedly superior to conventional 

practices for CC IPs, a consequence of their minimal capital and energy inputs. Once again 

the BI-NC stands out: embodied carbon in the structural steel has significant CC IPs, but these 

are offset by energy savings at the host building (assumed 3% of heating and 5% of cooling), 

elucidating UA’s potentially meaningful mutualisms with the urban system. The land use 

(LU) IPs in Figure 1e unexpectedly showed that BI UA, though ostensibly devoid of direct 

land use, nonetheless has substantial indirect land use. For the BI-C, land occupation for 

natural gas extraction is substantial, while the BI-NC is affected by structural steel (mine 

infrastructure, energy inputs) and natural gas used in producing expanded clay media. The 

conventional tomato, also reliant on natural gas as heating source, has similar LU IPs for the 

production stage as the BI-C, while also having burdens for road area and diesel during 

distribution. The GB-C1 LU is a mix of natural gas demands, direct urban LU and greenhouse 

capital (wood and steel). Lastly, for the GB-NC farms, the combination of direct land 

occupation and low yields lead to elevated LU IPs above conventional tomatoes.  

3.2. Lettuce        

Figure 2 shows the IPs in the six impact categories for the production systems broken 

down in the same manner as in Figure 1. The lettuce results diverge markedly from the 

tomato results in that across the different sites UA does not perform consistently better than 

conventional agriculture for any single indicator. For CC IPs the conditioned systems are 

again hampered by heating demands and accompanying natural gas inputs (GB-C2 incurs 

additional penalties for 100% artificial light demands), which when combined with the low 

yields of lettuce, result in CC IP levels similar to red meat (Nijdam et al., 2012). Non-

conditioned ground-based farms perform slightly better than the conventionally cultivated 

market lettuce for the same reasons as the tomatoes. Lettuce results in FE and ME mirror each 

other. Energy inputs to the conditioned systems results in high IPs, while the capital inputs for 

the BI-NC farm mar its performance. The GB-NC farms perform better than conventional 

lettuce cultivation due to the latter’s fertilizer and biocide use. For WRD only the GB-C2’s 

closed-loop hydroponics performs comparably to market lettuce, with all of the others 

consuming significant irrigation volumes, as municipal water or ‘green water’. All of the 

ground-based UA farms’ LU IPs are elevated above conventional lettuce; with GB-C1, GB-

NC1 and GB-NC2 all driven by the same inputs as the tomato production. GB-C2 occupies 

very little land directly, but its high electricity consumption makes it a prohibitively costly for 

LU. Lastly, none of the UA systems provide an attractive alternative to conventional lettuce 

for RD where the same pattern as for the tomatoes continues for the BI-NC, GB-C1, GB-NC1 

and GB-NC2 systems, while the GB-C2 performs poorly due to space conditioning and 

equipment.   

4. Discussion 



The results confirm the intimations of a number of earlier reviews of UA (Goldstein et 

al., 2016c; Mok et al., 2014; Specht et al., 2013) that UA has the potential, in certain contexts, 

to be a far more environmentally damaging food source than conventional agriculture. 

Furthermore, the performance of UA is as varied as the types that exist, hinting at the need for 

a more nuanced discussion of UA, one that departs from the pro UA bias that has heretofore 

dominated the discourse. In the following sections we re-visit the three themes raised in the 

introduction (supply-chain efficiency; urban symbiosis potential; ex-situ environmental 

benefits) to see how our results align with these claims. To balance the discussion we also 

touch on some of the non-environmental considerations of UA.       

4.1. UA and supply-chain efficiency 

A primary argument for UA is reduced ‘food miles’ and the belief that this makes food 

more environmentally sustainable (Born and Purcell, 2006; Weber and Matthews, 2008). Here 

we have shown that in Boston’s case, this is not a defensible claim. Firstly, the food miles 

argument overestimates the importance of transport from a life-cycle perspective, which was 

never a dominant driver for either conventional case here, as supported by other LCAs and 

reviews of the topic (Born and Purcell, 2006; Garnett, 2011), although expanding the scope to 

a full life-cycle, including consumer transport, might affect this. Bulk-freight by ground over 

long distances, though certainly imparting environmental burdens, is relatively efficient on a 

per mass basis. The RD IP for the BI-C1 displays this through the significant contribution 

from distribution using a pickup truck, despite the short intra-city distances. 

By overemphasizing the importance of transport, UA advocates underestimate the 

environmental impacts of producing food (Garnett, 2011; Weber and Matthews, 2008), which 

is where the majority of burdens lie. Efficient use of agricultural inputs is intricately related to 

system performance, and in this regard the conventional cases appear to make for leaner 

supply chains than many of the UA alternatives in Boston. Table 4 explores this, showing per 

square-meter performance for the different production systems for CC and WRD IPs, as well 

as cumulative energy demand (sum of all direct and indirect energy during production).   

From this perspective one can see that the conventional systems, despite their 

considerable cumulative energy (heating, agrochemicals and capital) and irrigation demands 

relative to the UA options produce in substantial volumes to make for environmentally 

superior systems across a number of IPs. Where UA does provide a more sustainable 

substitute for the conventional cases, the UA system falls within one of two scenarios; very 

low inputs or high inputs matched by high yields. The GB-C2 system producing lettuce 

provides an example of the high input-high yields nexus for WRD IPs. Looking at the system 

it is clear that per unit growing space, the GB-C2 operation has the highest WRD IPs relative 

to other UA systems. Countering the substantial irrigation demand is a high yield with the end 

result that it is the only UA system out of the five that competes with conventional lettuce by 

this metric as visible in Table 3. Conversely, the cumulative energy demand, driven by 

heating and lighting, is too great to be offset by the system’s efficiency, resulting in the 

system’s elevated CC IPs.        

The GB-NC systems both display the benefits of having low inputs. For instance, the 

GB-C1 and GB-NC1 have the same yield of lettuce, but the high energy inputs of the former 

result in a CC IP that is orders of magnitude larger than the latter, since GB-NC1 has almost 

minimal direct energy requirements over its lifetime. Therefore, it might appear that UA in 

northern climates is best suited for summer production, where heating needs are negated, in 

line with previous studies in mild climates (Rothwell et al., 2015; Sanyé-Mengual et al., 

2015b). Despite their positive performance in a number of areas low-input UA systems have 

very high LU IPs, exacerbated by the lengthy cold periods of the year where the land is 

unused. Boston land is amongst the priciest in the United States (Davis and Palumbo, 2008), 



while the percentage of income spent on food by Americans is amongst the lowest globally 

(FAO, 2016), hampering the economic tractability of these systems in Boston, or similar 

markets. The low efficiency of GB-NC UA hints at why it is primarily applied on patches of 

underutilized municipal land, as a usufruct exercise between private owner and community-

members prior to development or as a food source in shrinking cities with abundant space 

(e.g. Detroit) (Smit et al., 2001).  

 Different Energy Scenarios 4.1.1.

Given that UA will likely have to produce in large quantities in order to compete with 

other uses of space in the city, it is worth investigating whether high yield UA systems, 

despite their relative inefficiency, could provide a sustainable alternative to conventional 

systems in Boston or other northern cities using alternative energy sources. We re-performed 

our analysis on the high-yield cases (BI-C and GB-C2), comparing the conventional lettuce 

and tomato to these systems with the existing marginal energy source (natural gas) replaced 

by photovoltaic, on-shore wind and hydroelectric power. The conventional production system 

was not altered since electricity is not a major input. We only show results for the CC, LU and 

RD IPs since these are most tied to the energy consumption in the previous assessment. 

Results are shown in table 5.   

Grid changes profoundly affect the results. For the BI-C tomato the wind and hydro 

power options clear preferences over the conventional tomato. The photovoltaic powered BI-

C, though an improvement in terms of CC IPs, is a step backwards for RD (metals in PV-

panels), and unsurprisingly considering the energy demands, LU; once again calling into 

question the claim of UA’s ability to lower the land usage of agriculture. Despite the hydro 

tomatoes’ strong performance, hydro power in the Northeast Power Coordinating Council 

(NPCC) region is not expected to grow within the operational lifetime of the BI-C project 

(U.S. Energy Information Administration, 2015), with natural gas remaining the marginal fuel 

for the foreseeable future. Electricity generation from wind and solar power in the Northeast 

US are likely to grow in coming decades, plausibly supporting UA production of tomatoes 

that is preferable to the status quo.  

The analysis for the lettuce deviates from the tomato. Although hydro is clearly the best 

choice amongst the energy sources, as mentioned above it is not a realistic marginal power 

source for Boston. Photovoltaic, though a marked improvement from the original analysis is 

still worse than conventional lettuce, while a farm utilizing wind power appears to match 

conventional lettuce for CC and RD, and performing slightly better for LU, offering the 

potential for this design to reduce the burdens of urban food demand within this constrained 

context. Since only energy intensive forms are really competitive in terms of yields (and 

hence LU), the marginal electricity source is crucial. If we have a future with unrestricted 

access to renewable energy, intensive UA may compete with conventional, though this is 

currently hypothetical. 

4.2. Urban symbiosis of UA and scaling up 

Another frequent claim in UA literature is the practice’s ability to be weaved within the 

urban fabric and affect pre-existing material and energy flows to reduce inputs to the farm and 

positively affect the urban environment (Goldstein et al., 2016c). Examples include solid 

(food) and liquid (toilet and kitchen water) waste assimilation, energy exchanges between 

farm and host building, runoff attenuation and mitigating the urban heat island effect (IBID). 

Where they were present in this study, these mutualisms seldom resulted in large benefits for 

the UA systems. Energy exchanges with the host building was one exception; BI-NC energy 

savings to the host building, meager as they are, counteracted the embodied burdens of the 

structural steel. For instance, the CC IP for tomato production was reduced by 77% from a no-



energy-savings scenario, while ME and LU were both reduced by about 20%. Bootstrapping 

on the dissipative energy of the host building, the BI-C reduces heating needs by 50%, 

essentially halving the CC IP for this system (2.14 instead of 4.11 kg CO2 eq./kg tomato), 

while also showing that such synergies cannot overcome the system’s low energy efficiency, 

thought shifts towards renewable energy systems in the future would reduce these advantages. 

Rainwater capture and subsequent runoff avoidance, though beneficial to the systems 

employing it, does not translate into significant environmental savings in this study, 

evidenced by the small, negative, black bars in Figures 1 and 2 (less than 1% across all IPs for 

BI-C and GB-C variants). The rainwater capture did have significant affect some IPs for the 

GB-NC farms (CC: 32-72%, FE: 18-43%, ME: 27-60%, RD: 13-32% reductions), but in an 

absolute sense the actual reductions of the IPs are small since the environmental burdens of 

these systems are very low for these impact categories. Moreover, this rainwater capture did 

nothing to ameliorate the water stress caused by irrigation since UA diverts water from other 

anthropogenic or ecosystems uses.  

The use of compost by the farms, though a potentially meaningful synergy between the 

city and farm, does not affect the results. This is because composting benefits (avoided 

landfilling, avoided fertilizer production) are given to the original waste generator who 

decided to forego landfilling. In other words, the mere presence of UA in Boston was not a 

driver of compost production, and hence, from consequential LCA thinking is not credited 

with related benefits. However, if UA were scale up within cities, inducing a market, 

allocating the benefits of composting to an UA operation would be justified. An existing 

example is the use of sewage sludge in UA in developing countries, where the production 

systems are prevalent enough to act as continual repositories for the waste, providing a 

disposal route where other options are absent (Qadir et al., 2010), though challenges of 

pathogenic contamination posed by low-tech nutrient capture techniques cannot be 

downplayed (Srikanth and Naik, 2004).     

Looking at single UA sites it is difficult to gauge the UA’s latent ability to affect large 

scale change. If densely applied throughout a city, scaling effects could manifest, whereby 

some of the espoused UA’s benefits, such as urban heat island mitigation (Pearson et al., 

2010), attenuation of runoff from rain events (Ackerman, 2012) and local biodiversity 

increases (Havaligi, 2011) result in substantial changes to city’s environmental performance. 

Most salient is whether a city-wide food production system would produce in appreciable 

volumes to satisfy a substantial proportion of urban food demands. Studies have been varied 

in their findings in this arena. An assessment of Oakland, US found that intensive utilization 

of suitable open space in the city by UA would only supply ~1% of the city’s fruit and 

vegetable needs (McClintock et al., 2013) – in consonance with the nominal yields found in 

this study for the GB-NC systems. Conversely, Orsini et al. (2014) estimated that rooftop UA 

could supply 77% of the fruit and vegetable demands in Bologna, IT. Future work could 

involve modelling the changes in a city’s total environmental burdens through the application 

of the UA systems that are preferential to conventional supply chains, answering the question 

about UA’s true ability to contribute to sustainable urban consumption regimes.  

The antagonisms of scaled up UA also require further exploration. If GB-NC UA is to be 

employed as an efficient food production means and an economically competitive land use, 

the application of both fertilizer and pesticides will likely increase, with a potential for 

adverse local environmental changes (eutrophication and contamination) and human health 

impacts (ambient pesticide exposure in densely populated urban settings). Moreover, the 

ability for plants to release toxic chemicals when stressed is also a consideration when scaling 

up to city-wide UA (Pataki et al., 2011). Ambient pollution uptake during cultivation is both a 

real risk and of primary concern to the purchasing public, requiring further exploration to help 

UA gain traction and support responsible application (Wortman and Lovell, 2013). 



4.3. Ex-situ environmental benefits and urban land use 

It is often espoused that UA could have a number of environmental benefits beyond the 

city boundary (Goldstein et al., 2016c), two of which, reduction of agricultural land 

occupation and sequestration of carbon we explore here. Results show that UA in Boston can 

actually have larger LU IPs than conventional agriculture for the GB-NC tomatoes where low 

yields mixed with direct land occupation. UA lettuce also had greater LU IPs than 

conventional lettuce since GB-NCs suffered from low yields, heating fuels exacerbated the 

conditioned farms, while capital inputs (mainly steel) elevated the BI-NC results. This finding 

casts doubt on the generality of the claim that UA could reduce net land occupation. The 

direct carbon uptake potential of the case farms is likely limited, since the bulk of the 

atmospheric CO2 converted to biomass is harvested for human consumption, digestion and 

subsequent release to the atmosphere, as opposed to long term storage in biomass or soil 

(Gliessman, 2015). Low-tillage UA would increase the amount of GHG sequestration in soil, 

but given that globally the application of such agricultural systems would only sequester 3-

6% of anthropogenic GHGs (Hutchinson et al., 2007), the contribution from UA appears 

meager. Moreover, the fact that conventional farming occurs directly on land, it is 

hypothetically better able to accumulate biomass in the soil than systems limited by growing 

medium mass (rooftop farms) or hydroponic systems. 

Nonetheless, it is worthwhile considering if Boston UA, under the best scenarios, could 

lead to significant reductions in farmland and carbon sequestration. Here we assume that BI-C 

is operating with solar power sources and that their production allows farmland in 

Massachusetts to return to forest, sequestering carbon. Yields for field tomatoes in 

Massachusetts are 1.4 kg/m2(USDA, 2013). Subtracting the space occupied by solar panels, 

every square meter of BI-C frees 48.5 m2 of farmland, with each square meter free farmland 

sequestering 0.95 kg CO2 annually (30 year timeframe) (Schmidinger and Stehfest, 2012). 

The BI-C is 3492.8 m2, producing 244.5 tons of tomatoes annually, resulting in 187 tonnes of 

CO2 eq avoided annually; 27.8 by replacing conventional tomatoes, the remainder through 

off-site carbon sequestration. A similar assessment with the GB-C2 shows a net GHG 

reduction of 11.4 kg CO2 eq/year through UA substitution of conventional produce and 

carbon sequestration. Appendix I outlines the underlying calculations.  

These hypothetical outcomes must be viewed skeptically, since US agricultural land 

(cropland and pasture) with little room for expansion (USDA, 2011; World Bank, 2015) will 

probably continue operating at full capacity to accommodate a growing US population (FAO, 

2016). Thus it is unlikely to see prime agricultural land in Massachusetts (or any other part of 

the US) returning to forest on account of UA production. A conservative appraisal, until 

contrary evidence can be found, is that it is improbably that UA result in these types of land 

use changes outside the city.         

 Urban land use 4.3.1.

If uncertainties preclude making solid assessments of the effects of UA on land use 

beyond the city boundary, LCA does allow us to evaluate the efficacy of UA compared to 

other uses of the space within the city. Figure 3 compares the amount of GHGs reduced 

annually for different application of a square meter in Boston. Here land either generates solar 

power which replaces electricity from the NPCC grid or substitutes conventional produce 

with UA production (high yield UA forms are assessed using NPCC grid and ‘clean’ 

electricity). Generation of solar power turns out to be far superior in terms of GHG reductions 

compared to both lettuce and tomato production. Thus if Boston is looking to enact land use 

policies that result in optimal GHG reductions per unit area, then promotion of solar 

generating capacity appears to be the superior choice over UA. This finding can likely be 

extrapolated to other northern cities with fossil fuel dominated energy grids. Appendix I 



outlines the calculations supporting Figure 3. However, façade integrated solar power 

(Quesada et al., 2012) combined with BI UA, could provide double dividends of conventional 

produce and electricity substitutions making for a more efficient use of urban space than 

either technology on its own.  

4.4. Profit vs. non-profit UA 

One dichotomy that emerged in this LCA was the divergence between for- and non-

profit UA. Non-profit UA is typically part of a larger exercise, be it community building, 

nutritional literacy, food-desert amelioration, parks and recreation, after-school programs, or 

any other number of intangibles (Sanyé-Mengual et al., 2015a). These benefits should be 

considered when one compares the tradeoffs of 26.5 kg CO2 eq/kg lettuce from a GB-C 

operation running natural gas heaters in winter to a 0.92 kg CO2 eq/kg lettuce from the 

prevailing supply-chain. Providing urbanites the experience to produce food (potentially 

stymieing food waste) or fostering alternative spaces in low-income neighborhoods for inner-

city youth are vital activities. Moreover, though less common in Boston than cities in the 

emerging economies, the ability to provide income and nutrition to locals cannot be 

discounted.  

Transparency in motives is essential. If a farmer partakes in UA for reasons aside from 

environmental sustainability, as all of the non-profit systems in this study do, then there is no 

contradiction between their motives and the environmental performance of their systems. 

However, if UA is done under the auspices of providing an environmentally preferable 

alternative to the status quo food system, as is often the case with for-profit UA, then it should 

operate in a way that aligns with this goal, such as tomato production for the BI-NC case. 

Contrarily, when these environmental goals are not met and no ancillary services are provided 

(e.g. lettuce from GB-C2), different objectives should be evoked; quality-control, freshness, 

etc.      

5. Conclusions 

This study has tested the urban environmental legend that UA provides environmentally 

superior food to conventional agriculture. We have used LCA to show that three of the 

common claims of UA advocates appear to be largely questionable: reducing food miles does 

not lead to more efficient supply-chains and reduced environmental impacts; the potential for 

symbiosis between farm and urban environment seem overstated at the farm scale; UA does 

not necessarily lead to reductions in land use and carbon sequestration. Though some of the 

UA systems do perform well against their conventional counterparts for certain IPs, a general 

recommendation for UA over conventional would be premature at this point. The UA systems 

that performed best are generally low-input systems with low yields, which cannot 

realistically compete with other land uses in the competitive markets of Boston and of most 

other large cities in northern climates. The conditioned UA forms with high yields, though 

ostensibly more financially tractable, are hampered by energy demands of year-round 

production in a northern climate and are environmentally deleterious given the underlying 

energy grid. Moreover, even when UA performs better than conventional agriculture, it turns 

out that an equivalent amount of space producing solar power would better combat GHGs, 

though tradeoffs in other IPs should then also be considered. Though this study was 

performed on UA in Boston, the conclusions likely apply to UA in other northern cities with 

cold winters and fossil fuel energy sources.  

Ultimately, shifting towards a well-fed world that respects the finite carrying capacity of 

the planet will require a manifold agenda, including a reduction in the consumption of high-

intensity foods (meat and dairy) (Goldstein et al., 2016b; Tilman and Clark, 2014) and a 

reduction of the 1/3 of global edibles discarded annually (FAO, 2013). Perhaps the agency of 



cities would be better applied towards these ends than towards UA in combating their food-

borne environmental impacts. Even if UA’s gross environmental benefits may be limited, 

there is still a place for it in cities as a constructive, social enterprise, as the non-profit cases in 

this study have shown.      

One unanswered question is whether a city that fully utilizes UA will actually make a 

dent in their food related environmental impacts. An assessment at the urban level which 

looks at available space and production capacity given different UA forms, and then assesses 

the amount of conventional food displaced by the urban production system would serve as a 

good starting point to understand if UA is a meaningful design intervention to combat the 

environmental challenges of prevailing urban food supply chains, whilst also testing scaling 

effects on some of the purported environmental benefits to the city at large. However, in light 

of the reality that the meat and dairy are the dominant drivers of food related environmental 

impacts (Foley et al., 2011; Tilman and Clark, 2014), the ability of UA to significantly alter a 

city’s environmental burdens, even given potential urban symbiosis, appears limited.  
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Attribut

e 

 

Example 

BI-C 

Gotham 

Greens: 

www.gothamgr

eens.com 

 

BI-NC 

Brooklyn Grange: 

http://brooklyngran

gefarm.com 

GB-C 

Bright Farms; 

http://www.bright

farms.com 

GB-NC 

Edgemere farm: 

http://www.edgem

erefarm.org 

 

Capital 

inputs 

 

High: 

greenhouse, 

supporting 

building 

buttressing, 

irrigation, 

HVAC 

 

 

Medium: 

supporting building 

buttressing, 

irrigation, green 

roof membranes 

and media 

 

High: same as BI-

C minus 

structural 

buttressing 

 

Low: irrigation, 

growing beds 

Operatio

nal 

inputs 

Low for water. 

Potentially 

high for 

nutrients and 

space 

conditioning (if 

heated) 

 

Medium: can 

capture nutrients at 

parapet and 

rainwater 

Same as BI-C High: loss of 

nutrients and 

runoff  

Urban 

symbiosi

s 

potential 

Medium: 

interacts with 

host building 

energy system 

and can capture 

rainwater 

 

High: same as BI-

C, but can better 

utilize organic 

waste (compost) 

Low: no building 

interaction, less 

likely to accept 

organic waste or 

harvest rainwater 

Medium: accepts 

rainwater and 

compost, but no 

links to buildings 

Urban 

environ

mental 

benefits 

Medium: 

reduced urban 

heat island 

(UHI) and 

potentially 

runoff 

 

High: reduced UHI 

and runoff. 

Potential 

biodiversity 

hotspot.  

Same as BI-C Same as BI-NC 

Producti

on 

efficienc

y 

High Medium High Low 

 

Table 1 – Four predominant UA types based on predicted material and energy regimes as 

identified by Goldstein et al. (2016c) Examples of each are included in the current study (see 

Table 2). 

 

  



UA 

Case 

Farm 

Size 

(m2) 

Technology Location Growing 

Season 

For 

Profit 

Crop(s) 

assessed 

       

GB-

NC1 

560 field Boston April to 

October 

no tomato, 

arugula 

 

GB-

NC2 

1269 field NYC April to 

October 

no tomato, 

lettuce 

 

GB-

C1 

558 soil media in 

greenhouse 

(heated) 

Boston All year no tomato, salad 

greens 

 

GB-

C2 

30 modular 

hydroponic unit 

 - All year yes lettuce 

 

BI-

NC 

1469 soil media on 

green roof 

Boston April to 

October 

yes tomato, 

lettuce 

 

BI-C 3493 hydroponic 

greenhouse 

(heated) 

Boston All year yes tomato 

 

Table 2 – General attributes of the UA cases assessed in this study. The GB-C2 is a portable 

unit and therefore has no fixed location, though the LCI is for east coast US operation. All 

farms are operational with the exception of the hypothetical BI-C. See appendices A-F for 

system descriptions. 

 

  



 

  

BI-C 
BI-

NC 

G

B-

C

1 

GB-

NC1 

GB-

NC2 

Con

vent

iona

l 

BI

-

N

C 

G

B-

C

1 

G

B-

C

2 

G

B-

N

C1 

G

B-

N

C2 

Con

vent

iona

l 

  Tomato Lettuce 

CC 

(kg 

CO2 

eq) 

2.

15 
0.26 1.58 0.08 

0.

07 
0.59 

0.

40 

26

.5

1 

8.

65 

0.2

3 

0.0

8 
0.92 

FE 

(CTU 

eq) 

1.

30 
1.35 0.86 0.15 

0.

13 
9.09 

4.

55 

8.

83 

6.

08 

0.3

8 

0.2

7 
1.97 

ME 

(kg N 

eq) 

1.

0*

10
-3 

4.3*

10-4 

6.3*10-

4 

8.9*

10-5 

8.

1*

10
-5 

1.4*

10-3 

1.

4*

10
-3 

7.

9*

10
-3 

3.

8*

10
-3 

3.9

*1

0-4 

1.4

*1

0-4 

2.9*

10-3 

WRD 

(m3 

H2O 

eq) 

9.

0*

10
-3 

6.8*

10-2 

6.6*10-

2 

5.1*

10-2 

7.

4*

10
-2 

3.0*

10-3 

0.

20 

0.

18 

0.

02 

0.1

7 

0.2

2 
0.02 

LU 

(kg C 

deficit

) 

2.

03 
1.25 2.43 5.10 

3.

63 
3.35 

4.

23 

30

.2

3 

8.

78 

30.

48 

18.

73 
6.55 

RD 

(kg Sb 

eq) 

1.

4*

10
-5 

1.1*

10-4 

3.1*10-

5 

1.3*

10-5 

1.

0*

10
-5 

1.3*

10-5 

3.

6*

10
-4 

2.

3*

10
-4 

4.

3*

10
-4 

3.6

*1

0-4 

2.4

*1

0-5 

2.3*

10-5 

 

Table 3 – Results per functional unit of tomato and lettuce for CC in kilogram CO2 

equivalents (kg CO2 eq), FE in comparative toxicity units for ecotoxicity (CTUe), ME in 

kilogram nitrogen equivalents (kg N eq), WRD in m3 H2O equivalents (m3 H2O eq), LU in 

kilogram carbon deficit (kg C deficit) and RD in kilogram antimony equivalent (kg Sb eq). 

Color spectrum traverses white (lowest IP) to dark grey (highest IP). 

  



 

Indicator BI-

C 

BI-

NC 

GB-

C1 

GB-

C2 

GB-

NC1 

GB-

NC2 

Conventional 

Tomato        

CC (kg CO2/m
2) 150 2.1 15.5 - 0.3 0.5 14.7 

Cumulative 

Energy Demand 

(kWh/m2) 

1090 15 90 - 8 5 114 

WRD (m3/m2) 0.63 1.11 0.64 - 0.23 0.51 0.099 

Yields (kg/m2) 70.0 16.3 9.8 - 4.4 6.9 40.6 

Lettuce        

CC (kg CO2/m
2) - 1.9 19.2 250.6 0.2 0.11 11.0 

Cumulative 

Energy Demand 

(kWh/m2) 

- 14 104 1830 7 3 94.2 

WRD (m3/m2) - 0.94 0.13 0.52 0.12 0.29 0.3 

Yields (kg/m2) - 4.8 0.7 53.6 0.7 1.3 15.8 

 

  

Table 4 – CC, cumulative energy demand, WRD and yields per unit growing area for the different UA 

systems and crops.  



 

NPC

C 

grid 

Phot

ovolt

aic 

On-

shore 

Wind 

Hy

dr

o 

Conv

entio

nal 

NPC

C 

grid 

Phot

ovolt

aic 

On-

shore 

Wind 

Hy

dr

o 

Conv

entio

nal 

  Tomato (BI-C) Lettuce (GB-C2) 

CC (kg 

CO2 

eq.) 

2.15 0.478 0.323 
0.2

41 
0.591 8.65 1.65 0.903 

0.5

15 
0.925 

LU (kg 

C 

deficit) 

2.03 28.9 0.735 
0.3

79 
3.35 8.78 136 3.63 

1.9

5 
6.55 

RD (kg 

Sb eq.) 

1.4*

10-4 

1.9*1

0-4 

4.0*10
-6 

1.9

*1

0-6 

1.3*1

0-5 

4.3*

10-5 

8.8*1

0-4 

2.4*10
-5 

1.4

*1

0-5 

2.3*1

0-5 

 

Table 5 – LCA results for BI-C producing 1 kg tomatoes and GB-C2 producing 1 kg lettuce 

using different marginal electricity sources. Northeast Power Coordinating Council (NPCC) 

grid is the default scenario from the earlier results. 

 

Figure 1) IPs for production of 1 kg fresh tomatoes with the studied UA systems and a 

conventional system for CC (a), FE (b), ME (c), WRD (d), LU (e) and RD (f). Black triangle 

is the aggregate BI-NC CC IP. 
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Figure 2) IPs for production of 1 kg fresh tomatoes with the studied UA systems and a 

conventional system for CC (a), FE (b), ME (c), WRD (d), LU (e) and RD (f). 
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Figure 3 – CC impacts per m2 of different farms assuming a substitution of conventional 

tomato (a) and lettuce (b) for UA produce. Net impact of 1 m2 solar panel installation is also 

shown. 

 



Appendix A: Life cycle inventory for building integrated conditioned farming system (BI-C) 

The supplementary information is arranged as follow: description of estimation of capital inputs where 
primary data was lacking; description of operational inputs where primary data was lacking; component 
lifetimes and recycling rates; life cycle inventory for functional unit.   

BI-C: Capital Inputs 

 

Figure 1 - BI-C system in Google SketchUp 

The building integrated conditioned UA (referred to as BI-C in the article text) site is intended to 
approximate the operation of a BI-C farm in Boston, US with a growing space of 3493 m2. The life cycle 
inventory is based off of discussions with a rooftop greenhouse designer who has experience designing BI-C 
farms in this climate. Through discussions with the designer a base design for the BI-C was developed 
including the structural, heating-ventilation-air-conditioning (HVAC) system, irrigation system, operational 
energy, yields and irrigation needs. Grey literature and information publically available about a BI-C farm 
operating were used to better refine the model. Figure 1 shows the envelope and exterior structural 
elements of the BI-C system. Transport of capital is assumed to be included within the inventories of the 
materials taken from the ecoinvent 3.1 database, which are global averages for transport from place of 
production to the global market.    

Steel Structural Components 

The system consists of a system of 11 columns along the x-axis and 17 columns along the y-axis. Along the 
exterior rows of columns along the y-axis, there are extra columns between the 17 columns, bringing the 
total along these two rows up to 32 columns. All columns are 5.8 meters high. Beams are connected to the 
columns running along the x-axis, making for a total of 17 girders including the exterior walls. Interior x-
axes have truss systems running the length of the farm. Each y-axis row of columns also has two braces for 
additional structural buttressing. At the bottom of the greenhouse are 4 radiator tubes, each running the 
entire perimeter of the operation (these are not structural in nature, but have been included here since they 
are in the figure).  

Figure 2 outlines the steel structural components of the BI-C system.  Figure 3 shows a section of the BI-C 
system along with all of the different constituent components. Table 1 outlines the amounts of steel 
required for the BI-C’s structural support. 



 

Figure 2 - Steel structural components of the BI-C system 

 

Figure 3 - Different components of the BI-C system's structural components. The perimeter radiator tubing 
and light fixtures are also shown. 

Table 1 - Steel components 

Component Number Length(m) Profile Volume(m3) Mass 
(kg) 

Notes 

Column 217 5.8 0.18 m x 
0.18 m 
thickness(t) = 
0.0055 m 

2.45 19729 Profile 
provided by 
consultant 

Beam 170 5.9 0.1 m x 0.05 
m  
t = 0.004 m   

0.59 4715 Profile 
provided by 
consultant 

Bottom truss 
component 

150 5.9 0.1 m x 0.05 
m 
t = 0.004 m 

0.52 4161 Profile 
provided by 
consultant 

Vertical truss 
component 

150 0.63 0.05 m x 
0.05 m 
t = 0.0025 m 

0.023 185 Profile 
provided by 
consultant 



Diagonal truss 
component 

2700 0.725 0.05 m x 
0.05 m 
t = 0.0025 m 

0.42 3338 Profile 
provided by 
consultant 

Strut  16 3.72 0.05 m x 
0.05 m 
t = 0.0025 m 

0.015 117 Profile 
provided by 
consultant 

Diagonal 
brace 

64 4.72 0.05 m x 
0.05 m 
t = 0.0025 m 

0.074 593 Profile 
provided by 
consultant 

    Total 32838  
 

Aluminum Structural Components 

Rows of aluminum girders run along the y-axis, 2 rows per column, making for 21 rows of beams in total 
including the edges. 20 gables run the length of the greenhouse along the y-axis. Each gable has an 
aluminum ridge running the length of the building. Around the greenhouse perimeter, on the x-dimension, 
there four aluminum columns running the height of the greenhouse per gable, along with a post that meets 
the ridge peak in the center. Along the y-dimension there are four exterior columns per set of steel columns 
running in that direction around the perimeter of the building. Along each ridge are aluminum rafters, for 
every set of steel columns running in the y direction. The density of the rafters are doubled along both sides 
of the exterior ridges running the length of the y-axis, and between the first two sets of columns running the 
x-axis on both sides of the greenhouse. Lastly, there are two periphery braces wrapped around the building.  
Figure 4 shows the entire aluminum structure, figure 5 highlights the individual components, while table 2 
shows the amounts of aluminum used in the BI-C farm.  

 

Figure 4 - Aluminum components of BI-C operation 



 

Figure 5 - Detailed shot of aluminum components of BI-C operation 

Table 2 - Aluminum components 

Component Number Length (m) Linear 
Density 
(kg/m) 

Mass (kg) Notes 

Girder 21 59.2 4 4973 Linear density estimated 
by consultant 

Ridge 20 59.2 2 2368 Linear density estimated 
by consultant 

Post 40 0.57 3 68 Linear density estimated 
by consultant 

Rafter 2992 1.57 3 14092 Linear density estimated 
by consultant 

Exterior Column 296 5.8 3 5144 Linear density estimated 
by consultant 

Periphery Brace 2 236.4 3 1418 Linear density estimated 
by consultant 

   Total 28064  

Glass Skin 

The BI-C operation is assumed to be clad with a 4 mm thick glass membrane. The area was calculated from 
the Google SketchUp model. Figure 6 shows the glass skin and table 3 shows the inventory for the glass 
skin.  



 

Figure 6 - Glass cladding 

Table 3 - Glass components 

Component Area (m2) Thickness (m) Density (kg/m3) Mass (kg) 
Glass 4788 0.004 2600 49795 
 

Floor 

According to discussions with the consultant, roof surface is not different than a traditional flat roof with 
the exception of the placement of a polypropylene protective layer. Table 4 shows the amount of propylene 
estimated for the greenhouse. 

Table 4 - Floor components 

Component Area (m2) Density (kg/m2) Mass 
(kg) 

Notes 

Polypropylene floor 
cover 

3493 0.1 349 Density taken from a standard 
ground cover used in industry: 
http://bit.ly/1JGI6qE  

Mechanical Components 

The mechanical system is assumed to consist of a louver system to provide ventilation along the ridges and a 
system of screens that provide insulation and provide shading when necessary. Each ridge has three louvers, 
making 20 louvers each with a rack box. There are three motors controlling the louvers along the entire 
greenhouse. The shading system consists of shading curtains above the growing area, while the walls have 
blackout curtains. All of the curtains are retracted by means of retracting a write using a motor – both the 
motor and the wire have been ignored. Table 5 outlines the different components of the system.  

Table 5 - Components of the mechanical system 

Component Amount Units Unit 
Mass 

Units Mass 
(kg) 

Notes 

Metal Components 
Rack box 60 units 10 kg/unit 600 Assumed to be steel. Model 

THG25R, 1100 mm stroke: 
http://bit.ly/1R5tqaM 

Motor 3 units 33.4 kg/unit 100 Assumed to be Wadsworth 
100A: 
http://bit.ly/1kpIWS3 with 
a mass of 75% steel, 10% 



copper, 10% aluminum, 5% 
PET 

 Total 700  
Polyester Components 
Roof  3493 m2 0.0435 kg/m2 304 Taken as industry standard 

shading material: 
http://bit.ly/1MEJcDh 

Wall 1369 m2 0.06732 kg/m2 184 Taken as 66/34 
polyolefin/polyester blend: 
http://bit.ly/1SkxCUX 

 Total 488  
Polyolefin Components 
Wall 1369 m2 0.13068 kg/m2 358 Taken as 66/34 

polyolefin/polyester blend: 
http://bit.ly/1SkxCUX 

 Total 358  
 

Heating-Ventilation-Air-Conditioning (HVAC) 

The HVAC system consists of a ventilation system (discussed above), a perimeter radiator system, a radiator 
system along the floor, air handling units connected to convection tubing and a system of evaporative 
cooling pads. The perimeter radiator system can be seen in figures 2 and 3 running along the bottom of the 
structure. The radiator tubing along the floor runs in the y-direction in the same direction of the ridges. For 
every row of steel columns running along the y-direction there are three sets of radiator tubes and 4 grow 
gutters. Each grow gutter has a convection tube underneath it running the length of the greenhouse. The 
evaporative cooling pads are along the length of one of the walls running in the y-direction. It is assumed 
that a negative air pressure is maintained in the greenhouse obviating the need for a fan. 

There is one air handling unit (AHU) per convection tube. According the consultant, at typical AHU 
consists of a fan driving air passing over a copper coil. The AHU was sized to maintain a temperature of 20° 
C when the outside temperature is -25° C, using a simple heat balance equation (heat conducted through 
glass is equal to the amount to be supplied by the AHU), in order to provide an order of magnitude 
estimate of the material equipments for this piece of equipment.     

Figure 7 shows the setup of HVAC and growing equipment (to be explained below) within each set of steel 
columns running along the y direction. Figure 8 shows the detailed components of the HVAC and growing 
system. Table 6 shows the material inputs to the HVAC system.   



 

Figure 7 - HVAC and grow system looking along the y-direction of the BI-C operation. 4 grow gutters, 
convection tubes and AHU’s between each row of columns in the y-direction. 3 sets of radiator tubes in the 
same direction. 

 

Figure 8 - Detailed diagram of the HVAC and grow system. 

Table 6 - Components of the HVAC system 

Component Amount Length 
(m) 

Dimensions Density 
(kg/m3) 

Mass 
(kg) 

Notes 

Steel Components 
Perimeter 
radiative 
tubing 

4 236.4 d = 0.025 m  
t = 0.002 m 

8050 2295 Dimensions estimated by 
consultant. 

Floor 
radiator 
tubing 

60 55 d = 0.025 m  
t = 0.002 m 

8050 8008 Dimensions estimated by 
consultant. Tubes are shorter 
than building length to allow 
for mobility within the farm 

Support 1800 - - - 900 Assumed to weigh 0.5 kg per 
unit 

AHU 40 - - - 351 AHU sized to the heating 
demand of the BI-C weighs 
10.45 kg/ 



http://bit.ly/1OWWM6A. 
Material breakdown given by 
Nyman and Simonson (2004). 

 Total 11555  
Copper Components 
AHU 40 - - - 8 See above 
 Total 8  
Polyurethane Components 
AHU 40 - - - 0.3 See above 
 Total 0.3  
Wool Components 
AHU 40 - - - 28 See above 
 Total 28  
Fiberglass Components 
AHU 40 - - - 3 See above 
 Total 3  
Aluminum Components 
AHU 40 - - - 34 See above 
 Total 34  
Rubber Components 
AHU 40 - - - 0.4 See above 

 Total 0.4  
Low Density Polyethylene Components 
Convection 
tubing 

40 55 - 0.2 
kg/m 

440 Density taken from: 
http://bit.ly/1NOcnYG 

 Total 440  
Paper Components 
Evaporative 
pad 

1 59.2 - 18 
kg/m 

1048 Density taken from: 
http://bit.ly/1R5OwWs 

 Total 1048  

Electrical and Lighting 

The BI-C is light by high power sodium lamps. There are assumed to be four lamps hanging from each truss 
section (see figure 3), making for a total of 600 lamps in the BI-C farm. The material composition of the 
lamps was taken from the work of Rosado et al. (2014). It is assumed that these lamps are all connected by 
medium voltage cables to a central position along one of the walls running in the y-direction. Tables 7 and 
8 outline the rough material inputs to electrical and lighting system. Additionally, it has been assumed that 
at least one computer it used as hub for controlling the greenhouse operations, but this is not included in 
tables 7 or 8, but it is in the life cycle inventory for the system (see table 23). 

Table 7 - Components of the lighting and electrical system 

Component Amount Unit Total Units Notes 
Lamp 600 lamps 2820 kg Assumed to be 1000W model 

of brand: 
http://bit.ly/1QXUYjN 

Cable 15 rows 885 m 59 m per row 
 

Table 8 - Material inputs to lighting and electrical system 

Component Amount Unit Total 
(kg) 

Notes 

Copper Components 
Copper conductor 
(cable) 

6.8 kg/m 6034 Cable components taken as 
http://bit.ly/1YPVbF9 

Copper shield (cable) 2.1 kg/m 1833 Same source as conductor 



Copper element 
(lamp) 

0.17 kg/kg 
lamp 

484 (Rosado et al. 2014) 

 Total 8351  
Steel Components 
Steel (lamp) 0.02 kg/kg 

lamp 
60 (Rosado et al. 2014) 

 Total 60  
Aluminum Components 
Aluminum (lamp) 0.15 kg/kg 

lamp 
420 (Rosado et al. 2014) 

 Total 420  
High Density Polyethylene 
HDPE (lamp) 0.04 kg/kg 

lamp 
106 (Rosado et al. 2014) 

 Total 106  
Glass Components 
Glass (lamp) 0.6 kg/kg 

lamp 
1692 (Rosado et al. 2014) 

 Total 1692  
Expanded Polypropylene Rubber Components 
Inner screen (cable) 0.09 kg/m 79 Same source as conductor 
Insulator (cable) 2.7 kg/m 2377 Same source as conductor 
Outer screen (table) 0.2 kg/m 175 Same source as conductor 

 Total 2631  
Polyvinylchloride Components 
Jacket (cable) 0.53 kg/m 468 Same source as conductor 

 Total 468  

Irrigation System 

The grow system consists of 4 grow gutters running between each set of steel columns for the length of the 
y-axis of the greenhouse (see figure 7), making for a total of 40 gutters. The gutters serve as a base for 
rockwool grow cubes, of which there are 112 per grow gutter. Along the length of each grow gutter there is 
assumed to be a PVC manifold which allows for drip irrigation (see figure 8). The grow gutter hang from 
the truss system by means of steel cables – the cables have been ignored in the model. The sizing of the 
pump is based on a 2.4 L/d/plant at maturity, and a planting density of approximately 2.5 plants/m2 
(Selina and Bledsoe 2002). It is also assumed that two tanks are located in the supporting building in order 
to store rainwater for irrigation in line with a similar farm in Montreal, CA (Lufa Farms 2014a). Piping to 
deliver the water from the storage tanks to the irrigation manifold is ignored. There is also a UV filter 
which is used to clean the captured irrigation water, but this has been ignored due to its negligible size and 
lack of information. Each grow gutter is fed by a soft polyvinylchloride dripline running its length, which 
itself is fed by a manifold running along the length of one of the x-direction walls. Table 9 outlines the 
material inputs to the irrigation system. 

Table 9 - Material components of BI-C irrigation system 

Component Number Amount Units Dimensions Mass 
(kg) 

Notes 

Steel Components 
Grow gutter 40 54.2 m 0.3 m x 0.09 

m 
t = 0.0008 m 

4607 Taken as an average model 
from this range of products 
http://bit.ly/1RR8ciy 

Pump 2 27 kg/pump- - 54 One pump operating and 
one for backup: 
http://bit.ly/1mQMONE 

 Total 4661  
Polyurethane Components 
Grow gutter 40 54.2 m 0.3 m x 0.09 34 Taken as an average model 



coating m 
t = 4*10-5 m 

from this range of products 
http://bit.ly/1RR8ciy 

 Total 34  
Copper Components 
Pump 2 3.6 kg/pump- - 7.2  
 Total 7.2  
Aluminum Components 
Pump 2 3.6 kg/pump- - 7.2  
 Total 7.2  
Polyvinylchloride Components 
Dripline 40 59.2 m d = 0.03175 

m 
Schedule 40 

1549 - 

Manifold 1 59 m d = 0.03175 
m 
Schedule 40 

38 - 

 Total 1587  
Rubber Components 
Pump 2 1.8 kg/pump- - 3.6  
 Total 3.6  
High Density Polyethylene Components 
Tank 2 2506 kg/tank 20 000 gal 5012 Tank taken from 

http://bit.ly/1QZ7QX0 
 Total 5012  
Rock Wool Components 
Grow Cubes 4480 0.3 kg/cube - 1425 - 
 Total 1425  

Waste Management System 

The BI-C farm is equipped with a composter to deal with a portion of the organic waste generated at the 
site and produce compost. The composter type and size were based off of an existing BI-C operation in 
Montreal, QC with a similar growing area and yield (Church 2013). The composter is of the rotary drum 
variety and the mass is assumed to consist entirely of steel.  

Because the compost is sold on the market, implying that some of the burdens for the production of the 
compost should be the onus of the purchaser. The burden sharing between the agent generating the refuse 
and the agent purchasing the daughter products of its treatment has been a matter of debate in LCA since 
the methods inception (Allacker et al. 2014). Here we opt for a 50:50 split between the BI-C operation 
producing the waste and the end user of the compost.    

Table 10 - BI-C waste management system material inputs 

Component Number Unit Mass (kg) Mass (kg) Notes 
Composter 1 2000 2000 Taken as 16’ model: http://bit.ly/1VpueYC 

Structural Support 

See S2.1 of the BI-NC farm to see the assumptions made in calculating the extra steel demands for the roof 
with the greenhouse on top. It was estimated that no extra concrete would be required but 7.6 tonnes of 
steel would be needed in the farm scenario.  

Table 11 – Steel and concrete needs for the BI-C in the absence of a farm 

Component Load Unit Mass  Unit 
corrugated sheet t=0.7 556.866325 kN 56.8 t 
secondary beams IPN160 144.89692 kN 14.8 t 
primary beams(truss) C200 457.69724 kN 46.7 t 
total steel weight 1159.460485 kN 118.2 t 



     
total concrete weight 3.7311246 kN 0.4 t 
 

Table 12 - Steel and concrete needs for the BI-C with a farm incorporated 

Component Load Unit Mass  Unit 
corrugated sheet t=1 556.866325 kN 56.8 t 
secondary beams IPN180 144.89692 kN 14.8 t 
primary beams(truss) C220 531.86952 kN 54.2 t 
total steel weight 1233.632765 kN 125.8 t 
     
total concrete weight 3.7311246 kN 0.380339 t 
 

BI-C: Operating Characteristics and Inputs 

The operating inputs for the BI-C operation are based off of secondary literature sources and discussions 
with a rooftop greenhouse designer, and should thus approximate the characteristics of a BI-C operation in 
the northeast of North America. It is assumed that the BI-C only produces tomatoes, and the operating 
inputs are in accordance with this. 

Yields 

A literature search was performed to understand the range of possible yields for tomatoes grown in 
advanced greenhouse operations. Table 13 outlines these findings. Based on these findings and discussions 
with the greenhouse designer a base production rate of 70 kg of tomatoes per square meter greenhouse space per 
year (70 kg/m2/year) is adopted for this study. With a total greenhouse space of 3492.8 m2, a gross 
production volume of 244 496 kg of fresh tomatoes per year is expected for this operation. 

Table 13 - Greenhouse tomato yields in literature 

Yield (kg/m2/year) Study 
56.2 (De Gelder et al. 2005) 
60 (De Gelder et al. 2012) 
65 (Asci et al. 2013) 
94.5 (Unknown 2015) 
80-100 (Ho 2004) 
100 (Kubota 2009) 
 

Irrigation 

The BI-C has irrigation water supplied from both the municipal water system and rainwater that is stored in 
tanks in the supporting building’s basement. The first step was the calculation of gross irrigation demands 
for the tomato crops. An initial guess can be gleaned from data on the irrigation inputs per unit output of 
tomato in greenhouse production schemes, shown in table 14.  

Table 14 - Greenhouse tomato irrigation demands in literature 

Irrigation Input (kg water/kg 
tomato) 

Study Notes 

4, 15 or 16 (Ruijs 2011) High efficiency with water 
capture and recycling 

26 (Selina and Bledsoe 2002) High efficiency with water 
capture and recycling 

136 (Stefanelli et al. 2013) Standard hydroponic method 
without water recycling 

 



In discussion with the aforementioned greenhouse designer, the Selina and Bledsoe number of 26 kg 
water/kg tomato was taken, as this is within the operating range of a high-tech greenhouse, but does not 
assume an absolute best-case scenario. Taking this number and multiplying it by the estimated yield, the 
total irrigation demands are 6347 m3 per annum, supplied from both the municipal water system and rain 
fed irrigation. 

To determine the split between rain fed and municipal irrigation, the amount of rain available and tank 
capacity were considered. The amount of rain was based on that of rainfall in the Allston neighborhood of 
Boston.  

Daily rainfall for Boston in the year 2014 (March to December) and 2015 (January and February) were 
taken from the Boston Water and Sewer Commission (Boston Sewer and Water Commission 2015). The 
amount of water that could be used for irrigation was limited by the storage capacity of the tanks (151.6 
m3). The volume of water (Vt) at any given time in the tank was calculated as, 

Vt = Vt-1 + Vin,t – Vout,t 

Where, Vt-1 is the amount of water left in the tank from the previous day, Vin,t is the amount of water 
entering the tank from precipitation (taken as the greenhouse area times the precipitation amount), and 
Vout,t is the amount of water leaving the tank to irrigate the plants on the same day. When daily deluges 
exceeded the capacity of the tank, V(t) was set to the tank volume, and Vin,t subsequently modeled as zero 
until space was generated. If there was no water in the tank, then it was assumed that Vout, t was also zero.  

To determine irrigation demands the field measurements of Selina and Bledsoe (2002) were taken, whereby 
plants seedlings were assumed to have an irrigation demand of 0.05 L/plant/day, which rises linearly over a 
42 day period to 2.4 L/plant/day, with this level sustained for a 126 day period. After the 168 day period it 
was assumed that a week-long break occurred, which was then followed by another round of growing. This 
meant that assuming a first planting on March 1st a second planting would occur on August 23rd. The 
planting on March first makes sense as it would allow the greenhouse to be in full bloom during the coldest 
months of the year, thereby maximizing the energy dissipated from plant respiration. The number of plants 
in the greenhouse was also calculated from Selina and Bledsoe (2002), whose 78078 m2 greenhouse 
contained an estimated 200 000 plants, or roughly 2.56 plants/m2, which works out to 8947 plants per 
growing period. Checking this assumption the annual yield can be divided by the total number of plants to 
give approximately 14 kg, well aligned with general hothouse tomato production characteristics (Ford 
2013). 

Using the above methods it was found that the annual irrigation demand of the greenhouse would be 6353 
m3, supplied as 3190 m3 from rainwater and 3164 m3 from municipal sources. Discrepancies between the above 
noted total irrigation demand based off of the 26 kg water/kg tomato (6357 m3 total water) are assumed to 
be due to rounding. It should also be noted that in the LCA, the rainwater used as irrigation was also 
modeled as avoided runoff to the wastewater treatment plant as the water would have went to the plant in 
the absence of the BI-C operation.    

Rockwool cubes are assumed to be used as a growing medium. Each cube is used once and then disposed. 
There is one cube per plant, which amounts to 17894 cubes per year. Each cube has a mass of 0.3 kg, 
amounting to 5368 kg of rock wool per year. 

Heating Energy 

Heating energy was taken from a review of greenhouse performance which found that best-practice 
greenhouses in the Netherlands used 520 kWh/m2/year for an intensive edible crop (e.g. tomato) (Carbon 
Trust 2011). This was scaled to the Boston, US location using climate data, assuming that the amount of 
heating input would be directly related to the number of heating degree days (HDD) in the city. 
Furthermore, it was assumed that 50% of the heating demands were met through symbiosis with the 
building below, in line with the claims of an existing BI-C operation in Montreal, Canada (Hage 2012). Ten 
year average HDD in Boston from 2005-2015 were taken from the US National Oceanic and Atmospheric 
Administration centers database (National Oceanic and Atmospheric Administration 2016), while the 
HDD for the Netherlands were averaged from 2000-2009 (Eurostat 2013). The details of the calculation are 



outlined in table 15. Electricity mix from 2012-2040 was used for the Northeast (see BI-NC SI2.2 for details 
on grid composition). 

Table 15 - Details for heating of the BI-C operation 

Heating 
Demand in 
High 
Efficiency 
Dutch 
Greenhouse 
(kWh/m2/year) 

HDD 
(Netherlands) 

HDD 
(Boston, 
US) 

Ratio 
(HDDMTL/HDDNL) 

Estimated 
heating 
demand for BI-
C 
(kWh/m2/year) 

Estimated 
heating 
demand - 50% 
supplied from 
building 
(kWh/m2/year) 

520 2644 ± 116 3032 ± 
128 

1.15 596 298 

 

It should be noted that this back-of-the envelope calculation may be an overestimate since we have not 
accounted for the increased the higher solar irradiance in Boston compared to the Netherlands which 
would be captured as heat in the greenhouse. Taking the total area of the BI-C farm, the heating demands are 
calculated as 1 041 393 kWh/year. 

Lighting Energy 

Lighting energy was taken in the same manner as the heating energy; an initial estimate was taken from 
high-tech Dutch greenhouses (Carbon Trust 2011), and then scaled to the Boston site, but this time using 
solar irradiance. Table 16 outlines the calculation. Solar irradiance for The Netherlands was taken as the 
national average over a 22 year period (Solar Electricity Handbook 2015). Solar irradiance for Boston was 
taken as the 1999-2008 average from the National Renewable Energy Laboratory’s solar resource map 
(2015). 

Table 16 - Lighting energy demands at BI-C 

Lighting 
Demand in 
High Efficiency 
Dutch 
Greenhouse 
(kWh/m2/year) 

Solar 
Irradiance 
(Irr), 
Netherlands 
(kWh/m2/d) 

Solar 
Irradiance (Irr), 
Boston, US 
(kWh/m2/year) 

Ratio 
(IrrMTL/IrrNL) 

Estimated 
lighting 
demand for BI-
C 
(kWh/m2/year) 

Total 
lighting 
energy 
(kWh/year) 

10 2.85 4 1.40 7.3 25 547 

Nutrient Inputs 

The follow macro nutrients were included in the study: calcium, potassium, magnesium, nitrogen and 
phosphorous. There exist a number of recipes for supplying these to hydroponic tomatoes in masses of the 
individual elements (see table 17). In order to convert the elemental masses to masses of commercial 
applied fertilizers, the following algorithm was applied: 

1. Calculate the amount of calcium nitrate required to supply elemental calcium; 
2. Calculate the elemental nitrogen in the calcium nitrate in step 1, and augment any deficiencies 

with potassium nitrate to get the needed amount of elemental nitrogen; 
3. Calculate the potassium phosphate that would assuage elemental phosphorous demands; 
4. Calculate the elemental potassium in the potassium phosphate and potassium nitrate, and top-

up with potassium sulfate as needed; 
5. Calculate magnesium sulfate to support magnesium requirements. 

 

Using this formula, the amounts of the various salts needed over a year of operation were calculated from 
the total irrigation rate, since the various fertilization recipes were given in concentrations for the irrigation 
water (g/L). Table 17 outlines various nutrient solutions found in literature and the total amount of salts 
required to support them given our estimated yield. Not all nutrient solutions included all of the salts. 



Moreover, the solutions two and three provided the nutrient demands per kg of fresh yield, so the above 
noted algorithm was not used. 

Table 17 - Recipes for various nutrient solutions. A dash indicates that the salt was either not prescribed for 
that recipe. A zero indicates that the nutrient demands were already met according to the above calculation 
method. 

Solution MgSO4*7H2O 
(g/L) [kg/a] 

KH2PO4 

(g/L) 
[kg/a] 

KNO3 

(g/L) 
[kg/a] 

Ca(NO3)2 

(g/L) [kg/a] 
K2SO4 

(g/L) 
[kg/a] 

KMgSO4 

(g/L) 
[kg/a] 

1 (Zekki et al. 1996) 0.287 [2099] 0.16 
[1155] 

0.53 
[3845] 

0.492 
[3599] 

0 - 

2 (Sanyé-mengual et 
al. 2015) 

- [1080] [9535] - - - 

3 (Hatirli et al. 2006) - [2247] [3115] - [1092] - 
4 (Arizona State 
University - Center 
for controlled 
agriculture 2013) 

0.46 [2390] 0.22 
[1394] 

0.58 
[3679] 

0.76 [4819] 0.22 
[1427] 

- 

5 (IBID) 0.49 [3125] 0.17 
[1087] 

0.58 
[3653] 

0.70 [4428] 0.22 
[1373] 

- 

6 (Mattson and 
Peters 2014) 

0.59 [3756] 0.19 
[1235] 

0.55 
[3507] 

0.78 [4967] 0.18 
[1153] 

- 

7 (Hochmuth 2012) 0.5 [3176] 0.27 
[1715] 

0.2 
[1462] 

0.62 [3939] 0.1 
[635] 

- 

8 (Vegetable 
Research and 
Information Center 
2011) 

0.25 [1597] 0.14 [907] 0.25 
[1597] 

0.46 [2908] 0 - 

9 (IBID) 0.50 [3143] 0.27 
[1731] 

0.20 
[1294] 

0.5 [3177] 0 - 

10 (IBID) - - 0.18 
[1126] 

0.95 [6051] 0.35 
[2185] 

0.44 
[2807] 

11 (IBID) 0.51 [3261] 0.26 
[1664] 

0.58 
[3715] 

1.0 [6387] 0 - 

 

For this assessment, solution 4 was employed, since it included all five salts and its nutrient loading tended 
to lie within the middle of the range of potential values according to all of the recipes. 

Waste Management 

The first aspect of the waste management tackled is the organic solid waste on the site. Solid organic waste 
is assumed to be composted. We base our estimates off of a BI-C operation in Montreal, CA which also 
grows tomatoes and is of a similar technological level. The Montreal, CA greenhouse reports a 900 kg per 
week of solid waste from a site as; 73% organic; 22% recyclables; and 5% inorganic (Church 2013). This 
farm is reported by the owners to produce 70 metric tons of produce annually (Lufa Farms 2014b). Taking 
the ratio of our estimated yield and the yield from the operating greenhouse and multiplying by the waste generation rate 
we get an estimated waste generation rate of 163 463 kg/year in the same ratios as before.  

The 119 328 kg/year of organic waste is assumed to be composted on site. During the composting it is 
assumed that a mass reduction of 32% occurs in line with the composting of garden waste; table 9.3.5 
(Christensen 2011), which when combined with the 44% water content of the compost (table 9.3.6 – IBID) 
results in 45 440 kg of compost (dry weight) produced annually. The compost composition was estimated based 
on experiments of composting tomato plant waste as 0.7% nitrogen, 0.15% phosphorous and1.52% 
potassium (table 9.3.6 – IBID). From here, there equivalent amounts of avoided fertilizer production were 
estimated using molecular masses. In the consequential LCA model, this was modeled as avoided virgin 
fertilizer production, since the compost is sold to the market (Church 2013). Table 18 outlines the details 
of this.  



Table 18 - Compost properties and avoided fertilizer from organic solid waste at BI-C site 

Component Mass ratio in finished 
compost (dry mass) 

Elemental mass 
produced (kg/a) 

Avoided fertilizer 
production (kg/a) 

Nitrogen 0.007 318 318 as N 
Phosphorous 0.0015 68 167 as P2O5 
Potassium 0.0152 691 821 as K2O 
For the recycled materials, we assume that these are covered in the inventories of the other annual 
operations and the waste treatment of the retired capital. The amount of landfilling was taken as the 
balance of the 5% of total waste mentioned above (8173 kg/a) that was not already accounted in the waste 
from all of the other processes (6592 kg/a), giving a final total of 1581 kg/a. 

Distribution 

According to the operators of the Montreal farm, they use $15/day in fuel to deliver their food (Hage 
2012). Assuming a gas price of $1/liter at the time of reference, we can assume 15 L fuel/day, every day of 
the year, equally 5460 L fuel per annum. The fuel is assumed to be diesel with a specific mass of 0.83, 
giving an annual diesel demand for distribution of 4532 kg. We use the Montreal numbers because both 
Boston and Montreal have similar population densities (5100 and 4500 people/km2 for Boston and 
Montreal, respectively), so we assume that delivery distances and distribution of supermarkets are on a 
similar scale.  

Food is assumed to be delivered in re-usable HDPE totes, much like the operating rooftop greenhouse in 
Montreal (Lufa Farms 2014c), and that the volume of delivered food is identical.  According to the Montreal 
greenhouse, they use 2000 bins to deliver their produce, which are then returned the next week. In order to 
maintain the operation of the system it is assumed that as a bin is delivered, an empty one is received, 
which would mean that they have 4000 bins on hand, each one being used once per week, amounting to 
208 000 trips per year for all of the bins. According to the farm, each bin lasts for approximately 1000 trips 
(Lufa Farms 2014c), which means that 208 new bins are purchased per year. The manufacturing lists the 
bin’s mass as 2.85 kg (Monoflo 2016), resulting in an HDPE demand of 596 kg/year.       

Building Symbiosis 

Due to its siting on a building, the hypothetical BI-C operation is assumed to confer energy savings to its 
host building both in summer by increased albedo and evapotranspiration, and in the winter from 
insulation and evapotranspiration. Assuming that the base building is already well insulated to code, as is 
typically the case according to the rooftop greenhouse designer, these savings can expected to be modest. 
For our model a cooling load reduction of 5% and heating load reduction of 3% were assumed, based off 
of field studies of the energy saving benefits of green roofs in Chicago, US (La Roche and Berardi 2014). 
Base heating and cooling loads were taken from statistics on energy consumption in warehouse buildings in 
the United States in New England (U.S. Energy Information Administration 2008). We assume that the 
farm is situated above an industrial building due to the greenhouse size. Heat was assumed to be supplied 
through natural gas. Cooling was assumed to rely on electricity. Table 19 outlines the calculations and the 
total energy savings assuming the same footprint for the BI-C operation and supporting building.  

Table 19 - Energy savings for the supporting building due to the BI-C operation 

 Base Load 
(MJ/m2/year) 

Percentage Saved Amount Saved 
(MJ/m2/year) 

Total Saved 
(MJ/year) 

Heating 219  3% 6.6 22954 
Cooling 50 5% 2.5 8793 

BI-C: Component lifetimes and recycling rates 

BI-C operations are comprised of durable goods. This poses two challenges in an LCA. First, it is difficult to 
know when system components are retired and enter the end-of-life stage. Second, because some of these 
components enter the end of life phase decades in the future, it is impossible to know what recycling 
technologies and legislation will be in place, and consequently, what amounts of the various components 
will be recycled, landfilled or incinerated.  



The lifetimes of different components, were informed by Sanye-Mengual et al.’s earlier LCA of a BI-C 
system (Sanyé-mengual et al. 2015), LCAs of regular buildings (Scheuer et al. 2003), LCAs of green roofs 
(Peri et al. 2012), manufacturer warranties for specific products within a category, and where no other 
options were available, the opinion of the greenhouse designer.  

For the recycling rates, the general heuristic employed was that as components become smaller and more 
intermingled in terms of different materials contained, the recycling costs begin to outweigh the value of 
the recoverable materials, and the recycling rate drops, as has been found in practice (Gutowski and 
Dahmus 2005). For instance, the recycling rate of an electronic screwdriver in the US in the 00’s was 
almost zero, while that of a automobile was high (Gutowski and Dahmus 2005). Both automobile and 
electric screwdriver are complicated assemblages of different materials of low value (plastics) and high value 
(metals), but due to the car’s girth, easily accessible high value components, and potentially legislation, the 
car sees a much higher recycling rate. Applying the same thinking here, smaller intermingled components 
(pumps, motors) see lower recycling rates, while the larger less co-mingled components where recycling has 
an economic incentive (steel beams, plastic bins) see higher reuse rates.  

Current recycling rates were taken from existing literature on construction and demolition (C&D) recycling 
rates in Northeastern North America (Nisbet et al. 2004) as 95% for steel structural components and 15% 
for aluminum  and copper components. The overall recycling rate in the State of Massachusetts was 42% in 
2009 (Massachusetts Department of Environmental Protection 2013). For the smaller, co-mingled goods 
(pumps), recycling rate of 50% after 30 years was assumed with linear interpolation between current 
recycling rate of all C&D waste in Massachusetts (33%) (Government of Massachusetts 2010). Recycling 
rates for large, metallic structural components were assumed to increase to 97.5% at the demolition time. 
Because of Massachusetts C&D waste landfilling ban (Government of Massachusetts 2015), it is assumed 
that large plastic components will also see a high recycling rate in 30 years (95%) since these components 
are easily source-segregated and we assume that there will exist incentives to promote their collection at the 
time of demolition (fines or fees for inclusion with landfilled waste), but we linearly interpolate between 
current recycling rate of all C&D waste in Massachusetts (33%). All materials not recycled are assumed to 
be landfilledFor plastics it was assumed that popular thermoplasts (high- and low-density polyethylene, 
polypropylene, polyethylene terephthalate) are mechanically recycled to virgin plastics, others (rubber, 
polystyrene, polyvinylchloride, nylon and Acrylonitrile-butadiene-styrene) are mechanically downcycled to 
filler (assumed to be gravel) (Hopewell et al. 2009; Rebeiz and Craft 1995).  

Table 20 outlines the lifetimes and recycling rates for the various components of the hypothetical BI-C 
operation. 

Table 20 - Recycling rates and lifetimes of various components of the BI-C farm.  

Component Lifetime 
(years) 

Current 
recycling 
rate (%) 

Future rate (%) Applied 
Rate 
(%) 

Replaces 
5 10 15 20 25 30  

Structural Components  
Steel  30  95  - - - - - - 97.5 virgin steel 
Glass 30  95  - - - - - - 97.5 gravel 
Aluminum  30  95  - - - - - - 97.5 virgin 

aluminum 
Floor 30 0 - - - - - - 0 single use 

assumed 
Mechanical Components 
Gearbox 20 95  - - - 95 - 95 95 virgin steel 
Motor 20 43  - - - 50 - 50 50 virgin 

metals 
Curtains1 5 43  100 100 100 100 100 100 100 fill 
HVAC Components 
Convection 5 43 80 83 85 88 90 95 87 virgin 

                                                      
1 Assumed recycling rate of 100% since they are very easily source separated 



tubing 
(LDPE) 

LDPE 

Steel 
radiator 
tubing 

30 95 - - - - - - 97.5 virgin steel 

Cooling 
pads 

5 53 80 83 85 88 90 95 87 pulp 

AHU2 20 43 - - - 47 - 50 48 virgin steel 
Electrical and Lighting 
Lamps 10 43 43 44 45 47 48 50 48 virgin 

metals and 
plastics 

Cables 30 43 - - - - - - 50 virgin 
metals and 
plastics 

Computer 10 - - 100 - 100 - 100 100 Goes to 
recycling 
center 

Irrigation 
Tubing 
(PVC) 

30 43 80 - - - - 95 95 fill 

Grow 
gutters 

25 43 80 - - - 90 95 92.5 virgin steel 

Tanks 
(HDPE) 

30 43 80 - - - - 95 97.5 virgin 
HDPE 

Pump2 15 43 - - 45   50 47.5  
Waste Management System 
Composter 30 95 - - - - - 95 95 virgin steel 
Structural Buttressing 
Steel  30  95  - - - - - - 97.5 virgin steel 
Supplies 
Rockwool3 0.5 0 0 0 0 0 0 0 0 single use 

assumed 
Plastic totes4 - 95 95 95 95 95 95 95 95 virgin 

HDPE 

BI-C: Life Cycle Inventory (LCI)  

Capital inputs (tables 1 to 13) were divided by their lifetimes (table 18) to determine the annual inputs of 
materials to the system. Annual outputs were also estimated, with the fractions going to recycling and 
landfill calculated using the recycling rates (table 20). Annual capital inputs, outputs (recycled and 
landfilled), and annual operating inputs were then normalized per kilogram fresh tomato produced by 
dividing by the annual production volume calculated above. Table 21-33 outline the LCI for a single 
kilogram of tomatoes (abbreviated as ‘FU’ for functional unit) delivered to the point of pickup by the 
customer, including the ecoinvent 3.1 processes used to model them. Produce is not refrigerated at any 
point in the supply chain. For more details on the custom processes for the US please see SI2.2 for the BI-
NC system.  

