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Summary

Humans are daily exposed to a wide variety of man-made chemicals through food, consumer
products, water, air inhalation etc. For the main part of these chemicals no or only very limited
information is available on their potential to cause endocrine disruption. Traditionally such
information has been derived from animal studies, which are time-consuming, expensive and subject
to ethical issues. For these reasons alternative methods such as cell culture studies and non-testing
approaches such as quantitative structure-activity relationships (QSARs) are of high value as they can
provide information on the mode of action of chemicals in a faster and cheaper way. The main
purpose in this PhD project was to develop QSAR models for mechanisms related to endocrine
disruption and apply the models to predict 10,000s of chemicals to which humans are potentially

exposed.

The first part of the thesis is a background section, comprising 1) an introduction to the endocrine
system with a focus on thyroid hormones (THs) and their essential function in neurodevelopment as
well as a description of how chemicals may interference with endocrine mechanisms and cause
adverse effects, 2) an introduction to the applied methods to develop QSARs, and 3) an introduction
to regulatory toxicology including the acceptance of predictions from QSARs under the European
chemicals regulation, REACH. Following the background section, the four projects of the thesis are
described. The first three projects focus on the development of QSARs for mechanisms that can
affect TH levels: Thyroperoxidase (TPO) inhibition, Pregnane X receptor (PXR) activation, and Aryl
hydrocarbon receptor (AhR) activation. TPO is an enzyme essential in the synthesis of THs, and both
PXR and AhR are important regulators of enzymes involved in the turnover of THs and other
hormones. The fourth project was part of a large international QSAR collaboration, CERAPP, in which
a QSAR model for estrogen receptor (ER) agonism was developed, and used to predict 32,197
CERAPP chemicals. All models in the four projects were validated to assess how good they are at
making correct predictions, and they all showed good predictive performance. The QSAR models
were used to predict 72,524 REACH substances, and they were able to predict between 38,114 to

53,433 of these substances.

To conclude, the QSAR models developed in this PhD project can provide important information on
the 10,000s of chemicals in our surroundings. The predictions can for example be used for
prioritizing chemicals for further evaluation, aid in chemical assessments, grouping approaches, and
drug development as well as in the generation of new hypotheses on mode of actions in adverse

health outcomes.






Dansk Resumé

Mennesker udszettes dagligt for mange forskellige kemikalier fra fx madvarer, personlig pleje
produkter, vand og luften. For stgrstedelen af disse kemikalier er der ingen eller kun meget
begraenset viden om deres potentielle hormonforstyrrende effekter. Traditionelt har man indsamlet
denne information fra dyreforsgg, men de er tidskraevende, dyre og etisk problematiske. Alternative
metoder sasom celleforsgg og computermodeller som f.eks. quantitative structure-activity
relationships (QSARs) kan bruges til pa en hurtigere og billigere made at forsta kemikaliernes
virkningsmekanismer. Hovedformalet med dette PhD projekt var at udvikle QSAR modeller for
mekanismer i hormonsystemet, og benytte disse modeller til at screene 10.000’er af kemikalier, som

mennesker potentielt udsaettes for.

F@rste del af afhandlingen bestar af et baggrundsafsnit, der 1) introducerer hormonsystemet med
fokus pa thyreoideahormoner (TH’er), som bl.a. er essentielle i udviklingen af hjernen, samt
beskriver, hvordan kemikalier kan pavirke mekanismer hormonsystemet og derigennem forarsage
sundhedsskadelige effekter, 2) introducerer de metoder der anvendes i udviklingen af QSAR
modeller, og 3) introducerer den regulatoriske toksikologi, og hvordan QSAR forudsigelser bl.a. kan

benyttes i den Europeeiske kemikalielovgivning, REACH.

| naeste del beskrives afhandlingens fire projekter. | de fgrste tre projekter blev der udviklet QSAR
modeller for mekanismer, som pavirker TH niveauet: Thyroperoxidase (TPO) ha&mning, Pregnane X
receptor (PXR) aktivering, og Aryl hydrocarbon receptor (AhR) aktivering. TPO er et vigtigt enzym i
syntesen af TH’er, og bade PXR og AhR er vigtige i reguleringen af enzymer involveret i omsatningen
af TH’er og andre hormoner. Det fjerde projekt var en del af et stort internationalt QSAR
samarbejde, CERAPP. Hertil blev der udviklet en QSAR model for @gstrogen receptor aktivering, en
vigtig mekanisme for hormonforstyrrende kemikalier, og modellen blev brugt til at forudsige 32.197
CERAPP kemikalier. Alle modellerne blev valideret for at vurdere deres evne til at lave korrekte
forudsigelser, og de viste alle hgje ngjagtigheder. Modellerne blev efterfglgende bl.a. brugt til at
forudsige 72.524 REACH stoffer, og de kunne forudsige mellem 38.114 og 53.433 af stofferne.

De udviklede QSAR modeller kan bidrage med vardifuld information om de 10.000-vis af kemikalier i
vores omgivelser. Forudsigelserne kan bl.a. bruges til at prioritere kemikalier til yderligere
toksikologisk vurdering, samt blive brugt i evalueringen og grupperingen af kemikalier, i udviklingen
af legemidler og i opstillingen af nye hypoteser om underliggende virkningsmekanismer i

sundhedsskadelige effekter.
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1.1 Motivation and Scope of the Project

Humans are continuously exposed to a wide variety of man-made chemicals through for example
food, water, consumer products such as cosmetics and house-cleaning products, pharmaceuticals,
and air inhalation [1-4]. These chemicals have the potential to interfere with normal physiological
systems of living organisms and, if the interferences are left uncompensated, adverse health effects
may develop. Evidence from epidemiological studies indicates that chemical exposure is involved in
a number of adverse human health effects such as cancer, reduced reproductive health and learning
disabilities [5-11]. Some of these adverse outcomes are likely the result of chemical interference
with molecular mechanisms of the endocrine system such as interaction with hormone receptors
and/or altered synthesis, degradation or transport of natural hormones [8,12]. This has led to an
increased focus on identifying chemicals with endocrine modulating properties, i.e. so-called
endocrine disrupting chemicals, and screening for a battery of such properties has been included in

programs and legislations within both EU and US [4,13,14].

Traditional toxicology testing consists of exposing laboratory animals, typically rats or mice, to a
chemical and looking for adverse effects at whole animal, tissue and/or cellular level. Animal tests
are time-consuming, expensive, subject to ethical issues, and their results can be difficult to
extrapolate to humans [15-18]. Due to these challenges/limitations with animal toxicity tests and
the ongoing need to gather toxicity information on the many thousands of chemicals in commerce, a
paradigm shift in toxicity testing have been proposed, often referred to as Toxicity Testing in the 21*
Century [19,20]. Here the use of alternative methods such as in vitro and in silico to aid in chemical

safety assessment is presented [19-22].

In this PhD project, the in silico method Quantitative Structure-Activity Relationship (QSAR)
modeling was applied on a number of molecular mechanisms within the endocrine system, most of
which are molecular initiating events (MIEs) in established adverse outcome pathways (AOPs) of
thyroid-related adverse outcomes [23-26]. The developed models underwent thorough validations
according to regulatory recommendations [27] and were then used for screening of large chemical

inventories containing man-made chemicals.

The main hypothesis of this PhD project is:

QSAR models for selected molecular mechanisms of thyroid-
related AOPs can expand the knowledge derived from
experimental data and aid in human health safety evaluation of

chemicals.
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To investigate this hypothesis, the following questions have been sought answered:

e Can highly predictive and robust global QSAR models for MIEs in relevant AOPs be
developed?

e If so, can such QSAR models trained on 1,000s of structurally diverse chemicals, provide
reliable predictions and hereby extend the use of information from tested chemicals to

10,000s of man-made untested chemicals?

1.2 Organization of the Thesis

The thesis is organized into four parts. Part | gives an introduction to the motivation for the PhD
project, its scope, hypothesis and organization. In Part Il a general background on the endocrine
system and related toxicology with focus on the thyroid system is given followed by an outline on
the concept of QSAR models and their applications, and finally an introduction to regulatory
toxicology. The background sections in Part Il are not exhaustive and more information on the
different topics may be found in the published literature. Part Ill contains separate chapters
describing each of the four projects of this thesis. Accepted papers, submitted manuscripts or study
reports from each of the projects are included in the respective chapters. The final Part IV consists of

a brief overview, a summarizing discussion and conclusion as well as further research perspectives.
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2.1 The Endocrine System and Endocrine Disrupting Chemicals

2.1.1 The Endocrine System

The endocrine system is large and complex and serves multiple essential functions in the body such
as regulation of body temperature, blood glucose levels, reproductive function and fetal
development [1]. Briefly, the endocrine system ensures optimal communication between cells,
tissues and organs of the body through hormone signaling to the responsive tissues. Hormones are
synthesized in a number of tissues and organs, a few examples being the thyroid gland, ovaries,
testes, hypothalamus, pituitary gland, adrenal glands, adipose tissue and pancreas (Figure 1) [1]. The
hormones are released to the bloodstream and transported, often by plasma proteins, to their
target tissue(s). Here a hormone can act directly on membrane receptors that transduce signals into
the cell or it can enter the cell either by passive diffusion or active transport by membrane proteins
[1]. In the cell, the hormone binds and activates its cognate hormone receptor, resulting in
downstream effects such as production of proteins that facilitate biological responses [2]. The
hormone-receptor interaction pathway is the best-characterized hormone signaling pathway but

other modes of action of hormones also exist [3—6].
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b“ .
Progestarone: prepares uterus for a fertilized egg
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Figure 1. A basic and non-comprehensive overview of the complex endocrine system with examples of
hormones and their physiological functions. FSH, follicle stimulating hormone; LH, luteinizing hormone; T4,
thyroxine; T3, triiodothyronine; TSH, thyroid stimulating hormone.

Testes
Androgens: e.g. male secundary sex characteristics
Inhibin and activin: regulate gonadotropin release




Part Il

The plasma levels of hormones are generally kept within strict, but very individual, patterns by for
example negative feedback loops [1,2,6]. With negative feedback loops the hypothalamus, pituitary
and in some cases the hormone-producing tissues sense the plasma concentration of the hormone,
and in case of a low hormone plasma level synthesis and secretion of the hormone is upregulated
and vice versa with a high hormone plasma level. Hormones are metabolized and inactivated by
enzymes in the target tissues and/or the liver, and are either reused or excreted via the bile or urine.
The expression of the phase | and Il liver metabolizing enzymes and the membrane transport
proteins is regulated by nuclear receptors (NRs) such as the Pregnane X Receptor (PXR), the Aryl

hydrocarbon Receptor (AhR) and Constitutive Androstane Receptor (CAR) [7,8].

2.1.1.1 Thyroid Hormones and Neurodevelopment

Thyroid hormones (THs) are involved in multiple biological processes from early fetal development
and throughout adulthood [6,9-11]. In early gestation, the fetus depends on maternally-derived THs.
The fetal thyroid gland develops from the third week of gestation, and at approximately gestational
week 12 in humans and gestation day 17.5-18 in rats, the fetal thyroid gland starts to synthesize THs
from maternally-derived iodine [2,12]. However, maternal THs continue to contribute significantly to
fetal TH levels throughout gestation in both humans and rats [10,13]. Consequently, the maternal
thyroid gland has to increase its TH production during pregnancy to meet the needs of both fetus

and mother [2].

THs are synthesized in the follicles of the thyroid gland located on the anterior trachea (Figure 2a).
Serum iodide (I) is transported into the thyrocytes by the Na*/I" symporter (NIS) in the basal
membrane and is further moved across the apical membrane by the anion transporter Pendrin to
enter the colloid of the thyroid follicle [14,15]. Here I is oxidized to hypoiodite (I0) in the presence
of dual-oxidase generated hydrogen peroxide (H,0,) by the multifunction, heme-containing enzyme
thyroperoxidase (TPO) located in the apical thyrocyte membrane [14,16,17]. TPO further catalyzes
the iodination of the tyrosyl residues on thyroglobulin (Tg), a glycoprotein secreted by the
thyrocytes, to form monoiodotyrosine (MIT) and diiodotyrosine (DIT) [14,16,17]. The conjugation,
again catalyzed by TPO, of DITs and MITs on Tg, leads to the formation of three THs: thyroxine (DIT +
DIT, T4), triiodothyronine (MIT + DIT, T3) or reverse triiodothyronine (DIT + MIT, rT3), which is

biologically inactive [18].
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d) The HPT axis: regulation of TH serum levels
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Figure 2. Overview of mechanisms in the thyroid system. See text for explanations and abbreviations.

After being transported across the cell, the THs are released from Tg and secreted into the blood,
where the hydrophobic THs are bound to three principal serum TH-binding proteins, thyroxine
binding globulin (TBG), transthyretin (TTR) and albumin [19] (Figure 2b). TBG is the main TH plasma
transport protein in humans, whereas in animals TTR is the most important transporter protein for
THs [2]. TTR also plays a role in the transport of THs over the placenta and the blood-brain-barrier in
humans [20,21]. When reaching the target tissue, free serum THs enter the cells by active
transporters such as monocarboxylate transporter-8 (MCT-8) and organic anion transporter protein
1cl (OATP1cl) [10] (Figure 2c and 2e). T4 is the most abundant TH in the blood and is generally
converted to the more potent T3 in the liver or locally in the target tissue by outer-ring deiodinase
activity (ORD, deiodinase type 1 and 2) [2,10,22]. The effects of T3 is primarily exerted through the
two cognate thyroid hormone receptors (TR), TRa and TRB, which bind to thyroid hormone response
elements (TREs) to modulate downstream gene transcription resulting in different outcomes
depending on the target cell and tissue [10]. Besides regulating TR transcriptional activity, THs can
also mediate non-genomic pathways, such as membrane signaling pathways, resulting in rapid

(seconds to minutes) onset effects [6].

The TH serum level is normally kept within a narrow range by the hypothalamus-pituitary-thyroid
(HPT) axis, a multi-loop negative feedback system that ensures an appropriate balance between
synthesis and degradation of THs [2,6] (Figure 2d). In response to low levels of THs in the blood, the

pituitary upregulates the secretion of thyroid stimulating hormone (TSH), either as a direct response
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or via thyroid releasing hormone (TRH) from the hypothalamus [6]. TSH binds to TSH receptors on
the thyrocytes leading to a stimulation of TH synthesis and release [2]. On the other hand, when the
TH blood level is high TSH secretion is downregulated resulting in decreased TH synthesis and
release. Besides the control of TH levels by the HPT axis, TH levels can also be affected by TH
catabolism. THs are primarily metabolized and inactivated in the liver by the phase Il enzymes,
sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) [8,23—-25], and by inner ring
deiodinase activity (IRD, deiodinase type 1 and 3) in both the liver and other tissues [10] (Figure 2e).
The expression of SULT and UGT isoenzymes is regulated by the xenobiotic NRs PXR, AhR, and CAR

[7,23,26]. The modified and biologically inactive THs are eliminated via the bile or urine.

In adulthood, THs are involved in blood glucose regulation, heart function and basal metabolic rate
as well as many other biological processes [27,28]. Dysregulated TH levels can give reversible clinical
symptoms of hypo- or hyperthyroidism [28] and are associated with pathological processes involved
in adverse outcomes such as cancer, obesity and type Il diabetes mellitus [29,30]. In the developing
fetus and neonate, THs are involved in various developmental processes [28] and are essential in
normal neurodevelopment [2,31]. Both in vitro and animal studies have shown the importance of
THs in processes such as neuron differentiation, proliferation and migration, dendritic branching and
synaptogenesis as well as myelination [10,32,33]. Studies have shown that even a moderate and
transient decrease in maternal TH levels during pregnancy is associated with permanent adverse
neurological changes in the offspring [2,28]. These changes include reduced 1Q and altered
cognition, socialization and motor function in children [34-39], and altered cognitive behavior and
motor function as well as hearing loss in animals [13,40-42]. Alterations in maternal TH levels during
pregnancy, for example due to iodine deficiency or untreated thyroid disorders, have also been
associated with an increased risk of cretinism, autism spectrum disorders (ASD) and attention-

deficit/hyperactivity disorder (ADHD) in children [9,43-45].

2.1.2 Endocrine Disrupting Chemicals

An endocrine disrupting chemical (EDC) is, as defined by the World Health Organization (WHO) in
the International Progamme on Chemical Safety (IPCS) report from 2002 [46]:

‘an exogenous substance or mixture that alters function(s) of the endocrine system and consequently
causes adverse health effects in an intact organism, or its progeny, or (sub)populations’.

This definition is widely accepted as it is applicable to both human health and ecotoxicological
hazard and risk assessment; however it is also relatively open for interpretation. Other definitions of
EDCs with focus on the mode-of-actions of EDCs have been suggested [47], for example the EDC

definition by Kavlock and others [48]: ‘an exogenous agent that interferes with the production,
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release, transport, metabolism, binding, action or elimination of natural hormones in the body
responsible for the maintenance of homeostasis and the regulation of developmental processes’.

Depending on multiple factors such as the timing and length of exposure as well as dose and
concurrent exposure to other EDCs, an EDC can modulate the endocrine system and potentially
result in adverse effects [1,2,49]. In general, low and transient EDC exposure during adulthood can
be compensated for and will often give undetectable or only temporary, reversible effects. Exposure
to EDCs during fetal and neonatal development can result in serious and permanent later life effects
such as learning disabilities and reduced fertility [1,50]. Because of the complexity of the endocrine
system (Figure 1), the cross-talks between the different mechanisms [51,52] and the tempo-spatial
aspects, it is difficult to predict if and how endocrine system modulations by EDCs will result in
effects at the epi-molecular levels [1]. This is further complicated by interspecies differences in the
endocrine effects, which is why extrapolation between results from in vitro, in vivo and clinical EDC

studies should be made with precautions [1].

Multiple programs are screening chemicals for endocrine disrupting properties [32,53,54], and such
programs have originally mainly focused on estrogen and androgen receptor interaction. The
screening batteries have gradually been extended to cover other endocrine systems such as the
thyroid system as well as other mechanisms within the endocrine systems for example the
production and degradation of hormones [8,55-59]. The larger the EDC screening battery gets, the
better the identification of potential EDCs becomes. Conceptually, one should keep in mind that a
chemical can never be said to be without any endocrine modulating potential based on such
screenings. Instead, the screenings can help identifying and prioritizing chemicals for further
testing/evaluation and aid in the design of higher-tier toxicity testing protocols. They may also
provide useful information in combination with AOP(s) to Integrated Approaches and Testing
Assessments (IATA) in weight-of-evidence (WoE) assessments as well as give useful information in

the substitution to safer alternatives (see chapter 2.3).

2.1.2.1 Thyroid Disrupting Chemicals and Developmental Neurotoxicity

Neurodevelopmental disabilities including ADHD, ASD and IQ deficits are common and their
prevalence’s seem to be increasing [60,61]. The causes of neurodevelopmental disabilities are not
fully understood, but genetics and environmental factors such as exposure to man-made chemicals
are involved [60,61]. Chemicals that interfere with one or more mechanisms in the thyroid system
(Figure 2), i.e. thyroid disrupting chemicals (TDCs), can lead to altered TH levels [28]. Studies indicate
that the majority of TDCs act by modulating the TH levels rather than direct interaction with the TRs

in the target tissues [8]. Exposure to TDCs during pregnancy may lead to decreased maternal TH
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levels potentially resulting in developmental neurotoxicity (DNT) and other adverse effects in the
offspring [2,7,8,62—65]. Chemical interference with other endocrine and non-endocrine mechanisms
may also result in DNT [66,67]. EDCs, and especially TDCs, with DNT potential have been
demonstrated to contribute to neurodevelopmental disabilities [60,61,68]. The neurodevelopmental
disabilities have multiple implications including reduced life quality and academic achievement, as
well as disturbed behavior. These implications have profound economic consequences for societies
[60,61], for example is EDC-related DNT estimated to cost Europe more than 150 billion euros per
year [68].

Because of the severity of the adverse effects and the economic consequences that can be expected
from chemical disruption of thyroid homeostasis there is an urgent need to develop a strategy for
the identification and testing of TDCs [8]. This has initiated a large international collaboration, which
aims at developing and using new in vitro assays for DNT, including in vitro assays for thyroid-related
mechanisms such as TPO, NIS and deiodinase interaction [66,69]. Such assays can be used for
screening the many thousands of chemicals in commerce for which there is none or only limited
data on their potential to be TDCs and/or cause DNT. These screening data can be used to either
prioritize chemicals for further DNT testing or for inclusion in WoEs of IATAs, e.g. together with

relevant AOP(s) and other data, in chemical-specific assessments (see section 2.3.4).
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2.2 Quantitative Structure-Activity Relationship Models

A QSAR model is a mathematical model that describes the quantitative relationship between
chemical structures and their properties, e.g. a physico-chemical property or a biological activity.
QSARs are trained on experimental data for chemicals with known structures using machine learning
and statistical methods, and they can be used to predict the activity of chemicals based on their
structures (see e.g. [1] and [2] for more in-depth reviews of QSARs). The quantitative in QSAR refers
to the nature of the descriptors (i.e., independent variables) and the modeling method and not to
the modeled endpoint (i.e., response variable), which can be either quantitative/continuous (e.g.
ICso) or qualitative/categorical (e.g. active versus inactive) [1]. Closely related to QSAR is the simpler,
structure-activity relationship (SAR) method that qualitatively relates a (sub)structure to an activity.
In contrast with QSARs that result from statistical analyses of experimental data, SARs are usually
based on expert knowledge and are encoded into expert systems [3]. Collectively, SARs and QSARs
are referred to as (Q)SARs [1]. (Q)SARs are non-testing approaches and other related non-testing
approaches include grouping approaches using e.g. read-across, and expert systems, which can be
combinations of SARs, QSARs and databases [1]. Together these non-testing approaches are based
on the structural similarity principle, i.e. the hypothesis that structurally similar chemicals exhibit
similar behavior (in living organisms), and are used to facilitate the evaluation of properties of

chemicals by extending existing information [1].

QSARs date back to the late 1800s, when Hans Horst Meyer and Fritz Baum described the correlation
between partition coefficients and tadpole alcohol narcosis [4-6]. The interest in QSARs has
increased gradually [2,7] after the pioneering work in the 1960s by Corwin Hansch and colleagues,
who made simple QSAR models for inhibition of photosynthesis and activity of auxin, a plant growth
substance [8-11]. Since then advances in technology, mathematical methods, and computer power
have allowed for efficient development of much more complex and predictive QSAR models. Today

QSAR models are widely used in academia, industry and agencies [2].

2.2.1 QSAR Development

The development of QSAR models follows a general workflow starting with 1) dataset collection,
curation and preparation, 2) generation and selection of chemical descriptors to be used as
independent variables in 3) the model building step, and finally 4) a statistical validation of the
model(s) within the defined applicability domain (AD) (Figure 3) [12]. A QSAR model is built using a
so-called training set, which consists of chemical structures and related experimental data. The
chemical structures are represented by chemical descriptors (see more in 2.3.1.2), which are used as

independent variables in the model. The experimental endpoint, which can be either continuous or
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categorical, is used as the response variable in the model. QSARs are normally classified as global or
local. A local QSAR is trained on a small and congeneric series of chemical structures, whereas a
global QSAR is trained on a large and structurally diverse set of chemicals. The term validation is
broadly defined as “the process by which the reliability and relevance of a particular approach,
method, process or assessment is established for a defined purpose” [13]. However, this definition is
rather abstract in a QSAR context and therefore a more operational definition of validation has been
proposed [14]: “The validation of a (Q)SAR is the process by which the performance and mechanistic
interpretation of the model are assessed for a particular purpose”. The performance assessment
here refers to the statistical validation of the model [1]. The AD as a general term is defined as “the
response and chemical structure space in which the model makes predictions with a given reliability”

[15] (see more in section 2.2.2).

1. Dataset
a. Collection 2. Descriptors
Structures: computer-readable 2D or 3D information Generation:
Experimental: well-defined, categorical or continuous physico-chemical
topological
b. Curation > steric
3 electronic
Structural processing: structural
remove mixtures, inorganics, organometallics Transform/autoscale
cleaning/removal of salts
standardizaton of structure representations Reduction and selection:
remove redundant and correlated descriptors
Experimental data: select a subset of descriptors
single or multiple sources
inter- or intralab variability '
test protocol and data analysis variability ol g+
cytotoxicity or assay interference 3. QSAR BU|Id|ng

) Statistical methods
Structural replicates:

handling and removal procedures Composite/battery/ensemble

Manual inspection
e.g. handling of outliers '

4. QSAR validation

c. Preparation Tralning set
Split data: / = Goodness-of-fit
training and test set

splitting method and sizes Cross-validation
o,
Balance training set: Test set s External validation
under- versus oversampling )

Figure 3: Overview of the basic QSAR development steps. See text for an explanation of the figure.

Many different methods for each of the steps in 1) to 4) have been proposed and used (see e.g.
[7,12,16,17]). Here a basic and non-comprehensive workflow is introduced and some of the methods

and caveats are briefly discussed (Figure 3).
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2.2.1.1 Data Collection, Curation and Preparation
As the quality of the data strongly influences the quality and performance of the built QSAR model
[16,18-20], the steps of data collection, curation and preparation are of high importance in QSAR

development and should follow some basic principles [2] (Figure 3, 1).

2.2.1.1.1 Data Collection

The first step when developing a QSAR model is to collect a dataset containing structure and
experimental endpoint information for a set of chemicals [12,16,21-23]. The chemical structures in
the dataset should be represented in a computer-readable 2D or 3D format, three of the most
widely used ones being SMILES (simplified molecular input line entry system) [24-26], the
connection table format (used in MOL or SDF files) [27] and InCHI (IUPAC International Chemical
Identifier)'. Most QSAR models use 2D structure information but 3D-QSAR models also exists [28—
31] and 4- and higher-dimensional approaches have been reported [32]. Preferably the dataset
should be collected from a single reliable source and have experimental data for a well-defined
endpoint that have been produced in the same laboratory by the same personnel and have followed

the same experimental protocol(s) and subsequent data analyses [1] (Figure 3, 1a).