                                                      
2 Only steel, copper and aluminum components are recycled, the rest is landfilled. 
3 Assumed recycling rate of zero since rockwool is not a traditionally considered a 
recyclable material and it is not likely to be high on the City of Montreal’s recycling 
agenda. Therefore, we assume that it is not likely to be recycled. Moreover, it will be 
entrained with biomass by the end of the growing period which would complicate the 
recycling process. 
4 Accounts for the 208 plastic totes that are discarded each year (see ‘Distribution’ 
section above) 



Structural Components 

Table 21 - LCI for BI-C structural components 

Input/Process Amount Unit ecoinvent 3 process Notes 
Material Inputs 
Steel 0.004477 kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| market 

for | Conseq, U 
 

Aluminum 0.0038261 kg/FU Aluminium, primary, ingot {US-NPCC}| production 
| Conseq, U 

 

Polypropylene 4.762E-05 
 

kg/FU Flat glass, coated {US-NPCC}| market for | Conseq, 
U 

 

Glass 0.0067888 
 

kg/FU Flat glass, coated {CA-QC}| market for | Conseq, U  

Material Processing 
Plastic floor 
shaping 

4.762E-05 kg/FU Extrusion, plastic film {US-NPCC}| production | 
Conseq, U 

 

Waste Treatment 
Steel recycling 0.004365 kg/FU Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 
 

Aluminum 
recycling 

0.0037304 
 

kg/FU Aluminium (waste treatment) {US-NPCC}| recycling 
of aluminium | Conseq, U 

 

Landfilling 0.0004249 
 

kg/FU Inert waste, for final disposal {US}| market for | 
Conseq, U 

 

Avoided Products 
Gravel 0.0066191 

 
kg/FU Gravel, crushed {US-NE}| production | Conseq, U  

Mechanical System  

Table 22 - LCI for BI-C mechanical system 

Input/Process Amount Unit ecoinvent 3 process Notes 
Material Inputs 
Steel 0.0001381 

 
kg/FU Steel, low-alloyed, hot rolled 

{US-NPCC}| market for | 
Conseq, U 

 

Copper 2.049E-06 
 

kg/FU Copper {GLO}| market for | 
Conseq, U 

 

Aluminum 2.049E-06 
 

kg/FU Aluminium removed by 
milling, small parts {US-
NPCC}| aluminium milling, 
small parts | Conseq, U 

Includes 
manufacturing energy 
for generic aluminum 
part 

Polyethylene 
terephthalate 

1.025E-06 
 

kg/FU Polyethylene terephthalate, 
granulate, amorphous 
{GLO}| market for | 
Conseq, U 

 

Polyester 
0.0003993 

 

kg/FU Polystyrene, general purpose 
{GLO}| market for | 
Conseq, U 

 

Polyolefin 
0.0002926 

 

kg/FU  Polyethylene, low density, 
granulate {GLO}| market for 
| Conseq, U 

 

Material Processing 
Plastic forming 0.000693 

 
kg/FU Extrusion, plastic film {US-

NPCC}| production | 
Conseq, U 

 

Copper forming 2.049E-06 
 

kg/FU Wire drawing, copper {US-
NPCC}| processing | 

 



Conseq, U 
Waste Treatment 
Steel recycling 0.0001243 kg/FU Steel and iron (waste 

treatment) {US-NPCC}| 
recycling of steel and iron | 
Conseq, U 

 

Copper 
recycling 

1.025E-06 kg/FU Copper (waste treatment) 
{US-NPCC}| recycling of 
copper | Conseq, U 

 

Aluminum 
recycling 

1.025E-06 kg/FU Aluminium (waste treatment) 
{US-NPCC}| recycling of 
aluminium | Conseq, U 

 

PET recycling 1.025E-06 
 

kg/FU PET (waste treatment) {US-
NPCC}| recycling of PET | 
Conseq, U 

 

Curtain 
recycling 

0.0006585 kg/FU PS (waste treatment) {US-
NPCC}| recycling of PS | 
Conseq, U 

 

Landfilling 5.11256E-05 
 

kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, 
U 

 

HVAC System 

Table 23 - LCI for BI-C HVAC system 

Input/Process Amount Unit ecoinvent 3 process Notes 
Material Inputs 
Steel (pipes) 0.0015256 

 
kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| market for 

| Conseq, U 
 
 

Steel (AHU) 7.158E-05 kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| market for 
| Conseq, U 

 

Copper 1.706E-06 kg/FU Copper {GLO}| market for | Conseq, U  
LDPE 0.0004295 kg/FU Polyethylene, low density, granulate {GLO}| market 

for | Conseq, U 
 

Linerboard 0.0042945 kg/FU Linerboard {CA-QC}| linerboard production, 
kraftliner | Conseq, U 

 

Polyurethane 6.258E-08 kg/FU Polyurethane, flexible foam {GLO}| market for | 
Conseq, U 

 

Glass wool  5.685E-06 
 

kg/FU Glass wool mat {GLO}| market for | Conseq, U  

Glass fiber 6.83E-07 
 

kg/FU Glass fibre {GLO}| market for | Conseq, U  

Aluminum 6.953E-06 kg/FU Aluminium removed by milling, small parts {US-
NPCC}| aluminium milling, small parts | Conseq, 
U 

 

Rubber 9.08E-08 kg/FU Seal, natural rubber based {GLO}| market for | 
Conseq, U 

 

Material Processing 
Plastic forming 0.0004295 

 
kg/FU Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 
 

Copper forming 1.706E-06 
 

kg/FU Sheet rolling, copper {GLO}| market for | Conseq, 
U 

 

Steel Pipe 
Forming 

0.0015256 
 

kg/FU Drawing of pipe, steel {US-NPCC}| processing | 
Conseq, U 

 

Waste Treatment 
Steel recycling 0.0015234 kg/FU Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 
 



Copper recycling 8.221E-07 
 

kg/FU Copper (waste treatment) {US-NPCC}| recycling of 
copper | Conseq, U 

 

Aluminum 
recycling 

3.346E-06 
 

kg/FU Aluminium (waste treatment) {US-NPCC}| recycling 
of aluminium | Conseq, U 

 

LDPE recycling 0.0003722 
 

kg/FU PE (waste treatment) {US-NPCC}| recycling of PE | 
Conseq, U, U 

 

Paper recycling 0.0044582 
 

kg/FU Paper (waste treatment) {GLO}| recycling of paper | 
Conseq, U 

 

PET recycling 3.018E-08 
 

kg/FU PET (waste treatment) {US-NPCC}| recycling of PET 
| Conseq, U 

 

Landfilling 0.0008788 kg/FU Inert waste, for final disposal {GLO}| market for | 
Conseq, U 

 

Irrigation System 

Table 24 - LCI for BI-C irrigation system 

Input/Process Amount Unit ecoinvent 3 process Notes 
Material Inputs 
Steel 0.0007685 

 
kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| market 

for | Conseq, U 
 

Copper 1.958E-06 kg/FU Copper {GLO}| market for | Conseq, U  
Aluminum 1.958E-06 

 
kg/FU Aluminium removed by milling, small parts {US-

NPCC}| aluminium milling, small parts | Conseq, 
U 

 

Rubber 9.791E-07 
 

kg/FU Synthetic rubber {GLO}| market for | Conseq, U  

HDPE 0.0006834 kg/FU Polyethylene, high density, granulate {GLO}| 
market for | Conseq, U 

 

LDPE 0.0116604 kg/FU Polyethylene, low density, granulate {GLO}| 
market for | Conseq, U 

 

PVC 0.0002164 kg/FU Polyvinylchloride, bulk polymerised {GLO}| 
market for | Conseq, U 

 

Polyurethane 5.618E-06 kg/FU Polyurethane, rigid foam {GLO}| market for | 
Conseq, U 

 

Material Processing 
Copper Wiring 1.958E-06 kg/FU Wire drawing, copper {US-NPCC}| processing | 

Conseq, U 
 

Plastic tube 
forming 

0.0002164 
 

kg/FU Extrusion, plastic pipes {US-NPCC}| market for | 
Conseq, U 

 

Plastic film 
forming 

0.0123494 
 

kg/FU Extrusion, plastic film {US-NPCC}| production | 
Conseq, U 

 

Waste Treatment 
Steel recycling 0.0007043 kg/FU Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 
 

Copper recycling 9.334E-07 kg/FU Copper (waste treatment) {US-NPCC}| recycling 
of copper | Conseq, U 

 

Aluminum 
recycling 

9.334E-07 
 

kg/FU Aluminium (waste treatment) {US-NPCC}| 
recycling of aluminium | Conseq, U 

 

PVC Recycling 0.0001876 kg/FU PVC (waste treatment) {US-NPCC}| recycling of 
PVC | Conseq, U 

 

LDPE and HDPE 
recycling 

0.0107549 kg/FU PE (waste treatment) {US-NPCC}| recycling of PE 
| Conseq, U 

 

Landfilling 0.0016849 
 

kg/FU Inert waste, for final disposal {US}| market for | 
Conseq, U 

 



Electrical System 

Table 25 - LCI of BI-C electrical system 

Input/Process Amount Unit ecoinvent 3 process Notes 
Material Inputs 
Copper 0.0012707 

 
kg/FU Copper {GLO}| market for | Conseq, U  

Aluminum 0.0001719 
 

kg/FU Aluminium removed by milling, small parts 
{US-NPCC}| aluminium milling, small parts | 
Conseq, U 

 

Steel 2.468E-05 
 

kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 
market for | Conseq, U 

 

Polystyrene 0.0003587 
 

kg/FU Polystyrene, expandable {GLO}| market for | 
Conseq, U 

 

HDPE 4.337E-05 
 

kg/FU Polyethylene, high density, granulate {GLO}| 
market for | Conseq, U 

 

PVC 6.386E-05 
 

kg/FU Polyvinylchloride, bulk polymerised {GLO}| 
market for | Conseq, U 

 

Glass 0.0006922 
 

kg/FU Flat glass, coated {US-NPCC}| market for | 
Conseq, U 

 

Computer 0.1 p/FU Computer, laptop {GLO}| market for | 
Conseq, U 

 

Material Processing 
Copper Wiring 0.0012707 kg/FU Wire drawing, copper {US-NPCC}| processing 

| Conseq, U 
 

Plastic tube 
forming 

6.386E-05 
 

kg/FU Extrusion, plastic pipes {US-NPCC}| 
production | Conseq, U 

 

Plastic film 
forming 

4.337E-05 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

 

Waste Treatment 
Steel recycling 1.177E-05 

 
kg/FU Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 
 

Copper 
recycling 

0.0006307 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of copper | Conseq, U 

 

Aluminum 
recycling 

8.192E-05 
 

kg/FU Aluminium (waste treatment) {US-NPCC}| 
recycling of aluminium | Conseq, U 

 

PVC Recycling 3.193E-05 
 

kg/FU PVC (waste treatment) {US-NPCC}| recycling 
of PVC | Conseq, U 

 

HDPE recycling 2.067E-05 
 

kg/FU PE (waste treatment) {US-NPCC}| recycling of 
PE | Conseq, U 

 

Landfilling 0.0015184 
 

kg/FU Inert waste, for final disposal {US}| market for 
| Conseq, U 

 

Computer 
disposal 

0.315 kg/FU Used laptop computer {GLO}| market for | 
Conseq, U 

 

Avoided Products 
Gravel 0.0003299 

 
kg/FU Gravel, crushed {US-NE}| production | 

Conseq, U 
Glass 
recycled to 
gravel 

Composter 

Table 26 - LCI of BI-C on-site composter 

Input/Process Amount Unit ecoinvent 3 process Notes 
Material Inputs 
Steel 0.0006354 

 
kg/FU Steel, low-alloyed, hot rolled {CA-QC}| market for | 

Conseq, U 
 

Waste Treatment 



Steel recycling 0.0001554 
 

kg/FU Steel and iron (waste treatment) {CA-QC}| recycling of 
steel and iron | Conseq, U 

 

Landfilling 8.18E-06 kg/FU Inert waste, for final disposal {GLO}| market for | 
Conseq, U 

 

Structural Buttressing 

Table 27 - LCI of BI-C structural buttressing 

Input/Process Amount Unit ecoinvent 3 process Notes 
Material Inputs 
Steel 0.0017874 

 
kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| market for 

| Conseq, U 
 

Waste Treatment 
Steel recycling 0.001742667 

 
 

kg/FU Steel and iron (waste treatment) {US-NPCC}| 
recycling of steel and iron | Conseq, U 

 

Landfilling 4.46838E-05 
 

kg/FU Inert waste, for final disposal {US}| market for | 
Conseq, U 

 

Irrigation 

Table 28 - LCI for BI-C annual irrigation 

Input/Process Amount Unit ecoinvent 3 process Notes 
Material Inputs 
Irrigation water 0.012941 

 
m3/FU Tap water {US-Boston}| 

market for | Conseq, U 
 

Rock wool 0.0219554 kg/FU Rock wool {GLO}| market for 
| Conseq, U 

 

Waste Treatment 
Landfilling 4.46838E-

05 
 

kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

 

Avoided Products 
Wastewater 
treatment 

0.01305 m3/FU Wastewater, unpolluted, from 
residence {GLO}| market for 
| Conseq, U 

Assumed to have same 
pollutant loading as 
household wastewater.  

Space Conditioning 

Table 29 - LCI for BI-C space conditioning 

Input/Process Amount Unit ecoinvent 3 process Notes 
Energy and Fuels 
Lighting 0.104407 

 
kWh/FU Electricity, medium voltage, 2012-2032 average 

{NPCC, US only}| market for | Conseq, U 
 

Heating 4.25 kWh/FU Electricity, medium voltage, 2012-2032 average 
{NPCC, US only}| market for | Conseq, U 

 

Nutrient Demands 

Table 30 - LCI for BI-C nutrient demands 

Input/Process Amount Unit ecoinvent 3 process Notes 
Material Inputs 
MgSO4*7H2O 0.005847 kg/FU Magnesium sulfate {GLO}| 

market for | Conseq, U 
Adjusted for water content to 
convert to anhydrous mass  

KH2PO4 0.0029759 kg/FU Phosphate fertiliser, as P2O5 
{GLO}| market for | Conseq, 
U 

Converted to P2O5 mass 



KNO3 0.0150491 kg/FU Potassium nitrate {GLO}| 
market for | Conseq, U 

 

Ca(NO3)2 0.0197109 kg/FU Calcium nitrate {GLO}| market 
for | Conseq, U 

 

K2SO4 0.0031538 kg/FU Potassium sulfate, as K2O 
{GLO}| market for | Conseq, 
U 

Converted to K2O mass 

Distribution 

Table 31 - LCI for BI-C distribution 

Input/Process Amount Unit ecoinvent 3 process Notes 
Energy and Fuels 
Fuel 0.0185353 kg/FU Diesel, low-sulfur {Europe without Switzerland}| 

market for | Conseq, U 
 

Material Inputs 
HDPE 0.0024362 

 
kg/FU Polyethylene, high density, granulate {GLO}| market 

for | Conseq, U 
 

Material Processing 
Plastic forming 0.0024362 kg/FU Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 
 

Waste Treatment 
HDPE 
recycling 

0.0023144 kg/FU PE (waste treatment) {US-NPCC}| recycling of PE | 
Conseq, U 

 

Landfilling 0.0001218 kg/FU Inert waste, for final disposal {US}| market for | 
Conseq, U 

 

Building Symbiosis 

Table 32 - LCI for BI-C building symbiosis 

Input/Process Amount Unit ecoinvent 3 process Notes 
Avoided Products 
Cooling 0.0359638 MJ/FU Electricity, medium voltage, 2012-2032 average 

{NPCC, US only}| market for | Conseq, U 
 

Heating 0.0938816 MJ/FU Heat, district or industrial, natural gas {CA-QC}| 
market for | Conseq, U 

 

Waste Treatment 

Table 33 - LCI for BI-C waste treatment 

Input/Process Amount Unit ecoinvent 3 process Notes 
Waste Treatment 
Landfilling 0.0064671 kg/FU Inert waste, for final disposal 

{US}| market for | Conseq, 
U 

 

Avoided Products 
Nitrogen 
fertilizer 

0.0013 kg/FU Ammonium nitrate, as N 
{RER}| ammonium nitrate 
production | Conseq, U 

 

Phosphorous 
fertilizer 

0.00068 kg/FU Phosphate fertiliser, as P2O5 
{GLO}| market for | Conseq, 
U 

 

Potassium 
fertilizer 

0.00336 kg/FU Potassium fertiliser, as K2O 
{GLO}| market for | Conseq, 
U 

 

Landfilling 0.48672 kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, 

Organic waste that would 
have gone to landfill in 



U absence of composting system 
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 Appendix B: Life cycle inventory for building integrated non-conditioned farming system 
(BI-NC) 

The building integrated non-conditioned UA site (referred to as ‘BI-NC’ in the article text) is an operating 
rooftop urban farm in Metropolitan Boston, US. The farm has 423 m2 of growing area, 1469 m2 of total 
green roof space and grows approximately 80 crop varieties. The supplementary information is arranged as 
follow: description of estimation of capital inputs where primary data was lacking; description of 
operational inputs where primary data was lacking; component lifetimes and recycling rates; life cycle 
inventory for functional unit. Capital equipment is spread evenly across the site, and according to 
interviews with the site operator supplies and operating inputs are also spread evenly across the site. 
Therefore, inputs and outputs are allocated to different crops based on their growing space with the 
exception of irrigation which was crop specific.      

BI-NC: Capital Inputs 

Information on the capital inputs for the farm are based off of detailed construction plans from the farm 
operator and procurement lists from the contracting company that built the farm. The only aspect of the 
capital equipment that is estimated is the structural buttressing to support the farm weight. Inputs for 
structural buttressing are outlined below, otherwise, the details for the capital equipment can be found in 
the life cycle inventory. For all components manufactured from recycled materials, no burdens were 
assumed for the raw material manufacturing, since these are allocated to the previous life-cycle.      

Structural Support 

The extra steel necessary to carry the farm was calculated using the following assumptions: 



1) The roof area supporting the green roof is considered as separated from the rest of the roof in 
the sense that it is physically disconnected with a moment-not-transferring connection to the 
rest of the roof. This is a realistic assumption since pictures of the roof show that the portion of 
the rooftop that does not hold the farm has different construction. 

2) Since it is not clear from the pictures neither from the drawings which cross section is used, we 
assume that the roof consists in a grid of primary and secondary beams where the primary beam 
is a truss with 2L section and the secondary beams used to connect the steel corrugated sheets to 
the primary system have C section. 

3) Some machinery (for the heat and air condition system) is present on the roof. We do not have 
information on how much they weigh. In standard design this is a very important issue because 
they are usually very heavy and represent a concentrated permanent-load. However, with respect 
to the aim of evaluating the difference in the amount of steel between a roof with and without 
garden this is not important because you would have this machinery in both cases. 

4) We assume that the primary beams (truss) are continuous and supported on concrete beams. 
5) Size of the area of the roof x=129’≈39.4 m and y=116’≈35.4 m. The span is equally divided in 4 

spans in x-direction and 3 spans in y-direction (see video), i.e. l1=13.13m and l2=11.80m. 
6) In the drawings the weight of the green roof as average value is listed as: 71.83LBS/PSF for the 

saturated cultivated area that it is equal to 3.44kN/m2 to which corresponds a characteristic 
value (10% coefficient of variation) of 4kN/m2. The weight of ballast and not cultivated area is 
lower than the cultivated one, so we consider a uniform weight on the roof equal to the weight 
of cultivated area since this stays on the safe side resulting in a slight overestimation. 

7) The snow load for flat roofs in Boston area is 1.5kN/m2. 
8) The load combination of dead and permanent and the capacity check at Ultimate Limit State 

and Service Limit State are done according to Eurocode 3 and 4. 
9) For the flat roof load, a combination of the different spans are necessary, however since the 

difference with and without the snow load and the live load (due to people walking) is very 
small, we consider just the roof as fully loaded in all spans.  

10) We do not take into account the steel from the bolts, since we do not compute the joints 

Figure 1 and 2 show the profiles of the roof without and with the farm on top of it, respectively. Tables 1 
and 2 show the amount of steel and concrete required for the two roof scenarios. The estimated extra steel 
and concrete due to the presence of the BI-NC farm are 36.9 tonnes and 0.1 tonnes, respectively.   

 

Figure 9 - Profile of building roof without farm 

Table 34 - Steel and concrete for the roof without the farm 

Component Load Unit Mass  Unit 
corrugated sheet t=0.7 72.96582054 kN 7.4 t 
secondary beams IPN160 96.761672 kN 9.9 t 
primary beams(truss) C160 209.66904 kN 21.4 t 
total steel weight 379.3965325 kN 38.2 t 
     
total concrete weight 1.335125736 kN 0.1 t 
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Figure 10  - Profile of roof with farm on top 

Table 35 - Steel and concrete for the roof without the farm 

Component Load Unit Mass  Unit 
corrugated sheet t=1 249.9751357 kN 25.5 t 
secondary beams IPN180 118.384392 kN 12.1 t 
primary beams(truss) C240 368.30752 kN 37.5 t 
total steel weight 736.6670477 kN 75.1 t 
     
total concrete weight 2.15585623 kN 0.2 t 
 

BI-NC: Operating Characteristics and Inputs 

The operating inputs for the BI-NC farm were taken from primary data provided by the farm operator, 
though some aspects had to be estimated, namely, space conditioning to grow seedlings, irrigation demands 
and runoff retention, electricity consumption, nutrient loading in runoff, waste management, imported 
compost production and energy savings to the building.   

Seedling Production 

Production of seedlings (small plants grown in greenhouses that are transferred to outdoor soil) is based off 
of the methods of Stoessel at al. (2012) for lettuce and tomatoes. The basis is the inputs to raise the amount 
of seedlings required to cultivate 1 kg fresh produce. Inputs are shown below in table 3. 

Table 36 – Inputs for seedling production 

Input Tomato Seedling Lettuce seedling Units 
Peat 2.1*10-3 2.5*10-2 kg 
Transport 1.5*10-2 1.8*10-1 tkm 
Heating 6.0*10-3 7.1*10-2 MJ 
 

Irrigation and Runoff Retention 

Lacking primary data on evapotranspiration rates from various plants at the site, general irrigation rates 
were used for tomatoes and lettuce were taken from FAO guidelines for estimating crop water needs 
(Brouwer and Heibloem 1986). Irrigation needs were calculated as the gross irrigation demands minus 
retained rainwater over the growing period. A retention rate of 50% was assumed based off a review of 
rainwater retention of intensive green roofs (Czemiel Berndtsson 2010) though this may be on the high side 
for an expanded clay substrate (Stovin et al. 2015). Rainfall for the Boston, US area for the 2014 growing 
season (assumed March through September) was taken from the Boston Sewer and Water Commission 
(2015). Details outlined below in table 4. The municipality is not operating combined sewers in the vicinity 
of the site, so the avoided runoff is not accounted as avoided wastewater treatment.  
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770 mm
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55 mm
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Table 37 - Irrigation demands and avoided runoff for BI-NC operation 

Crop Total Irrigation 
Requirements 
(m) 

Rainfall 
(m) 

Planted 
Area5 
(m2) 

Green 
Roof 
Area 
(m2) 

Rainfall 
Irrigation 
(m3) 

Runoff 
avoided 
(m3) 

Irrigation 
supplied 
(m3) 

Tomato 0.9 0.53 29 100 7.6 57.8 21.1 
Lettuce 0.5 0.53 17 57 4.4 33.3 3.9 
   

Electricity 

The only electrical input to the BI-NC’s operation is for the small pump and associated digital irrigation 
controller. According to the manufacturer’s specifications (withheld for confidentiality reasons) the pump 
runs at around 7W when pumping at 37.9 L/min. Pumping energy for the entire site was taken as the 
estimated total irrigation needs of the site and dividing by the aforementioned flowrate and then multiply 
this pumping time by the wattage. The digital controller has 0.06 amps at 120 volts (AC) for a 37 week 
growing period, which is then converted to electricity requirements with the assumption that it runs 
continuously over this period. Details are in table 5 below. 

Table 38 - Energy demands for BI-NC operation 

User Amount Unit Time (hours) Energy (MJ) 
Pump 6.72 W 16.8 0.4 
Controller 0.06 A @ 120 V(AC) 6216 161.1 
 Total 161.5 
 

Because of the long-lifetime of the BI-NC operation it can be expected that the electricity mix will evolve 
over the duration of the project. To account for this, all electricity inputs have been modeled based off the 
average mix for the period 2012-2040, based off of the projections of electricity mix for the Northeast 
Power Coordinating Council (NPCC) during that period (U.S. Energy Information Administration 2015). 
For recycling, the 2040 grid was used since most components will retire at this time. Table 6 shows the 
average grid mix over the operating period for the NPCC region and the 2040 grid, which are essentially 
identical due to the unwavering reliance on natural gas as a fuel throughout the 2012-2040 period. This 
mix is also applied in the assessments of the other farms with the exception of the BI-C farm.   

Table 39 – Estimated average grid mix over 2012-2040. Values do not add to 100% due to rounding. 

Fuel % of Grid Mix (2012-2040) % of Grid Mix (2040) 
Coal 2 2 
Petroleum < 1 < 1 
Natural Gas 53 52 
Nuclear – Boiling Water 10 10 
Nuclear – Pressure Water 16 16 
Pumped Storage 1 1 
Hydro 7 7 
Geothermal 1 1 
MSW Incineration 1 1 

                                                      
5 This is the amount of planted area which is less than the actual amount of green 
roof space (planted space plus soil covered areas between planted spaces) with the 
latter being allocated to the various crops based on the formers share occupied by a 
given crop. Runoff mitigated is calculated based on the green roof area and accounts 
for all rain that fell throughout 2014 (1.17 m). Rainwater irrigation is calculated based 
on planted area. 



Biomass Incineration 1 1 
Biomass Co-firing < 1 < 1 
Solar Thermal 1 1 
Photovoltaic < 1 < 1 
Wind 1 1 
Total ~97 ~97 
 

Nutrients in Runoff 

Nutrients released to the ambient environment were calculated based on the amount of rainwater not 
captured during the growing seasons times the estimated nutrient loading in the runoff. Nutrient loading in 
runoff was taken from Emilsson et al.’s (2007) study of green roofs which related ‘low, medium and high’ 
levels of fertilization (N, P and K, respectively) with nutrients in green roof runoff. To determine the level 
of fertilization, the total nutrient input from fertilization was provided by the farm operator was divided by 
the total green roof area (not the planted area, since the runoff containing the nutrients comes from the 
entire site), giving a low level of fertilization according to the study. Nutrients are also brought on to the site 
through the imported fertilizer, but it is assumed that these are stably entrained within the soil matrix and 
do not contribute significantly to runoff. Details of the nutrient loading are in table 7.  

Table 40 - Nutrient loading in runoff from BI-NC operation 

Nutrient Fertilization (g/m2) Runoff (mg/L) Nutrient Loading (kg/a) 
Total-N 1.72 0.5 0.73 
Total-P 0.94 0.009 0.013 
K 0.99 0.09 0.13 
    

Waste Management 

According to the operator around 682 kg of organic waste are generated at the site on a per capita basis for 
composting. During the composting it is assumed that a mass reduction of 32% occurs, and that 44% of 
the final is water assuming that it has the same composting properties as garden waste (see table 9.3.5 in 
Christensen 2011), resulting in 260 kg of compost, dry mass, produced annually. The compost composition was 
estimated based on experiments of composting tomato plant waste as 0.7 % nitrogen , 0.15% phosphorous 
and 1.52% potassium (table 9.3.6 IBID). From here, there equivalent amounts of avoided fertilizer 
production were estimated using molecular masses. In the consequential LCA model, this was modeled as 
avoided virgin fertilizer production. Table 8 outlines the details of this. Table 9 outlines the energy and 
material inputs to treat a single kilogram of organic waste and convert it to compost according to table 9.3.5 
in Christensen (2011). 

Table 41 - Compost properties and avoided fertilizer from organic solid waste at BI-NC site 

Component Mass ratio in finished 
compost 

Elemental mass produced 
(kg/a) 

Avoided fertilizer production 
(kg/a) 

Nitrogen 0.007 1.8 1.8 as N 
Phosphorous 0.0015 0.4 0.9 as P2O5 
Potassium 0.0152 3.9 4.8 as K2O 
 

Table 42 – LCI for the treatment of one kilogram of garden waste 

 Amount  Unit 
Inputs 
Diesel 0.00113 kg 
Composting facility 4*10-9 units 
Electricity 0.149 kWh 
Outputs 
Carbon dioxide, fossil, to air 0.0038 kg 



Landfill 0.141 kg 
Avoided Products 
Avoided landfill through diversion to composting 1 kg 
Nitrogen fertilizer, as N 0.00256 kg 
Phosphate fertilizer, as P2O5 0.00127 kg 
Potassium sulfate, as K2O 0.00764 kg 
 

Imported Compost Production 

It is assumed that no burdens for the compost production are allocated to the BI-NC operation, though the 
freight to transport the compost from the waste management center to the farm are allocated to the BI-NC 
system. 

Building Symbiosis 

Due to its siting on a building, the hypothetical BI-NC operation confers energy savings to its host building, 
which is an operating supermarket. According to contractor that built the farm, the roof is well insulated 
below the green roof components, meaning that the energy savings for the host building from the farm will 
not be significant. To calculate the energy savings from the BI-NC’s presence the energy consumption for 
an operating supermarket from the same chain was taken and the energy savings estimated as a percentage 
of this using the same savings assumed for the hypothetical BI-C farm (3% for cooling, 5% for heating). 
Because the BI-NC farm only covers a portion of the host buildings (1392 m2), energy savings are only 
applied to the area of the host building covered by the farm. Table 10 outlines the predicted energy savings.  

Table 43 - Energy savings for the supporting building due to the BI-NC operation 

 Base Load 
(MJ/m2/year) 

Percentage 
Saved 

Amount Saved 
(MJ/m2/year) 

Total Saved 
(MJ/year) 

Heating 556 3% 2.0 62034 
Cooling 68 5% 16.7 4748 

BI-NC: Component lifetimes and recycling rates 

BI-NC operations are comprised of durable goods. This poses two challenges in an LCA. First, it is difficult 
to know when system components are retired and enter the end-of-life stage. Second, because some of these 
components enter the end of life phase decades in the future, it is impossible to know what recycling 
technologies and legislation will be in place, and consequently, what amounts of the various components 
will be recycled, landfilled or incinerated. The contractor estimates that such a farm will operate for at least 
20 years, but maybe as long as 50 years. A 30 year system lifetime has been adopted in this study.   

The lifetimes of different components, were informed by Sanye-Mengual et al.’s earlier LCA of a BI-C 
system (Sanyé-mengual et al. 2015), LCAs of regular buildings (Scheuer et al. 2003), LCAs of green roofs 
(Peri et al. 2012), manufacturer warranties for specific products within a category, and where no other 
options were available, the opinion of the greenhouse designer.  

For the recycling rates, the general heuristic employed was that as components become smaller and more 
intermingled in terms of different materials contained, the recycling costs begin to outweigh the value of 
the recoverable materials, and the recycling rate drops, as has been found in practice (Gutowski and 
Dahmus 2005). For instance, the recycling rate of an electronic screwdriver in the US in the 00’s was 
almost zero, while that of a automobile was high (Gutowski and Dahmus 2005). Both automobile and 
electric screwdriver are complicated assemblages of different materials of low value (plastics) and high value 
(metals), but due to the car’s girth, easily accessible high value components, and potentially legislation, the 
car sees a much higher recycling rate. Applying the same thinking here, smaller intermingled components 
(pumps, motors) see lower recycling rates, while the larger less co-mingled components where recycling has 
an economic incentive (steel beams, plastic bins) see higher reuse rates.  

Current recycling rates were taken from existing literature on construction and demolition (C&D) recycling 
rates in Northeastern North America (Nisbet et al. 2004) as 95% for steel structural components and 15% 
for aluminum  and copper components. The overall recycling rate in the State of Massachusetts was 42% in 
2009 (Massachusetts Department of Environmental Protection 2013). For the smaller, co-mingled goods 



(pumps), recycling rate of 50% after 30 years was assumed with linear interpolation between current 
recycling rate of all C&D waste in Massachusetts (33%) (Government of Massachusetts 2010). Recycling 
rates for large, metallic structural components were assumed to increase to 97.5% at the demolition time. 
Because of Massachusetts C&D waste landfilling ban (Government of Massachusetts 2015), it is assumed 
that large plastic components will also see a high recycling rate in 30 years (95%) since these components 
are easily source-segregated and we assume that there will exist incentives to promote their collection at the 
time of demolition (fines or fees for inclusion with landfilled waste), but we linearly interpolate between 
current recycling rate of all C&D waste in Massachusetts (33%). All materials not recycled are assumed to 
be landfilled. Table 11 outlines the lifetimes and recycling rates for the various components of the BI-NC 
operation. 

Table 44 - Recycling rates and lifetimes of various components of the BI-NC farm.  

Component Lifetime 
(years) 

Current 
recycling 
rate (%) 

Future recycling rate (%) Applied Substitutes 
at market 5 10 15 20 25 30 

Green roof components 
Root barrier 
(HDPE)  

30  95  - - - - - 95 95 virgin steel 

Moisture mat 
(PP) 

30  33  - - - - - 95 95 virgin plastic 

Drainage mat 
(HDPE)  

30  33  - - - - - 95 95 virgin plastic 

Aggregate 
(expanded 
shale) 

30 0  - - - - - 0 0 landfill 
assumed  

Gravel 30 0 - - - - - 0 0 - 
Filter fabric 
(LDPE) 

30 95 - - - - - 95 95 virgin plastic 

Medium 
(expanded 
clay) 

30 0 - - - - - 0 0 - 

Drain cover 
(steel) 

30 95 - - - - - 95 95 virgin steel 

Shore edge 
(steel) 

30 95 - - - - - 95 95 virgin steel 

Irrigation Components 
Irrigation box 
(HDPE) 

30 95  - - - - - 95 95 virgin 
plastics 

Irrigation 
control 
computer6 

10 33  - 39 - 45 - 50 45 virgin metals 

Pressure 
regulator2 

15 33  - - 42 - - 50 46 virgin metals 

Pump2 15 33 - - 42 - - 50 46 virgin metals 
Tubing 
(plastics) 

30 95 - - - - - 95 95 virgin 
plastics 

Fencing system 
Steel frame 30 95 - - - - - 95 95 virgin metals 
Weights 
(HDPE) 

30 95 - - - - - 97.5 97.5 virgin 
plastics 

                                                      
6 Only metals recovered; plastic and glass components assumed to go to landfill 



Structural components 
Steel 30 95 - - - - - 97.5 97.5 virgin metals 
Operations 
Distribution 
totes 

10 95 - 95 - 95 - 95 95 virgin metals 
and plastics 

BI-NC: Life Cycle Inventory (LCI) - Tomato 

Capital inputs, as provided by the contractor, were divided by their lifetimes (table 11) to determine the 
annual inputs of materials to the system. Annual outputs were also estimated, with the fractions going to 
recycling and landfill calculated using the recycling rates (table 9). As the capital inputs apply to the entire 
farm area, a percentage was allocated to the tomatoes based on the percentage of total growing area 
occupied by tomatoes (6.8%). For operating inputs the same method was applied with the exception of 
irrigation demands which were crop specific.  Annual capital inputs, outputs (recycled and landfilled), and 
annual operating inputs were then normalized per kilogram fresh tomato produced by dividing by the 
annual production of 469 kg/annum. Table 12-22 outline the LCI for a single kilogram of tomatoes 
(abbreviated as ‘FU’ for functional unit) delivered to the point of pickup by the customer, including the 
ecoinvent 3.1 processes used to model them. Produce is not refrigerated at any point in the supply chain.  

Green Roof Components 

Table 45 - LCI for BI-NC green roof components 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.01170539 

 
kg/FU Polyethylene, high 

density, granulate 
{GLO}| market for | 
Conseq, U 

 

Polypropylene 0.0041951 
 

kg/FU Polypropylene, 
granulate {GLO}| 
market for | Conseq, 
U 

 

Shale 0.07103755 kg/FU Expanded shale {US-
Boston} | Market for | 
Conseq, U 

Transport adjusted to assume 
distance of 50 miles between 
extraction site and farm as 
determined through conversation 
with supplier. 

Gravel 0.12400727 kg/FU Crushed gravel {US-
Boston} | market for | 
conseq, U 

Same as with shale. 

Expanded Clay 0.77029327 kg/FU Expanded clay {US-
Boston} | Market for | 
Conseq, U 

Same as with shale. 

Steel 0.00064681 kg/FU Steel, low-alloyed 
{US}| market for | 
Conseq, U 

Steel assumed to be produced in 
U.S., since 75% of steel 
consumption is from domestic 
production (World Steel 
Association 2013). Hot rolling 
assumed to occur using Uses 
Midwest Reliability Organization 
(MRO) grid according to 
manufacturer’s location 

Material Processing and Freight 
Plastic forming 0.0159005 

 
kg/FU Extrusion, plastic film 

{US-MRO}| 
production | Conseq, 
U 

MRO electrical grid according to 
manufacturer’s location 

Component 
freight 

0.0264627 tkm/FU Transport, freight, 
loryy >32 metric ton, 

Components come from Chicago, 
U.S. area according to 



EURO6 {RoW}| 
transport, freight, lorry 
>32 metric ton, 
EURO6 | Conseq, U 

manufacturer (~1600 km) 

Waste Treatment 
Steel recycling 0.00062998 

 
kg/FU Steel and iron (waste 

treatment) {US-
NPCC}| recycling of 
steel and iron | 
Conseq, U 

Same as BI-C process but with 
energy grid changed to NPCC 
region 

HDPE 
recycling 

0.00398265 
 

kg/FU PE (waste treatment) 
{US-NPCC}| recycling 
of PE | Conseq, U 

Same as above 

Polypropylene 
recycling 

0.01112247 
 
 

kg/FU PP (waste treatment) 
{US-NPCC}| recycling 
of PP | Conseq, U 

Same as BI-C process but with 
energy grid changed to NPCC 
region 

Landfilling 0.96597474 kg/FU Inert waste, for final 
disposal {US}| market 
for | Conseq, U 

Trains using U.S. data 

Irrigation System  

Table 46 - LCI for BI-NC irrigation system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 2.41373E-05 

 
kg/FU Polyethylene, high 

density, granulate 
{GLO}| market for | 
Conseq, U 

 

Polypropylene 4.74176E-05 kg/FU Polypropylene, granulate 
{GLO}| market for | 
Conseq, U 

 

Nylon 4.10738E-06 kg/FU Nylon 6 {GLO}| market 
for | Conseq, U 

 

LDPE 0.000407312 kg/FU Polyethylene, low 
density, granulate 
{GLO}| market for | 
Conseq, U 

 

Aluminum 7.7777E-07 kg/FU Aluminium, primary, 
ingot {US}| market for | 
Conseq, U 

Aluminum assumed to 
be produced in U.S., 
since 75% of steel 
consumption is from 
domestic production 
(U.S. Geological Survey 
2013) . Includes energy 
for shaping. 

Steel 3.81113E-05 kg/FU Steel, low-alloyed, hot 
rolled {US-WECC}| 
market for | Conseq, U 

Western Electricity 
Coordinating Council 
(WECC) grid used for 
forming, based off of 
manufacturer’s location 

Glass 5.59546E-08 kg/FU Glass, for liquid crystal 
display {GLO}| 
production | Conseq, U 

 

Copper 2.51796E-06 
 

kg/FU Copper {GLO}| market 
for | Conseq, U 

 

Material Processing and Freight 



Plastic film 
forming 

0.00040695 kg/FU Extrusion, plastic film 
{US-WECC}| 
production | Conseq, U 

WECC grid used based 
on location of 
manufacture 

Plastic pipe 
forming 

7.5598E-05  Extrusion, plastic pipes 
{US-NPCC}| production 
| Conseq, U 

Assumes manufacturer 
occurs locally 

Copper forming 2.5199E-07 kg/FU Wire drawing, copper 
{US-WECC}| processing 
| Conseq, U 

WECC grid used based 
on location of 
manufacture 

Component 
freight 

0.000267924 tkm/FU Transport, freight, lorry 
>32 metric ton, EURO4 
{RER}| transport, 
freight, lorry >32 metric 
ton, EURO4 | Conseq, 
U 

Transport from West 
Coast, U.S. to Boston, 
U.S. (~4880 km) 

Waste Treatment 
Steel recycling 1.9117E-05 

 
kg/FU Steel and iron (waste 

treatment) {CA-QC}| 
recycling of steel and 
iron | Conseq, U 

 

Copper recycling 3.8958E-07 kg/FU Copper (waste 
treatment) {GLO}| 
recycling of copper | 
Conseq, U 

 

Aluminum 
recycling 

3.8958E-07 
 

kg/FU Aluminium (waste 
treatment) {CA-QC}| 
recycling of aluminium | 
Conseq, U 

 

LDPE and HDPE 
recycling 

0.00040956 
 

kg/FU PE (waste treatment) 
{US-NPCC}| recycling 
of PE | Conseq, U 

Uses local electrical 
grid 

Landfilling 9.3846E-05 kg/FU Inert waste, for final 
disposal {US}| market 
for | Conseq, U 

 

Fence System 

Table 47 - LCI for BI-NC fence system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Steel  0.01245883 kg/FU Steel, low-alloyed, hot rolled {US-

NPCC}| market for | Conseq, U 
 
 

Material Processing 
Plastic 
forming 

0.0081628 kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

For fencing counter-
weights which are 
made of recycled 
HDPE  

Freight 0.01535132 kg/FU Transport, freight, lorry >32 metric 
ton, EURO5 {RoW}| transport, 
freight, lorry >32 metric ton, EURO5 
| Conseq, U 

Freight from upstate 
New York 

Waste Treatment 
Steel recycling 0.01215072 kg/FU Steel and iron (waste treatment) {US-

NPCC}| recycling of steel and iron | 
Conseq, U 

 

HDPE 
recycling 

0.00774807 
 

kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 



Landfilling 0.00071977 kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Structural Buttressing 

Table 48 - LCI of BI-NC structural buttressing 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Steel 0.17620229 kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| market for 

| Conseq, U 
 

Waste Treatment 
Steel recycling 0.17179723 kg/FU Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 
 

Landfilling 0.00440506 kg/FU Inert waste, for final disposal {US}| market for | 
Conseq, U 

 

Irrigation 

Table 49 - LCI for BI-NC annual irrigation and nutrient loading in runoff  

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Irrigation 
water 

0.045002 
 

m3/FU Tap water {US}| market for | 
Conseq, U 

Ground water changed to 
U.S. location 

Outputs to Nature 
Nitrogen 0.00010592 kg/FU - To river  
Phosphorous 1.8862E-06 kg/FU - To river 
Potassium 1.8862E-05 kg/FU - To river 

Nutrient Demands 

Table 50 - LCI for BI-NC nutrient demands 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Nitrogen fertilizer, 
as N 

0.00036749 
 

kg/FU Ammonium nitrate, as N 
{GLO}| market for | Conseq, U 

 

Phosphate 
fertilizer, as P2O5 

0.00047121 
 

kg/FU Phosphate fertiliser, as P2O5 
{GLO}| market for | Conseq, U 

 

Potassium sulfate, 
as K2O 

0.00025493 
 

kg/FU Potassium nitrate {GLO}| 
market for | Conseq, U 

 

Rock dust 0.01975976 
 

kg/FU Basalt {GLO}| market for | 
Conseq, U 

 

Transport 
Compost hauling 0.00373987 

 
tkm/FU Transport, freight, lorry 16-32 

metric ton, EURO4 {GLO}| 
market for | Conseq, U 

22.5 km between 
farm and composting 
center 

Distribution 

Table 51 - LCI for BI-NC distribution 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.001086178 kg/FU Polyethylene, high density, 

granulate {GLO}| market for | 
Conseq, U 

Totes used to transport 
produce to supermarket 
floor 

Steel 0.000217236 kg/FU Steel, low-alloyed, hot rolled {US-
NPCC}| market for | Conseq, U 

Totes used to transport 
produce to supermarket 
floor 



Material Processing 
Plastic 
forming 

0.001086178 kg/FU Extrusion, plastic film {US-
NPCC}| production | Conseq, U 

 

Waste Treatment 
HDPE 
recycling 

0.001042731 kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Steel recycling 0.000208546 kg/FU Steel and iron (waste treatment) 
{US-NPCC}| recycling of steel 
and iron | Conseq, U 

 

Landfilling 5.2137E-5 kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

 

Building Symbiosis 

Table 52 - LCI for BI-NC building symbiosis 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Avoided Products 
Cooling 0.41125325 MJ/FU Electricity, low voltage, 2012-2040 average {NPCC, 

US only}| market for | Conseq, U 
 

Heating 5.60433347 MJ/FU Heat, central or small-scale, natural gas {CH}| heat 
production, natural gas, at boiler condensing 
modulating <100kW | Conseq, U 

 

Waste Treatment 

Table 53 - LCI for BI-NC waste treatment 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Waste Treatment 
Organic waste 
treatment 

0.0987453 kg/FU garden waste treatment {US-NPCC} | at farm | 
conseq, U 

 

Transport 
Organic waste 
hauling 

0.00222173 
 

tkm/FU Transport, freight, lorry >32 metric ton, 
EURO4 {GLO}| market for | Conseq, U 

 

Energy and Fuels 

Table 54 - LCI for BI-NC energy and fuels 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Energy and Fuels 
Electricity 0.023392808 

 
kWh/FU Electricity, low voltage, 2012-2040 

average {NPCC, US only}| market 
for | Conseq, U 

 

Site visits 0.4729366 km/FU Transport, passenger car, small size, 
petrol, EURO 5 {GLO}| market for 
| Conseq, U 

25.5 km one way, 
twice per week for 
37 weeks 

Other 

Table 55 - LCI for BI-NC other inputs 

Input/Process Amount Unit ecoinvent 3.1 
process 

Notes 

Energy and Fuels 
Seedling 1 kg/FU tomato seedling 

{at farm} 
Inputs scaled to number of seedlings 
required to grow 1 kg of tomatoes 

 



BI-NC: Life Cycle Inventory (LCI) - Lettuce 

LCIs calculated in the same manner as the tomatoes, allocating 3.9% of the growing area to the lettuce and 
having a harvest of 80 kg/annum. Table 23-33 outline the LCI for a single kilogram of lettuce (abbreviated 
as ‘FU’ for functional unit) delivered to the point of pickup by the customer, including the ecoinvent 3.1 
processes used to model them. Produce is not refrigerated at any point in the supply chain.  

Green Roof Components 

Table 56 - LCI for BI-NC green roof components 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.039605844 kg/FU Polyethylene, high 

density, granulate 
{GLO}| market for | 
Conseq, U 

 

Polypropylene 0.014194365 kg/FU Polypropylene, 
granulate {GLO}| 
market for | Conseq, 
U 

 

Shale 0.240359476 
 

kg/FU Expanded shale {US-
Boston} | Market for | 
Conseq, U 

Transport adjusted to assume 
distance of 50 miles between 
extraction site and farm as 
determined through conversation 
with supplier. 

Gravel 0.41958546 
 

kg/FU Crushed gravel {US-
Boston} | market for | 
conseq, U 

Same as with shale. 

Expanded Clay 2.606329966 kg/FU Expanded clay {US-
Boston} | Market for | 
Conseq, U 

Same as with shale. 

Steel 0.002188534 
 

kg/FU Steel, low-alloyed 
{US}| market for | 
Conseq, U 

Steel assumed to be produced in 
U.S., since 75% of steel 
consumption is from domestic 
production (World Steel 
Association 2013). Hot rolling 
assumed to occur using Uses 
Midwest Reliability Organization 
(MRO) grid according to 
manufacturer’s location 

Material Processing and Freight 
Plastic forming 0.053800209 

 
kg/FU Extrusion, plastic film 

{US-MRO}| 
production | Conseq, 
U 

MRO electrical grid according to 
manufacturer’s location 

Component 
freight 

0.08967009 
 

tkm/FU Transport, freight, 
loryy >32 metric ton, 
EURO6 {RoW}| 
transport, freight, lorry 
>32 metric ton, 
EURO6 | Conseq, U 

Components come from 
Chicago, U.S. area according to 
manufacturer (~1600 km) 

Waste Treatment 
Steel recycling 0.0021315 

 
kg/FU Steel and iron (waste 

treatment) {US-
NPCC}| recycling of 
steel and iron | 
Conseq, U 

Same as BI-C process but with 
energy grid changed to NPCC 
region 

HDPE 
recycling 

0.01347501 
 

kg/FU PE (waste treatment) 
{US-NPCC}| recycling 

Same as above 



of PE | Conseq, U 
Polypropylene 
recycling 

0.03763204 
 
 

kg/FU PP (waste treatment) 
{US-NPCC}| recycling 
of PP | Conseq, U 

Same as BI-C process but with 
energy grid changed to NPCC 
region 

Landfilling 3.26830327 
 

kg/FU Inert waste, for final 
disposal {US}| market 
for | Conseq, U 

Trains using U.S. data 

Irrigation System  

Table 57 - LCI for BI-NC irrigation system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 8.16667E-05 

 
kg/FU Polyethylene, high 

density, granulate 
{GLO}| market for | 
Conseq, U 

 

Polypropylene 0.000160434 
 

kg/FU Polypropylene, granulate 
{GLO}| market for | 
Conseq, U 

 

Nylon 1.3897E-05 
 

kg/FU Nylon 6 {GLO}| market 
for | Conseq, U 

 

LDPE 0.001378111 
 

kg/FU Polyethylene, low 
density, granulate 
{GLO}| market for | 
Conseq, U 

 

Aluminum 2.63153E-06 
 

kg/FU Aluminium, primary, 
ingot {US}| market for | 
Conseq, U 

Aluminum assumed to 
be produced in U.S., 
since 75% of steel 
consumption is from 
domestic production 
(U.S. Geological Survey 
2013) . Includes energy 
for shaping. 

Steel 0.000128947 
 

kg/FU Steel, low-alloyed, hot 
rolled {US-WECC}| 
market for | Conseq, U 

Western Electricity 
Coordinating Council 
(WECC) grid used for 
forming, based off of 
manufacturer’s location 

Glass 1.89318E-07 
 

kg/FU Glass, for liquid crystal 
display {GLO}| 
production | Conseq, U 

 

Copper 8.51933E-06 
 

kg/FU Copper {GLO}| market 
for | Conseq, U 

 

Material Processing and Freight 
Plastic film 
forming 

0.0013769 
 

kg/FU Extrusion, plastic film 
{US-WECC}| 
production | Conseq, U 

WECC grid used based 
on location of 
manufacture 

Plastic pipe 
forming 

0.00025578 
 

 Extrusion, plastic pipes 
{US-NPCC}| production 
| Conseq, U 

Assumes manufacturer 
occurs locally 

Copper forming 8.526E-07 
 

kg/FU Wire drawing, copper 
{US-WECC}| processing 
| Conseq, U 

WECC grid used based 
on location of 
manufacture 

Component 
freight 

0.000906501 
 

tkm/FU Transport, freight, lorry 
>32 metric ton, EURO4 
{RER}| transport, 

Transport from West 
Coast, U.S. to Boston, 
U.S. (~4880 km) 



freight, lorry >32 metric 
ton, EURO4 | Conseq, 
U 

Waste Treatment 
Steel recycling 6.468E-05 

 
kg/FU Steel and iron (waste 

treatment) {CA-QC}| 
recycling of steel and 
iron | Conseq, U 

 

Copper recycling 1.3181E-06 
 

kg/FU Copper (waste 
treatment) {GLO}| 
recycling of copper | 
Conseq, U 

 

Aluminum 
recycling 

1.3181E-06 
 
 

kg/FU Aluminium (waste 
treatment) {CA-QC}| 
recycling of aluminium | 
Conseq, U 

 

LDPE and HDPE 
recycling 

0.00138572 
 

kg/FU PE (waste treatment) 
{US-NPCC}| recycling 
of PE | Conseq, U 

Uses local electrical 
grid 

Landfilling 0.00031752 
 

kg/FU Inert waste, for final 
disposal {US}| market 
for | Conseq, U 

 

Fence System 

Table 58 - LCI for BI-NC fence system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Steel  0.04215353 

 
kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 
 
 

HDPE 0.02761821 
 

kg/FU Polyethylene, high density, granulate {GLO}| 
market for | Conseq, U 

 

Material Processing 
Plastic 
forming 

0.02761821 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

 

Freight 0.05194005 
 

kg/FU Transport, freight, lorry >32 metric ton, 
EURO5 {RoW}| transport, freight, lorry >32 
metric ton, EURO5 | Conseq, U 

Freight from 
upstate New 
York 

Waste Treatment 
Steel recycling 0.04111104 

 
kg/FU Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 
 

HDPE 
recycling 

0.02621503 
 

kg/FU PE (waste treatment) {US-NPCC}| recycling 
of PE | Conseq, U 

 

Landfilling 0.0024353 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 

Structural Buttressing 

Table 59 - LCI of BI-NC structural buttressing 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Steel 0.59616726 kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| market for 

| Conseq, U 
 

Waste Treatment 
Steel recycling 0.58126308 

 
kg/FU Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 
 

Landfilling 0.01490418 kg/FU Inert waste, for final disposal {US}| market for |  



 Conseq, U 

Irrigation 

Table 60 - LCI for BI-NC annual irrigation and nutrient loading in runoff  

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Irrigation 
water 

0.048888 
 

m3/FU Tap water {US}| market for | 
Conseq, U 

Ground water changed to 
U.S. location 

Outputs to Nature 
Nitrogen 0.0003577 kg/FU - To river  
Phosphorous 6.37E-06 kg/FU - To river 
Potassium 6.37E-05 kg/FU - To river 

Nutrient Demands 

Table 61 - LCI for BI-NC nutrient demands 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Nitrogen fertilizer, 
as N 

0.00124338 
 

kg/FU Ammonium nitrate, as N 
{GLO}| market for | Conseq, U 

 

Phosphate 
fertilizer, as P2O5 

0.0015943 
 

kg/FU Phosphate fertiliser, as P2O5 
{GLO}| market for | Conseq, U 

 

Potassium sulfate, 
as K2O 

0.00086253 
 

kg/FU Potassium nitrate {GLO}| 
market for | Conseq, U 

 

Rock dust 0.06685567 
 

kg/FU Basalt {GLO}| market for | 
Conseq, U 

 

Transport 
Compost hauling 0.01265355 

 
tkm/FU Transport, freight, lorry 16-32 

metric ton, EURO4 {GLO}| 
market for | Conseq, U 

22.5 km between 
farm and composting 
center 

Distribution 

Table 62 - LCI for BI-NC distribution 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.003675 

 
kg/FU Polyethylene, high density, 

granulate {GLO}| market for | 
Conseq, U 

Totes used to transport 
produce to supermarket 
floor 

Steel 0.000735 
 

kg/FU Steel, low-alloyed, hot rolled {US-
NPCC}| market for | Conseq, U 

Totes used to transport 
produce to supermarket 
floor 

Material Processing 
Plastic 
forming 

0.01086178 kg/FU Extrusion, plastic film {US-
NPCC}| production | Conseq, U 

 

Waste Treatment 
HDPE 
recycling 

0.003528 
 

kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Steel recycling 0.0007056 
 

kg/FU Steel and iron (waste treatment) 
{US-NPCC}| recycling of steel and 
iron | Conseq, U 

 

Landfilling 0.0001764 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 



Building Symbiosis 

Table 63 - LCI for BI-C building symbiosis 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Avoided Products 
Cooling 1.39144459 

 
MJ/FU Electricity, low voltage, 2012-2040 average {NPCC, 

US only}| market for | Conseq, U 
 

Heating 18.961843 
 

MJ/FU Heat, central or small-scale, natural gas {CH}| heat 
production, natural gas, at boiler condensing 
modulating <100kW | Conseq, U 

 

Waste Treatment 

Table 64 - LCI for BI-NC waste treatment 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Waste Treatment 
Organic waste 
treatment 

0.3340912 
 

kg/FU garden waste treatment {US-NPCC} | at farm | 
conseq, U 

 

Transport 
Organic waste 
hauling 

0.00751705 
 

tkm/FU Transport, freight, lorry >32 metric ton, 
EURO4 {GLO}| market for | Conseq, U 

 

Energy and Fuels 

Table 65 - LCI for BI-NC energy and fuels 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Energy and Fuels 
Electricity 0.07914782 

 
MJ/FU Electricity, low voltage, 2012-2040 

average {NPCC, US only}| market for 
| Conseq, U 

 

Site visits 1.6001456 
 

km/FU Transport, passenger car, small size, 
petrol, EURO 5 {GLO}| market for | 
Conseq, U 

25.5 km one way, 
twice per week for 
37 weeks 

 

Other 

Table 66 - LCI for BI-NC other inputs 

Input/Process Amount Unit ecoinvent 3.1 
process 

Notes 

Energy and Fuels 
Seedling 1 kg/FU lettuce seedling {at 

farm} 
Inputs scaled to number of seedlings 
required to grow 1 kg of lettuce 
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 Appendix C: Life cycle inventory for ground-based conditioned farming system 1(GB-C1) 

The ground-based conditioned UA site (referred to as ‘GB-C1’ in the article text) is an operating urban 
greenhouse in Metropolitan Boston, US. The greenhouse is in a traditional gable style and consists of 1169 
m2 of growing area; 557.75 m2 allocated to commercial production and 488.75 m2 for communal growing 
space. There is additional building space for offices and storage (~122.5 m2), and outdoor space for vehicle 
parking and waste management. The LCA only concerns itself with the commercial growing space which is operated 
by the farm itself. The space is used to grow three crops; tomatoes form March through September, salad 
greens (lettuce) from October through February and a small amount of bean shoots throughout the year.  
The operation is soil-based, with the plants grown in raised beds that receive annual top-ups with fertilizer, 
with water supplied through drip irrigation.   

Primary data was available for all capital and operating inputs. Capital was accounted through site visits, 
engineering drawings and manufacturer literature. Operating inputs were taken from interviews with the 
farm operator and utilities invoices. Because multiple crops are grown throughout the year the various 
inputs had to be allocated to the tomatoes and lettuce. Table 1 outlines the allocation methods. 

Table 67 - Allocation key for GB-C1 

Aspect Allocation Method Tomato Lettuce Pea Shoots 
Equipment, site visits, 
compost inputs, land 
occupation 

% growing period length as a fraction 
of the year times the fraction of total 
mass of food produced in that period 

0.49 0.41 0.1 

Nutrient inputs Mass of produced crop 0.9 0.07 0.03 
Utilities (water, heat, 
electricity), 
distribution 

Consumption during growing period 
times the fraction of total mass of 
food produced in that period 

0.98 (Mar 
- Sept) 

0.69 (Oct 
- Feb) 

0.02 (Mar - 
Sept), 0.31 
(Oct - Sept) 

 



The supplementary information is arranged as follow: description of estimation of capital inputs where 
primary data was lacking; description of operational inputs where primary data was lacking; component 
lifetimes and recycling rates; life cycle inventory for functional unit.  

GB-C1: Capital Inputs 

Primary data was available for all equipment. In some instances, the mass of a component was known (e.g. 
fans, light fixtures, etc.), but not the material composition (steel, aluminum, etc.). In these cases the 
breakdown of materials was estimated using the same method employed by Rosado et al. (2014). Table 2 
outlines the material composition of various categories of equipment used in this study.  

Table 68 - The material composition of various pieces of capital equipment. The category of material 
according to Rosado et al. (2014) is shown, with the author’s assumption of the specific material in 
brackets. The totals do not add up to 100% as some categories were ignored if they were too vague to make 
a reasonable assumption about (e.g. non-specified biomass, precious metals, etc.), though the ignored 
categories tended to be minor fractions of the masses of the components.   

Material Multilayer 
circuit 

Standard Air Conditioner (also 
used for furnace) 

Fluorescent light 
fixture 

Plastics (HDPE) 0.2 0.25 0.04 
Ferrous metals (Steel) 0.32 0.66 0.02 
Light metals 0.2 0.03 0.15 
Nonferrous heavy metals 
(copper) 

0.28 0.02 0.17 

Glass 0 <0.01 0.6 
 

GB-C1: Operating Characteristics and Inputs 

The operating inputs for the GB-C1 farm were taken from primary data provided by the farm operator, 
though some aspects had to be estimated, namely, space conditioning to grow seedlings, runoff retention 
and imported compost production. In general, the same electricity mixes were used as employed for the BI-
NC operation (see S1.2 for details). No nutrient runoff is expected since all of the fertilization occurs within 
the greenhouse.  

Seedling Production 

Production of seedlings (small plants grown in greenhouses that are transferred to outdoor soil) is based off 
of the methods of Stoessel at al. (2012) for lettuce and tomatoes. For details see S1.2 of the BI-NC system. 

Runoff Retention 

A rainwater collection and storage system is present at the site, but according to interviews with the farm 
operator it is seldom used for irrigation and they had no estimate for how much it was used. We have taken 
a conservative estimate that the tank only captures its own volume (11.37 m3) of rainwater throughout the 
year. This is much less than the volume that fell on the site in 2014 (1.17 m * 557.75 m2 = 652 m3) (Boston 
Sewer and Water Commission 2015), but trusting the head farmer, who is on site for almost every 
operating day of the year, it is a safe assumption that rainwater capture plays a small role in the irrigation of 
the site. All captured rainwater is assumed to avoid runoff to combined sewers, and is modeled as avoided 
wastewater treatment demand.   

Imported Compost Production 

Method applied to BI-NC system was also used (see S1.2 for further details).  

Waste Management 

The GB-C1 operation produces compost on site, but this is not included in the inventory since the method 
is very low input (manual turning of open piles). The resulting compost is given away to low-income 
residents of Boston, meaning that it is not replacing fertilizer purchases on the market, and, thus, is not 
included in a consequential LCA, although the system is credited for the amount of organic waste that 
would have been sent to landfill in lieu of the on-site composting. The farm also sends a small amount of 
inorganic waste to landfill, but this has not been included in the inventory, since the farm manager did not 
have an estimate for this.     



GB-C1: Component lifetimes and recycling rates 

Same heuristics for the lifetimes and recycling rates as applied to the BI-NC were applied here, since they 
both operate within the Metropolitan Boston, U.S. region, and rely on the same waste management system. 
The assumed lifetime of the overall GB-C1 operation is 30 years. Table 3 outlines the different component 
lifetimes and disposal rates in the GB-C1 system. 

Table 69 - Lifetime and recycling rate of different components in the GB-C1 system 

Component Lifetime 
(years) 

Current 
recycling 
rate (%) 

Future recycling rate (%) Applied 
rate (%) 

Substitutes 
at market 5 10 15 20 25 30 

Structural components 
Steel columns 30 95 - - - - - 97.5 97.5 virgin metal 
Steel beams 30 95 - - - - - 97.5 97.5 virgin metal 
Skin 
(polycarbonate) 

30 33 - - - - - 95 95 virgin plastic 

Aluminum 
girders 

30 15 - - - - - 97.5 97.5 virgin metal 

Interior dividing 
wall 

30 33 - - - - - 95 95 virgin plastic 

Concrete 
foundation7 

30 61 - - - - - 92 928 gravel 

Mechanical components 
Gearbox 30 95 - - - - - - 95 virgin metal 
Motor 20 33 - - - 50 - - 50 virgin metals 
Shaft 30 95 - - - - - - 95 virgin metal 
HVAC components 
Inlet fans 20 33 - - - 50 - 50 50 virgin metals 
Overheard fans 20 33 - 50 - 50 - 50 50 virgin metals 
Furnace 30 33 - - - - - 50 50 virgin metals 
Control unit 10 33 - 50 - 50 - 50 50 virgin metals 
Tubing 30 95 - - - - - 50 50 virgin metals 
Electrical components 
Lamp 10 33 - 50 - 50 - 50 50 virgin metals 
Light fixture 30 95 - - - - - 95 95 virgin metals 
Irrigation components 
Tubing 10 33 - 95 - 95 - 95 95 virgin plastic 
Tanks 30 33 - - - - - 95 95 virgin plastic 
Manifold 30 33 - - - - - 95 95 virgin plastic 
Pump 15 33 - - 50 - - 50 50 virgin metals 
Hose 30 33 - - - - - - 95 virgin plastic 
Other 
Plastic drums 20 33 - - - 95 - - 95 virgin plastic 
Distribution 
totes 

10 33 - 95 - 95 - 95 95 virgin metal 
and plastic 

Wood9 30 33 - - - - - 0 0 - 
 

                                                      
7 Assumed to be left in the ground upon demolition of structure. 
8 Massachusetts aims for 80% decrease in landfilling by from 2010 rate by 2050 
(Government of Massachusetts 2015). The concrete recycling rate has been estimated 
assuming that this goal is achieved by the demolition date. 
9 Part of the raised beds. Assumed to be incinerated. 



GB-C1: Life Cycle Inventory (LCI) - Tomato 

Capital inputs, as provided by the contractor, were multiplied by the time allocated to tomato growing (see 
table 1) by their lifetimes (table 3) to determine the annual inputs of materials to the system. Annual 
outputs were also estimated, with the fractions going to recycling and landfill calculated using the recycling 
rates (table 3). For operating inputs the allocation key in table 1 was applied.  The allocated capital inputs, 
outputs (recycled and landfilled), and operating inputs were then normalized per kilogram fresh tomato 
produced by dividing by the annual production of 5455 kg/annum. Table 4-13 outline the LCI for a single 
kilogram of tomatoes (abbreviated as ‘FU’ for functional unit) delivered to the point of pickup by the 
customer, including the ecoinvent 3.1.1 processes used to model them. Transport was generally ignored 
unless the distances were large (e.g. greenhouse components coming from California) or the freight’s mass 
significant (e.g. concrete). 

Greenhouse components 

Table 70 - LCI for BI-C1 greenhouse components 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Inputs From Nature 
Land 
Occupation 

0.0502745 
 

m2*a/FU Occupation, urban, 
continuously built 

 

Material Inputs 
Steel 0.0190884 

 
kg/FU Steel, low-alloyed, hot rolled 

{US-NPCC}| market for | 
Conseq, U 

 

Aluminum 0.0004673 
 

kg/FU Aluminium, primary, ingot 
{US}| market for | Conseq, U 

 

Polycarbonate 0.0030936 
 

kg/FU Polycarbonate {GLO}| market 
for | Conseq, U 

 

PVC 0.0011117 
 

kg/FU Polyvinylchloride, bulk 
polymerised {GLO}| market 
for | Conseq, U 

 

Concrete 0.0001717 
 

m3/FU Concrete, normal {US-
NPCC}| production | 
Conseq, U 

 

Wood 0.00820899 m3/FU Sawnwood, hardwood, air 
dried, planed {RoW}| market 
for | Conseq, U 

 

Material Processing and Freight 
Plastic forming 0.0042052 

 
kg/FU Extrusion, plastic film {US-

WSCC}| production | 
Conseq, U 

WSCC electrical grid 
according to 
manufacturer’s location 

Component 
freight 

0.0038612 
 

tkm/FU Transport, freight, lorry >32 
metric ton, EURO5 {RER}| 
transport, freight, lorry >32 
metric ton, EURO5 | Conseq, 
U 

Greenhouse structural 
components (sans 
concrete) come from 
California manufacturer 
(~4875 km) 

Concrete 
freight 

0.0167657 tkm/FU Transport, freight, lorry 16-32 
metric ton, EURO4 {RoW}| 
transport, freight, lorry 16-32 
metric ton, EURO4 | Conseq, 
U 

Assumed to be 
transported 40 km to site 

Waste Treatment 
Steel recycling 0.018134 

 
kg/FU Steel and iron (waste 

treatment) {US-NPCC}| 
recycling of steel and iron | 
Conseq, U 

 

Aluminum 
recycling 

0.0004556 
 

kg/FU Aluminium (waste treatment) 
{US-NPCC}| recycling of 
aluminium | Conseq, U 

 



Polycarbonate 
recycling 

0.0029389 
 

kg/FU Polycarbonate (waste 
treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

PVC recycling 0.0010561 kg/FU PVC (waste treatment) {US-
NPCC}| recycling of PVC | 
Conseq, U 

 

Concrete 
recycling 

0.0001583 
 

kg/FU Waste concrete gravel {US-
NPCC}| treatment of, 
recycling | Conseq, U 

 

Landfilling 0.0011898 
 

kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

 

Wood disposal 0.00820899 kg/FU Waste wood, untreated {US-
NPCC}| market for | Conseq, 
U 

 

HVAC System  

Table 71 - LCI for GB-C1 HVAC system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Steel 0.0017208 

 
kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 
 

Copper 0.0002652 
 

kg/FU Copper {GLO}| market for | Conseq, U  

Aluminum 0.000224 
 

kg/FU Aluminium, primary, ingot {US}| market 
for | Conseq, U 

 

HDPE 0.0004568 
 

kg/FU Polyethylene, high density, granulate 
{GLO}| market for | Conseq, U 

 

Glass 9.656E-06 
 

kg/FU Flat glass, coated {GLO}| market for | 
Conseq, U 
 

 

Material Processing and Freight 
Plastic film 
forming 

0.0004568 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Copper forming 2.5199E-
07 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local production 
assumed 

Pipe forming 6.916E-05 
 

kg/FU Drawing of pipe, steel {US-NPCC}| 
processing | Conseq, U 

Local production 
assumed 

Waste Treatment 
Steel recycling 0.0008604 

 
kg/FU Steel and iron (waste treatment) {US-

NPCC}| recycling of steel and iron | 
Conseq, U 

 

Copper 
recycling 

4.275E-05 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of copper | Conseq, U 

 

Aluminum 
recycling 

0.000112 
 

kg/FU Aluminium (waste treatment) {US-
NPCC}| recycling of aluminium | 
Conseq, U 

 

HDPE recycling 0.0002284 
 

kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Landfilling 0.0014329 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Mechanical System 

Table 72 - LCI for GB-C1 mechanical system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 



Steel  0.01245883 kg/FU Steel, low-alloyed, hot rolled {US-
NPCC}| market for | Conseq, U 

 
 

Copper 7.466E-05 
 

kg/FU Copper {GLO}| market for | Conseq, U  

Material Processing 
Copping 
forming 

7.466E-05 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local production 
assumed 

Waste Treatment 
Steel recycling 0.0015693 

 
kg/FU Steel and iron (waste treatment) {US-

NPCC}| recycling of steel and iron | 
Conseq, U 

 

Copper 
recycling 

3.733E-05 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of copper | Conseq, U 

 

Landfilling 0.0007093 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Irrigation System 

Table 73 - LCI of GB-C1 irrigation system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.0006958 

 
kg/FU Polyethylene, low density, 

granulate {GLO}| market for | 
Conseq, U 

 

HDPE 0.000519 kg/FU Polyethylene, high density, 
granulate {GLO}| market for | 
Conseq, U 

 

PVC 0.0002829 kg/FU Polyvinylchloride, bulk 
polymerised {GLO}| market for 
| Conseq, U 

 

Polypropylene 1.475E-05 kg/FU Polypropylene, granulate 
{GLO}| market for | Conseq, 
U 

 

Rubber 3.278E-05 kg/FU Synthetic rubber {GLO}| 
market for | Conseq, U 

 

Copper 1.639E-06 kg/FU Copper {GLO}| market for | 
Conseq, U 

 

Material Processing 
Plastic forming 0.0015452 kg/FU Extrusion, plastic film {US-

NPCC}| production | Conseq, 
U 

Local production assumed 

Copper 
forming 

1.639E-06 kg/FU Wire drawing, copper {US-
NPCC}| processing | Conseq, 
U 

Local production assumed 

Waste Treatment 
HDPE 
recycling 

0.00066104 kg/FU PE (waste treatment) {US-
NPCC}| recycling of PE | 
Conseq, U 
 

 

LDPE 
recycling 

0.00049303 kg/FU PE (waste treatment) {US-
NPCC}| recycling of PE | 
Conseq, U 

 

PVC recycling 0.00026874 kg/FU PVC (waste treatment) {US-
NPCC}| recycling of PVC | 
Conseq, U 

Inventory the same as PE 
recycling but with PVC as 
input and avoided product 

Copper 
recycling 

8.1944E-07 kg/FU Copper (waste treatment) {US-
NPCC}| recycling of 

 



aluminium | Conseq, U 
Rubber 
recycling 

3.1139E-05 kg/FU Rubber (waste treatment) {US-
NPCC}| recycling of rubber | 
Conseq, U 

 

Landfilling 9.2093E-05 kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

 

Lighting System 

Table 74 - LCI of GB-C1 lighting system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 1.2941E-06 

 
kg/FU Polyethylene, high density, granulate 

{GLO}| market for | Conseq, U 
 

Aluminum 5.128E-06 
 

kg/FU Aluminium removed by milling, small 
parts {US-NPCC}| aluminium milling, 
small parts | Conseq, U 

 

Steel 0.000201 
 

kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 
market for | Conseq, U 

 

Glass 2.0653E-05 
 

kg/FU Flat glass, coated {GLO}| market for | 
Conseq, U 

 

Copper 5.9127E-06 
 

kg/FU Copper {GLO}| market for | Conseq, U  

Material Processing 
Plastic forming 1.2941E-06 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local 
production 
assumed 

Copper forming 5.9127E-06 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local 
production 
assumed 

Waste Treatment 
Steel recycling 0.00019064 

 
kg/FU Steel (waste treatment) {US-NPCC}| 

recycling of Steel | Conseq, U 
 

Aluminum 
recycling 

2.564E-06 
 

kg/FU Aluminum (waste treatment) {US-
NPCC}| recycling of Aluminum | 
Conseq, U 

 

Copper 
recycling 

2.9564E-06 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of aluminium | Conseq, U 

 

Landfilling 3.7203E-05 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Space Conditioning 

Table 75 - LCI for GB-C1 space conditioning during tomato cultivation 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Heating 2.8069362 

 
kWh/FU Heat, central or small-scale, natural gas {CH}| heat 

production, natural gas, at boiler condensing 
modulating <100kW | Conseq, U 

 

Electricity 1.2735134 
 

kWh/FU Electricity, low voltage, 2012-2040 average {NPCC, 
US only}| market for | Conseq, U 

 

Irrigation 

Table 76 - LCI for GB-C1 irrigation and avoided runoff during tomato growing season  

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 



Irrigation water 0.1945531 
 

m3/FU Tap water {US}| market for | 
Conseq, U 

Ground water changed 
to U.S. location 

Avoided Production 
Wastewater 
treatment 

0.0010248 m3/FU Wastewater, unpolluted {GLO}| 
market for | Conseq, U 

 

Nutrient Demands 

Table 77 - LCI for GB-C1 nutrient consumption during tomato cultivation period 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Nitrogen fertilizer, 
as N 

0.00102137 
 

kg/FU Ammonium nitrate, as N 
{GLO}| market for | Conseq, U 

 

Phosphate 
fertilizer, as P2O5 

0.00221773 
 

kg/FU Phosphate fertiliser, as P2O5 
{GLO}| market for | Conseq, U 

 

Potassium sulfate, 
as K2O 

0.0006698 
 

kg/FU Potassium nitrate {GLO}| 
market for | Conseq, U 

 

Transport 
Compost hauling 0.0253244 

 
tkm/FU Transport, freight, lorry 16-32 

metric ton, EURO4 {GLO}| 
market for | Conseq, U 

14.1 km between 
farm and composting 
center 

Waste Management 

Table 78 - LCI for GB-C1 waste management during tomato cultivation period 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Avoided Production 
Waste 
treatment 

0.8767327 
 

kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

14.1 km between farm and 
composting center 

Distribution 

Table 79 - LCI for GB-C1 distribution 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.0064016 

 
kg/FU Polyethylene, high density, granulate 

{GLO}| market for | Conseq, U 
Totes 

Paper 0.0080927 
 

kg/FU Kraft paper, unbleached {GLO}| 
market for | Conseq, U 

Bags 

Material Processing and Transport 
Plastic forming 0.0064016 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
 

Distribution to 
markets 

0.1135645 
 

km Transport, passenger car, large size, 
petrol, EURO 5 {RER}| transport, 
passenger car, large size, petrol, 
EURO 5 | Conseq, U 

Driven in van to 
various markets 
around the Boston 
area 

Waste Treatment 
HDPE recycling 0.006081481 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Paper recycling 0.0040464 
 

kg/FU Paper (waste treatment) {GLO}| 
recycling of paper | Conseq, U 

 

Landfilling 0.0101278 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 



Other 

Table 80 - LCI for GB-C1 other inputs 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 3.0229E-

05 
kg/FU Polyethylene, high density, 

granulate {GLO}| market for | 
Conseq, U 

Waste storage drums (55 gal) 

Material Processing 
Plastic 
forming 

3.0229E-
05 

kg/FU Extrusion, plastic film {US-
NPCC}| production | Conseq, 
U 

 

Energy and Fuels 
Seedling 1 kg/FU tomato seedling {at farm} Inputs scaled to number of 

seedlings required to grow 1 
kg of tomatoes 

Waste Treatment 
LDPE 
recycling 

2.87178E-
05 
 

kg/FU PE (waste treatment) {US-
NPCC}| recycling of PE | 
Conseq, U 

 

Landfilling 1.51146E-
06 
 

kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

 

GB-C1: Life Cycle Inventory (LCI) - Lettuce 

Same method that was used for the tomatoes was applied to the lettuce. The allocated capital inputs, 
outputs (recycled and landfilled), and operating inputs were then normalized per kilogram fresh tomato 
produced by dividing by the annual production of 403 kg/annum. Table 14-23 outline the LCI for a single 
kilogram of tomatoes (abbreviated as ‘FU’ for functional unit) delivered to the point of pickup by the 
customer, including the ecoinvent 3.1.1 processes used to model them. Produce is not refrigerated at any 
point in the supply chain. 

Greenhouse components 

Table 81 - LCI for GB-C1 greenhouse components 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Inputs From Nature 
Land 
Occupation 

0.5626089 
 

m2*a/FU Occupation, urban, 
continuously built 

 

Material Inputs 
Steel 0.2136138 kg/FU Steel, low-alloyed, hot rolled 

{US-NPCC}| market for | 
Conseq, U 

 

Aluminum 0.0052294 kg/FU Aluminium, primary, ingot 
{US}| market for | Conseq, U 

 

Polycarbonate 0.0346195 kg/FU Polycarbonate {GLO}| market 
for | Conseq, U 

 

PVC 0.0124402 kg/FU Polyvinylchloride, bulk 
polymerised {GLO}| market for 
| Conseq, U 

 

Concrete 0.0019215 
 

m3/FU Concrete, normal {US-NPCC}| 
production | Conseq, U 

 

Wood 0.0918646 
 

m3/FU Sawnwood, hardwood, air 
dried, planed {RoW}| market 
for | Conseq, U 

 

Material Processing and Freight 
Plastic forming 0.0470598 kg/FU Extrusion, plastic film {US- WSCC electrical grid 



 WSCC}| production | 
Conseq, U 

according to 
manufacturer’s location 

Component 
freight 

0.0432092 
 

tkm/FU Transport, freight, lorry >32 
metric ton, EURO5 {RER}| 
transport, freight, lorry >32 
metric ton, EURO5 | Conseq, 
U 

Greenhouse structural 
components (sans 
concrete) come from 
California manufacturer 
(~4875 km) 

Concrete 
freight 

0.1876204 tkm/FU Transport, freight, lorry 16-32 
metric ton, EURO4 {RoW}| 
transport, freight, lorry 16-32 
metric ton, EURO4 | Conseq, 
U 

Assumed to be 
transported 40 km to site 

Waste Treatment 
Steel recycling 0.2029331 kg/FU Steel and iron (waste treatment) 

{US-NPCC}| recycling of steel 
and iron | Conseq, U 

 

Aluminum 
recycling 

0.0050987 kg/FU Aluminium (waste treatment) 
{US-NPCC}| recycling of 
aluminium | Conseq, U 

 

Polycarbonate 
recycling 

0.0328886 kg/FU Polycarbonate (waste treatment) 
{US-NPCC}| recycling of PE | 
Conseq, U 

 

PVC recycling 0.0118182 kg/FU PVC (waste treatment) {US-
NPCC}| recycling of PVC | 
Conseq, U 

 

Concrete 
recycling 

0.0017717 kg/FU Waste concrete gravel {US-
NPCC}| treatment of, recycling 
| Conseq, U 

 

Landfilling 0.0133142 kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

 

Wood disposal 0.2029331 kg/FU Waste wood, untreated {US-
NPCC}| market for | Conseq, 
U 

 

HVAC System  

Table 82 - LCI for GB-C1 HVAC system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Steel 0.0192573 kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 
 

Copper 0.0029675 kg/FU Copper {GLO}| market for | Conseq, U  
Aluminum 0.0025063 kg/FU Aluminium, primary, ingot {US}| market 

for | Conseq, U 
 

HDPE 0.0051124 kg/FU Polyethylene, high density, granulate 
{GLO}| market for | Conseq, U 

 

Glass 0.0001081 
 

kg/FU Flat glass, coated {GLO}| market for | 
Conseq, U 
 

 

Material Processing and Freight 
Plastic film 
forming 

0.0051124 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Copper forming 0.0029675 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local production 
assumed 

Pipe forming 0.0007739 
 

kg/FU Drawing of pipe, steel {US-NPCC}| 
processing | Conseq, U 

Local production 
assumed 

Waste Treatment 



Steel recycling 0.0096286 
 

kg/FU Steel and iron (waste treatment) {US-
NPCC}| recycling of steel and iron | 
Conseq, U 

 

Copper 
recycling 

0.0004784 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of copper | Conseq, U 

 

Aluminum 
recycling 

0.0012531 
 

kg/FU Aluminium (waste treatment) {US-
NPCC}| recycling of aluminium | 
Conseq, U 

 

HDPE recycling 0.0025562 
 

kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Landfilling 0.0160352 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Mechanical System 

Table 83 - LCI for GB-C1 mechanical system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Steel  0.0250814 

 
kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 
 
 

Copper 0.0008355 
 

kg/FU Copper {GLO}| market for | Conseq, U  

Material Processing 
Copping 
forming 

0.0008355 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local production 
assumed 

Waste Treatment 
Steel recycling 0.0015693 

 
kg/FU Steel and iron (waste treatment) {US-

NPCC}| recycling of steel and iron | 
Conseq, U 

 

Copper 
recycling 

3.733E-05 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of copper | Conseq, U 

 

Landfilling 0.0007093 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 

Irrigation System 

Table 84 - LCI of GB-C1 irrigation system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.0077869 kg/FU Polyethylene, low density, 

granulate {GLO}| market for | 
Conseq, U 

 

HDPE 0.0058077 kg/FU Polyethylene, high density, 
granulate {GLO}| market for | 
Conseq, U 

 

PVC 0.0031657 kg/FU Polyvinylchloride, bulk 
polymerised {GLO}| market for 
| Conseq, U 

 

Polypropylene 0.0001651 kg/FU Polypropylene, granulate 
{GLO}| market for | Conseq, U 

 

Rubber 0.0003668 
 

kg/FU Synthetic rubber {GLO}| market 
for | Conseq, U 

 

Copper 1.834E-05 
 

kg/FU Copper {GLO}| market for | 
Conseq, U 

 

Material Processing 
Plastic forming 0.0172922 

 
kg/FU Extrusion, plastic film {US-

NPCC}| production | Conseq, 
Local production assumed 



U 
Copper 
forming 

1.834E-05 
 

kg/FU Wire drawing, copper {US-
NPCC}| processing | Conseq, 
U 

Local production assumed 

Waste Treatment 
HDPE 
recycling 

0.0073975 kg/FU PE (waste treatment) {US-
NPCC}| recycling of PE | 
Conseq, U 
 

 

LDPE 
recycling 

0.0055173 kg/FU PE (waste treatment) {US-
NPCC}| recycling of PE | 
Conseq, U 

 

PVC recycling 0.0030074 kg/FU PVC (waste treatment) {US-
NPCC}| recycling of PVC | 
Conseq, U 

Inventory the same as PE 
recycling but with PVC as 
input and avoided product 

Copper 
recycling 

9.17E-06 
 

kg/FU Copper (waste treatment) {US-
NPCC}| recycling of aluminium 
| Conseq, U 

 

Rubber 
recycling 

0.0003485 kg/FU Rubber (waste treatment) {US-
NPCC}| recycling of rubber | 
Conseq, U 

 

Landfilling 0.0010306 kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

 

Lighting System 

Table 85 - LCI of GB-C1 lighting system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 1.448E-05 

 
kg/FU Polyethylene, high density, granulate 

{GLO}| market for | Conseq, U 
 

Aluminum 5.739E-05 
 

kg/FU Aluminium removed by milling, small parts 
{US-NPCC}| aluminium milling, small 
parts | Conseq, U 

 

Steel 0.0022496 
 

kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 
market for | Conseq, U 

 

Glass 0.0002311 
 

kg/FU Flat glass, coated {GLO}| market for | 
Conseq, U 

 

Copper 6.617E-05 
 

kg/FU Copper {GLO}| market for | Conseq, U  

Material Processing 
Plastic forming 1.448E-05 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local 
production 
assumed 

Copper forming 6.617E-05 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local 
production 
assumed 

Waste Treatment 
Steel recycling 0.0021334 kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Aluminum 
recycling 

2.869E-05 kg/FU PVC (waste treatment) {US-NPCC}| 
recycling of PVC | Conseq, U 

 

Copper 
recycling 

3.308E-05 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of aluminium | Conseq, U 

 

Landfilling 0.0004163 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 



Space Conditioning 

Table 86 - LCI for GB-C1 space conditioning during tomato cultivation 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Heating 82.293991 

 
kWh/FU Heat, central or small-scale, natural gas {CH}| heat 

production, natural gas, at boiler condensing 
modulating <100kW | Conseq, U 

 

Electricity 18.225504 
 

kWh/FU Electricity, low voltage, 2012-2040 average {NPCC, 
US only}| market for | Conseq, U 

 

Irrigation 

Table 87 - LCI for GB-C1 irrigation and avoided runoff during tomato growing season  

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Irrigation water 0.6033146 

 
m3/FU Tap water {US}| market for | 

Conseq, U 
Ground water changed 
to U.S. location 

Avoided Production 
Wastewater 
treatment 

0.0140969 
 

m3/FU Wastewater, unpolluted {GLO}| 
market for | Conseq, U 

 

Nutrient Demands 

Table 88 - LCI for GB-C1 nutrient consumption during tomato cultivation period 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Nitrogen fertilizer, 
as N 

0.00102137 
 

kg/FU Ammonium nitrate, as N 
{GLO}| market for | Conseq, U 

 

Phosphate 
fertilizer, as P2O5 

0.00221773 
 

kg/FU Phosphate fertiliser, as P2O5 
{GLO}| market for | Conseq, U 

 

Potassium sulfate, 
as K2O 

0.0006698 
 

kg/FU Potassium nitrate {GLO}| 
market for | Conseq, U 

 

Transport 
Compost hauling 0.0253244 

 
tkm/FU Transport, freight, lorry 16-32 

metric ton, EURO4 {GLO}| 
market for | Conseq, U 

14.1 km between 
farm and composting 
center 

Waste Management 

Table 89 - LCI for GB-C1 waste management during lettuce cultivation period 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Avoided Production 
Waste 
treatment 

0.8767327 
 

kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

14.1 km between farm and 
composting center 

Distribution 

Table 90 - LCI for GB-C1 distribution 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.0064016 

 
kg/FU Polyethylene, high density, granulate 

{GLO}| market for | Conseq, U 
Totes 

Paper 0.0080927 
 

kg/FU Kraft paper, unbleached {GLO}| 
market for | Conseq, U 

Bags 

Material Processing and Transport 
Plastic forming 0.0064016 kg/FU Extrusion, plastic film {US-NPCC}|  



 production | Conseq, U 
Distribution to 
markets 

0.8194745 
 

km Transport, passenger car, large size, 
petrol, EURO 5 {RER}| transport, 
passenger car, large size, petrol, 
EURO 5 | Conseq, U 

Driven in van to 
various markets 
around the Boston 
area 

Waste Treatment 
HDPE recycling 0.006081481 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Paper recycling 0.0040464 
 

kg/FU Paper (waste treatment) {GLO}| 
recycling of paper | Conseq, U 

 

Landfilling 0.0101278 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Other 

Table 91 - LCI for GB-C1 other inputs 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.0003383 

 
kg/FU Polyethylene, high density, 

granulate {GLO}| market for | 
Conseq, U 

Waste storage drums (55 
gal) 

Material Processing 
Plastic 
forming 

0.0003383 
 

kg/FU Extrusion, plastic film {US-
NPCC}| production | 
Conseq, U 

 

Energy and Fuels 
Seedling 1 kg/FU lettuce seedling {at farm} Inputs scaled to number of 

seedlings required to grow 
1 kg of lettuce 

Waste Treatment 
LDPE 
recycling 

0.000321373 
 

kg/FU PE (waste treatment) {US-
NPCC}| recycling of PE | 
Conseq, U 

 

Landfilling 1.69144E-05 
 

kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 
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Appendix D: Life cycle inventory for ground-based conditioned farming system 2 (GB-C2) 

The ground-based conditioned UA site (referred to as ‘GB-C2’ in the article text) is a modular farming 
system that is designed to be completed isolated from the elements; requiring artificial lighting throughout 
the year, heat in the winter and cooling in the summer. Because of the proprietary nature of the technology, 



numerous details regarding the calculation of the LCI are, unfortunately, omitted from the following 
sections.  

Primary data was available for all capital and operating inputs. Capital was accounted using parts lists from 
the farm designer. Operating inputs were taken from interviews with the farm operator and utilities 
invoices, for the production of lettuce.   

The supplementary information is arranged as follow: capital inputs; operating inputs; life cycle inventory 
for functional unit.  

GB-C2: Capital Inputs 

Primary data was available for all equipment. In some instances, the mass of a component was known (e.g. 
fans, light fixtures, etc.), but not the material composition (steel, aluminum, etc.). In these cases the 
breakdown of materials was estimated using the same method employed by Rosado et al. (2014). Table 2 
outlines the material composition of various categories of equipment used in this study. Components made 
of recycled materials have no burdens attributed to the BI-C2 system (unless the material comes from a 
constrained market, such as steel, see: http://consequential-lca.org/) since the waste treatment is allocated 
to the previous life-cycle of the material, though any further manipulation or freight of the material is 
allocated to the BI-C2.  

GB-C2: Operating Characteristics and Inputs 

The operating inputs for the GB-C1 farm were taken from primary data provided by the farm operator. No 
estimations were necessary.   

GB-C2: Component lifetimes and recycling rates 

Same heuristics for the lifetimes and recycling rates as applied to the BI-NC were applied here, since they 
both operate on the eastern seaboard of the U.S., and rely on similar waste management systems. The 
assumed lifetime of the overall GB-C2 operation is 30 years. Table 2 outlines the different component 
lifetimes and disposal rates in the GB-C2 system. 



Table 92 - Lifetime and recycling rate of different components in the GB-C1 system 

Component Lifetime 
(years) 

Current 
recycling 
rate (%) 

Future recycling rate (%) Applied 
rate (%) 

Substitutes at 
market 5 10 15 20 25 30 

Structural components 
Steel 
components 

30 95 - - - - - 95 95 virgin metal 

Aluminum 
components 

30 15 - - - - - 95 95 virgin metal 

Rubber 10 33 - 95 - 95 - 95 95 virgin plastic 
Insulation 30 33 - - - - - 95 95 virgin plastic 
Wood 30 61 - - - - - 95 95 incinerated 
HVAC components 
Fans 10 33 - 50 - 50 - 50 50 virgin metals 
AC/Heater 20 33 - - - 50 - 50 50 virgin metals 
Tubing 30 33 - - - - - 50 50 virgin plastics 
Electrical components 
Lights 15 33 - - 50 - - 50 50 virgin metals 
Sensors 15 33 - - 50 - - 50 50 virgin metals 
Computer 
control system 

15 33 - - 50 - - 50 50 virgin metals 
and plastics 

Cables 30 33 - - - - - 50 50 virgin metals 
Irrigation components 
Tubing 30 33 - 95 - 95 - 95 95 virgin plastic 
Tanks 30 33 - - - - - 95 95 virgin plastic 
Pump 15 33 - - 50 - - 50 50 virgin metals 
 

GB-C1: Life Cycle Inventory (LCI) - Lettuce 

Table 4-13 outline the LCI for a single kilogram of lettuce (abbreviated as ‘FU’ for functional unit) 
delivered to the point of pickup by the customer, including the ecoinvent 3.1.1 processes used to model 
them. 

Structural components 

Table 93 - LCI for GB-C2 greenhouse components 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Inputs From Nature 
Land 
Occupation 

0.034375 
 

m2*a/FU Occupation, urban, continuously 
built 

 

Material Inputs 
Steel 0.1248958 

 
kg/FU Steel, low-alloyed, hot rolled {US-

NPCC}| market for | Conseq, U 
 

Aluminum 0.0068406 
 

kg/FU Aluminium, primary, ingot {US}| 
market for | Conseq, U 

 

Fibreboard 2.739E-05 
 

m3/FU Medium density fibreboard 
{GLO}| market for | Conseq, U 

 

Material Processing and Freight 
Component 
freight 

0.0083188 
 

tkm/FU Transport, freight, lorry >32 metric 
ton, EURO5 {RER}| transport, 
freight, lorry >32 metric ton, 
EURO5 | Conseq, U 

 

Waste Treatment 
Steel recycling 0.0899479 

 
kg/FU Steel and iron (waste treatment) 

{US-NPCC}| recycling of steel and 
iron | Conseq, U 

 



Aluminum 
recycling 

0.0057979 
 

kg/FU Aluminium (waste treatment) {US-
NPCC}| recycling of aluminium | 
Conseq, U 

 

LDPE recycling 0.0097052 
 

kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

original material was 
recycled –no raw 
material production 
burdens 

Rubber 
recycling 

1.501E-06 
 

kg/FU Rubber (waste treatment) {US-
NPCC}| recycling of rubber | 
Conseq, U 

same as above 

Landfilling 0.0457188 
 

kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, U 

 

Wood disposal 0.0152396 
 

kg/FU Waste wood, untreated {US-
NPCC}| market for | Conseq, U 

 

Electrical Wiring  

Table 94 - LCI for GB-C2 wiring system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Steel 8.261E-05 

 
kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 
 

Copper 0.0004136 
 

kg/FU Copper {GLO}| market for | Conseq, U  

PVC 8.846E-05 
 

kg/FU Aluminium, primary, ingot {US}| market 
for | Conseq, U 

 

LDPE 9.396E-05 
 

kg/FU Polyethylene, low density, granulate 
{GLO}| market for | Conseq, U 

 

Material Processing and Freight 
Plastic film 
forming 

0.0001822 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Copper forming 0.0004136 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local production 
assumed 

Waste Treatment 
Steel recycling 2.063E-05 

 
kg/FU Steel and iron (waste treatment) {US-

NPCC}| recycling of steel and iron | 
Conseq, U 

 

Copper 
recycling 

0.0002051 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of copper | Conseq, U 

 

PVC recycling 3.781E-05 
 

kg/FU PVC (waste treatment) {US-NPCC}| 
recycling of PVC | Conseq, U 

 

LDPE recycling 4.698E-05 
 

kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Landfilling 0.0003678 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Seedling System 

Table 95 - LCI for GB-C2 seedling system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Steel  0.0008204 

 
kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 
 
 

Copper 0.0002739 
 

kg/FU Copper {GLO}| market for | Conseq, U  

ABS 0.0002739 
 

kg/FU Acrylonitrile-butadiene-styrene copolymer 
{GLO}| market for | Conseq, U 

 



Rubber 1.742E-05 
 

kg/FU Synthetic rubber {GLO}| market for | 
Conseq, U 

 

PVC 4.858E-05 
 

kg/FU Polyvinylidenchloride, granulate {GLO}| 
market for | Conseq, U 

 

Material Processing 
Copping 
forming 

0.0002739 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local 
production 
assumed 

Plastic forming 0.0003392 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

 

Waste Treatment 
Steel recycling 0.0004102 

 
kg/FU Steel and iron (waste treatment) {US-

NPCC}| recycling of steel and iron | 
Conseq, U 

 

PVC recycling 4.618E-05 
 

kg/FU PVC (waste treatment) {US-NPCC}| 
recycling of PVC | Conseq, U 

 

ABS recycling 0.0001364 
 

kg/FU ABS (waste treatment) {US-NPCC}| 
recycling of ABS | Conseq, U 

 

Rubber 
recycling 

0.0000165 
 

kg/FU Rubber (waste treatment) {US-NPCC}| 
recycling of rubber | Conseq, U 

 

Copper 
recycling 

0.0001364 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of copper | Conseq, U 

 

Landfilling 0.0006875 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 

Electrical plates and covers 

Table 96 - LCI of GB-C2 for electrical plates and covers 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Polycarbonate 0.0006958 

 
kg/FU Polycarbonate {GLO}| market for | 

Conseq, U 
 

Nylon 0.000519 kg/FU Nylon 6 {GLO}| market for | Conseq, 
U 

 

PVC 0.0002829 kg/FU Polyvinylchloride, bulk polymerised 
{GLO}| market for | Conseq, U 

 

Material Processing 
Plastic forming 0.0015452 kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local production 
assumed 

Waste Treatment 
Nylon recycling 8.25E-07 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

PVC recycling 0.0000033 
 

kg/FU PVC (waste treatment) {US-NPCC}| 
recycling of PVC | Conseq, U 

 

Polycarbonate 
recycling 

4.159E-05 
 

kg/FU Polycarbonate (waste treatment) {US-
NPCC}| recycling of PE | Conseq, U 

 

Landfilling 2.406E-06 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Electrical Panels and Service Equipment 

Table 97 - LCI of GB-C2 lighting system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Nylon 8.468E-05 

 
kg/FU Nylon 6 {GLO}| market for | Conseq, U  

Steel 2.12E-05 kg/FU Steel, low-alloyed, hot rolled {US-NPCC}|  



 market for | Conseq, U 
Copper 0.0001753 

 
kg/FU Copper {GLO}| market for | Conseq, U  

Material Processing 
Plastic forming 0.0001753 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local production 
assumed 

Copper 
forming 

8.468E-05 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local production 
assumed 

Waste Treatment 
Steel recycling 3.369E-06 

 
kg/FU Steel (waste treatment) {US-NPCC}| 

recycling of Steel | Conseq, U 
 

Nylon recycling 4.24E-05 
 

kg/FU Nylon (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Copper 
recycling 

8.766E-05 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of aluminium | Conseq, U 

 

Landfilling 0.0001409 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Electronic Monitoring System 

Table 98 - LCI of GB-C2 electronic monitoring system (sensors, etc.) 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.0004411 

 
kg/FU Polyethylene, high density, granulate 

{GLO}| market for | Conseq, U 
 

Steel 0.0006841 
 

kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 
market for | Conseq, U 

 

Glass 7.643E-08 
 

kg/FU Flat glass, coated {US-NPCC}| market for | 
Conseq, U 

 

Aluminum 0.0001765 
 

kg/FU Aluminium removed by milling, small parts 
{US-NPCC}| aluminium milling, small 
parts | Conseq, U 

 

Copper 0.0003518 
 

kg/FU Copper {GLO}| market for | Conseq, U  

Material Processing 
Plastic forming 0.0004411 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local 
production 
assumed 

Copper forming 0.0003518 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local 
production 
assumed 

Waste Treatment 
Steel recycling 0.0003426 

 
kg/FU Steel (waste treatment) {US-NPCC}| 

recycling of Steel | Conseq, U 
 

Aluminum 
recycling 

8.353E-05 
 

kg/FU Aluminium (waste treatment) {US-NPCC}| 
recycling of aluminium | Conseq, U 

 

HDPE recycling 0.00022 
 

kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Glass recycling 3.816E-08 
 

kg/FU Glass (waste treatment) {US-NPCC}| 
recycling of glass | Conseq, U 

 

Copper 
recycling 

0.0001765 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of aluminium | Conseq, U 

 

Landfilling 0.0008273 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 



Lighting System 

Table 99 - LCI of GB-C2 lighting system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
PVC 0.0017073 

 
kg/FU Polyvinylidenchloride, granulate {GLO}| 

market for | Conseq, U 
 

Steel 0.0022917 
 

kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 
market for | Conseq, U 

 

Glass 5.729E-05 
 

kg/FU Flat glass, coated {US-NPCC}| market for | 
Conseq, U 

 

Aluminum 0.0002292 
 

kg/FU Aluminium removed by milling, small parts 
{US-NPCC}| aluminium milling, small parts 
| Conseq, U 

 

Material Processing 
Plastic forming 0.0017073 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local 
production 
assumed 

Waste Treatment 
Steel recycling 0.0011458 

 
kg/FU Steel (waste treatment) {US-NPCC}| 

recycling of Steel | Conseq, U 
 

Aluminum 
recycling 

0.0001146 
 

kg/FU Aluminium (waste treatment) {US-NPCC}| 
recycling of aluminium | Conseq, U 

 

PVC recycling 0.0008514 
 

kg/FU PVC (waste treatment) {US-NPCC}| 
recycling of PVC | Conseq, U 

 

Landfilling 0.0021656 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 

Irrigation System 

Table 100 - LCI of GB-C2 irrigation system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.0002418 

 
kg/FU Polyethylene, high density, granulate 

{GLO}| market for | Conseq, U 
 

PVC 0.001375 
 

kg/FU Polyvinylidenchloride, granulate {GLO}| 
market for | Conseq, U 

 

PTFE 3.816E-06 
 

kg/FU Tetrafluoroethylene {GLO}| market for | 
Conseq, U 

Modeled as 
base monomer  

Nylon 7.986E-06 
 

kg/FU Nylon 6 {GLO}| market for | Conseq, U  

Brass 0.0001094 
 

kg/FU Brass {GLO}| market for | Conseq, U  

Wood 2.601E-05 
 

m3/FU Sawnwood, hardwood, air dried, planed 
{RoW}| market for | Conseq, U 

 

Steel 0.0003552 
 

kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 
market for | Conseq, U 

 

Glass 7.643E-08 
 

kg/FU Flat glass, coated {US-NPCC}| market for | 
Conseq, U 

 

Aluminum 0.0001765 
 

kg/FU Aluminium removed by milling, small parts 
{US-NPCC}| aluminium milling, small 
parts | Conseq, U 

 

Copper 0.0001157 
 

kg/FU Copper {GLO}| market for | Conseq, U  

Material Processing 
Plastic sheet 
forming 

0.0001157 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local 
production 



assumed 
Plastic tube 
forming 

0.001501 kg/FU Extrusion, plastic pipes {US-NPCC}| 
market for | Conseq, U 

 

Steel pipe 
forming 

0.0001169 kg/FU Drawing of pipe, steel {US-NPCC}| 
processing | Conseq, U 

 

Copper 
forming 

0.0001157 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local 
production 
assumed 

Waste Treatment 
Steel recycling 0.000181 

 
kg/FU Steel (waste treatment) {US-NPCC}| 

recycling of Steel | Conseq, U 
 

Brass recycling 0.0001039 
 

kg/FU Brass (waste treatment) {US-NPCC}| 
recycling of brass | Conseq, U 

 

HDPE recycling 0.0001776 
 

kg/FU PE (waste treatment) {US-NPCC}| recycling 
of PE | Conseq, U 

 

PVC recycling 0.0012948 
 

kg/FU PVC (waste treatment) {US-NPCC}| 
recycling of PVC | Conseq, U 

 

Nylon recycling 7.585E-06 
 

kg/FU Nylon (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

PTFE recycling 3.632E-06 
 

kg/FU PTFE (waste treatment) {US-NPCC}| 
recycling of PTFE | Conseq, U 

 

Copper 
recycling 

5.809E-05 
 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of aluminium | Conseq, U 

 

Landfilling 0.0004022 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 

Grow Media 

Table 101 - LCI of GB-C2 grow media 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
PVC 0.0366667 

 
kg/FU Polyvinylidenchloride, granulate 

{GLO}| market for | Conseq, U 
 

Steel 7.815E-05 kg/FU Steel, low-alloyed, hot rolled {US-
NPCC}| market for | Conseq, U 

 

Aluminum 0.0002956 
 

kg/FU Aluminium removed by milling, small 
parts {US-NPCC}| aluminium 
milling, small parts | Conseq, U 

 

Material Processing 
Plastic forming 0.1970833 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local production 
assumed 

Waste Treatment 
Steel recycling 0.0348333 

 
kg/FU Steel (waste treatment) {US-NPCC}| 

recycling of Steel | Conseq, U 
 

Aluminum 
recycling 

7.425E-05 
 
 

kg/FU Aluminium (waste treatment) {US-
NPCC}| recycling of aluminium | 
Conseq, U 

 

PETE recycling 0.0002807 
 

kg/FU PET (waste treatment) {US-NPCC}| 
recycling of PET | Conseq, U 

original material was 
recycled –no raw 
material production 
burdens 

PVC recycling 0.1523958 
 

kg/FU PVC (waste treatment) {US-NPCC}| 
recycling of PVC | Conseq, U 

 

Landfilling 0.0098542 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 



Electronic Devices 

Table 102 - LCI of GB-C2 electronic devices 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Nylon 2.051E-

05 
 

kg/FU Nylon 6 {GLO}| market for | Conseq, U  

Steel 5.122E-
06 
 

kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 
market for | Conseq, U 

 

Copper 2.555E-
05 
 

kg/FU Copper {GLO}| market for | Conseq, U  

Material Processing 
Plastic forming 2.555E-

05 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Wire forming 2.051E-
05 
 

kg/FU Wire drawing, copper {US-NPCC}| 
processing | Conseq, U 

Local production 
assumed 

Waste Treatment 
Steel recycling 2.555E-

06 
 

kg/FU Steel (waste treatment) {US-NPCC}| 
recycling of Steel | Conseq, U 

 

Nylon recycling 1.024E-
05 
 

kg/FU Nylon (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Copper 
recycling 

1.283E-
05 
 

kg/FU Copper (waste treatment) {US-NPCC}| 
recycling of copper | Conseq, U 

 

Landfilling 2.555E-
05 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Boxes and Cans 

Table 103 - LCI of GB-C2 boxes and cans 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
PVC 0.0008147 

 
kg/FU Polyvinylidenchloride, granulate {GLO}| 

market for | Conseq, U 
 

Material Processing 
Plastic 
forming 

0.0008147 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Waste Treatment 
PVC recycling 0.0007746 

 
kg/FU PVC (waste treatment) {US-NPCC}| 

recycling of PVC | Conseq, U 
 

Landfilling 4.079E-05 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 

Electrical Conduits 

Table 104 - LCI of GB-C2 electrical conduits 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
PVC 0.0013865 kg/FU Polyvinylidenchloride, granulate {GLO}|  



 market for | Conseq, U 
Material Processing 
Plastic 
forming 

0.0013865 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Waste Treatment 
PVC recycling 0.0013177 

 
kg/FU PVC (waste treatment) {US-NPCC}| 

recycling of PVC | Conseq, U 
 

Landfilling 6.955E-05 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 

Space Conditioning 

Table 105 - LCI for GB-C2 space conditioning during tomato cultivation 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Electricity 33.229167 

 
kWh/FU Electricity, low voltage, 2012-2040 average {NPCC, 

US only}| market for | Conseq, U 
 

Irrigation 

Table 106 - LCI for GB-C2 irrigation and avoided runoff during tomato growing season  

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Irrigation water 0.0180657 

 
m3/FU Tap water {US}| market for | 

Conseq, U 
Ground water changed 
to U.S. location 

Avoided Production 
Wastewater 
treatment 

0.0010248 m3/FU Wastewater, unpolluted {GLO}| 
market for | Conseq, U 

 

Nutrient Demands 

Table 107 - LCI for GB-C2 nutrient consumption during  

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Nitrogen fertilizer, as N 0.0028848 

 
kg/FU Ammonium nitrate, as N {GLO}| market for 

| Conseq, U 
 

Phosphate fertilizer, as 
P2O5 

0.0012348 
 

kg/FU Phosphate fertiliser, as P2O5 {GLO}| market 
for | Conseq, U 

 

Potassium sulfate, as 
K2O 

0.005852 
 

kg/FU Potassium nitrate {GLO}| market for | 
Conseq, U 

 

Potassium carbonate 0.0037448 
 

kg/FU Potassium carbonate {GLO}| market for | 
Conseq, U 

 

Distribution 

Table 108 - LCI for GB-C2 distribution 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.022 

 
kg/FU Polyethylene, low density, granulate 

{GLO}| market for | Conseq, U 
Bags 

Material Processing and Transport 
Plastic forming 0.022 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
 

Distribution to 
markets 

0.5958333 
 

km Transport, passenger car, large size, 
petrol, EURO 5 {RER}| transport, 
passenger car, large size, petrol, EURO 
5 | Conseq, U 

Driven in van to 
various markets 
around the Boston 
area 



Waste Treatment 
LDPE recycling 0.0073 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Landfilling 0.0147 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Waste Management 

Table 109 - LCI for GB-C2 waste management 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Avoided Production 
Nitrogen fertilizer, as N 0.0001568 

 
kg/FU Ammonium nitrate, as N {GLO}| market for | 

Conseq, U 
 

Phosphate fertilizer, as 
P2O5 

1.114E-05 
 

kg/FU Phosphate fertiliser, as P2O5 {GLO}| market 
for | Conseq, U 

 

Potassium sulfate, as 
K2O 

0.0002386 
 

kg/FU Potassium nitrate {GLO}| market for | 
Conseq, U 

 

Waste Treatment 
Paper recycling 0.01375 

 
kg/FU Paper (waste treatment) {GLO}| recycling of 

paper | Conseq, U 
 

Landfilling 0.075 
 

kg/FU Inert waste, for final disposal {GLO}| market 
for | Conseq, U 

 

Miscellaneous Operational Inputs 

Table 110 - LCI for GB-C2 miscellaneous operational inputs 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.001 

 
kg/FU Polyethylene, high density, granulate 

{GLO}| market for | Conseq, U 
Waste covered in waste 
management 

Cotton 0.0041905 
 

kg/FU Textile, woven cotton {GLO}| market 
for | Conseq, U 

Waste covered in waste 
management 

Tissue Paper 0.0275 
 

kg/FU Tissue paper {GLO}| market for | 
Conseq, U 

Waste covered in waste 
management 
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Appendix E: Life cycle inventory for ground-based non-conditioned farming system 1(GB-

NC1) 

The ground-based non-conditioned UA site (referred to as ‘GB-NC1’ in the article text) is an operating 
urban farm in Metropolitan Boston, US. The farm consists of a 560 m2 lot surrounded primarily be 
residential land uses, located about 10 km from the center of Boston. The space is used to grow ten crops 
from May through October directly in the sites overburden. The cultivated area covers 83% of the total lot. 
Water is supplied primarily through rainfall and is supplemented by municipal water during dry periods 



using a single hose.  No fertilizer is currently employed at the site since the farm received a fresh dressing of 
fertilizer over the entire site a year earlier (14 cm in depth). The plan is to continue to topping up the site 
with fresh compost every 5 years or thereabouts in lieu of fertilizer application.   

Primary data was available for all capital and operating inputs. Capital was accounted through site visits. 
Operating inputs were taken from interviews with the farm operator and utilities invoices. Because multiple 
crops are grown throughout the year the various inputs had to be allocated to the tomatoes and greens 
(arugula). Table 1 outlines the allocation methods. 

Table 111 - Allocation key for GB-NC1 

Aspect Allocation Method Tomato Greens 
Equipment, site visits, compost inputs, land occupation, 
runoff mitigation 

% of growing area 
occupied 

0.2 0.02 

Irrigation Crop specific water 
needs 

0.26 0.01 

Distribution % mass produced 0.43 0.01 
 

The supplementary information is arranged as follow: description of estimation of capital inputs where 
primary data was lacking; description of operational inputs where primary data was lacking; component 
lifetimes and recycling rates; life cycle inventory for functional unit.  

GB-C1: Capital Inputs 

Primary data was available for all equipment.  

GB-C1: Operating Characteristics and Inputs 

The operating inputs for the GB-C1 farm were taken from primary data provided by the farm operator, 
though some aspects had to be estimated, namely, space conditioning to grow seedlings, runoff retention 
and imported compost production. In general, the same electricity mixes were used as employed for the BI-
NC operation (see S1.2 for details). No nutrient runoff is expected since all of the fertilization occurs within 
the greenhouse.  

Seedling Production 

Production of seedlings (small plants grown in greenhouses that are transferred to outdoor soil) is based off 
of the methods of Stoessel at al. (2012) for lettuce and tomatoes. For details see S1.2 of the BI-NC system. 

Runoff Retention 

The volume of rain to fall on the site was taken as the amount of precipitation over a calendar year (1.14 m)  
in the Dorchester neighborhood (Boston Sewer and Water Commission 2015) times the site area (560 m2), 
amounting to 638.4 m3. It was assumed that 50% of the rain was lost as runoff and the 50% captured on 
site and transferred to the groundwater system (Forman 2014), amounting to 319.2 m3.  

To determine the increase in the amount of avoided runoff as a result of the farm’s presence, we looked at 
the amount of impermeable coverage in the vicinity of the farm. Impermeable coverage on lots on the same 
block is 48% as calculated using Geographic Information System software (see figure 1). It was assumed that 
the presence of the farm was thus only increasing the amount of permeable area on the lot by the same 
amount, compared to a scenario where the lot would be built up in accordance with the historic precedent 
of the area.  Thus 48% of the avoided runoff was attributed to the farm’s presence, equaling 154.2 m3. 
Because the farm is located in an area with combined sewers, the increased rainwater capture was modeled 
as avoided wastewater treatment in accordance with the consequential LCA modelling employed here. 



 

Figure 11 - GB-NC1 site with surroundings shown. Green blocks represent buildings, while yellow forms 
are other impermeable surfaces. On average a built up plot in the area would be covered with 48% 
impermeable surfaces. 

Irrigation 

Though data on the amount of municipal rainwater used for irrigation was available from the farmer, the 
distribution amongst the different crops was unknown. To estimate the irrigation demands of the different 
crops we used the general guidelines for crop irrigation set out by the United Nations Food and 
Agricultural Organization (Brouwer and Heibloem 1986) to determine the amount of water needed for a 
given crop based on its area at the site. The difference between the crop irrigation needs and the captured 
rainfall (see above section) over the growing period were taken as the estimated supplemental irrigation that 
the farmer would need to supply. Dividing the estimated supplemental irrigation for a single crop by the 
supplemental irrigation for all crops provided a means to allocate the recorded irrigation at the site to an 
individual crop. Table 2 outlines this method.  

Table 112 - Crop specific irrigation demands for GB-NC1 operation 

Crop % 
Growin
g Area 

Site 
Growin
g Area 
(m2) 

Capture
d 
rainfall 
(m/m2) 

Water 
Deman
d 
(m/m2) 

Irrigatio
n 
Deman
d 
(m/m2) 

Hypothetic
al 
Irrigation 
to Crop 
(m3) 

% Total 
Irrigation
10 

Allocate
d 
Irrigatio
n to 
Crop 
(m3) 

Tomat
o 

20 89.6 0.28 0.8 0.52 47 26 31.6 

Green
s 

2 9 0.28 0.5 0.22 2 1 1.3 

 

Imported Compost Production 

Method applied to BI-NC system was also used (see S1.2 for further details). Interviews with the farmer 
revealed that they intend to maintain nutrient levels purely through continued application of compost. 
They believed that they would be re-applying compost every fifth year. We have assumed that this 
application volume will be equal to 25% of the initial compost applied at the   

                                                      
10 Total estimated irrigation demand of 178 m3 

GB-NC1 Site 



Waste Management 

According to the site operator, organic waste is handled on site and no inputs or outputs are attributed to 
this.     

Nutrients in Runoff 

Fertilization levels are so low at the site that their concentrations in runoff are assumed to be negligible. 
Moreover, they are captured by the combined sewer and collected downstream at the wastewater treatment 
plant.   

GB-NC1: Component lifetimes and recycling rates 

Same heuristics for the lifetimes and recycling rates as applied to the BI-NC were applied here, since they 
both operate within the Metropolitan Boston, U.S. region, and rely on the same waste management system. 
The assumed lifetime of the overall GB-NC1 operation is 30 years. Table 3 outlines the different 
component lifetimes and disposal rates in the GB-NC1 system. 

Table 113 - Lifetime and recycling rate of different components in the GB-NC1 system 

Component Lifetime 
(years) 

Current 
recycling 
rate (%) 

Future recycling rate (%) Applied 
rate (%) 

Substitutes at 
market 5 10 15 20 25 30 

Structural components 
Wood11 30 33 - - - - - 95 95 virgin metal 
Concrete 
foundation 

30 61 - - - - - 92 9212 gravel 

Irrigation components 
Hose 10 33 - 95 - 95 - 95 95 virgin plastic 
Tanks 30 33 - - - - - 95 95 virgin plastic 
Other 
Wheelbarrow 10 33 - 50 - 50 - 50 50 virgin plastic 
Distribution 
totes 

10 33 - 95 - 95 - 95 95 virgin metal 
and plastic 

Row cover 4 0 0 0 0 0 0 0 0 assumed to go 
to landfill 

 

GB-NC1: Life Cycle Inventory (LCI) - Tomato 

Capital inputs, were multiplied by the tomato allocation key (see table 1) and divided by their lifetimes 
(table 3) to determine the annual inputs of materials to the system. Annual outputs were also estimated, 
with the fractions going to recycling and landfill calculated using the recycling rates (table 3). For operating 
inputs the allocation key in table 1 was applied.  The allocated capital inputs, outputs (recycled and 
landfilled), and operating inputs were then normalized per kilogram fresh tomato produced by dividing by 
the annual production of 411 kg/annum. Table 4-10 outline the LCI for a single kilogram of tomatoes 
(abbreviated as ‘FU’ for functional unit) delivered to the point of pickup by the customer, including the 
ecoinvent 3.1.1 processes used to model them. Transport was generally ignored unless the distances were 
large (e.g. greenhouse components coming from California) or the freight’s mass significant (e.g. concrete). 

Structural components 

Table 114 - LCI for BI-NC1 structural components 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Inputs From Nature 

                                                      
11 Assumed to be incinerated. 
12 Massachusetts aims for 80% decrease in landfilling by from 2010 rate by 2050 
(Government of Massachusetts 2015). The concrete recycling rate has been estimated 
assuming that this goal is achieved by the demolition date. 



Land 
Occupation 

0.272358487 
 

m2*a/FU Occupation, urban, continuously built  

Material Inputs 
Concrete 4.07565E-05 

 
m3/FU Concrete, normal {US-NPCC}| production | 

Conseq, U 
 

Wood 2.06701E-05 
 

m3/FU Sawnwood, hardwood, air dried, planed 
{RoW}| market for | Conseq, U 

 

Waste Treatment 
Concrete 
recycling 

0.045668682 
 

kg/FU Waste concrete gravel {US-NPCC}| treatment 
of, recycling | Conseq, U 

 

Landfilling 0.005301263 
 

kg/FU Inert waste, for final disposal {US}| market for | 
Conseq, U 

 

Wood disposal 0.012985664 
 

kg/FU Waste wood, untreated {US-NPCC}| market for 
| Conseq, U 

 

Irrigation System 

Table 115 - LCI of GB-NC1 irrigation system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.000797621 

 
kg/FU Polyethylene, low density, granulate 

{GLO}| market for | Conseq, U 
 

Rubber 0.001741149 
 

kg/FU Synthetic rubber {GLO}| market for | 
Conseq, U 

 

Material Processing 
Plastic forming 0.002533907 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local production 
assumed 

Waste Treatment 
LDPE recycling 0.001653605 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Rubber 
recycling 

0.000753849 
 

kg/FU Rubber (waste treatment) {US-NPCC}| 
recycling of rubber | Conseq, U 

 

Landfilling 0.000126939 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Ground Cover 

Table 116 - LCI of GB-NC1 ground cover 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Polypropylene 0.006954869 

 
kg/FU Polypropylene, granulate {GLO}| 

market for | Conseq, U 
 

Material Processing 
Plastic 
forming 

0.006954869 kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Waste Treatment 
Landfilling 0.006954869 kg/FU Inert waste, for final disposal {US}| 

market for | Conseq, U 
 

Miscellaneous Capital 

Table 117 - LCI of GB-NC1 miscellaneous capital 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.001167251 

 
kg/FU Polyethylene, high density, granulate 

{GLO}| market for | Conseq, U 
 

Rubber 0.000375952 kg/FU Synthetic rubber {GLO}| market for |  



 Conseq, U 
Steel 0.000676033 

 
kg/FU Steel, low-alloyed, hot rolled {US-

NPCC}| market for | Conseq, U 
 

Wood 5.69035E-08 
 

kg/FU Sawnwood, hardwood, air dried, planed 
{RoW}| market for | Conseq, U 

 

Material Processing 
Plastic forming 0.001206159 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local 
production 
assumed 

Waste Treatment 
HDPE 
recycling 

0.001108888 
 

kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Rubber 
recycling 

1.87733E-05 
 

kg/FU Rubber (waste treatment) {US-NPCC}| 
recycling of rubber | Conseq, U 

 

Steel recycling 0.000338016 
 

kg/FU Steel and iron (waste treatment) {US-
NPCC}| recycling of steel and iron | 
Conseq, U 

 

Landfilling 0.000452796 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Irrigation 

Table 118 - LCI for GB-NC1 irrigation and avoided runoff for tomatoes 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Irrigation water 0.077744959 

 
m3/FU Tap water {US}| market for | 

Conseq, U 
Ground water 
changed to U.S. 
location 

Avoided Production 
Wastewater 
treatment 

0.074986705 
 

m3/FU Wastewater, unpolluted {GLO}| 
market for | Conseq, U 

 

Nutrient Demands and Growing Medium 

Table 119 - LCI for GB-NC1 nutrient consumption for tomatoes 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Wood Chips 0.184814688 

 
kg/FU Wood chips, wet, measured 

as dry mass {RoW}| market 
for | Conseq, U 

 

Transport 
Compost 
hauling 

0.170224055 
 

tkm/FU Transport, freight, lorry 16-
32 metric ton, EURO4 
{GLO}| market for | 
Conseq, U 

58 km between farm and 
composting center and 40 
km between farm and wood 
chips 

Distribution 

Table 120 - LCI for GB-C1 distribution 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.003792322 

 
kg/FU Polyethylene, low density, granulate 

{GLO}| market for | Conseq, U 
Plastic bags 

Material Processing and Transport 
Plastic forming 0.003792322 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
 

Distribution to 0.106395714 km Transport, passenger car, large size, Driven in van to 



markets  petrol, EURO 5 {RER}| transport, 
passenger car, large size, petrol, 
EURO 5 | Conseq, U 

various markets 
around the Boston 
area 

Waste Treatment 
LDPE recycling 0.001896161 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Landfilling 0.001896161 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

GB-NC1: Life Cycle Inventory (LCI) - Arugula 

Capital inputs, were multiplied by the tomato allocation key (see table 1) and divided by their lifetimes 
(table 3) to determine the annual inputs of materials to the system. Annual outputs were also estimated, 
with the fractions going to recycling and landfill calculated using the recycling rates (table 3). For operating 
inputs the allocation key in table 1 was applied.  The allocated capital inputs, outputs (recycled and 
landfilled), and operating inputs were then normalized per kilogram fresh arugula produced by dividing by 
the annual production of 7 kg/annum. Table 11-17 outline the LCI for a single kilogram of lettuce 
(abbreviated as ‘FU’ for functional unit) delivered to the point of pickup by the customer, including the 
ecoinvent 3.1.1 processes used to model them. Transport was generally ignored unless the distances were 
large (e.g. greenhouse components coming from California) or the freight’s mass significant (e.g. concrete). 

Structural components 

Table 121 - LCI for BI-NC1 structural components 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Inputs From Nature 
Land 
Occupation 

1.6426667 
 

m2*a/FU Occupation, urban, continuously built  

Material Inputs 
Concrete 0.0002458 m3/FU Concrete, normal {US-NPCC}| production | 

Conseq, U 
 

Wood 0.0001247 m3/FU Sawnwood, hardwood, air dried, planed {RoW}| 
market for | Conseq, U 

 

Waste Treatment 
Concrete 
recycling 

0.27544 
 

kg/FU Waste concrete gravel {US-NPCC}| treatment of, 
recycling | Conseq, U 

 

Landfilling 0.0319733 
 

kg/FU Inert waste, for final disposal {US}| market for | 
Conseq, U 

 

Wood disposal 0.07832 
 

kg/FU Waste wood, untreated {US-NPCC}| market for | 
Conseq, U 

 

Irrigation System 

Table 122 - LCI of GB-NC1 irrigation system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.0048107 kg/FU Polyethylene, low density, granulate 

{GLO}| market for | Conseq, U 
 

Rubber 0.0105013 kg/FU Synthetic rubber {GLO}| market for | 
Conseq, U 

 

Material Processing 
Plastic forming 0.0152827 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local production 
assumed 

Waste Treatment 
LDPE recycling 0.0099733 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Rubber 
recycling 

0.0045467 
 

kg/FU Rubber (waste treatment) {US-NPCC}| 
recycling of rubber | Conseq, U 

 



 
Landfilling 0.0007656 

 
kg/FU Inert waste, for final disposal {US}| 

market for | Conseq, U 
 

Ground Cover 

Table 123 - LCI of GB-NC1 ground cover 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Polypropylene 0.0419467 

 
kg/FU Polypropylene, granulate {GLO}| market 

for | Conseq, U 
 

Material Processing 
Plastic 
forming 

0.0419467 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Waste Treatment 
Landfilling 0.0419467 kg/FU Inert waste, for final disposal {US}| 

market for | Conseq, U 
 

Miscellaneous Capital 

Table 124 - LCI of GB-NC1 miscellaneous capital 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.00704 

 
kg/FU Polyethylene, high density, granulate 

{GLO}| market for | Conseq, U 
 

Rubber 0.0022675 
 

kg/FU Synthetic rubber {GLO}| market for | 
Conseq, U 

 

Steel 0.0040773 
 

kg/FU Steel, low-alloyed, hot rolled {US-NPCC}| 
market for | Conseq, U 

 

Wood 3.432E-07 
 

kg/FU Sawnwood, hardwood, air dried, planed 
{RoW}| market for | Conseq, U 

 

Material Processing 
Plastic forming 0.0072747 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local production 
assumed 

Waste Treatment 
HDPE 
recycling 

0.006688 
 

kg/FU PE (waste treatment) {US-NPCC}| 
recycling of PE | Conseq, U 

 

Rubber 
recycling 

0.0001132 
 

kg/FU Rubber (waste treatment) {US-NPCC}| 
recycling of rubber | Conseq, U 

 

Steel recycling 0.0020387 
 

kg/FU Steel and iron (waste treatment) {US-
NPCC}| recycling of steel and iron | 
Conseq, U 

 

Landfilling 0.0027309 
 

kg/FU Inert waste, for final disposal {US}| market 
for | Conseq, U 

 

Irrigation 

Table 125 - LCI for GB-NC1 irrigation and avoided runoff for tomatoes 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Irrigation water 0.1998088 

 
m3/FU Tap water {US}| market for | 

Conseq, U 
Ground water changed 
to U.S. location 

Avoided Production 
Wastewater 
treatment 

0.452265 
 

m3/FU Wastewater, unpolluted {GLO}| 
market for | Conseq, U 

 



Nutrient Demands and Growing Medium 

Table 126 - LCI for GB-NC1 nutrient consumption for tomatoes 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Wood Chips 1.1146667 

 
kg/FU Wood chips, wet, measured 

as dry mass {RoW}| market 
for | Conseq, U 

 

Transport 
Compost 
hauling 

1.0266667 
 

tkm/FU Transport, freight, lorry 16-
32 metric ton, EURO4 
{GLO}| market for | 
Conseq, U 

58 km between farm and 
composting center and 40 km 
between farm and wood chips 

Distribution 

Table 127 - LCI for GB-C1 distribution 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.003792322 

 
kg/FU Polyethylene, low density, granulate 

{GLO}| market for | Conseq, U 
Plastic bags 

Material Processing and Transport 
Plastic forming 0.003792322 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
 

Distribution to 
markets 

0.106395714 
 

km Transport, passenger car, large size, 
petrol, EURO 5 {RER}| transport, 
passenger car, large size, petrol, 
EURO 5 | Conseq, U 

Driven in van to 
various markets 
around the Boston 
area 

Waste Treatment 
LDPE recycling 0.001896161 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Landfilling 0.001896161 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 
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Appendix F: Life cycle inventory for ground-based non-conditioned farming system 1(GB-
NC2) 

The ground-based non-conditioned UA site (referred to as ‘GB-NC2’ in the article text) is an operating 
urban farm in Brooklyn, New York City, US. The farm consists of a 2081 m2 lot surrounded by residential 
and commercial uses. The total growing space on the site is 1285 m2; 693 m2 is operated by the farm itself 
with the remaining 592 m2 used as community growing space. This assessment is concerned with the 
growing space operated by the farm organization itself. The farm grows around 60 varieties of fruits, 
vegetables and herbs during any given growing season. Water is supplied primarily through rainfall and is 
supplemented by municipal water during dry periods using a single hose. Artificial fertilizer and compost 
provide nutrients at the farm.  



Primary data was available for all capital and operating inputs. Capital was accounted through site visits. 
Operating inputs were taken from interviews with the farm operator and utilities invoices. Because multiple 
crops are grown throughout the year the various inputs had to be allocated to the tomatoes and lettuce. 
Table 1 outlines the allocation methods. 

Table 128 - Allocation key for GB-NC2 

Aspect Allocation Method Tomato Lettuce 
Equipment, site visits, compost 
inputs, land occupation, runoff 
mitigation 

% of growing area occupied 0.04 0.02 

Irrigation Crop specific water needs 0.06 0.01 
Distribution, waste management % mass produced 0.04 0.004 
 

The supplementary information is arranged as follow: description of estimation of capital inputs where 
primary data was lacking; description of operational inputs where primary data was lacking; component 
lifetimes and recycling rates; life cycle inventory for functional unit.  

GB-C1: Capital Inputs 

Primary data was available for all equipment.  

GB-C1: Operating Characteristics and Inputs 

The operating inputs for the GB-C1 farm were taken from primary data provided by the farm operator, 
though some aspects had to be estimated, namely, space conditioning to grow seedlings, runoff retention 
and imported compost production. In general, the same electricity mixes were used as employed for the BI-
NC operation (see S1.2 for details). No nutrient runoff is expected since all of the fertilization occurs within 
the greenhouse.  

Seedling Production 

Production of seedlings (small plants grown in greenhouses that are transferred to outdoor soil) is based off 
of the methods of Stoessel at al. (2012) for lettuce and tomatoes. For details see S1.2 of the BI-NC system. 

Runoff Retention 

Runoff retention was calculated in the same manner as GB-NC1 (see S1.5 for details). Total precipitation 
over the site was 1.29 m during the 2014 growing season (U.S. Climate Data 2015). From this the amount 
of runoff estimated to be subsumed by the farm was 1349 m3. Considering that similar built up lots in the 
neighborhood are on average covered by 89% impermeable area (see figure 1), and that 61% of the farms 
area is run by the farm organization, the total amount of avoided runoff attributed to the farm operation is 
739 m3 per annum. Because the farm is located in an area with combined sewers (NYC Environmental 
Protection 2015), the increased rainwater capture was modeled as avoided wastewater treatment in 
accordance with the consequential LCA modelling employed here. 



 

Figure 12 - GB-NC2 site with surroundings shown. Brown blocks represent buildings, while green forms 
are other impermeable surfaces. On average a built up plot in the area would be covered with 89% 
impermeable surfaces. 

Irrigation 

Primary data on irrigation was not available at the site. Irrigation from municipal water were estimated 
using the same method for the BI-NC operation (see S1.2 for further information); total irrigation demands 
for a crop were estimated using the crops growing space and rules of thumb for water demands, and then 
the captured rainwater was subtracted from this to estimate the amount of municipal water that would be 
required to meet this. Total municipal water demand was taken as the sum of this for all crops, with the 
allocation key in table 1 used to re-allocate to the individual crops. Table 2 outlines this method for the 
tomatoes and lettuce.  

Table 129 - Crop specific irrigation demands for GB-NC1 operation 

Crop % 
Growing 
Area 

Site 
Growing 
Area 
(m2) 

Captured 
rainfall 
(m/m2) 

Water 
Demand 
(m/m2) 

Irrigation 
Demand 
(m/m2) 

Hypothetical 
Irrigation to 
Crop (m3) 

% Total 
Irrigation13 

Tomato 4 68.3 0.40 0.8 0.4 27.2 6 
Lettuce 2 34.2 0.40 0.5 0.1 3.4 1 
 

Imported Compost Production 

Method applied to BI-NC system was also used (see S1.2 for further details).  

Waste Management 

The GB-NC1 operation produces compost on site, but this is not included in the inventory since the 
method is very low input (passively aerated compost piles gravity fed through plastic bins). The resulting 
compost does not substitute for fertilizer purchases, so the system is not credited for such, though the 
avoided waste sent to landfills is accounted.   

                                                      
13 Total estimated irrigation demand of 472 m3 

BI-NC2 Site 



Nutrients in Runoff 

Though some of the nutrients from the applied fertilizer are lost in runoff from the site, they are collected 
by the combined sewer system and captured at the wastewater treatment plant. The concentration of 
nutrients in the runoff is very low (8*10-4 g N/L, 2*10-4 g P/L, 4*10-3 g/L according to Emilsson et al.’s 
method (2007) – see S1.2 for more details) that is not assumed to not affect the normal operation of the 
receiving wastewater treatment plant.   

Refrigeration  

Crops are refrigerated overnight prior to delivery to the market. Energy inputs for refrigeration were taken 
from the Stoessel et al. (2012). 

Table 130 - Energy inputs for refrigeration during distribution 

Product Amount Unit 
Tomato 7.53*10-3 kWh/day 
Lettuce 10-3 kWh/day 
   

GB-NC1: Component lifetimes and recycling rates 

Same heuristics for the lifetimes and recycling rates as applied to the GB-NC2 were applied here, since they 
operate on the Eastern Seaboard of the U.S. The assumed lifetime of the overall GB-NC2 operation is 30 
years. Table 3 outlines the different component lifetimes and disposal rates in the GB-NC2 system. 

Table 131 - Lifetime and recycling rate of different components in the GB-NC2 system 

Component Lifetime 
(years) 

Current 
recycling 
rate (%) 

Future recycling rate (%) Applied 
rate (%) 

Substitutes at 
market 5 10 15 20 25 30 

Structural components 
Wood14 - 
Hothouse 

30 33 - - - - - 95 95 incinerated 

Steel – 
Hothouse 

30 33 - - - - - 95 95 virgin metal 

Skin - Hothouse 15 33 - - 64 - - 95 80 virgin plastic 
Concrete 
foundation –
Hothouse 

30 61 - - - - - 92 9215 gravel 

Concrete  
foundation - 
Fence 

30 61 - - - - - 92 92 gravel 

Steel - Fence 30 33 - - - - - 95 95 virgin steel 
Raised beds 30 33 - - - - - 95 95 incinerated 
Irrigation components 
Tubing 30 33 - - - - - 95 95 virgin plastic 
Wood 30 33 - - - - - 95 95 incinerated 
Tanks 30 33 - - - - - 95 95 virgin plastic 
Other 
Wheelbarrow 10 33 - 50 - 50 - 50 50 virgin plastic 
Distribution 
totes 

10 33 - 95 - 95 - 95 95 virgin metal 
and plastic 

Row cover 4 0 0 0 0 0 0 0 0 assumed to be 
landfilled 

 

                                                      
14 Assumed to be incinerated. 
15 Assumed that same as concrete in Massachusetts  



GB-NC1: Life Cycle Inventory (LCI) - Tomato 

Capital inputs, were multiplied by the tomato allocation key (see table 1) and divided by their lifetimes 
(table 3) to determine the annual inputs of materials to the system. Annual outputs were also estimated, 
with the fractions going to recycling and landfill calculated using the recycling rates (table 3). For operating 
inputs the allocation key in table 1 was applied.  The allocated capital inputs, outputs (recycled and 
landfilled), and operating inputs were then normalized per kilogram fresh tomato produced by dividing by 
the annual production of 184 kg/annum. Table 5-13 outline the LCI for a single kilogram of tomatoes 
(abbreviated as ‘FU’ for functional unit) delivered to the point of pickup by the customer, including the 
ecoinvent 3.1 processes used to model them. Transport was generally ignored unless the distances were 
large (e.g. greenhouse components coming from California) or the freight’s mass significant (e.g. concrete). 

Structural components 

Table 132 - LCI for BI-NC2 structural components 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Inputs From Nature 
Land 
Occupation 

0.2353414 
 

m2*a/FU Occupation, urban, continuously built  

Material Inputs 
Concrete 2.07774E-06 

 
m3/FU Concrete, normal {US-NPCC}| production | 

Conseq, U 
 

Wood 1.37046E-05 
 
 

m3/FU Sawnwood, hardwood, air dried, planed {RoW}| 
market for | Conseq, U 

 

Steel 0.004165614 
 

kg/FU Steel, low-alloyed {GLO}| market for | Conseq, 
U 

 

LDPE 0.000131688 
 

kg/FU Polyethylene, low density, granulate {GLO}| 
market for | Conseq, U 

 

Material Processing 
Plastic forming 0.000131688 

 
kg/FU Extrusion, plastic film {US-NPCC}| production 

| Conseq, U 
 

Waste Treatment 
Concrete 
recycling 

0.004650721 
 

kg/FU Waste concrete gravel {US-NPCC}| treatment 
of, recycling | Conseq, U 

 

LDPE recycling 0.000105575 
 

kg/FU PE (waste treatment) {US-NPCC}| recycling of 
PE | Conseq, U 

 

Steel recycling 0.00395739 
 
 

kg/FU Steel and iron (waste treatment) {US-NPCC}| 
recycling of steel and iron | Conseq, U 

 

Landfilling 0.001022418 
 

kg/FU Inert waste, for final disposal {US}| market for | 
Conseq, U 

 

Wood disposal 0.008600407 
 

kg/FU Waste wood, untreated {US-NPCC}| market for 
| Conseq, U 

 

Irrigation System 

Table 133 - LCI of GB-NC2 irrigation system 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.00273133 

 
kg/FU Polyethylene, low density, granulate 

{GLO}| market for | Conseq, U 
 

Wood 1.34273E-06 
 

m3/FU Sawnwood, hardwood, air dried, 
planed {RoW}| market for | Conseq, 
U 

 

PVC 0.002168384 
 

kg/FU Polyvinylchloride, bulk polymerised 
{GLO}| market for | Conseq, U 

 

Material Processing 



Tube forming 0.004607817 
 

kg/FU Extrusion, plastic pipes {US-NPCC}| 
market for | Conseq, U 

Local 
production 
assumed 

Tank forming 0.000287728 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

 

Waste Treatment 
LDPE recycling 0.002606231 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

PVC recycling 0.00205788 
 

kg/FU PVC (waste treatment) {US-NPCC}| 
recycling of PVC | Conseq, U 

 

Wood waste 
treatment 

0.000842334 
 

kg/FU Waste wood, untreated {US-NPCC}| 
market for | Conseq, U 

 

Landfilling 0.000289813 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Row Cover 

Table 134 - LCI of GB-NC2 row cover 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Polypropylene 0.003502775 

 
kg/FU Polypropylene, granulate {GLO}| 

market for | Conseq, U 
 

Material Processing 
Plastic 
forming 

0.003502775 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Waste Treatment 
Landfilling 0.003502775 

 
kg/FU Inert waste, for final disposal {US}| 

market for | Conseq, U 
 

Miscellaneous Capital 

Table 135 - LCI of GB-NC2 miscellaneous capital 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Rubber 9.67433E-05 

 
kg/FU Synthetic rubber {GLO}| market for | 

Conseq, U 
 

Steel 0.001740962 
 

kg/FU Steel, low-alloyed, hot rolled {US-
NPCC}| market for | Conseq, U 

 

Wood 2.00159E-07 
 

m3/FU Sawnwood, hardwood, air dried, planed 
{RoW}| market for | Conseq, U 

 

Material Processing 
Plastic forming 9.67433E-05 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local production 
assumed 

Waste Treatment 
Rubber 
recycling 

4.83716E-05 
 
 

kg/FU Rubber (waste treatment) {US-NPCC}| 
recycling of rubber | Conseq, U 

 

Steel recycling 0.000869439 
 

kg/FU Steel and iron (waste treatment) {US-
NPCC}| recycling of steel and iron | 
Conseq, U 

 

Landfilling 0.001042492 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Irrigation 

Table 136 - LCI for GB-NC2 irrigation and avoided runoff for tomatoes 

Input/Process Amount Unit ecoinvent 3.1 process Notes 



Material Inputs 
Irrigation water 0.153269665 

 
m3/FU Tap water {US}| market for | 

Conseq, U 
Ground water 
changed to U.S. 
location 

Avoided Production 
Wastewater 
treatment 

0.151683389 m3/FU Wastewater, unpolluted {GLO}| 
market for | Conseq, U 

 

Nutrient Demands and Growing Medium 

Table 137 - LCI for GB-NC2 nutrient consumption for tomatoes 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Wood Chips 0.552638883 

 
kg/FU Wood chips, wet, measured as 

dry mass {RoW}| market for | 
Conseq, U 

 

Nitrogen fertilizer 0.000763897 kg/FU Ammonium nitrate, as N 
{RER}| ammonium nitrate 
production | Conseq, U 

 

Phosphate fertilizer 0.000306028 kg/FU Phosphate fertiliser, as P2O5 
{GLO}| market for | Conseq, 
U 

 

Potassium fertilizer 0.000936978 kg/FU Potassium sulfate, as K2O 
{GLO}| market for | Conseq, 
U 

 

Transport 
Compost and 
wood chips hauling 

0.002105881 
 
 

tkm/FU Transport, freight, lorry 16-32 
metric ton, EURO4 {GLO}| 
market for | Conseq, U 

Wood chips and 
compost assumed to 
be delivered 40 km 

Waste Management 

Table 138 - LCI for GB-NC2 waste management for tomatoes 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Avoided Production 
Landfilling 0.018772263 

 
kg/FU Inert waste, for final 

disposal {US}| market for 
| Conseq, U 

Some solid waste is 
produced but this is 
offset by composting 

Energy and Fuels 

Table 139 - LCI for GB-NC2 waste management for tomatoes 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Transport and Energy 
Gasoline 0.000328466 

 
kg/FU Petrol, unleaded {RoW}| market 

for | Conseq, U 
For on farm 
equipment 

Transport 0.131687881 
 

km/FU Transport, passenger car, large size, 
petrol, EURO 4 {GLO}| market 
for transport, passenger car, large 
size, petol, EURO 4 | Conseq, U 

Weekly trips to 
garden center on 
Staten Island, NY in 
van 

Outputs to Environment 
Carbon dioxide 
(fossil) 

0.00111173 kg/FU Carbon dioxide (fossil, to air) Combustion of fuel 
in farm equipment 



Distribution 

Table 140 - LCI for GB-C1 distribution 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.000700103 

 
kg/FU Polyethylene, high density, 

granulate {GLO}| market for | 
Conseq, U 

Distribution totes 

Material Processing, Transport and Energy 
Plastic forming 0.000700103 

 
kg/FU Extrusion, plastic film {US-

NPCC}| production | Conseq, U 
 

Distribution to 
markets 

0.02468161 
 

km Transport, passenger car, large size, 
petrol, EURO 5 {RER}| transport, 
passenger car, large size, petrol, 
EURO 5 | Conseq, U 

Driven in van to 
market approximately 
1 km from site 

Cooling 1 kg/FU ENYF, tomato cooling  
Waste Treatment 
HDPE recycling 0.000665098 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Landfilling 3.50052E-05 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

GB-NC1: Life Cycle Inventory (LCI) - Lettuce 

Capital inputs, were multiplied by the tomato allocation key (see table 1) and divided by their lifetimes 
(table 3) to determine the annual inputs of materials to the system. Annual outputs were also estimated, 
with the fractions going to recycling and landfill calculated using the recycling rates (table 3). For operating 
inputs the allocation key in table 1 was applied.  The allocated capital inputs, outputs (recycled and 
landfilled), and operating inputs were then normalized per kilogram fresh lettuce produced by dividing by 
the annual production of 22 kg/annum. Table 14-22 outline the LCI for a single kilogram of tomatoes 
(abbreviated as ‘FU’ for functional unit) delivered to the point of pickup by the customer, including the 
ecoinvent 3.1 processes used to model them. Transport was generally ignored unless the distances were 
large (e.g. greenhouse components coming from California) or the freight’s mass significant (e.g. concrete). 

Structural components 

Table 141 - LCI for BI-NC2 structural components for lettuce 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Inputs From Nature 
Land 
Occupation 

1.243395324 
 

m2*a/FU Occupation, urban, continuously built  

Material Inputs 
Concrete 1.09775E-05 

 
m3/FU Concrete, normal {US-NPCC}| production | 

Conseq, U 
 

Wood 7.24067E-05 
 
 

m3/FU Sawnwood, hardwood, air dried, planed {RoW}| 
market for | Conseq, U 

 

Steel 0.022008478 
 

kg/FU Steel, low-alloyed {GLO}| market for | Conseq, 
U 

 

LDPE 0.000695756 
 

kg/FU Polyethylene, low density, granulate {GLO}| 
market for | Conseq, U 

 

Material Processing 
Plastic forming 0.000695756 

 
kg/FU Extrusion, plastic film {US-NPCC}| production 

| Conseq, U 
 

Waste Treatment 
Concrete 
recycling 

0.024571475 
 

kg/FU Waste concrete gravel {US-NPCC}| treatment 
of, recycling | Conseq, U 

 

LDPE recycling 0.000557794 kg/FU PE (waste treatment) {US-NPCC}| recycling of  



 PE | Conseq, U 
Steel recycling 0.020908351 

 
 

kg/FU Steel and iron (waste treatment) {US-NPCC}| 
recycling of steel and iron | Conseq, U 

 

Landfilling 0.005401812 
 

kg/FU Inert waste, for final disposal {US}| market for | 
Conseq, U 

 

Wood disposal 0.045439124 
 

kg/FU Waste wood, untreated {US-NPCC}| market for 
| Conseq, U 

 

Irrigation System 

Table 142 - LCI of GB-NC2 irrigation system for lettuce 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
LDPE 0.014430626 

 
kg/FU Polyethylene, low density, granulate 

{GLO}| market for | Conseq, U 
 

Wood 7.09414E-06 
 

m3/FU Sawnwood, hardwood, air dried, 
planed {RoW}| market for | Conseq, 
U 

 

PVC 0.011456375 
 

kg/FU Polyvinylchloride, bulk polymerised 
{GLO}| market for | Conseq, U 

 

Material Processing 
Tube forming 0.024344797 

 
kg/FU Extrusion, plastic pipes {US-NPCC}| 

market for | Conseq, U 
Local 
production 
assumed 

Tank forming 0.001520173 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

 

Waste Treatment 
LDPE recycling 0.013769682 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

PVC recycling 0.010872541 
 

kg/FU PVC (waste treatment) {US-NPCC}| 
recycling of PVC | Conseq, U 

 

Wood waste 
treatment 

0.004450361 
 

kg/FU Waste wood, untreated {US-NPCC}| 
market for | Conseq, U 

 

Landfilling 0.001531189 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Row Cover 

Table 143 - LCI of GB-NC2 row cover for lettuce 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Polypropylene 0.018506452 

 
kg/FU Polypropylene, granulate {GLO}| 

market for | Conseq, U 
 

Material Processing 
Plastic 
forming 

0.018506452 
 

kg/FU Extrusion, plastic film {US-NPCC}| 
production | Conseq, U 

Local production 
assumed 

Waste Treatment 
Landfilling 0.018506452 

 
kg/FU Inert waste, for final disposal {US}| 

market for | Conseq, U 
 

Miscellaneous Capital 

Table 144 - LCI of GB-NC2 miscellaneous capital for lettuce 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Rubber 0.000511131 kg/FU Synthetic rubber {GLO}| market for |  



 Conseq, U 
Steel 0.009198147 

 
kg/FU Steel, low-alloyed, hot rolled {US-

NPCC}| market for | Conseq, U 
 

Wood 1.05751E-06 
 

m3/FU Sawnwood, hardwood, air dried, planed 
{RoW}| market for | Conseq, U 

 

Material Processing 
Plastic forming 0.000511131 

 
kg/FU Extrusion, plastic film {US-NPCC}| 

production | Conseq, U 
Local production 
assumed 

Waste Treatment 
Rubber 
recycling 

0.000255565 
 
 

kg/FU Rubber (waste treatment) {US-NPCC}| 
recycling of rubber | Conseq, U 

 

Steel recycling 0.004593566 
 

kg/FU Steel and iron (waste treatment) {US-
NPCC}| recycling of steel and iron | 
Conseq, U 

 

Landfilling 0.005507873 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 

 

Irrigation 

Table 145 - LCI for GB-NC2 irrigation and avoided runoff for lettuce 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Irrigation water 0.29977701 

 
m3/FU Tap water {US}| market for | 

Conseq, U 
Ground water 
changed to U.S. 
location 

Avoided Production 
Wastewater 
treatment 

0.801399371 
 

m3/FU Wastewater, unpolluted {GLO}| 
market for | Conseq, U 

 

Nutrient Demands and Growing Medium 

Table 146 - LCI for GB-NC2 nutrient consumption for lettuce 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
Wood Chips 2.919795343 

 
 

kg/FU Wood chips, wet, measured as 
dry mass {RoW}| market for | 
Conseq, U 

 

Nitrogen fertilizer 0.000262045 
 

kg/FU Ammonium nitrate, as N 
{RER}| ammonium nitrate 
production | Conseq, U 

 

Phosphate fertilizer 0.000306028 kg/FU Phosphate fertiliser, as P2O5 
{GLO}| market for | Conseq, 
U 

 

Potassium fertilizer 0.000936978 kg/FU Potassium sulfate, as K2O 
{GLO}| market for | Conseq, 
U 

 

Transport 
Compost and 
wood chips hauling 

0.011126145 
 
 

tkm/FU Transport, freight, lorry 16-32 
metric ton, EURO4 {GLO}| 
market for | Conseq, U 

Wood chips and 
compost assumed to 
be delivered 40 km 

Waste Management 

Table 147 - LCI for GB-NC2 waste management for lettuce 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Avoided Production 



Landfilling 0.016074258 
 

kg/FU Inert waste, for final disposal 
{US}| market for | Conseq, 
U 

Some solid waste is produced 
but this is offset by 
composting 

Energy and Fuels 

Table 148 - LCI for GB-NC2 waste management for lettuce 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Transport and Energy 
Gasoline 0.001735405 

 
kg/FU Petrol, unleaded {RoW}| market 

for | Conseq, U 
For on farm 
equipment 

Transport 0.695755713 
 

km/FU Transport, passenger car, large size, 
petrol, EURO 4 {GLO}| market 
for transport, passenger car, large 
size, petol, EURO 4 | Conseq, U 

Weekly trips to 
garden center on 
Staten Island, NY in 
van 

Outputs to Environment 
Carbon dioxide 
(fossil) 

0.005873679 
 

kg/FU Carbon dioxide (fossil, to air) Combustion of fuel 
in farm equipment 

Distribution 

Table 149 - LCI for GB-C1 distribution for lettuce 

Input/Process Amount Unit ecoinvent 3.1 process Notes 
Material Inputs 
HDPE 0.000599482 

 
kg/FU Polyethylene, high density, 

granulate {GLO}| market for | 
Conseq, U 

Distribution totes 

Material Processing, Transport and Energy 
Plastic forming 0.021134297 

 
kg/FU Extrusion, plastic film {US-

NPCC}| production | Conseq, U 
 

Distribution to 
markets 

0.02468161 
 

km Transport, passenger car, large size, 
petrol, EURO 5 {RER}| transport, 
passenger car, large size, petrol, 
EURO 5 | Conseq, U 

Driven in van to 
market approximately 
1 km from site 

Cooling 1 kg/FU ENYF, lettuce cooling  
Waste Treatment 
HDPE recycling 0.000569508 

 
kg/FU PE (waste treatment) {US-NPCC}| 

recycling of PE | Conseq, U 
 

Landfilling 2.99741E-05 
 

kg/FU Inert waste, for final disposal {US}| 
market for | Conseq, U 
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 Appendix G: Carbon sequestration and solar energy calculations 

 

Carbon sequestration 

First need to determine the amount of land made available if UA can substitute for farmland. This means 
determining how much land would need to be occupied for solar energy and how much farmland would be 
freed.  