2.2.1.1.2 Data Curation

At this step, the quality of both structure and experimental information in the collected dataset
should be thoroughly evaluated as errors in the data can strongly influence the performance of the
developed model [2,12,16,21-23,33]. Several studies have shown that structural errors are not
uncommon, and therefore identification and correction of such structural errors should be part of a
standardized data curation strategy [12,23,33,34]. Often the software systems used for interpreting
the structures and/or building the models are limited in the chemical universe they can handle, and
most QSAR models are based on organic discrete 2D chemical structures. Inorganic or
organometallic compounds and mixtures can generally not be handled by conventional
cheminformatics tools and need removal [2]. The remaining structures need to undergo a
standardization and normalization procedures to ensure that all structures are described following
the same algorithm, i.e. are canonized, in terms of e.g. ring aromatization and neutralization [2,26].

When these steps have been applied the chemical structures are made ‘QSAR-ready’ (Figure 3, 1b).

The quality and reproducibility of the experimental data should be assessed. In general, with regards
to the quality and reproducibility of the experimental data the model developer has to rely on the
information from the data provider(s). Often a description of the experimental protocol(s) and

performance as well as the applied data analyses is available to the model developer. The model

! https://iupac.org/who-we-are/divisions/division-details/inchi/
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developer should become familiar with the nature of the experimental data and its underlying
biology and assay technology to assess the degree of uncertainty/artefacts and potential false
results. Based on this, measures should be taken to identify unreliable experimental results. For
example corresponding experimental data from counterscreen assays, e.g. for luciferase interaction,
can be applied to identify non-specific and potential false experimental results. If the data have been
collected from multiple sources it can contain additional uncertainties from e.g. interlaboratory
variability and/or differences in the test protocols and data analyses. Such uncertainties are likely to
introduce extra noise and reduce the performance of the model compared to models built from data

from a single source undergoing the same test protocol(s) and data analysis [1,7,35] (Figure 3, 1b).

Next, any replicated ‘QSAR-ready’ structures in the dataset should be identified and the
experimental values of the identified structural replicates should be compared [2]. If the replicates
have the same experimental results then only one of the structures should be kept as they will
otherwise be given too large influence in the model. For a set of replicates with discrepant
experimental results different removal approaches can be used, e.g. removing all replicates or, for a
continuous response variable, an average value can be calculated and kept together with one of the

structures [2,36] (Figure 3, 1b).

When the replicates have been handled, a final general manual inspection of the dataset should be
made as the last step of the data curation and can include checking that previous curation steps
have been successful and identification of outliers [2,16] (Figure 3, 1b). Manual inspection is
however not practical in case of very large datasets and may be skipped in such cases. Briefly,
outliers can be of the ‘activity cliff’ type or due to errors in structure information or experimental
data not taking into consideration in the previous steps [21,37]. There are different approaches
about outliers. In principle, all available experimental data are valuable and should be used in the
construction of a QSAR model. However, outlier removal if done independent of the model results
can be justified in some situations. For example in the development of smaller, local QSAR models
based on a dataset of congeneric chemical structures that act by a common mechanism, a correct
experimental result may be treated as an outlier if it is known that the chemical acts by a different
mechanism than the one for the majority of the training set. Overall, if measures are taken to
remove outliers, a good explanation should be provided along with a detailed documentation of the
removal procedure, otherwise the outlier removal step can be interpreted as a manipulation of data

with the purpose of artificially improving model performance [2,38].
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For preparing a prediction set, i.e. a dataset containing only chemical structures that are planned for
screening through the QSAR model to generate predictions for their activity, the data collection and

curation steps regarding structures also apply.

2.2.1.1.3 Data Preparation

When the data have been properly curated, the next step is to decide whether the curated dataset
should be used as a training set or if it should be split into training and test sets [12,39] (Figure 3, 1c).
In the last case, different splitting methods can be used such as random splitting or a rational
stratified splitting on endpoint activity or descriptor space [17,39-41]. Each splitting method will
have its pros and cons with regard to model coverage and performance as well as the interpretation
of the external validation estimations [40,42]. In general, rational splitting will result in a test set
more similar to the training set and may, if the test set is too similar, give overoptimistic future
predictive performance and coverage measures compared to a test set made from random splitting,
which better represents the future non-selected prediction sets [2,36,40]. Some things to consider if
the dataset is split, besides the splitting method, are the absolute and relative sizes of the training
and test sets. Often the size of the test set(s) is between 10% and 30% of the dataset [39], and the
remainder of 70% to 90% is used for model training. The absolute size of the test set should be large
enough to be used for robust external validation [12,17,43], and similarly the training set should, at
least for global QSAR development, have a certain size and diversity to avoid chance correlations and
overfitting. Fixed cut-offs for the lower limits of the size of the training and test sets cannot be set
[12] as this depends on the nature of the full dataset, the types of chemical descriptors and

statistical methods being used, the purpose of the model etc. [39].

Due to the increasing implementation use of high-throughput screening (HTS) assays such as those
applied in e.g. the ToxCast and Tox21 programs (see section 2.3.2), it is more and more common to
find datasets with a binary response variable that are very imbalanced towards a larger class of
inactives [12,44]. Generally, a QSAR model trained on such imbalanced dataset has a tendency to be
biased towards making predictions for the majority class (Figure 3, 1c). For the typical imbalanced
training set with a bigger inactivity class this will likely result in a model with a high specificity and a
low sensitivity (see definitions in Figure 4) upon predictive performance evaluation [45]. To
overcome this problem different approaches to balance the training set have been suggested

[12,44,46,47] such as undersampling of the bigger class or oversampling of the smaller class [48,49].

2.2.1.2 Descriptor Generation and Selection
To build a QSAR model a set of descriptors encoded within chemical structures of the curated

training set first needs to be generated (Figure 3, 2). Chemical descriptors are values that describe
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different properties of a molecule. They can be physico-chemical characteristics (e.g. molecular
weight and logP), topological (e.g. atom, bond and ring counts), steric (e.g. volume and surface) or
electronic (e.g. HOMO and LUMO). A special class of descriptors is structural descriptors or features.
Pre-defined sets of structural features, also called structural keys (e.g. MACCS keys [50]) and the
Leadscope Structural Feature Hierarchy [51]), can be used by searching for the pre-defined structural
keys in the chemical structures of the training set. The presence or absence of each key in a
structure is encoded in a bitmap, where each bit represents a 1 if the key is present and a 0 if it is
absent. The structural keys can also be used for constructing new, larger structural features [52].
Furthermore, structural features can be molecule-dependent, i.e. so-called fingerprints, rather than
pre-defined. Structural descriptors in fingerprints are created using a fingerprinting algorithm (e.g.
the Daylight fingerprints [53]) that examines the molecule and generates a set of patterns [54].
Besides being applicable in QSAR modeling, structural features from both structural keys and
fingerprints are also used to calculate structural similarity measures such as the Euclidean distance
or the Tanimoto/Jaccard coefficient [53,55]. Transformation, i.e. normalization and/or autoscaling,
of continuous chemical descriptors and/or the response variable might be necessary at this step as
large variabilities in the range and distribution of these can pose a problem for some
statistical/machine learning methods [2,7]. Examples of commercial and free software tools for

generating chemical descriptors include MOE?, DRAGON?, RDKit*, PaDEL® and CDK [7,56-59].

The number of generated chemical descriptors for a training set is often huge and many of the
descriptors may be correlated or redundant (Figure 3, 2). Examples of redundant descriptors include
those only present in a single structure or descriptors with the same or almost same value over all
samples in the dataset. Different unsupervised data reduction techniques for removing or
minimizing redundant information are available, an example being the principal component analysis
(PCA) that creates uncorrelated latent (i.e., hidden/non-observable) variables from the descriptors
[54,60,61]. After removing redundant and correlated descriptors, the next step is to select the
descriptors that should be included in the model algorithm. Multiple descriptor selection techniques
are applied in QSAR development, all with the purpose of finding a combination of descriptors for
QSAR modeling of the response variable [62—64]. The selection techniques include supervised
methods such as wrapper methods (e.g. genetic algorithms (GAs)), and filter methods (e.g.
univariate data analysis) [65]. Each method has its advantages and limitations in terms of e.g.

computation time and ease of implementation [62—64,66]. The descriptor reduction and selection

? https://www.chemcomp.com/MOE-Cheminformatics_and_QSAR.htm
® http://www.talete.mi.it/products/dragon_description.htm

4 http://www.rdkit.org/

> http://www.yapcwsoft.com/dd/padeldescriptor/
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procedures have been used to reduce computation time, improve model predictive performance,
and ease interpretability as well as avoid overfitting and reduce chance correlations [62,63,67]. A
general recommendation is that the training set chemicals to chemical descriptors ratio of a model

should be at least 5:1 in order to minimize the risk of chance correlations and overfitting [2,35,68].

2.2.1.3 Machine Learning and Statistical Methods in QSAR building

Various QSAR modeling methods exist, and new methods are continuously being developed [69]
(Figure 3, 3). Depending on whether the response variable is continuous or categorical either
regression or classification methods, respectively, should be applied in the QSAR building. In general,
classification models tend to be more flexible and successful in prediction [70]. A continuous
response variable can be made categorical by using one (i.e. binary) or more cut-offs, which can be

set based on different criteria such as model performance or a biological rationale [12,41,71].

The list of classification and regression methods applied in QSAR building is long [69,72]. A few non-
exhaustive examples of linear and non-linear classification and regression methods used to build

QSAR models are listed in Table 1.

Table 1. Examples on the use of classification and regression methods in QSAR building

Examples Use cases References
Linear discriminant analysis (LDA) [39]
k-nearest neighbors (kNN) [71]
Naive bayes (NB) classification [73]

Classification | Support vector machines (SVM) [73,74]
Random forest (RF) [73,74]
Partial logistic regression (PLR) [36]
Classification and regression trees (CART) [75]
Multiple linear regression (MLR) [39]

Regression Partial least squares (PLS) regression [39]
Artificial neural network (ANN) regression | [66]
Stepwise regression [39]

Some of these methods, e.g. RF, SVM and ANN, have been invented and implemented to handle
both regression and classification problems [73]. Each method has its advantages and limitations in
terms of e.g. computation time/memory, overfitting tendencies, sensitivity to noise and
interpretability [69,72,73], and their predictive success depends on the nature of the training set and
the types of chemical descriptors. The descriptor selection techniques and QSAR modeling methods

are in some cases integrated, e.g. when applying GAs on MLR or SVM [76].

QSARs built using the same training set may produce discrepant predictions for a query chemical due

to differences in the applied statistical methods and/or chemical descriptor sets. Therefore, rather
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than relying on a single prediction for a given endpoint for the query chemical, increased certainty in
the prediction can be achieved by applying a consensus or battery approach (Figure 3, 3). In a
consensus or battery approach, the predictions from the individual models are integrated to output
one consensus or battery prediction. This approach is used on a large scale e.g. in the Danish (Q)SAR
Database (see 2.2.3) [77,78]. In general, by combining multiple predictions to reach final
battery/consensus predictions, a better and more correct description of the relationship between
the query chemical structure and its predicted activity can be obtained due to the noise or limited

coverage of the single model being canceled by the others [79].

2.2.1.4 Methods in Statistical Validation of QSAR Model
After a model has been developed it should be statistically validated for its goodness-of fit,
robustness and predictive performance within one or more defined ADs (see more in section 2.2.2).

Here some of the most common methods in QSAR validation are briefly presented (Figure 3, 4).

Goodness-of-fit

The goodness-of-fit is a measure of the model’s internal performance, i.e. how well the model
predicts its own training set. For classification models the goodness-of-fit is sometimes expressed as
Cooper statistics [80], including sensitivity, specificity, concordance and balanced accuracy, which

are calculated based on the confusion matrix (Figure 4).

_ _ QSAR Predictions
Confusion matrix Positive Negative
Positive True Positive (TP) False Negative (FN)
Experimental values
Negative False Positive (FP) True negatives (TN)
Sensitivity = e the proportion of experimental actives correctly predicted
Specificity = % , the proportion of the experimental inactives correctly predicted

Sensitivity + Specificity
2

Balanced accuracy = , the average of the sensitivity and specificity

Figure 4: Confusion matrix and Cooper statistics.

External validation

External validation is part of model predictivity assessment and the procedure consists of predicting
a test set, i.e. a set of substances not used for training the model. A robust external validation, i.e.
made with a test set of sufficient size and structural diversity to be representative of the chemical
diversity of the model’s training set, is by some scientists considered the ‘gold standard’ to assess a

model’s predictive performance (as discussed in [17]). The experimental data of the test set should
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preferably be of the same type as the experimental results in the training set, i.e. in the ideal case
tested following the same protocol and data analysis at the same laboratory and by the same
personnel [35]. When the test set has been run through the model the predictions that fall within
the defined AD are compared with the corresponding experimental data and different statistical

measures can be calculated, e.g. the Cooper statistics (Figure 4).

A limitation sometimes met by model developers is the absence of a test set. A test set can be
acquired by: using part of the curated dataset, i.e. splitting; generating new experimental data; or
finding new data in databases or the literature that is similar to the data in the training set. If the
entire dataset has been used for model training and new data are not available, external validation is
not possible. If the test set is acquired by splitting the experimental dataset into training and test
sets, the splitting method is of importance [17]. Robust external validation with a test set from a
rational splitting will likely result in more optimistic coverage and predictive performance estimates
compared to the estimates from a test set made from random splitting [17]. The external validation
results from a test set made with random splitting will generally give more realistic estimates of the

model’s future screening set performance [40].