(1) Net land change = farmland freed – land occupied for solar panels to supply UA energy 

The yield for both field tomatoes and lettuce in Massachusetts are 1.5 kg/m2/annum (USDA 2013). Using 
this we can see how much farmland would be freed by the BI-C and GB-C2 producing tomatoes and 
lettuce, respectively.  

Farm UA yield (kg/a) Conventional Yield 
(kg/m2) 

Conventional land with 
equivalent capacity (m2) 

BI-C 244496 1.404305038 174104.6 
GB-C2 53.6  1.49979778 1400.2 
 

The amount of land necessary for the solar array to power the farm can be made using the following 
assumptions: Massachusetts receives on average 4 kWh/m2/day solar radiation (National Renewable Energy 
Laboratory 2015), which if converted to electricity at 15% efficiency (reasonable for monocrystalline silicon 
panels) supplies 219 kWh/m2/year. Assuming 25% extra space is required for access to the panels, then we 
find that each square meter of solar array produces 175.2 kWh/year. Using per unit area energy demands 
of the farms and the total areas of the farms the size of the required solar array can be estimated.  

Farm Unit energy requirements 
(kWh/m2/year) 

Farm Area (m2) Supporting solar array 
area (m2) 

BI-C 305 3492.8 6086.8 
GB-C2 967 30 165.5 
 

We are now in a position to calculate the carbon sequestrated if we allow the farmland to return to forest. 
We assume a sequestration rate of 0.95 kg CO2 eq./year/m2 (Schmidinger and Stehfest 2012) and combine 
with the net land use change to estimate the carbon capture. 

Farm Farmland to 
forest (m2) 

Land occupation 
for solar (m2) 

Net land change 
(m2) 

Annual carbon 
sequestered (kg 
CO2 eq./m2) 

BI-C 174104.6 6086.8 168017.9 159617.0 
GB-C2 1607.273 165.5 1267.8 1172.9 
 

To get the final total the savings from the substituted produce are added to the carbon sequestration totals. 
Each kg BI-C tomato from solar power results in a 0.11 kg CO2 eq reduction. Each kg GB-C2 from solar 
power results in a -0.72 kg CO2 eq reduction (an increase).  

Farm kg CO2 reduced per kg 
conventional replaced 

Yield (kg/annum) Total CO2 savings (kg 
CO2 eq.) 

BI-C 0.11 244496 27778.54507 
GB-C2 -0.72 1607.273 -1161.524326 
 

Total savings are 187 tonnes CO2 eq. for the BI-C and 11.4 kg CO2 eq. for the GB-C2. 

 



GHG savings for various land uses 

 

Savings for tomatoes (negative indicates net increase in GHGs) 

Farm  kg CO2 eq/kg tomato Yields (kg/m2) 

kg  CO2 
avoided/kg 
tomato 
replaced 

kg avoided 
CO2/m2 UA 

kg 
avoided 
CO2/m2 
solar 

BI-C (NPCC) 2.1472301 70 -1.55604409 -108.9230863 68.328 
BI-NC 0.12811897 16.3 0.46306704 7.547992752 68.328 
GB-C1 1.5804366 9.8 -0.98925059 -9.694655782 68.328 
GB-NC1 0.075838218 4.4 0.515347792 2.267530285 68.328 
GB-NC2 0.13540287 6.9 0.45578314 3.144903666 68.328 
BI-C (wind) 0.32284504 70 0.26834097 18.7838679 68.328 
BI-C (solar) 0.47757047 70 0.11361554 7.9530878 68.328 
BI-C (hydro) 0.24055064 70 0.35063537 24.5444759 68.328 
Conventional  0.591 - - - - 
 

Savings for lettuce (negative indicates net increase in GHGs) 

Farm  kg CO2 eq/kg lettuce Yields (kg/m2) 

kg  CO2 
avoided/kg 
lettuce 
replaced 

kg avoided 
CO2/m2 UA 

kg 
avoided 
CO2/m2 
solar 

GB-C2 (NPCC) 8.6549462 70 -7.73003145 -541.1022015 68.328 
BI-NC 0.400418808 16.3 0.524495942 8.549283851 68.328 
GB-C1 26.50507659 9.8 -25.58016184 -250.685586 68.328 
GB-NC1 0.232652097 4.4 0.692262653 3.045955672 68.328 
GB-NC2 0.440830366 6.9 0.484084384 3.340182249 68.328 
GB-C2 (wind) 0.90314289 70 0.02177186 1.5240302 68.328 
GB-C2 (solar) 1.6475826 70 -0.72266785 -50.5867495 68.328 
GB-C2 (hydro) 0.51505105 70 0.4098637 28.690459 68.328 
Conventional 0.925 - - - - 
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1. Raw Results  

1.1. Tomato 

Indicator BI-C BI-NC GB-C1 GB-

NC1 

GB-

NC2 

ecoinvent 

Climate Change (CO2 eq/kg 

tomato) 

0.34 0.13 1.58 0.08 0.14 0.47 

Freshwater Ecotoxicity (CTU/kg 
tomato) 

0.7 1.4 0.9 0.1 0.2 7.8 

Marine Eutrophication (kg N 

eq./kg tomato) 

0.00036 0.00043 0.00063 8.9*10-5 0.00015 0.00141 



Land Use (kg C deficit/kg tomato) 2.1 1.2 2.4 5.1 6.8 2.4 

Mineral, fossil and ren resource 
depletion (kg S eq./kg tomato) 

7.2*10-

6 
1.1*10-

4 
3.1*10-

5 
1.3*10-5 1.9*10-5 9.8*10-6 

Water resource depletion (m3 

water eq./kg tomato) 

0.0028 0.068 0.066 0.05 0.074 0.0025 

Water scarcity index (m3 water 

eq./kg tomato)16 

0.011 0.089 0.087 0.128 0.15 0.0022 

 

1.2. Lettuce 

Indicator BI-NC GB-

C1 

GB-

C2 

GB-

NC1 

GB-

NC2 

ecoinvent 

Climate Change (CO2 eq/kg tomato) 0.40 26.5 8.7 0.23 0.44 0.23 

Freshwater Ecotoxicity (CTU/kg 

tomato) 

4.6 8.9 6.1 0.4 0.9 0.4 

Marine Eutrophication (kg N eq./kg 
tomato) 

0.0014 0.0079 0.0038 3.9*10-

4 
5.2*10-

4 
0.0016 

Land Use (kg C deficit/kg tomato) 4.2 30.3 8.8 30.4 35.5 1.53 

Mineral, fossil and ren resource 

depletion (kg S eq./kg tomato) 

3.7*10-

4 

2.3*10-

4 

4.3*10-

5 

3.6*10-

5 

6.8*10-

5 

1.39*10-5 

Water resource depletion (m3 water 
eq./kg tomato) 

0.195 0.18 0.018 0.17 0.22 0.010 

Water scarcity index (m3 water eq./kg 

tomato)1 

0.26 0.26 0.029 0.47 0.57 0.010 

 

2. Tomato Results 

Results from previous LCAs of tomatoes as point of comparison.  

Study  Climate Change 

(CO2 eq/kg tomato) 

Water Scarcity (m3 

water eq./kg tomato) 

Notes 

Page et al. (2011) - 0.002-0.024 Greenhouse and field tomatoes 

in the Sydney, AU region 

Cellura et al. 

(2012) 

0.74 - Italian greenhouse production 

Torrellas et al. 
(2012) 

0.25 - Mediterranean greenhouse 
tomatoes  

Jones at al. 

(2012) 

0.06-0.75 - Open field tomato production in 

Florida, US 

Page et al. (2012) 0.39-1.97 0.005-0.053 Greenhouse and field tomatoes 
in the Sydney, AU region 

Sanye-Mengual 

et al. (2012) 

0.26 - UA rooftop greenhouse in 

Barcelona, ES* 

Sanye-Mengual 
et al. (2012) 

0.7 - Greenhouse tomato in Spain*  

Bojaca et al. 

(2014) 

0.074 - Columbian greenhouse tomatoes 

Manfredi and 
Vignali (2014) 

0.181 0.104 Italian field tomatoes 

Sanye-Mengual 

et al. (2014) 

0.178-0.297 - Rooftop greenhouse in 

Barcelona, ES 

Theurl et al. 

(2014) 

0.109 - Organic tunnel in Austria* 

Theurl et al. 0.609 - Conventional multi-tunnel in 

                                                      
16 Pfister et al. (2009) method  also checked here to compare with other studies 



(2014) Spain* 

Theurl et al. 

(2014) 

0.281 - Conventional open field in 

Italy* 

Theurl et al. 

(2014) 

1.296 - Greenhouse in Austria* 

Sanye-Mengual 

et al. (2015a) 

0.708 - Rooftop greenhouse in 

Barcelona, ES* 

Sanye-Mengual 

et al. (2015a) 

1.54 - Conventional multi-tunnel in 

Spain* 

Sanye-Mengual 

et al. (2015b) 

0.0679-0.0753 0.0881-0.0980 Rooftop hydroponic (BI-NC) in 

Bologna, IT 

He at al. (2016) 0.207 0.060 Chinese organic production 

He at al. (2016) 0.261 0.059 Chinese conventional 
production 

* includes distribution 

3. Lettuce Results 

Results from previous LCAs of lettuce as point of comparison.  

Study  Climate Change 

(CO2 eq/kg lettuce) 

Water Scarcity (m3 

water eq./kg lettuce) 

Notes 

Hospido et al. (2009) 0.33 - British field production* 

Hospido et al. (2009) 0.45 - Spanish field production* 

Hospido et al. (2009) 0.24 - British heated greenhouse* 

Shiina et al. (2011) 6.4 - Japanese plant factory 

Gunady et al. (2012) 3.75 - Field lettuce in western 

Australia 

Maraseni et al. (2012) 0.17-0.22 - Field lettuce in eastern 
Australia 

Plawecki et al. (2014) 0.198 - Unheated Michigan, US 

greenhouse* 

Plawecki et al. (2014) 0.857 - California, UA field lettuce* 

Romero-Gamez et al. 

(2014) 

0.025-0.214 - Open field and unheated 

greenhouse in Spain 

Hall et al. (2014) 0.08-0.32 - Field production in Sydney, 

AU region 

Bartzas et al. (2015) 0.205-0.243 - Open field and unheated 

greenhouses in Spain and Italy 

Foteinis and 

Chatzisfymeon (2016) 

1.282 - Organic field production in 

Greece 

Foteinis and 

Chatzisfymeon (2016) 

0.631 - Conventional field production 

in Greece 

Rothwell et al. (2015) 0.2-0.9 0.02-0.1 Field production in Sydney, 

AU region* 

Sanye-Mengual 

(2015b) 

0.567-1.08 0.0395-0.0904 Floating hydroponic BI-NC in 

Bologna, IT 

Sanye-Mengual 

(2015b) 

2.51-4.88 0.0855-0.196 Nutrient film hydroponic BI-

NC in Bologna, IT 

Sanye-Mengual 

(2015b) 

0.323 0.389 Soil BI-NC in Bologna, IT 

* includes distribution 
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Abstract 

Food consumption is an important contributor to a city’s environmental impacts (carbon 

emissions, land occupation, water use, etc.) Urban farming (UF) has been advocated as a means to 
increase urban sustainability by reducing food-related transport and tapping into local resources. Taking 

Boston as an illustrative Northeast US city, we developed a novel method to estimate sub-urban, food-
borne carbon and land footprints using multi-region-input-output modeling and nutritional surveys. 

Computer simulations utilizing primary data explored UF’s ability to reduce these footprints using select 

farming technologies, building on previous city-scale UF assessments which have hitherto been 
dependent on proxy data for UF. We found that UF generated meagre food-related carbon footprint 

reductions (1.1-2.9% of baseline 2211 kg CO2 equivalents/capita/annum) and land occupation increases 
(<1% of baseline 9000 m2 land occupation/capita/annum) under optimal production scenarios, informing 

future evidence-based urban design in the region. Notwithstanding UF’s marginal environmental gains, 

UF could help Boston meet national nutritional guidelines for vegetable intake, generate an estimated 
$160 million US in revenue to growers and act as a pedagogical and community building tool, though 

these benefits would hinge on large-scale UF proliferation, likely undergirded by environmental 
remediation of marginal lands in the city.    

Introduction 
Food consumption is a key driver of a city’s environmental burdens1,2, and in the United States 

(US) per capita impacts are amongst the highest globally3,4. Many cities in the Northeast US are 

promoting urban farming (UF) – food production within the city, allowing for material and energy 
exchange between city and farm5 – as a joint environmental and social sustainability exercise6,7. Up to 

20% of global food supply already comes from within cities, primarily in the Global South8,9, but the 

potential in the Global North’s cities to produce their own food on the ground and buildings is believed to 
be substantial10–12. Hypothetical assessments of UF at the city-scale have demonstrated reduced food 

related GHG emissions13,14 and land occupation14, giving the impression that pro-UF policies can 
contribute to more sustainable urban food supply networks. Despite UF’s perceived environmental 

benefits, the recent spurt of pro-UF actions by the cities of the Northeast US that include codification in 

land use laws7,15 and multi-city commitments to increased local food production6 require deeper reflection 

about their systemic environmental implications.  

UF advocates tend to focus on the distance from farm to fork, equating local food with 
environmentally sustainable food16,17, oversimplifying the complexity of food sustainability to a single 

aspect. Reducing distribution burdens and wastage by co-locating food production and consumption can 

lead to environmentally leaner production networks18,19, but contrasting results have been found when 
large energy inputs are needed for space heating and lighting20,21. UF in the Northeast US has 

demonstrated lower embodied greenhouse gas (GHG) emissions compared to conventional supply 
networks in some instances, but with tradeoffs in other indicators (land occupation, water scarcity) and 

potentially significant burdens from farm capital21. UF studies at neighborhood and city scales have 

estimated reductions in food-borne GHG emissions13,14 and land occupation14, although these findings are 
not transferable to the US Northeast due to climatic differences. The use of data for conventional 

agricultural production (minus transport and wastage) as a proxy for UF production due to data gaps13,14 
biased the assessments in UF’s favor.  

This article provides a level of analysis that has been absent in previous UF sustainability 

work. We used primary data from multiple urban farms in the US Northeast to evaluate the environmental 
tradeoffs of substituting UF for conventional produce at the city-scale in this region (assessing strictly 

horticultural products), including interactions with the host city’s material and energy systems. Multi-
region input-output based environmental life cycle assessment (MRIO-LCA) was combined with 

nutritional surveys to model baseline food-borne environmental burdens at sub-urban granularity, in 



 

contrast to earlier work that has assumed equivalency between per capita city and national food intakes. 

Potential nutritional and economic benefits of UF were also considered.  

Boston, US was used as a representative case city for the Northeast US. Though denser than 
many cities in the region, Boston’s monocentric layout typifies most Northeast US cities, particularly in 

the densely populated Northeast Megalopolis. Importantly, Boston’s climate mirrors that of the Northeast 

US, with an outdoor growing season roughly from April through October, and cold winters necessitating 
indoor growing reliant on external heating from the region’s predominantly fossil-fuel driven grid.    

Methods  

Two overarching tasks were performed here: estimating baseline environmental impacts from 

Boston’s food demands and modeling UF in Boston.  

Baseline environmental performance 

 EXIOBASE v2.3 MRIO model was applied to estimate Boston’s food related environmental 

burdens in 2010. EXIOBASE is a trade-linked model accounting for global economic activity in 2007, 
detailing domestic production, bilateral trade and final consumption of 43 regions accounting for ~90% of 

global GDP22. MRIO-LCA has been described in detail elsewhere23,24, but the method’s core are 

environmental extensions coupling production activities to resource and pollution intensities per unit 
economic output, facilitating the allocation of environmental impacts and resource draws to end 

consumers. Such top-down analysis is suitable for consumption based environmental accounting of large 
systems, having been applied at the national25–27 and urban scales28,29.  We chose EXIOBASE due to the 

high level of disaggregation (200 products), including pertinent food items. 

 The assessed indicators were land use and global warming potential (GWP). Land use 
accounts for crop, pasture and forest land occupation in m2. The GWP extension includes CO2, CH4, N2O 

and SF6 emissions, employing IPCC 2013 methodology to convert emissions to the radiative forcing in 
equivalent mass CO2 over a 100 year time horizon (kg CO2e). 

 Input-output models take the product of national footprint multipliers (e.g. kg CO2e/$ final 

demand product) and final consumption ($ final demand for product) to estimate demand-side footprints, 
insinuating that doubling food expenditures doubles food consumption and environmental stress. Whilst 

there is a correlation between income and food related environmental burdens at the national scale, it 

appears to follow a logarithmic trend, hinting at an income level beyond which food intake and 

environmental impacts plateau1,3. For a wealthy nation such as the US with a low Engel’s ratio30 (food 

expenditures as a percentage of total income), assuming a linear relationship between food expenditures 
and consumption is erroneous. US nutritional surveys show slight differences between the food 

consumption of high and low income residents, most notably for environmentally intensive foods (less 
than 10% difference between the groups for per capita meat and dairy intake by mass)31, despite markedly 

elevated food expenditures by wealthy Americans32. Lastly, the higher prevalence of obesity in poorer 

Americans highlights the incongruences between food expenditures and intake33.      
 We circumnavigated this challenge using a top down approach, ascribing total GWP and land 

use from US final food consumption to total available calories in the US, akin to Jones and colleagues28,29. 
Using a concordance matrix linking calorific availability for over 200 foods with products in the 

EXIOBASE model (e.g. calories of grains with the EXIOBASE product ‘Cereals’), embodied 

environmental intensity per calorie was estimated. Total calories available for different foods were taken 
as the product of the 2007 US population and average US calorific intake for the years 2007-2010 from 

the Center for Disease Control’s National Health and Nutrition Examination Survey (NHANES)34 
corrected for supply chain losses using US Department of Agriculture (USDA) loss adjusted availability 

data35. Tables S1 to S24 in the supplementary information document this process.  

 Intakes of foods for US demographics based on sex and age group were taken from the 
NHANES data for 2007-2010. Sex and age were chosen to develop population sub-groups as these are 

both strong determinants of food volume consumed (males tend to eat more than females at most ages) 
and dietary habits (e.g. dark green vegetable intake is nearly zero before age 14 and then proceeds 

parabolically with age)34. This sub-grouping also allowed for more nuanced modelling than the low/high 

income binary afforded by the publically available NHANES data relating income to food intake31. 
Demographics data for Boston at the block-group level (geographies of population 600-3000) were taken 

from the 2010 US Census. Combining census data, calorific intakes for different demographics and 
embodied GWP and land use per calorie delivered, food-borne environmental burdens for 560 block-

groups in Boston were calculated. Figure 1 outlines this workflow while the supporting information 



 

details the data manipulation and calculations. 

 
Figure 1. Workflow in generating baseline environmental performance, using grain consumption by 

adolescent males as an example. 

Modelling UF in Boston 

 We assessed two UF forms: empty-lot and rooftop farms, both open to the ambient 

environment. Data were also collected on additional UF forms (ground/rooftop greenhouses and 
automated precision agriculture), but were not included in the model since they displayed worse 

environmental performance compared to conventional produce21, and therefore, were poor candidates 
when assessing UF’s substitution benefits. Resource use and yield data for two empty-lot farms and one 

rooftop farm were collected over the 2015 growing season for 14 vegetables covering 32% by mass (44% 

excluding potatoes) and 24% by calories (50% excluding potatoes) of total average US vegetable 
consumption35. Although only some of the 14 vegetables were environmentally preferable to conventional 

when produced with UF (see supporting information), including all vegetables was representative of 
actual production scenarios where farmers are free to choose their crops.  

GWP and land use impacts from UF production were modeled with process-LCA from cradle 

to point of purchase, aligning with the EXIOBASE scope (transport impacts were added manually to 
EXIOBASE results) and capturing the majority of food related impacts36–38. Conventional crop GHG 

intensities were taken as mean values from Keolian and Heller’s review of food LCAs39, corrected for 
distribution losses and average transport distances. Land use was taken as direct agricultural land 

occupation from USDA production data40, corrected for distribution losses35, and excluded final 

distribution burdens. LCA modelling details are in the supporting information. 
Ground space potentially available for UF was determined using additive and subtractive 

approaches. The additive approach assessed over 160,000 individual properties in Boston, calculating 
total UF space as the sum of properties with land uses amenable to UF (vacant lots, pasture, open land, 

cropland, transitional, etc.) The subtractive approach started with the city’s entire land area and subtracted 

land uses unsuitable for UF (steep slopes, impermeable surfaces, protected parkland, etc.) to arrive at an 
upper estimate from the opposite direction. Rooftop UF space was estimated using a dataset of 80,000 

buildings in Boston. Lacking structural data, the year of construction was used as a proxy for load bearing 
ability. We tested cutoff years from 1900 to 2000 to quantify the effect of this choice on model results 

since this range covered ~80% of the city’s buildings. Buildings over 30 meters high, having sloped roofs 

or historically protected were assumed unusable for UF. As some buildings lacked data on roof-type, 100-

run Monte-Carlo simulations were performed for each cutoff year, examining the impact of probabilistic 

roof-type assignment. The supporting information details the UF area estimates. 
In considering UF interactions with the city we included avoided runoff, municipal organic 

solid waste assimilation and building energy impacts. High and low estimates of runoff reduction were 

taken as the average rainfall in Boston times the formally impermeable UF area, using upper and lower 



 

retention values from previous studies41,42. Solid waste assimilative capacity was taken from primary data 

on urban farm compost consumption converted to mass of original organic waste. The same dataset used 

in calculating roof space includes heating and air conditioning data which were combined with 
commercial43 and residential44 energy surveys to estimate building energy loads. Previous studies of 

heating and cooling savings from vegetated roofs were used to estimate energy savings from building 

situated UF45. UF interactions with Boston’s hydrological, waste and energy systems are detailed in the 
supporting information. 

We modeled the most efficient application of Boston’s UF space towards both land use and 
GWP reduction. An algorithm was run whereby each block-group produced vegetables that resulted in the 

largest reduction in GWP or land use depending on optimization goal, while respecting local demands for 

each crop as a constraint. Space was allocated to a vegetable until the block-group was satiated (at which 
point the next best vegetable for the optimization goal was produced), UF space was exhausted or all 

vegetable needs were met. After all blocks-groups had the chance to produce for themselves, those with 
extra capacity produced for those lacking space until total vegetable needs for the city were met or 

Boston’s UF space was exhausted. See supplementary information for detailed explanation of 

optimization algorithm.  
Given the different UF space estimation methods and optimization goals, four scenarios were 

run. Within each scenario 10 different building age cutoffs were considered using 100-run Monte-Carlo 
simulations. Table 1 outlines these scenarios. 

Scenario Description 

GWP(+) Optimization for GWP reduction using additive 
method to estimate UF space 

GWP(-) Optimization for GWP reduction using subtractive 
method to estimate UF space 

Land(+) Optimization for land use reduction using additive 

method to estimate UF space 
Land(-) Optimization for land use reduction using 

subtractive method to estimate UF space 

 

Results and Discussion 

Figure 2a shows the average, baseline GWP for Boston’s food demands according to the 

NHANES usual daily intakes for different demographics. Calculated GWP was 2211±55 kg CO2e/cap/a 
aligning with national assessments using EXIOBASE27, with the main impacts emanating from the meat 

and dairy products (54%). Figure 2c focuses on GWP impacts for the individual block-groups which 
varied between 2078-2211 kg CO2e/cap, where those with greater proportions of adults and males sat at 

the upper end. The influence of meat and dairy agrees with other assessments of the US diet29,38,39. GWP 

estimates are larger than process-LCA accounts of the US diet39, but well aligned with other input-output 
analyses of US food consumption28,38, a result of the latter method’s enhanced value-chain coverage when 

building inventories. The tight spread around Boston’s mean and proximity of city and national averages 
support the use of the latter as a proxy for urban level impacts, though caution is warranted when using 

this simplification in settings with substantial income inequality.  

Figure 2b presents land related impacts which averaged 9077±198 m2/cap/a (8578 to 10554 

m2/cap/a), agreeing with the earlier national EXIOBASE work27 and studies that have pegged average US 

food-related land occupation between 0.86-1 ha/a46,47. Meat and dairy were again dominant (~50%), while 
fruits and vegetables were also key (20%). The focus on animal based products agrees with previous 

work, but the percentage of total land burdens is reduced. Peters et al.’s assessments of US diets have 

found that animal products accounted for approximately 75% of the ~1 ha/a land use burdens46,47,  and 
Eshel and colleague’s calculate over 1 ha/cap/a for animal-sourced foods alone48. Misalignment with 

these other studies might stem from the calorie allocation method employed here, since EXIOBASE 
products divided between animal- and vegetal-sourced foods (e.g. ‘Food products nec’ a catch-all 

EXIOBASE product for various processed foods, accounting for 39% of total land use) are 

disproportionately allotted to the latter, due to the poorer energetic returns per unit area when moving up 
trophic levels47,48.  



 

 

Figure 2a-c. Average baseline food related (A) GWP and (B) land use impacts for Boston in 2010 based 

on NHANES demographic usual daily intakes. Error bars represent standard error amongst city 
population. (C) Average GWP at the block-group level, with uninhabited blocks shown as white. 

Available UF space 

 Figures 3a-b show Boston’s available ground UF space calculated with subtractive and 

additive methods estimated at 8846 and 2000 acres (28.8% and 6.7% Boston’s area), respectively. 

Naturally, the lower density block-groups with dispersed built forms tended to have more UF potential, 
but appreciable area was also found in the former industrial areas and port lands. These estimates ignored 

contaminated land that would likely be precluded from UF without remediation, but are suitable 
approximations of where UF could be placed without disturbing Boston’s built form. Figure 3c-d presents 

100-run Monte Carlo average UF available roof area in each block-group for the lowest (1900) and 

highest (2000) construction cutoff years, respectively. A 1900 cutoff resulted in 8828 available UF 
buildings with average area 195 m2 netting 424±8 total acres. Using 2000 as a cutoff year left only 700 

buildings with a mean area of 379 m2, covering a mere 26±3 acres. The majority of Boston’s buildings 
were built prior to 1920, and accordingly, estimated rooftop UF space remained below 200 acres at 

cutoffs above this year (see supplementary information figures for further details).   

       Figure 3a-d. Ground UF space in individual block-groups in Boston using (a) additive, (b) subtractive 
and rooftop space using construction year cutoffs of (c) 1900 and (d) 2000.  

Environmental performance of UF 
 Figure 4a exhibits the changes in GWP potential through the introduction of UF into Boston 

for the four scenarios. Results average all Monte-Carlo runs and all years for each scenario. The GWP(+) 

scenario provided 20% greater GHG reductions compared to the Land(+) (18066±432 vs. 15045±523 
tons CO2e/a). With the subtractive method both GWP and land optimizations approached each other 

(~24000 tons CO2e/a) since they both produced until Boston’s demands for the UF crops are met, with 

slight differences due to allocation choices (ground vs. roof) for select vegetables. In the best cases, UF 

reduced Boston’s total food-bo
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GWP burdens by approximately 1.1% (12% of fruit and vegetable burdens) when limited by space, and 

by 1.3% (15% of fruit and vegetable burdens) when producing until vegetable demands were met.  

 
Figure 4. Impacts of UF on (a) GWP and (b) land use for all model scenarios. Error bars show variance 
over all building construction cutoff years.  

 



 

Figure 4b shows the change in land use for the four scenarios. In all cases UF led to net 

increases in land occupation. The Land(+) optimization minimized these to 57% of those from the 

GWP(+) scenario (1033 vs. 1786 acres/a increase). Akin to the GWP results, land use for both 
optimization scenarios approached each other using the upper bound of UF space (~6400 acre/a increase). 

In the context of Boston’s total food-related land occupation, these increases were a mere 0.07-0.5%, and 

although hinting at UF’s potential to worsen a city’s environmental performance, are not reason to 
outright discount UF as a food source for Boston. Land use increases stemmed from the low-yield, 

ground-based UF which is the dominant farm type in the model. Whilst UF frees some land beyond city 
boundaries, the practice requires more land within city borders to produce an equivalent volume, 

highlighting the comparative advantage of conventional production. Although already appropriated from 

the wild and hence imparting low ecological ‘costs’ in converting to UF, it is worth considering whether 
vacant urban land is best utilized for UF when solar farms net significantly greater environmental benefits 

per unit area, particularly for GHG reductions21, but this could change in regions with lower GHG grid 
intensities (the Northeast US is primarily fossil fuel supplied). Rooftop UF performed quite well 

compared to conventional agriculture (exceptions being low yield vegetables where embodied land use in 

capital is large), but the relatively small rooftop area cultivated was not enough to counteract increases 
from ground UF. Although UF increased food related land use, the conversion of urban space to farms 

could increase urban biodiversity49,50 and contribute to green corridors through the city, potentially 
justifying the practice. 

UF impacts on Boston’s energy and material metabolism 

Naturally, the more buildings employed for UF, the larger the building energy related GWP 
reductions in Boston. In the Land(+) scenario, building energy savings accounted for 19% and 1% of total 

GWP reductions to the city using 1900 and 2000 as construction cutoffs, respectively, compared to 17% 
and 1% for the GWP(+) simulations. Both optimizations resulted in approximately the same building 

energy GWP reductions (3.2×106 kg CO2e), but they took on increased importance for the land 
optimization due to its poorer GWP performance. When the simulations ran until Boston vegetable 

demands were met, building energy reductions contributed a maximum of 5% to total GWP reductions as 
building UF took on a diminished share of total production. In terms of contributions to total building 

energy demand, reduction from UF’s was in the single digits. UF’s potential urban heat island mitigation 
was excluded here, which could reduce ambient temperatures by 1-2° C51, affecting cooling energy 

loading. However, cooling energy pales in comparison to heating demands in New England (1% and 59% 

of total residential end use, respectively in Massachusetts)43,44, hinting at the limited ability of UF to affect 
baseline urban energy metabolism, although more detailed modeling is required. 

Figures 5a-b outline UF’s impacts on surface runoff and solid waste flows in Boston. Building 
space was highly influential on these interactions since it is the majority of UF area that shifts from non- 

to permeable and its significant compost needs due to soil losses and expanded shale grow-media devoid 

of nutrients21. Here we focus on building cutoff years of 1900 and 2000 (other years shown in the 
supplementary information graphics). Figure 4a shows that the GWP(+) and Land(+) simulations 

(averaged due to similarity) provided significantly greater runoff retention, since they were forced to use 

all available building area. The subtractive scenarios provided less runoff reduction as they favored 
ground UF when optimizing (particularly the GWP(+) scenario) and did not convert any impermeable 

area on the ground to UF. The maximum estimated runoff retention was 2.0 Mm3/a, or 2.0% of annual 

stormwater (1.11 m annual precipitation falling on 67.8 km2 impermeable area and 57.4 km2 permeable 

with 50% assumed retention49). 

Yard and kitchen solid waste assimilation as compost (also averaged for land and GWP 
optimizations) was highest for the subtractive scenarios (~12000 tons/a), decreasing as building space 

was removed to approximately 8200 tons/a by cutoff year 2000. Additive scenarios provided lower waste 
assimilation capacity (10648-4026 tons/a) and were more sensitive to building space removal as this 

constituted a larger proportion of UF area. By our estimates UF could absorb at most 9% of Boston’s 

municipal organic solid waste fraction at 2009 generation rates52.  



 

 
Figure 5a-b. Effects of UF on Boston’s material metabolism for (a) runoff and (b) organic solid waste 

uptake for cutoff years 1900 and 2000. Error bars display range for high and low retention values for the 

runoff and variance over 100 Monte Carlo simulations for waste uptake. 

Alternative motives for UF 

 Given UF’s meager improvements in food related GWP and potential exacerbation of land use 

impacts, urban designers in the Northeast US should reconsider their enthusiasm for UF as a component 
of an environmentally sustainable urban food system, especially compared to higher environmental gains 

from other land applications21. Urban farms in the region do not tackle the animal-sourced foods that 
drive dietary environmental burdens. Other cities in the Global North are actively promoting reduced 

meat intake as explicit environmental initiatives, recognizing the importance of diet, and not technology, 

as means to more sustainable cities53,54. In a US context, shifting from average to vegetarian and vegan 
diets would reduce GWP by 30% and 50%, respectively39 and reduce land use by a factor two or greater47.  

Effects of UF on Boston’s building energy demands and surface runoff were both meagre, 
though the latter’s ability to stymie sewage overflow events during heavy rains is notable55. UF 

incorporated a sizeable amount of organic solid waste, although meaningful shifts towards a circular 

metabolism should tackle wastewater management systems, where most imported nutrients end up56,57.  
Notwithstanding, UF is also often promoted as a social enterprise in the US Northeast7. The 

slight environmental gains should be compared against performance in other domains to see if current 
policies are justified given alternative motivations. In Boston, a significant percentage of residents do not 

meet recommended fruit and vegetable guidelines, and some of the city’s neighborhoods have elevated 

poverty rates58. Here we test UF’s potential contributions towards alleviating these challenges.   

Nutritional Improvements 

 UF’s nutritional contributions were assessed as the percentage of USDA recommended annual 
vegetable intake met for the three vegetable types grown by our case farms: ‘dark green’ (e.g. spinach, 

kale, broccoli), ‘red and orange’ (tomatoes, carrots, squash) and ‘other’ (lettuce, onions, cucumbers)59. 

USDA guidelines for these vegetable types at different ages and sexes were combined with census data to 
calculate Boston’s total vegetable needs. We estimated that Boston currently consumes 64%, 64% and 

85% of its dark green, red/orange and other vegetable needs, respectively (see Table S47 in the 
supplementary information). Nutrition optimization algorithms were run for both additive (+) and 

subtractive (-) grow area estimates, where the farms supplied equal nutritional requirements for each 

vegetable type.  
 Figure 6 shows average nutritional output for the previous scenarios and nutrition 

optimizations. Both GWP and land optimizations provided appreciable percentages of red/orange and 
other vegetable needs, but dark greens were not produced in volumes greater than 11% of recommended 

intakes. The Nutrition(+) optimization reduced red/orange and other vegetable production, but provided a 

fourfold jump in dark green cultivation, while the Nutrition(-) scenario supplied all of Boston’s needs in 

the three categories.     



 

      
Figure 6. Fraction of vegetable needs met by UF in Boston for the different scenarios according to USDA 

dietary guidelines. 

 In terms of GWP reduction the nutritional scenario was similar to the Land(+) simulation 
(15726±733 tons CO2e/a) and provided the largest reductions of all scenarios when producing until all 

nutritional needs were assuaged (39312±25 tons CO2e/a or 2.9% of average dietary GWP), since it 

substituted the greatest volume of conventional produce. When producing to meet all nutritional 
demands, land use impacts were reduced relative to the other optimizations (3746±77 acres/a), since the 

Nutrition(-) scenario grew significantly more dark green vegetables, which provide high marginal land 
use reductions. The scale of interactions with the city remained largely unchanged, but the Nutrition(-) 

scenario had 25% greater solid waste assimilation capacity since cultivated area was the largest of all 

scenarios. 
 We also tested when UF acts as an ancillary food supply that can be used to alleviate the 

aforementioned gaps between USDA guidelines and current consumption. As UF would not substitute 
conventional produce here, no crediting was provided to the city and full burdens of UF production were 

ascribed to Boston. By our estimates Boston could actually close its nutritional gap for these food groups 

within the UF space estimated by the additive method, with the downside of increasing land use by 

2608±89 acres/a (0.2%) and GWP by 2950±138 tons CO2e/a (0.2%). However, the ecological costs 
should be weighed against the benefits of closing nutritional gaps, particularly in inner city 

neighborhoods bereft of fresh vegetable choices where lifestyle related diseases are more prominent60,61. 
Nutritional gaps would remain for other vegetable types (‘starchy’ and ‘legumes’) and fruits, but 

promoting UF as a public health measure appears justified.    

Economic benefits 

 Lastly we looked at the ability for UF to provide economic returns to the block-groups for all 

of the GWP, land and nutritional optimization scenarios. Because supplying Boston’s vegetable demands 
or nutritional needs required ~50% and 64% of total UF area, respectively, we also explored Boston’s 

potential to export beyond its borders to the larger metropolitan area. Vegetable prices were taken US 

Bureau of Labor Statistics and USDA data62,63. The 191 acres of UF applied to surface parking in the 
additive scenarios were removed here, since this area already generates revenue. 

 Figure 7a shows that when restricted to intra-block-group trading, estimated UF market value 

was lowest (~1.5×107 USD) for the GWP(-) and Land(-) trials, as more block-groups were self-sufficient. 

Market value for internal trading is maximized (~4.9×107 USD) when the model aimed to meet its 
nutritional needs, as this left the most block-groups in production deficits, necessitating purchases from 

block-groups with surplus production capacity. Figure 7b shows an estimated market value of ~1.6×108 

USD when the city used all UF space, with exports to the metropolitan region accounting for ~90% of 
that when producing to meet current vegetable demands and dropping to 67% when satisfying nutritional 

needs. Situating this within the Boston-Cambridge-Newton metropolitan area, estimated UF market value 

amounted to less than 0.5% of regional GDP64. Notwithstanding, Figure 7c maps potential UF revenue in 

the Nutrition(-) scenario along with household poverty rates in Boston, demonstrating UF as a latent 

revenue stream to some of Boston’s impoverished neighborhoods. ~2.5*107 USD could be generated in 
low income block-groups housing ~81 thousand residents (1/3 of Boston’s residents in low income 

blocks). However, most of the market value (~1.0*108 USD) would benefit blocks with poverty rates 
below 25%.             



 

Figure 7a-c. Potential UF revenue in Boston when (a) limited to intra-block-group trading and (b) exports 

outside of city allowed. (c) Revenue production (with exporting) in block-groups after supplying cities 
nutritional needs with household poverty rates overlaid. 

UF and study challenges 

 One challenge to the diffusion of UF into the city is pollution in soil and groundwater, as well 

as aerial deposition of contaminants from the concentration of industry and traffic in urban areas65,66. Of 

particular concern is the legacy of lead in soil from lead-containing fossil fuel combustion, although 
minimal uptake outside of the root zone occurs, and oral intake can be obviated through discarding of root 

portions and proper rinsing of edible portions67. Polycyclic aromatic hydrocarbons pose a similar issue, 
more so from aerial deposition than plant uptake, and can usually be made safe for consumption by 

rinsing edible portions67. Actual ingestion of toxic substances through UF remains understudied, and is a 

serious concern despite these positive signs. The presence of contamination is site specific, but it is 
correlated to age and density of the city66, and in Northeast US cities the amount of current UF suitable 

area is certainly lower than our estimates.  

UF is also at odds with other more economically competitive land uses that are usually 

preferred by municipal governments, further reducing long term production capacity68. Securing UF’s 

role as a nutrition source in the Northeast US will likely require more than making the practice legal, but 
active protection of UF suitable space to avoid transitory UF application. This could easily be done for 

city-owned vacant properties as a start. 
By including potentially contaminated land in our models this study represents an optimistic 

take on the potential for UF to affect a city’s environmental performance. At the same time, using 

process-based LCA for crop production may have underestimated the burdens of both UF and substituted 
vegetables due to inventory gaps, depressing or inflating UF substitution effects. Furthermore, UF 

practice is constantly evolving, with improvements to current systems and new systems entering the 
market17. Although previous work has demonstrated that technologically advanced urban farms in the 

study region are the most burdensome due to energy impacts21, future developments might shift the 

balance in the opposite direction. Our findings are only a snapshot of the current best-practices in the 
study region, which should be reevaluated as UF technology and the region’s electrical grid mix evolve. 

However, given the marginal impacts of UF in this study, such shifts need to be seismic in order for UF 
contribution meaningfully to making Northeast US urban food consumption more environmentally 

sustainable. 

Results should also be viewed in light of Boston’s relatively dense built form, which produces 
high competition for the scarce open space remaining, reducing UF’s tenability in the city and its 

environmental and nutritional impacts. Less-dense or warmer Northeast US cities may have greater 
production capacities per capita and resultant UF benefits, requiring care in directly applying our results 

directly to other Northeast US cities. A more complete assessment of local farming would look beyond 

political boundaries, including low-density suburbs and peri-urban regions where higher production 
volumes are possible14,19. Regional food system strategies, such as Vancouver, Canada’s69, could help 

distinct political entities coordinate their disparate land use regimes to maximize production and more 
effectively harness residual resources, increasing local farming’s benefits. Although focusing on Boston’s 

geopolitical boundaries precluded such a regional perspective, this study reveals the current limits of a 

lone, urban municipality to reduce the environmental burdens of its food demands through technology.     
Despite these methodological challenges, we have shown that when embedded within a 

complex city system, UF’s environmental performance is more nuanced than the previous studies at the 
farm scale or using hypothetical UF data at the city scale would suggest. We have demonstrated that it 

cannot be assumed that UF by default results in leaner supply chains. Policy makers and other urban 



 

designers in the Northeast US will hopefully benefit from this and future work when considering UF as a 

sustainable design intervention in the region.             
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Linking MRIO food impacts to different nutritional categories 

As outlined in the article, ascribing the embodied impacts of from food consumption to different food 
products is done using kilo calories. The starting point of the assessment are the individual categories of 

nutrition as outlined by the United States Department of Agriculture’s (USDA) 2015-2020 dietary 

guidelines1.  

USDA loss-adjusted food availability (LAFA) data2 provide kilo calories per nutritional equivalent for 
individual foods within the broader nutritional categories (e.g. kcal of broccoli per cup equivalent of ‘dark 

green vegetables’), which are then used to develop availability weighted averages of kilo calories per 

nutritional equivalent. Food losses are also included in the weighted average, so that the kilo calories per 
nutritional unit approximate the amount of kilo calories provided by the economy for consumption and 

not just those actually consumed. Tables S1-19 outline the calculations of embodied kilo calories in the 

nutritional group. 

Table S1 - Vegetables: Dark Green 

 

Loss from 

retail/ 

institution
al to 

consumer 

level 

Loss at consumer 
level 

Kilo 
calorie

s 

availab
le daily 

Food 

pattern 

equivalen
ts 

available 

daily 

Produc

ed kilo 

calories 

Calorific 
density Nonedib

le share 

Other 

(cookin
g loss 

and 

uneaten 

food) 

Component 
-- Percent 

-- 

-- 
Percent 

-- 

-- 
Percent 

-- 

-- 
Numbe

r - 

-- Cups -- kcal 

kcal 

produced/c

up 
consumed 

Fresh broccoli 12 39 12 0.947 0.031 2.195 71.855 

Fresh collard 

greens 37 43 38 0.029 0.002 0.248 100.999 

Fresh escarole 48 14 24 0.030 0.004 0.092 24.664 

Fresh kale 39 39 38 0.022 0.001 0.154 200.145 

Fresh leaf lettuce 14 21 24 0.995 0.077 2.089 27.290 

Fresh mustard 
greens 64 7 38 0.023 0.002 0.116 75.014 

Fresh spinach 14 28 9 0.222 0.016 0.412 25.959 

Fresh turnip 

greens 41 30 38 0.031 0.002 0.164 95.294 

Frozen broccoli 6 - 12 0.585 0.011 0.707 62.863 



 
 

Frozen spinach 6 - 34 0.131 0.002 0.212 104.771 

Weighted Average: 43.617 

        

Table S2 – Vegetables: Other 

 

Loss 
from 

retail/ 

institutio
nal to 

consumer 

level 

Loss at consumer 

level 
Kilo 

calorie

s 
availab

le daily 

Food 

pattern 
equivale

nts 

available 
daily 

Produc

ed kilo 
calories 

Calorific 

density Nonedib

le share 

Other 
(cooki

ng loss 

and 
uneate

n food) 

Component 

-- 

Percent -

- 

-- 

Percent 

-- 

-- 

Percen

t -- 

-- 

Numbe

r - 

-- Cups -
- 

kcal 

kcal 

produced/c
up 

consumed 

Fresh artichokes 19 60 18 0.149 0.002 0.840 428.102 

Fresh asparagus 9 47 18 0.084 0.003 0.264 85.157 

Fresh green bell 

pepper 8 18 39 0.427 0.014 1.078 75.645 

Fresh Brussels 

sprouts 19 10 12 0.094 0.002 0.149 59.965 

Fresh cabbage 14 20 24 1.093 0.050 2.271 45.721 

Fresh cauliflower 14 61 9 0.125 0.005 0.485 104.660 

Fresh celery 5 11 39 0.546 0.034 1.151 33.721 

Fresh cucumbers 6 27 32 0.332 0.024 0.864 36.376 

Fresh eggplant 21 19 26 0.101 0.005 0.233 46.222 

Fresh garlic 7 13 43 1.665 0.008 4.087 498.354 

Fresh head lettuce 9 16 24 1.557 0.097 2.843 29.216 

Fresh mushrooms 13 3 21 0.421 0.020 0.634 31.651 

Fresh okra 24 14 20 0.081 0.002 0.163 66.153 

Canned olives 6 0 25 2.126 0.014 3.016 219.858 

Fresh onions 10 10 43 4.283 0.067 10.099 150.892 

Fresh radishes 21 10 47 0.035 0.002 0.102 55.947 

Fresh snap beans 19 12 24 0.415 0.013 0.796 59.478 

Fresh squash 12 17 25 0.373 0.021 0.735 35.456 

Canned asparagus 6 0 2 0.026 0.001 0.028 49.935 

Canned snap beans 6 0 24 0.416 0.014 0.582 41.993 

Canned cabbage 6 0 16 0.083 0.003 0.105 34.195 

Canned cucumbers 6 0 3 0.876 0.011 0.960 89.384 

Canned 

mushrooms 6 0 9 0.250 0.006 0.292 45.593 

Frozen asparagus 6 0 26 0.007 0.000 0.011 46.003 

Frozen snap beans 6 0 24 0.444 0.012 0.622 53.191 

Frozen cauliflower 6 0 27 0.041 0.001 0.060 49.548 

Dehydrated onions 6 0 4 0.442 0.005 0.490 108.599 

Fresh avocados 9 26 32 2.516 0.011 6.607 622.305 

Weighted Average 88.607 

 

Table S3 – Vegetables: Red and Orange 

 

Loss 

from 

retail/ 

instituti
onal to 

consum

Loss at consumer 
level Kilo 

calories 

availabl
e daily 

Food 

pattern 

equivale

nts 
availabl

e daily 

Produc

ed kilo 

calorie
s 

Calorific 

density Nonedibl
e share 

Other 

(cookin
g loss 

and 



 
 

er level uneaten 
food) 

Component 

-- 

Percent 

-- 

-- 

Percent -

- 

-- 

Percent 

-- 

-- 

Number 

- 

-- Cups 
-- 

kcal 

kcal 

produced/c
up 

consumed 

Fresh red bell 

pepper 
8 18 39 0.427 0.014 1.077 75.644 

Fresh carrots 5 11 34 2.056 0.039 3.942 99.668 

Fresh pumpkin 11 30 69 0.012 0.001 1.436 3379.731 

Fresh tomatoes 13 9 7 3.370 0.082 4.621 56.220 

Canned carrots 6 0 31 0.136 0.003 0.210 55.504 

Canned chili 
peppers 

6 0 4 1.022 0.035 1.132 32.136 

Canned tomatoes 6 0 28 3.750 0.098 5.541 56.146 

Other canned 

vegetables 
6 0 16 0.503 0.010 0.637 62.056 

Frozen carrots 6 0 34 0.236 0.004 0.381 87.040 

Weighted Average 66.720 

 

Table S4 – Vegetables: Starchy 

 

Loss 
from 

retail/ 

institutio
nal to 

consumer 

level 

Loss at consumer 

level 
Kilo 

calorie

s 
availab

le daily 

Food 

pattern 
equivale

nts 

available 
daily 

Produc

ed kilo 
calories 

Calorific 

density Nonedib

le share 

Other 
(cooki

ng loss 

and 
uneate

n food) 

Component 

-- 

Percent -
- 

-- 

Percent 
-- 

-- 

Percen
t -- 

-- 

Numbe
r -- 

-- Cups -

- 
kcal 

kcal 
produced/c

up 

consumed 

Fresh sweet corn 1 64 32 0.361 0.003 9.091 3144.228 

Fresh potatoes 6 10 16 28.391 0.229 41.031 178.492 

Fresh sweet 

potatoes 
14 28 44 1.172 0.010 4.879 474.417 

Canned sweet corn 6 0 7 3.642 0.033 4.166 125.829 

Canned green peas 6 0 24 0.476 0.004 0.666 166.573 

Canned potatoes 6 0 28 0.314 0.003 0.465 159.574 

Frozen sweet corn 6 0 36 1.638 0.012 2.722 222.739 

Frozen green peas 6 0 24 1.167 0.009 1.634 174.972 

Frozen lima beans 6 0 27 0.293 0.001 0.427 275.429 

Frozen potatoes 6 0 16 20.345 0.143 25.761 179.837 

Misc. frozen 
vegetables 

6 0 26 0.787 0.009 1.132 113.858 

Dehydrated 

potatoes 
6 0 4 7.227 0.068 8.008 117.464 

Potato chips 6 0 4 28.465 0.186 31.544 169.547 

Dry lima beans 6 0 10 0.118 0.002 0.139 63.829 

Weighted Average 183.947 

 

Table S5. Fruits – Citrus 

 

Loss from 

retail/ 

Loss at consumer 

level 

Kilo 

calories 

Food 

pattern 

Produc

ed kilo 

Calorific 

density 



 
 

institution
al to 

consumer 

level 

Nonedibl

e share 

Other 
(cookin

g loss 

and 
uneate

n food) 

availab
le daily 

equivalen
ts 

available 

daily 

calories 

Component 
-- Percent 

-- 

-- 

Percent -
- 

-- 

Percen
t -- 

-- 

Numbe
r -- 

-- Cups -- kcal 

kcal 
produced/c

up 

consumed 

Fresh oranges 12 27 36 1.382 0.016 4.225 261.314 

Fresh tangerines 20 26 52 0.279 0.003 1.595 588.447 

Fresh grapefruit 13 50 20 0.286 0.003 1.095 313.588 

Fresh lemons 7 47 44 0.081 0.001 0.964 728.504 

Fresh limes 8 16 44 0.293 0.015 0.800 54.536 

Fresh blueberries 5 5 8 0.314 0.004 0.380 101.898 

Fresh cranberries 6 2 26 0.038 0.001 0.055 75.332 

Fresh honeydew 23 54 43 0.017 0.000 0.754 2697.253 

Fresh kiwi 13 14 45 0.108 0.001 0.302 212.224 

Fresh raspberries 10 4 20 0.074 0.001 0.108 93.312 

Fresh 

strawberries 10 6 35 1.220 0.025 2.291 92.591 

Fresh 

watermelon 17 48 13 1.573 0.034 4.845 141.727 

Frozen 

blackberries 6 0 40 0.042 0.000 0.074 171.986 

Frozen 

raspberries 6 0 24 0.191 0.003 0.268 102.184 

Frozen 
strawberries 6 0 24 0.151 0.003 0.211 72.788 

Frozen other 

berries 6 0 30 0.023 0.000 0.035 147.416 

Weighted Average 162.457 

 

Table S6. Fruits - Juice 

 

Loss from 

retail/ 

institution
al to 

consumer 

level 

Loss at consumer 
level 

Kilo 

calories 
availabl

e daily4 

Food 

pattern 

equivalen
ts 

available 

daily5 

Produce

d kilo 

calories 

Calorific 
density Nonedibl

e share 

Other 

(cookin
g loss 

and 

uneaten 
food) 

Component 
-- Percent 

-- 

-- 
Percent -

- 

-- 
Percent 

-- 

-- 
Number 

-- 

-- Cups -- kcal 

kcal 

produced/c

up 
consumed 

Orange juice 6 0 10 18.071 0.161 21.361 132.388 

Grapefruit 

juice 
6 0 10 1.252 0.013 1.480 113.475 

Lemon juice 6 0 10 0.283 0.005 0.335 63.830 

Lime juice 6 0 10 0.050 0.001 0.059 70.922 

Apple juice 6 0 10 9.712 0.085 11.480 134.752 

Cranberry 
juice 

6 0 10 0.990 0.009 1.170 137.116 

Grape juice 6 0 10 3.163 0.021 3.739 179.669 

Pineapple 

juice 
6 0 10 1.055 0.008 1.247 156.028 



 
 

Prune juice 6 0 32 0.223 0.001 0.349 284.731 

Weighted Average 135.490 

 

Table S7. Fruits: Other 

 

Loss 
from 

retail/ 

institutio
nal to 

consumer 

level 

Loss at consumer 

level Kilo 

calorie
s 

availab

le 
daily4 

Food 

pattern 
equivale

nts 

available 
daily5 

Produc

ed kilo 
calories 

Calorific 

density Nonedibl

e share 

Other 
(cooki

ng loss 

and 
uneate

n food) 

Component 

-- 

Percent -

- 

-- 

Percent -

- 

-- 

Percen

t -- 

-- 

Numbe

r -- 

-- Cups -
- 

kcal 

kcal 

produced/c
up 

consumed 

Fresh apples 9 10 20 6.597 0.118 10.314 87.546 

Fresh apricots 35 7 10 0.045 0.001 0.084 141.924 

Fresh bananas 8 36 20 11.644 0.091 28.754 314.855 

Fresh cantaloupe 12 49 43 0.261 0.005 3.716 804.376 

Fresh cherries 4 9 51 0.294 0.003 0.766 221.060 

Fresh grapes 8 4 33 3.670 0.035 6.303 178.627 

Fresh mangoes 14 31 13 0.714 0.007 1.490 206.683 

Fresh papaya 55 33 20 0.116 0.002 0.547 292.434 

Fresh peaches 12 7 42 1.045 0.016 2.326 146.909 

Fresh pears 18 10 20 1.209 0.013 2.095 156.860 

Fresh pineapple 15 49 37 0.352 0.004 2.945 686.082 

Fresh plums 17 6 27 0.304 0.004 0.548 137.189 

Canned apples 6 0 8 2.210 0.022 2.555 117.946 

Canned apricots 6 0 27 0.032 0.001 0.046 72.865 

Canned sweet 

cherries 6 0 32 0.006 0.000 0.010 178.348 

Canned tart 
cherries 6 0 32 0.051 0.001 0.079 137.672 

Canned peaches 6 0 9 1.176 0.020 1.374 68.974 

Canned pears 6 0 9 1.099 0.015 1.285 83.002 

Canned pineapple 6 0 9 1.335 0.017 1.561 92.354 

Canned plums 6 0 26 0.007 0.000 0.011 146.636 

Frozen blueberries 6 0 29 0.158 0.002 0.237 118.370 

Frozen sweet 

cherries 6 0 29 0.149 0.001 0.223 346.119 

Frozen tart 

cherries 6 0 29 0.187 0.003 0.280 106.383 

Frozen apples 6 0 35 0.195 0.002 0.320 135.843 

Frozen apricots 6 0 35 0.015 0.000 0.025 135.843 

Frozen peaches 6 0 35 0.258 0.003 0.422 135.843 

Frozen plums 6 0 10 0.002 0.000 0.002 98.109 

Dried apples 6 0 11 0.287 0.003 0.343 124.313 

Dried apricots 6 0 11 0.312 0.002 0.373 187.664 

Dried dates 6 10 25 0.265 0.001 0.434 338.789 

Dried figs 6 0 25 0.203 0.001 0.288 263.830 

Dried peaches 6 0 11 0.118 0.001 0.141 228.305 

Dried plums 6 0 11 0.732 0.004 0.875 249.821 

Raisins 6 0 26 3.653 0.017 5.252 311.961 

Weighted Average 183.640 

 



 
 

Table S8. Grains 

 

Loss 

from 
retail/ 

institutio

nal to 
consume

r level 

Loss at consumer 

level Kilo 

calorie

s 
availa

ble 

daily4 

Food 

pattern 

equivale
nts 

available 

daily5 

Produc

ed kilo 
calorie

s 

Calorific 
density 

Nonedi

ble 
share 

Other 

(cooki
ng loss 

and 

uneate
n food) 

Component 

-- 

Percent -

- 

-- 

Percent 

-- 

-- 

Percen

t -- 

-- 

Numbe

r -- 

Oz kcal 

kcal 

produced/
Oz 

consumed 

White and whole 

wheat flour 12 0 20 

376.43

5 4.591 

534.70

9 116.477 

Rye flour 12 0 20 2.152 0.027 3.056 113.636 

Rice 12 0 33 54.012 0.524 91.607 174.695 

Corn flour and meal 12 0 20 60.937 0.952 86.558 90.909 

Corn hominy and grits 12 0 20 28.810 0.389 40.923 105.114 

Corn starch 12 0 20 11.548 0.241 16.404 68.182 

Barley products 12 20 14 1.716 0.017 2.955 172.176 

Oat products 12 20 14 12.920 0.121 22.246 184.229 

Durum flour 12 0 20 40.140 0.379 57.018 150.568 

Weighted Average 118.150 

 

Table S9. Dairy - Cheese 

 

Loss 

from 

retail/ 
institutio

nal to 

consume
r level 

Loss at consumer 
level Kilo 

calorie

s 

availab
le 

daily4 

Food 
pattern 

equivale

nts 
available 

daily5 

Produc

ed kilo 

calorie
s 

Calorific 

density 
Nonedi

ble 

share 

Other 

(cooki

ng loss 
and 

uneate

n food) 

Component 

-- 
Percent -

- 

-- 
Percent 

-- 

-- 
Percen

t -- 

-- 
Numbe

r -- 

Cup kcal 

kcal 

produced/

cup 
consumed 

Cheddar cheese 6 0 11 42.890 0.248 51.267 206.789 

Other American 

cheese 6 0 28 8.707 0.053 12.866 241.578 

Provolone cheese 6 0 14 3.751 0.025 4.640 184.315 

Romano cheese 6 0 8 1.154 0.007 1.335 190.796 

Parmesan cheese 6 0 8 2.818 0.016 3.258 206.984 

Mozzarella cheese 6 0 31 25.454 0.204 39.245 192.414 

Ricotta cheese 6 0 12 1.384 0.007 1.673 233.922 

Other Italian cheese 6 0 16 0.671 0.004 0.850 205.547 

Swiss cheese 6 0 50 2.803 0.017 5.965 344.681 

Brick cheese 6 0 40 0.063 0.000 0.111 280.142 

Muenster cheese 6 0 35 0.933 0.006 1.526 255.319 

Blue cheese 6 0 43 0.678 0.005 1.266 279.955 

Other miscellaneous 
cheese 6 0 42 3.554 0.023 6.519 287.417 

Regular cottage 

cheese 12 0 31 0.705 0.002 1.162 602.767 

Low-fat cottage 
cheese 12 0 4 1.063 0.003 1.259 384.706 



 
 

Weighted Average 214.276 

 

Table S10. Dairy - Milk 

 

Loss 
from 

retail/ 

instituti
onal to 

consum

er level 

Loss at consumer 

level 

Kilo 

calori
es 

availa

ble 
daily4 

Food 

pattern 
equivale

nts 

availabl
e daily5 

Produ

ced 

kilo 
calorie

s 

Calorific 

density 
Nonedi

ble 

share 

Other 

(cooki
ng 

loss 

and 
uneate

n 

food) 

Component 

-- 
Percent 

-- 

-- 
Percen

t -- 

-- 
Perce

nt -- 

-- 
Numb

er -- 

Cup kcal 

kcal 

produced/

cup 
consumed 

Plain whole milk 12 0 20 

28.07

9 0.188 39.885 211.648 

2 percent milk 12 0 20 
26.15

2 0.214 37.148 173.295 

1 percent milk 12 0 20 8.044 0.079 11.426 144.886 

Skim milk 12 0 20 8.050 0.097 11.435 117.898 

Whole flavored milk 12 0 45 1.096 0.005 2.264 429.752 

Low-fat flavored milk 12 0 45 5.433 0.030 11.226 380.165 

Buttermilk 12 0 18 0.603 0.006 0.836 135.809 

Ice cream 12 0 24 

24.51

9 0.060 36.661 613.038 

Ice milk 12 0 24 8.826 0.022 13.197 613.038 

Other frozen 12 0 33 4.895 0.021 8.303 388.399 

Evap condensed canned 

whole milk 12 0 15 

15.95

0 0.094 21.323 225.936 

Evap condensed bulk 

whole milk 12 0 15 

40.73

7 0.241 54.462 225.936 

Evap condensed skim 

milk 12 0 15 4.289 0.043 5.733 133.690 

Dry whole milk 1 0 41 0.562 0.004 0.962 272.214 

Nonfat dry milk 1 0 41 7.366 0.068 12.610 186.612 

Dry buttermilk 1 0 41 0.649 0.006 1.111 198.596 

Eggnog 12 0 51 0.044 0.000 0.101 347.866 

Weighted Average 228.156 

 

Table S11. Dairy - Yoghurt 

 

Loss from 
retail/ 

institutiona

l to 
consumer 

level 

Loss at consumer 

level 

Kilo 

calories 

availabl
e daily4 

Food 

pattern 
equivalent

s available 

daily5 

Produce
d kilo 

calories 

Calorific 

density Nonedibl

e share 

Other 
(cookin

g loss 

and 
uneaten 

food) 

Componen

t 

-- Percent 

-- 

-- 
Percent -

- 

-- 
Percent 

-- 

-- 
Number 

-- 

Cup kcal 
kcal 

produced/cu

p consumed 

Yoghurt 12 0 21 5.804 0.041 8.349 205.696 

 



 
 

Table S12. Protein – Eggs 

 

Loss from 

retail/ 

institutiona
l to 

consumer 

level 

Loss at consumer 

level 

Kilo 

calories 
availabl

e daily4 

Food 
pattern 

equivalent

s available 
daily5 

Produce

d kilo 

calories 

Calorific 
density Nonedibl

e share 

Other 

(cookin
g loss 

and 

uneaten 
food) 

Componen

t 

-- Percent 

-- 

-- 

Percent -
- 

-- 

Percent 
-- 

-- 

Number 
-- 

Oz kcal 

kcal 

produced/O
z consumed 

Eggs 9 12 13 37.843 0.485 63.978 131.868 

 

Table S13. Protein -  Legumes 

 

Loss 

from 

retail/ 
institutio

nal to 

consumer 
level 

Loss at consumer 

level Kilo 
calorie

s 

availab
le 

daily4 

Food 
pattern 

equivale

nts 
available 

daily5 

Produc
ed kilo 

calories 

Calorific 

density Nonedib

le share 

Other 
(cookin

g loss 

and 
uneate

n food) 

Component 

-- 

Percent -
- 

-- 

Percent 
-- 

-- 

Percen
t -- 

-- 

Numbe
r -- 

Oz kcal 

kcal 
produced/

Oz 

consumed 

Fresh lima beans 12 56 27 0.005 0.000 0.036 310.524 

Dry Peas and lentils 6 0 10 0.317 0.007 0.375 56.865 

Dry black beans 6 0 10 0.769 0.014 0.909 64.291 

Dry great northern 

beans 6 0 10 0.334 0.007 0.395 57.460 

Dry navy beans 6 0 10 1.450 0.025 1.714 68.246 

Dry pinto beans 6 0 10 4.078 0.069 4.821 69.708 

Dry red kidney 

beans 6 0 10 0.649 0.012 0.767 61.855 

Other dry beans 6 0 10 1.806 0.033 2.134 65.581 

Weighted Average 66.797 

 

Table S14. Protein -  Meat 

 

Loss from 

retail/ 
institutiona

l to 

consumer 
level 

Loss at consumer 

level 

Kilo 
calories 

availabl

e daily4 

Food 

pattern 

equivalent
s available 

daily5 

Produce

d kilo 
calories 

Calorific 

density Nonedibl

e share 

Other 
(cookin

g loss 

and 
uneaten 

food) 

Componen

t 

-- Percent 

-- 

-- 

Percent -
- 

-- 

Percent 
-- 

-- 

Number 
-- 

Oz kcal 

kcal 

produced/O
z consumed 

Beef 4 0 20 170.871 2.084 223.290 107.155 

Veal 25 0 20 0.557 0.009 0.934 108.934 

Pork 4 0 29 94.164 1.405 138.666 98.665 

Lamb 12 0 20 2.140 0.026 3.050 118.300 

Weighted Average 103.855 

 



 
 

Table S15. Protein -  Poultry 

 

Loss from 

retail/ 

institutiona
l to 

consumer 

level 

Loss at consumer 

level 

Kilo 

calories 
availabl

e daily4 

Food 
pattern 

equivalent

s available 
daily5 

Produce

d kilo 

calories 

Calorific 
density Nonedibl

e share 

Other 

(cookin
g loss 

and 

uneaten 
food) 

Componen

t 

-- Percent 

-- 

-- 

Percent -
- 

-- 

Percent 
-- 

-- 

Number 
-- 

Oz kcal 

kcal 

produced/O
z consumed 

Chicken 4 0 15 141.470 2.143 173.318 80.858 

Turkey 3 0 35 20.498 0.380 32.666 86.055 

Weighted Average 81.640 

 

Table S16. Protein -  Nuts 

 

Loss from 

retail/ 

institution
al to 

consumer 

level 

Loss at consumer 
level 

Kilo 

calories 
availabl

e daily4 

Food 

pattern 

equivalent
s 

available 

daily5 

Produce

d kilo 

calories 

Calorific 
density Nonedibl

e share 

Other 

(cookin

g loss 
and 

uneaten 

food) 

Component 
-- Percent 

-- 

-- 

Percent -

- 

-- 

Percent 

-- 

-- 

Number 

-- 

Oz kcal 

kcal 

produced/O

z consumed 

Peanuts 6 0 4 40.179 0.502 44.524 88.652 

Almonds 6 0 21 6.518 0.079 8.777 110.423 

Hazelnuts 6 0 20 0.296 0.003 0.394 118.351 

Pecans 6 0 14 3.095 0.032 3.828 121.227 

Walnuts 6 0 18 2.999 0.032 3.890 120.654 

Macadamia 6 0 8 0.835 0.008 0.965 117.946 

Pistachios 6 0 16 1.267 0.016 1.605 101.317 

Other tree 

nuts 6 0 18 6.525 0.073 8.466 116.373 

Weighted Average 97.164 

 

Table S17. Protein -  Fish and Seafood 

 

Loss 

from 
retail/ 

institutio

nal to 
consumer 

level 

Loss at consumer 
level Kilo 

calorie

s 
availab

le 

daily4 

Food 

pattern 

equivale
nts 

available 

daily5 

Produc

ed kilo 

calories 

Calorific 
density 

Nonedi

ble 
share 

Other 

(cookin
g loss 

and 

uneate
n food) 

Component 

-- 
Percent -

- 

-- 
Percent 

-- 

-- 
Percen

t -- 

-- 
Numbe

r -- 

Oz kcal 

kcal 

produced/

Oz 
consumed 

Fresh and frozen fish 9 0 40 5.598 0.158 10.218 64.802 

Fresh and frozen 
shellfish 9 0 40 3.265 0.131 5.998 45.925 

Canned Salmon 6 0 17 0.406 0.010 0.521 49.987 

Canned Sardines 6 0 36 0.304 0.005 0.505 98.072 



 
 

Canned Tuna 6 0 17 3.035 0.092 3.889 42.297 

Canned shellfish 6 0 17 0.419 0.015 0.536 35.888 

Other canned fish 6 0 17 0.402 0.010 0.515 49.987 

Cured fish 6 0 17 0.336 0.010 0.431 42.297 

Weighted Average 52.438 

 

Table S18. Fats and Oils 

 

Loss 

from 
retail/ 

instituti

onal to 
consum

er level 

Loss at consumer 
level 

Ener

gy 
cont

ent 

Per 

capita 
availabi

lity 

adjuste
d for 

loss 

Per 

capita 
availabi

lity 

adjuste
d for 

loss 

Calorific Density Nonedi

ble 
share 

Other 

(cooki

ng 
loss 

and 

uneate
n 

food) 

Component 

-- 
Percent 

-- 

-- 
Percen

t -- 

-- 
Perce

nt -- 

kcal/

g g/d kcal/d 

kcal produced/g 

consumed 

Butter 7 0 35 9 2.815 25.333 14.888 

Margarine 7 0 35 9 2.037 18.335 14.888 

Lard 50 0 35 9 0.651 5.858 27.692 

Edible beef tallow 50 0 35 9 1.189 10.705 27.692 

Shortening 21 0 35 9 13.368 120.316 17.527 

Salad and 

cooking oils 21 0 15 9 41.885 376.969 13.403 

Other edible fats 

and oils 5 0 25 9 1.488 13.388 12.632 

Light cream 12 0 12 9 1.556 14.000 11.622 

Sour cream 12 0 8 9 0.819 7.371 11.117 

Cream cheese 12 0 13 9 0.744 6.695 11.755 

Eggnog 12 0 51 9 0.011 0.098 20.872 

Weighted Average 14.630 

 

Table S19. Sugars 

 

Loss 

from 
retail/ 

instituti

onal to 
consum

er level 

Loss at 

consumer level 

Ener

gy 
cont

ent 

Per 

capita 
availab

ility 

adjuste
d for 

loss 

Per 

capita 
availab

ility 

adjuste
d for 

loss 

Calorific Density Noned

ible 

share 

Other 
(cook

ing 

loss 
and 

uneat

en 
food) 

Component 

-- 

Percent 
-- 

-- 

Percen
t -- 

-- 

Perce
nt -- 

kcal/
g kcal/d kcal/d 

kcal produced/kcal 
consumed 

Cane and beet 

sugar 11 0 34 - 

169.97

6 

289.37

0 1.702 

Edible syrups 11 0 15 - 2.221 2.936 1.322 

Honey 11 0 15 - 3.340 4.415 1.322 

High fructose corn 

sweetener 11 0 34 - 

155.27

8 

264.34

9 1.702 

Glucose 11 0 34 - 38.070 64.811 1.702 

Dextrose 11 0 34 - 8.256 14.056 1.702 



 
 

Weighted Average 1.697 

 

We take the average US usual daily food intake for each nutritional group over the years 2007-2010 (in 

cup equivalents, ounce equivalents, etc) from the National Nutritional Health and Nutrition Examination 

Survey (NHANES)3 and multiply this by the population (301,231,207) and kilo calories per serving 
nutritional component to arrive at the total calorific demand of the US population. Table S20 outlines 

these findings. 