Cross-validation

Cross-validation is a common and popular technique used for assessing both model robustness and
predictive performance. Cross-validation approaches include for example leave-one-out (LOO),
leave-many-out (LMO), randomization, stratified randomization and bootstrapping. LOO is a type of
k-fold cross-validation, which is a commonly used cross-validation method for QSAR models. Briefly,

in k-fold cross-validation, the training set, S, is split into k subsets S;, ..., Sy, where

In the LOO case, k is equal to the number of entries in the training set. The selected k is often
dependent on the training set size, and regularly used k for robust cross-validations includes 2, 5, 10
and 20 [17,36]. Then k cross-validation models, M, are built using S\S, so that all k subsets have
been included in all but one of the k cross-validation models. Each cross-validation model, M;, which
should be built without any transfer of information from the full parent model such as selected
descriptors, is externally validated with the left-out subset, S;. The procedure can be made x times in
a so-called x times k-fold cross-validation. The statistical results from the k external validations are
averaged to give an overall statistics, which is then used as an estimate for the predictive
performance of the parent model made on the full-training set, S (Figure 4). The variance in the

individual cross-validation model performance measures, expressed as e.g. a standard deviation
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(SD), can be used for estimating the robustness of the parent model. Large variability, i.e. high SDs,
in the cross-validation model performance estimates indicate a parent model being easily affected

by changes in the constitution of the training set.

Some scientists criticize the use of cross-validation to assess model predictivity [81,82] as results
from cross-validations have in some cases reported optimistic and misleading estimates. Such
optimistic results are likely derived from cross-validations where either k has been too large, e.g.
LOO on large training sets, or information from the full training set model has been transferred to
the cross-validation models [65]. They may also be due to conservative measures derived from an
external validation with uncritical use of a test set with experimental results that are not similar
enough to the training set experimental results. A large systematic study that compared robust
cross-validation, i.e. no reuse of information and appropriate sizes of k, with robust external

validation has shown that robust cross-validation generally underestimated model predictivity [17].

To summarize on the topic of statistical validation of QSAR models, a combination of robust external
and cross-validation is likely the optimal, although not always a practical, choice when assessing the
robustness and predictive performance of a model [39]. If part of the dataset has been used as a test
set for robust external validation, this can have an effect on the developed model, which can suffer
on both coverage and predictive performance of future screening sets [17] due to the resulting
lower number of chemicals available for model training. To circumvent this in practice, the test set
can be added to the training set and used for building a bigger model. In this case it is important to
remember that the external validation results from the first model do not apply on the new bigger
model. However, by comparing the results from the external validation with cross-validation of the
first model, an indication can be obtained of whether the cross-validation procedure outputs
realistic results or if it is either overoptimistic or conservative in its nature. This information can be
taken into consideration when assessing the cross-validation results of the bigger models. A
comparison of corresponding measures from the goodness-of-fit and the external- and/or cross-
validation can be made. If the statistical measures from the goodness-of-fit test are significantly
larger than those from the external- and/or cross-validation, this indicates that the model has been
overfitted to its training set and thus lost some of its ability to generalize. Overfitting may be due to
inclusion of too many descriptors in the model, or it can be related to the model building method

and its parameters [83].
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2.2.1.5 QSAR Development using Leadscope Predictive Data Miner

In this PhD project, the commercial QSAR modeling software Leadscope Predictive Data Miner
(LPDM), a component of LeadScope®Enterprise Server®, was used for 2D QSAR development. The
data collection, curation and preparation steps were made prior to the import of datasets into LPDM
using programs such as Microsoft Excel and OASIS Database Manager [84]. OASIS Database Manager
is a software platform that can store chemical structures as well as process and manage chemical
information [84]. Here is a brief and more theoretical description of LPDMs QSAR development
methods. More detailed descriptions on the practical use of LPDM in the PhD project are given in the

respective project chapters in Part Ill.

During the import of a dataset into LPDM, a set of nine molecular descriptors are automatically
calculated for each structure: ALogP, Hydrogen Bond Acceptors and Donors, Lipinski Score,
Molecular Weight, Parent Atom Number, Parent Molecular Weight, Polar Surface Area, and
Rotatable Bonds. Additionally, a systematic substructure analysis is performed on each structure
using a hierarchy of approximately 27,000 pre-defined 2D structural keys [51,52,85,86].

When a training set has been successfully imported, model development can be started and consists
of three main steps. In the first and optional step more descriptors can be added to the initial
descriptor set prepared in the importing step, i.e. the pre-defined structural features and the
calculated molecular descriptors. The new descriptors can come from the generation of predictive
scaffolds from the current dataset, addition of previously generated dataset scaffolds or by
importing descriptors from an external source. The scaffolds are created by assembling LPDM pre-
defined structural keys into larger substructures that are commonly occurring within a group of
training set structures or that discriminate for the response variable [52,86]. In LPDM, the descriptor
selection is divided into two phases: 1) a pre-selection of descriptors before model building, and 2)
an iterative descriptor reduction during model building to optimize the number of descriptors and
factors (i.e., latent variables) in the model [85].

The second step of LPDM model development includes the phase 1) pre-selection of descriptors
from the calculated molecular descriptors, pre-defined structural features and any added
scaffolds/external descriptors using either automatic or manual selection. In LPDM’s automatic
descriptor selection, all singletons and non-differentiating descriptors are first removed, and then a
t- or X’-test is used to evaluate the influence of each descriptor on the continuous or binary
response variable, respectively [85]. Then it selects the top 30% of the descriptors according to the

X’-test for a binary response variable, or the top and bottom 15% according to the t-test for a

6 http://www.leadscope.com/
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continuous response variable. In the manual mode, the model developer selects the preferred
descriptors for model building.

After phase 1) descriptor pre-selection, the third and final LPDM model development step starts. In
this step, LPDM builds a predictive model using PLS regression for a training set with a continuous
response variable and PLR for a binary response variable [85,86]. In the PLS or PLR, the descriptors
are used in factors that are extracted and rotated one at a time to maximize the correlation between
a principal component and the response variable [85]. The default maximum number of factors is 10
but the model developer can change this maximum or choose a fixed number of factors. In LPDM’s
automated model building mode, a model is first built using all the phase 1) pre-selected descriptors.
During model building, a k-fold cross-validation procedure is performed that outputs a predicted
residual error sum of square (PRESS) and other statistical measures. The default size of k depends on
the size of the training set but k can also be manually set by the model developer. The descriptors
with low loading, low weight, and high residuals in the model are identified, and of these between 5
and 25 are removed. The reduced descriptor set is used in a new model building and cross-validation
round. This procedure is repeated until up to 15 predictive models have been built, and among these
preliminary models the model with the lowest PRESS is selected as the final model.

It is important to note that LPDM'’s cross-validation method transfers information such as the
selected descriptors from the full model to the smaller cross-validation models. This is therefore in a
mathematical sense not a true cross-validation and due to the reuse of information the cross-
validation estimates have a tendency to be overoptimistic in its measures on model performance.
Many other software tools for QSAR development exist, both commercially and freely available,
including open-source. They use a wide variety of the descriptor sources, descriptor selection
methods as well as QSAR modeling algorithms. Examples include SciQSAR, MultiCase CASE Ultra [77]
as well as packages in MATLAB’, R® and Python’s Scikit-learn® [72]. An overview is available from the

EU Antares projectlo.

2.2.2 The OECD Principles for Validation of QSAR Models

To facilitate the use of QSARs for e.g. regulatory purposes in the context of chemical hazard and risk
assessment a need to harmonize the validation of QSAR models arose [1]. At the international
workshop ‘Regulatory Acceptance of QSARs for Human Health and Environmental Endpoints’ held in
2002 in Setubal, Portugal [87], six principles were proposed for assessing the validity of QSAR models

[1]. Subsequently, an OECD (Organisation for Economic Co-operation and Development) Expert

7 https://se.mathworks.com/products/matlab.html
8 .
https://www.r-project.org/
o http://scikit-learn.org/stable/
10 http://www.antares-life.eu/index.php?sec=modellist
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Group assessment of the principles resulted in two of the principles being merged into a single
principle. This resulted in the adoption of five OECD principles for QSAR validation in 2004 [1,88,89].
Together, the five OECD principles focus on the scientific validity, i.e. relevance and reliability, of a
model [1]. For a QSAR result to be adequate for regulatory use the estimate should be generated by
a scientifically valid model that is applicable to the chemical of interest with the necessary level of
reliability and whose endpoint is assessed relevant for the regulatory purpose [1]. For regulatory
acceptance, the QSAR models and their validation, including the five OECD principles, should be
documented in the QSAR Model Reporting Format (QMRF), and the individual QSAR predictions
should be documented in the QSAR Prediction Reporting Format (QPRF) [1]. These two documents
can be used by the authorities to assess whether the applied model is scientifically valid and fit for
purpose, and if the prediction is reliable and adequate enough to be included in a chemical hazard or
risk assessment [1]. Guidance on the principles has been described in several documents [1,88-91].

Here is a short introduction and discussion of the OECD QSAR validation principles:

1. A defined endpoint

This principle is intended to ensure clarity and transparency in the endpoint being predicted by the
given model. Endpoint refers to any physico-chemical property, biological effect, or environmental
parameter that can be measured and modeled. The nature and sources of the experimental data
used in the training set have an influence on the reliability of the model. If data originates from
multiple sources or varying testing/data analysis protocols, this can affect the model performance as
these (small) variations will be built into the model. By providing adequate information on the
endpoint, the model user can evaluate if the endpoint and the quality of the underlying data comply

with his or her standards for the intended purpose.

2. An unambiguous algorithm

To ensure transparency in the description of the model algorithm with the purpose of having
reproducible predictions, the QSAR model should preferably be expressed in the form of an
unambiguous algorithm. Full transparency is often not possible when applying a commercial
software or very complex model algorithms but in such cases a detailed description of the software
and/or modeling process can be given to provide sufficient information for reproducing the model

and predictions under the same conditions.

3. A defined applicability domain
A defined AD should be given to describe the limitations of the model in terms of the types of
chemical structures, physico-chemical properties and mechanisms of actions for which the model

can return reliable predictions. This principle is important to ensure that the QSAR model only makes
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interpolations based on the information from its training set. Multiple AD definitions can be applied
to the same model depending on its purpose and how reliable predictions the user/developer
requires. Generally, a stricter AD results in models with smaller coverage but higher predictive
performance as a consequence of excluding less reliable predictions [15,92]. However, this general
rule depends on the training set and the method and definition used for AD and in some cases

predictions outside the AD can be as accurate as the predictions inside the AD [79,92].

4. Appropriate measures of goodness-of-fit, robustness and predictivity

This principle covers the statistical validation of the QSAR models and the methods are introduced in
section 2.2.1.4. In general, two types of statistical information are required to assess the model’s
goodness-of-fit, robustness and predictive performance: a) an internal performance determined by
predicting the training set; and b) an assessment of the model’s predictivity of a test set, i.e. a set of
chemical structures never seen by the model. The goodness-of-fit serves to provide statistical
information for a). The model predictivity statistics for b) can be derived from robust external
validation and/or from robust cross-validation that will in addition provide information of model

robustness.

5. A mechanistic interpretation

The intent of this principle is to ensure that any identified mechanistic association between
descriptors used in the model and the model endpoint are documented. A mechanistic
interpretation can further strengthen the confidence in the model established based on the previous
four principles. It is not always possible to provide a mechanistic interpretation of a QSAR model
however, and it is furthermore important to keep in mind that even if a strong correlation is found

between descriptor(s) and the response variable this does not imply that there is causality.

2.2.3 The Danish (Q)SAR Database

The current version of the Danish (Q)SAR Database (http://gsar.food.dtu.dk/) was released in
November 2015 and replaced the previous version from 2004. It is a free, online database with
structural information, QSAR predictions, and in some cases experimental results, for ~640,000
discrete organic chemical substances [78]. It is developed and maintained at the Technical University
of Denmark (DTU) with support from the Danish Environmental Protection Agency (EPA) and Nordic
Council of Ministers. More than 200 global QSAR models have been applied for around 45 endpoints
covering physico-chemical properties, molecular mechanisms including mutagenesis and receptor
binding, to in vivo and clinical endpoints. Most endpoints have been modeled in three different
commercial QSAR systems: LPDM, Scimatics SCiQSAR and MultiCASE® CASE Ultra [77]. The individual

predictions from each system as well as a battery prediction call integrating the three predictions are
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available. QMRFs for all the applied models are provided. The online database is capable of doing
complex search queries, including substructure, similarity and property searches or combinations of
these. The predictions in the Danish (Q)SAR Database can be used in for example screening, profiling
and prioritization by industry, academia, agencies and NGOs. The database is dynamic and
predictions from new models will continuously be added, for example predictions from the LPDM
models developed in this PhD project. All predictions in the Danish (Q)SAR Database will be
incorporated into the OECD (Q)SAR Toolbox [93], where the predictions together with other

information can be used in constructing chemical categories for grouping and read-across purposes.