Table S20. US average per capita food equivalent, daily calorific and annual calorific intake (2007-

2010) 

Dietary 

Component 

NHANES 

Usual Daily 

Intake 

Unit kcal produced 

per nutritional 

equivalent 

Daily per 

capita kcal 

Annual per 

capita kcal 

Vegetables 

Dark Green 0.1 cup eq. 43.61664 4.36166418 1592.007427 

Red and 
Orange 

0.4 cup eq. 
65.72036 26.2881426 9595.172043 

Other 0.5 cup eq. 88.60711 44.3035567 16170.79821 

Starchy 0.4 cup eq. 183.9475 73.5789929 26856.33242 

Fruits 

Citrus 0.2 cup eq. 162.4571 32.4914191 11859.36796 

Juice 0.4 cup eq. 135.4902 54.1960631 19781.56303 

Other 0.5 cup eq. 183.6407 91.8203589 33514.431 

Grains 

Total 6.3 Oz eq. 118.1499 744.344173 271685.6231 

Dairy      

Milk  1 cup eq. 228.1564 228.156392 83277.083 

Cheese 0.7 cup eq. 214.2764 149.99351 54747.6311 

Yoghurt 0.1 cup eq. 205.6962 20.5696203 7507.911392 

Protein 

Meat 2.5 Oz eq. 103.8546 259.636553 94767.34176 

Poultry 1.5 Oz eq. 81.64011 122.46017 44697.96204 

Eggs 0.5 Oz eq. 131.8681 65.9340659 24065.93407 

Legumes 0.5 Oz eq. 66.79709 33.3985472 12190.46974 

Nuts 0.6 Oz eq. 97.16419 58.2985134 21278.9574 

Seafood 0.5 Oz eq. 52.43769 26.2188457 9569.878694 

Fats and Oils 

Total 56.8 g 14.63028 830.99974 303314.905 

Sugars 

Total 268 kcal 1.696806 454.744058 165981.5812 

Beverages 

Total* - - - 447 163230 
* NHANES does not overtly track the kilo calories consumed through beverages. Estimated here as the 
difference between the US average total available kilo calories daily according to LAFA data for 20102 

(3769 kcal) and the sum of the food/juice intake estimated here.    

Total GWP and land use impacts for US final demands were taken from the EXIOBASE v2.3 default 

final demand vector which represents consumption for the year 2007 (www.exiobase.eu). This only 
accounts for impacts for production, excluding final transport to the consumer. To account for transport 

impacts, the transport margins are taken from the EXIOBASE data for each product and multiplied by the 

final demands vector to generate the resulting final transport needs for each good in 2007 USD. The 
modal share is then taken from the United States Commodity Flow Survey for the year 20074 using best 

judgement to link EXIOBASE products to the commodity groups covered in the survey. Table S21 

displays the transport margins and modal share for each EXIOBASE product we include. 

Table S21. Transport margins and modal shares for EXIOBASE products 

EXIOBASE Code Transpor Modal Modal Modal Modal 



 
 

t Margin Share – 

Road 

Share - 

Rail 

Share - 

Water 

Share – 

Air 

Paddy rice 0.115998 0.488242 0.363942 0.147816 0 

Wheat 0.09643 0.488242 0.363942 0.147816 0 

Cereal grains nec 0.10418 0.488242 0.363942 0.147816 0 

Vegetables, fruit, nuts 0.131523 0.913812 0.043094 0.043094 0 

Oil seeds 0 0.913812 0.043094 0.043094 0 

Sugar cane, sugar beet 0 0.913812 0.043094 0.043094 0 

Crops nec 0 0.913812 0.043094 0.043094 0 

Cattle 0.006992 1 0 0 0 

Pigs 0 1 0 0 0 

Poultry 0.034421 1 0 0 0 

Meat animals nec 0 1 0 0 0 

Animal products nec 0.026805 0.991251 0.005661 0.003088 0.004117 

Raw milk 0 0.936752 0.063248 0 0 

Fish and other fishing products; 

services incidental of fishing (05) 0.061087 1 0 0 0 

Products of meat cattle 0.053237 1 0 0 0 

Products of meat pigs 0.063048 1 0 0 0 

Products of meat poultry 0.054744 1 0 0 0 

Meat products nec 0.077171 1 0 0 0 

products of Vegetable oils and 
fats 0.040329 0.972208 0.025695 0.002098 0.001049 

Dairy products 0.07116 0.936752 0.063248 0 0 

Processed rice 0.063115 0.969017 0.029915 0.001068 0 

Sugar 0.065962 0.972208 0.025695 0.002098 0.001049 

Food products nec 0.077061 0.972208 0.025695 0.002098 0.001049 

Beverages 0.101754 0.966173 0.033827 0 0 

Fish products 0.08422 1 0 0 0 

 

All transport is modeled using GWP and land use intensities for the US economy. The transport processes 

used here and their environmental intensities as taken from EXIOBASE are shown in Table S22. 

Table S22. GWP and land use intensities for different transport modes 

EXIOBASE Code Country Mode GWP Intensity (kg 

CO2e/106 EUR) 

Land Use Intensity 

(km2/106 EUR) 

Railway transportation 

services 

US Rail 1412976.522 1.256751515 

Other land transportation 

services 

US Truck 778740.6385 0.26280198 

Sea and coastal water 

transportation services 

US Water 3476526.152 0.536899867 

Air transport services US Air 2832246.05 0.309460771 

 

Finally the MRIO calculations are performed; yielding the total production and transport related impacts 

related to US consumption for the year 2007. Table S23 outlines the results of the MRIO manipulations. 

Table S23. EXIOBASE results for 2007 US final consumption 

EXIOBASE Code 

Production Transport 

GWP (kg CO2e) Land Use (km2) GWP (kg CO2e) Land Use (km2) 

Poultry 5822816965 22376.74 80842374 27.28191 

Products of meat 

poultry 32860973488 89477.22 9.56E+08 322.5918 

Cattle 588291879 1731.563 402182.3 0.135725 

Products of meat 
cattle 149156495799 461445 8.89E+08 299.8428 



 
 

Products of meat 
pigs 17356597166 71345.54 6.9E+08 232.879 

Pigs 0 0 0 0 

Fish and other 

fishing products; 
services incidental 

of fishing 1267172044 1974.987 54883840 18.52168 

Fish products 3860016147 8001.427 2.19E+08 73.96871 

Meat products nec 7465819719 15791 3.94E+08 132.8264 

Animal products 

nec 5768762921 32870.85 1.03E+08 34.80589 

Dairy products 50604671333 225524.6 1.73E+09 686.0962 

Processed rice 1615329595 3673.16 32217730 11.78406 

Paddy rice 188415433 874.5804 12077810 5.703473 

Cereal grains nec 3150569995 14125.08 77873089 36.77381 

Wheat 1849616004 15205.19 50254915 23.73175 

Products of 

Vegetable oils and 
fats 8879027984 63894.03 1.13E+08 40.58251 

Vegetables, fruit, 

nuts 32863666424 355058.8 4.14E+09 1424.003 

Sugar 3131171454 10810.13 99482266 35.80383 

Beverages 80757542526 231330.2 5.48E+09 2031.049 

Crops nec 955989660 58753.4 0 0 

Food products nec 270641831417 1194618 9.84E+09 3541.019 

 

Allocating global warming potential (GWP) and land use impacts from the EXIOBASE is done through a 

concordance matrix matching nutritional groups to relevant product groups. Concordances are made 
based on the descriptions provided in the United Nations International Standard Industrial Classification 

of All Economic Activities classification codes5. The total impact from US final demand in 2007 in each 

relevant EXIOBASE product is divided amongst the kilo calories for all nutritional components ascribed 

to that product. Letting 𝐼𝑗  represent the total impacts (production and transport) from final demand for 

EXIOBASE food product j, and 𝐶𝑖 the total kilo calories produced of nutritional category i, then the 
impacts of the EXIOBASE product j attributed to supplying a single kilo calorie of nutritional category x, 

𝑖𝑥,𝑗, is given by equation (1), where the denominator is the sum of kilo calories from all nutritional 

categories linked to that EXIOBASE product.     

(1)  𝑖𝑥,𝑗 =  
𝐼𝑗

∑ 𝐶𝑖
𝑛
𝑖=1

  

A single nutritional category could be matched to multiple EXIOBASE products, and hence, embodied 

impact per kilo calorie delivered in a nutritional category, 𝑖𝑥, is the sum of the components from each 
EXIOBASE product assigned to it, according to (2).   

(2) 𝑖𝑥 =  ∑ 𝑖𝑥,𝑗
𝑛
𝑗=1       

Table S24 shows the concordance between different EXIOBASE products and the nutritional categories. 

Table S25 shows the embodied GWP and land use impacts per kilo calorie nutritional category produced. 

Table S24. Concordance matrix between EXIOBASE products and nutritional categories 

EXIOBASE Code USDA Nutritional Category 

Poultry Poultry, Eggs 

Products of meat poultry Poultry 

Cattle Meat 

Products of meat cattle Meat 

Products of meat pigs Meat 

Pigs Meat 



 
 

Fish and other fishing products; services incidental of 
fishing 

Fish and Seafood 

Fish products Fish and Seafood 

Meat products nec Meat 

Animal products nec 
Poultry, Meat, Fish and Seafood, Milk, Cheese, 
Yoghurt, Eggs 

Dairy products Milk, Cheese, Yoghurt 

Processed rice Grains 

Paddy rice Grains 

Cereal grains nec Grains 

Wheat Grains 

Products of Vegetable oils and fats Fars and Oils 

Vegetables, fruit, nuts 

Dark Green Vegetables, Red and Orange 

Vegetables, Starchy Vegetables, Citrus Fruits, 

Juice, Other Fruits, Nuts 

Sugar Sugars 

Beverages Beverages, Milk, Juice 

Crops nec Other Vegetables, Starchy Vegetables 

Food products nec 

Dark Green Vegetables, Red and Orange 

Vegetables, Starchy Vegetables, Citrus Fruits, 
Juice, Other Fruits, Nuts, Poultry, Meat, Fish 

and Seafood, Milk, Cheese, Yoghurt, Eggs, 

Grains, Legumes, Sugars, Beverages 

 

Table S25. GWP and land use impacts per kilo calorie produced 

USDA Nutritional 

Category 

GWP (kg 

CO2e/kcal 

produced) - 

production 

GWP (kg CO2e/ 

kcal produced) - 

transport 

Land Use (km2/ 

kcal produced) - 

production 

Land Use (km2/ 

kcal produced) - 

transport 

Poultry 0.003409 9.90E-05 1.09E-08 3.39E-11 

Citrus, melons, 

berries 
0.001418 0.00012 1.12E-08 4.18E-11 

Other Fruits 0.001418 0.00012 1.12E-08 4.18E-11 

Meat 0.006777 9.32E-05 2.23E-08 3.20E-11 

Grains 0.000731 2.57E-05 3.27E-09 9.43E-12 

Dark Greens 0.001418 0.00012 1.12E-08 4.18E-11 

Yoghurt 0.001854 6.37E-05 8.31E-09 2.44E-11 

Red and Orange 0.001418 0.00012 1.12E-08 4.18E-11 

Sugars 0.00071 2.55E-05 3.08E-09 9.19E-12 

Nuts 0.001418 0.00012 1.12E-08 4.18E-11 

Cheese 0.001854 6.37E-05 8.31E-09 2.44E-11 

Fish and Seafood 0.002473 0.000119 6.64E-09 4.07E-11 

Juice 0.002417 0.000188 1.40E-08 6.70E-11 

Beverages 0.001647 9.14E-05 5.72E-09 3.36E-11 

Starchy 0.001491 0.00012 1.57E-08 4.18E-11 

Legumes and Soy 0.000648 2.36E-05 2.86E-09 8.48E-12 

Other Vegetables 0.001491 0.00012 1.57E-08 4.18E-11 

Fats and Oils 0.000745 2.48E-05 3.56E-09 8.92E-12 

Milk 0.002853 0.000132 1.12E-08 4.95E-11 

Eggs 0.000987 2.85E-05 4.27E-09 1.01E-11 

 

Determining food related GWP and land use impacts for Boston final consumption 

Embodied kilo calories per nutritional serving (Tables S1-19) can be connected with the GWP and land 

use impacts per kilo calorie nutritional category delivered to market (Table S25) to estimate 

environmental pressure exerted by different levels of food consumption. We use the NHANES 2007-2010 



 
 

usual daily intake data for different demographics and US census data to estimate Boston’s food related 

environmental burdens for the year 2010.  

Table S26 shows the usual daily intake for different population segments based on sex and age, which 

when multiplied by 365 provide estimates of annual food demands for US citizens. It should be noted that 
NHANES, being self-reported, is plagued by underreporting by participants, particularly in foods that 

have negative health stigmas attached to them (red meat, sugar, highly processed foods, etc.) and is 

considered at the lower end of food consumption estimates6. Notwithstanding the above shortcoming, 
NHANES provides the most comprehensive and consistent data for US food consumption, with the added 

benefit of recording including important demographics data, and is therefore chosen here to model 

Boston’s consumption.  

Table S26. Usual daily intake for different demographics from NHANES 2007-2010  

Nutritional 

Category 

Uni

t 

Males Females 

Age Age 

1-

3 

4-

8 

9-

1

3 

1

4-

1

8 

1

9-

3

0 

3

1-

5

0 

5

1-

7

0 

7

1

+ 

1-

3 

4-

8 

9-

1

3 

1

4-

1

8 

1

9-

3

0 

3

1-

5

0 

5

1-

7

0 

7

1

+ 

Citrus 

cup 

eq. 

0.

2 

0.

2 

0.

2 

0.

2 

0.

1 

0.

2 

0.

3 

0.

3 

0.

2 

0.

2 

0.

2 

0.

1 

0.

2 

0.

2 

0.

3 

0.

3 

Other Fruits 

cup 

eq. 

0.

6 

0.

6 

0.

5 

0.

4 

0.

4 

0.

5 

0.

6 

0.

7 

0.

6 

0.

5 

0.

5 

0.

4 

0.

4 

0.

5 

0.

7 

0.

7 

Juice 

cup 

eq. 

0.

7 

0.

5 

0.

4 

0.

4 

0.

4 

0.

3 

0.

3 

0.

4 

0.

7 

0.

4 

0.

4 

0.

3 

0.

4 

0.

2 

0.

3 

0.

4 

Dark 

Greens 

cup 

eq. 0 0 0 

0.

1 

0.

1 

0.

1 

0.

2 

0.

1 0 0 0 

0.

1 

0.

1 

0.

1 

0.

2 

0.

1 

Red and 

Orange 

cup 

eq. 

0.

2 

0.

3 

0.

3 

0.

4 

0.

5 

0.

5 

0.

4 

0.

4 

0.

2 

0.

2 

0.

3 

0.

3 

0.

4 

0.

4 

0.

4 

0.

4 

Other 

cup 

eq. 

0.

1 

0.

2 

0.

2 

0.

3 

0.

6 

0.

6 

0.

7 

0.

5 

0.

2 

0.

2 

0.

3 

0.

3 

0.

5 

0.

6 

0.

7 

0.

5 

Starchy 

cup 

eq. 

0.

2 

0.

3 

0.

4 

0.

4 

0.

5 

0.

5 

0.

6 

0.

5 

0.

2 

0.

3 

0.

4 

0.

4 

0.

4 

0.

4 

0.

4 

0.

4 

Grains 

oz 

eq. 

4.

1 

6.

1 

7.

3 

8.

2 

8.

1 

7.

8 

6.

9 6 

3.

7 

5.

6 

6.

5 

6.

1 

5.

9 

5.

5 

5.

1 

4.

9 

Milk 

cup 

eq. 

1.

9 

1.

5 

1.

6 

1.

5 

0.

8 

0.

9 

0.

9 

1.

1 

1.

9 

1.

5 

1.

3 

0.

9 

0.

7 

0.

8 

0.

8 

0.

9 

Cheese 

cup 

eq. 

0.

4 

0.

6 

0.

8 1 1 

0.

9 

0.

7 

0.

4 

0.

4 

0.

6 

0.

6 

0.

7 

0.

7 

0.

6 

0.

5 

0.

3 

Yoghurt 

cup 

eq. 

0.

1 

0.

1 0 0 

0.

1 0 

0.

1 0 

0.

1 

0.

1 0 0 

0.

1 

0.

1 

0.

1 

0.

1 

Meat 

oz 

eq. 

1.

2 

1.

8 

2.

3 

3.

2 

3.

4 

3.

8 

3.

3 

2.

7 

1.

1 

1.

7 2 

1.

6 

2.

1 

2.

1 

1.

9 

1.

8 

Poultry 

oz 

eq. 

0.

9 

1.

1 

1.

5 

1.

8 

2.

2 

1.

9 

1.

8 

1.

1 

0.

8 1 

1.

2 

1.

6 

1.

5 

1.

4 

1.

3 1 

Eggs 

oz 

eq. 

0.

4 

0.

4 

0.

4 

0.

4 

0.

6 

0.

7 

0.

7 

0.

7 

0.

3 

0.

3 

0.

4 

0.

4 

0.

4 

0.

5 

0.

5 

0.

5 

Legumes  

oz 

eq. 

0.

2 

0.

2 

0.

3 

0.

4 

0.

6 

0.

7 

0.

6 

0.

4 

0.

2 

0.

2 

0.

3 

0.

3 

0.

4 

0.

5 

0.

5 

0.

3 

Nuts 

oz 

eq. 

0.

3 

0.

4 

0.

5 

0.

4 

0.

5 

0.

8 

0.

9 

0.

7 

0.

2 

0.

3 

0.

4 

0.

3 

0.

4 

0.

6 

0.

7 

0.

5 

Fish and 

Seafood 

oz 

eq. 

0.

1 

0.

1 

0.

2 

0.

3 

0.

6 

0.

7 

0.

8 

0.

6 

0.

1 

0.

2 

0.

2 

0.

2 

0.

4 

0.

5 

0.

6 

0.

5 

Fats and 

Oils g 

3

9.

1 

5

0.

1 

5

9.

2 

6

8 

6

7.

2 

7

2.

1 

6

6.

4 

5

5.

5 

3

6.

6 

4

7 

5

3.

4 

5

1.

1 

5

0.

8 

5

0.

3 

5

0.

3 

4

4.

1 

Added 

Sugars 

kca

l 

9.

4 

1

5.

7 

2

1.

5 

2

4.

6 

2

3.

5 

2

0.

5 

1

6.

5 

1

4 

8.

4 

1

4.

3 

1

7.

8 

1

7.

5 

1

6.

7 

1

5.

1 

1

2.

5 

1

0.

9 

Beverages* - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

* Lacking demographic data for beverage intake, all respondents are assumed to have the same daily 
calorific intake from beverages 

To move from NHANES usual daily intake to annual environmental impacts for a nutritional category, Yx, 

the usual daily intake for nutritional component x, UDIx, is combined with the produced kilo calories per 



 
 

nutritional unit, kcalx, and the impacts per kilo calorie supplied to the market, ix, and corrected for the 

number of days in a year: 

(3) 𝑌𝑥 = (𝑈𝐷𝐼𝑥 × 𝑘𝑐𝑎𝑙𝑥 × 𝑖𝑥) × 365 

Tables S27 and S28 show food related GWP and land use impacts for different demographics, 
respectively. 

Table S27. Food related GWP impacts for different demographics in CO2e/a/cap 

Nutrition

al 

Category 

Males Females 

Age Age 

1-

3 

4-

8 

9-

13 

14

-

18 

19

-

30 

31

-

50 

51

-

70 

71

+ 

1-

3 

4-

8 

9-

13 

14

-

18 

19

-

30 

31

-

50 

51

-

70 

71

+ 

Poultry 

91

.4 

11

1.

7 

15

2.

4 

18

2.

9 

22

3.

5 

19

3.

0 

18

2.

9 

11

1.

7 

81

.3 

10

1.

6 

12

1.

9 

16

2.

5 

15

2.

4 

14

2.

2 

13

2.

1 

10

1.

6 

Citrus 

16

.8 

16

.8 

16

.8 

16

.8 

8.

4 

16

.8 

25

.2 

25

.2 

16

.8 

16

.8 

16

.8 

8.

4 

16

.8 

16

.8 

25

.2 

25

.2 

Fish and 

Seafood 

4.

7 

4.

7 

9.

5 

14

.2 

28

.4 

33

.1 

37

.9 

28

.4 

4.

7 

9.

5 

9.

5 

9.

5 

18

.9 

23

.7 

28

.4 

23

.7 

Other 

Fruits 
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0 

13

.9 

0.
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0.

0 

13

.9 

13

.9 

0.
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Table S28. Food related land use for different demographics in km2/a/capita 

Nutriti

onal 

Catego

ry 

Males Females 

Age Age 

1-

3 

4-

8 

9-

13 

14

-

18 

19

-

30 

31

-

50 

51

-

70 

71

+ 

1-

3 

4-

8 

9-

13 

14

-

18 

19

-

30 

31

-

50 

51

-

70 

71

+ 

Poultry 0.0

00

30

1 

0.0

00

36

8 

0.0

00

50

1 

0.0

00

60

2 

0.0

00

73

5 

0.0

00

63

5 

0.0

00

60

2 

0.0

00

36

8 

0.0

00

26

7 

0.0

00

33

4 

0.0

00

40

1 

0.0

00

53

5 

0.0

00

50

1 

0.0

00

46

8 

0.0

00

43

5 

0.0

00

33

4 

Citrus 0.0

00

15

6 

0.0

00

15

6 

0.0

00

15

6 

0.0

00

15

6 

7.8

0E

-

05 

0.0

00

15

6 

0.0

00

23

4 

0.0

00

23

4 

0.0

00

15

6 

0.0

00

15

6 

0.0

00

15

6 

7.8

0E

-

05 

0.0

00

15

6 

0.0

00

15

6 

0.0

00

23

4 

0.0

00

23

4 

Fish 

and 

Seafoo

d 

1.3

4E

-

05 

1.3

4E

-

05 

2.6

7E

-

05 

4.0

1E

-

05 

8.0

2E

-

05 

9.3

6E

-

05 

0.0

00

10

7 

8.0

2E

-

05 

1.3

4E

-

05 

2.6

7E

-

05 

2.6

7E

-

05 

2.6

7E

-

05 

5.3

5E

-

05 

6.6

8E

-

05 

8.0

2E

-

05 

6.6

8E

-

05 

Other 

Fruits 

0.0

00

52

9 

0.0

00

52

9 

0.0

00

44

1 

0.0

00

35

3 

0.0

00

35

3 

0.0

00

44

1 

0.0

00

52

9 

0.0

00

61

7 

0.0

00

52

9 

0.0

00

44

1 

0.0

00

44

1 

0.0

00

35

3 

0.0

00

35

3 

0.0

00

44

1 

0.0

00

61

7 

0.0

00

61

7 

Meat 0.0

01

00

7 

0.0

01

51 

0.0

01

93 

0.0

02

68

5 

0.0

02

85

3 

0.0

03

18

8 

0.0

02

76

9 

0.0

02

26

5 

0.0

00

92

3 

0.0

01

42

6 

0.0

01

67

8 

0.0

01

34

2 

0.0

01

76

2 

0.0

01

76

2 

0.0

01

59

4 

0.0

01

51 

Grains 0.0

00

66

6 

0.0

00

99

1 

0.0

01

18

6 

0.0

01

33

2 

0.0

01

31
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0.0

01

26
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0.0

01

12
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0.0

00

97
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0.0

00
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0.0

00
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0.0
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0.0
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00
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-

05 
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-

05 
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-
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0.0

00
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0.0

00
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0.0

00
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0.0
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0.0
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6 
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-

05 

9.4

7E

-

05 

9.4
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0.0
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0.0
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6 

0.0

00
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6 

Sugars 1.7

9E

-

05 

2.9

9E

-

05 

4.1

0E

-

05 

4.6

9E

-

05 

4.4

8E

-

05 

3.9

1E

-

05 

3.1

4E

-

05 

2.6

7E

-

05 

1.6

0E

-

05 

2.7

2E

-

05 

3.3

9E

-

05 

3.3

3E

-

05 

3.1

8E

-

05 

2.8

8E

-

05 

2.3

8E

-

05 

2.0

8E

-

05 

Nuts 3.0

4E

-

05 

4.0

6E

-

05 

5.0

7E

-

05 

4.0

6E

-

05 

5.0

7E

-

05 

8.1

2E

-

05 

9.1

3E

-

05 

7.1

0E

-

05 

2.0

3E

-

05 

3.0

4E

-

05 

4.0

6E

-

05 

3.0

4E

-

05 

4.0

6E

-

05 

6.0

9E

-

05 

7.1

0E

-

05 

5.0

7E

-

05 

Milk 0.0

01

76

7 

0.0

01

39

5 

0.0

01

48

8 

0.0

01

39

5 

0.0

00

74

4 

0.0

00

83

7 

0.0

00

83

7 

0.0

01

02

3 

0.0

01

76

7 

0.0

01

39

5 

0.0

01

20

9 

0.0

00

83

7 

0.0

00

65

1 

0.0

00

74

4 

0.0

00

74

4 

0.0

00

83

7 

Cheese 0.0

00

26 

0.0

00

39 

0.0

00

52 

0.0

00

65 

0.0

00

65 

0.0

00

58

5 

0.0

00

45

5 

0.0

00

26 

0.0

00

26 

0.0

00

39 

0.0

00

39 

0.0

00

45

5 

0.0

00

45

5 

0.0

00

39 

0.0

00

32

5 

0.0

00

19

5 

Juice 0.0

00

55

5 

0.0

00

39

6 

0.0

00

31

7 

0.0

00

31

7 

0.0

00

31

7 

0.0

00

23

8 

0.0

00

23

8 

0.0

00

31

7 

0.0

00

55

5 

0.0

00

31

7 

0.0

00

31

7 

0.0

00

23

8 

0.0

00

31

7 

0.0

00

15

8 

0.0

00

23

8 

0.0

00

31

7 

Bevera

ges 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

0.0

00

93

4 

Fats 

and 

0.0

00

0.0

00

0.0

01

0.0

01

0.0

01

0.0

01

0.0

01

0.0

01

0.0

00

0.0

00

0.0

01

0.0

00

0.0

00

0.0

00

0.0

00

0.0

00



 
 

Oils 74

2 

95

1 

12

4 

29

1 

27

6 

36

9 

26

1 

05

4 

69

5 

89

2 

01

4 

97 96

4 

95

5 

95

5 

83

7 

Legum

es and 

Soy 

1.4

0E

-

05 

1.4

0E

-

05 

2.0

9E

-

05 

2.7

9E

-

05 

4.1

9E

-

05 

4.8

8E

-

05 

4.1

9E

-

05 

2.7

9E

-

05 

1.4

0E

-

05 

1.4

0E

-

05 

2.0

9E

-

05 

2.0

9E

-

05 

2.7

9E

-

05 

3.4

9E

-

05 

3.4

9E

-

05 

2.0

9E

-

05 

Other 

Vegeta

bles 

4.2

6E

-

05 

8.5

1E

-

05 

8.5

1E

-

05 

0.0

00

12

8 

0.0

00

25

5 

0.0

00

25

5 

0.0

00

29

8 

0.0

00

21

3 

8.5

1E

-

05 

8.5

1E

-

05 

0.0

00

12

8 

0.0

00

12

8 

0.0

00

21

3 

0.0

00

25

5 

0.0

00

29

8 

0.0

00

21

3 

Yoghur

t 

6.2

4E

-

05 

6.2

4E

-

05 

0 0 6.2

4E

-

05 

0 6.2

4E

-

05 

0 6.2

4E

-

05 

6.2

4E

-

05 

0 0 6.2

4E

-

05 

6.2

4E

-

05 

6.2

4E

-

05 

6.2

4E

-

05 

Starchy 0.0

00

17

7 

0.0

00

26

5 

0.0

00

35

3 

0.0

00

35

3 

0.0

00

44

2 

0.0

00

44

2 

0.0

00

53 

0.0

00

44

2 

0.0

00

17

7 

0.0

00

26

5 

0.0

00

35

3 

0.0

00

35

3 

0.0

00

35

3 

0.0

00

35

3 

0.0

00

35

3 

0.0

00

35

3 

Eggs 8.2

3E

-

05 

8.2

3E

-

05 

8.2

3E

-

05 

8.2

3E

-

05 

0.0

00

12

3 

0.0

00

14

4 

0.0

00

14

4 

0.0

00

14

4 

6.1

7E

-

05 

6.1

7E

-

05 

8.2

3E

-

05 

8.2

3E

-

05 

8.2

3E

-

05 

0.0

00

10

3 

0.0

00

10

3 

0.0

00

10

3 

Transp

ort 

2.6

7E

-

05 

2.7

6E

-

05 

2.9

9E

-

05 

3.2

2E

-

05 

3.1

1E

-

05 

3.1

8E

-

05 

3.1

4E

-

05 

2.8

8E

-

05 

2.6

2E

-

05 

2.6

2E

-

05 

2.7

1E

-

05 

2.4

5E

-

05 

2.5

5E

-

05 

2.5

4E

-

05 

2.6

3E

-

05 

2.5

3E

-

05 

Total 0.0

07

44

6 

0.0

08

33

5 

0.0

09

38

2 

0.0

10

61

3 

0.0

10

56

6 

0.0

10

96

4 

0.0

10

48

4 

0.0

09

22

7 

0.0

07

22

6 

0.0

07

85

8 

0.0

08

40

3 

0.0

07

54

8 

0.0

08

08

9 

0.0

08

04 

0.0

08

12

5 

0.0

07

67

5 

 

Census data are taken from American Fact Finder at the block-group level7. These data provide 

population based on sex and age group. The age groups in the census data do not precisely align with 

those in NHANES, so concordance was made based on best judgement, as shown in Table S29. Census 
data is also adjusted for incarcerated population since their usual daily intakes are likely not well 

represented by NHANES. This means subtracting 1418 adults (taken from age groups based on 

proportion of unaltered population) from block group ‘250250801001’ as it contains the Suffolk County 
Correctional Facility8.  

Table S29. Concordance between NHANES and US Census age groups 

NHANES age group Census age groups 

1-3 ‘under 5 years’ 

4-8 ‘5 to 9 years’ 

9-13 ’10 to 14 years’ 

14-18 ’15 to 17 years’, ’18 and 19 years’ 

19-30 ’20 years’, ’21 years’, ’22-24 years’, ’25-29 years’ 

31-50 ’30-34 years’, ’35-39 years’, ’40-44 years’, ’45-49 years’  

51-70 ’50-54 years’, ’55-59 years’, ’60 and 61 years’, ’62 to 64 years’, ’65 and 66 

years’, ‘67 to 69 years’ 

71+ ’70 to 74 years’, ’75 to 79 years’, ’80 to 84 years’, ‘85+ years’ 

 

With the block-group demographics data in hand and estimated environmental burdens for the different 

age groups and sexes, Boston’s food related environmental impacts are calculated for the 560 block-

groups that comprise the city. Figures 1-2 show the estimated GWP impacts and land use for Boston’s 
food consumption for the year 2010.  



 
 

 

  

 

 

 

Life Cycle Inventories and LCA for Urban Agriculture 



 
 

Life cycle inventories (LCI) for the urban farms build upon those from an earlier study of farms growing 

tomato and lettuce in Boston in New York City9. Of the six farms covering five UF forms from the earlier 

study, only three of the farms and two farm-types are used in this study, for a number of reasons:  

- They produced the widest variety of crops, useful when modelling city-wide impacts of UF 
(difficult to model a city only consuming tomatoes) 

- They represent the predominant UF forms in the study region at the time of publishing: open 

plots and rooftop farms (see Figure 3 for examples of each). See Goldstein et al. (2016)10 for 
more information about the nuances between UF types and their divergent environmental 

performance.  

o Open plots typically low-tech operations, growing crops directly in local 
overburden or raised beds 

o Rooftop farms are identical in most respects to green roofs with the exception that 

they grow edible crops. Soil depth is typically equal to greater than 12”, and hence, 

rooftop farms qualify as intensive green roofs.  

- Have superior environmental performance than conventional agriculture for some foods and 

by some metrics, as opposed to the other forms which had higher environmental intensities 
compared to conventional UF9. Although this skews the results in UF’s favor, it is useful in a 

hypothetical study of large scale urban design to quantify the potential best-case, hypothetical 

benefits of UF. Additionally, since UF is not universally preferable to conventional produce, 
this will still provide opportunities to discuss trade-offs when adapting UF.   

Figure 3 – Open rooftop farm (left) and open lot farm (right). Authors own photographs. 

 

The attributes of the utilized UF systems are outline in Table S30.  

Table S30. Urban farm characteristics and crops 

Location Farm  Farm Type Area 

(m2) 

For profit? Crops 

Boston, MA 1 open plot 560 No tomato, bell pepper, eggplant, 
lettuce*  

Boston, MA 

 

2 open 

rooftop 

1469 Yes turnip, tomato, scallion, radish, 

bell pepper, lettuce, kale, 
cucumber, carrot, green bean 

New York 

City 

3 open plot 1269 No turnip, tomato, squash, scallions, 

bell pepper, lettuce, kale, 

cucumber, collard greens, carrot, 
cabbage, beet, green bean 

* Technically ‘arugula’ but assumed lettuce here since it performs the same function as lettuce (salad 

greens, sandwich topping, etc.) 

Process-based LCA methodology is applied here. The LCA scope is production of crops and distribution 
to final consumers – in line with the MRIO model used to assess city-wide impacts. Where by-products 



 
 

occur, system expansion is applied to credit the urban farm in accordance with the ISO 14040 family11. 

The ecoinvent database version 3.2 was used to provide data on background processes and to perform the 

life cycle impact assessment for the different foods. Primary data was collected over the 2015 growing 
season. Tables S31-33 outline the Life Cycle Inventories to produce 1 kilogram of different crops from 

the modeled farms.   

Table S31. Life Cycle Inventories per kilogram crop from farm 1 

 Unit Tomato Bell 

Pepper 

Eggplant Arugula 

Materials and Energy Inputs 

Capital 

Concrete, normal {US-NPCC}| production | 

Conseq, U 

m3 2.07E-05 3.64E-05 3.35E-05 1.25E-04 

Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 

kg  1.24E-02 2.19E-02 2.02E-02 7.50E-02 

Occupation, urban, continuously built m2 2.53E-01 4.46E-01 4.10E-01 1.52E+00 

Polyethylene, high density, granulate {GLO}| 

market for | Conseq, U 

kg  1.17E-03 2.06E-03 1.89E-03 7.04E-03 

Sawnwood, hardwood, air dried, planed {RoW}| 

market for | Conseq, U 

m3 4.08E-05 7.19E-05 6.61E-05 2.46E-04 

Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 

kg  6.76E-04 1.19E-03 1.09E-03 4.08E-03 

Synthetic rubber {GLO}| market for | Conseq, U kg  8.35E-04 1.47E-03 1.35E-03 5.04E-03 

Transport, freight, lorry >32 metric ton, EURO4 

{GLO}| market for | Conseq, U 

tkm  1.70E-01 3.00E-01 2.76E-01 1.03E+00 

Wood chips, wet, measured as dry mass {RoW}| 

market for | Conseq, U 

m3 1.85E-01 3.26E-01 2.99E-01 1.11E+00 

Operations 

Polyethylene, low density, granulate {GLO}| 

market for | Conseq, U 

kg  3.49E-03 6.15E-03 5.66E-03 2.11E-02 

Polypropylene, granulate {GLO}| market for | 

Conseq, U 

kg  6.95E-03 1.23E-02 1.13E-02 4.19E-02 

Tap water {US-Boston}| market for | Conseq, U m3 7.77E-02 1.31E-01 1.02E-01 1.28E-01 

Transport, passenger car, large size, petrol, 

EURO 4 {RER}| transport, passenger car, large 

size, petrol, EURO 4 | Conseq, U 

km 4.91E-02 8.66E-02 7.96E-02 2.96E-01 

Waste 

Inert waste, for final disposal {GLO}| market for 

| Conseq, U 

kg 1.27E-04 2.24E-04 2.06E-04 7.65E-04 

Inert waste, for final disposal {US}| market for | 

Conseq, U 

kg 1.36E-02 2.39E-02 2.20E-02 8.19E-02 

PE (waste treatment) {US-NPCC}| recycling of 

PE | Conseq, U 

kg 3.64E-03 6.41E-03 5.89E-03 2.19E-02 

Rubber (waste treatment) {US-NPCC}| recycling 

of rubber | Conseq, U 

kg 7.73E-04 1.36E-03 1.25E-03 4.66E-03 

Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 

kg 3.38E-04 5.96E-04 5.47E-04 2.04E-03 

Waste concrete gravel {US-NPCC}| treatment of, 

recycling | Conseq, U 

kg 4.57E-02 8.05E-02 7.40E-02 2.75E-01 

Waste wood, post-consumer {GLO}| market for | 

Conseq, U 

kg 1.30E-02 2.29E-02 2.10E-02 7.83E-02 

 

Table S32. Life Cycle Inventories per kg crop for farm 2 

 Unit Turnip Tomato 

Scallion Radish Bell 

Pepper 

Materials and Energy Inputs 

Capital 

Aluminium, primary, ingot {US}| market for | 

Conseq, U 

kg 2.0E-06 7.8E-07 3.9E-06 1.2E-06 1.5E-06 

Copper {GLO}| market for | Conseq, U kg 6.4E-06 2.5E-06 1.3E-05 3.8E-06 4.9E-06 

Crushed gravel {US-Boston} | market for | 

conseq, U 

kg 3.2E-01 1.2E-01 6.3E-01 1.9E-01 2.4E-01 

Expanded clay {US-Boston} | Market for | 

Conseq, U 

kg 2.0E+00 7.7E-01 3.9E+00 1.2E+00 1.5E+00 



 
 

Expanded shale {US-Boston} | Market for | 

Conseq, U 

kg 1.8E-01 7.1E-02 3.6E-01 1.1E-01 1.4E-01 

Extrusion, plastic film {US-MRO}| production | 

Conseq, U 

kg 4.1E-02 1.6E-02 8.1E-02 2.4E-02 3.1E-02 

Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 

kg 2.4E-02 9.3E-03 4.7E-02 1.4E-02 1.8E-02 

Extrusion, plastic pipes {US-NPCC}| production 

| Conseq, U 

kg 1.0E-03 4.1E-04 2.1E-03 6.1E-04 7.9E-04 

Glass, for liquid crystal display {GLO}| 

production | Conseq, U 

kg 1.4E-07 5.6E-08 2.8E-07 8.4E-08 1.1E-07 

Nylon 6 {GLO}| market for | Conseq, U kg 1.1E-05 4.1E-06 2.1E-05 6.2E-06 7.9E-06 

Polyethylene, high density, granulate {GLO}| 

market for | Conseq, U 

kg 3.3E-02 1.3E-02 6.5E-02 1.9E-02 2.5E-02 

Polypropylene, granulate {GLO}| market for | 

Conseq, U 

kg 1.1E-02 4.2E-03 2.1E-02 6.4E-03 8.2E-03 

Steel, low-alloyed, hot rolled {US-MRO}| 

market for | Conseq, U 

kg 1.7E-03 6.5E-04 3.3E-03 9.8E-04 1.2E-03 

Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 

kg 4.8E-01 1.9E-01 9.6E-01 2.9E-01 3.7E-01 

Steel, low-alloyed, hot rolled {US-WECC}| 

market for | Conseq, U 

kg 9.7E-05 3.8E-05 1.9E-04 5.7E-05 7.3E-05 

Transport, freight, lorry >32 metric ton, EURO4 

{GLO}| market for | Conseq, U 

tkm 1.1E-01 4.3E-02 2.2E-01 6.5E-02 8.3E-02 

Transport, freight, lorry 16-32 metric ton, 

EURO4 {GLO}| market for | Conseq, U 

tkm 1.9E-02 7.5E-03 3.8E-02 1.1E-02 1.4E-02 

Wire drawing, copper {US-WECC}| processing | 

Conseq, U 

kg 6.4E-06 2.5E-06 1.3E-05 3.8E-06 4.9E-06 

Operations 

Phosphate fertiliser, as P2O5 {GLO}| market for 

| Conseq, U 

kg 1.2E-03 4.7E-04 2.4E-03 7.1E-04 9.1E-04 

Ammonium nitrate, as N {RER}| ammonium 

nitrate production | Conseq, U 

kg 9.4E-04 3.7E-04 1.9E-03 5.5E-04 7.1E-04 

Potassium nitrate {GLO}| market for | Conseq, U kg 6.5E-04 2.5E-04 1.3E-03 3.8E-04 4.9E-04 

Transport, passenger car, small size, petrol, 

EURO 5 {GLO}| market for | Conseq, U 

km 1.2E+00 4.7E-01 2.4E+00 7.1E-01 9.1E-01 

Electricity, low voltage, 2012-2040 average 

{NPCC, US only}| market for | Conseq, U 

MJ 6.0E-02 2.3E-02 1.2E-01 3.5E-02 4.5E-02 

Basalt {GLO}| market for | Conseq, U kg 5.0E-02 2.0E-02 1.0E-01 3.0E-02 3.8E-02 

compost {US-NPCC} | at farm | conseq, U kg 4.3E-01 1.7E-01 8.4E-01 2.5E-01 3.2E-01 

garden waste treatment {US-NPCC} | at farm | 

conseq, U 

kg 1.3E-01 4.9E-02 2.5E-01 7.5E-02 9.5E-02 

Tap water {US-Boston}| market for | Conseq, U m3 1.4E-02 5.6E-03 2.9E-02 8.5E-03 1.1E-02 

Waste 

Aluminium (waste treatment) {US-NPCC}| 

recycling of aluminium | Conseq, U 

kg 8.9E-07 3.5E-07 1.8E-06 5.3E-07 6.8E-07 

Copper (waste treatment) {US-NPCC}| recycling 

of copper | Conseq, U 

kg 8.9E-07 3.5E-07 1.8E-06 5.3E-07 6.8E-07 

Inert waste, for final disposal {US}| market for | 

Conseq, U 

kg 2.5E+00 9.7E-01 4.9E+00 1.5E+00 1.9E+00 

PE (waste treatment) {US-NPCC}| recycling of 

PE | Conseq, U 

kg 5.2E-02 2.0E-02 1.0E-01 3.1E-02 3.9E-02 

PP (waste treatment) {US-NPCC}| recycling of 

PP | Conseq, U 

kg 1.0E-02 4.0E-03 2.0E-02 6.0E-03 7.7E-03 

Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 

kg 4.7E-01 1.9E-01 9.4E-01 2.8E-01 3.6E-01 

 

Table S32 contd. Life Cycle Inventories per kg crop from farm 2 

 Unit Lettuce Kale Cucum

bers 

Carrots Green 

Bean 

Materials and Energy Inputs 

Capital 

Aluminium, primary, ingot {US}| market for | 

Conseq, U 

kg 2.6E-06 2.9E-06 9.1E-07 2.3E-06 3.3E-06 

Copper {GLO}| market for | Conseq, U kg 8.5E-06 9.4E-06 2.9E-06 7.5E-06 1.1E-05 

Crushed gravel {US-Boston} | market for | kg 4.2E-01 4.6E-01 1.4E-01 3.7E-01 5.2E-01 



 
 

conseq, U 

Expanded clay {US-Boston} | Market for | 

Conseq, U 

kg 2.6E+00 2.9E+00 9.0E-01 2.3E+00 3.2E+0

0 

Expanded shale {US-Boston} | Market for | 

Conseq, U 

kg 2.4E-01 2.6E-01 8.3E-02 2.1E-01 3.0E-01 

Extrusion, plastic film {US-MRO}| production | 

Conseq, U 

kg 5.4E-02 5.9E-02 1.9E-02 4.7E-02 6.7E-02 

Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 

kg 3.1E-02 3.4E-02 1.1E-02 2.7E-02 3.9E-02 

Extrusion, plastic pipes {US-NPCC}| production | 

Conseq, U 

kg 1.4E-03 1.5E-03 4.7E-04 1.2E-03 1.7E-03 

Glass, for liquid crystal display {GLO}| 

production | Conseq, U 

kg 1.9E-07 2.1E-07 6.5E-08 1.7E-07 2.4E-07 

Nylon 6 {GLO}| market for | Conseq, U kg 1.4E-05 1.5E-05 4.8E-06 1.2E-05 1.7E-05 

Polyethylene, high density, granulate {GLO}| 

market for | Conseq, U 

kg 4.3E-02 4.8E-02 1.5E-02 3.8E-02 5.4E-02 

Polypropylene, granulate {GLO}| market for | 

Conseq, U 

kg 1.4E-02 1.6E-02 5.0E-03 1.3E-02 1.8E-02 

Steel, low-alloyed, hot rolled {US-MRO}| market 

for | Conseq, U 

kg 2.2E-03 2.4E-03 7.5E-04 1.9E-03 2.7E-03 

Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 

kg 6.4E-01 7.0E-01 2.2E-01 5.6E-01 8.0E-01 

Steel, low-alloyed, hot rolled {US-WECC}| 

market for | Conseq, U 

kg 1.3E-04 1.4E-04 4.4E-05 1.1E-04 1.6E-04 

Transport, freight, lorry >32 metric ton, EURO4 

{GLO}| market for | Conseq, U 

tkm 1.5E-01 1.6E-01 5.0E-02 1.3E-01 1.8E-01 

Transport, freight, lorry 16-32 metric ton, 

EURO4 {GLO}| market for | Conseq, U 

tkm 2.5E-02 2.8E-02 8.7E-03 2.2E-02 3.1E-02 

Wire drawing, copper {US-WECC}| processing | 

Conseq, U 

kg 8.5E-06 9.4E-06 2.9E-06 7.5E-06 1.1E-05 

Operations 

Ammonium nitrate, as N {RER}| ammonium 

nitrate production | Conseq, U 

kg 1.2E-03 1.4E-03 4.3E-04 1.1E-03 1.5E-03 

Basalt {GLO}| market for | Conseq, U kg 6.7E-02 7.3E-02 2.3E-02 5.9E-02 8.3E-02 

compost {US-NPCC} | at farm | conseq, U kg 5.6E-01 6.2E-01 1.9E-01 4.9E-01 7.0E-01 

Electricity, low voltage, 2012-2040 average 

{NPCC, US only}| market for | Conseq, U 

MJ 7.9E-02 8.7E-02 2.7E-02 6.9E-02 9.8E-02 

garden waste treatment {US-NPCC} | at farm | 

conseq, U 

kg 1.7E-01 1.8E-01 5.8E-02 1.5E-01 2.1E-01 

Phosphate fertiliser, as P2O5 {GLO}| market for | 

Conseq, U 

kg 1.6E-03 1.8E-03 5.5E-04 1.4E-03 2.0E-03 

Potassium nitrate {GLO}| market for | Conseq, U kg 8.6E-04 9.5E-04 3.0E-04 7.6E-04 1.1E-03 

Tap water {US-Boston}| market for | Conseq, U m3 1.9E-02 2.1E-02 6.6E-03 1.7E-02 2.4E-02 

Transport, passenger car, small size, petrol, 

EURO 5 {GLO}| market for | Conseq, U 

km 1.6E+00 1.8E+00 5.5E-01 1.4E+00 2.0E+0

0 

Waste       

Aluminium (waste treatment) {US-NPCC}| 

recycling of aluminium | Conseq, U 

kg 1.2E-06 1.3E-06 4.1E-07 1.0E-06 1.5E-06 

Copper (waste treatment) {US-NPCC}| recycling 

of copper | Conseq, U 

kg 1.2E-06 1.3E-06 4.1E-07 1.0E-06 1.5E-06 

Inert waste, for final disposal {US}| market for | 

Conseq, U 

kg 3.3E+00 3.6E+00 1.1E+00 2.9E+00 4.1E+0

0 

PE (waste treatment) {US-NPCC}| recycling of 

PE | Conseq, U 

kg 6.9E-02 7.6E-02 2.4E-02 6.0E-02 8.5E-02 

PP (waste treatment) {US-NPCC}| recycling of 

PP | Conseq, U 

kg 1.4E-02 1.5E-02 4.7E-03 1.2E-02 1.7E-02 

Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 

kg 6.3E-01 6.9E-01 2.2E-01 5.5E-01 7.8E-01 

 

Table S33. Life Cycle Inventories per kg crop from farm 3 

 Unit Turnip Tomato Squash Bell 

Pepper 

Lettuce 

Material and Energy Inputs 

Capital 

Concrete, normal {US-NPCC}| production | m3 1.2E-05 9.5E-06 1.6E-05 1.6E-05 5.0E-05 



 
 

Conseq, U 

Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 

kg 5.1E-03 4.1E-03 7.0E-03 7.0E-03 2.2E-02 

Extrusion, plastic pipes {US-NPCC}| market for | 

Conseq, U 

kg 5.6E-03 4.6E-03 7.8E-03 7.8E-03 2.4E-02 

Polyethylene, low density, granulate {GLO}| 

market for | Conseq, U 

kg 3.6E-03 3.0E-03 5.0E-03 5.1E-03 1.6E-02 

Polypropylene, granulate {GLO}| market for | 

Conseq, U 

kg 4.3E-03 3.5E-03 5.9E-03 6.0E-03 1.9E-02 

Polyvinylchloride, bulk polymerised {GLO}| 

market for | Conseq, U 

kg 2.7E-03 2.2E-03 3.7E-03 3.7E-03 1.1E-02 

Sawnwood, hardwood, air dried, planed {RoW}| 

market for | Conseq, U 

m3 4.1E-05 3.4E-05 5.7E-05 5.7E-05 1.8E-04 

Steel, low-alloyed {GLO}| market for | Conseq, 

U 

kg 7.4E-04 6.1E-04 1.0E-03 1.0E-03 3.2E-03 

Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 

kg 2.1E-03 1.7E-03 2.9E-03 3.0E-03 9.2E-03 

Straw {GLO}| market for | Conseq, U kg 4.1E-02 3.4E-02 5.7E-02 5.7E-02 1.8E-01 

Synthetic rubber {GLO}| market for | Conseq, U kg 1.2E-04 9.7E-05 1.6E-04 1.6E-04 5.1E-04 

Transport, freight, lorry >32 metric ton, EURO4 

{GLO}| market for | Conseq, U 

tkm 6.5E-02 5.3E-02 8.9E-02 9.0E-02 2.8E-01 

Operations 

Ammonium nitrate, as N {RER}| ammonium 

nitrate production | Conseq, U 

kg 8.2E-04 6.7E-04 1.1E-03 1.1E-03 3.5E-03 

Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 

kg 7.0E-04 7.0E-04 7.0E-04 7.1E-04 6.0E-04 

Occupation, urban, continuously built m2a 2.9E-01 2.4E-01 4.0E-01 4.0E-01 1.2E+00 

Petrol, unleaded {RoW}| market for | Conseq, U kg 7.4E-04 6.1E-04 1.0E-03 1.0E-03 3.2E-03 

Phosphate fertiliser, as P2O5 {GLO}| market for 

| Conseq, U 

kg 3.3E-04 2.7E-04 4.5E-04 4.6E-04 1.4E-03 

Polyethylene, high density, granulate {GLO}| 

market for | Conseq, U 

kg 7.0E-04 7.0E-04 7.0E-04 7.1E-04 6.0E-04 

Potassium sulfate, as K2O {GLO}| market for | 

Conseq, U 

kg 1.0E-03 8.2E-04 1.4E-03 1.4E-03 4.4E-03 

Tap water {US-Boston}| market for | Conseq, U ton 3.4E-01 1.6E-01 3.3E-01 3.3E-01 3.1E-01 

Transport, freight, lorry >32 metric ton, EURO4 

{GLO}| market for | Conseq, U 

tkm 1.2E-02 9.6E-03 1.6E-02 1.6E-02 5.1E-02 

Transport, passenger car, large size, petrol, 

EURO 4 {GLO}| market for transport, passenger 

car, large size, petol, EURO 4 | Conseq, U 

km 3.7E-02 3.1E-02 5.1E-02 5.2E-02 1.6E-01 

Transport, passenger car, large size, petrol, 

EURO 4 {RER}| transport, passenger car, large 

size, petrol, EURO 4 | Conseq, U 

km 2.5E-02 2.5E-02 2.5E-02 2.5E-02 2.1E-02 

Direct Emissions 

Carbon dioxide, fossil kg 2.5E-03 2.1E-03 3.5E-03 3.5E-03 1.1E-02 

Waste 

Inert waste, for final disposal {US}| market for | 

Conseq, U* 

kg -1.8E-

01 

-1.5E-

01 

-2.5E-

01 

-2.5E-

01 

-7.7E-

01 

PE (waste treatment) {US-NPCC}| recycling of 

PE | Conseq, U 

kg 4.1E-03 3.5E-03 5.4E-03 5.4E-03 1.5E-02 

PVC (waste treatment) {US-NPCC}| recycling of 

PVC | Conseq, U 

kg 2.5E-03 2.1E-03 3.5E-03 3.5E-03 1.1E-02 

Rubber (waste treatment) {US-NPCC}| recycling 

of rubber | Conseq, U 

kg 5.9E-05 4.8E-05 8.2E-05 8.2E-05 2.6E-04 

Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 

kg 1.8E-03 1.4E-03 2.4E-03 2.5E-03 7.6E-03 

Waste concrete gravel {US-NPCC}| treatment of, 

recycling | Conseq, U 

kg 2.6E-02 2.1E-02 3.5E-02 3.6E-02 1.1E-01 

Waste wood, post-consumer {GLO}| market for | 

Conseq, U 

kg 1.9E-02 1.6E-02 2.6E-02 2.7E-02 8.3E-02 

* Negative number due to avoided waste from the use of used jute bags for ground cover  

Table S33 contd. Life Cycle Inventories per kg crop from farm 3 

 Unit Kale Cucum

ber 

Collard 

Greens 

Carrot Cabbag

e 

Material and Energy Inputs 



 
 

Capital 

Concrete, normal {US-NPCC}| production | 

Conseq, U 

m3 

8.6E-06 1.2E-05 9.8E-05 2.5E-05 8.6E-06 

Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 

kg 

3.7E-03 5.3E-03 4.3E-02 1.1E-02 3.8E-03 

Extrusion, plastic pipes {US-NPCC}| market for | 

Conseq, U 

kg 

4.2E-03 5.9E-03 4.8E-02 1.2E-02 4.2E-03 

Polyethylene, low density, granulate {GLO}| 

market for | Conseq, U 

kg 

2.7E-03 3.8E-03 3.1E-02 7.8E-03 2.7E-03 

Polypropylene, granulate {GLO}| market for | 

Conseq, U 

kg 

3.2E-03 4.5E-03 3.6E-02 9.2E-03 3.2E-03 

Polyvinylchloride, bulk polymerised {GLO}| 

market for | Conseq, U 

kg 

2.0E-03 2.8E-03 2.2E-02 5.7E-03 2.0E-03 

Sawnwood, hardwood, air dried, planed {RoW}| 

market for | Conseq, U 

m3 

3.1E-05 4.3E-05 3.5E-04 8.9E-05 3.1E-05 

Steel, low-alloyed {GLO}| market for | Conseq, 

U 

kg 

5.5E-04 7.8E-04 6.3E-03 1.6E-03 5.5E-04 

Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 

kg 

1.6E-03 2.2E-03 1.8E-02 4.6E-03 1.6E-03 

Straw {GLO}| market for | Conseq, U kg 3.0E-02 4.3E-02 3.5E-01 8.8E-02 3.1E-02 

Synthetic rubber {GLO}| market for | Conseq, U kg 8.8E-05 1.2E-04 1.0E-03 2.5E-04 8.8E-05 

Transport, freight, lorry >32 metric ton, EURO4 

{GLO}| market for | Conseq, U 

tkm 

4.8E-02 6.8E-02 5.5E-01 1.4E-01 4.8E-02 

Operations 

Ammonium nitrate, as N {RER}| ammonium 

nitrate production | Conseq, U 

kg 

6.1E-04 8.6E-04 6.9E-03 1.8E-03 6.1E-04 

Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 

kg 

7.0E-04 7.2E-04 7.0E-04 7.0E-04 7.0E-04 

Occupation, urban, continuously built m2a 2.1E-01 3.0E-01 2.4E+00 6.2E-01 2.1E-01 

Petrol, unleaded {RoW}| market for | Conseq, U kg 5.5E-04 7.8E-04 6.3E-03 1.6E-03 5.5E-04 

Phosphate fertiliser, as P2O5 {GLO}| market for 

| Conseq, U 

kg 

2.4E-04 3.4E-04 2.8E-03 7.1E-04 2.4E-04 

Polyethylene, high density, granulate {GLO}| 

market for | Conseq, U 

kg 

7.0E-04 7.2E-04 7.0E-04 7.0E-04 7.0E-04 

Potassium sulfate, as K2O {GLO}| market for | 

Conseq, U 

kg 

7.4E-04 1.1E-03 8.5E-03 2.2E-03 7.5E-04 

Tap water {US-Boston}| market for | Conseq, U ton 5.2E-02 1.3E-01 6.0E-01 7.2E-01 5.3E-02 

Transport, freight, lorry >32 metric ton, EURO4 

{GLO}| market for | Conseq, U 

tkm 

8.7E-03 1.2E-02 9.9E-02 2.5E-02 8.7E-03 

Transport, passenger car, large size, petrol, 

EURO 4 {GLO}| market for transport, passenger 

car, large size, petol, EURO 4 | Conseq, U 

km 

2.8E-02 3.9E-02 3.2E-01 8.0E-02 2.8E-02 

Transport, passenger car, large size, petrol, 

EURO 4 {RER}| transport, passenger car, large 

size, petrol, EURO 4 | Conseq, U 

km 

2.5E-02 2.6E-02 2.5E-02 2.5E-02 2.5E-02 

Direct Emissions 

Carbon dioxide, fossil kg 1.9E-03 2.6E-03 2.1E-02 5.4E-03 1.9E-03 

Waste 

Inert waste, for final disposal {US}| market for | 

Conseq, U* 

kg -1.3E-

01 

-1.9E-

01 

-

1.5E+00 

-3.8E-

01 

-1.3E-

01 

PE (waste treatment) {US-NPCC}| recycling of 

PE | Conseq, U 

kg 

3.2E-03 4.3E-03 3.0E-02 8.0E-03 3.2E-03 

PVC (waste treatment) {US-NPCC}| recycling of 

PVC | Conseq, U 

kg 

1.9E-03 2.6E-03 2.1E-02 5.4E-03 1.9E-03 

Rubber (waste treatment) {US-NPCC}| recycling 

of rubber | Conseq, U 

kg 

4.4E-05 6.2E-05 5.0E-04 1.3E-04 4.4E-05 

Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 

kg 

1.3E-03 1.8E-03 1.5E-02 3.8E-03 1.3E-03 

Waste concrete gravel {US-NPCC}| treatment of, 

recycling | Conseq, U 

kg 

1.9E-02 2.7E-02 2.2E-01 5.5E-02 1.9E-02 

Waste wood, post-consumer {GLO}| market for | 

Conseq, U 

kg 

1.4E-02 2.0E-02 1.6E-01 4.1E-02 1.4E-02 

* Negative number due to avoided waste from the use of used jute bags for ground cover 

Table S33 contd. Life cycle inventories per kg crop from farm 3 

 Unit Beet Green Scallion 



 
 

Bean 

Capital 

Concrete, normal {US-NPCC}| production | 

Conseq, U 

m3 

1.8E-05 9.5E-06 5.3E-05 

Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 

kg 

7.8E-03 4.1E-03 2.3E-02 

Extrusion, plastic pipes {US-NPCC}| market for | 

Conseq, U 

kg 

8.7E-03 4.6E-03 2.6E-02 

Polyethylene, low density, granulate {GLO}| 

market for | Conseq, U 

kg 

5.6E-03 3.0E-03 1.7E-02 

Polypropylene, granulate {GLO}| market for | 

Conseq, U 

kg 

6.6E-03 3.5E-03 2.0E-02 

Polyvinylchloride, bulk polymerised {GLO}| 

market for | Conseq, U 

kg 

4.1E-03 2.2E-03 1.2E-02 

Sawnwood, hardwood, air dried, planed {RoW}| 

market for | Conseq, U 

m3 

6.4E-05 3.4E-05 1.9E-04 

Steel, low-alloyed {GLO}| market for | Conseq, 

U 

kg 

1.1E-03 6.1E-04 3.4E-03 

Steel, low-alloyed, hot rolled {US-NPCC}| 

market for | Conseq, U 

kg 

3.3E-03 1.7E-03 9.8E-03 

Straw {GLO}| market for | Conseq, U kg 6.4E-02 3.4E-02 1.9E-01 

Synthetic rubber {GLO}| market for | Conseq, U kg 1.8E-04 9.7E-05 5.4E-04 

Transport, freight, lorry >32 metric ton, EURO4 

{GLO}| market for | Conseq, U 

tkm 

1.0E-01 5.3E-02 3.0E-01 

Operations 

Ammonium nitrate, as N {RER}| ammonium 

nitrate production | Conseq, U 

kg 

1.3E-03 6.7E-04 3.8E-03 

Extrusion, plastic film {US-NPCC}| production | 

Conseq, U 

kg 

7.0E-04 7.0E-04 6.8E-04 

Occupation, urban, continuously built m2a 4.5E-01 2.4E-01 1.3E+00 

Petrol, unleaded {RoW}| market for | Conseq, U kg 1.2E-03 6.1E-04 3.4E-03 

Phosphate fertiliser, as P2O5 {GLO}| market for 

| Conseq, U 

kg 

5.1E-04 2.7E-04 1.5E-03 

Polyethylene, high density, granulate {GLO}| 

market for | Conseq, U 

kg 

7.0E-04 7.0E-04 6.8E-04 

Potassium sulfate, as K2O {GLO}| market for | 

Conseq, U 

kg 

1.6E-03 8.2E-04 4.6E-03 

Tap water {US-Boston}| market for | Conseq, U ton 5.2E-01 2.7E-02 4.5E-02 

Transport, freight, lorry >32 metric ton, EURO4 

{GLO}| market for | Conseq, U 

tkm 

1.8E-02 9.6E-03 5.4E-02 

Transport, passenger car, large size, petrol, 

EURO 4 {GLO}| market for transport, passenger 

car, large size, petol, EURO 4 | Conseq, U 

km 

5.8E-02 3.1E-02 1.7E-01 

Transport, passenger car, large size, petrol, 

EURO 4 {RER}| transport, passenger car, large 

size, petrol, EURO 4 | Conseq, U 

km 

2.5E-02 2.5E-02 2.4E-02 

Direct Emissions 

Carbon dioxide, fossil kg 3.9E-03 2.1E-03 1.2E-02 

Waste 

Inert waste, for final disposal {US}| market for | 

Conseq, U* 

kg -2.8E-

01 

-1.5E-

01 

-8.2E-

01 

PE (waste treatment) {US-NPCC}| recycling of 

PE | Conseq, U 

kg 

6.0E-03 3.5E-03 1.6E-02 

PVC (waste treatment) {US-NPCC}| recycling of 

PVC | Conseq, U 

kg 

3.9E-03 2.1E-03 1.2E-02 

Rubber (waste treatment) {US-NPCC}| recycling 

of rubber | Conseq, U 

kg 

9.2E-05 4.8E-05 2.7E-04 

Steel and iron (waste treatment) {US-NPCC}| 

recycling of steel and iron | Conseq, U 

kg 

2.7E-03 1.4E-03 8.1E-03 

Waste concrete gravel {US-NPCC}| treatment of, 

recycling | Conseq, U 

kg 

4.0E-02 2.1E-02 1.2E-01 

Waste wood, post-consumer {GLO}| market for | 

Conseq, U 

kg 

3.0E-02 1.6E-02 8.8E-02 

* Negative number due to avoided waste from the use of used jute bags for ground cover 



 
 

Two metrics are assessed in this LCA: GWP and land use. GWP is assessed using the IPCC 2013 

methodology over a 100 year time horizon12. Land use is assessed using the ReCiPe LCIA 

methodology13, which is an un-weighted method for accounting land use (it is time weighted in that it 

measure area × time, but since the time component is equal to a single year for all UF operations here and 

the MRIO model, the time weighting is inconsequential here). ReCiPe does differentiate between urban 
and agricultural land occupation. Here we sum both land uses to account for total land use by UF, both 

indirect and direct. Table S34 outlines the impacts for each product from the UF operations for both GWP 

and land use.    

Table S34. GWP and land use for different UF crops 

Crop Farm GWP (kg CO2e/kg crop) Land use (m2/kg) 

Beet 3 0.399 0.713 

Bell Pepper 1 0.156 1.542 

Bell Pepper 2 1.165 0.245 

Bell Pepper 3 0.304 0.638 

Cabbage 3 0.116 0.342 

Carrot   2 1.793 0.377 

Carrot   3 0.549 0.989 

Collard Greens 3 1.218 3.851 

Cucumber   2 0.706 0.149 

Cucumber   3 0.181 0.479 

Eggplant 1 0.127 1.417 

Green Beans 2 2.547 0.536 

Green Beans 3 0.114 0.374 

Kale   2 2.256 0.475 

Kale   3 0.153 0.518 

Lettuce 1 0.263 5.244 

Lettuce 2 2.088 0.437 

Lettuce 3 0.448 1.798 

Radish  2 0.915 0.193 

Scallion 2 3.062 0.644 

Scallion 3 0.551 2.092 

Squash 3 0.302 0.633 

Tomato 1 0.104 0.880 

Tomato 2 0.625 0.129 

Tomato 3 0.134 0.344 

Turnip   2 1.547 0.326 

Turnip   3 0.261 0.462 

 

Comparative performance of UF and conventional agriculture 

GWP for the conventional food are taken from Heller and Keoleian’s work on the GWP impacts of the 
US diet14. Their work includes a review of LCAs of different food products, including the range of 

reported findings and average across studies. Here we use their reported averages as a proxy for 

conventional agriculture. As their numbers are only for production, we add on transport impacts in 
accordance with Pirog and Benjamin’s work on ‘food miles’ for conventional food products heading to 

Iowa (data for the US northeast remain in absentia)15. Transport impacts are taken as 9.7*10-5 kg 

CO2e/kgkm (ecoinvent 3.2 process ‘Transport, freight, lorry >32 metric ton, EURO5 {RER}| transport, 
freight, lorry >32 metric ton, EURO5 | Conseq, U’). Land use is taken as direct land occupation: 

calculated as the total 3 year average (2012-2014) annual US production divided by the total US 

cultivated area from the USDA annual vegetable statistics (beet, eggplant, kale, collards, turnip, scallion 
taken from 2002 survey)16,17. Direct land use is taken here as this is far and away the largest driver of this 

indicator for vegetal foods and should cover nearly 100% of land use. Values are corrected for food losses 

from the USDA LAFA statistics2. Table S35 outlines the impacts of the conventional goods for both 
GWP and land use.  

Table S35. GWP and land use for conventional produce 



 
 

Product Transport 

(km) 

Losses 

(%) 

GWP – 

production 

(kg CO2e/kg) 

GWP – 

transport 

(kg 

CO2e/kg) 

GWP – 

total (kg 

CO2e/kg) 

Land Use 

(m2/kg) 

Beet 1759 6.5 0.33 0.28 0.65 0.40 

Bell Pepper 1589 7.8 0.88 0.25 1.23 0.29 

Cabbage 719 6.5 0.12 0.11 0.25 0.27 

Carrot 1838 5.1 0.53 0.29 0.86 0.28 

Collard 
Greens 

1815 37.5 0.33 0.29 0.99 
1.10 

Cucumber 1277 6.1 0.66 0.20 0.92 0.48 

Eggplant 1277 21.3 1.30 0.20 1.91 0.43 

Green Beans 1313 18.4 0.73 0.21 1.15 1.93 

Kale 1815 39.2 0.33 0.29 1.01 0.75 

Lettuce 1823 7.7 1.08 0.29 1.48 0.27 

Radish 1759 21 0.33 0.28 0.77 1.25 

Scallion 1759 9.8 0.33 0.28 0.67 0.18 

Squash 1277 12.5 0.09 0.20 0.33 0.64 

Tomato 1569 5.2 0.67 0.25 0.97 0.34 

Turnip 1815 6.5 0.33 0.29 0.66 0.80 

 

Combining primary data on yields from the UF operations, we calculate the marginal change in 

environmental performance of Boston per meter UF cultivating vegetable x, 
𝑑𝐼𝑥

𝑑𝐴
, as: 

(4) 
𝑑𝐼𝑥

𝑑𝐴
=

𝑑𝑚𝑖

𝑑𝐴
(𝑖𝑥,𝑈𝐴 − 𝑖𝑥,𝑐𝑜𝑛𝑣)  

Where 
𝑑𝑚𝑖

𝑑𝐴
 is the change in mass of vegetable per unit area in kilograms (annual yield), 𝑖𝑥,𝑈𝐴, the 

environmental impact from producing one kilogram of vegetable x with UF, and 𝑖𝑥,𝑐𝑜𝑛𝑣  the environmental 

impact of producing one kilogram of vegetable x with conventional agriculture (crediting for the 

substituted conventional crop). Table S36 outlines the predicted change in Boston’s food-borne 
environmental impacts by implementing UF. It should be noted that the yield for UF includes ‘dead 

space’ on the farm where cultivation is not occurring (e.g. sheds, footpaths, etc.) and not just productive 

area. Where farms 1 and 3 produce the same product, the average yield and environmental burdens have 
been used. 

Table S36. UF yields and marginal shifts in GWP and land use per m2 UF implemented in Boston 

Crop Farm(s) Yield (kg/m2) Marginal GWP 

Shift (kg 

CO2e/m2 UF) 

Marginal Land 

Use Shift (m2/m2 

UF) 

Beet 3 2.26 -0.57 0.70 

Bell Pepper 1 and 3 2.30 -2.29 1.84 

Bell Pepper 2 2.44 -0.15 -0.65 

Cabbage 3 4.70 0.43 0.36 

Carrot   2 1.59 1.47 0.16 

Carrot   3 1.63 -0.51 1.16 

Collard Greens 3 0.41 0.10 1.14 

Cucumber   2 5.28 -1.11 -1.73 

Cucumber   3 3.34 -2.46 -0.01 

Eggplant 1 2.27 -4.04 2.24 

Green Beans 3 4.27 -3.06 -4.36 

Green Beans 2 1.12 1.57 -1.56 

Kale   2 1.26 1.57 -0.35 

Kale   3 4.72 -4.24 -1.96 

Lettuce 1 and 3 0.80 -0.90 2.61 

Lettuce 2 0.80 0.49 0.14 

Radish  2 3.11 0.45 -3.29 



 
 

Scallion 2 0.93 2.22 0.43 

Scallion 3 0.76 -0.25 1.42 

Squash 3 2.54 -0.08 -0.01 

Tomato 1 and 3 2.94 -2.50 0.80 

Tomato 2 4.70 -1.61 -0.99 

Turnip   2 1.84 1.63 -0.86 

Turnip   3 3.50 -1.39 -1.17 

  

 

Figure 4. Yield for dark green (green), other (blue) and red and orange (red) vegetables. Farm(s) listed in 
brackets.  

 

Figure 5. Marginal GWP shift per square meter UF grown for dark green (green), other (blue) and red 

and orange (red) vegetables. Farm(s) listed in bracets.  
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Figure 6. Marginal land use shift per square meter UF grown for dark green (green), other (blue) and red 
and orange (red) vegetables. Farm(s) listed in bracets.  

UF Space Availability 

Space for UF in Boston was estimated for ground and roof. Potential ground space was estimated by two 

methods: subtractive and additive. Roof space is performed in an additive manner. In this assessment, soil 

contamination is not considered when assessing the suitability of a piece of land for UF. Soil 
contamination is a major issue in US cities, particularly older cities with industrial heritage18. Moreover, 

shading effects from buildings are also ignored. As such, these estimates should be viewed as upper 

bounds for UF available space in Boston for both ground methods.  

Ground Space – Additive 

The additive approach for UF space starts with the assumption that the area of UF space in Boston is 0 
m2. Then utilizing a variety of data sources, we look at individual pieces of land, assesse their suitability 

for UF and add them to amount of space suitable for UF. The data sources are the 2016 Tax Assessment 
Parcel and open space maps, sourced from the City of Boston’s Open Data Initiative19 and the 

Massachusetts land use map from their geographic information system (GIS) data repository20.   

Tax assessment parcels data for the year 2016 includes all tax assessment parcels in Boston (166,248) 

including their land use according to the Massachusetts property classification system under the ‘PTYPE’ 
field in the raw data. Table S37 outlines the land uses we consider suitable for UF as they are not 

currently occupied by buildings or other productive land uses. 

Table S37. UF suitable property types from tax assessment data 

Land Use Code (‘PTYPE’) Description 

130 Residential land 

131 Residential land (secondary) 

132 Residential land (unusable) 

390 Commercial land 

391 Commercial land (secondary) 

392 Commercial land (unusable) 

440 Industrial land  

441 Industrial land (secondary) 

442 Industrial land (unusable) 
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337 Parking lot 

359 Condo parking (commercial) 

387 Pay parking lot  

108 Condo parking (residential) 

119 Residential parking lot 

 

Parking lots have been included here to test the impact of their inclusion on the results, since they could 
be considered transitional land uses. Moreover, some of the parking lots are subterranean, making them 

unsuitable for the UF forms considered here, though this is not indicated by the parcel assessment data. 

Results include assessments with and without parking included to gauge the sensitivity of the results to 
their inclusion.  

  

Community garden data includes the locations of existing UF in the city as designated by the Open Space 

map in the city’s data repository. We assume that all operating community gardens are valid for this 

assessment.  

Lastly, the state land use map from 2005 is used to include the land uses outlined in table S38 as 
described by the field ‘LUCODE’ in the data.  

Table S38. UF suitable land uses from state land use map 

Land Use Code (‘LUCODE’) Description 

1 Cropland 

2 Pasture 

6 Open Land 

17 Transitional 

36 Nursery 

40 Brushland/Successional 

 

Data are imported into the GIS software QGIS 2.4.0 and corrected for two issues: 

- Residential and condo parking lots are checked for double counting, since the same 

assessment parcel are listed multiple times if the different parking spots on the same piece of 
area are owned by different individuals 

- Where UF suitable plots intersected, the overlapping portion is subtracted from one of the 

layers. See figure 7. 
- Plots with average slopes greater than 10°, as determined from digital elevation models 

provided by the National Oceanic and Atmospheric Administration (NOAA)21, were deemed 

too steep for agriculture and excluded. 

 

Figure 7. The disaggregation of overlapping areas in QGIS. 



 
 

With a unique set of non-intersecting UF suitable plots, the area of each plot is calculated in QGIS and 

added to estimate total UF available space for Boston. Results are listed in table S39. QGIS also allows 

one to determine if an UF suitable plot lies within a block-group, providing area totals for each block-
group (not shown here, but shown in Figures 2 a-b of the article). 

Table S39. UF space using additive method 

Land Use Number of 

UF Suitable 

Sites 

Average Site Size 

(standard deviation) 

m2 

Total UF 

Space (m2) 

Total UF 

Space (acres) 

Vacant residential* 5865 412 (1637) 2421080 599 

Vacant commercial* 1267 1026 (3826) 1300847 322 

Vacant industrial* 162 1375 (3668) 222860 55 

Existing community 

gardens 

123 1122 (2235) 138063 34 

Pasture 1 13184 (0) 13184 3 

Transitional  34 10271 (13569) 349228 86 

Nursery 15 10127 (11699) 151906 38 

Cropland 14 6395 (7739) 89525 22 

Brushland/Successional 17 24979 (53946) 421542 104 

Open Land 159 13825 (29049) 2198200 544 

Residential Parking* 262 805 (4080) 210850 52 

Commercial Parking* 630 892 (2698) 562124 139 

Boston Total  8549 944 (5740) 8079409 2000 

* Sum of their respective sub-uses 

Ground Space – Subtractive 

Contrasting with the additive method, here we start with the assumption that 100% of Boston is suitable 

for UF and then subtract those areas deemed unsuitable for farming. As with the additive approach, 
overlapping areas are removed to avoid double counting. Table S40 lists the land types considered 

unsuitable for ground-based US, their areas and the total UF available land in Boston using the 

subtractive estimation method. 

Table S40. Boston UF ground space using subtractive method 

Land Type Data Source Total Area (m2) Total Area (acres) 

Steep areas NOAA21 480475 119 

Parks and sports fields MassGIS (‘OpenSpace’ 

dataset)22 

2818969 698 

Protected open space MassGIS (‘OpenSpace’ 
dataset)22 

19461607 4817 

Temporarily protected 

open space 

MassGIS (‘OpenSpace’ 

dataset)22 

11443 3 

Cemeteries MassGIS (‘OpenSpace’ 
dataset)22 

3186303 789 

Buildings Boston Open 

Data(‘Buildings’ dataset)19 

21946457 5433 

Impervious surfaces 
(roads, sidewalks, etc.) 

– buildings removed 

Boston Open 
Data(‘Impervious 

Surfaces’ dataset)19 

35926938 8893 

Airport Boston Open Data19 6172008 1528 

Total  - 90004200 22278 

Total Boston Area 

Boston Total Area Boston Open Data 

(‘Boundary’ dataset)19 

125095606 30964 

Total UF Area 

Total UF Area - 35736010 8846 

 



 
 

As with the additive scenario, QGIS is used to allocate available space to the block-groups in Boston. 

Rooftop Space 

The first step in estimating the amount of rooftop area available for UF in Boston is to get a clean data set 

of pertinent information of the Boston building stock. Davila and colleagues already outlined the process 

in detail23, but in a nutshell it involves combining three datasets: the Boston property tax assessment for 
the year 201424, the 2016 tax parcel assessment data19 and the geospatial building data for Boston19.   

The property tax assessment is required as it is the most up to date and detailed assessment of building 

attributes for the city and contains all buildings and sub-units within buildings. Because of the latter point, 

it contains double counting of buildings that contain multiple apartment units. Double counted units were 
removed using a Python 2.7 script which identifies buildings with multiple units based on the ‘CM_ID’ 

field. While consolidating multiple units to a single entry, we also assign the heating and cooling type of 

the building based on the majority heat and cooling types for the units within the building. This initial 
data parsing reduces the tax records from 164,092 entries to 100,858 entries.  

Although the tax records data contains the most detailed information, they contain no spatial data and 

cannot be mapped nor attributed to block-groups. To overcome this we link the 10 digit property ID key 

‘Parcel_ID’ in the tax record with the synonymous ‘PID_LONG’ key in the spatially explicit tax 
assessment data. Minor mismatches between the datasets shave the number of entries down to 98,865. 

Table S41 outlines the various fields utilized in this process and their purposes.  

Table S41. Fields used in joining tax data sets 

Field Dataset Purpose 

CM_ID 2014 Tax records Identify duplicate building entries 

U_Heat 2014 Tax records Identify the predominant heating type in multi-unit 

dwellings 

U_AC 2014 Tax records Identify if a majority of units have air conditioning 

in multi-unit dwellings 

Parcel_ID 2014 Tax records Join data tax record data with tax parcel 
assessment polygons 

PID_Long Tax parcel assessment data Join tax parcel assessment polygons with 2014 tax 

record data 

 

Although this dataset is spatially explicit, it still contains numerous errors in terms of non-existent 
buildings, improper building footprints and building types that are not suitable for UF applications. 

Moreover, the tax data does not contain reliable estimates of building heights. To overcome this we join 

the generated parcel data set with the building data set, since the latter contains information on building 
types and can be used to more accurately calculate building footprints. The spatially explicit data is then 

mapped as polygons in QGIS, converted to centroids and spatially joined to building polygon data. Figure 

5 illustrates this process in QGIS.  

  

Figure 8. Joining the tax data with the building polygons 



 
 

Building data is also spatially joined with data on historic preservation districts from the Boston Open 

Data Initiative19, as buildings in these districts are not permitted to make changes to their exterior 

appearance, and should be excluded from UF use. The four joined datasets contain the necessary 
information for estimating UF building space in Boston, outlined in table S42. 

Table S42. Properties used for calculating UF suitability 

Building Property Key Dataset 

Year of construction ‘YR_BUILT’ 2014 Tax assessment data 

Number of floors ‘NUM_FLOORS’ 2014 Tax assessment data 

Roof type ‘R_ROOF_TYP’ 2014 Tax assessment data 

Heating type ‘R_HEAT_TYP’ 2014 Tax assessment data 

Presence of air conditioning ‘R_AC’ 2014 Tax assessment data 

Ground elevation ‘GROUND_ELE’ Building data 

Roof elevation ‘ROOF_ELE’ Building data 

Building Type ‘IEL_TYPE’ Building data 

Building Area Calculated in QGIS Building data 

Presence in historic 
preservation district 

Generated in QGIS with spatial 
join 

Historic Districts 

 

The final step in cleaning the building data is to remove buildings lacking information on year built, 

height (either no data on number of floors or incomplete elevation data) and unsuitable for UF. The latter 

is done using the ‘IEL_TYPE’ key of the building data by excluding ruins, foundations, etc. After all of 
the manipulations, the cleaned dataset of collated building and tax data contains 76,170 buildings (69,857 

when historical buildings are excluded). 

Actually determining the area of Boston’s buildings available for UF is impossible since we lack 

structural analyses of the buildings that would allow us to determining their individual capacities for 
supporting the load of a rooftop farm. However, we can use three indicators to estimate UF rooftop space: 

building age, building height and roof type.  

Building age is justified in the sense that the introduction of building codes and standards has led to the 
gradual infiltration of more structurally sound buildings through mandated snow loading capacity, etc. 

Thus, here we assume that older buildings are less likely to be suited for UF than new ones. This is a 

gross simplification, since old buildings, particularly older factories and cast iron buildings are designed 
to support significantly heavier loads than they are burdened with not in their post-industrial uses. As 

such, we run multiple scenarios building age is used as a cutoff for UF consideration. The cutoff 

construction years range from 1900 to 2000 in ten year intervals. This covers around ¾ of Boston’s 
building stock by both number of buildings and area. Figure 6 is a histogram showing the effects of 

different construction year cutoffs on the number and area of buildings considered. 

  

Figure 9. Histogram of building numbers and area within different intervals of construction years. 
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Height is also a natural limiting factor on UF suitability, since stronger winds above certain heights not 

only pose a challenge to the stability of the growing medium, but also a safety issue to farm workers. 

Heights are taken as the difference of ground and roof elevations in the building data, and where these are 
lacking, the number of floors times the average floor height of 3.42 m as determined from those buildings 

within the building data set that contain both number of floors and elevation data. Looking at the 

histogram of number of buildings and building area with within different height ranges in Figure 7, it can 
be seen that only small fraction of Boston’s building stock is over 30 m tall, and hence this is taken as the 

maximum allowable height for a building to be considered UF appropriate. 

 

Figure 10. Number of buildings and building area in Boston for different building height ranges  

Lastly, roof type is a natural indicator of UF suitability, since rooftop farms necessitate flat roofs. Only 

some of the tax data entries specify the roof type. Where no data on roof type was given, the roof type 
was assigned to a building probabilistically based on the representation of flat roofs in the general New 

England building stock. For commercial buildings this is a 25.2% probability according to the 
commercial building energy consumption survey25. As this data is lacking in the analogous residential 

survey, it is estimated as the percentage of buildings in our generated building data set with flat roofs, 

21.3% (11735 of 55026 entries with roof data).  

Table S43 shows the results of the different cutoff years, the height limit and the probabilistic assignment 
of roof top averaged over 100 runs.  

Table S43. Estimates of rooftop suitable UF based on different cutoff years, a height limit of 30 m 

and the presence of a flat roof dictated by probabilistically over 100 Monte Carlo simulations  

Cutoff Year Building Space 

(m2) 

SD (m2) Building Space 

(acres) 

SD (acres) 

1900 1714149 34113 424 8 

1910 942317 35025 233 9 

1920 672546 32088 166 8 

1930 512520 31076 127 8 

1940 440620 29107 109 7 

1950 406841 30041 101 7 

1960 334557 24713 83 6 

1970 253619 19861 63 5 

1980 215278 19309 53 5 

1990 156922 15967 39 4 

2000 104950 12094 26 3 
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This study accounts for three direct material/energy exchanges between farm and city: runoff retention, 

solid waste assimilation and building energy reductions. 

Runoff retention 

The engineering of the modern city has seen the channelizing, rerouting and burying of urban streams. 

The proliferation of impermeable surfaces throughout cities that prevent the penetration of the rainwater 
into the soil mean that much of this water is directed towards stormwater sewers, eventually bound for 

wastewater treatment instead of recharging groundwater aquifers or surface waters. The net effect is that 

when it rains, large volumes of water are unnecessarily sent for treatment or during intermittent heavy 
rain events, sewer capacity is exceeded and water from sewage pipes is vented to local surface waters26. If 

the stormwater is combined with sanitary water in a combined sewer, then heavy rain events can lead to 

the release of raw sewage when the sewers overflow in combined-sewer-overflow events (CSO)27. Boston 
has over 235 miles of combined-sewers and 37 CSO outfalls and is negatively impacted by CSO events 

during particularly intense or long rainfalls27. Since UF occasionally replaces impermeable area with soil 

that can either retain water for crop uptake or provide a hydraulic conduit between surface and 
groundwater it is important to model how the potential runoff mitigation provided by UF in Boston.          

Here we consider to situations where UF implementation in Boston obviates runoff to the sewers: where 

UF replaces ground parking and where it is placed on buildings. We provide upper and lower bounds of 

runoff retention based on field studies of extensive green roofs. Lower and upper retention rates are taken 
as 50%28 and 74% 29, respectively. The same rates are applied to ground UF since they are also 

representative of runoff retention on permeable land26. This method ignores the heterogeneity of soil 

characteristics and resultant runoff retention, but as a basic estimate to gauge the impact of UF on 
Boston’s hydrology it should suffice to identify whether the scale of these impacts are significant or 

miniscule. Moreover, this method ignores the ability for UF to reduce the prevalence of CSOs and toxic 

fallout from sewage releases. However, quantifying such impacts would require detailed information on 
CSO outfall locations and local pollution assimilation capacity that is beyond the scope of this exercise.    

In assessing the GWP and land use impacts from avoided stormwater treatment, we use the ecoinvent 3.2 

process ‘Wastewater, unpolluted {RoW}| treatment of, capacity 5E9l/year | Conseq, U’ to model 

wastewater treatment in Boston. Using the aforementioned GWP and land use methods we calculate 
0.293 kg CO2e and 0.0260 m2 in avoided impacts per m3 avoided wastewater treatment.  

Precipitation is taken as the 2000-2015 annual Boston average of 1.11 m30. 

Solid waste assimilation 

We use primary data collected from the urban farms we have the following compost application rates: 

- Roof based UF: 2.8 kg compost/m2 

- Ground based UF: 0.3 kg compost/m2 

Though the lower compost usage for roof based UF seems counterintuitive, it is a result of wind-related 

soil losses from green roofs and the need to supplement the expanded shale/concrete grow media with 
medium rich in nutrients and organic carbon. Ground-based UF is less affected by soil loss and tends to 

occur in a top-soil matrix rich in organic carbon and with greater nutrient sorption capacity, and hence, 

does not demand the same volume of nutrient/organic additions as the rooftop farms. 

To convert from deposited compost to mass of avoided waste, we assume a mass loss of 32% from waste 
compost. This is a conservative estimate based on the open windrow composting of garden waste in the 

US31. Applying this factor we find that rooftop farms and ground-based UF can assimilate 4.1 and 0.4 kg 

organic waste/m2, respectively. In modelling the environmental impacts of waste assimilation, we allocate 
the waste treatment and related avoided fertilizer production to the previous life-cycle of the waste, and 

the delivery of the waste to the UF site to the farms.    

Building Energy 



In modelling the potential interactions between a building’s energy system and farm the following 

assumptions are made:  

- No direct coupling of the building energy system and urban farm are made (e.g. no heat 

ventilation into the growing media to extend growing periods, etc.) 
- Energy savings only apply to the floor directly below the roof. This will underestimate the 

energy savings to the entire building, since the attenuation of temperature shifts on the top 

floor will have a spillover effect on energy use on subsequent floors that diminishes with 
distance from the roof. 

- We assume that the energy impacts of rooftop urban farming are similar to those from 

extensive green roofs.  
- Effects at the city level are modeled in an additive manner, ignoring the multiplicative effect 

of large numbers of farms in proximity. This will underestimate total energy savings as 

reduced air conditioning use from an attenuated urban heat island effect are not counted here. 

- Insulation values and heating fuels are assumed to be independent of other building 

characteristics (e.g. age, height, size, etc.) during the Monte Carlo simulations, as the building 

energy surveys lack data on relating these characteristics for the New England region.  

Modeling building energy savings start first by characterizing the level of insulation on the building and 
the energy consumption per unit area for heating and cooling. Both of these parameters are taken from the 

residential and commercial building energy consumption surveys25,32. Heating and cooling energy 

intensities are assumed to be constant for all commercial and residential buildings in the city, while 
insulation levels are assigned probabilistically to each building at the start of each simulation. Likewise, 

the heating fuel and presence of air conditioning are assigned in the same manner to buildings that are 

lacking these data in the tax assessment survey. The prevalence of different heating types and air 
conditioning presence are also taken from the building energy surveys. Table S44 outlines these 

parameter values and their likelihood in the New England building stock. 

Table S44. Building parameters 

Parameter 

Residential  Commercial 

Value Probability Value  Probability 

Energy Intensity 

Heating 

Intensity 

352 MJ/m2/a* - 465 MJ/m2/a - 

Cooling 

Intensity 

6 MJ/m2/a* - 51 MJ/m2/a - 

Insulation Levels 

Well - 0.36 - 0.36** 

Adequate - 0.44 - 0.44** 

Poor - 0.2 - 0.2** 

None - 0 - 0** 

Air Conditioning Present 

Yes - 0.76 - 0.62 

No - 0.24 - 0.38 

Heating Present 

Yes - 1 - 0.87 

No - 0 - 0.13 

Heating Fuel 

Electricity - 0.12 - 0.18 

Natural Gas - 0.52 - 0.36 

Fuel Oil - 0.32 - 0.46 

Propane - 0.04 - 0 

* Taken as the total energy intensity for residential buildings (Table CE1.2-RECS2009)32 times the 
percentage going to different end uses33 

** Not available in the commercial energy consumption survey. Assumed that same as residential values 

To link UF with energy savings, a relation between insulation level and amount of cooling and heating 
attenuation is needed. Results from La Roche and Berardi’s field work measuring energy savings of green 



 
 

roofs at different insulation thicknesses was useful in building this concordance34. In using their numbers 

we assume equivalent percentage savings for buildings in Chicago, US and Boston. Although Chicago 

has a continental climate with slightly warmer summers and cooler winters, the data adequate for the 
cursory analysis performed here. Table S45 outlines the concordance between the insulation levels here 

and the predicted energy savings from building-integrated UF. 

Table S45. Predicted energy savings at different insulation levels  

Insulation level from 

energy consumption survey 

Insulation thickness from 

La Roche and Berardi (m)34 

Heating 

attenuation (%) 

Cooling 

Attenuation (%) 

Well 0.20 0 7.5 

Adequate 0.10 0 7.5 

Poor 0.05 2.5 8 

None 0 7.5 15 

 

With these parameters in hand for each building, the UF related energy savings are estimated as the 

product of energy intensity, area and percentage attenuation. Embodied greenhouse gas impacts are taken 
from the Boston’s own carbon footprint accounting since these represent the intensities for the local grid 

and fuel delivery systems35. Table S46 outlines emissions intensities for the different fuels used in Boston 

buildings for space conditioning. 

Table S46. Carbon intensities for different fuels in Boston 

Energy source kg CO2e/MJ supplied 

Electricity 0.102 

Natural Gas 0.050 

Fuel Oil 0.070 

Propane* 0.050 

* Assumed equivalent to natural gas here. Minor role in energy system should not influence general 
results. 

 City-wide optimization simulations 

In assessing the impacts of UF at the city level, all of the disparate pieces described in the preceding 

sections were tied together. A Python 2.7 script acts as a scaffolding with which to model the impacts of 

UF on Boston’s food-borne GWP impacts and land use, and to model interactions between the urban 
farms and the city’s energy and material metabolism. The script can optimize UF in Boston to maximize 

any one of three indicators at a time: GWP savings, land use savings and nutritional content. As many of 

the building parameters were assigned probabilistically, we run each optimization scenario 100 times in a 
Monte Carlo manner, randomly assigning UF suitability and building energy use characteristics. Despite 

the low number of runs, little variation is seen around the mean for the results, hinting at the suitability of 

our choice of simulation length. Requests for the script can be made through the corresponding author. 



 
 

Figure 11 outlines the algorithm.

 

Figure 11. Optimization algorithm outline. 

GWP Optimization  

In optimizing the GWP impacts of the city’s UF system, a ‘greedy’ algorithm is used. ‘Greedy’ 

algorithms work by picking items with the largest marginal benefit in terms of the parameter being 

optimized. In this case that means growing vegetables with the largest GWP impact reduction per unit 
area grown. Table S47 lists the UF produce with the largest reductions in GWP per area cultivated. 

Table S47. List of UF vegetables in order of decreasing 

reductions in GWP impacts per m2 planted 

Vegetable Siting 

Kale   Ground 

Eggplant Ground 

Green Beans Ground 

Tomato Ground 

Cucumber   Ground 



 
 

Bell Pepper Ground 

Tomato Roof 

Turnip   Ground 

Cucumber   Roof 

Lettuce Ground 

Beet Ground 

Carrot   Ground 

Scallion Ground 

Bell Pepper Roof 

Squash Ground 

Collard Greens Ground 

Cabbage Ground 

Radish  Roof 

Lettuce Roof 

Carrot   Roof 

Green Beans Roof 

Kale   Roof 

Turnip   Roof 

Scallion Roof 

   

Each run of the algorithm cycles through all of Boston’s block groups and performs the following sub-

routine for each individual block group: 

Block-group GWP optimizing sub-routine 

 
Is there area left in the block-group? 

 Yes: Are the block-group’s needs met for all vegetables? 

  Yes: Store the block-group with others with extra capacity. End sub-routine. 
  No: Get the UF vegetable with the largest marginal GWP impact reduction. 

   Are all of the blocks needs met for this vegetable? 

Yes: Remove vegetable from list of potential vegetables and 
get the next vegetable in the list. 

    No: Where is the vegetable grown? 

     Roof: Is there building space? 
Yes: Produce 100 m2 of the vegetable 

(or remainder of roof space if less 

than 100 m2 left). Update results. 
Rerun sub-routine. 

No: Remove vegetable from list of 

potential vegetables and attempt with 

next vegetable. 

     Ground: Is there ground space? 

Yes: Produce 100 m2 of the vegetable 
(or remainder of ground space if less 

than 100 m2 left). Update results. 

Rerun sub-routine. 
No: Remove vegetable from list of 

potential vegetables and attempt with 

next vegetable. 
 No: End sub-routine. 

 

In this way each block-group will attempt to satisfy as much of its vegetable demands using those UF 
crops that minimize the GWP impacts of the block-group’s residents. At the completion of a single cycle 

through all of Boston’s block-groups, if there are block-groups that are able to satiate there vegetable 

demands while having surplus space, a separate sub-routine is run on those blocks: 

City GWP optimizing sub-routine 

 



 
 

Is there area left in the block? 

 Yes: Are all of the city’s needs met for all vegetables? 

  Yes: End sub-routine. 
  No: Get the UF vegetable with the largest marginal GWP impact reduction. 

   Are all of the city’s needs met for this vegetable? 

Yes: Remove vegetable from list of potential vegetables and 
get the next vegetable in the list. 

    No: Where is the vegetable grown? 

     Roof: Is there building space? 
Yes: Produce 100 m2 of the vegetable 

(or remainder of roof space if less 

than 100 m2 left). Update results. 
Rerun sub-routine. 

No: Remove vegetable from list of 

potential vegetables and attempt with 
next vegetable. 

     Ground: Is there ground space? 

Yes: Produce 100 m2 of the vegetable 
(or remainder of ground space if less 

than 100 m2 left). Update results. 

Rerun sub-routine. 
No: Remove vegetable from list of 

potential vegetables and attempt with 

next vegetable. 
 No: End sub-routine. 

  

This sub-routine is run on all of the block-groups with auxiliary space until all are exhausted or the city’s 

vegetable needs are met. This algorithm can be run with additive or subtractive UF space estimates, 
including or excluding parking.  

In determining the block-group and city-wide vegetable demands we use the 2010 LAFA data for average 

demands at the household prior to household wastage and multiply by the population for each block-

group. This assumes that wastage from the urban farms is negligible, which was observed during in the 
field while working with the case farms. We do not attempt to satiate the needs for all vegetables listed in 

the USDA LAFA data2, but only those that UF produces or where UF crops act as reasonable substitutes. 

Table S48 shows the average intake of relevant vegetables from the LAFA data.   

Table S48. LAFA data and per capita demand of UF producible vegetables 

Vegetable 

Raw LAFA 

(lb/a) 

Per capita demand of UF crop 

(kg/a) 

Total 

Boston 

Demand 

(kg/a) 

Fraction 

of total 

vegetable

s 

Beans 

 

2.31 

1424548.81

6 0.045155 

 Fresh 1.44 

 

  

Canned 2.07 
 

  

Frozen 1.58 
 

  

Beet* 0.24 0.11 

68551.8779

3 0.002173 

Bell Pepper 8.77 3.98 

2456900.25

9 0.077879 

Cabbage 

 

2.90 

1786523.71

8 0.056629 

Fresh 5.96 

 

  

Canned 0.41 
 

  

Carrots 

 

3.83 

2361388.61

6 0.074851 

 Fresh 7.14 

 

  



 
 

Canned 0.53 
 

  

Frozen 0.76 

 

  

Collard 

Greens 0.51 0.23 

143684.578

8 0.004555 

Cucumbers 
 

3.28 2023733.81 0.064148 

 Fresh 5.81 
 

  

Canned 1.41 

 

  

Eggplant 0.53 0.24 

147267.998

2 0.004668 

Kale 

 

0.89 
549605.579

5 0.017421 

Kale 0.24 

 

  

Spinach 1.27 

 

  

Frozen 

Spinach 0.45 
 

  

Lettuce 

 

10.52 

6484207.70

4 0.205537 

Leaf 13.52 

 

  

Romaine 9.62 
 

  

Radish 0.38 0.17 
106540.984

4 0.003377 

Scallion 0.24 0.11 

68551.8779

3 0.002173 

Squash 

 

3.13 
1931088.17

8 0.061212 

Squash 3.40 

 

  

Pumpkin 3.49 

 

  

Tomato 

 

19.34 
11926557.8

7 0.378048 

Fresh 15.2 

 

  

Canned  27.4 

 

  

Turnip* 0.24 0.11 
68551.8779

3 0.002173 

* No LAFA data on beets and turnips. Assumed to be the same as the lowest consumed food for which 

LAFA data exists, Kale. 

Land use optimization 

This method is identical to the GWP impact algorithm except that UF crops are now listed in order of 

their ability to reduce land use. Table S49 shows the list of vegetables when ordered in this manner. 

Table S49. List of UF vegetables in order of decreasing 

reductions in land use per m2 planted 

Vegetable Siting 

Green Beans Ground 

Radish  Roof 

Kale   Ground 

Cucumber   Roof 

Green Beans Roof 

Turnip   Ground 

Tomato Roof 

Turnip   Roof 

Bell Pepper Roof 

Kale   Roof 

Squash Ground 

Cucumber   Ground 

Lettuce Roof 

Carrot   Roof 



 
 

Cabbage Ground 

Scallion Roof 

Beet Ground 

Tomato Ground 

Collard Greens Ground 

Carrot   Ground 

Scallion Ground 

Bell Pepper Ground 

Eggplant Ground 

Lettuce Ground 

 

Nutritional Optimization 

In optimizing for nutrition, the algorithm is moved away from a greedy mode. This is because the 

boundary for knowing when to stop producing the best-option vegetable in the greedy mode is the 
demand for that crop at the block-group or city level. In the nutritional optimizing algorithm we are in 

fact attempting to change the boundary condition, that is, the amount of certain foods consumed, 

eliminating this indicators candidacy for this role. Instead we randomly pick vegetables in a manner that 
reflect the consumption patterns of the average consumer, whilst trying provide as much nutrition as 

possible,  beyond their typical demands, aiming to satisfy the nutritional needs as outlined by the USDA 

guidelines1.  

USDA guidelines provide recommended intakes for four vegetable types: starchy, dark green, red and 
orange and other. Here we focus on the last three since none of the vegetables in the first group are 

produced by any of the case farms. The nutritional algorithm has two variants. The first attempts to 

produce as much vegetables as possible and satiate the entire vegetable demands of the block-group (and 

city using surplus land). The second version attempts to close the gap between current consumption and 

USDA guidelines. In both versions the vegetable group with the largest distance to target is always 
prioritized, so that in the first variant it will end up producing nearly the same fraction of USDA 

guidelines, while the second may or may not end up satisfying all groups to the same extent. Importantly, 

the second variant models a situation where UF is not substituting conventional supply chains, but 
supplementing, and hence, no crediting for avoided conventional production is accounted for.  

Vegetable demands are taken from the USDA guidelines for different sexes and age groups. The 

deficiency is taken as the difference between the USDA guidelines and usual daily intake from the 

NHANES data36. Individual nutritional demands and deficiencies are then combined with census 
demographics data for each block-group to get the total demands at block-group and city level. Table S50 

shows the nutritional demands and deficits for different demographics.  

Table S50. Nutritional demands and deficits (in brackets) for different demographics  

Vegeta

ble 

Catego

ry 

U

n

it 

Males Females 

Age Age 

1-

3 

4-

8 

9-

1
3 

1
4-

1

8 

1
9-

3

0 

3
1-

5

0 

5
1-

7

0 
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-
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1
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1
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1
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1
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7
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Taking the institution adjusted population of Boston of 616,602 in 2010 and the demographic spread, we 

estimate the city-wide nutritional demands as 5.68×107, 1.83×108 and 1.75×108 cup eq. of dark green, 
red and orange, and other vegetables, respectively. City-wide nutritional deficits are estimated as 

1.96×107, 6.64×108 and 2.62×107cup eq. for dark green, red and orange, and other vegetables, 
respectively. 

Table S51 summarizes the UF crops in terms of their vegetable type and the amount of nutritional units 

supplied per area planted. 

Table S51. UF Crops and their nutritional properties 

Vegetable USDA Category Siting Cup eq./m2 

Beans Other Ground 28 

Beet Other Ground 17 

Bell Pepper Red and Orange Ground 19 

Cabbage Other Ground 52 

Carrots Red and Orange Ground 13 

Collard Greens Dark Green Ground 6 

Cucumbers Other Ground 28 

Eggplant Other Ground 28 

Kale Dark Green Ground 36 

Lettuce Other Ground 7 

Squash Other Ground 22 

Tomato Red and Orange Ground 17 

Turnip Other Ground 27 

Scallion Other Ground 8 

Beans Other Roof 10 

Bell Pepper Red and Orange Roof 20 

Carrots Red and Orange Roof 13 

Cucumbers Other Roof 44 

Kale Dark Green Roof 10 

Lettuce Other Roof 7 

Radish Other Roof 25 

Scallion Other Roof 9 

Tomato Red and Orange Roof 28 

Turnip Other Roof 14 

 

Block-group nutritional optimization sub-routine 

Is there area left in the block-group? 

 Yes: Are the block-group’s nutritional demands (or deficit) met? 

  Yes: Store the block-group with others with extra capacity. End sub-routine. 
  No: Determine the vegetable type with largest distance to gap. 

   Is there building space? 

Yes: Randomly choose vegetable from amongst those within 
the vegetable category that are grown on buildings, with 

probability based on usual intake rates. Produce 100 m2 of 

the vegetable (or remainder of roof space if less than 100 m2 

left). Update results. Rerun sub-routine. 

No: Randomly choose vegetable from amongst those within 

the vegetable category that are grown on the ground, with 
probability based on usual intake rates. Produce 100 m2 of 



 
 

the vegetable (or remainder of roof space if less than 100 m2 

left). Update results. Rerun sub-routine. 

 No: End sub-routine. 
 

After all block-groups are given the chance to produce for themselves, those with surplus growing area 

attempt to produce to satisfy Boston’s nutritional needs. 

City nutritional optimization sub-routine 

Is there area left in the block-group? 

 Yes: Are the city’s nutritional demands (or deficit) met? 
  Yes: End sub-routine. 

  No: Determine the vegetable type with largest distance to gap at the city level. 

   Is there building space? 
Yes: Randomly choose vegetable from amongst those within 

the vegetable category that are grown on buildings, with 

probability based on usual intake rates. Produce 100 m2 of 
the vegetable (or remainder of roof space if less than 100 m2 

left). Update results. Rerun sub-routine. 

No: Randomly choose vegetable from amongst those within 
the vegetable category that are grown on the ground, with 

probability based on usual intake rates. Produce 100 m2 of 

the vegetable (or remainder of roof space if less than 100 m2 
left). Update results. Rerun sub-routine. 

 No: End sub-routine. 

 

In the same manner is the GWP and land use sub-routines, this algorithm can be used with additive and 
subtractive UF land use estimates. 

UF Revenue 

Crop prices are taken from consumer expenditure data (averaged over the available years)37 or from 

USDA retail reports on specialty crops38. Table 49 outlines the crop prices used here in current US 

dollars.  

 

 

When the city only produces for its residents, the above algorithms are unaltered, and the revenue from 

block-group trade is calculated and recorded along with all of the environmental and nutritional results. 

Table S52. Crop prices 

Vegetable USD/kg Source 

Beans 3.20 Consumer Expenditure 

Beet 2.19 USDA 

Cabbage 1.42 Consumer Expenditure 

Carrots 1.72 Consumer Expenditure 

Collard Greens 2.13 USDA 

Cucumbers 2.85 USDA 

Eggplant 3.01 USDA 

Iceberg 2.28 Consumer Expenditure 

Kale 2.28 USDA 

Peppers 5.38 Consumer Expenditure 

Radish 3.51 USDA 

Scallion 1.22 USDA 

Squash 1.86 USDA 

Tomato 3.71 Consumer Expenditure 

Turnip 2.19 USDA 



 
 

The only shift to the algorithm is when the block group starts exporting the conurbation. A crude method 

would simply produce the most profitable crop, but this would actually lead to a glut of one or two crops 

on the market, leading to a crash in prices. To avoid this, the city’s extra space is allocated to crops based 
on the usual demand for the crop according to the USDA LAFA data (see rightmost column of Table 45). 

The above algorithms remain unaltered from the above cases with the exception of a sub-routine that is 

run at the end on all block-groups with surplus land: 

 Is there area left in the block-group? 
Yes: Randomly select vegetable based on usual intake probability.  

 Is there suitable UF space to grow the crop (either roof or ground)? 

Yes: Grow 100 m2 (or available area) of that vegetable and update 
results. Rerun sub-routine.  

No: End sub-routine. 

 

                     

Figure 12. UF space results for (a) subtractive, (b) additive, (c) additive minus parking and (d) rooftop 



 
 

 

Figure 13. (a) avoided runoff results for the different scenarios and years . Additive results for both land 

and GWP are averaged due to similarity. (b) Organic waste uptake from UF averaged for both 

optimizations due to similarities 
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Abstract: Since the turn of the century a growing chorus of researchers has been espousing 
reduced meat and dairy intake as a partial strategy to transition towards a sustainable food 
system. Many of these studies have been predicated on a life-cycle assessment (LCA) 
methodology and though transparent in communicating their work within that framework, it has 
largely gone unmentioned that LCA involves a number of choices by the assessor and LCA 
methodology developers that are ultimately subjective. This study uses a consequential LCA of 
the average Danish diet in comparison to model vegetarian and vegan diets, leveraging the 
cultural perspectives afforded by the ReCiPe methodology, as starting point to explore the ways 
that subjectivity influences the LCA process and to test the robustness of the results against 
these different viewpoints. Mirroring earlier studies, we find vegetarian and vegan diets 
generally perform better environmentally compared to a standard Danish diet, but that there 
was minimal difference between the two no-meat options. Results were resilient to varying 
cultural perspectives applied in the model. LCA methodology, though loaded with value 
judgments, remains a dependable tool for assessing environmental dietary performance, but is 
less suited for estimating environmental pressures that are highly dependent on local conditions 
(e.g. chemical toxicity). 

 Keywords: Life-cycle-assessment; Ethics; Diets; Vegetarian; Vegan; Sustainable 
consumption  



 

Introduction 

At the global level, food production is estimated to be responsible for between 20% and 50% of 
anthropogenic environmental impacts (McLaren, 2010, Notarnicola et al., 2012 and Roy et al., 
2012). Irrespective of this pressure’s true value, it is clear that global food consumption affects 
the performance of ecosystems negatively (locally and globally) through contributions to a 
variety of environmental issues including: climate change, water stress, toxic chemical release, 
air quality degradation, eutrophication of water bodies, soil erosion, and biodiversity losses 
(Cribb, 2010 and Foley et al., 2011). Ecosystem damages aside, current intensive agricultural 
systems rely on non-renewable resources (fossil fuels, land, and minerals) that are being 
exhausted and inefficiently employed (IBID). A projected 33% population growth – from 7 billion 
today to 12 billion by 2100 (Gerland et al., 2014) – with concurrently increased global economic 
activity (Price Waterhouse Cooper, 2010) will challenge the global agriculture system to 
produce more food with less resources while minimizing environmental impacts synchronously. 
Recent trends have been discordant with these ambitions, showing reduced growth in yields per 
unit production factor (land, fertilizer, etc.) in a number of countries as well as increased gross, 
non-renewable resource consumption from 1985–2005 (Foley et al., 2011 and Tilman and 
Clark, 2014). 
Meat and dairy products are central to food-related impacts, having large environmental 
burdens including agricultural land degradation due to overgrazing, surface and groundwater 
contamination from uncontrolled waste management, biodiversity loss through the proliferation 
of grazing land (and land for feed production), and greenhouse gas (GHG) emissions related to 
livestock digestion (particularly ruminants) (Asner et al., 2004, Cribb, 2010, FAO, 
2006, Modernel et al., 2013 and Nijdam et al., 2012). Due to the inherent inefficiencies of 
producing biomass at higher trophic levels (McMichael et al., 2007 and Pimentel and Pimentel, 
2003), livestock production also requires calorific inputs amounting to 40% of global grain 
production (IBID; Foley et al., 2011). These feed requirements have environmental impacts 
embodied within their production, exacerbating the direct environmental disturbances of animal 
husbandry. Accounting for pastures and animal feed, livestock production is estimated to 
commandeer nearly one third of global, ice-free surface area (McMichael et al., 2007). These 
environmental pressures and land constraints are key issues if the predicted global animal 
product demand doubles from year 2000 levels by 2050 in response to population and 
economic drivers (FAO, 2006, Feeley and Machovina, 2014, McMichael et al., 2007 and Tilman 
and Clark, 2014). 
Technological improvements to livestock production can mitigate some environmental harm, but 
eco-efficiency gains have failed thus far to mitigate net environmental impacts. Conversely, 
tackling this challenge on the demand side by reducing meat and dairy consumption has been 
championed as a way to improve the environmental integrity of nourishing humanity (FAO, 
2006, Foley et al., 2011 and Tilman and Clark, 2014). This approach has been most salient in 
the United States Department of Agriculture’s (USDA) 2015 dietary guidelines (2015). Indeed, 
environmental audits using life-cycle assessment (LCA) have shown that, low meat, vegetarian 
(no meat), and vegan (no meat or dairy) diets can have significant environmental benefits in 
comparison to prevailing dietary trends in wealthy countries (see Table 1). LCA estimates the 
resultant environmental impacts in a number of pertinent indicators from the supply chain (raw 
material extraction, processing, use, disposal, and related transport) required to deliver a 
product or service. These studies have shown univocally that vegetarian and vegan diets have 
reduced GHG emissions over standard omnivorous diets in a wealthy context. For other 
environmental impacts, LCA conclusions vary, showing that reduced animal product 
consumption reduces all accounted environmental impacts (Baroni et al., 2007), reduces 
particulate matter formation and land occupation (Saxe, 2014) or, conversely, exacerbates 
water consumption (Meier and Christen, 2013). 
 
Table 1 - Previous environmental life cycle assessments of dietary habits  

Reference Country 

Impacts Included GHG 
Reduction (% 
change 
relative to 
omnivorous 
diet) 

Other 
Comments 

Non
-
toxic 

Toxi
c 

H2

O 
Use 

Lan
d 
Use 

Heller and 
Kaoleian 

United 
States 

X 
 

 
 

 
 

 
 

Vegetarian: 
33% 

 



 

(2014) Vegan: 53% 

Saxe (2014) Denmark X 
 

 
 

X 
 

X 
 

New Nordic 
Diet: 30% 
w/ reduced 
transport:  
35% 
w/ organics:  
32% 

- land 
occupation 
reduction with 
reduced meat 
diet.  
- organic 
content of diet 
raised 
particulate 
matter and 
land 
occupation 
impacts. 

Scarboroug
h et al. 
(2014) 

United 
Kingdom 

X    Medium Meat: 
21% 
Low Meat: 
35% 
Pescatarian: 
46% 
Vegetarian: 
47% 
Vegan: 60% 

- 
comprehensiv
e diet survey 
used  

van Dooren 
et al. (2014) 

Netherland
s 

X   X Vegetarian:  
21% 
Vegan: 37% 

  

Meier et al. 
(2013) 

Germany X  X X Vegetarian: 
25% 
Vegan: 50% 

- water use 
inversely 
proportional to 
meat intake 

Berners-Lee 
et al. (2012) 

United 
Kingdom 

X    Vegetarian: 
22% 
Vegan: 36% 

 

Roy et al. 
(2012) 

Japan X    Not Applicable  

Saxe (2012) Denmark X    New Nordic 
Diet: 6% 
w/ 
optimization: 
27% 
Vegetarian: 
27% 

- select local, 
organic and 
meat 
consumption 
performed 
equal to 
vegetarian   

Macdiarmid 
et al. (2012) 

United 
Kingdom 

X    Reduced 
meat: 36% 

- unrealistic 
sustainable 
diet achieved 
90% reduction 
in GHGs 

Tukker et al. 
(2011) 

Europe X X   Reduced red 
meat: 8% 
Mediterranean
: 5% 

 

Baroni et al. 
(2007) 

Italy X X X X Vegetarian: 
74% 
w/ organic: 
87% 
Vegan: 90% 
w/ organic: 
97% 

- ubiquitous 
superior 
performance 
across all 
impact 
categories with 
reduced meat  

Wallén et al. 
(2004) 

Sweden X    Reduced 
meat: 5% 

 



 

 
Though compelling, the veracity of environmental benefits from reducing meat 

consumption has shortcomings. The common application of single issue indicators, chiefly the 
GHG burdens, dominates relevant literature (Berners-Lee et al., 2012, Heller et al., 2013, Roy 
et al., 2012, Saxe et al., 2012 and Wallén et al., 2004), running the risk that reduced meat diets 
may increase other environmental impacts (i.e. environmental burden shifting). Moreover, 
where expanded indicator sets covering more types of environmental pressures have been 
applied, paucities exist in illuminating the latent assumptions within the LCA framework and 
their potential consequences. Baroni et al. (2007) explored this theme with their analysis of the 
robustness of LCA results of dietary shifts to changes in assessor concern for different 
environmental impacts, both in terms of impact type and time-frame, finding that in general little 
change was seen with shifting assessor perspective. Aside from nascent investigation, there 
has been sparse discussion surrounding how the choice of indicators included in and LCA or 
the way that chemicals are modeled in the environment might affect dietary study results. 
Moreover, environmental efficacy has been ascribed to dietary choices even when the 
compared diets perform within the margins of error typically applied to LCA 
assessments.Herrmann et al. (2014) note that the margin of error can be significantly larger 
than the 10% uncertainty used in some of the reviewed studies. Lastly, with the exception of 
Saxe’s work, studies have utilized attributional LCA models which are not representative of 
production systems at play with market forces (Plevin et al., 2014). Clearly, even within the LCA 
framework which strives for scientific objectivity, subjective values influence assessments, 
although this is only one aspect of the power of personal preferences in the discussion of the 
sustainability of diets. 

A number of food related ethical discussions have gained momentum the past 20 years 
(Mepham, 1996) such as livestock welfare, food waste, food safety, food security, rural 
development, agricultural practices related to conventional, organic, and transpersonal 
agroecology, crops as biofeuls and the use of biotechnology as breeding tools on both animals 
and plants. “Sustainability” can mean many things in regard to food (Gamborg and Sandsøe, 
2005) and various aspects of sustainability can easily conflict leaving one to choose between 
different values (e.g. land use efficiency and animal welfare) (Gjerris et al., 2011). Consumer-
driven sustainability on food thus faces serious challenges, since it can be confusing as a 
consumer to determine the more sustainable choice. This is both because of scientific 
uncertainty, but also because of different and value-driven definitions of what “sustainability” 
actually is (Gjerris et al., 2016). From an environmental perspective, sustainability is roughly 
equated with humanity’s stewardship of the environment in a way to not undermine its long- and 
short-term ability to provide natural resources, pollution assimilation and other ecosystem 
services to mankind, whilst concurrently supporting a meaningful proportion of the planet’s 
wildlife and biodiversity. However, since sustainability is multi-faceted in nature (encompassing 
economic, environmental, social and institutional traits), the environmental performance 
concerning different diets is interconnected to discussions of food, culture, animals, humans 
relationship to nature, economics and values. Therefore, even though environment 
assessments (LCA, ecological footprint, emergy, etc.) are important to understanding and 
communicating environmental impacts related to diets, no assessment strategy completely 
covers all quantifiable (e.g. environmental and economic impacts) nor less-quantifiable (e.g. 
social issues) aspects of sustainability. In relation to this article the task therefore becomes to 
show what values drive different LCA methodologies to clarify the extent to which they affect the 
conclusion. Considering LCAs as value-neutral decision tools is precarious, as the values 
informing the political process used to develop LCA methodologies thus become hidden. 
Leaving decisions about sustainability to LCA experts does not make the decisions value-free, 
but merely ensures that it is the values of the experts that inform the decisions. 

This paper presents an LCA comparing predicted environmental performance of average 
omnivorous Danish and conceptual vegetarian and vegan diets. Denmark provides an 
interesting case, because it has high per capita meat consumption (97 kg/a, 11th globally) (The 
Economist, 2012), produces a significant portion of its consumed meat and dairy (FAO, 2014), 
and enforces stringent energy and environmental controls on agricultural production. Moreover, 
this paper utilizes the full suite of LCA indicators, consequential LCA modelling methodology, 
and supporting databases not yet used in literature for dietary assessments at the time of 
writing. This study also explores the normative nature of environmental assessments and 
deduces the tractability of LCA as tool for comparing diets, with a discussion of the axiological 
ethical positions implicit in modeling environmental impacts using LCA. 

 



 

Materials and Methods 

LCA framework 

LCA attempts to quantify the materials and energy consumed, and chemicals emitted to 
the environment during resource extraction, manufacturing, distribution, use, and end-of-life 
stages of a product/service (Guinée et al., 2002). LCA utilizes the functional unitconcept in 
comparing different food products. In essence the functional unit strives to provide a common 
basis of comparison between different means of achieving the same end, strictly defined as a 
service that the assessed system(s) must fulfill (e.g. provide containment for a certain volume of 
liquid). The amounts of mass and/or energy required to meet that functional unit (e.g. the 
amount of ceramic or polystyrene needed to hold the amount of fluid defined by the functional 
unit) are called the reference flows. 

Through the entire system life cycle, the LCA accounts exchanges (resource 
consumptions, energy, pollutant emissions) between different, well-defined environmental 
compartments (water, land and air in their different permutations) and the system (herein the 
‘product-system’) providing the functional unit. Summing like flows of these resource inputs or 
pollutant outputs along the entire supply chain, a system inventory is generated for the total 
resource needs and pollution loading related to the functional unit. Lastly, the chemical and 
energy exchanges between society and environment are converted to environmental pressure 
potentials pertaining to the environment and human health. Resources used by the system and 
pollutants leaving the system are assessed for contributions to specific environmental problems 
(e.g. climate change, freshwater ecotoxicity, etc.) or resource scarcity issues (e.g. metal 
depletion). These scores represent estimated contributions to environmental and resource 
challenges imparted by the product system to fulfill the functional unit, called impact potentials 
(IPs). 

IPs can be characterized at midpoint or at endpoint. Endpoint indicators model the entire 
impact pathway up to damages to 3 areas of protection (ecosystem quality, human health, and 
natural resources). Midpoint indicators stop earlier than endpoints along the cause-effect chain. 
For example, climate change impacts at the midpoint level are measured as the equivalent 
amount of carbon dioxide emitted to the atmosphere by the product system, while the product 
systems contribution to the damage to human health endpoint accounts for the estimated rise in 
temperatures and resultant loss of healthy years of living from disease, sea level rise and other 
factors. An assessor starts with the midpoint IPs and uses conversion factors which weight the 
contributions of that midpoint to a given endpoint category in order to create common unit that 
can be summed.  

Though endpoint indicators are more meaningful from a decision-making perspective, they 
are less certain than midpoint (Hauschild, 2005). Lastly, the endpoint IPs themselves can be 
further weighted and summed to generate a single score, though this is hindered by subjectivity 
regarding the how the weighting should be done. LCA has seen increased harmonization in 
recent years, with the basic requirements outlined by the ISO 14040 series of standards, and 
detailed best practices guidance in the International Reference Life Cycle Data System (ILCD) 
handbook (EC, 2010, Finkbeiner et al., 2006 and Owsianiak et al., 2014). Lastly, LCA has seen 
increased application to food in recent years, viewed as an effective assessment method for 
environmental impacts food products. 

Functional unit and scoping of the assessed diets 

Different functional units for food LCAs have been proposed in the past: they can relate to 
agricultural areas, entire farms, a single livestock unit, quantities of food produced or consumed, 
nutritional values of meals (Haas et al., 2000). In this study, the primary function is considered 
to be the supply of adequate energy and nutrient levels to an adult person. The functional unit in 
this study will be taken as the provision of 2000 kcal per day of food excluding beverages aside 
from dairy. The United States Department of Agriculture recommends a daily calorific intake of 
2000 kilo calories (kcal) per average adult (weighted for gender and age) (Venti and Johnston, 
2002), with this standard adopted throughout Europe (Meier and Christen, 2013 and Van 
Dooren et al., 2014). It should be stressed that consuming 2000 kcal per day does not 
automatically equate to a nutritionally adequate diet. The inclusion of other nutritional metrics to 
ensure compatibility of the compared systems would improve the study (Heller et al., 2013), but 
as a rough guide for nutritional equivalency, calories suffices for the study at hand. 



 

Three dietary patterns are assessed: the average Danish diet, and two recommended diets 
– an ovo-lacto vegetarian diet (no meat consumed, herein ‘vegetarian’) and a vegan diet (no 
meat or dairy products consumed). The scope of the assessment will stretch from the extraction 
of the raw materials necessary for the system up to the manufacture and production of the food 
products, with all processes beyond agricultural production excluded. Though this will 
underestimate total environmental impact by excluding processes downstream from the farm, it 
has been shown that food production is the dominant contributor to food-related environmental 
burdens (Davis et al., 2010, Meier and Christen, 2013 and Roy et al., 2012). For the use stage it 
has been shown that the processes of refrigeration and transport are typically the most 
important activities. Food miles tend to contribute marginally towards final environmental 
burdens, excepting cases involving air transport or long-distance refrigeration (Born and Purcell, 
2006). Refrigeration itself, both in-store and at-home, can also be important contributors to life-
cycle energy consumption and environmental impacts, though this is uncommon and not a 
priority in affecting food system sustainability. Furthermore, the impacts from cold storage speak 
more about the supporting energy system than the dietary choices themselves (Garnett, 2011). 
With regard to the disposal stage, impacts related to the incineration or composting of organic 
waste, both representative for Denmark, are not deemed to vary significantly between the three 
diet systems analyzed in this study. Thus, truncating their life cycles should not impact their 
comparative environmental performance. Finally, packaging is excluded from the assessments. 
The variety of possible packaging and cooking methods precludes sensible modelling, their 
inclusion adding marginal completeness in terms of impacts at the price of model robustness 
(Muñoz et al., 2010). 

Data sources and inventory settings 

The assessed diets were constructed from two sources. The standard Danish omnivore 
diet was taken from Danish consumption surveys for 2003 to 2008 and scaled from 10 MJ 
supplied energy to the functional unit (DTU Fødevareinstituttet, 2010). For the vegetarian and 
vegan diets, where actual consumption data was lacking, the recommended vegetarian and 
vegan diets were based on the ‘Vegetarian food guide pyramid’ (Loma Linda University – 
School of Public Health, 2008), which in turn relied on the US Department of Agriculture’s 
nutritional guidelines (Haddad et al., 1999 and Venti and Johnston, 2002). The recommended 
diets list the required servings of broad food groups (e.g. whole grains, legumes, and soy, etc.) 
to meet the nutritional requirements of a balanced 2000 kcal/day diet. The broad food groups 
were disaggregated into the individual food components found in the Danish diet (e.g. the food 
group ‘fruits and vegetables’ is broken down into the food items like: ‘tomatoes, cucumbers, and 
peppers’). The ratios of different food products available to the average Danish consumer 
according to Statistics Denmark food balance sheets (2014) were maintained for the vegetarian 
and vegan diets, but scaled to the amount required to meet recommendations for ‘vegetables’ in 
the food pyramid (this was done for all food groups). As such, the conceptual vegan and 
vegetarian diets reflect Danish consumer habits assuming that the food balance sheet 
expresses consumer demand. Moreover, in keeping with the system boundary of the farm, 
certain foods had to be dissected to their base agricultural constituents (e.g. bread was 
converted to grains), with the exception of vegetable oils from complex bio-refineries. 

Food losses occur due to pests, damage during harvesting, processing losses from 
aesthetic or functional quality control, rough handling and spoilage during distribution, and at the 
retail and consumer due to further spoilage (FAO, 2011). Farm losses were internalized within 
individual modelling processes, since these scale total inputs and outputs at the farm to mass of 
product delivered at farm gate. Post farm-gate loss factors (in an OECD context) of 8%, 19%, 
31%, 26%, and 32% for meat, dairy products, cereals, fruits and vegetables, and roots and 
tubers, respectively were taken from FAO (IBID) and applied to the diets. As such, the reference 
flows in Table 2 are inflated above actual consumption, representing demand at farm-gate 
necessary to supply the 2000 kcal/day for the given diets. Calculations are outlined in 
Supplementary Material S1 and S2. 
 
Table 2 - Food demands at farm gate to meet a functional unit of 2000 kcal/day for the three 
considered diets and associated processes used in modelling. Diets do not include drinks 
(barring dairy) and vegan and vegetarian have high water content in foods consumed.  

Food Item Omnivorou
s (g/day) 

Vegetaria
n (g/day) 

Vegan    
(g/day) 

Process (All ecoinvent 3 unless 
other sources are listed) 



 

Dairy and 
Eggs 

    

Milk 278.4 449.8 - (LCA Food, 2007) 

Cream 31.3 - - (Weidema and Schmidt, 2014) 

Creme fraiche 7.8 - - IBID 

Butter 6.0 - - IBID 

Cheese 28.2 19.1 - IBID 

Eggs 14.5 31.0 - (Nielsen et al., 2013) 

Meat     

Beef and veal 47.7 - - (Nguyen et al., 2010) 

Edible offals of 
cattle 

1.4 - - IBID 

Pig meat 54.2 - - (Reckmann et al., 2013) 

Edible offals of 
pigs 

1.9 - - IBID 

Poultry meat 22.7 - - Chicken for slaughtering 

Mutton and 
lamb 

2.0 - - Goat for slaughtering 

Grains     

Wheat flour 141.6 271.0 316.2 Wheat 

Durum wheat 
e.g. 

15.1 0.0 0.0 Wheat 

Rye flour 33.8 21.7 25.4 Rye grain, rye production 

Oat-meal 24.7 0.0 0.0 Wheat 

Rice and rice 
flour 

15.8 144.9 169.1 Rice, production 

Potato flour 
etc. 

2.0 0.0 0.0 Potato 

Other flour and 
groats, etc. 

24.0 0.0 0.0 Wheat 

Fruits and 
Vegetables 

    

Potatoes 115.6 238.4 238.4 Potato 

Cucumbers 25.3 47.1 47.1 Cucumber 

Spring-white 
cabbage 

9.0 16.7 16.7 Cabbage white 

Spring-red 
cabbage 

9.0 16.7 16.7 Cabbage red 

Brussels 
sprouts 

0.6 1.1 1.1 Radish 

Broccoli 11.8 11.0 11.0 Broccoli 

Cauliflower    11.8 11.0 11.0 Cauliflower 

Chinese 
cabbage 

6.8 11.0 11.0 Cabbage red 

Leeks 6.8 12.6 12.6 Celery 

Beetroots 5.4 10.1 10.1 Radish 

Celery 2.6 4.8 4.8 Celery 

Carrots 44.5 82.8 82.8 Carrot 

Onions 31.2 58.1 58.1 Onion 

Lettuce 25.0 46.6 46.6 Lettuce 

Tomatoes 106.2 272.3 272.3 Tomato 

Cherries sour 
and sweet 

6.6 16.9 16.9 (Carlsson-Kanyama and 
Emmenegger, 2000) 

Strawberries 9.7 24.8 24.8 (Gunady et al., 2012) 

Apples 169.9 435.6 435.6 Apple 



 

Pears 23.9 61.2 61.2 Pear 

Protein 
Substitutes 

    

Beans 0 135.1 135.1 Fava bean 

Tofu 0 94.6 94.6 (Ercin et al., 2012) 

Soy Beverage 0 32.4 32.4 (Ercin et al., 2012) 

Peanuts 0 20.3 40.5 (University of Arkansas, 2012) 

Cashews 0 20.3 40.5 (Figueiredo et al., 2014) 

Oils and 
Sugar 

    

Vegetable Oil 0.0 7.6 7.6 (Stevenson, 2014) 

Margarine 30.9 7.6 7.6 (Nilsson et al., 2010) 

Sugar 30.1 0.0 0.0 Sugar from beet 

 

System modelling 

Two types of LCA modelling frameworks exist, namely the attributional and the 
consequential modelling, the choice of which has been a continuous source of polemic in the 
LCA community (e.g. Ekvall and Weidema, 2004 and Weidema, 2003). Consequential LCA 
differs from attributional LCA in two main ways: (1) the processes encompassed in the study are 
those which are most likely to respond to a change in demand, and (2) the co-product allocation 
is avoided by system expansion (Schmidt and Weidema, 2008). In this study, we have opted for 
a consequential modelling to reflect the environmental consequences that the change in diets 
may imply on the systems within and outside the primary agricultural processes, e.g. market 
reactions to proposed future consumption (ex-ante modelling). This approach is also in 
compliance with the ISO14044 requirements (ISO, 2006). For instance, in Denmark, butter (a 
by-product of milk) requires milk fat, which is re-allocated from high fat cheese and powdered 
milk production. Thus, when butter is demanded, powdered milk manufacturers substitute palm 
oil for milk fat, while high fat cheese production decreases forcing consumers to purchase other 
comparable fats (low fat cheese). Thus, in a consequential model butter is modeled as the 
amount of palm oil and low fat cheese produced in response to market demand for butter which 
are then translated into estimated environmental impacts (Weidema and Schmidt, 2014). 

The implementation of the consequential modelling was facilitated by the use of the 
ecoinvent 3.1 database, which exist in 2 versions dedicated to attributional and consequential 
modelling, respectively (Weidema et al., 2013). The consequential database, containing 
inventories of resource consumption and pollutant releases for the different foodstuffs, was 
therefore utilized in the study. In conjection with LCA software, the database can model 
interactions with other systems by use of marginal data, which model supplies of products by 
taking a mix of all unconstrained suppliers in the market, i.e. those suppliers who can respond 
to the next unit of demand for that good in the market (Weidema et al., 2013). This database is 
deemed to be a marked improvement over those utilized in earlier dietary comparison studies, 
since it includes an expanded set of food production processes and utilizes a full-fledged 
consequential LCI modelling framework. Where appropriate processes were lacking in 
ecoinvent 3, custom processes were built using inventories from reliable sources such as peer 
review LCAs or the Danish LCA Food database (Bengoa, 2005, Cederberg et al., 2009, Meier 
and Christen, 2013 and Nilsson et al., 2010). These were kept consistent with the consequential 
modelling by using system-expansion with marginal data, where necessary. The ecoinvent 
processes and data sources utilized for custom processes are outlined inTable 2. Breakdowns 
of custom processes are in Supplementary Material S3. 

Typically relevant in the modelling of agri-food systems, indirect land use change is defined 
as the life cycle consequences of the land use in the analyzed system, e.g. deforestation or 
cropland intensification taking place as a result of the change in demand from the system 
(Schmidt et al., 2015). The inclusion of indirect land use change (iLUC) effects may alter the IPs 
of an LCA through increased GHG emissions and biodiversity loss from deforestation 
(e.g. Dalgaard et al. (2014)) potentially changing the best performing product-system, and it is 
widely accepted that the problems related to iLUC should be integrated into decision-making 
(Schmidt et al., 2015). However, despite the recent release of frameworks for performing iLUC, 
e.g. Schmidt et al. (2015), there is yet no consensus on the approaches to integrate iLUC into 



 

LCA modelling, which is still the source of debate, particularly in the assessments of biofuels 
(Finkbeiner, 2014,Finkbeiner, 2013, Munoz et al., 2014 and Schmidt et al., 2015). For this 
reason and due to the lack of insights into indirect land use change mechanisms triggered by 
the dietary changes, as reflected in the review by (Hallström et al., 2015), iLUC effects were not 
considered in the present assessment. As also recommended by Hallström et al. (2015), this 
important source of uncertainties, of which it is difficult to predict the influence on the results of 
the study, should however be addressed in future studies. 

Impact assessment methods 

There exist a number of competing life-cycle-impact assessment (LCIA) methodologies for 
modelling midpoint and endpoint IPs in LCA. The dissimilarities come from the varying choices 
used for modelling how chemicals disperse through the environment and to what extent they 
affect encountered organisms (Hauschild et al., 2012). The ReCiPe 2008 methodology was 
selected as it covers the whole spectrum of relevant environmental indicators at both midpoint 
and endpoint levels, and includes the possibility for differentiating across three cultural 
perspectives, namely the egalitarian, individualist, and hierarchist perspectives. The egalitarian 
perspective is sensitive to all environmental impacts (long and short term), uses preventive 
thinking in assessing pollutants, and aims for minimizing society’s impacts on the ecosphere. 
Opposing this is the individualist, which is concerned with current environmental impacts within 
their lifetime. This assumes that technological progress can solve eventual environmental woes 
and that ecosystems are resilient against human intervention. The hierarchist lies between 
these two representing a intermediary ( Goedkoop et al., 2009). Table 3 outlines the indicators 
used in ReCiPe and how the different cultural perspectives view them. It should be noted that 
ReCiPe’s water scarcity and land use indicators were not used here as more nuanced methods 
were deemed necessary for the assessment. 

 
Table 3 - Assumptions behind cultural perspectives in ReCiPe 2008 (Goedkoop et al., 2009) 

Midpoi
nt 
Indicat
or 

Assumptions at 
midpoint level 

Assumptions moving 
from midpoint to 
endpoint 

 Egalita
rian 

Hierarc
hist 

Individu
alist 

Egalita
rian 

Hierarc
hist 

Individu
alist 

Climate 
Chang
e 

500 
year 
time 
horizon 

100 
year 

20 year no 
societal 
adaptat
ion, 
high 
human 
health 
impacts 
and 
biodive
rsity 
loss 

mediu
m 
societal 
adaptat
ion, 
mean 
human 
health 
impacts 
and 
biodive
rsity 
loss 

full 
societal 
adaptati
on, low 
human 
health 
impacts 
and 
biodiver
sity loss 

Ozone 
Depleti
on 

Identical  Identical 

Terrest
rial 
Acidific
ation 

500 
year 
time 
horizon 

100 
year 

20 year 500 
year 
time 
horizon 

100 
year 

20 year 

Freshw
ater 
Eutrop
hicatio
n 

Identical  Identical 



 

Marine 
Eutrop
hicatio
n 

Identical Identical 

Human 
Toxicity 

Infinite 
time 
horizon
, all 
exposu
re 
routes 
for all 
chemic
als, 
chemic
al 
toxicity 
consid
ered 

Same 
as 
egalitari
an, 
except 
100 
year 
time 
horizon 

100 year 
time 
horizon, 
limited 
exposur
e 
pathway
s for 
metals, 
selected 
chemica
l toxicity 
consider
ed 

Identical 

Photoc
hemica
l 
oxidant 
formati
on 

Identical Identical 

Particul
ate 
matter 
Formati
on 

Identical Identical 

Terrest
rial 
Ecotoxi
city 

Infinite 
time 
horizon
, all 
exposu
re 
routes 
for all 
chemic
als, 
chemic
al 
toxicity 
consid
ered 

Same 
as 
egalitari
an, 
except 
100 
year 
time 

100 year 
time 
horizon, 
limited 
exposur
e 
pathway
s for 
metals, 
selected 
chemica
l toxicity 
consider
ed 

Identical 

Freshw
ater 
Ecotoxi
city 

Identical to Terrestrial Ecotoxicity  Identical 

Marine 
Ecotoxi
ty 

Infinite 
time 
horizon
, all 
exposu
re 
pathwa
ys 
possibl
e 

Same 
as 
egalitari
an  

100 
years, 
limited 
exposur
e 
pathway
s for 
some 
chemica
ls 

Identical 

Ionisin
g 

100 
000 

Same 
as 

100 year 
time 

Identical 



 

Radiati
on 

year 
time 
horizon 

egalitari
an 

horizon 

Mineral 
Resour
ce 
Depleti
on 

Identical Identical 

Fossil 
Fuel 
Depleti
on 

Identical Techno
logy 
will 
slowly 
substitu
te fossil 
fuels 

Same 
as 
egalitar
ian 

Technol
ogy will 
quickly 
substitut
e fossil 
fuels 

 

Results 

Table 4 provides the impact indicator results for the three diets in terms of percentage 
difference from the omnivorous diet. Dark grey indicates the worst performing diet for that 
indicator, black the medium performing diet (where applicable), light grey the best performing, 
and white a tie across all diets. In our assessment results of the diet with a 25% standard 
deviation assumed, whereby IPs with overlapping confidence intervals were assumed to have 
no appreciable difference. Minute dissimilarities were thus ignored and claims about superior 
diet performance could not be made based on these. 

 
Omnivorous Vegetarian Vegan 

Midpoint Impact Category I H E I H E I H E 

Climate Change - - - 

-
56
% 

-
46% 

-
38% 

-
70% 

-
60% 

-
52% 

Ozone Depletion - - - -3% -3% -3% 0% -1% 0% 

Terrestrial Acidification - - - 

-
64
% 

-
65% 

-
66% 

-
79% 

-
81% 

-
81% 

Freshwater Eutrophication - - - -6% -7% -6% 
-

24% 
-

24% 
-

24% 

Marine Eutrophication - - - 

-
33
% 

-
33% 

-
33% 

-
72% 

-
72% 

-
72% 

Human Toxicity - - - 

-
33
% 14% 30% 

-
53% 5% 25% 

Photochemical Oxidant 
Formation - - - 6% 6% 6% 0% -1% 0% 

Particulate Matter Formation - - - 

-
47
% 

-
47% 

-
47% 

-
60% 

-
60% 

-
60% 

Terrestrial Ecotoxicity - - - -6% -8% 0% 45% 41% 43% 
Freshwater Ecotoxicity - - - 2% 2% 2% -1% -2% -1% 
Marine Ecotoxicity - - - 3% 1% 24% -5% -7% 20% 
Ionization Radiation (human 
health) - - - 

66
% 15% 14% 67% 15% 14% 

Metals Depletion - - - 
11
% 11% 11% 8% 7% 8% 

Fossil Depletion - - - 

-
18
% 

-
18% 

-
18% 

-
22% 

-
22% 

-
22% 

Water Scarcity Index 
 

-  26% 31% 
Land Use 

 
-  -67% -78% 

Endpoint Impact Category I H E I H E I H E 



 

The results mirror those of previous diet comparison studies, since they show a clear 
difference between the omnivorous and non-meat diets, with the latter showing superior 
performance in a number of categories (see light grey cells in Table 4). The source of the poor 
performance of the omnivorous diet is the reliance on animal based products, as outlined in the 
climate change impacts and freshwater eutrophication impacts in Table 4. Beef is particularly 
pernicious in that it requires large quantities of inputs (feed, water and land) and results in large 
amounts of digestive waste (affecting eutrophication), and greenhouse gases (Nijdam et al., 
2012). In terms of compatibility with similar studies, climate change provides the best 
comparative indicator due to its ubiquity. Relative dietary climate change performance was 
within the ranges found previously (see Table 1). Climate change IPs also agreed with earlier 
studies for the omnivore; 4.27 kg CO2eq/day compared to 4.1, 3.02 and 4.09 kg CO2eq/day for 
the average Dutch, US MyPate and average French diets respectively (van Dooren et al., 2014) 
and 5.6 CO2eq/day for the average Dane (Saxe, 2014), though low compared to other studies 
that included transport and processing impacts (Berners-Lee et al., 2012 and Saxe et al., 
2012).included transport and processing impacts (Berners-Lee et al., 2012; Saxe et al., 2012).  

Impacts from pollution at farm 

For climate change, methane emissions from cattle increase the IPs of the omnivorous diet 
well beyond the error threshold; this is reasonable considering that bovine enteric fermentation 
accounts for 18% of global methane emissions (McMichael et al., 2007) and significant N2O 
release (Nguyen et al., 2010). Livestock production also perturbs the environment through feces 
and urine, which contain ammonia and nitrates. This also contributes to acidification or 
particulate matter formation if evaporated, or marine eutrophication (Gliessman, 2015). Plant 
production contributes to these IPs through over fertilization, which can result in nutrients runoff 
into receiving waters, or tilling, which activates the production of gaseous NOx by soil bacteria 
(IBID). In the assessment, excrement from livestock was the dominant factor resulting in the 
declined performance of the diets with increased animal product intake. Freshwater 
eutrophication is a consequence of phosphorous release to freshwater bodies from both animal 
excrement and fertilizer runoff, with all of the diets having similar performance in this regard as 
shown in Table 4. Lastly, though animal waste strongly influences photochemical oxidant 
formation (smog), the vegan’s higher consumption of greenhouse-produced cucumbers and 
tomatoes led to similar scale IPs due to external heating needs. 

Impacts from agricultural production inputs 

A number of IPs can be traced to the chemicals and energy consumed in food production. 
Ozone depletion IPs are linked to diesel used on farms, but also pesticide production, with no 
differentiation in diet performance. Fossil fuel based fertilizer impacts are the same for all 
systems, though the non-meat diets are borderline superior, which is logical due to the 
exorbitant feed requirements for animal production (FAO, 2006). For fossil depletion the 25% 
standard deviation may be too liberal considering the reduced uncertainty surrounding the 
modelling of fossil fuel consumption; allowing for defensible prima facie conclusions here. Land 
occupation is adversely impacted by the imported livestock feed requirements and grazing 

Human Health - - - 

-
54
% 

-
44% 

-
10% 

-
68% 

-
57% 

-
19% 

Ecosystems Damage - - - 

-
56
% 

-
46% 

-
38% 

-
70% 

-
60% 

-
52% 

Resource Depletion - - - -9% 
-

14% 
-

14% 
-

13% 
-

19% 
-

19% 

Table 4 - Relative environmental performance of the different diets shown as 

percentage deviation from the omnivorous diet. Light grey indicates best, black 
medium, dark grey worst performing. Where two diets had the same performance in 
an indicator, they will share the relevant color. White indicates a tie across all diets. 
Note that a 25% divergence from the omnivorous diet does not guarantee superior 
performance in a category, since possible values may overlap. 

 



 

territory (Foley et al., 2011), creating a large gap between omnivorous and non-meat diets. Of 
interest is that the meat-protein substitute, fava beans, contributed significantly to land 

occupation (∼12%), which is of note since this is a proxy for all types of beans consumed by the 
meat-free diets. Moreover, the ecoinvent 3.1 inventory shows that land occupation is low 
compared to other potential LCIs (Abeliotis et al., 2013) by up to a factor of three, however 
overall results remained robust to this uncertainty when land occupation for the fava beans was 
increased by this factor (vegetarian and vegan land occupation IPs relative to omnivorous diet 
changed to −62% and −73%, respectively). No differences were noted for metal depletion 
across the different diets or ionizing radiation (primarily related to pesticide production) since 
they all are heavily reliant on these inputs. However, when ionization radiation is compared at 
the individualist level the meat-free diets have worse performance due to significant pesticide 
inputs to fruit and vegetable production (particularly apples), but these differences dissolve at 
the egalitarian and hierarchist level, as a longer timeframe for potential impacts are taken (see 
Section ‘Difficulties with toxicity impacts’). Water impacts are also worse for the two non-meat 
diets, as a result of the large irrigation inputs (exacerbated by large losses from runoff), echoing 
the findings of Meier and Christen (2013) and hinting a need for future research in more 
accurately quantifying impacts in this category. Lastly, animal feed requirements compound 
climate change IPs through fossil fuel based fertilizer needs and deforestation associated with 
soy protein feeds (Flysjö et al., 2012). 

Difficulties with toxicity impacts 
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Figure 1 - Climate change and freshwater eutrophication midpoint IPs using 

hierarchist perspective in kg CO2eq/day and kg Peq/day (Peq – phosphorous 
equivalents), respectively 



 

Ambiguous results were also illustrated in midpoint categories dominated by inputs to 
agricultural production. Pesticides dominated all of the toxicity IPs; a natural consequence of the 
toxic properties for which they are produced. Non-meat diets had lower human toxicity IPs, 
though only from an individualist perspective, since this viewpoint focuses on malicious 
substances with short term impacts (i.e. some chemicals are bad), while the other perspectives 
account for more chemicals (i.e. many chemicals are bad) ( Goedkoop et al., 2009), thus 
blurring the performance of the diets as more pesticides are considered, with human toxicity IPs 
articulating this clearly. This trend can also be seen for marine ecotoxicity IPs where the 
egalitarian results for the non-meat diets are highest relative to the other methods, though no 
discernible difference was seen between diet choices. For terrestrial ecotoxicity, the vegan diet 
performed worst, though this was a shortcoming of the LCIA method. Soybean feed coproduces 
soybean oil resulting in avoided palm oil production on the market, with the avoided IPs credited 
to the feed. Pesticides used in palm production are included in ReCiPe LCIA methodology, 
while some of those for soy are not. Thus, the avoided palm impacts outweigh the soy impacts, 
producing a net negative IP. Thus, the animal product diets (which include feed) appear to 
perform better. However, with LCIA methods – using more complete chemical inventories (e.g. 
UseTox) (Owsianiak et al., 2014) – contradicting results are seen. Such deficiencies accentuate 
the difficulties of chemical toxicity modelling within LCA, forcing the question of whether a 25% 
uncertainty level is valid for toxicity impacts. Moreover, this modelling artefact explains why the 
vegan diet was borderline worse for fresh- and marine water eco-toxicity. 