Currently under development is a ‘sister-site’ to the Danish (Q)SAR Database. Here the in-house
LPDM models from the Danish (Q)SAR Database, including the models developed in this PhD project,
will be made available for free prediction of user-submitted structures. Besides predictions of
structures not in the Danish (Q)SAR Database, users will have access to more prediction details such
as analog structures from training sets and model structural features used to produce the

predictions.

2.2.4 Application of QSAR
QSARs are used in multiple chemical research areas such as drug discovery and toxicology [2], and
they are among other things applied to:

e increase the amount of (toxicological) information on chemicals

e help prioritize and rank chemicals/drugs for further testing or evaluation [94]

¢ help the (medical) chemist optimize structures to a given target [31]

e help design safer substitution chemicals

e contribute to the reduction and replacement of animal testing [95]
Furthermore, since a QSAR model averages over all the closest analogs in the training set, it is
possible for an individual model estimate to be more accurate than an individual experimental
measurement, and QSARs can in some cases cause identification of chemicals with erroneous

experimental results [1,12,22]. Below are some examples on the application of QSAR.

2.2.4.1 QSAR in Regulations

The regulatory interest and use of QSAR is steadily increasing as they hold the potential to help fill
the large gaps in toxicological information of the many thousands of man-made chemicals queued
for risk assessment and classification and labeling [2,79,95-101]. Furthermore, QSAR results provide
additional mechanistic information useful in for example grouping of chemicals into categories for
read-across and improve evaluation of existing test data [1]. Multiple examples on the use of QSAR

for replacement or supplement of experimental data in regulatory contexts exist for physico-
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chemical properties, environmental fate parameters and ecotoxicological endpoints [1,94,102—-105].
For human health effects, however, the application of QSARs is still in its early phase [103] and has
primarily been used as a supplement to experimental data and for groupings and prioritization
purposes [1,94]. Facing forward, QSARs are expected to be used increasingly for direct replacement
of test data as the experience in and acceptance of QSARs and their predictions become more

widespread within the regulatory community [1,95].

Examples of regulatory implementation of QSARs can be found in EU’s chemicals regulation, REACH
[101], and the International Council for Harmonisation (ICH) M7 guideline [100]. Briefly, the ICH M7
guideline describes the approach to identify, categorize and control DNA reactive, mutagenic
impurities in pharmaceutical products to limit the potential carcinogenic risk from such impurities
[100,106]. Here (Q)SAR predictions from two complementary QSAR methodologies, i.e. a statistical-
based and an expert rule-based, followed by expert review may be used for classification of drug
impurities in case of missing experimental data. The absence of structural alerts from the two
complementary (Q)SAR methodologies is sufficient to conclude that the impurity is of no mutagenic

concern, and no further testing is recommended [100].

2.2.4.2 QSAR in Screening and Prioritization

QSAR models are useful tools for screening and prioritization of chemicals for further testing. For
example QSARs can be used in a tiered screening approach where the most problematic chemicals
or the most promising drug candidates based on QSAR predictions are prioritized for further in vitro

and/or in vivo testing [1,62,94,107].

The Danish EPA has for around two decades supported a number of activities on research and
development as well application of QSARs for screening in regulatory contexts. For example, the
Danish EPA together with QSAR researchers from the National Food Institute, DTU, has since 2001
published four versions of the Advisory list for self-classification of dangerous substances [108-111].
In these projects, QSAR predictions for a number of endpoints of relevance for acute oral toxicity,
skin sensitization and irritation, mutagenicity, carcinogenicity, reproductive toxicity (i.e. possible
harm to the unborn child) and danger to the aquatic environment were used to make advisory
classifications for ~33,835 EINECS (European Inventory of Existing Commercial Chemical Substances)
substances according to the CLP-regulation (classification, labelling and packaging of substances and
mixtures) criteria [96,109]. A second example is a Danish EPA supported project from 2013 that
describes the use of QSAR to identify potential CMR (carcinogenic, mutagenic or toxic to

reproduction) REACH substances according to the CLP-regulation [112]. Screening results from
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QSARs have also recently been used by the Danish EPA for grouping a number of brominated flame

retardants [113].

2.2.4.3 QSAR in Early Drug Development

Because of the time and cost demanding process of bringing a new drug to the market and the high
attrition rate [114,115], the pharmaceutical industry is striving towards implementation of
technologies that can optimize the process [116]. The application of in silico methods for ligand-
based virtual screening (LBVS), including QSAR models, has become a routine tool in drug design and
early drug discovery phases in some pharmaceutical companies [117,118]. QSARs are used for fast
screening of large sets of virtual small-molecule drug candidates to identify activity towards the drug
target as well as toxicological properties [62,119]. QSARs are also used by the medical chemist to
identify chemical features involved in the drug target activity and this information can be used for

optimizing and isolating drug candidates [31,118,120].

2.2.4.4 QSAR in Hypothesis Generation

If information for two or more different biological endpoints is available for a big and diverse set of
chemicals, statistical correlations between the results from the endpoints can be calculated, and if a
significant correlation is found this may be an indication of a biological association between the
endpoints. The correlations can be performed using different methods such as univariate or
multivariate data analysis. A number of papers using univariate data analysis for correlation studies
between results from an array of HTS in vitro and an in vivo endpoint have been published [121] and
can help researchers generate new hypotheses on associations between molecular mechanism(s)
and effects at the organ/organism level. This data-driven inductive and holistic approach for
hypothesis generation [122] holds the limitation of restrictions in the number of overlapping
structures having experimental results in the studied endpoints. With QSAR models it is possible to
generate information for multiple biological endpoints for a large and structurally diverse set of
structures, which can then be used for performing statistical correlations [36,123] and generating
new hypotheses. It is important to keep in mind that the associations are purely statistical and the

generated biological hypotheses will need to be tested by applying other techniques.

37



Part Il

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

ECHA, Guidance on information requirements and chemical safety assessment - Chapter R.6:
QSARs and grouping of chemicals, (2008).
https://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf
(accessed March 16, 2017).

A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.l. Baskin, M. Cronin, J. Dearden, P.
Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C.
Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, A. Tropsha, QSAR Modeling: Where
Have You Been? Where Are You Going To?, J. Med. Chem. 57 (2014) 4977-5010.
do0i:10.1021/jm4004285.

J.C. Dearden, M.D. Barratt, R. Benigni, W. Douglas, R.D. Combes, M.T.D. Cronin, P.N. Judson,
M.P. Payne, A.M. Richard, M. Tichy, A.P. Worth, J.J. Yourick, The Development and Validation
of Expert Systems for Predicting Toxicity, Altern. to Lab. Anim. 25 (1997) 223-252.

F. Baum, Zur Theorie der Alkoholnarkose, Arch. Fiir Exp. Pathol. Und Pharmakologie. 42
(1899) 119-137. doi:10.1007/BF01834480.

R.L. Lipnick, Hans Horst Meyer and the lipoid theory of narcosis, Trends Pharmacol. Sci. 10
(1989) 265-269. doi:10.1016/0165-6147(89)90025-4.

H. Meyer, Zur Theorie der Alkoholnarkose, Arch. Fir Exp. Pathol. Und Pharmakologie. 42
(1899) 109-118. doi:10.1007/BF01834479.

C. Nantasenamat, C. Isarankura-Na-Ayudhya, T. Naenna, V. Prachayasittikul, A practical
overview of quantitative structure-activity relationship, EXCLI J. 8 (2009) 74-88.

T. Fujita, J. lwasa, C. Hansch, A New Substituent Constant, i, Derived from Partition
Coefficients, J. Am. Chem. Soc. 86 (1964) 5175-5180. doi:10.1021/ja01077a028.

C. Hansch, E. Deutsch, The structure-activity relationship in amides inhibiting photosynthesis,
Biochim. Biophys. Acta. 5 (1966) 381-391.

C. Hansch, P.P. Maloney, T. Fujita, R.M. Muir, Correlation of Biological Activity of
Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients, Nature.
194 (1962) 178-180. doi:10.1038/194178b0.

C. Hansch, R.M. Muir, T. Fujita, P.P. Maloney, F. Geiger, M. Streich, The Correlation of
Biological Activity of Plant Growth Regulators and Chloromycetin Derivatives with Hammett
Constants and Partition Coefficients, J. Am. Chem. Soc. 85 (1963) 2817-2824.
do0i:10.1021/ja00901a033.

A. Tropsha, Best Practices for QSAR Model Development, Validation, and Exploitation, Mol.
Inform. 29 (2010) 476—488. doi:10.1002/minf.201000061.

OECD, Guidance document on the validation and international acceptance of new or updated
test methods for hazard assessment, (2005).
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(20
05)14&doclanguage=en (accessed March 20, 2017).

A.P. Worth, A. Bassan, J. De Bruijn, A. Gallegos Saliner, T. Netzeva, M. Pavan, G. Patlewicz, I.
Tsakovska, S. Eisenreich, The role of the European Chemicals Bureau in promoting the
regulatory use of (Q)SAR methodst, SAR QSAR Environ. Res. 18 (2007) 111-125.
doi:10.1080/10629360601054255.

T.l. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska,
S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R.

38



Part Il

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

(24]

(25]

(26]

[27]

(28]

Perkins, D.W. Roberts, T.W. Schultz, D.T. Stanton, J.J.M. Van De Sandt, W. Tong, G. Veith, C.
Yang, Current status of methods for defining the applicability domain of (quantitative)
structure-activity relationships, Altern. to Lab. Anim. 33 (2005) 155-173.

D. Fourches, E. Muratov, A. Tropsha, Curation of chemogenomics data, Nat. Chem. Biol. 11
(2015) 535-535. d0i:10.1038/nchembio.1881.

M. Giitlein, C. Helma, A. Karwath, S. Kramer, A Large-Scale Empirical Evaluation of Cross-
Validation and External Test Set Validation in (Q)SAR, Mol. Inform. 32 (2013) 516-528.
doi:10.1002/minf.201200134.

R. Huang, M. Xia, S. Sakamuru, J. Zhao, S.A. Shahane, M. Attene-Ramos, T. Zhao, C.P. Austin,
A. Simeonov, Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and
mechanism characterization, Nat. Commun. 7 (2016) 10425. doi:10.1038/ncomms10425.

B.L. Ingle, B.C. Veber, J.W. Nichols, R. Tornero-Velez, Informing the Human Plasma Protein
Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space:
Applicability Domain and Limits of Predictability, J. Chem. Inf. Model. 56 (2016) 2243-2252.
doi:10.1021/acs.jcim.6b00291.

F.P. Steinmetz, S.J. Enoch, J.C. Madden, M.D. Nelms, N. Rodriguez-Sanchez, P.H. Rowe, Y.
Wen, M.T.D. Cronin, Methods for assigning confidence to toxicity data with multiple values —
Identifying experimental outliers, Sci. Total Environ. 482—-483 (2014) 358—365.
doi:10.1016/j.scitotenv.2014.02.115.

D. Fourches, E. Muratov, A. Tropsha, Trust, but Verify Il: A Practical Guide to Chemogenomics
Data Curation, J. Chem. Inf. Model. 56 (2016) 1243—-1252. doi:10.1021/acs.jcim.6b00129.

D. Fourches, E. Muratov, A. Tropsha, Trust, But Verify: On the Importance of Chemical
Structure Curation in Cheminformatics and QSAR Modeling Research, J. Chem. Inf. Model. 50
(2010) 1189-1204. d0i:10.1021/ci100176x.

K. Mansouri, C.M. Grulke, A.M. Richard, R.S. Judson, A.J. Williams, An automated curation
procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR
modelling, SAR QSAR Environ. Res. 27 (2016) 911-937. doi:10.1080/1062936X.2016.1253611.

E. Anderson, G.D. Veith, D. Weininger, SMILES: A line notation and computerized interpreter
for chemical structures, 1987.
https://nepis.epa.gov/Exe/ZyNET.exe/2000CAUR.TXT?ZyActionD=ZyDocument&Client=EPA&|
ndex=1986+Thru+1990&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n
&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQ
FieldOp=0&XmIQuery= (accessed February 20, 2017).

D. Weininger, SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules, J. Chem. Inf. Model. 28 (1988) 31-36.
do0i:10.1021/ci00057a005.

D. Weininger, A. Weininger, J.L. Weininger, SMILES. 2. Algorithm for generation of unique
SMILES notation, J. Chem. Inf. Model. 29 (1989) 97-101. doi:10.1021/ci00062a008.

A. Dalby, J.G. Nourse, W.D. Hounshell, A.K.l. Gushurst, D.L. Grier, B.A. Leland, J. Laufer,
Description of several chemical structure file formats used by computer programs developed
at Molecular Design Limited, J. Chem. Inf. Model. 32 (1992) 244-255.
do0i:10.1021/ci00007a012.

S. Dastmalchi, M. Hamzeh-Mivehroud, K. Asadpour-Zeynali, Comparison of Different 2D and
3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists, Iran. J.
Pharm. Res. 1JPR. 11 (2012) 97-108. http://www.ncbi.nlm.nih.gov/pubmed/25317190
(accessed January 10, 2017).

39



Part Il

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Y. Fang, Y. Lu, X. Zang, T. Wu, X. Qi, S. Pan, X. Xu, 3D-QSAR and docking studies of flavonoids
as potent Escherichia coli inhibitors, Sci. Rep. 6 (2016) 23634. doi:10.1038/srep23634.

O. Mekenyan, N. Nikolova, P. Schmieder, Dynamic 3D QSAR techniques: applications in
toxicology, J. Mol. Struct. 622 (2003) 147-165. doi:10.1016/50166-1280(02)00625-5.

J. Verma, V. Khedkar, E. Coutinho, 3D-QSAR in Drug Design - A Review, Curr. Top. Med. Chem.
10 (2010) 95-115. doi:10.2174/156802610790232260.

J. Polanski, Receptor Dependent Multidimensional QSAR for Modeling Drug - Receptor
Interactions, Curr. Med. Chem. 16 (2009) 3243-3257. doi:10.2174/092986709788803286.

D. Young, T. Martin, R. Venkatapathy, P. Harten, Are the Chemical Structures in Your QSAR
Correct?, QSAR Comb. Sci. 27 (2008) 1337-1345. doi:10.1002/qgsar.200810084.

A.M. Richard, R.S. Judson, K.A. Houck, C.M. Grulke, P. Volarath, I. Thillainadarajah, C. Yang, J.
Rathman, M.T. Martin, J.F. Wambaugh, T.B. Knudsen, J. Kancherla, K. Mansouri, G. Patlewicz,
A.J. Williams, S.B. Little, K.M. Crofton, R.S. Thomas, ToxCast Chemical Landscape: Paving the
Road to 21st Century Toxicology, Chem. Res. Toxicol. 29 (2016) 1225-1251.
doi:10.1021/acs.chemrestox.6b00135.

J.D. Walker, J. Jaworska, M.H.l. Comber, T.W. Schultz, J.C. Dearden, Guidelines for developing
and using Quantitative Structure-Activity Relationships, Environ. Toxicol. Chem. 22 (2003)
1653-1665. doi:10.1897/01-627.

S.A. Rosenberg, M. Xia, R. Huang, N.G. Nikolov, E.B. Wedebye, M. Dybdahl, QSAR
development and profiling of 72,524 REACH substances for PXR activation and CYP3A4
induction, Comput. Toxicol. 1 (2017) 39-48. doi:10.1016/j.comtox.2017.01.001.

G.M. Maggiora, On Outliers and Activity Cliffs - Why QSAR Often Disappoints, J. Chem. Inf.
Model. 46 (2006) 1535-1535. doi:10.1021/ci060117s.

M.T.D. Cronin, T.W. Schultz, Pitfalls in QSAR, J. Mol. Struct. 622 (2003) 39-51.
doi:10.1016/S0166-1280(02)00616-4.

P.P. Roy, J.T. Leonard, K. Roy, Exploring the impact of size of training sets for the
development of predictive QSAR models, Chemom. Intell. Lab. Syst. 90 (2008) 31-42.
doi:10.1016/j.chemolab.2007.07.004.

T.M. Martin, P. Harten, D.M. Young, E.N. Muratov, A. Golbraikh, H. Zhu, A. Tropsha, Does
Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling?, J.
Chem. Inf. Model. 52 (2012) 2570-2578. d0i:10.1021/ci300338w.

A. Nandy, S. Kar, K. Roy, Development of classification- and regression-based QSAR models
and in silico screening of skin sensitisation potential of diverse organic chemicals, Mol. Simul.
40 (2014) 261-274. doi:10.1080/08927022.2013.801076.

A. Golbraikh, A. Tropsha, Predictive QSAR modeling based on diversity sampling of
experimental datasets for the training and test set selection, Mol. Divers. 5 (2000) 231-243.
doi:10.1023/A:1021372108686.

S.). Capuzzi, R. Politi, O. Isayev, S. Farag, A. Tropsha, QSAR Modeling of Tox21 Challenge
Stress Response and Nuclear Receptor Signaling Toxicity Assays, Front. Environ. Sci. 4 (2016)
1-7. doi:10.3389/fenvs.2016.00003.

A. V. Zakharov, M.L. Peach, M. Sitzmann, M.C. Nicklaus, QSAR Modeling of Imbalanced High-
Throughput Screening Data in PubChem, J. Chem. Inf. Model. 54 (2014) 705-712.
doi:10.1021/ci400737s.

J.J. Chen, C. A. Tsai, J.F. Young, R.L. Kodell, Classification ensembles for unbalanced class sizes

40



Part Il

[46]

(47]

(48]

[49]

(50]

[51]

(52]

(53]

(54]

[55]

(56]

(57]

(58]

[59]

[60]

[61]

[62]

in predictive toxicology, SAR QSAR Environ. Res. 16 (2005) 517-529.
doi:10.1080/10659360500468468.

L. Breiman, Bagging Predictors, Mach. Learn. 24 (1996) 123-140.
doi:10.1023/A:1018054314350.

P. Lee, Resampling Methods Improve the Predictive Power of Modeling in Class-Imbalanced
Datasets, Int. J. Environ. Res. Public Health. 11 (2014) 9776-9789.
doi:10.3390/ijerph110909776.

N. Japkowicz, Learning from Imbalanced Data Sets: A Comparison of Various Strategies *,
(2000). https://pdfs.semanticscholar.org/1af9/6acae07b1e141f98f3df973eaf9e0a9226fb.pdf
(accessed March 14, 2017).

Q. Zang, D.M. Rotroff, R.S. Judson, Binary Classification of a Large Collection of Environmental
Chemicals from Estrogen Receptor Assays by Quantitative Structure—Activity Relationship and
Machine Learning Methods, J. Chem. Inf. Model. 53 (2013) 3244-3261.
do0i:10.1021/ci400527b.

J.L. Durant, B.A. Leland, D.R. Henry, J.G. Nourse, Reoptimization of MDL Keys for Use in Drug
Discovery, J. Chem. Inf. Comput. Sci. 42 (2002) 1273-1280. doi:10.1021/ci010132r.

G. Roberts, G.J. Myatt, W.P. Johnson, K.P. Cross, P.E. Blower, LeadScope 1 : Software for
Exploring Large Sets of Screening Data, J. Chem. Inf. Comput. Sci. 40 (2000) 1302-1314.
doi:10.1021/ci0000631.

K.P. Cross, G. Myatt, C. Yang, M.A. Fligner, J.S. Verducci, P.E. Blower, Finding Discriminating
Structural Features by Reassembling Common Building Blocks, J. Med. Chem. 46 (2003) 4770—
4775. doi:10.1021/jm0302703.

Daylight, 6. Fingerprints - Screening and Similarity, (2017).
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html (accessed March 14,
2017).

M. Gitlein, S. Kramer, Filtered circular fingerprints improve either prediction or runtime
performance while retaining interpretability, J. Cheminform. 8 (2016) 60.
doi:10.1186/s13321-016-0173-z.

P. Jaccard, Etude de la distribution florale dans une portion des Alpes et du Jura, Bull. La Soc.
Vaudoise Des Sci. Nat. 37 (1901) 547-579. doi:10.5169/seals-266450.

Danishuddin, A.U. Khan, Descriptors and their selection methods in QSAR analysis: paradigm
for drug design, Drug Discov. Today. 21 (2016) 1291-1302. doi:10.1016/j.drudis.2016.06.013.

J. Dong, D.-S. Cao, H.-Y. Miao, S. Liu, B.-C. Deng, Y.-H. Yun, N.-N. Wang, A.-P. Lu, W.-B. Zeng,
A.F. Chen, ChemDes: an integrated web-based platform for molecular descriptor and
fingerprint computation, J. Cheminform. 7 (2015) 60. doi:10.1186/s13321-015-0109-z.

P. Labute, A widely applicable set of descriptors, J. Mol. Graph. Model. 18 (2000) 464—-477.
doi:10.1016/51093-3263(00)00068-1.

C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and
fingerprints, J. Comput. Chem. 32 (2011) 1466—1474. d0i:10.1002/jcc.21707.

H. Hotelling, Analysis of a complex of statistical variables into principal components, Warwick
York Inc. (1933). http://hdl.handle.net/2027/wu.89097139406 (accessed February 17, 2017).

K. Pearson, LIll. On lines and planes of closest fit to systems of points in space, Philos. Mag.
Ser. 6.2 (1901) 559-572. doi:10.1080/14786440109462720.

M. Danishuddin, A.U. Khan, Structure based virtual screening to discover putative drug

41



Part Il

[63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

[78]

[79]

candidates: Necessary considerations and successful case studies, Methods. 71 (2015) 135-
145. doi:10.1016/j.ymeth.2014.10.019.

M. Goodarzi, B. Dejaergher, Y. Vander Heiden, Feature Selection Methods in QSAR Studies, J.
AOAC Int. 95 (2012) 636-650.
http://www.ingentaconnect.com/content/aoac/jaoac/2012/00000095/00000003/art00009.

M. Shahlaei, Descriptor Selection Methods in Quantitative Structure—Activity Relationship
Studies: A Review Study, Chem. Rev. 113 (2013) 8093—-8103. d0i:10.1021/cr3004339.

P. Smialowski, D. Frishman, S. Kramer, Pitfalls of supervised feature selection, Bioinformatics.
26 (2010) 440-443. doi:10.1093/bioinformatics/btp621.

S.P. Niculescu, Artificial neural networks and genetic algorithms in QSAR, J. Mol. Struct. 622
(2003) 71-83. doi:10.1016/50166-1280(02)00619-X.

R. Judson, F. Elloumi, R.W. Setzer, Z. Li, I. Shah, A comparison of machine learning algorithms
for chemical toxicity classification using a simulated multi-scale data model, BMC
Bioinformatics. 9 (2008). doi:10.1186/1471-2105-9-241.

J.G. Topliss, Utilization of operational schemes for analog synthesis in drug design, J. Med.
Chem. 15 (1972) 1006-1011. doi:10.1021/jm00280a002.

P. Liu, W. Long, Current Mathematical Methods Used in QSAR/QSPR Studies, Int. J. Mol. Sci.
10 (2009) 1978-1998. doi:10.3390/ijms10051978.

J.V. Kringelum, Pharmacology profiling of chemicals and proteins, (2014).
http://orbit.dtu.dk/en/publications/pharmacology-profiling-of-chemicals-and-
proteins(68307564-5fd4-48a3-b38c-8e60a43b058a).html (accessed March 14, 2017).

G.W. Kauffman, P.C. Jurs, QSAR and k-Nearest Neighbor Classification Analysis of Selective
Cyclooxygenase-2 Inhibitors Using Topologically-Based Numerical Descriptors, J. Chem. Inf.
Comput. Sci. 41 (2001) 1553-1560. doi:10.1021/ci010073h.

A. Lavecchia, Machine-learning approaches in drug discovery: methods and applications,
Drug Discov. Today. 20 (2015) 318-331. doi:10.1016/j.drudis.2014.10.012.

B. Chen, R.P. Sheridan, V. Hornak, J.H. Voigt, Comparison of Random Forest and Pipeline Pilot
Naive Bayes in Prospective QSAR Predictions, J. Chem. Inf. Model. 52 (2012) 792-803.
doi:10.1021/ci200615h.

V. Svetnik, A. Liaw, C. Tong, J.C. Culberson, R.P. Sheridan, B.P. Feuston, Random Forest: A
Classification and Regression Tool for Compound Classification and QSAR Modeling, J. Chem.
Inf. Comput. Sci. 43 (2003) 1947-1958. doi:10.1021/ci034160g.

A. Roncaglioni, N. Piclin, M. Pintore, E. Benfenati, Binary classification models for endocrine
disrupter effects mediated through the estrogen receptort, SAR QSAR Environ. Res. 19 (2008)
697-733. d0i:10.1080/10629360802550606.

E. Pourbasheer, R. Aalizadeh, M.R. Ganjali, QSAR study of CK2 inhibitors by GA-MLR and GA-
SVM methods, Arab. J. Chem. (2015). doi:10.1016/j.arabjc.2014.12.021.

QSAR, User Manual for the Danish (Q)SAR Database, (2015).
http://gsardb.food.dtu.dk/Danish_QSAR_Database_Draft_User_manual.pdf (accessed March
28,2017).

QSARDB, Danish (Q)SAR Database, (2015). http://gsar.food.dtu.dk/ (accessed March 14,
2017).

K. Mansouri, A. Abdelaziz, A. Rybacka, A. Roncaglioni, A. Tropsha, A. Varnek, A. Zakharov, A.
Worth, A.M. Richard, C.M. Grulke, D. Trisciuzzi, D. Fourches, D. Horvath, E. Benfenati, E.

42



Part Il

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

Muratov, E.B. Wedebye, F. Grisoni, G.F. Mangiatordi, G.M. Incisivo, H. Hong, H.W. Ng, |. V.
Tetko, I. Balabin, J. Kancherla, J. Shen, J. Burton, M. Nicklaus, M. Cassotti, N.G. Nikolov, O.
Nicolotti, P.L. Andersson, Q. Zang, R. Politi, R.D. Beger, R. Todeschini, R. Huang, S. Farag, S.A.
Rosenberg, S. Slavov, X. Hu, R.S. Judson, CERAPP: Collaborative Estrogen Receptor Activity
Prediction Project, Environ. Health Perspect. 124 (2016) 1023-1033.
doi:10.1289/ehp.1510267.