Endpoint impacts 

Table 4 displays the ReCiPe IPs aggregated and assessed at the endpoint level, providing a 
comparative overview of the diets’ IPs. The endpoint results succinctly showed what the 
midpoints communicated that the average Danish diet has larger IPs for ecosystems damage 
and human health than the vegetarian or vegan diets. However, the latter has ambiguous 
results when seen from the egalitarian perspective, due to the uncertainties in the toxicity 
modelling (see Section ‘Difficulties with toxicity impacts’). Lastly, no discernible difference was 
observed for resource depletion, although – as discussed above – fossil fuel use appears higher 
in the livestock dependent diets. Notwithstanding differences at midpoint level, both non-meat 
diets performed equally at the endpoint. 

Discussion 

Results supported those of other studies in that the standard omnivorous diet performed 
poorly compared to model vegetarian and vegan diets. This was evident by the comparable 
performance of the meat-free vegetarian diet to the meat- and dairy-free vegan diet. Only within 
the realms of toxicity and eutrophication can we see appreciable divergence between these two 
choices, due to pesticide regimes and animal waste, respectively. Though conclusions could be 
drawn about the comparative performance for some specific IPs, ambiguity is present in 
others. Fig. 1 exemplifies this with the clear distinction between the omnivorous and non-meat 
diets for climate change, but inconclusive results for freshwater eutrophication. Table 4 takes 
this further by displaying both the various trade-offs between the dietary choices and the 
dependence of the results on the perspective of the assessor, thus challenging the objectivity of 
the LCA process, and necessitating a re-inspection of the cardinal ethical precepts embedded 
within the methodology. These ethical issues are related not only to the cultural perspectives 
applied in this specific study, but also to questions about the use of the LCA as a decision-
making tool. Also, the ethical values that this decision-making tool entails, opens a wider 
debate, which must be taken up. This re-evaluation may not eradicate the elucidated 
uncertainties, but will at least support the validity of using LCA as decision support tool.  

Sensitivity of results to ReCiPe cultural perspectives 

We have taken some ethical aspects of food production and its ability to utilize differing 
cultural and ethical perspectives (individualist, hierarchist, and egalitarian) in characterizing 
environmental impacts into consideration with ReCiPe 2008. One of the purposes of the cultural 
perspectives is to allow for results interpretation in the face of uncertainty. For instance, with 
toxicity IPs where there is higher uncertainty due to challenges of adequately including the 
toxilogical properties in LCA models of all of the chemicals in commercial use, the user can 



 

adopt an ethical perspective that deals with this data gap in a way that aligns with their thinking 
of nature how nature works and the potential risks of underestimating IPs. 

In ReCiPe the egalitarian is most worried by environmental impacts (long and short term), 
the individualist the least, while the hierarchist represent a middle view, although with a valence 
towards the egalitarian’s stance (see Table 4) (Goedkoop et al., 2009). According to the cultural 
theories as presented here, egalitarians tend to perceive nature as an ephemeral entity, highly 
sensitive to perturbations, whereas hierarchists view nature as surprising in the sense that it 
“may hide the response when exposed to stress and at some time flip to another state in a more 
or less irreversible manner.” (Finnveden, 1997). Obviously, the moral theory most closely 
related to egalitarians is egalitarianism (equal treatment for all agents affected by a situation) as 
it is reflected in environmental ethics such as Deep Ecology (Naess, 1973). The moral theory 
that might be related to the hierarchist point of view is utilitarianism, i.e. this posits maximizing 
happiness and minimizing pain. Finally, individualists tend to perceive nature as resilient in the 
sense that it will vacillate from its baseline state when exposed to stress, but can return to the 
baseline state if the stress is lessened or removed ( Finnveden, 1997 and Shwarz and 
Thompson, 1990). The moral position of libertarianism and especially “Green libertarianism”, 
which opposes regulation and advocates the maximum freedom of individual action compatible 
with equal freedom for all (Davidson, 2009), invoking IsaiahBerlin’s notion of negative liberty 
(1964), is strongly related to the individualist viewpoint is. 

As shown above, the LCA results were robust against the application of these attitudes, 
with the exception of conclusions about impacts to human health through toxicity and ionizing 
radiation (midpoint level) and damages to human health (endpoint level). Moving from the 
individualist to the hierarchist and egalitarian standpoints resulted in the accounting of more and 
more uncertain or long-term environmental impacts. This was illustrated by the human toxicity 
midpoint IPs where the individualist perspective narrowly focused on chemicals with well 
documented and/or acute toxicities, while the other outlooks included less immediately harmful 
chemicals and took a precautionary stance towards those suspected of being toxic ( Goedkoop 
et al., 2009), with the general effect of blurring the comparative performance of the diets with 
this indicator and the endpoint human health IPs. Toxicity IPs are some of the most difficult 
impacts to predict with LCA, since actual toxicological impacts are extremely dependent on the 
unique assimilative capacity of the receiving body (ecosystem or animal). This is a major 
methodological challenge for an assessment tool such as LCA that does not yet spatially 
disaggregate chemical releases (IBID). Thus, the individualist’s skepticism about the toxicity 
impacts may be warranted, especially when LCA is applied to numerous foods from a global 
market composited into a single diet. 
In general all of the midpoint categories were robust against the cultural perspectives aside from 
the two exceptions noted above, with the further consequence of these exceptions promulgating 
through the LCIA calculations to affect the endpoint IP damage to human health. Table 
5 outlines how the cultural perspectives affected those IPs that were sensitive to them. 

Midpoint 
Impact 
Category Effect of cultural perspective 

Human 
Toxicity 

Inclusion of increasing number of chemicals included in the LCIA when moving 
from I to E perspective made the model more sensitive to the herbicides and 
pesticides in vegetarian and vegan diets, erasing differences in environmental 
performance of the diets 
 

Ionization 
Radiation 
(human 
health) 

Longer timeframe of impacts considered when moving towards H and E 
perspectives meant that the impacts from more of the pesticides and herbicides 
used attenuated differences between the omnivorous and non-meat diets 
 

Endpoint 
Impact 
Category 

 

Human 
Health 

The impacts of the increased sensitivity of the human toxicity and ionization 
radiation (human health) affected the conversion from midpoint to endpoint IPs 
introducing ambiguity between dietary performance when the E perspective was 
adopted 

Table 5 - Midpoint and endpoint IPs sensitive to cultural perspective chosen in the comparison 
of diets 



 

The implicit values embedded within LCAs 

The framework of LCA is built upon a number of implicit values. This section attempts to lift 
the veil of the many philosophical and ethical principles that an LCA assessor or LCA study 
commissioner accepts in choosing LCA as method to assess the environmental performance of 
product systems. 

LCA methodology is predicated on the belief that we are able to predict environmental 
impacts. This belief is in itself based on our views of nature (Finnveden, 1997), which may differ 
considerably amongst both decision-makers and stakeholders. Our faith in LCA’s ability to 
inform decisions hinges on the belief that nature is complex yet predictable rather than 
inherently random, influencing not only how we model IPs, but also whether LCA is even 
capable of providing answers to the fundamental questions being asked. If the general belief is 
that we are not able to predict environmental impacts, LCAs are nonsensical and one should 
seek alternative valuation methods that circumvent evaluating environmental damages 
(Finnveden, 1997). 

If we accept that LCAs provides valuable insights for decision-makers, it is important to 
realize that LCA studies are grounded in different theoretical constructs and that the choice of 
assessment approaches entails ethical implications as well (Ekvall et al., 2005 and Finnveden, 
1997). In our study, we used a consequential modelling approach, which falls into what Ekvall et 
al. (2005) term a “prospective life cycle assessment (LCA)”, which provides information on the 
environmental consequences of individual actions in a dynamic system. This is contrasted with 
“retrospective” LCA’s assessment of the environmental impacts in a static system without 
constrained suppliers. Ekvall et al. (2005) analyzed different LCA methodologies against 
different normative moral philosophy theories and found that each LCA type, as well as each of 
the moral theories, can be criticized from the alternative point of departure and that both 
prospective and retrospective LCAs had pros and cons. According to Ekvall et al. (2005) the 
use of prospective LCA is valid if the audience equates positive environmental outcomes with 
‘good’ changes to a production system. It follows that decision-makers and people in general 
have differing opinions on what constitutes a good environmental action depending on their 
ethical values, since they may actually be indifferent to the state of the environment. For 
instance prospective LCA methodology is valid from a teleological framework, whereby 
consequences of an action are the criterion for success or failure (utilitarianism with its 
maximization of universal pleasure employs this thinking) (Finnveden, 1997), which is in 
opposition to deontological ethics which evaluates good or bad according to the principles 
underpinning actions and not necessarily outcomes (Ekvall et al., 2005). 

Ekvall et al. (2005) found that “the sheer diversity of ethical theories makes it impossible 
(sic) to decide whether an environmentally good action is an action that reduces the 
environmental burdens of the total life cycle or an action with good consequences for the total 
environment”. In this study, the former ethical foundation was implicit within the “prospective” 
LCA methodology that we used; whereby the proposed changes to vegetarian or vegan diets 
were assessed in terms of the environmental consequences of these actions relative to the 
status-quo, omnivorous Danish diet. 

The fact that it is impossible to model the full consequences of an action in an LCA (or any 
model for that matter) has been noted as the most important limitation of prospective LCI 
methodology. Prospective LCA accounts only for simple causal relationships, whereas full 
outcomes depend on a variety of causal loops and delays. Often we do not know the 
significance of these excluded causal relationships or how well modeled outcomes accurately 
reflect reality (Ekvall et al., 2005). The issue at hand is that LCA practitioners endeavor to 
provide robust decision support, whilst being realistic about data and model weaknesses. How 
do we know if the results of an LCA are defensible and can agents make ethical decisions 
based on these results? As a rule, an LCA is meritorious if through judicious design, working 
within the limits of those aspects of external reality that can be known and modeled, and 
accounting for those aspects that are most salient to the model outcomes, it directs decision 
makers towards a reasonable facsimile of the outcomes of the modeled scenarios. The LCA in 
this paper was successful towards these ends, insofar that is transparent about model 
shortcomings while robustly identifying meat-free diets as viable alternative with superior 
environmental performance over the Danish status quo. Thus, people who equate actions that 
reduce impacts on the environment with ‘good’ actions would be justified in moving from 
omnivorous to meat-free diets in a Danish context. 

Subjectivity in LCA modelling 



 

This section departs from the previous in that these decisions do not relate to the choice of 
using LCA to assess environmental performance of diets, but those choices made by the LCA 
practitioner in developing their LCA that are based on the assessor’s or study comissioner’s 
values. 

To start the user of the LCA must decide on the scope of the LCA, clarifying what aspects 
of the many facets of sustainability they will try to quantify. In the current study there was a pure 
focus on the environmental aspects, explicitly avoiding social and economic aspects of 
sustainability that could be addressed through the nascent social-LCA tool and the life-cycle 
costing methodologies, respectively. Making this choice implies either a low valuation of these 
sustainability aspects on the part of the LCA assessor or the belief that these issues are better 
handled within other assessment frameworks. Even if these sustainability aspects were 
assessed within their respective frameworks, there would still be an anthropocentric lean to the 
results due to the omission of issues related to animal welfare. 

Although many strive to make LCA as objective, detailed, and scientifically robust as 
possible, it is well known that the use of LCA as a decision-making tool is not value free 
(Hellweg and Frischknecht, 2004 and Hertwich et al., 2000). For instance, the 25% error 
threshold employed here was based on the authors’ professional judgment and experience that 
this is reasonable for the assessment, though a different threshold could have been used with 
nontrivial implications. The exclusion of post farm-gate impacts from the model, though 
grounded in previous findings, is a value-laden decision, whereby our focus on comparative 
performance implicitly eschews quantifying the complete environmental footprints of the diets 
(e.g. cradle to grave). The notion of absolute sustainability is likewise ignored, since the results 
cannot relate the food consumption of a typical Dane to the planet’s seemingly limited ability to 
absorb impacts and continue operating in a manner amenable to human life. More crudely: we 
cannot determine whether the ‘footprint’ fits the ‘shoe’. As such, this study adopts a weaker 
sustainability stance: We assume that acting to minimize current environmental harm is ‘good’, 
even in the absence of knowing whether this action is enough in an absolute sense. Ironically, 
one can end up employing ostensibly deep ecological principles through the egalitarian 
perspective to support opposing weak sustainability actions. 

Moving from midpoint to endpoint in this study involved the acceptance of all of the 
weighting factors to aggregate to the three endpoint categories and their implicit assumptions, 
whilst the potential to move to a weighted single score, if taken, would have been imbued with 
values choices of the weighting factors and the belief that this is good scientific practice; 
decisions that are all loaded with implicit fundamental ethical and ideological judgments 
(Goedkoop et al., 2009). Hauschild (2005) notes that ethical values do not only come into play 
in the valuation step of LCA, but already in the definition of impact categories and how 
emissions are classified and characterized (e.g. toxicity in the individualist, hierarchist, and 
egalitrian perspectives in this study). This is most pronounced through the near ubiquity of 
carbon footprint as the preferred assessment in previous diet comparisons (see Section 
‘Introduction’) focusing on climate change over other environmental challenges. One of the most 
important aspects of LCA, where societal and ethical values come into play, is the weighting of 
environmental impact potentials, as the weighting factor for an environmental impact reflects the 
importance of the impact category relative to the other environmental impact categories 
considered in the LCA (Hauschild and Barlaz, 2011). Accordingly, the determination of the 
weighting factors should therefore involve both an analysis of the causal relationships subject to 
the LCA as well as an analysis of the ethical values of the major stakeholders of the study who 
the LCA practitioner wishes to accept the result of the LCA. If the major stakeholders do not 
share the ethical values inherent in the weighting this can change the outcome of the LCA 
(Hauschild and Barlaz, 2011). This is especially important when one considers that LCAs can 
be funded by companies and industry groups (e.g. an association of a particular type of farmer) 
that might have a stake in presenting a certain outcome to the public, potentially leading to the 
weighting of selected midpoint IPs or the exclusion of others to achieve results that align with 
the aims of the funding entity. 

LCA Aspect Note 

Implicit within LCA 

Use of LCA Focus on environmental aspects of sustainability. Inclusion of social-LCA 
and life-cycle costing expand the scope of sustainability assessment, but 
still eschews discussions on animal welfare. Also implicitly believes that 
the behavior of nature is in many ways predictable and equates an 
environmentally preferable choice with the adoption of a  



 

set of technologies that provides a function with potentially lower 
burdens than other comparable sets of technologies.    
 

Choices in LCA process 

Selection of IPs Involves the valuation of available indicators and the prioritization of 
those included. Can be used to obfuscate poor performance of a 
product-system through the purposeful exclusion of those IPs where the 
system has negative performance. Funders of a study may influence 
this.  
 
Various levels of certainty and consensus in modelling methodology 
exist for different LCIA indicators. At the midpoint level only climate 
change, ozone depletion and particulate matter formation indicators are 
widely considered to be the most mature (Hauschild et al., 2013). 
Results in all other categories should be viewed with a higher level of 
skepticism and require significant divergence between assessed 
systems in those categories before conclusions regarding comparative 
performance should be drawn.   
 

Use of cultural 
perspectives 

Egalitarian, hierarchist and individualist perspectives prescribe to 
egalitarianism, utilitarianism and libertarianism, respectively. Can be 
used as a lens to deal with uncertainty in modelling by adopting 
precautionary principle or as a way to focus on short- to mid-term 
impacts. 
 

Weighting of IPs Moving to endpoint IPs or generating a single score (after normalization) 
both involve weighting which involves a subjective valuation of the 
importance of various IPs. Can be used to minimize the impacts of IPs 
and obfuscate poor LCA results for a system. Funders of a study may 
influence this.  
 

Life cycle stages 
included 

Choice of excluding life cycle stages (e.g. assessing from cradle to farm-
gate) ignores full impacts and precludes any assessment of absolute 
sustainability 
 

The current case displays this clearly, as the toxicity and water scarcity index results 
remain ambiguous or even antagonistic to the general trend. One could easily reverse the 
conclusions of this study by employing single indicator methodologies focused on these IPs (à 
la carbon footprint) or through hefty weighting factors when moving towards a single indicator 
score. Relating this to the discussion of toxicity impacts in Section ‘Sensitivity of results to 
ReCiPe cultural perspectives’, the favored adoption of a global environmental indicator, such as 
carbon footprint, in comparing diets may be more appropriate considering the lack of spatial 
differentiation in LCA IPs. An adoption ofHeller et al.’s (2003) spatially disaggregated food 
product environmental assessment method may actually be better equipped to deal with other 
agricultural related IPs (erosion, eutrophication, etc.) than the traditional LCA tool. Moreover, 
the carbon footprint’s cynosure is also product of a larger environmental community’s valuation 
of climate change as the defining environmental issue of our epoch, requiring amelioration on 
ethical grounds. 

Robustness of LCA on diets 

On the whole it would seem that using LCA as a method to environmentally assess diets 
(or anything) is fraught with uncertainty, value judgments, and even value judgments about 
uncertainty, begging the question: does LCA show that switching to lower animal product diets 
reduces environmental burdens? The fact that this assessment, along with earlier diet LCAs, all 
point in the same direction hints either that these models are all similarly flawed, or their 
conclusions are substantiated. The former is unlikely considering the methodological variability 

Table 6 - Overview of the ethical perspectives built within LCA and the 

subjective choices made while performing LCAs 



 

employed across the studies (system boundaries, LCIA models, consequential vs. attributional 
methods, databases utilized, etc.), which would have identified large flaws in competing 
methods through contradictory results. We thus accept that movements towards vegetarian or 
vegan diets generally constitute environmental ‘goods’, but only if one is disposed to value 
pristine environmental state. 

Though this study has shown that LCA does have a role to play in assessing select 
aspects of the sustainability of diets, the discussion has shown that there remain a number of 
challenges in the application of LCA to this domain. Table 6 sums up the value choices implicit 
within the LCA methodology and the subjective choices made by an assessor while performing 
an LCA in hopes of providing the reader with the tools to critically interpret LCAs of diets. 

Conclusions 

Assessing diets from an environmental perspective is a complex task. Technical difficulties 
aside, the value systems embedded within assessment methods question the objectivity of such 
an endeavor, as evidenced by the normative values embedded within LCA, and the various 
ways these judgments influence model outcomes. Accepting that LCA can be used to predict 
environmental impacts, the assessment found that the results were robust against changing the 
‘cultural perspectives’ allowed within the ReCiPe 2008 LCIA methodology, adding credence – 
along with earlier studies – to the idea that shifts from diets with high meat intake towards 
vegetarian or vegan diets generally predicts positive environmental outcomes, with the 
exception of water scarcity, which was influenced by the higher grain, fruit, and vegetable intake 
of these diets. 

While our results support the general argument for reducing food-related environmental 
impacts through behavioral changes, difficulties in assessing toxicity impacts with LCA were 
noted. These require further methodological development or different assessment tools for 
those impacts – preferably at the local level – to account for the idiosyncrasies of receiving 
ecosystems (e.g. environmental risk assessment) or containing larger inventories of 
agrochemicals (e.g. USETox). Moreover, following vegetarian or vegan diets should not be 
conflated with sustainable lifestyles, since one can adhere to a low meat diet while causing 
negative environmental impacts in other aspects of life (e.g. commuting long distances by 
private vehicle, frequent air travel, large dwelling, etc.) that more than negate the positive 
environmental impacts of food choices. Dietary habits are only one of many areas where 
individuals can actively reduce their ecological burdens (Gjerris and Gaiani, 2014). 

It should be elucidated that polemical dietary shifts that completely eliminate meat or dairy 
products are not necessary to induce positive environmental change. Animal husbandry 
methods that are well situated within ecological cycles can be positive for the environment. 
However, these remain the exception, since ecologically destructive factory farming is still the 
conventional approach (Cribb, 2010). Saxe et al.’s (2012) work showed that a more 
environmentally focused omnivorous diet in a Nordic context (reduced food miles, strategic 
organic content, reduced ruminant consumption) could potentially have similar environmental 
performance to a fully vegetarian diet. However, given organic agriculture’s typically lower 
yields, a societal scale change to consuming primarily organic agriculture though positive in 
terms of fossil fuel reductions and toxicity attenuation, would consume more of the 
quintessential, constrained agricultural resource: land (Seufert et al., 2012). Notwithstanding, 
even shifting diets away from beef consumption would provide considerable environmental 
benefits (Nijdam et al., 2012). 

LCA is limited insofar as it is an environmental assessment tool that ignores numerous 
other issues surrounding food consumption. The positive health impacts of vegetarian and 
vegan diets (Singh et al., 2010) have been neglected here for instance, though these effects 
may also result from generally healthier lifestyle choices amongst their proponents (more active, 
lower rates of smoking, etc.) and not solely the diets (Chang-Claude and Frentzel-Beyme, 
1993). Furthermore, active lifestyles also have their own related environmental impacts (sports 
facilities, physiotherapy centers, etc.) that warrant consideration if a complete assessment of 
lifestyles is performed. Issues of animal welfare have also been ignored here, even though 
these could have significantly changed our comparison of the vegetarian and vegan diets, likely 
supporting a switch to a vegan diet despite their generally similar environmental performances. 
Despite these exclusions, the evidence of the environmental benefits of lower meat and dairy 
consumption continues to mount, not only in Denmark, but also in countries with similar food 
cultures. 

 



 

References 
Abeliotis, K., Detsis, V., Pappia, C., 2013. Life cycle assessment of bean production in the 
Prespa National Park, Greece. J. Clean. Prod. 41, 89–96. doi:10.1016/j.jclepro.2012.09.032 
Asner, G.P., Elmore, A.J., Olander, L.P., Martin, R.E., Harris, a. T., 2004. Grazing Systems, 
Ecosystem Responses, and Global Change. Annu. Rev. Environ. Resour. 29, 261–299. 
doi:10.1146/annurev.energy.29.062403.102142 
Baroni, L., Cenci, L., Tettamanti, M., Berati, M., 2007. Evaluating the environmental impact of 
various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 61, 
279–86. doi:10.1038/sj.ejcn.1602522 
Bengoa, X., 2005. Comparative Life Cycle Assessment Pork vs Tofu. 
Berlin, I., 1964. Four Essays on Liberty. Oxford University Press, Oxford. 
Berners-Lee, M., Hoolohan, C., Cammack, H., Hewitt, C.N., 2012. The relative greenhouse gas 
impacts of realistic dietary choices. Energy Policy 43, 184–190. 
doi:10.1016/j.enpol.2011.12.054 
Born, B., Purcell, M., 2006. Avoiding the Local Trap: Scale and Food Systems in Planning 
Research. J. Plan. Educ. Res. 26, 195–207. doi:10.1177/0739456X06291389 
Carlsson-Kanyama, A., Emmenegger, M.F., 2000. Energy Use in the Food Sector. 
Cederberg, C., Sonesson, U., Sund, V., Davis, J., 2009. Greenhouse gas emissions from 
Swedish consumption of meat , milk and eggs 1990 and 2005. 
Chang-Claude, J., Frentzel-Beyme, R., 1993. Dietary and lifestyle determinants of mortality 
among German vegetarians. Int. J. Epidemiol. 22, 228–236. doi:10.1093/ije/22.2.228 
Cribb, J., 2010. The Coming Famine. University of California Press, Berkeley, California, US. 
Dalgaard, R., Schmidt, J., Flysjö, A., 2014. Generic model for calculating carbon footprint of milk 
using four different life cycle assessment modelling approaches. J. Clean. Prod. 73, 146–153. 
doi:10.1016/j.jclepro.2014.01.025 
Davidson, M., 2009. Acceptable Risk to Future Generations, in: Asvild, L., Roeser, S. (Eds.), 
The Ethics of Technological Risk. Earthscan, pp. 77–91. 
Davis, J., Sonesson, U., Baumgartner, D.U., Nemecek, T., 2010. Environmental impact of four 
meals with different protein sources: Case studies in Spain and Sweden. Food Res. Int. 43, 
1874–1884. doi:10.1016/j.foodres.2009.08.017 
DTU Fødevareinstituttet, 2010. Danskernes kostvaner. Søborg. 
EC, 2010. International Reference Life Cycle Data System (ILCD) Handbook -- General guide 
for Life Cycle Assessment -- Detailed guidance, Constraints. doi:10.2788/38479 
Ekvall, T., Tillman, A.M., Molander, S., 2005. Normative ethics and methodology for life cycle 
assessment. J. Clean. Prod. 13, 1225–1234. doi:10.1016/j.jclepro.2005.05.010 
Ekvall, T., Weidema, B.P., 2004. System boundaries and input data in consequential life cycle 
inventory analysis. Int. J. Life Cycle Assess. 9, 161–171. doi:10.1007/BF02994190 
Ercin, a. E., Aldaya, M.M., Hoekstra, A.Y., 2012. The water footprint of soy milk and soy burger 
and equivalent animal products. Ecol. Indic. 18, 392–402. doi:10.1016/j.ecolind.2011.12.009 
FAO, 2014. FAOSTAT [WWW Document]. URL http://faostat3.fao.org/faostat-
gateway/go/to/home/E 
FAO, 2011. Global Food Losses and Food Waste - Extent, Causes and Prevention. Rome, IT. 
FAO, 2006. Livestock’s Long Shadow. Rome, IT. 
Feeley, K.J., Machovina, B., 2014. Increasing preference for beef magnifies human impact on 
world’s food web. Proc. Natl. Acad. Sci. U. S. A. 111, E794. doi:10.1073/pnas.1323071111 
Figueiredo, M., Potting, J., Serrano, L., Bezerra, M., Barros, V., Gondim, R., Nemecek, T., 2014. 
Life cycle assessment of Brazilian cashew, in: Proceedings of the 9th International Conference 
on Life Cycle Assessment in the Agri-Food Sector. 
Finkbeiner, M., 2014. Indirect land use change - Help beyond the hype? Biomass and 
Bioenergy 62, 218–221. doi:10.1016/j.biombioe.2014.01.024 
Finkbeiner, M., 2013. Indirect land use change (iLUC) within life cycle assessment (lca) – 
scientific robustness and consistency with international standards. 
Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., Klüppel, H.-J., 2006. The New International 
Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 11, 
80–85. doi:10.1065/lca2006.02.002 
Finnveden, G., 1997. Valuation methods within LCA - Where are the values? Int. J. Life Cycle 
Assess. doi:10.1007/BF02978812 
Flysjö, A., Cederberg, C., Henriksson, M., Ledgard, S., 2012. The interaction between milk and 
beef production and emissions from land use change – critical considerations in life cycle 
assessment and carbon footprint studies of milk. J. Clean. Prod. 28, 134–142. 
doi:10.1016/j.jclepro.2011.11.046 



 

 
Foley, J. a, Ramankutty, N., Brauman, K. a, Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, 
N.D.,  
O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., 
Monfreda,  
C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M., 2011. 
Solutions for a cultivated planet. Nature 478, 337–42. doi:10.1038/nature10452 
Gamborg, C., Sandsøe, P., 2005. Applying the notion of sustainability - dilemmas and the need 
for dialogue, in: Gunning, J., Holm, S. (Eds.), Ethics, Law, and Society, Volume 1. pp. 123–130. 
Garnett, T., 2011. Where are the best opportunities for reducing greenhouse gas emissions in 
the food system (including the food chain)? Food Policy 36, S23–S32. 
doi:10.1016/j.foodpol.2010.10.010 
Gerland, P., Raftery, A.E., Šev, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B.K., 
Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G.K., 2014. Reports World population 
stabilization unlikely this century 1–5. doi:10.1038/42935 
Gjerris, M., Gaiani, S., 2014. Food Waste and Consumer Ethics, in: Encyclopedia of Food and 
Agricultural Ethics. Springer. 
Gjerris, M., Gamborg, C., Röcklinsberg, H., Anthony, R., 2011. The Price of Responsibility: 
Ethics of Animal Husbandry in a Time of Climate Change. J. Agric. Environ. Ethics 24, 331–350. 
doi:10.1007/s10806-010-9270-6 
Gjerris, M., Gamborg, C., Saxe, H., 2015. What to buy? On the complexity of being a critical 
consumer. J. Agric. Environ. Ethics In Press. 
Gliessman, S., 2015. Agroecology: The ecology of sustainable food systems, 3rd ed. CRC 
Press, Boca Raton. 
Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. De, Struijs, J., Zelm, R. Van, 2009. 
ReCiPe 2008. 
Guinée, J., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., 
Wegener Seeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M., 
2002. Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer 
Academic Publishers, Dordrecht. 
Gunady, M.G. a., Biswas, W., Solah, V. a., James, A.P., 2012. Evaluating the global warming 
potential of the fresh produce supply chain for strawberries, romaine/cos lettuces (Lactuca 
sativa), and button mushrooms (Agaricus bisporus) in Western Australia using life cycle 
assessment (LCA). J. Clean. Prod. 28, 81–87. doi:10.1016/j.jclepro.2011.12.031 
Haas, G., Wetterich, F., Geier, U., 2000. LCA Methodology Life Cycle Assessment Framework 
in Agriculture on the Farm Level 5, 345–348. 
Haddad, E.H., Sabaté, J., Whitten, C.G., 1999. Vegetarian food guide pyramid: a conceptual 
framework. Am. J. Clin. Nutr. 70, 615S–619S. 
Hallström, E., Carlsson-Kanyama, A., Börjesson, P., 2015. Environmental impact of dietary 
change: a systematic review. J. Clean. Prod. 91, 1–11. doi:10.1016/j.jclepro.2014.12.008 
Hauschild, M.Z., 2005. Assessing environmental impacts in a life-cycle perspective. Environ. 
Sci. Technol. 39, 81A–88A. doi:10.1021/es053190s 
Hauschild, M.Z., Barlaz, M., 2011. LCA in waste management: Introduction to principle and 
method, in: Solid Waste Technology and Management. Blackwell Publishing, pp. 113–137. 
Hauschild, M.Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., Margni, M., 
De Schryver, A., Humbert, S., Laurent, A., Sala, S., Pant, R., 2013. Identifying best existing 
practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 
18, 683–697. doi:10.1007/s11367-012-0489-5 
Hauschild, M.Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., Margni, M., 
Schryver, A., Humbert, S., Laurent, A., Sala, S., Pant, R., 2012. Identifying best existing 
practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 
18, 683–697. doi:10.1007/s11367-012-0489-5 
Heller, M.C., Keoleian, G. a, 2003. Assessing the sustainability of the US food system: a life 
cycle perspective. Agric. Syst. 76, 1007–1041. doi:10.1016/S0308-521X(02)00027-6 
Heller, M.C., Keoleian, G. a, Willett, W.C., 2013. Toward a life cycle-based, diet-level framework 
for food environmental impact and nutritional quality assessment: a critical review. Environ. Sci. 
Technol. 47, 12632–47. doi:10.1021/es4025113 
Heller, M.C., Keoleian, G. a., 2014. Greenhouse Gas Emission Estimates of U.S. Dietary 
Choices and Food Loss. J. Ind. Ecol. 00, n/a–n/a. doi:10.1111/jiec.12174 
Hellweg, S., Frischknecht, R., 2004. Evaluation of Long-Term Impacts in LCA. Int. J. Life Cycle 
Assess. doi:10.1007/BF02979427 



 

Herrmann, I.T., Hauschild, M.Z., Sohn, M.D., McKone, T.E., 2014. Confronting Uncertainty in 
Life Cycle Assessment Used for Decision Support. J. Ind. Ecol. 18, 366–379. 
doi:10.1111/jiec.12085 
Hertwich, E.G., Hammitt, J.K., Pease, W.S., 2000. A theoretical foundation for life-cycle 
assessment: Recognizing the role of values in environmental decision making. J. Ind. Ecol. 4, 
13–28. doi:10.1162/108819800569267 
LCA Food, 2007. LCA Food Database [WWW Document]. URL http://lcafood.dk/ 
Loma Linda University - School of Public Health, 2008. The Vegetarian Food Pyramid [WWW 
Document]. URL http://www.vegetariannutrition.org/food-pyramid.pdf 
Macdiarmid, J.I., Kyle, J., Horgan, G.W., Loe, J., Fyfe, C., Johnstone, A., McNeill, G., 2012. 
Sustainable diets for the future: Can we contribute to reducing greenhouse gas emissions by 
eating a healthy diet? Am. J. Clin. Nutr. 96, 632–639. doi:10.3945/ajcn.112.038729 
McLaren, S.J., 2010. Life Cycle Assessment (LCA) of food production and processing: An 
introduction, in: Sonesson, U., Berlin, J., Ziegler, F. (Eds.), Environmental Assessment and 
Management in the Food Industry. Woodhead Publishing, Cambridge, UK, pp. 37–58. 
McMichael, A.J., Powles, J.W., Butler, C.D., Uauy, R., 2007. Food, livestock production, energy, 
climate change, and health. Lancet 370, 1253–63. doi:10.1016/S0140-6736(07)61256-2 
Meier, T., Christen, O., 2013. Environmental impacts of dietary recommendations and dietary 
styles: Germany as an example. Environ. Sci. Technol. 47, 877–88. doi:10.1021/es302152v 
Mepham, B. (Ed.), 1996. Food Ethics. Routledge, London. 
Modernel, P., Astigarraga, L., Picasso, V., 2013. Global versus local environmental impacts of 
grazing and confined beef production systems. Environ. Res. Lett. 8, 035052. 
doi:10.1088/1748-9326/8/3/035052 
Muñoz, I., Milà i Canals, L., Fernández-Alba, A.R., 2010. Life cycle assessment of the average 
Spanish diet including human excretion. Int. J. Life Cycle Assess. 15, 794–805. 
doi:10.1007/s11367-010-0188-z 
Munoz, I., Schmidt, J., Brandão, M., Weidema, B., 2014. Avoiding the streetlight effect: Rebuttal 
to “Indirect land use change (iLUC) within life cycle assessment (LCA) – scientific robustness 
and consistency with international standards” by prof. Dr. Matthias Finkbeiner. Aalborg. 
Naess, A., 1973. The shallow and the deep, long-range ecology movement. A summary. Inquiry 
16, 95–100. doi:10.1080/00201747308601682 
Nguyen, T.L.T., Hermansen, J.E., Mogensen, L., 2010. Environmental consequences of 
different beef production systems in the EU. J. Clean. Prod. 18, 756–766. 
doi:10.1016/j.jclepro.2009.12.023 
Nielsen, N., Jørgensen, M., Rasmussen, I., 2013. Greenhouse Gas Emissions from Danish 
Organic Egg Production estimated via LCA Methodology. 
Nijdam, D., Rood, T., Westhoek, H., 2012. The price of protein: Review of land use and carbon 
footprints from life cycle assessments of animal food products and their substitutes. Food Policy 
37, 760–770. doi:10.1016/j.foodpol.2012.08.002 
Nilsson, K., Flysjö, A., Davis, J., Sim, S., Unger, N., Bell, S., 2010. Comparative life cycle 
assessment of margarine and butter consumed in the UK, Germany and France. Int. J. Life 
Cycle Assess. 15, 916–926. doi:10.1007/s11367-010-0220-3 
Notarnicola, B., Tassielli, G., Renzulli, P.A., 2012. Modeling the Agri-Food Industry with Life 
Cycle Assessment, in: Curran, M.A. (Ed.), Life Cycle Assessment Handbook: A Guide for 
Environmentally Sustainable Products. Scrivener Publishing LLC, pp. 159–183. 
Owsianiak, M., Laurent, A., Bjørn, A., Hauschild, M.Z., 2014. IMPACT 2002+, ReCiPe 2008 and 
ILCD’s recommended practice for characterization modelling in life cycle impact assessment: a 
case study-based comparison. Int. J. Life Cycle Assess. doi:10.1007/s11367-014-0708-3 
Pimentel, D., Pimentel, M., 2003. Sustainability of meat-based and plant-based diets and the 
78, 660–663. 
Plevin, R.J., Delucchi, M. a., Creutzig, F., 2014. Using Attributional Life Cycle Assessment to 
Estimate Climate-Change Mitigation Benefits Misleads Policy Makers. J. Ind. Ecol. 18, 73–83. 
doi:10.1111/jiec.12074 
Price Waterhouse Cooper, 2010. Global City GDP Rankings 2008-2025. London, UK. 
Reckmann, K., Traulsen, I., Krieter, J., 2013. Life Cycle Assessment of pork production: A data 
inventory for the case of Germany. Livest. Sci. 157, 586–596. doi:10.1016/j.livsci.2013.09.001 
Roy, P., Orikasa, T., Thammawong, M., Nakamura, N., Xu, Q., Shiina, T., 2012. Life cycle of 
meats: an opportunity to abate the greenhouse gas emission from meat industry in Japan. J. 
Environ. Manage. 93, 218–24. doi:10.1016/j.jenvman.2011.09.017 



 

Saxe, H., 2014. The New Nordic Diet is an effective tool in environmental protection: it reduces 
the associated socioeconomic cost of diets. Am. J. Clin. Nutr. 99, 1117–1125. 
doi:10.3945/ajcn.113.066746 
Saxe, H., Larsen, T.M., Mogensen, L., 2012. The global warming potential of two healthy Nordic 
diets compared with the average Danish diet. Clim. Change 116, 249–262. doi:10.1007/s10584-
012-0495-4 
Scarborough, P., Appleby, P.N., Mizdrak, A., Briggs, A.D.M., Travis, R.C., Bradbury, K.E., Key, 
T.J., 2014. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and 
vegans in the UK. Clim. Change 125, 179–192. doi:10.1007/s10584-014-1169-1 
Schmidt, J.H., Weidema, B.P., 2008. Shift in the marginal supply of vegetable oil. Int. J. Life 
Cycle Assess. 13, 235–239. doi:Doi 10.1065/Ica2007.07.351 
Schmidt, J.H., Weidema, B.P., Brandão, M., 2015. A Framework for Modelling Indirect Land 
Use Changes in Life Cycle Assessment. J. Clean. Prod. 99, 230–238. 
doi:10.1016/j.jclepro.2015.03.013 
Seufert, V., Ramankutty, N., Foley, J. a, 2012. Comparing the yields of organic and 
conventional agriculture. Nature 485, 229–32. doi:10.1038/nature11069 
Shwarz, M., Thompson, M., 1990. Divided We Stand: Redefining politics, technology and social 
choice. University of Pennsylvania Press. 
Singh, P.N., Sabaté, J., Fraser, G.E., 2010. Does low meat consumption increase life 
expectancy in humans ? 1 – 3 78, 526–532. 
Statistics Denmark, 2014. Human consumption of food by type and unit [WWW Document]. 
URL http://www.statbank.dk/statbank5a/default.asp?w=1920 (accessed 11.17.14). 
Stevenson, M., 2014. Palm Oil Research [WWW Document]. URL 
http://www.palmoilresearch.org/statistics.html (accessed 10.13.15). 
The Economist, 2012. Kings of the carnivores [WWW Document]. URL 
http://www.economist.com/blogs/graphicdetail/2012/04/daily-chart-17 
Tilman, D., Clark, M., 2014. Global diets link environmental ustainability and human health. 
Nature. doi:10.1038/nature13959 
Tukker, A., Goldbohm, R.A., De Koning, A., Verheijden, M., Kleijn, R., Wolf, O., Pérez-
Domínguez,  
I., Rueda-Cantuche, J.M., 2011. Environmental impacts of changes to healthier diets in Europe. 
Ecol. Econ. 70, 1776–1788. doi:10.1016/j.ecolecon.2011.05.001 
University of Arkansas, 2012. National Scan-level Life Cycle Assessment for Production of US 
Peanut Butter Center for Agricultural and Rural. 
USDA, 2015. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. 
Van Dooren, C., Marinussen, M., Blonk, H., Aiking, H., Vellinga, P., 2014. Exploring dietary 
guidelines based on ecological and nutritional values: A comparison of six dietary patterns. 
Food Policy 44, 36–46. doi:10.1016/j.foodpol.2013.11.002 
Venti, C.A., Johnston, C.S., 2002. Issues and Opinions Modified Food Guide Pyramid for 
Lactovegetarians and Vegans 1050–1054. 
Wallén, A., Brandt, N., Wennersten, R., 2004. Does the Swedish consumer’s choice of food 
influence greenhouse gas emissions? Environ. Sci. Policy 7, 525–535. 
doi:10.1016/j.envsci.2004.08.004 
Weidema, B., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., Vadenbo, C., 
Wernet, G., 2013. Overview and methodology. Data quality guideline for the ecoinvent database 
version 3. Ecoinvent Report 1(v3). St. Gallen. 
Weidema, B., Schmidt, J., 2014. Consequential modelling - in life cycle inventory analysis. 
Weidema, B.P., 2003. Market information in life cycle assessment. 
  
 



S.1 – Omnivorous Danish Diet 

Food Product Consumption at 

plate according to 
Danish 

Household 

Surveyi (g/day)a 

Apparent 

consumption 
according to 

Danish Statisticsii 

(g/day) [year]b 

Breakdown of 

consumption 
within food 

groupc 

Edible 

Lossesiii 
(post 

farm)d  

Demand at 

farm for 
2000 kcal 

(g/day)e 

Milk Products 356 - - 8% - 

Milk - 253.4 [2011] 86.0% 8% 278.4 

Cream - 28.5 [2011] 9.7% 8% 31.3 

Crème 
fraiche 

- 
7.1 [2011] 2.4% 

8% 
7.8 

Butter - 5.5 [2011] 1.9% 8% 6.0 

Cheese 31 - - 8% 28.2 

Eggs 16 - - 8% 14.5 

Meat 105 - - 19% - 

Beef and 

Veal 

- 

77.0 [2011] 44.0% 

19% 

47.7 

Offals of 
cattle 

- 
2.2 [2011] 1.3% 

19% 
1.4 

Pork - 87.4 [2011] 50.0% 19% 54.2 

Offals of pigs - 3.0 [2011] 1.7% 19% 1.9 

Mutton - 3.3 [2011] 1.9% 19% 2.0 

Game - 1.9 [2011] 1.1% 19% 1.2 

Poultry  22 - - 19% 22.7 

Cereals 212 - - 31% - 

Wheat flour - 157.3 [2010] 55.1% 31% 141.6 

Durum wheat - 16.7 [2009] 5.9% 31% 15.1 

Rye flour - 37.5 [2010] 13.2% 31% 33.8 

Oats - 27.4 [2010] 9.6% 31% 24.7 

Rice and rice 

flour 

- 

17.5 [2009] 6.1% 

31% 

15.8 

Other flour 
and groats 

- 26.6 [2010] 
9.3% 

31% 24.0 

Potato flour - 2.2 [2010] 0.8% 31% 2.0 

Vegetables 153 - - 26% - 

Potatoes 94 - - 32%f 115.6 

Cucumbers - 23.6 [2006] 14.7% 26% 25.3 

Pepper - 0 [2011] 0.0% 26% 9.0 

White 

cabbage 

- 

8.4 [2006] 5.2% 

26% 

9.0 

Red cabbage - 8.4 [2006] 5.2% 26% 0.6 

Brussels 

sprouts 

- 

0.5 [2006] 0.3% 

26% 

11.8 

Cauliflower 
and 

Broccoli 

- 

11.0 [2006] 6.8% 

26% 

11.8 

Chinese 
cabbage 

- 
5.5 [2006] 3.4% 

26% 
6.8 

Leeks - 6.3 [2006] 3.9% 26% 6.8 

Beetroots - 4.7 [2006] 2.9% 32%f 5.4 

Celeriac - 2.2 [2006] 1.4% 32%f 2.6 

Carrots - 38.1 [2006] 23.7% 32%f 44.5 

Onions - 29.0 [2006] 18.1% 26% 31.2 

Lettuce - 23.3 [2006] 14.5% 26% 25.0 

Fruits 280 - - 26% - 

Tomatoes - 84.1 [2006] 33.6% 26% 106.2 

Cherries 
(sweet and 

sour) 

- 

5.2 [2006] 2.1% 

26% 

6.6 



Strawberries - 7.7 [2006] 3.1% 26% 9.7 

Apples - 134.5 [2006] 53.7% 26% 169.9 

Pears - 18.9 [2006] 7.5% 26% 23.9 

Sugar 36 - - 0% 30.1 

Oils 34 - - 8% - 

Margarine - - - 8% 27.8 

Margarine: 

Rapeseed 
Oilg 

- - - 8% 

16.1 

Margarine: 

Sunflower 
Oilg 

- - - 8% 

1.5 

Margarine: 

Maize Oilg 

- - - 8% 

1.5 

Margarine: 

Palm Oilg 

- - - 8% 

5.9 

Margarine: 
Palm 

Kernel Oilg 

- - - 8% 

5.9 

Grey rows indicate that the food item was disaggregated into its constituent items which were then 
considered in the final consumption. 
a Average Danish consumption to provide 10MJ energy per day, in the broad food groups defined and 
selected staples (e.g. potatoes) 
b Taken from Danish Statistics for the most recent year available for every food item. Provided by source 

in kg consumed per capita per annum, and adjusted to grams/day by multiply by a factor of (1000/365). 
c Taken is the mass of that food item divided by the sum of masses of all other food items within that food 

group. For example, ‘milk’ was taken as 253.4/(253.4+28.5+7.1+5.5)=86%. 
d Taken as losses for the ‘Processing’, ‘Distribution’ and ‘Consumption’ for the food groups.   
e Calculated as percentage of that food item in its’ food group times amount consumed of that food group 

in first column. Adjusted for food losses with a factor of 1/(1-food losses). Adjusted to 2000 kcal/day 
with a factor of 2/(10/4.18). 
f Taken as losses  for ‘Roots and Tubors’ 
g Breakdown of constituent oils taken from Nilsson et al. (2010)iv 

                                                        
i DTU Fødevareinstituttet. (2010). Danskernes kostvaner. Søborg [In Danish] 
ii Statistics Denmark, ‘Food Consumption’, 

http://www.dst.dk/en/Statistik/emner/forbrug/foedevareforbrug.aspx, last accessed: November 19, 2014 
iii

 FAO. (2011). Global Food Losses and Food Waste - Extent, Causes and Prevention. Rome, IT. 

Retrieved from http://www.fao.org/docrep/014/mb060e/mb060e00.pdf 
iv

 Nilsson, K., Flysjö, A., Davis, J., Sim, S., Unger, N., & Bell, S. (2010). Comparative life cycle 

assessment of margarine and butter consumed in the UK, Germany and France. The International 

Journal of Life Cycle Assessment, 15(9), 916–926. doi:10.1007/s11367-010-0220-3 

S.2 – Vegetarian and Vegan Diets 
Food 
Product 

Vegetarian 
recommend

ed daily 

servings for 
2000 kcaliv 

Vegan 
recommend

ed daily 

servings for 
2000 kcal ii 

Mass 
per  

servin

g (g)i 

Breakdo
wn of 

food 

items 
within 

food 
groupa 

 

Edibl
e 

losse

s 
(post 

farm)
iv 

Vegetariandem
and at farm for 

2000 kcal 

(g/day)e 

Vegan 
deman

d at 

farm 
for 

2000 
kcal 

(g/day

) 

Dairy 2 - - - 8% - - 

Milk - - 250 79.1/0% 8% 449.8 - 

Cheese - - 42 20.9/0% 8% 19.1 - 

Eggs 0.5 - 57 100/0% 19% 31.0 - 



                                                                                                                                  
Whole 

Grains 

6 7 - - 33% - - 

Breadb - - 30 16.6% 33% 44.8 52.2 

Pastab - - 100 16.6% 33% 149.3 174.1 

Bunb - - 30 16.6% 33% 44.8 52.2 

Breakfast 
Cerealb 

- - 30 16.6% 33% 
44.8 

52.2 

Crackerb - - 30 16.6% 33% 44.8 52.2 

Wheat: 
bread 

- - - - 33% 9.0 10.4 

Wheat: 

pasta 

- - - - 33% 149.3 174.1 

Wheat: 

bun 

- - - - 33% 31.3 36.6 

Wheat: 
Breakfast 

cereal 

- - - - 33% 44.8 52.2 

Wheat: 
cracker 

- - - - 33% 44.8 52.2 

Rye: 

bread 

- - - - 33% 21.8 25.3 

Rice - - 100 16.6% 33% 145.0 316.2 

Vegetables 8 8 50 - 26% - - 

Potatoes - - - 40.5% 26% 238.4 238.4 

Cucumber
s 

- - - 
8.7% 

26% 
47.1 47.1 

Pepper - - - 0.0% 26% 0 0 

Spring-

white 
cabbage 

- - - 

3.1% 

26% 

16.7 16.7 

Spring-

red 
cabbage 

- - - 

3.1% 

26% 

16.7 16.7 

Brussels 

sprouts 

- - - 

0.2% 

26% 

1.1 1.1 

Cauliflow

er and 
broccoli 

- - - 

4.1% 

26% 

21.9 22.0 

Chinese 

cabbage 

- - - 

2.0% 

26% 

11.0 11.0 

Leeks - - - 2.3% 26% 12.6 12.6 

Beetroots - - - 1.7% 32% 10.1 10.1 

Celeriac - - - 0.8% 32% 4.8 4.8 

Carrots - - - 14.1% 32% 82.8 82.8 

Onions - - - 10.7% 26% 58.1 58.1 

Lettuce - - - 8.6% 26% 46.6 46.6 

Fruits 4 4 150 - 26% - - 

Tomatoes - - - 33.6% 26% 272.3 272.3 

Cherries 
(sweet 

and sour) 

- - - 2.1% 26% 

16.9 16.9 

Strawberri
es 

- - - 3.1% 26% 
24.8 24.8 

Apples - - - 53.7% 26% 435.5 435.5 

Pears - - - 7.5% 26% 61.2 61.2 

Legumes 
and Soy 

3 3 -  26% - - 

Beans - - 100 33.3% 26% 135.1 135.1 



                                                                                                                                  
Tofu - - 125 33.3% 26% 94.6 94.6 

Soy 
beveragec 

- - 250 33.3% 26% 337.8 337.8 

Soy 

beverage: 
soy beans 

- - - - 26% 23.6 23.6 

Soy 

beverage: 
sugar cane 

- - - - 26% 8.5 8.5 

Soy 

beverage: 
maize 

starch 

- - - - 26% 0.1 0.1 

Nuts 1 2 30 - 26% - - 

Peanuts - - - 50% 26% 20.3 40.5 

Cashews - - - 50% 26% 20.3 40.5 

Vegetable 
Oils 

2 2 14 - 8% - - 

Vegetable 

Oil 

- - - 50% 8% 7.6 7.6 

Palm Oil - - - - 8% 3.5 3.5 

Soybean 

Oil 

- - - - 8% 2.4 2.4 

Rapeseed 
Oil 

- - - - 8% 1.7 1.7 

Margarine
d 

- - - 50% 8% 7.6 7.6 

Margarine

: rapeseed 

oil 

- - - - 8% 2.5 2.5 

Margarine

: 

sunflower 
oil 

- - - - 8% 0.2 0.2 

Margarine

: maize oil 

- - - - 8% 0.2 0.2 

Margarine

: palm oil 

- - - - 8% 0.9 0.9 

Margarine

: palm 

kernel oil 

- - - - 8% 0.9 0.9 

Grey rows indicate that the food item was disaggregated into its’ constituent items which were then 
considered in the final consumption. 
a Splitting of the food groups was done using the same breakdown of foods consumed according to the 

Danish Statistics or evenly between foods within that food group where these statistics were lacking.  
b Food items broken into constituent items using the LCA Foodiv or assumed to be comprised only of 

wheat where a breakdown was lacking.  
c Soy beverage disaggregated using Ercin et al. (2012)iv 
d Breakdown of constituent oils for margarine taken from Nilsson et al. (2010)iv 
e Calculated as the total number of servings for that food group multiplied by that food items share of 
consumption in that food group and then multiplied by the factor accounting for food losses. For example, 

since ‘Milk’ accounts for 79.1% of the total dairy needs, it is calculated as 2 servings * 0.791 * 250 
g/serving * 1/(1-0.08). 

 
S.3 Custom Process Inventories 
Inputs Amount Units Amount Units 

Spring Barley 91.9 t/a 0.18 kg/kg milk 

Soy meal 77.2 t/a 0.15 kg/kg milk 



                                                                                                                                  
Lubricant 1068 t/a 0.002 kg/kg milk 

Fertilizer, calcium ammonium nitrate 6602 t N/a 0.01 kg/kg milk 

Fertilizer P 909 t P/a 0.002 kg P/kg milk 

Fertilizer K 2549 t K/a 0.005 kg K/kg milk 

P, mineral feeda 137 t N/a 0.0003 kg N/kg milk 

     

Electricity 42162 kWh/a 0.08 kWh/kg milk 

Heating 690 MJ/a 0.001 MJ/kg milk 

Traction 376043 MJ/a 0.75 MJ/kg milk 

Land 65 ha 0.0001 ha/kg milk 

     

Outputs     

Bread wheat 12.1 t/a 0.02 kg/kg milk 

Rapeseed 1.1 t/a 0.002 kg/kg milk 

Milk 499.3 t/a 1 kg 

Beef meatb 20.6 t/a 0.01 kg/kg milk 

 

    

Air Emissions     

Methane 12316 t/a 0.02 kg/kg milk 

Ammonia 3426 t/a 0.007 kg/kg milk 

N2O 920 t/a 0.002 kg/kg milk 

 

    

Emissions to Water     

Nitrate 31112 t/a 0.06 kg/kg milk 

Phosphate 113 t/a 0.0007 kg/kg milk 

 

Milk Production – Process inventory for milk production on the marginal Danish farm according to 
Food LCAiv 

Numbers have been rounded for legibility. The model also assumes that 1.12 kg of milk are required to 

produce 1 kg of milk at market according to LCA Foodi.  
a Mineral feed assumed to consist of 40% dolomite and 60% zeolite by volumeiv.  
b Slaughter weight of cows taken as the weighted average of sucklers reaching market from Nguyen et al. 
(2010)iv. Amount of avoided beef production avoided at market taken from Cederberg et al. (2003)iv.   

 

Cream Production – Dynamic market reactions to the production of creamiv.   
 

Cream is a constrained by-product of milk. 
The utility of cream is its fat content. 

Consuming butter will means fat content in cream typically used for other products must be procured 

from elsewhere 
25% of cream fat would have been used as fat content in powdered milk - this is substituted with 

marginal vegetable oil (palm oil) 
75% of cream fat actually sees consumers switch from high fat to low fat cheese 

 

Palm Oil substitution for fat content allocated to butter production 

Cream Lost 0.25 kg 

   

Product Fat Content Notes 

Cream 25% Estimated 

Palm Oil 100% Estimated 

 0.0625 kg 

 
Low fat cheese produced as substitution for high fat cheese 

Cream Lost 0.75 kg 

   

Product Fat Content Notes 

Cream 25% Estimated 

High Fat Cheese 35% Estimated 



                                                                                                                                  
Low Fat Cheese 11% Estimated 

   

High Fat Cheese Lost 0.54 kg 

Low Fat Cheese Produced 1.70 kg 

 

 
 

Crème Fraiche Production – Dynamic market reactions to the production of crème fraiche.   
 

Same market reactions as outlined for cream demand market.  

 
Palm Oil substitution for fat content allocated to crème fraiche production 

Cream Lost 0.25 kg 

   

Product Fat Content Notes 

Crème Fraiche 40% Estimated 

Palm Oil 100% Estimated 

Palm Required 0.1 kg 

 
Low fat cheese produced as substitution for high fat cheese 

Cream Lost 0.75 kg 

   

Product Fat Content Notes 

Crème Fraiche 40% Estimated 

High Fat Cheese 35% Estimated 

Low Fat Cheese 11% Estimated 

   

High Fat Cheese Lost 0.88 kg 

Low Fat Cheese Produced 2.73 kg 

 
Butter Production – Dynamic market reactions to the production of butter.   

 

Same market reactions as outlined for cream demand market.  
 

Palm Oil substitution for fat content allocated to butter production 

Cream Lost 0.25 kg 

   

Product Fat Content Notes 

Butter 81% Estimated 

Palm Oil 100% Estimated 

Palm Required 0.2 kg 

 

Low fat cheese produced as substitution for high fat cheese 

Cream Lost 0.75 kg 

   

Product Fat Content Notes 

Butter 81% Estimated 

High Fat Cheese 35% Estimated 

Low Fat Cheese 11% Estimated 

   

High Fat Cheese Lost 1.74 kg 

Low Fat Cheese Produced 5.52 kg 

 

Cheese Production    
 
Assumes only whey produced as a single byproduct. Values taken for soft cheese in a US contextiv.  

 



                                                                                                                                  
Input Amount Unit 

Milk 8.4 kg/kg dry. wt. cheese 

Milka 13.8 kg/kg cheese 

Output   

Cheese 1 kg 

Whey 12.8 kg 
a Water content taken as 39%iv. Total milk taken as 1/(1-% wet wt.) Adjusted for 12% loss of milk at 
dairy.  

 

Beef Production 

 

Beef production taken from Nugyen et al. (2010)iii. 

 

Inputs Unit per 1000 kg 

slaughter weight 

per 1000 kg meat at 

marketa 

per kg meat at 

market 

Farm Supplied Feed     

Outdoor Grazing     

Grazed Grass kg 9021 16174 16.17 

Indoor Grazing     

Grass silage kg 5446 9764 9.76 

Maize silage kg 2404 4310 4.31 

Spring Barley kg 2254 4041 4.04 

Straw kg 1726 3095 3.09 

     

Imported  Feed     

Soy meal  kg 12 22 0.02 

Mineral Feedb kg 131 235 0.24 

     

Land Use     

Grass grazed (low) ha a 3.01 5 0.005 

Grass siliage (high) ha a 0.68 1 0.001 

Cereals ha a 0.6 1 0.001 

     

Fertilizer Import     

Nitrogen kg 478 857 0.86 

Phosphorous kg 21.5 39 0.04 

     

Direct on-farm energy 

use     

Electricity used in 
stables MWh 1.07 2 0.0021 

Electricity used in crop 
processing MWh 0.64 1 0.001 

Diesel GJ 14 25 0.03 

     

Transport      

Feed     

By ship tkm 162 290 0.29 

By Truck tkm 12 22 0.02 

     

Ouputs     

Gaseous Emissions      

N2O kg 26.2 47 0.06 

CH4     

Enteric fermentation kg 417.6 749 0.75 

Manure management kg 58.5 105 0.10 

NH3 kg 95.6 171 0.17 



                                                                                                                                  
     

Liquid Emissions     

NO3 kg 123.1 221 0.22 

PO4 kg 2.7 5 0.005 

     

Soil carbon loss kg 145 260 0.26 

Numbers have been rounded for ease of reading.  
aMeat produced per slaughtered cow taken as weighted average of cattle reaching market from the article. 
bSame assumptions as for mineral feed in the milk system.  
 

Pork Productioniv 
 

 

Inputs Amount Units Amount Units 

Feed     

Wheat 1090 kg 1.09 kg/kg pork 

Barley 440 kg 0.44 kg/kg pork 

Rye 161 kg 0.16 kg/kg pork 

Soybean Meal 188 kg 0.19 kg/kg pork 

Others 648 kg 0.65 kg/kg pork 

     

Energy/Transport     

Heat (oil) 130.2 kWh 0.13 kWh/kg pork 

Electricity 117.6 kWh 0.12 kWh/kg pork 

Transport     

Ship  3375 tkm 3.38 tkm/kg pork 

Truck 28t 868 tkm 0.87 tkm/kg pork 

Traction 206 MJ 0.21 MJ/kg pork 

     

Water 353 m3 0.35 m3/kg pork 

     

Land 71 ha  0.0004 ha/kg pork 

     

Outputs     

     

Air Emissions     

Methane  26.7 kg 0.03 kg/kg pork 

N2O 1 kg 0.001 kg/kg pork 

NO2 -2.4 kg -0.002 kg/kg pork 

Ammonia 20.7 kg 0.02 kg/kg pork 

Water Emission     

NO3 12 kg 0.01 kg/kg pork 

PO4 0.5 kg 0.0005 kg/kg pork 

     

Avoided Fertilizer     

N  49 kg 0.05 kg/kg pork 

P 13 kg 0.01 kg/kg pork 

K 12 kg 0.01 kg/kg pork 

Assumed that for every 120 kg of biomass produced, 94.7 kg of meat enters the marketviii. Numbers have 
been rounded for ease of reading.  

 

Cherry Production 

 

Assumed cherry farmers supplying Denmark have similar technological level of development as 
Californian system. Values taken from Carlsson-Kanyama et al. (2000)iv. 

 

Inputs Amount Units Amount Units 



                                                                                                                                  
Diesel 288 L 0.02 L/kg cherries 

Gasoline 96 L 0.008 L/kg cherries 

N-fertilizer 112 kg 0.009 kg/kg cherries 

P-fertilizer 34 kg 0.003 kg/kg cherries 

K-fertilizer 152 kg 0.01 kg/kg cherries 

Land 1 ha 0.00008 ha/kg cherries 

Outputs     

Cherries 12125 kg 1 kg 

Numbers have been rounded for ease of reading.  

 

Strawberry Production 

 

Assumed strawberry farmers supplying Denmark have similar technological level of development as 

Californian system. Values taken from Carlsson-Kanyama et al. (2000)iv. 

 

Inputs Amount Units 

CaNO3 0.02 kg/kg strawberries 

KNO3 0.03 kg/kg strawberries 

NH3PO4 0.005 kg/kg strawberries 

MgSO4 0.003 kg/kg strawberries 

Traction 102 MJ/kg strawberries 

Irrigation 1 L/kg strawberries 

Ouputs   

Strawberries 1 kg 

N2O (to air) 0.009 kg/kg strawberries 

Numbers have been rounded for ease of reading.  

 

Tofu 

 

Assumes that 0.56 kg of soybeans are required for 1 kg of produced tofu (the balance being water and 
coagulant)iv.  

 
Soy Beveragexi – agricultural inputs that go into soy beverage manufacturing.  

 

Inputs Amount Units 

Soybean 0.07 kg/kg soy beverage 

Sugar cane 0.03 kg/kg soy beverage 

Maize starch 0.00003 kg/kg soy beverage 

Outputs   

Soy Beverage 1 kg 

 

Peanutsiv 
 

Inputs Amount Units 

Rye Seed 0.73 g/kg peanuts 

Boron 0.17 g/kg peanuts 

Lime/Gypsum 317 g/kg peanuts 

Energy   

Pre-harvest fuela 18 g/kg peanuts 

Harvesting fuela 26 g/kg peanuts 

Electricity 0.06 kWh/kg peanuts 

Outputs   

Peanuts 1 kg 
a Assumed to be diesel.  

 
Margarineiv - agricultural inputs that go into margarine manufacturing.  

 



                                                                                                                                  
Inputs Amount Units 

Rapeseed oil 0.36 kg/kg margarine 

Sunflower oil 0.03 kg/kg margarine 

Maize oil 0.03 kg/kg margarine 

Palm oil 0.13 kg/kg margarine 

Palm kernel oil 0.13 kg/kg margarine 

Outputs   

Margarine 1 kg 

 

Eggsiv - Based on LCA of organic eggs which likely have lower production efficiency per unit input, 
which may elevate the results, but only marginally when taken in the context of the diets. Waste by-

products should be interpreted as the goods at the market that processed chicken waste would substitute, 

not products directly resulting from egg production.   

 

Inputs Amount Units 

Transport 0.2 kg/kg eggs 

Wheat 1.37 kg/kg eggs 

Rapeseed  0.20 kg/kg eggs 

Soybean meal 0.29 kg/kg eggs 

Barley 0.10 kg/kg eggs 

Maize 0.31 kg/kg eggs 

Soybeans 0.18 kg/kg eggs 

Oats 0.11 kg/kg eggs 

Protein Pea 0.07 kg/kg eggs 

Limestone 0.20 kg/kg eggs 

Water 5.79 L/kg eggs 

Silage 0.09 kg/kg eggs 

Straw 0.09 kg/kg eggs 

Sand 0.04 kg/kg eggs 

Electricity 0.32 kWh/kg eggs 

Diesel 0.0054 kg/kg eggs 

Gas 0.05 MJ/kg eggs 

Outputs   

Eggs 1 kg/kg eggs 

Fertilizer as N (manure by-product) 0.0082 kg/kg eggs 

Barley (waste treatment by-product) 0.00084 kg/kg eggs 

District Heat (waste treatment by-
product) 

0.0005 kg/kg eggs 

Maize (waste treatment by-product) 0.041 kg/kg eggs 

N2O (to air) 0.00082 kg/kg eggs 

Methane (to air) 0.0016 kg/kg eggs 

 

Vegetable Oil Mixiv - Blend of the top 3 vegetable oils by production volume in 2014, accounting for 

over 2/3 of global production 
 

Inputs Amount Units 

Palm oil 0.47 kg/kg oil mix 

Soybean oil 0.33 kg/kg oil mix 

Rapeseed oil 0.2 kg/kg oil mix 

Output   

Vegetable oil mix 1 kg 

 

Cashewsiv 

 

Inputs Amount Units 

Land 5.8*10-5 ha/kg cashews 

Limestone 0.63 kg/kg cashews 



                                                                                                                                  
Gypsum 0.029 kg/kg cashews 

Copper 9.6*10-6 kg/kg cashews 

Manganese 2.4*10-5 kg/kg cashews 

Molybdenum 1.2*10-6 kg/kg cashews 

Zinc 1.1*10-4 kg/kg cashews 

Iron 3.6*10-5 kg/kg cashews 

Urea 0.20 kg/kg cashews 

Phosphate 0.47 kg/kg cashews 

KCl 0.05 kg/kg cashews 

Glyphosate 0.0014 kg/kg cashews 

Diesel 0.089 kg/kg cashews 

Water 5.48 L/kg cashews 

Outputs   

Cashews 1 kg/kg cashews 

Wood 3.89 kg/kg cashews 
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Abstract 

The food demands of the United States (US) impart significant environmental pressures. The 
high rate of consumption of beef has been shown to be the largest driver of food-borne greenhouse gas 

emissions, water use and land occupation in the US diet. The environmental benefits of substituting 

animal products with vegetal foods are well documented, but significant psychological barriers persist in 
enacting dietary transitions. Here we use life cycle assessment to appraise the environmental performance 

of a novel vegetal protein source in the mean US diet where it replaces ground beef, and in vegetarian and 

vegan diets where it substitutes for legumes, tofu and other protein sources. We find that relative to the 
mean US diet, vegetarian and vegan diets significantly reduce per-capita food-borne greenhouse gas 

emission (32% and 67%, respectively), water use (70% and 75%, respectively) and land occupation (70% 

and 79%, respectively). The substitution of 10%, 25% and 50% of ground beef with plant-based burger 
(PBB) at the national scale results in substantial reductions in annual US dietary greenhouse gas 

emissions (4.55-45.42 Mt CO2 equivalents), water consumption (1.30-12.00 km3) and land occupation 

(22300-190100 km2). Despite PBB’s elevated environmental pressures compared to other vegetal protein 
sources, our analysis shows that minimal risk is present for the disservices of PBB substitution in non-

meat diets to outweigh the benefits of ground-beef substitution in the omnivorous American diet. Demand 

for plant-based oils in PBB production has the potential to increase land use pressures in biodiversity 
hotspots, though these could be obviated through responsible land stewardship. Although the apparent 

environmental benefits of the PBB are contingent on actual uptake of the product, this study demonstrates 

the potential for non-traditional protein substitutes to play a role in a transition towards more sustainable 
consumption regimes in the US and abroad.   

1. Introduction  

The food-related environmental footprint of the United States (US) is among the highest in the 
world per capita [1,2], driven largely by animal-sourced products [3–5]. Of all livestock products, beef is 

the most environmentally taxing, both in terms of total global impacts from the sector and normalized per 

unit mass [1,6–9]. Studies of the US diet have pinpointed beef as a main driver of greenhouse gas (GHG) 
emissions (enteric fermentation, deforestation) [3,10], water use (hydration and feed irrigation) [11] and 

land occupation (pasture and cropland for feed) [11,12]. Although domestic consumption has waned in 

recent years, beef remains a staple of the American diet [13–15], representing a key opportunity to 
attenuate the environmental impacts of US food demands both through supply- and demand-side 

initiatives.   

Beef production is one of the least efficient animal agriculture systems at any scale, due to the 
metabolic requirements associated with using cattle to convert plant materials into human-available 

protein and energy [6,11,16]. Streamlining existing cattle systems through improved feed quality and 

consolidation in feedlots offer limited opportunities for improving resource efficiencies and feed 
conversion ratios [17,18]. Further, the US already maintains an industrialized beef production landscape 

with some 97% of beef finished on feedlots [19]. Since the late 1970s, the land, feed and water resources 

required to produce a given volume of beef have dropped significantly [20], yet production of beef still 
occupies 88% of the US land footprint allocated to animal agriculture (or around 41% of the contiguous 

US) [11]. Given production-side constraints, an alternative is to substitute beef with plant-based protein 

sources (legumes, beans, tofu, seitan, etc.) providing identical nutritional functionality with lower 
embodied environmental burdens [21,22]. The nutritional role of beef in the US diet could be performed 
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by plant-sourced foods using 10% of the land while producing 4% of the GHGs [12], and shifts from 

standard US to vegetarian and vegan diets could reduce dietary GHGs by 30% and 50%, respectively [3].  

Although plant-based diets could reduce US diet environmental pressures, and demand for 
beef in the US is elastic [12,13], behavioral hurdles exist in getting Americans to trade beef for beans. 

Eating beef (and meat in general) is tied to a host of social, psychological and hedonic factors: taste, the 

perception that a meal requires meat, communal eating practices, dietary guidelines and advertising 
espousing meat as an essential part of a healthy diet, etc. [23–26]. Given the challenge of shifting 

consumer practices surrounding meat, lower-intensity beef alternatives that obviate these psychological 

impasses provide a mechanism to reduce US beef intake, promote reduced-meat diets and lower dietary 
environmental impacts (barring currently unrealistic bans or taxes on beef).  

A plethora of technologies to produce novel protein substitutes that more authentically mimic 

meat than existing vegetal foods (e.g. soy-based, mycroprotein or gluten products) have emerged in recent 
years, including ‘cellular agriculture,’ yeast culture, bioprinting, scalable arthropod farming, and plant-

based functional equivalents [27]. Though most of these technologies were initially developed in 

university labs, such as the ‘$300,000 test-tube hamburger’ produced by Post et al. [27,28], the most 
market-ready technologies are those that have been adopted and refined in industry. Hence, focusing on 

the commercially available products coming out of private labs provides the best opportunity to gauge the 

potential short- to mid-term environmental benefits of the emerging generation of animal-protein 
alternatives [27].     

One such technology is the plant-based burger (PBB) by Impossible Foods, which is a 

substitute designed to match the experience of cooking and consuming ground beef [27]. By fulfilling the 
same gustatory, culinary and nutritional functions as traditional beef, the adoption barrier associated with 

consumption of vegetal in lieu of animal proteins is reduced. The primary ingredients of the PBB include 

texturized wheat protein (wheat TVP), coconut oil, and potato protein. In order to deliver the same 
sensory characteristics of animal-sourced beef, the company developed a modified yeast culture to 

produce “heme” (leghemoglobin), a protein which occurs naturally in the root nodules of leguminous 

plants and functions as an analog for the myoglobin that gives beef its distinct flavor and cooking 
characteristics.  

Resource use in producing plant-based beef is much lower than traditional production via 

cattle [29,30]. Compared to a typical US beef production system, PBB requires less than one quarter of 
the resources as modeled according to pilot scale production data collected in 2015 and refined in 2016 to 

account for minor supply chain changes [31]. As is the case with beef, land and water use associated with 

production of PBB is dominated by raw ingredients (agricultural products, maintenance of the yeast 
culture) rather than by production or formulation. While the majority of emissions within the beef supply 

chain are derived from cattle (raw materials), PBB emissions impacts are split between raw materials and 

production stages.    
Aside two studies of in-vitro cultured meat production relying on estimates for production 

inputs [30,32], there exists no published environmental assessments using primary data from operations 

above bench-scale of novel protein sources that truly mimic the essential sensory aspects of ground beef 
from cattle. Here we look at the potential environmental and resource implications of substituting ground 

beef in the 2010 mean US diet (MUD), and plant-based proteins in the hypothetical vegetarian (VEG) and 

vegan (VGN) diets with PBB, at individual and national scales. Lastly, the potential for negative 

environmental trade-offs due to PBB adoption by VEG and VGN Americans are examined. 