J.A. Cooper Il, R. Saracci, P. Cole, Describing the validity of carcinogen screening tests, Br. J.
Cancer. 39 (1979) 87-89.

P. Gramatica, Principles of QSAR models validation: internal and external, QSAR Comb. Sci. 26
(2007) 694—701. doi:10.1002/gsar.200610151.

P. Gramatica, External Evaluation of QSAR Models, in Addition to Cross-Validation:
Verification of Predictive Capability on Totally New Chemicals, Mol. Inform. 33 (2014) 311—
314. doi:10.1002/minf.201400030.

D.M. Hawkins, The Problem of Overfitting, J. Chem. Inf. Comput. Sci. 44 (2004) 1-12.
doi:10.1021/ci0342472.

N. Nikolov, V. Grancharov, G. Stoyanova, T. Pavlov, O. Mekenyan, Representation of Chemical
Information in OASIS Centralized 3D Database for Existing Chemicals, J. Chem. Inf. Model. 46
(2006) 2537-2551. doi:10.1021/ci060142y.

L.G. Valerio, C. Yang, K.B. Arvidson, N.L. Kruhlak, A structural feature-based computational
approach for toxicology predictions, Expert Opin. Drug Metab. Toxicol. 6 (2010) 505-518.
doi:10.1517/17425250903499286.

C. Yang, K. Cross, G.J. Myatt, P.E. Blower, J.F. Rathman, Building Predictive Models for Protein
Tyrosine Phosphatase 1B Inhibitors Based on Discriminating Structural Features by
Reassembling Medicinal Chemistry Building Blocks, J. Med. Chem. 47 (2004) 5984-5994.
doi:10.1021/jm0497242.

J.S. Jaworska, M. Comber, C. Auer, C.J. Van Leeuwen, Summary of a workshop on regulatory
acceptance of (Q)SARs for human health and environmental endpoints, Environ. Health
Perspect. 111 (2003) 1358-1360. doi:10.1289/ehp.5757.

OECD, OECD principles for the validation, for regulatory purposes, of (quantitative) structure-
activity relationships models, (2004) 1-2. www.oecd.org/dataoecd/33/37/37849783.pdf
(accessed March 13, 2017).

OECD, The report from the expert group on (quantitative) structure-activity relationships
[(Q)SARs] on the principles for the validation of (Q)SARs, (2004).
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(20
04)24&doclanguage=en (accessed March 13, 2017).

OECD, Guidance document on the validation of (Quantitative) Structure-Activity Relationships
[(Q)SAR] models, (2007).
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=
env/jm/mono(2007)2 (accessed March 14, 2017).

A.P. Worth, A. Bassan, A. Gallegos, T.. Netzeva, G. Patlewicz, M. Pavan, |. Tsakovska, M.
Vracko, The characterisation of (Quantitative) Structure-Activity Relationships: Preliminary
guidance, ECB Rep. EUR 21866 Eur. Commision, Jt. Res. Cent. (2005).

F. Sahigara, K. Mansouri, D. Ballabio, A. Mauri, V. Consonni, R. Todeschini, Comparison of
Different Approaches to Define the Applicability Domain of QSAR Models, Molecules. 17
(2012) 4791-4810. doi:10.3390/molecules17054791.

43



Part Il

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

OECD, The OECD QSAR Toolbox, (2015). http://www.oecd.org/chemicalsafety/risk-
assessment/theoecdqgsartoolbox.htm (accessed March 14, 2017).

C.L. Russom, R.L. Breton, J.D. Walker, S.P. Bradbury, An overview of the use of Quantitative
Structure-Activity Relationships for ranking and prioritizing large chemical inventories for
environmental risk assessments, Environ. Toxicol. Chem. 22 (2003) 1810-1821.
doi:10.1897/01-194.

K. Stanton, F.H. Kruszewski, Quantifying the benefits of using read-across and in silico
techniques to fulfill hazard data requirements for chemical categories, Regul. Toxicol.
Pharmacol. 81 (2016) 250-259. doi:10.1016/j.yrtph.2016.09.004.

CLP, Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16
December 2008 on classification, labelling and packaging of substances and mixtures, (2008).
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R1272&from=EN
(accessed March 16, 2017).

EC SCCS, The SCCS’s notes of guidance for the testing of cosmetic ingredients and their safety
evaluation, (2016).
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf
(accessed March 16, 2017).

EFSA, Guidance on the establishment of the residue definition for dietary risk assessment,
EFSA J. 14 (2016). doi:10.2903/j.efsa.2016.4549.

EU, Regulation (EU) No 528/2012 of the European Parliament and of the Council 22 May 2012
concerning the making available on the market and use of biocidal products, (2012).
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0528&from=EN
(accessed March 16, 2017).

ICH, M7 Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals
to Limit Potential Carcinogenic Risk, ICH Harmon. Tripart. Guidel. (2015) 35.
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatorylnformation/Guidanc
es/UCM347725.pdf.

REACH, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18
December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of
Chemicals (REACH), (2006). http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:02006R1907-20161011&from=EN.

EC TGD, Technical Guidance Document on Risk Assessment, (2003).
https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf (accessed March
1, 2017).

S. Gutsell, P. Russell, The role of chemistry in developing understanding of adverse outcome
pathways and their application in risk assessment, Toxicol. Res. (Camb). 2 (2013) 299-307.
doi:10.1039/c3tx50024a.

US EPA, TSCA New Chemicals Program (NCP) Chemical Categories, (2010).
https://www.epa.gov/sites/production/files/2014-
10/documents/ncp_chemical_categories_august_2010_version_0.pdf (accessed March 16,
2017).

M.T.D. Cronin, J.S. Jaworska, J.D. Walker, M.H.l. Comber, C.D. Watts, A.P. Worth, Use of
QSARs in International Decision-Making Frameworks to Predict Health Effects of Chemical
Substances, Environ. Health Perspect. 111 (2002) 1391-1401. doi:10.1289/ehp.5760.

A. Amberg, L. Beilke, J. Bercu, D. Bower, A. Brigo, K.P. Cross, L. Custer, K. Dobo, E. Dowdy, K.A.
Ford, S. Glowienke, J. Van Gompel, J. Harvey, C. Hasselgren, M. Honma, R. Jolly, R. Kemper,

44



Part Il

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]
[119]

M. Kenyon, N. Kruhlak, P. Leavitt, S. Miller, W. Muster, J. Nicolette, A. Plaper, M. Powley, D.P.
Quigley, M.V. Reddy, H.-P. Spirkl, L. Stavitskaya, A. Teasdale, S. Weiner, D.S. Welch, A. White,
J. Wichard, G.J. Myatt, Principles and procedures for implementation of ICH M7
recommended (Q)SAR analyses, Regul. Toxicol. Pharmacol. 77 (2016) 13-24.
doi:10.1016/j.yrtph.2016.02.004.

EDSP21 Work Plan, The Incorporation of In Silico Models and In Vitro High Throughput Assays
in the Endocrine Disruptor Screening Program (EDSP) for Prioritization and Screening, (2011).
https://www.epa.gov/sites/production/files/2015-

07/documents/edsp21_work_plan_summary_overview_final.pdf (accessed March 13, 2017).

Danish EPA, Report on the Advisory list for selfclassification of dangerous substances -
Environmental Project No. 636, 2001. http://www2.mst.dk/Udgiv/publications/2001/87-
7944-694-9/pdf/87-7944-695-7.pdf (accessed March 21, 2017).

J.R. Niemel3, E.B. Wedebye, N.G. Nikolov, G.E. Jensen, T. Ringsted, F. Ingerslev, H. Tyle, C.
Ihlemann, The Advisory list for self- classification of dangerous substances - Environmental
Project No. 1351, 2010. http://www2.mst.dk/udgiv/publications/2010/978-87-92708-58-
8/pdf/978-87-92708-59-5.pdf (accessed March 16, 2017).

J.R. Niemel3, E.B. Wedebye, N.G. Nikolov, G.E. Jensen, T. Ringsted, F. Ingerslev, H. Tyle, C.
Ihlemann, The Advisory list for self- classification of dangerous substances - Environmental
Project No. 1322, 2010. http://www2.mst.dk/udgiv/publications/2010/978-87-92617-64-
4/pdf/978-87-92617-65-1.pdf (accessed March 21, 2017).

J.R. Niemel3, E.B. Wedebye, N.G. Nikolov, G.E. Jensen, T. Ringsted, F. Ingerslev, H. Tyle, C.
Ihlemann, The Advisory list for self- classification of dangerous substances - Environmental
Project No. 1303, 2009. http://www?2.mst.dk/udgiv/publications/2009/978-87-92548-56-
6/pdf/978-87-92548-57-3.pdf (accessed March 21, 2017).

E.B. Wedebye, J.R. Niemela, N.G. Nikolov, M. Dybdahl, Use of QSAR to identify potential CMR
substances of relevance under the REACH regulation, 2013.
http://www2.mst.dk/Udgiv/publications/2013/09/978-87-93026-48-3.pdf (accessed March 1,
2017).

Danish EPA, Category approach for selected brominated flame retardants, 2016.
http://www?2.mst.dk/Udgiv/publications/2016/07/978-87-93435-90-2.pdf (accessed February
17,2017).

I. Kola, J. Landis, Opinion: Can the pharmaceutical industry reduce attrition rates?, Nat. Rev.
Drug Discov. 3 (2004) 711-716. doi:10.1038/nrd1470.

H. Olson, G. Betton, D. Robinson, K. Thomas, A. Monro, G. Kolaja, P. Lilly, J. Sanders, G. Sipes,
W. Bracken, M. Dorato, K. Van Deun, P. Smith, B. Berger, A. Heller, Concordance of the
Toxicity of Pharmaceuticals in Humans and in Animals, Regul. Toxicol. Pharmacol. 32 (2000)
56—67. doi:10.1006/rtph.2000.1399.

R.D. Clark, W. Liang, A.C. Lee, M.S. Lawless, R. Fraczkiewicz, M. Waldman, Using beta
binomials to estimate classification uncertainty for ensemble models, J. Cheminform. 6
(2014) 1-19. doi:10.1186/1758-2946-6-34.

C.-H. Lee, H.-C. Huang, H.-F. Juan, Reviewing Ligand-Based Rational Drug Design: The Search
for an ATP Synthase Inhibitor, Int. J. Mol. Sci. 12 (2011) 5304-5318.
do0i:10.3390/ijms12085304.

N. Ogihara, Drawing Out Drugs, Mod. Drug Discov. 6 (2003) 28-31.

A. Roncaglioni, A.A. Toropov, A.P. Toropova, E. Benfenati, In silico methods to predict drug
toxicity, Curr. Opin. Pharmacol. 13 (2013) 802—806. doi:10.1016/j.coph.2013.06.001.

45



Part Il

[120]

[121]

[122]

[123]

R.D. Cramer, The inevitable QSAR renaissance, J. Comput. Aided. Mol. Des. 26 (2012) 35-38.
doi:10.1007/s10822-011-9495-0.

R. Kavlock, K. Chandler, K. Houck, S. Hunter, R. Judson, N. Kleinstreuer, T. Knudsen, M.
Martin, S. Padilla, D. Reif, A. Richard, D. Rotroff, N. Sipes, D. Dix, Update on EPA’s ToxCast
Program: Providing High Throughput Decision Support Tools for Chemical Risk Management,
Chem. Res. Toxicol. 25 (2012) 1287-1302. doi:10.1021/tx3000939.

D.B. Kell, S.G. Oliver, Here is the evidence, now what is the hypothesis? The complementary
roles of inductive and hypothesis-driven science in the post-genomic era, BioEssays. 26
(2004) 99-105. doi:10.1002/bies.10385.

M. Dybdahl, N.G. Nikolov, E.B. Wedebye, S.0. Jénsdéttir, J.R. Niemeld, QSAR model for
human pregnane X receptor (PXR) binding: Screening of environmental chemicals and
correlations with genotoxicity, endocrine disruption and teratogenicity, Toxicol. Appl.
Pharmacol. 262 (2012) 301-309. doi:10.1016/j.taap.2012.05.008.

46



Part Il

2.3 Regulatory Toxicology
Toxicology, from the ancient Greek words toxikos (“poisonous”) and logia (“study of”), is the study of

adverse effects of chemical substances on living organisms and was founded as a research field by
Paracelsus (1493-1541 CE) [1]. Today, it applies theories and methods from multiple disciplines such
as biology, biochemistry and computer science to identify a chemical’s potential adverse effects,
which is influenced by factors such as dosage, time and route of exposure, properties of the exposed
organism (sex, age, health, etc.) as well as other environmental factors (simultaneous exposure to

other chemicals, temperature, etc.).

The production and diversity of man-made chemicals applied in industry, agriculture, war and
consumer products are steadily increasing, and imprint of such chemicals can be found all over the
world today [2,3]. Because of their potential adverse impact on human health and the environment,
there is increasing concern about the safety of the chemicals in our surroundings. Chemicals are
subject to different national and international chemical regulations that require different levels of
toxicity information depending on their production volume, use, etc. [4—8]. A chemical risk
assessment combines information from hazard identification/characterization and exposure
evaluation [9]. Traditionally a chemical’s potential hazard(s) on human health are identified using
standard animal (i.e., in vivo) toxicity testing of apical endpoints such as cancer [9-11]. In some
cases, a serious hazard of a chemical such as it being CMR can result in restrictions irrespective of
exposure level and use [10,12]. In most cases, however, the hazard characterization and subsequent

risk assessment and classification and labeling of chemicals is more complex [7,12].