2. Materials and Methods 

Life cycle assessment (LCA) is a widely used method to quantify the environmental impacts 

of food production systems [1,3]. LCA focuses at the processes along a supply chain that deliver a 
service, accounting for material and energy inputs, and chemical emissions to the environment (herein, 

life cycle inventory or LCI), thus providing an appraisal of system-wide environmental impacts and 

resource draws [33,34]. We apply LCA to the US food supply chain, setting the system boundaries as the 
agricultural and processing stages, excluding the distribution (transport and packaging), preparation and 

disposal phases of the life cycle. These omissions underestimate environmental impacts and resource use 

[35,36], but given uncertainties surrounding relevant data for these stages and their typically marginal 
contribution to the outcomes of other food LCAs [10,37,38], the majority of life-cycle impacts should be 

captured here. 
Three different archetypical American dietary patterns are modeled: the mean-US (MUD), 

vegetarian (VEG) and vegan (VGN) diets. The MUD is constructed from the 2010 USDA’s loss-adjusted-

food-availability estimates of per capita consumption of ~250 food items in the US [39]. The VEG and 
VGN are built from the USDA’s 2010 dietary guidelines for vegetarian and vegan diets consuming 2000 

kcal per day [40] (in line with measured adult vegetarian energy intake [41]), adapted to actual US 

consumption regimes using the 2010 loss-adjusted data. For instance, USDA guidelines suggest 1.5 cups 



 

of dark green vegetables per week for the VEG. Here the constituent dark green vegetables (e.g. broccoli, 

kale, spinach, etc.) were provided in the same ratios as found in the 2010 MUD. USDA data on food 

waste at the consumer and retail levels are also included so the diets represent the production volumes 
drawn by each diet to meet final ingestion. See S1 Spreadsheet for a full breakdown of the components of 

the modeled diets. 

The effects of substituting 10%, 25% and 50% of total protein in American diets are examined 
using MUD, VEG and VGN as baseline diets, with PBB as replacement protein. PBB is nutritionally 

similar to ground beef in most respects, besides lacking cholesterol and containing carbohydrates (see S2 

Table for laboratory analytics) and is substituted on a 1:1 mass basis in the MUD. A nutritionally 
equivalent mass of PBB replaces the blend of protein foods in the VEG and VGN diets (see S1 

Spreadsheet for further information). Given uncertainties in the amount of total beef as ground-beef 

ingested by Americans, values of 30% (see S3 Text for estimation method) and 50% [42] were used to 
assess the upper and lower PBB market penetration.  

GHG emissions, water use and land occupation are evaluated: all metrics to which LCA is 

widely applied and accepted, and relevant to the impacts of beef production in the context of net 
environmental burdens from the US diet. GHG emissions are assessed using the IPCC 2013 methodology 

to convert from atmospheric chemical emissions to the equivalent mass of carbon dioxide to affect the 

same degree of radiative forcing over a 100 year period (kg CO2e). Water use is calculated as ‘blue 
water’, the volume of surface or groundwater used and evaporated or incorporated into a product [43]. 

Lastly, agricultural land occupation is assessed as the physical area occupied in m2 arable land according 

to the Impact 2002+ method [44]. 
Hybrid-LCA methodology is employed here, whereby LCIs of on-farm resource use and 

chemical emissions are derived from studies of individual agricultural operations, while those for food 

processing (slaughterhouse operation, vegetable and fruit canning, etc.) are taken using a top down 
methods, based on national economic input-output accounts. Previous LCAs of on-farm operations are 

used to gather the production inputs and emissions data for foods, which were combined with inventories 

of individual inputs (fertilizers, fuels, irrigation, etc.) from the ecoinvent 3.2 database 
(www.ecoinvent.org) to build a complete LCI for that food. Ecoinvent 3.2 also contains complete LCIs 

for several relevant foods, which are adapted to US production conditions (e.g. US electricity and 

irrigation). The Carnegie Mellon 2002 US input-output database (www.eiolca.net), providing LCIs per 
dollar economic output for 428 economic sectors, is linked with US food production volumes to estimate 

average resource and emissions inventories per mass food produced in (e.g. per kilogram canned 

vegetables or fruit). Combining these two data streams provides a complete LCI for the agricultural and 
processing stages. S3 Text further details the LCA method employed here and the construction of the 

LCIs from the supporting literature.  

LCI data for PBB production are from early-stage, low-volume (hundreds of kilos/day 
capacity) production scale of both heme and burger manufacturing for current bill of material. The PBB 

model relies on certain literature-derived assumptions to estimate commercial scale production (mainly 

associated with fermentation substrate and energy use) and the results of the PBB LCA reflect both 
known and projected bill of material and production processes specific to 2015-2016 LCA development 

period. Because the PBB product continues to evolve, these impacts are likely to change as formulations 

and processes continue to improve, and should be viewed as a snapshot of current production technology. 

To ensure validity the PBB life cycle inventory and subsequent analysis presented in this paper, the 

inventory and assessment were independently vetted by an external independent LCA consultant and 

again by Quantis US following inventory updates. Data management is done in the LCA software 
SimaPro 8.2.0.0.  

3. Results 

Fig 1 outlines the baseline results for the MUD, VEG and VGN for annual per capita GHG 

emissions (Fig 1A), water use (Fig 1B) and land occupation (Fig 1C). Error bars around the MUD 
represent different conversion rates from cattle live weight to beef (see supplementary info S4 for detailed 
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results). 

 

Fig 1. Results for the mean US Diet (MUD), vegetarian (VEG) and vegan (VGN). 

(A) GHG in kg CO2e. (B) Water use in m3 blue water consumption. (C) Land occupation in m2 organic 

arable land. Error bars indicate range of results for different proportions of ground beef in baseline MUD 
and varying carcass yields.    

GHG emission results align with other US diet assessments, with shifts away from the MUD 

resulting in reduced GHG emissions for the VEG (-32%) and VGN (-67%). Of note is that if isocaloric 

diets were compared (total intake for MUD, VEG and VGN of 2481 kcal/day in line with 2010 USDA 
loss-adjusted numbers for the MUD), the reductions would have been -15% and -40% for the VEG and 

VGN, respectively. Protein dominates MUD impacts, with meat as the primary driver (50% total GHG 

emissions), itself impacted by beef (40-42% of total GHG emissions). The VEG is burdened by higher 
reliance on dairy as a protein and fat source, which elevate this dietary component’s impacts well above 

the MUD. Fruits and vegetables are the area of largest potential improvement for the VGN. Our findings 

are comparable to Heller et al.’s estimate of 5 kg CO2e/cap/d for the average American and reductions of 

33% and 53% for vegetarian and vegan diets [3] and are in agreement with the scale of GHG emissions 

and reduction potentials through dietary shifts in nations with similar diets [35,45–47]. 

Water use follows the same pattern as GHGs: relative to the MUD, approximately 200 fewer 
cubic meters of water per annum are required to support the VEG (-70%) and VGN (-75%) though 

reductions shrunk when isocaloric diets were compared (-62% and -70% for VEG and VGN, 

respectively) . The majority of the MUD’s impacts here stem from meat intake (74%), especially beef 
(56-58%), which requires sufficient animal hydration and significant embodied water inputs in feed via 

pasture, roughage, and concentrates. The VEG differs slightly from the VGN due to the former’s dairy 

and egg intake, but these differences are marginal when compared to the MUD. Eshel et al. [11] found 
that 150 m3/cap/a are needed for feed production for the US diet, in close alignment with our estimate of 

140 m3/cap/a. Jalava et al. [48] also estimated significant reductions when moving from MUD to VGN, 

though their alternative method estimated larger savings of 438-657 m3/cap/a.   
Significant decreases in land occupation also follow from a shift away from animal-based 

foodstuffs. The VEG and VGN occupy 70% and 79% less land than the MUD, respectively (VEG = -63% 

and VGN = -74% for isocaloric diet comparison). Of the MUD’s ~4100 m2 annual occupation, 75% is 
from meat, 67% from beef alone, where grazing land and feed production predominate. Similar to GHG 

emissions, the VEG is greater than the VGN, exerted by dairy consumption and related agricultural space 

for feed crops. Our results match other LCAs of similar diets, where vegetarian and vegan diets effect 50-
90% reductions in agricultural land occupation from omnivorous alternatives [35,45,47,49]. Of note is 

that inedible portions of plants can feed livestock to produce nutritionally dense animal products with 

limited environmental cost, and hence a diet with limited animal products could potentially have similar 
or lower land use to VEG and VGN diets contingent on the optimal balancing of residual resource and 

livestock production [50].   

3.1 Beef substitution with PBB 

Fig 2 displays the potential impacts of PBB diffusion into the modeled diets at rates of 10%, 
25% and 50%, where PBB substitutes for ground beef in the MUD, and a mix of vegetal proteins for the 

VEG and VGN. Upper and lower bounds of the MUD results represent high ground beef share of total 

beef intake (50%) combined with low conversion from live weight to beef (39%) and lower ground beef 
share of total beef (30%) combined with higher carcass yield (43%), respectively (see S3 Text for 



 

estimation methods). 

 

Fig 2. Per capita shifts in environmental burdens give PBB substitution in the mean US diet(MUD), 

vegetarian (VEG) and vegan (VGN). 

Substitution rates of 10%, 25% and 50% ground beef (MUD) and total protein foods (VEG and VGN). 
(A) GHG in kg CO2e. (B) Water use in m3 blue water consumption. (C) Land occupation in m2 organic 

arable land. Error bars indicate range of results for different proportions of ground beef in baseline MUD 

and varying carcass yields.   

By all three metrics the introduction of PBB improves the MUD’s environmental performance. 
Total dietary GHG emissions are reduced by 24 (1.2%), 61 (3.0%) and 122 (6.0%) kg CO2e/cap/a at 

increasing levels of diffusion. Of note is that a 50% PBB diffusion generates nearly half the GHG savings 

as an isocaloric switch to a vegetarian diet. Similarly, water use is reduced by 6 (2.1%), 15 (5.2%) and 31 
(10.4%) m3/cap/a, while agricultural land occupation shrinks by 101 (2.4%), 252 (6.1%) and 505 (12.1%) 

m2/cap/a. For the MUD, PBB provides an ecologically leaner protein option for GHGs (6.9 kg CO2e/kg 

PBB vs 30.1 kg CO2e/kg ground beef), water consumption (0.18 m3/kg PBB vs. 6.07 m3/kg ground beef) 

and land use (3.5 m2/kg PBB vs. 101.1 m2/kg ground beef). These reductions for the PBB are similar to 

those estimated for in-vitro meat production in GHGs (-75%) and land use (-94%) based on 

extrapolations from bench-scale data [32]. The results are more complex for the VEG and VGN diets. 
Notably increases are seen for GHG emissions (VEG: 3-17% and VGN: 8-38%), water impacts drop 

slightly for the VEG (0.4-1.8%) and rise for the VGN (0.2-1%), while land occupation increases 

marginally for both the VEG (0.3-1.7%) and VGN (0.9-4.4%).GHG emission increases stem largely from 
the energy inputs for the PBB, which are higher than soy and nut-based protein sources due to production 

processes and inclusion of leghemoglobin. Water and land remain essentially unaltered when moving 

from pulses, nuts and eggs to alternative plants sources, although the tendency for higher land occupation 
aligns with the lower protein content of wheat used in PBB compared to the fava beans used to model the 

legumes in the VEG and VGN. 

The marginal shifts in dietary performance of the MUD at the individual level mask the true 
scope of reducing dietary environmental burdens from potential diffusion of such novel protein 

substitutes at the national scale. Considering the 299.40 million omnivores, 8.35 million vegetarians and 

1.55 million vegans in the US [51], a hypothetical 10% introduction of PBB into all three diets would net 
annual reductions of 4.6-9.1 Mt CO2e GHG emissions, 1.3-2.4 Gm3 water use and 22300-38000 km2 

agricultural land occupation. To bring these numbers into context, this is the equivalent of removing 1.1-

2.2 million cars from American roads annually (4400 kg CO2e/car/a [52]), eliminating the direct water 
consumption of 10.5-19.3 million Americans (124 m3/cap/a [53]) and freeing up an area equal to 1-1.6 

times that of the state of New Hampshire. Table 1 highlights the potential impacts from PBB diffusions at 

higher levels.        

 

Table 1. Net impacts of PBB at different substitution rates for protein in the MUD, VEG and VGN 

at US scale 

Indicator % shift to 

PBB 

Net Change Analogue Unit 

GHGs 10% 4.55 – 9.08 Mt 

CO2e 

1.13 – 2.25 million average US 

drivers removed 
 25% 11.39 - 22.71 Mt 

CO2e 

2.82 – 5.62   

 50% 22.78 - 45.42 Mt 
CO2e 

5.64 – 11.24   



 

Water 

consumption 

10% 1.30 - 2.40 km3 10.48 – 19.34  million fewer US water 

consumers 

 25% 3.25 - 6.00 km3 26.20 – 48.37   
 50% 6.50 - 12.00 km3 52.41 – 96.74   

Land 

occupation 

10% 22300 - 38000 

km2 

1 – 1.6  area of New Hampshire 

 25% 55900 - 95100 

km2 

1 – 1.7  area of Illinois 

 50% 111800 - 190100 
km2 

1 – 1.7  area of Nevada 

 

4. Discussion 

Dietary shifts from the MUD to the VEG or VGN, and substitution of PBB for ground beef, 

reduce food related pressures exerted from typical US residents. Actually achieving net gains is 
contingent on the adoption of PBB by a proportion of the 97% of US residents that are omnivores, since 

PBB uptake risks increasing some environmental pressures of the non-meat diets. Fig 3 compares GHG 

emissions for different common protein sources per kilogram protein delivered to the consumer’s plate. 
The PBB, though significantly lower in burdens than beef, is similar to other animal-sourced proteins and 

elevated above the other plant-based choices. It should be kept in mind that our GHG estimates for 

animal-sourced proteins could be considered conservative [54]. PBB appears more burdensome than 
protein from mealworms, though the numbers for the mealworm LCA are for a live product [55], 

excluding the processing inputs to convert live insects to more palatable end products.  

 

Fig 3. Embodied GHG for different foods. 

GHG emissions in kg CO2e/kg protein produced.  

Notwithstanding, a small risk exists that increases in VEG and VGN environmental burdens 
for GHGs and land (and water for the VGN) from PBB adoption, might not be counteracted through 

uptake by the MUD. Fig 4 explores the required substitution of ground-beef with PBB in the MUD to 

balance 0-100% substitution of total protein with PBB in the VGN and VEG diets. In the extreme case 
that all vegetarians and vegans in the US source 100% of their protein from PBB, a replacement rate of 

around 6% ground beef (averaged ground beef as percentage of total beef and slaughtering efficiency) by 

PBB in the MUD would avoid a net increase, hinting that the potential risk for unintended increases of 
GHG emissions at the US aggregate is marginal. The same is true for land use, where a MUD penetration 

rate below 1% would suffice to counterbalance a net increase. For water consumption, the negative slopes 

indicate that the MUD would have to increase beef consumption to counteract net reductions of PBB 
uptake by the VEG and VGN; unlikely given falling US beef demand in recent decades [13]. 

 



 

 

 

 
 

 

 
 

 

 
 

Fig 4. Required substitution rates of Plant-Based Beef (PBB) in mean US diet (MUD) to counteract 

impacts from uptake by vegetarian and vegan Americans. 

 

Much of the beef reduction in the US diet has been matched by increases in poultry intake. 
Such a trend would be preferable from a GHG reduction perspective, even over PBB substitution or other 

novel meat substitutes [30,32]. However, the large scale industrialization of poultry since the 1970s has 

been undergirded by higher animal stocking densities and an undercutting of genetic diversity and 
resilience through a producer preference for fast-growing breeds [56], practices connected to the 

transmission of communicable diseases in the avian livestock population and high rates of antibiotic 

administration to industrial broilers to combat disease and hasten growth [56,57]. Similar practices have 
also been noted in US pork production [57,58]. Applications of antibiotics are linked to the increase of 

multi-drug resistant disease strains, diminishing the effectiveness of medicines in the human population 

[58–60]. Likewise, only considering GHG related impacts for tuna obscures the fact that shifting towards 
pescatarian habits would further stress marine ecosystems that have seen precipitous declines in 

population size, species richness and functional diversity at current fishing levels [61,62]. Such costs in 

other sustainability domains should be counted when comparing PBB to livestock products with 
potentially lower GHG emission intensities.  

Large-scale sourcing for plant-based lipids could eventually present a land use change (LUC) 

risk, though that risk is dwarfed by the deforestation and LUC driven by beef production. Pasture and 
feedcrop expansion is the leading driver of forest loss and landscape intensification in Central and South 

America, [63–65] and one of several leading contributors to global net carbon losses (~880 MT C*yr-1) 

from wooded area conversion [66]. Of concern is the sourcing of coconut oil for the PBB, as coconuts are 
grown in plantations in the humid tropics, regions that are rich in biodiversity and thus at elevated risk of 

habitat and species loss. While coconut palm systems are of lower biodiversity value than intact forests 

[67], thus far, there has been limited recent detectable demand-driven extensification of coconut 

plantations in the source region, based on FAOSTAT land use and production volume data. Further, yield 

gaps in copra production indicate that production could be theoretically doubled without acreage 
expansion via cultivar selection and use of best management practices in coconut production (though such 

intensification is not without off-site environmental impacts) [68]. So while a net reduction in human 



 

appropriation of land in biodiversity hotspots seems probable when moving to PBB, oil sourcing will 

remain a potential sustainability challenge in the novel protein economy.  

 

4. 1 Scaling up and future production efficiencies of PBB 

Improvement potential exists for PBB, since significant impacts are borne in the processing of 

raw inputs to PBB, in addition to acquisition of raw materials. Future shifts from fossil fuel based 

electricity sources could net improvements in PBB GHG emission performance, since electricity accounts 
for 80% of emissions during the processing stage. Potential reductions in impacts from heme production 

appear likely as the technology matures and improved conversion efficiencies of raw inputs to heme are 

attained.  
Taking the development of biofuels in recent decades as a barometer, considerable 

performance improvements are to be expected once PBB production reaches industrial scale using mature 

technologies. Precisely estimating the upscaling and technology maturation benefits and the resultant 

impacts on GHG performance of PBB production are difficult due to the novel nature of PBB and the 

scarcity of data on upscaling and maturation effects on environmental performance. Barlow et al. [69] 

showed that the net GHG emissions of algal derived biofuel improved from 80 g C02-eq/MJ to -44 g 
C02-eq/MJ as a result of scaling efficiencies of energy use (stirring, heating, etc.), elucidating the 

potential for improvement as biotechnologies move beyond pilot phase. Previous work on in-vitro meat 

production also assumed significant efficiencies with scaling and maturation [30,32], supporting the 
supposition that the environmental burdens of novel meat analogues such as a the PBB will likely 

decrease in the future. 

 Greening of the power needed by Impossible Foods may occur due a multitude of causes 
including changing the location of production to countries with more desirable grid mixes, construction of 

own (low GHG intensity) power supply and/or shifts of the regional US grid mix away from carbon 

intense fuels. The fossil fuel based energy mix used in this assessment accounts for a significant part of 
the climate change impacts produced by the PBB (see Fig 4). The global variation in the climate change 

intensity of one kWh ranges more than 2 orders of magnitude [70] meaning that choice of grid is 

paramount. For instance, the PBB’s electricity related impacts could be reduced by a factor 7-8 by 
producing on a grid with similar GHG intensity to France. LCAs of cultured meat production linked water 

use and GHG performance to production location, underscoring the importance of geographic specificity 

[30].  
In contrast, significant improvements in the US livestock supply chain do not appear 

immediately forthcoming in most regards. The majority of beef GHG impacts stem from enteric 

fermentation, which is physiologically constrained, and though higher quality feeds do have the potential 
to mitigate a portion of these, North American beef production systems are already amongst the world’s 

leanest in this regard, limiting improvement potential through this route [9]. Long-term analysis of the US 

livestock production shows that feed to final product ratios have remained stable for all the staple 
livestock proteins throughout the 20th century, with the exception of broilers which have seen substantial 

improvements [71]. The same can be said for current manure management practices [IBID]. Animal feed 

is also a major GHG source. Reduced tillage practices and improved yields would mitigate these, but 
given the advanced state of the majority of suppliers US production systems, such improvements are 

more salient to the low-tech livestock producers in the emerging economies [9,72]. Similarly, water use is 

physiologically constrained and strongly related to feed production. Exceptionally, land occupation could 
be significantly improved by switching from pasture to feedlot methods, though this potentially expands 

demand for arable cropland, and reduces demand for marginal rangeland. 

      

4. 2 Additional aspects of US adoption of PBB 

PBB adoption potentially reaps additional benefits not directly addressed through this 

assessment, including the reduction of reactive nitrogen runoff, a precursor to marine hypoxia and 

eutrophication. Livestock production is an important driver of these impacts at the regional and global 
from lax manure and urine management and runoff from fertilized feed crops [11,12,73]. PBB obviates 

both excrement production and the inefficiencies of converting feed to animal protein, ostensibly 
ameliorating eutrophication impacts in US beef supply regions, though more in depth analysis should 

buttress this claim. 

Predicted increases in meat consumption at the global aggregate, particularly beef, will likely 
exacerbate stress on the planet’s bio-geochemical cycles. Production improvements [9] and proactive land 

stewardship [21] can mitigate these to an extent, but stymying beef demand with PBB appears to be an 

alternative means towards more sustainable diets in the US and beyond. In a globalized and 
interconnected world, the ability for US dietary trends to diffuse into other cultures is more pronounced 



 

than ever, including cultures ‘locked-in’ to similar consumption levels of beef (Europe, Australia) and 

those only now ramping up their beef demands (China, India, Africa, etc.) Capturing the latter countries is 

particularly important before high beef consumption becomes the norm, since they have the capacity to 
significantly affect future global beef demands based on economic and population projections [1,71].  

Moreover, as the US is currently a net exporter of beef [74], it is possible that US beef producers might 

simply export surplus production, hinting at the importance of dietary shifts beyond US borders. 
It should be noted that contrary to the US and Latin America where ground beef is 

predominantly produced from dedicated beef herds, much of the ground beef in many European countries 

is a byproduct of spent dairy cattle and breeding overhead [75,76]. From an LCA perspective the GHG 
impacts of this type of beef are generally two thirds lower than those of a segregated beef herd due to co-

product allocation [17,77], but still higher than those of PBB [76]. This relates again to the role of the 

Americas as a beef export region, since importing countries could be sourcing ground beef from more 
impacting locales, emphasizing the importance of consumption dynamics beyond the US border.  

Essential to any discussion of the adoption of the PBB is the human factor. Changing diets is 

difficult and eating meat normalized in the United States [23–26]. Despite the PBB’s superior 
performance at the product level when compared to beef, estimates of aggregate changes from large-scale 

adoption are speculative. These benefits hinge on the uptake of the PBB, and the results at the country 

level only express the potential of novel protein sources to reduce environmental impacts at their current 
production efficiencies. Lastly, the PBB is one of numerous novel protein sources [27], each having a 

signature resource profile, meaning that the environmental outcome of their uptake at the national level is 

conjectural.    
  

5. Conclusions 

It has been long known that reducing meat intake can play an important role in reducing the 

environmental impacts of the US diet and similar meat oriented diets. The challenge now is less about 
identifying the problem, but rather getting people to make a switch. This is a difficult proposition in the 

US where meat heavy diets are deeply enmeshed within its eating culture. Novel protein sources that 

substitute for environmentally deleterious livestock products while circumnavigating tough psychological 
hurdles offer a means to improve the environmental integrity of the MUD.  

Novel protein substitutes, such as the PBB, could make important inroads to reducing the 

impacts of the MUD. When projected to the national level, the introduction of the PBB (and potentially 
other novel ground-beef replacements [30,32]) could generate substantial savings in GHG emissions, 

water consumption and agricultural land occupation. PBB has elevated net GHG emissions compared to 

other animal protein sources, but considering the age of the technology, it has substantial potential for 
improvement over animal-sourced foods, while providing benefits in additional realms of sustainability. 

PBB adoption can have slightly negative impacts on the VEG and VGN by some metrics, but a marginal 

uptake rate by the average American could counterbalance these.  
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S3 File. Life assessment methodology and life cycle inventories 

Supporting information for the article ‘Potential to curb the environmental burdens of American beef 

consumption using a novel plant based beef substitute’ 

1. Overview: 

This study uses a hybrid life cycle assessment (LCA) approach that combines two different LCA 

methodologies: process-based LCA (P-LCA) and environmentally-extended-input-output LCA (EEIO-

LCA). Figure 1 outlines the P-LCA methodology, which breaks down the life cycle of a product into 

different stages (material extraction, fabrication, distribution, etc.), accounts for the resource use and 

chemical emissions across all stages (aka. ‘life cycle inventory’), converts different emissions into a 

common unit for each impact category (e.g. CO2 equivalents for global warming) and then sums across 

the life cycle to estimate total environmental impacts. Here the scope of the assessment is on the 

agricultural production and processing stages as represented by the dashed line.  

 

Here, all of the life cycle inventories (LCI) for agricultural production were built using P-LCA thinking, 

either with the ecoinvent 3.2 database or published results from previous LCAs. Data for food processing 

are not as readily available. EEIO-LCA was used to overcome this data gap.  

EEIO-LCA works by augmenting standard economic input-output tables with environmental extensions 

outside of the economy. The foundation is A, the direct requirements matrix, representing interindustry 

(or sectoral) monetary exchanges. Each entry in the A, ai,j, represents the dollars demanded from industry 

i required by industry j to produce one dollar output from industry j. Vector Y represents demands from 

final consumers from each sector in dollars (i.e. excludes purchases from other industries that are used to 

produce goods for final consumption), where each element yi represents the total final demand from 

industry i. Vector X represents the total economic activity of both the final consumption and the 

interindustry exchanges. Thus the total demand, X, can be represented in matrix notation as [1]: 

[1] 𝑋 = 𝑋 ∙ 𝐴 + 𝑌 
     

Solving for total demand yields [2]: 

[2] 𝑋 = (𝐼 − 𝐴)−1𝑌 

 

Where I is the identity matrix, and (I-A)-1 is known as the Leontief inverse. 

The equation is linear and scalable in that a change in final consumption ∆Y can be related to a change in 

total production ∆X in the form [3]:  

[3] ∆𝑋 = (𝐼 − 𝐴)−1∆𝑌 
 

Environmental impacts can be included if emissions inventories from each industry (or sector) are known. 

For instance if total CO2 emissions are known for sector i, then the CO2 emissions per unit output, Ri, can 

be determined as [4]: 
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[4] 𝑅𝑖 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖/𝑋𝑖 

 

From [4] the emissions, ∆b, due to an incremental change in final demand for sector can be taken as [5], 

where R is a vector of emissions factors per monetary unit output from each sector:  

[5] ∆𝑏 = 𝑅(𝐼 − 𝐴)−1∆𝑌 
 

This type of environmental extension can be applied wherever inventories exist (land and water use, 

acidification, etc.) A wealth of resources exist for those further interested in EEIO-LCA 1,2. 

Here EEIO data from the Carnegie Mellon IO database for the US economy were used to account for 

environmental impacts from food processing for US final consumption (www.eiolca.net). The Carnegie 

Mellon model accounts for 428 economic sectors in the US economy in the year 2002. Although the 

database is dated for some industries, seismic technological transitions have not occurred in US 

agricultural production (nor background energy systems) in the meantime, and so impacts should be 

generally representative of 2010 production. Moreover, using the database assumes that all foods 

imported from foreign economies are technologically equivalent to the US, an assumption that should 

hold given the US’s food security and low percentage of imports in the final consumption mix.  

We only included the impacts from energy and chemical usage in food processing, since capital is 

typically of marginal contribution to total impacts. This is done by placing 0’s in the direct requirements 

matrix, A, for those supplying industries that are not related to energy supply or chemical production. 

Thus, for each food processing process, zeros are placed in all rows with the exception of the following 

industries: 

- Oil and gas extraction 

- Coal mining 

- Other nonmetallic mineral mining and manufacturing 

- Electric power generation, transmission and distribution 

- Natural gas distribution 

- Petroleum refineries 

- Petroleum lubricating oil and grease manufacturing 

- Industrial gas manufacturing 

- Synthetic dye and pigment manufacturing 

- Alkalies and chlorine manufacturing 

- Carbon black manufacturing 

- All other basic inorganic chemical manufacturing 

- Other basic organic chemical manufacturing 

- Biological product (except diagnostic) manufacturing 

- Soap and cleaning compound manufacturing 

- All other chemical product and preparation manufacturing 

Because EEIO databases provide results in impacts per dollar final demand, it is necessary to convert this 

to impacts per unit mass so that they align with the mass-based P-LCA framework employed here. This 

was done using the USDA’s Loss Adjusted Food Availability (LAFA)3 data which allowed us to match 

the outputs from US sectors to the masses of food items produced in the baseline year. Table 1 shows the 

sectors used from the EEIO database, the dollars output from the sector4, the corresponding foods in each 

sector, the output of those foods for the baseline year from the LAFA data, and the dollars output per 

kilogram produced. As not all food items are available in the LAFA (e.g. fresh and frozen fish are lumped 

into a single value), the total mass output of each sector will be underestimated in some instances, 

inflating the conversion factor. However, the overestimations should be slight since the LAFA numbers 

include those foods consumed in the highest volumes by Americans. LAFA numbers also represent food 

produced for US consumption, excluding exports, which should also inflate some of the numbers. Thus, 

where possible USDA production statistics were used5, since these account for total US production of 

goods, including exports. This method generates the dollar demands for the average product produced by 



a sector, underestimating for some products and overestimating for others. Nonetheless it will provide a 

reasonable estimate of food processing related impacts. 

EEIO Sector Output 

(106 2002 

USD) 

Food Items 2002 

Production (t) 

Conversion 

(USD/kg) 

Frozen Food 

Manufacturing 

33177 All frozen food* 21498825 1.54 

 

Fruit and vegetable 
canning, pickling, 

and drying   

39283 Canned Fruit 
Dried Fruit 

Canned Vegetables 

Dried Vegetables 
Dried Beans 

2282605 
1439323 

13763065 

4398280 
945994 

22829274 

1.72 

Seafood product 

preparation and 

packaging       

4869 Total Fish 2140374 2.27 

Poultry processing 45242 Total Poultry** 23554466 1.92 

Flour milling and 
malt 

manufacturing 

6030 Total wheat flour 18762937 0.32 

Wet corn milling 1724 Total corn products 4071886 0.42 

Animal (except 
poultry) 

slaughtering, 

rendering, and 
processing 

89239 Total red meat** 22563360 4.15 

Total frozen dairy 

products 

4420 Frozen Dairy 3498392 

 

1.26 

Dry, condensed, 
and evaporated 

dairy product 

manufacturing 

12948 Evaporated/Condensed 
Milk 

6674302 
 

508517 

7182189 

1.80 

Seasoning and 

dressing 

manufacturing 

16303 Salads and cooking oils 16303110 2.14 

 * LAFA data do not include data on highly-processed, ready-made meals, so total production volume 
taken as 2002 US total frozen food consumption 6  

** Taken from USDA production reports5 

 

With these conversion factors the P-LCA data can then be combined with EEIO-LCA data to generate 

LCIs encompassing both on-farm activities and upgrading from food processing. Figure 2 illustrates how 

the ecoinvent 3.2 P-LCA and Carnegie Mellon EEIO-LCA databases are combined to produce flour for 

the US market.  

 
 

Wheat production: modelled 

as ‘Wheat grain {US} | wheat 

production | Alloc Def, U’ 

from ecoinvent 3.2 

Flour production process 

that combines EEIO and P-

LCA databases 

1 kg wheat 

grain 

‘Flour milling and malt 

manufacturing’ from 

Carnegie Mellon database 

1 kg ‘Wheat 

Flour {US}’ 

$0.32 ‘Flour milling 

and malt 

production’ 



2. Life cycle inventories: 

 

2.1. Ecoinvent based 

Ecoinvent 3.2 provides full LCIs for some food products, including processing. These were used where 

possible and adjusted for US production conditions when appropriate (e.g. changing the supplying 

electrical grid to US). Table 2 notes these processes, as they are named in S3, the ecoinvent 3.2 process 

that each one is based upon and any alterations to the original ecoinvent process (foods sourced primarily 

from the global market were not altered). Proceeding sections outline custom LCIs for food products for 

which no ecoinvent 3.2 surrogates could be found. Where multi-functional processes occurred, system 

expansion was attempted (e.g. producing system was credited for avoided production of by-products), but 

mass-based allocation was a performed for beef from culled dairy cattle and cashew nuts, since the former 

is unfairly biased by system expansion 7 and the latter had a plurality of by-products that are difficult to 

model with system expansion. 

Process used here ecoinvent 3.2 basis Adaptions for study 

Broccoli {US} Broccoli {GLO}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 
market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 
{US}| market for | Alloc Def, U’ 

Spinach {US} Spinach {GLO}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 
market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 

{US}| market for | Alloc Def, U’ 

Iceberg Lettuce {US} Iceberg Lettuce {GLO}| 

production | Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 
market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 
{US}| market for | Alloc Def, U’ 

Green Bell Pepper  Green Bell Pepper {GLO}| 

production | Alloc Def, U 

None 

Cabbage red {US} Cabbage red {GLO}| production 
| Alloc Def, U 

Electricity changed to 
‘Electricity, low voltage {US}| 

market group for | Alloc Def, U’ 

 
 Irrigation changed to ‘Irrigation 

{US}| market for | Alloc Def, U’ 

Celery {US} Celery {GLO}| 675 production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 
market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 
{US}| market for | Alloc Def, U’ 

Cucumbers {US} Cucumber {GLO}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 
market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 
{US}| market for | Alloc Def, U’ 

Aubergine {US} Aubergine {GLO}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 
market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 
{US}| market for | Alloc Def, U’ 



Onion {US} Onion {GLO}| 855 production | 
Alloc Def, U 

Electricity changed to 
‘Electricity, low voltage {US}| 

market group for | Alloc Def, U’ 

 
 Irrigation changed to ‘Irrigation 

{US}| market for | Alloc Def, U’ 

Fava bean, organic {GLO} Fava bean, organic {GLO}| 
Market for | Alloc Def, U 

Transport to market removed 

Avocado {GLO} Avocado {GLO}| production | 

Alloc Def, U 

None 

Carrot {US} Carrot {GLO}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 

market group for | Alloc Def, U’ 
 

 Irrigation changed to ‘Irrigation 

{US}| market for | Alloc Def, U’ 

Tomato {US} Tomato {GLO}| production | 
Alloc Def, U 

Electricity changed to 
‘Electricity, low voltage {US}| 

market group for | Alloc Def, U’ 

 
 Irrigation changed to ‘Irrigation 

{US}| market for | Alloc Def, U’ 

Potato {US} Potato {US}| production | Alloc 
Def, U 

None 

 Citrus {US} Citrus {GLO}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 
market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 
{US}| market for | Alloc Def, U’ 

Strawberry {US} Strawberry {GLO}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 
market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 
{US}| market for | Alloc Def, U’ 

Melon {US} Melon {GLO}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 
market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 

{US}| market for | Alloc Def, U’ 

Apple {US} Apple {GLO}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, low voltage {US}| 

market group for | Alloc Def, U’ 
 

 Irrigation changed to ‘Irrigation 

{US}| market for | Alloc Def, U’ 

Banana {GLO} Banana {GLO}| production | 

Alloc Def, U 

None 

Grape {US} Grape {GLO}| production | 
Alloc Def, U 

Electricity changed to 
‘Electricity, low voltage {US}| 

market group for | Alloc Def, U’ 

 

 Irrigation changed to ‘Irrigation 

{US}| market for | Alloc Def, U’ 

Pear {US} Pear {GLO}| production | Alloc 
Def, U 

Electricity changed to 
‘Electricity, low voltage {US}| 

market group for | Alloc Def, U’ 

 



 Irrigation changed to ‘Irrigation 
{US}| market for | Alloc Def, U’ 

Cheese {US} Cheese, from cow milk, fresh, 
unripened {GLO}| cheese 

production, soft, from cow milk | 

Alloc Def, U 

Electricity changed to 
‘Electricity, medium voltage 

{US}| market group for | Alloc 

Def, U’ 
 

Cream and milk changed to US 

production scenarios (see below) 

Milk {US} Cow milk {CA-QC}| milk 
production, from cow | Alloc 

Def, U 

Soybean feed changed to 
‘Soybean, feed {GLO}| 

production | Alloc Def, U’ 

 
Maize changed to ‘Maize grain, 

feed {US}| production | Alloc 

Def, U’ 
 

1% of impacts allocated to by-

product beef production (see 
below) 

Yoghurt {US} Yogurt, from cow milk {CA-

QC}| production | Alloc Def, U 

Milk changed to ‘Milk {US}’ 

 
Electricity changed to 

‘Electricity, medium voltage 

{US}| market group for | Alloc 
Def, U’ 

Soybean Beverage {US} Soybean beverage {CA-QC}| 

production | Alloc Def, U 

Electricity changed to 

‘Electricity, medium voltage 

{US}| market group for | Alloc 

Def, U’ 

Tofu {US} Tofu {CA-QC}| production | 

Alloc Def, U 

Electricity changed to 

‘Electricity, medium voltage 
{US}| market group for | Alloc 

Def, U’ 

Palm oil, refined {GLO} Palm oil, refined {GLO}| market 
for | Alloc Def, S 

None 

Cream {US} Cream, from cow milk {CA-

QC}| yogurt production, from 
cow milk | Alloc Def, U 

Electricity changed to 

‘Electricity, medium voltage 
{US}| market group for | Alloc 

Def, U’ 

Sugar, from sugarcane {GLO} Sugar, from sugarcane {GLO}| 

production | Alloc Def, U 

None 

  

2.2. Literature based 

 The following sections detail the life cycle inventories built from previous LCAs.  

2.2.1. Frozen Broccoli 

Output to Market 

Item Amount Unit 

Frozen Broccoli {US}  1 kg 

Production Factors 

Item Amount Unit 

Broccoli {US} 1 kg 

Frozen Food Manufacturing 1.543200617 2002 USD 

 



2.2.2. Frozen Spinach 

Output to Market 

Item Amount Unit 

Frozen Spinach {US} 1 kg 

Production Factors 

Item Amount Unit 

Spinach {US} 1 kg 

Frozen Food Manufacturing 1.543200617 2002 USD 

 

2.2.3.  Canned Olives 8  

Output to Market 

Item Amount Unit 

Canned Olives {US} 1 kg 

Production Factors 

Item Amount Unit 

Pesticide, unspecified {GLO}| market for | Alloc Def, U 0.003333 kg 

Irrigation {ES}| market for | Alloc Def, U 1 L 

Nitrogen fertiliser, as N {GLO}| market for | Alloc Def, U 0.000145 kg 

Diesel {GLO}| market group for | Alloc Def, U 0.008 kg 

Lubricating oil {GLO}| market for | Alloc Def, U 0.000475 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

Emissions to Air 

Substance Amount Unit 

CO2 (fossil) 0.283789 kg 

 

2.2.4.  Canned Mushrooms 

Reliable LCI data on mushrooms are lacking. We estimate mushroom impacts as the average of all fresh 

vegetables, akin to Heller and Keoleian 9. We add to the average the impacts from canning, taken as $1.80 

2002 USD demand from the ‘Fruit and vegetable canning, pickling, and drying’ sector per kilogram 

canned mushrooms on the market. 

2.2.5.   Canned Beans 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Canned Beans {US} 1 kg 

Production Factors 

Item Amount Unit 

Fava bean, organic {GLO} 1.14 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

 

2.2.6.   Canned Cucumbers 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Canned Cucumbers {US} 1 kg 



Production Factors 

Item Amount Unit 

Cucumber {US} 0.916 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

 

2.2.7.   Frozen Beans 

Output to Market 

Item Amount Unit 

Frozen Beans {US} 1 kg 

Production Factors 

Item Amount Unit 

Fava bean, organic {GLO} 1 kg 

Frozen Food Manufacturing 1.543200617 2002 USD 

 

2.2.8.   Dried Onions 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Dried Onion {US} 1 kg 

Production Factors 

Item Amount Unit 

Onion {US} 9.1 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

 

2.2.9.   Canned Carrots 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Canned Carrots {US} 1 kg 

Production Factors 

Item Amount Unit 

Carrots {US} 1.12 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

 

2.2.10.   Canned Peppers 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Canned Peppers {US} 1 kg 

Production Factors 

Item Amount Unit 

Pepper {US} 1.04 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

 



2.2.11.   Canned Tomatoes 

Output to Market 

Item Amount Unit 

Canned Tomatoes {US} 1 kg 

Production Factors 

Item Amount Unit 

Tomato {US} 1 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

 

2.2.12.   Frozen Carrots 

 

Output to Market 

Item Amount Unit 

Frozen Carrots {US} 1 kg 

Production Factors 

Item Amount Unit 

Carrot {US} 1 kg 

Frozen Food Manufacturing 1.543200617 2002 USD 

 

2.2.13.   Canned Corn 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Canned Corn {US} 1 kg 

Production Factors 

Item Amount Unit 

Maize grain {US}| production | Alloc Def, U 0.79 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

 

2.2.14. Frozen Corn 

Output to Market 

Item Amount Unit 

Frozen Corn {US} 1 kg 

Production Factors 

Item Amount Unit 

Maize grain {US}| production | Alloc Def, U 1 kg 

Frozen Food Manufacturing 1.543200617 2002 USD 

 

2.2.15. Frozen Potatoes 

Output to Market 

Item Amount Unit 

Frozen Potatoes {US} 1 kg 

Production Factors 

Item Amount Unit 

Potato {US}| production | Alloc Def, U 1 kg 

Frozen Food Manufacturing 1.543200617 2002 USD 



 

2.2.16.   Dried Potatoes 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Dried Potatoes {US} 1 kg 

Production Factors 

Item Amount Unit 

Potato {US}| production | Alloc Def, U 4.819277108 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

 

2.2.17.   Orange Juice 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Orange Juice {US} 1 kg 

Production Factors 

Item Amount Unit 

Citrus {US} 2 kg 

 

2.2.18.   Grapefruit Juice 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Grapefruit Juice {US} 1 kg 

Production Factors 

Item Amount Unit 

Citrus {US} 2.25 kg 

 

2.2.19.   Apple Juice 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Apple Juice {US} 1 kg 

Production Factors 

Item Amount Unit 

Apple {US} 1.5 kg 

 

2.2.20.   Cranberry Juice 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 



Item Amount Unit 

Cranberry Juice {US} 1 kg 

Production Factors 

Item Amount Unit 

Strawberry {US}* 1.3 kg 

* Strawberry taken as surrogate for cranberry. Strawberry {US} process adapted for energy and irrigation 

in same manner as shown in table 2 

 

2.2.21.   Grape Juice 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Grape Juice {US} 1 kg 

Production Factors 

Item Amount Unit 

Grape {US}* 1.3 kg 

* Grape {US} process adapted for energy and irrigation in same manner as shown in table 2 

2.2.22.   Pineapple Juice 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Pineapple Juice {US} 1 kg 

Production Factors 

Item Amount Unit 

Pineapple {GLO}| production | Alloc Def, U 1.88 kg 

 

2.2.23.   Canned Apples 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Canned Apples {US} 1 kg 

Production Factors 

Item Amount Unit 

Apple {US} 1.018 kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002  

 

2.2.24.   Raisins 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Raisins {US} 1 kg 

Production Factors 

Item Amount Unit 

Grape {US} 4.52 kg 



Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

 

2.2.25.   Wheat Flour 

Output to Market 

Item Amount Unit 

Wheat Flour {US} 1 kg 

Production Factors 

Item Amount Unit 

Wheat grain {US}| wheat production | Alloc Def, U 1 kg 

Flour milling and malt manufacturing 0.32137825 2002 USD 

 

2.2.26.   Processed Rice 

Output to Market 

Item Amount Unit 

Processed Rice {US} 1 kg 

Production Factors 

Item Amount Unit 

Maize grain {US}| production | Alloc Def, U 1 kg 

Wet corn milling 0.423391068 2002 USD 

 

2.2.27.   Oat Products 

Output to Market 

Item Amount Unit 

Oat Products {US} 1 kg 

Production Factors 

Item Amount Unit 

Oat grain {CA-QC}| oat production | Alloc Def, U 1 kg 

Flour milling and malt manufacturing 0.32137825 2002 USD 

 

2.2.28.   Ice Cream 

Output to Market 

Item Amount Unit 

Ice Cream {US} 1 kg 

Production Factors 

Item Amount Unit 

Cream {US} 1 kg 

Ice cream and frozen dessert manufacturing 1.263437634 2002 USD 

 

2.2.29.   Condensed Milk 

Mass change during production taken from the USDA Food Intakes Converted to Retail Commodities 

Database (FICRCD) 10  

Output to Market 

Item Amount Unit 

Condensed Milk {US} 1 kg 

Production Factors 

Item Amount Unit 



Milk {US} 1.23 kg 

Evaporation of milk {US}| milk evaporation | Alloc Def, U* 1.23 kg 

* Energy and heating sources changed to US 

 

2.2.30.   Eggs 11 

Output to Market 

Item Amount Unit 

Layer Feed  1 kg 

Production Factors 

Item Amount Unit 

Maize grain {GLO}| market for | Alloc Def, U 0.712555066 kg 

Soybean meal {GLO}| market for | Alloc Def, U 0.212555066 kg 

Lime {GLO}| market for | Alloc Def, U 0.074889868 kg 

 

Output to Market 

Item Amount Unit 

Pullet 1 pullet 

Production Factors 

Item Amount Unit 

Layer Feed 5.27 kg 

Irrigation {US}| market for | Alloc Def, U 9.22 kg 

Electricity, low voltage {US}| market group for | Alloc Def, U 3.015 MJ 

Diesel, low-sulfur {GLO}| market group for | Alloc Def, U 0.00246 kg 

Petrol, unleaded {RoW}| market for | Alloc Def, U 0.0022 kg 

Propane {GLO}| market for | Alloc Def, U 0.0357 kg 

Natural gas, high pressure {US}| market for | Alloc Def, U 0.180 ft3 

Emissions to Air 

Substance Amount Unit 

Carbon dioxide (fossil) 0.61734 kg 

 

Output to Market 

Item Amount Unit 

Eggs {US} 1 kg 

By-products 

Item Amount Unit 

Chicken for slaughtering, live weight {GLO}| chicken production | Alloc 

Def, U 

0.02 kg 

Production Factors 

Item Amount Unit 

Pullet 0.036 pullets 

Layer Feed 1.980 kg 

Irrigation {US}| market for | Alloc Def, U 4.26 kg 

Electricity, low voltage {US}| market group for | Alloc Def, U 0.557 MJ 

Diesel, low-sulfur {GLO}| market group for | Alloc Def, U 0.00162 kg 

Petrol, unleaded {RoW}| market for | Alloc Def, U 0.000207 kg 

Propane {GLO}| market for | Alloc Def, U 0.00175 kg 

Natural gas, high pressure {US}| market for | Alloc Def, U 0.00386 ft3 

Poultry processing 1.920739745 2002 

USD 

   

Emissions to Air 

Substance Amount Unit 

Carbon dioxide (fossil) 0.02084 kg 

 



2.2.31.   Dried Beans 

Output to Market 

Item Amount Unit 

Dried Beans {US} 1 kg 

Production Factors 

Item Amount Unit 

Fava bean, organic {GLO} 1.13* kg 

Fruit and vegetable canning, pickling, and drying 1.720729275 2002 USD 

* Adjusted for 11.33% water content from USDA for raw pinto beans (item 16042): 

https://ndb.nal.usda.gov/ndb/search/list 

2.2.32.   Beef, feedlot finished 12 

The LCI is provided for one kilogram of live weight beef for slaughter, which is then adjusted for the 

carcass yield (the ratio of meat to live weight). An upper carcass yield of 0.428 was taken from the 

Cornell Small Farms Program 13. A lower carcass yield of 0.390 was taken as the product of the dressing 

percentage of 0.59 (11902714932 kg carcass weight produced/34407300 head slaughtered/580 kg live 

weight per head in 2011) 14  and carcass cutting yield of 0.65 (24.6 kg beef on market/person * 

314100000 people/11902714932 kg carcass  weight produced in 2011) 3. 

Output to Market 

Item Amount Unit 

Beef, feedlot finished {US} yield kg 

By-products 

Item Amount Unit 

Liquid manure spreading, by vacuum tanker 

{GLO}| market for | Alloc Def, U 

0.0041 m3 

Production Factors 

Item Amount Unit 

Natural gas, high pressure {CA-AB}| natural gas 

production | Alloc Def, U 

0.798 m3 

Diesel {GLO}| market group for | Alloc Def, U 0.00303 kg 

Electricity, low voltage {MRO, US only}| market 
for | Alloc Def, U 

0.08067 kWh 

Alfalfa-grass silage {GLO}| market for | Alloc Def, 

U 

0.431 kg 

Maize silage {GLO}| market for | Alloc Def, U 1.04 kg 

Maize grain, feed {GLO}| market for | Alloc Def, 
U 

3.49 kg 

Energy feed, gross {GLO}| soybean meal to 

generic market for protein feed | Alloc Def, U 

0.00676 MJ 

Irrigation {US}| market for | Alloc Def, U* 0.152 m3 

Emissions to Air 

Substance Amount Unit 

Carbon dioxide (fossil) 1.56957 kg 

Methane 0.238468168 kg 

Ammonia 0.0193 kg 

Nitrate 0.248 kg 

* Blue water taken from Mekonnen and Hoekstra, 2012 15 

2.2.33.   Beef, backgrounding-feedlot finished 12 

Yield calculated in the same manner as above. 

Output to Market 

Item Amount Unit 

Beef, backgrounding-feedlot finished {US} yield kg 

By-products 

https://ndb.nal.usda.gov/ndb/search/list


Item Amount Unit 

Liquid manure spreading, by vacuum tanker {GLO}| market for | Alloc Def, U 0.0041 m3 

Production Factors 

Item Amount Unit 

Occupation, pasture and meadow* 85.7 m2a 

Natural gas, high pressure {CA-AB}| natural gas production | Alloc Def, U 0.798 m3 

Diesel {GLO}| market group for | Alloc Def, U 0.00303 kg 

Electricity, low voltage {MRO, US only}| market for | Alloc Def, U 0.08067 kWh 

Alfalfa-grass silage {GLO}| market for | Alloc Def, U 0.364 kg 

Maize silage {GLO}| market for | Alloc Def, U 3.43 kg 

Wheat Pasture {US-midwest} 12.5 kg 

Irrigation {US}| market for | Alloc Def, U** 0.234 m3 

Emissions to Air 

Substance Amount Unit 

Carbon dioxide (fossil) 1.56957 kg 

Methane 0.238468168 kg 

Ammonia 0.0193 kg 

Nitrate 0.248 kg 

* Land occupation taken as the ratio of total land for beef/veal/lamb pasture from Table 8 of the USDA 

2012 Census of Agriculture (1.68 * 1012 m2) 16  divided by total market availability of red meat in live 

weight for that year (1.9*1010 kg)14 

** Blue water for taken from Mekonnen and Hoekstra, 2012 15 

 

2.2.34.   Beef, culled dairy cattle 

Beef and milk are co-products in this system. Mass based allocation is used to apportion the impacts to 

each product. Average US dairy cow has 2.63 years of milk production 17, producing on average 9566 kg 

milk/annum in the U.S. 18 and a slaughter weight of 566 kg for the top three dairy breeds 19, then given the 

two carcass yields of 0.390 and 0.428 there is either 0.0087 kg beef at market/kg milk  or 0.0095 kg beef 

at market/kg milk produced, respectively. Impacts from the milk production system are thus allocated 

accordingly. Alternatively an economic allocation of $600 17 for the slaughtered dairy cow and 0.531 

USD/kg milk 20 would yield an allocation of 4.3% of milk impacts to the beef by-product, which is 

relatively significant, but not critical to the results here (~1% decrease in results for MUD). 

2.2.35. Ground beef  

Beef for ground beef comes from two streams, dedicated beef herds (split 50/50 between feedlot and 

backgrounding-feedlot finished 12) and culled dairy cattle. We assume that all culled dairy cattle go to 

ground beef due to the low quality of the meat. Assuming a steady state cow population of 9252272 dairy 

cows in 2012 16 and an average life of 4.8 years 17, implies 1927557 culled dairy cattle per year. At 566 

kg/head and the aforementioned carcass yields, between 425488932 and 466946828 kg of ground beef 

from dairy cattle are hitting the market annually.  

Of the 7781113636 kg of total beef on the U.S market in 2012, it is estimated by industry that 50% of this 

was ground beef 21. We also used the Center for Disease Control and Preventions National Nutrition and 

Health Examination Survey (NHANES) from 2011/2012 to estimate the amount of ground beef for all 

beef consumers 22. 8-digit USDA food codes were used to disaggregate total mass of food consumed into 

constituent masses using the FICRCD 10. Those food codes that corresponded to ground beef as the main 

ingredient were added to the ground beef total. A text search was also performed of the meal descriptions 

to capture any meals that contain ground-beef as a secondary ingredient, with the amount of beef in meals 

meeting the search criteria added to the ground beef total. The total amount of ground beef was then 

divided by the total beef amount to come to an estimate of 30% ground beef as percentage of total beef 

consumption. The difference between our estimate and the industry estimate could come from the 

underreporting of unhealthy foods in self-reporting dietary surveys or due to the difficulty of capturing all 

meals containing ground beef as second ingredients in the USDA food descriptions.    



Upper and lower bounds for total ground beef on the market are thus 3890556818 and 2334334091 

kg/annum, respectively. At a carcass yield of 0.390, between 10.9% and 18.2% of ground beef in the US 

originates from the dairy herd. At a carcass yield of 0.428, between 12.0% and 20.0% of US ground beef 

originates from the dairy herd.  

Output to Market 

Item Amount Unit 

Ground beef {US} 1 kg 

Production Factors 

Item Amount Unit 

Beef, feedlot finished {US} (1-% dairy)/2* kg 

Beef, backgrounding-feedlot finished {US} (1-% dairy)/2* kg 

Beef, culled dairy cattle {US} % dairy kg 

Animal (except poultry) slaughtering, rendering, and processing 4.150212451 2002 USD 

* Divide by two to account for the 50/50 split between supplying streams 

2.2.36.   Beef {US} 

Taken as 50/50 split between feedlot and backgrounding-feedlot finished, as these are the two dominant 

production systems in the US 12. 

Output to Market 

Item Amount Unit 

Beef {US} 1 kg 

Production Factors 

Item Amount Unit 

Beef, backgrounding-feedlot finished {US} 1 kg 

Beef, culled dairy cattle {US} 1 kg 

Animal (except poultry) slaughtering, rendering, and processing 4.150212451 2002 USD 

 

2.2.37.   Pork 23 

Austrian pork production used as surrogate for US production. 

Output to Market 

Item Amount Unit 

Pork {US} 1 kg 

By-products 

Item Amount Unit 

Nitrogen fertiliser, as N {GLO}| field application of ammonium chloride | 

Alloc Def, U 

0.030176 kg 

Phosphate fertiliser, as P2O5 {GLO}| market for | Alloc Def, U 0.010938 kg 

Potassium chloride, as K2O {GLO}| market for | Alloc Def, U 0.027637 kg 

Production Factors 

Item Amount Unit 

Maize grain {GLO}| market for | Alloc Def, U 1.484375 kg 

Wheat grain, feed {GLO}| market for | Alloc Def, U 0.742188 kg 

Barley grain, feed {GLO}| market for | Alloc Def, U 0.742188 kg 

Protein feed, 100% crude {GLO}| soybean meal to generic market for protein 
feed | Alloc Def, U 0.283203 

kg 

Protein feed, 100% crude {GLO}| rape meal to generic market for protein 

feed | Alloc Def, U 0.146484 

kg 

Sunflower silage {RoW}| catch crop growing, sunflower, August-October, 
organic fertiliser 20 kg N | Alloc Def, U 0.146484 

kg 

Irrigation {US}| market for | Alloc Def, U 0.011738 m3 

Electricity, low voltage {US}| market group for | Alloc Def, U 0.341797 kWh 

Heat, central or small-scale, other than natural gas {GLO}| market group for | 
Alloc Def, U 0.185547 

kWh 

Animal (except poultry) slaughtering, rendering, and processing 4.150212451 2002 



USD 

Emissions to Air 

Substance Amount Unit 

Methane 0.032353516 kg 

Ammonia 6.84E-05 kg 

Nitrous Oxide 0.015615 kg 

 

2.2.38.  Chicken 

Output to Market 

Item Amount Unit 

Chicken {US} 1 kg 

Production Factors 

Item Amount Unit 

Chicken for slaughtering, live weight {GLO}| 

chicken production | Alloc Def, U 1.33* 

kg 

Poultry processing 1.920739745 2002 USD 

* Carcass yield taken from 13 

2.2.39.   Peanuts 24 

Output to Market 

Item Amount Unit 

Peanuts {US} 1 kg 

Production Factors 

Item Amount Unit 

Occupation, agriculture 5.88 m2a 

Rye seed, for sowing {GLO}| market for | Alloc Def, U 0.005317073 kg 

Lime {GLO}| market for | Alloc Def, U 0.317195122 kg 

Diesel, low-sulfur {GLO}| market group for | Alloc Def, U 0.044927 kg 

Borax, anhydrous, powder {GLO}| market for | Alloc Def, U 0.000170732 kg 

Pesticide, unspecified {GLO}| market for | Alloc Def, U 0.007634146 kg 

Electricity, low voltage {US}| market group for | Alloc Def, U 0.062317 kWh 

Irrigation {US}| market for | Alloc Def, U 0.246341 m3 

Emissions to Air 

Substance Amount Unit 

Carbon dioxide (fossil) 0.141951 kg 

 

2.2.40.   Almonds 25 

Output to Market 

Item Amount Unit 

Almonds {US} 1 kg 

Production Factors 

Item Amount Unit 

Occupation, agriculture 0.445 m2a 

Petrol, unleaded {RoW}| market for | Alloc Def, U 0.0297 kg 

Diesel, low-sulfur {GLO}| market group for | Alloc Def, U 0.0398 kg 

2,4-dichlorophenol {GLO}| market for | Alloc Def, U 0.000145 kg 

Sulfur {GLO}| market for | Alloc Def, U 0.034 kg 

Nitrogen fertiliser, as N {GLO}| market for | Alloc Def, U 0.0609 kg 

Zinc {GLO}| market for | Alloc Def, U 0.00125 kg 

Irrigation {US}| market for | Alloc Def, U 4.98 m3 

Electricity, low voltage {WECC, US only}| market for | Alloc Def, U 1.5 kWh 

Emissions to Air 



Substance Amount Unit 

Carbon dioxide (fossil) 0.1557 kg 

 

2.2.41.   Walnuts 25 

Output to Market 

Item Amount Unit 

Walnuts {US} 1 kg 

Production Factors 

Item Amount Unit 

Occupation, agriculture 0.178 m2a 

Petrol, unleaded {RoW}| market for | Alloc Def, U 0.0162 kg 

Diesel, low-sulfur {GLO}| market group for | Alloc Def, U 0.0078 kg 

2,4-dichlorophenol {GLO}| market for | Alloc Def, U 0.000284 kg 

Nitrogen fertiliser, as N {GLO}| market for | Alloc Def, U 0.0183 kg 

Irrigation {US}| market for | Alloc Def, U 4.98 m3 

Electricity, low voltage {WECC, US only}| market for | Alloc Def, U 0.164 kWh 

Emissions to Air 

Substance Amount Unit 

Carbon dioxide (fossil) 0.0409 kg 

 

2.2.42.   Cashew 26 

Austrian pork production used as surrogate for US production. 

Output to Market 

Item Amount Unit 

Cashew  Nuts {BR} 1 kg 

By-products 

Item Amount Unit 

See source* 1.27 kg 

Production Factors 

Item Amount Unit 

Arable land use, soy bean, Brazil 0.0577 m2a 

Limestone, crushed, washed {GLO}| market for | Alloc Def, U 0.63473745 kg 

Gypsum, mineral {GLO}| market for | Alloc Def, U 0.028851702 kg 

Copper {GLO}| market for | Alloc Def, U 9.60185E-6 kg 

Manganese {GLO}| market for | Alloc Def, U 2.40046E-5 kg 

Molybdenum {GLO}| market for | Alloc Def, U 1.20023E-6 kg 

Zinc {GLO}| market for | Alloc Def, U 0.000108021 kg 

Iron pellet {GLO}| market for | Alloc Def, U 3.60069E-5 kg 

Urea, as N {GLO}| market for | Alloc Def, U 0.203084247 kg 

Phosphate fertiliser, as P2O5 {RoW}| single superphosphate production | Alloc 

Def, U 

0.465089152 kg 

Potassium chloride, as K2O {GLO}| market for | Alloc Def, U 0.054010387 kg 

Glyphosate {GLO}| market for | Alloc Def, U 0.001436815 kg 

Diesel {GLO}| market group for | Alloc Def, U 0.089118725 kg 

Irrigation {BR}| market for | Alloc Def, U 5.476053087 m3 

* Mass allocation performed 

2.2.43.   Fresh and frozen fish/Canned Fish/Canned Sardines 

Output to Market 

Item Amount Unit 

Salmon, Atlantic {ES} 1 kg 

Production Factors 



Item Amount Unit 

Freight ship, transoceanic {GLO}| market for | Alloc Def, U 7.10997E-09 ship 

Diesel, low-sulfur {GLO}| market group for | Alloc Def, U 0.359335038 kg 

Alkyd paint, white, without water, in 60% solution state {GLO}| market for | 

Alloc Def, U 

8.95141E-05 kg 

Emissions to Air 

Substance Amount Unit 

Carbon dioxide (fossil) 1.135549872 kg 

Taken from Hospido et al., 2005 27 

Output to Market 

Item Amount Unit 

Fish feed  1 kg 

Production Factors 

Item Amount Unit 

Rape seed, organic {CH}| production | Alloc Def, U 0.061 m2a 

Rape oil, crude {CH}| market for | Alloc Def, U 0.041 kg 

Rape meal {GLO}| to generic market for protein feed | Conseq, U 0.051 kg 

Protein pea {GLO}| market for | Alloc Def, U, U 0.051 kg 

Maize grain, feed {GLO}| market for | Alloc Def, U 0.092 kg 

Energy feed, gross {GLO}| skimmed milk, from cow milk to generic market for 
protein feed | Alloc Rec, U 

0.056 MJ 

Wheat grain, feed {GLO}| market for | Alloc Def, U 0.133 kg 

Emissions to Air 

Substance Amount Unit 

Carbon dioxide (fossil) 1.2848 kg 

Sulfur dioxide 0.0076 kg 

Taken from Pelletier et al., 2009 28 

Output to Market 

Item Amount Unit 

Salmon, farmed {US} 1 kg 

Production Factors 

Item Amount Unit 

Fish feed 1.313 m2a 

Transport, freight, lorry >32 metric ton, EURO6 {GLO}| market for | Alloc Def, U 0.3192 tkm 

Electricity, high voltage {MRO, US only}| market for | Alloc Def, U 2326.9 MJ 

 Taken from Pelletier et al., 2009 28 

Output to Market 

Item Amount Unit 

Fresh and frozen fish {US} 1 kg 

Production Factors 

Item Amount Unit 

Tuna, Atlantic {ES} 0.875 kg 

Salmon, farmed {US} 0.125 kg 

Seafood product preparation and packaging 2.274835635 2002 USD 

87.5% of fish consumed in US is wild (http://www.seafoodhealthfacts.org/seafood-choices/overview-us-

seafood-supply), Atlantic Tuna and farmed Salmon used as proxies for all wild and farmed fish consumed 

in US respectively 

Output to Market 

Item Amount Unit 

Canned fish {US} 1 kg 

Production Factors 

Item Amount Unit 

Tuna, Atlantic {ES} 0.865 kg 

Salmon, farmed {US} 0.124 kg 

Seafood product preparation and packaging 2.274835635 2002 USD 



87.5% of fish consumed in US is wild (http://www.seafoodhealthfacts.org/seafood-choices/overview-us-

seafood-supply), Atlantic Tuna and farmed Salmon used as proxies for all wild and farmed fish consumed 

in US respectively. Mass change from fresh to canned taken from FICRCD 10, the difference being water. 

Output to Market 

Item Amount Unit 

Canned sardines {US} 1 kg 

Production Factors 

Item Amount Unit 

Tuna, Atlantic {ES} 0.868 kg 

Salmon, farmed {US} 0.124 kg 

Seafood product preparation and packaging 2.274835635 2002 USD 

87.5% of fish consumed in US is wild (http://www.seafoodhealthfacts.org/seafood-choices/overview-us-

seafood-supply), Atlantic Tuna and farmed Salmon used as proxies for all wild and farmed fish consumed 

in US respectively. Mass change from fresh to canned taken from FICRCD 10, the difference being water. 

 

2.2.44. Fresh and frozen shellfish 29 

Output to Market 

Item Amount Unit 

Fresh and frozen shellfish {TH} 1 kg 

Production Factors 

Item Amount Unit 

Occupation, water bodies, artificial 0.411 m2a 

Fish feed 1.9 kg 

Diesel {GLO}| market group for | Alloc Def, U 0.0397 kg 

Liquefied petroleum gas {RoW}| market for | Alloc Def, U 0.08 kg 

Seafood product preparation and packaging 2.274835635 2002 USD 

Emissions to Air 

Substance Amount Unit 

Carbon dioxide (fossil) 0.366 kg 

* Taken from Pelletier et al., 2009 28 

 

2.2.45. Cured fish 

Output to Market 

Item Amount Unit 

Cured fish {US} 1 kg 

Production Factors 

Item Amount Unit 

Tuna, Atlantic {ES} 2.36 kg 

Salmon, farmed {US} 0.338 kg 

Seafood product preparation and packaging 2.274835635 2002 USD 

87.5% of fish consumed in US is wild (http://www.seafoodhealthfacts.org/seafood-choices/overview-us-

seafood-supply), Atlantic Tuna and farmed Salmon used as proxies for all wild and farmed fish consumed 

in US respectively. Mass change from fresh to canned taken from FICRCD 10, losses due to dehydration. 

2.2.46. Plant based burger (PBB) 

Output to Market 

Item Amount Unit 

PBB Ingredients 1 kg 

Production Factors 

Item Amount Unit 

Ammonia, liquid {RER}| market for | Alloc Rec, U 0.0156 kg 



Ammonium sulfate, as N {GLO}| market for | Alloc Rec, U 0.00547 kg 

Chemical, organic {GLO}| market for | Alloc Rec, U 0.00472096 kg 

Boric acid, anhydrous, powder {GLO}| market for | Alloc Rec, U 0.00000005 kg 

Calcium Sulfate Dihydrate* 0.00015 kg 

Acetic acid, without water, in 98% solution state {GLO}| market for | Alloc Rec, 

U 

0.13833825 kg 

Cobalt {GLO}| market for | Alloc Rec, U 0.00000108 kg 

Copper sulfate {GLO}| market for | Alloc Rec, U 0.000013 kg 

Iron sulfate {GLO}| market for | Alloc Rec, U 0.00014 kg 

Magnesium sulfate {GLO}| market for | Alloc Rec, U 0.00408 kg 

Manganese sulfate {GLO}| market for | Alloc Rec, U 0.00000648 kg 

Potassium carbonate {GLO}| market for | Alloc Rec, U 0.00328 kg 

Sodium hydroxide, without water, in 50% solution state {GLO}| market for | Alloc 

Rec, U 

0.14826 kg 

Sodium {GLO}| market for | Alloc Rec, U 0.0000006 kg 

Sulfuric acid {GLO}| market for | Alloc Rec, U 0.0000108 kg 

Water, completely softened, from decarbonised water, at user {GLO}| market for | 
Alloc Rec, U 

13.991 kg 

Zinc {GLO}| market for | Alloc Rec, U 0.0000257 kg 

Maize grain {GLO}| market for | Alloc Rec, U 0.4181749 kg 

Acetic acid, without water, in 98% solution state {GLO}| market for | Alloc Rec, 
U 

0.13833825 kg 

Glycine {GLO}| market for | Alloc Rec, U 0.0169156 kg 

Lactic acid {GLO}| market for | Alloc Rec, U 0.00088 kg 

Chemical, organic {GLO}| market for | Alloc Rec, U 0.00472096 kg 

Sodium hydroxide, without water, in 50% solution state {GLO}| market for | Alloc 
Rec, U 

0.14826 kg 

Coconut oil, crude {PH}| production | Alloc Rec, U 0.166 kg 

Acetic acid, without water, in 98% solution state {GLO}| market for | Alloc Rec, 

U 

0.13833825 kg 

Potato protein* 0.066 kg 

Soybean {GLO}| market for | Alloc Rec, U 0.00209 kg 

Wheat gluten meal, consumption mix, at feed compound plant/NL Economic 0.25 kg 

Water, completely softened, from decarbonised water, at user {GLO}| market for | 

Alloc Rec, U 

13.991 kg 

* Taken from Agri-footprint database 

Output to Market 

Item Amount Unit 

Electricity, low voltage, US average 1 kWh 

Production Factors 

Item Amount Unit 

Electricity, low voltage {ASCC}| market for | Alloc Rec, U 0.002 kWh 

Electricity, low voltage {FRCC}| market for | Alloc Rec, U 0.052 kWh 

Electricity, low voltage {HICC}| market for | Alloc Rec, U 0.003 kWh 

Electricity, low voltage {MRO, US only}| market for | Alloc Rec, U 0.057 kWh 

Electricity, low voltage {NPCC, US only}| market for | Alloc Rec, U 0.064 kWh 

Electricity, low voltage {RFC}| market for | Alloc Rec, U 0.227 kWh 

Electricity, low voltage {SERC}| market for | Alloc Rec, U 0.269 kWh 

Electricity, low voltage {SPP}| market for | Alloc Rec, U 0.055 kWh 

Electricity, low voltage {TRE}| market for | Alloc Rec, U 0.089 kWh 

Electricity, low voltage {WECC, US only}| market for | Alloc Rec, U 0.182 kWh 

Average US grid mix used since final production location is unknown 

Output to Market 

Item Amount Unit 

PBB 1 kg 

Production Factors 

Item Amount Unit 

PBB Ingredients 1.1* kg 



Electricity, low voltage, US average 5.165 kWh 

Transport, freight, lorry 16-32 metric ton, EURO6 {GLO}| market for | Alloc Rec, U 1.35 tkm 

Heat, central or small-scale, natural gas {RoW}| market for heat, central or small-

scale, natural gas | Alloc Rec, U 

0.161 kWh 

Compressed air, 800 kPa gauge {GLO}| market for | Alloc Rec, U 3.22 m3 

Carbon dioxide, liquid {RER}| market for | Alloc Rec, U 0.297 kg 

* 10% loss assumed 

2.2.47. Vegetable Oil Mix 

Taken as margarine from Nilsson et al., 2010 30 

Output to Market 

Item Amount Unit 

Vegetable Oil Mix {GLO} 1 kg 

Production Factors 

Item Amount Unit 

Vegetable oil, refined {GLO}| palm oil, refined, to 

generic market for vegetable oil | Conseq, S 

0.474074074 kg 

Soybean oil, refined {GLO}| to generic market for 

vegetable oil, refined | Conseq, U 

0.331851852 kg 

Rape oil, crude {Europe without Switzerland}| rape 

oil mill operation | Conseq, U 

0.194074074 kg 

 

2.2.48. High Fructose Corn Syrup (HFCS)31 

Output to Market 

Item Amount Unit 

HFCS {US} 1 kg 

By-products 

Item Amount Unit 

Maize grain, feed {GLO}| market for | Alloc Def, U 0.348 kg 

Palm kernel oil, crude {GLO}| market for | Alloc Def, U 0.027 kg 

Production Factors 

Item Amount Unit 

Maize grain {US}| production | Alloc Def, U 1.5 kg 

Lime {GLO}| market for | Alloc Def, U 0.0003 kg 

Sulfuric acid {GLO}| market for | Alloc Def, U 0.00045 kg 

Sulfur dioxide, liquid {GLO}| market for | Conseq, S 0.00306 kg 

Urea, as N {GLO}| market for | Alloc Def, U 0.000208 kg 

Sodium chloride, powder {GLO}| market for | Alloc Def, U 0.000065 kg 

Sodium hydroxide, without water, in 50% solution state {GLO}| market for | Alloc 

Def, U 

0.000282 kg 

Cyclohexane {GLO}| market for | Alloc Def, U 0.000055 kg 

Chlorine, liquid {GLO}| market for | Alloc Def, U 0.000012 kg 

Water, decarbonised, at user {GLO}| market for | Alloc Def, U 4.9 kg 

Electricity, low voltage {US}| market group for | Alloc Def, U 0.934 MJ 

Natural gas, high pressure {US}| market for | Alloc Def, U 0.0596 m3 

Emissions to Air   

Substance Amount Unit 

Carbon dioxide (fossil) 0.17 kg 

 

2.2.49. Glucose from corn  

Output to Market 

Item Amount Unit 



Glucose from corn {US} 1 kg 

Production Factors 

Item Amount Unit 

Maize grain {US}| production | Alloc Def, U 1.6 kg 
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The past decade has seen a renaissance of urban farming in the Northeast US. One of the key 
motivations is the production of more environmentally sustainable food for cities. However, key 
questions remain unanswered: Is urban farming more resource efficient than conventional forms 
of food procurement in the Northeast US? Could a city such as Boston or New York City make 
considerable reductions in its food-borne greenhouse gas emissions through local farming?  
How much does food contribute to a city’s overall environmental footprint? This Ph.D. responds to 
these practical problems, while bringing theoretical and methodological advances in the way that 
industrial ecologists conceptualize and assess urban sustainability.
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