2.3.1 A Paradigm Shift in Toxicology

For the majority of the man-made chemicals none or only limited toxicity data are available [13,14],
and use of classical regulatory toxicology in vivo tests to fill the large data gaps of the many
thousands chemicals queued for risk assessment is practically impossible due to time and economic
limitations [10,13,15-21]. Also, the ethically problematic animal toxicity studies do not always
translate well to humans [22,23] and provide limited information on the actual mechanism(s)
underlying the adverse outcome(s) [10,16,17,24,25]. To meet these challenges, regulatory toxicology
has called for a paradigm shift to identify, develop and apply more sustainable and practical testing
and non-testing methods that ultimately can replace animal testing [16,17,26—28]. Facing the
challenge, the U.S. EPA together with the National Toxicology Program (NTP) asked the National
Research Council (NRC) to develop a long-range vision and strategy for future toxicity testing, which
resulted in the publication of the game-changing report from 2007 entitled ‘Toxicity Testing in the
21" Century: A Vision and a Strategy’ [16,17]. Here it is discussed how technological advances in

molecular biology and computer science during the 20" and continuing into the 21% century can
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help scientists identify cellular and molecular mechanisms in ‘toxicity pathways’ that may lead to
adverse outcomes. The report envisions that understanding of chemical interaction with molecular
mechanisms in ‘toxicity pathways’ can be used to reliably predict toxicity in a cost- and time-efficient

way while reducing animal use and suffering [16,17,28].

Today, ten years after the report was released, agencies, academia and industry are continuously
taking new initiatives to meet the paradigm shift. For example, new test and non-test methods are
developed or optimized. HTS in vitro assays use either cell-free systems or cell-lines, preferably of
human origin, to identify chemical interaction with mechanisms in ‘toxicity pathways’ [29-31]. The
rationale is that a battery of such HTS in vitro assays can be used as a tool to identify and prioritize
chemicals that should progress to further, more resource-demanding toxicological evaluation
[30,32]. However, testing new sets of chemicals in medium- or high-throughput in vitro assays can
also be costly and time-consuming due to the many ‘toxicity pathways’ molecular mechanisms that
need to be covered and testing at multiple concentrations [33,34]. In addition, for some of these in
vitro assays, use of animals is a necessity to get hold of the cell cultures [35]. Development and use
of non-test methods, such as QSAR, to screen and prioritize chemicals for further testing can serve
as a pre-filter for HTS testing [20,21,36] or be applied directly or indirectly (i.a., in groupings/read
across methodology) to fill data gaps [7]. The alternative methods, both in vitro and in silico, have
already resulted in an ocean of data and lead to questions on how to best handle, assess and
recognize the limitations of this data [37]. Linking mechanistic data from alternative methods to
adverse outcomes at the organism or population level is another challenge being faced [37]. The
regulatory system has not fully adapted to the use of mechanistic data from alternative methods but
still mainly relies on animal toxicity data. Furthermore, regulators, who have been trained to make
decisions based on apical endpoint data from animal studies, may be unfamiliar with and uncertain
about the interpretation of this new type of data, which further limits its potential use in chemical

risk assessment.

As chemical risk assessments combines knowledge on the hazardous potential of the given chemical
with its level of exposure and use, another major challenge in risk assessment is to estimate the
human exposure levels of the many thousands chemicals in our surroundings [13,38-42]. Also,
current chemical risk assessment is based on the exposure and hazards associated with a single
chemical but humans and wildlife are exposed to complex mixtures of natural and man-made
chemicals, which may act through multiple ‘toxicity pathways’ and can cause additive or synergistic
toxicity effects [43,44]. Parallel to the challenge of filling data gaps on toxicity and exposure levels

for individual chemical substances, is the challenge of how to test and risk assess chemical mixtures
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[45]. The exposure and mixture effect challenges and some suggested methods to address these are

discussed elsewhere [43,45-47] and will not be further elaborated in this thesis.

2.3.2 ToxCast and Tox21 Programs

To face the challenge of filling the toxicity data gaps for the many thousands of man-made
chemicals, the U.S. EPA National Center for Computational Toxicology (NCCT) launched the Toxicity
Forecaster research program, known as ToxCast™, in 2007 with the overall aim to “use in vitro HTS
approaches to support the development of improved toxicity prediction models” (cit. from [37])
[24,37,48,49]. ToxCast is the U.S. EPA contribution to the Toxicity in the 21* Century (Tox21)
program, which was initiated in 2008 as a U.S. federal ‘multiagency’ collaboration among the U.S.
EPA, the Food and Drug Administration (FDA) and National Institutes of Health (NIH), including the
National Center for Advancing Translational Sciences (NCATS) and the NTP at the National Institute
of Environmental Health Sciences (NIEHS) [50,51]. Tox21 was a response to the NRC report ‘Toxicity
Testing in the 21st Century: A Vision and a Strategy’ [16,17,27], which calls for a collaborative effort
across the toxicology community to rely less on animal studies and more onin vitro tests using
human cells and cellular components to identify chemicals with toxic effects. Although ToxCast and
Tox21 share the same overall aims [37,48,52,53], they apply different approaches. In Tox21 the
focus is on testing a large chemical inventory of around 10,000 substances (the full Tox21 set, 8,193
unique chemicals) in a small selection of HTS assays each year [24,53], while in ToxCast an EPA
selected subset of the Tox21 chemicals, currently 3,726, are tested in many hundreds of assays to

cover multiple ‘toxicity pathways’ [37,51,54].

The ToxCast chemical library consists of structurally diverse man-made compounds such as
plasticizers, pesticides, phthalates, antimicrobials and food additives as well as approved and failed
drugs [24,25,37]. The ToxCast program is being conducted in multiple phases. Phase | was completed
in 2009 as a ‘Proof of concept’. In this phase 310 unique chemicals, mainly pesticides with
accompanying animal toxicity data, were screened for approximately 700 HTS assay endpoints
[24,37,49]. Next, ToxCast Phase Il was initiated and includes 293 reprocured Phase | chemicals, a
subset of 768 chemicals considered to have the highest priority of the EPA Tox21 set, as well as 799
unique chemicals, known as the ‘Endocrine 1000’ or E1K set [37]. The Phase Il chemicals are
screened for around 900 assay endpoints, including most of the original approximately 700
endpoints from Phase |, with the exception of the E1K set, which is screened only in a limited subset

of Phase Il endocrine-related assays [37]. In late 2014, ToxCast Phase Il was started with new

" https://www.epa.gov/chemical-research/toxicity-forecasting
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technologies and endpoints added, as well as including a new set of ~1900 unique EPA selected

Tox21 chemicals of regulatory concern [36,37].

The inclusion criteria and procurement of EPA’s Tox21 subset inventory, which currently consists of
3,726 chemicals, are described in [37]. All chemicals have undergone thorough quality reviews [55],
and the chemical structures have undergone a standardized and validated procedure to produce EPA
‘QSAR-ready’ structures [37,56]. The assays in ToxCast and Tox21 are a compilation of biochemical
assays, cell-based assays, complex culture assays and small animal models, and most of these were
originally applied by the pharmaceutical industry [24,50]. The NIH NCATS high-throughput robotic
screening system is used on some of the commercial assays [37]. A subset of the assays has been
developed by U.S. EPA or NIH scientists as part of the ToxCast/Tox21 program [24,35,57,58]. Most
assays were run in medium or high-throughput concentration-response for all chemicals [24], and in
general assay data are considered to be of high quality and reproducibility [35,50,53,57]. In some
cases, a tiered screening approach is applied, where the chemicals are first tested at a single high
concentration, and chemicals exceeding a defined endpoint activity threshold are prioritized for
concentration-response testing [57,58]. The raw concentration-response ToxCast data from different
sources are processed through a U.S. EPA customized data analyzing pipeline in R™, which results in
a final ‘hit-call’ for each chemical-assay-endpoint [37,59]. A ‘hit-call’ of 1 (active) or O (inactive) for a
chemical is based on a decision on whether a statistically significant concentration-response is
modeled and takes into account outliers and general toxicity data such as cytotoxicity [59]. The full

Tox21 dataset is processed through another but similar data analyzing pipeline by NIH [53,60,61].

Besides the Tox21/ToxCast programs other sources of HTS in vitro data exists. PubChem® is a free,
online database from NIH National Center for Biotechnology Information (NCBI) that provides
structural information for millions of chemical structures and data on biological activities of small
molecules [62]. Part of the ToxCast and Tox21 data are available from PubChem. Other similar online

databases include ChEMBL™, BindingDB**, ChemProt*® and CTD"".

The data used in project 3.1 are from ToxCast, and project 3.4 data originate from ToxCast and
Tox21 assays. The data in project 3.2 were from NIH NCATS but on another chemical collection
called NCGC (NCATS Chemical Genomics Center), which consists primarily of drugs [63,64]. The

models in projects 3.1, 3.2 and 3.4 were all developed in close collaboration with the data providers.

2 https://www.r-project.org/about.html

B https://pubchem.ncbi.nlm.nih.gov/

" https://www.ebi.ac.uk/chembldb/

™ http://www.bindingdb.org/bind/index.jsp
16 http://potentia.cbs.dtu.dk/ChemProt/

v http://ctdbase.org/
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In project 3.3, data were curated from the PubChem database [62]. More information on the data

can be found in the respective project chapters.

2.3.3 Adverse Outcome Pathways

As mentioned earlier, the use of mechanistic data from alternative methods, such as the ToxCast
and Tox21 HTS in vitro data, in a regulatory toxicology context has faced multiple challenges [11,24].
To meet the challenge of how to link mechanistic results from alternative methods to adverse
effects at the organism or population level, OECD initiated the development of AOPs in 2012 [65].
The AOP framework is an expansion of NRCs ‘toxicity pathways’ [16,17] and the Mode-of-Action
(MoA) concept (Figure 5) [66—68], and it aims to simplify complex biological systems by relating
molecular mechanisms to adverse effects in a one-way scheme. Descriptions of biological pathways
is not a new concept, but has been made by scientists for decades. The novelty in the AOP
framework is to systematize, standardize and simplify the pathways to make them useful in a

regulatory context.

Levels_ of . Molecular Cellular Organ/tissue Organ system Individual Population
organization

L Toxicity Pathway f
I 1
Mode of Action Pathway

Adverse Qutcome Pathway 1

KER1 KER: KERs KERw

AOP framework I MIE H KE: H KE: bl KEn H Adverse outcome I

o/

Figure 5. The AOP framework

An AOP endeavors to make a simple representation of existing knowledge concerning causal
linkages between an MIE and a cascade of intermediate key events (KEs) at subcellular, cellular,
tissue and/or organ levels that lead to a specific adverse outcome (AO) at individual or population
level (Figure 5) [10,66,69]. An AO can be explained by multiple AOPs in a so-called AOP network [70],
just as an MIE or a KE may be included in several AOPs with different AOs [11]. The AOP conceptual
framework provides the biological context to alternative data with the objective to make e.g.
regulators more familiar with and confident in the use of mechanistic data from alternative methods

in e.g. WoE assessments or integrated testing strategies (ITS) for chemical risk assessment. Also,
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well-constructed AOPs can help identify where existing testing or non-testing approaches can
facilitate regulatory decision making, and drive development of new key in vitro assays and in silico
models [10,11]. Furthermore, information from AOPs can be used in the design and refinement of in
vivo experiments to get as much relevant information out of the animals used. The ultimate and
long-term regulatory goal of the AOP framework is to replace animal toxicity testing of a chemical

with alternative methods for effects on MIEs and/or KEs levels.

In 2014, OECD in collaboration with the U.S. EPA, the U.S. Army Engineer Research & Development
Center (ERDC) and the European Commission (EC) Joint Research Center (JRC) launched the AOP
Knowledgebase (KB)'. The AOP-KB integrates four individually developed platforms to more
effectively allow stakeholders to develop, review and comment on AOPs. The AOP-Wiki*’, developed
by the U.S. EPA and EC JRC, is one of the platforms in the AOP-KB and serves as a central repository
for all AOPs under development. The AOPs in the AOP-Wiki are dynamic and at different stages in
their development. In addition, OECD with financial support from the EC have developed
Effectopedia®, an open-knowledge and structured online platform able to display quantitative

information in AOPs.

2.3.4 Integrated Approaches to Testing and Assessment

In addition to the AOP initiative, OECD introduced the IATA concept [71] to assist in the paradigm
shift within regulatory toxicology [67]. In IATA a defined question regarding a chemical’s (or a group
of chemicals) hazard identification, characterization or risk assessment is answered by taking a
systematic and iterative approach to integrate existing information from multiple methodologies
and techniques, including QSAR, read-across, toxicogenomics, in vitro and in vivo, with the
identification of data gaps and a judicious generation of new data [10,67]. The main benefits
expected from the use of IATAs include reduction, refinement and replacement of animal testing
(i.e. the 3Rs), more cost-effective and efficient testing and assessment as well as the generation of

more extensive and reliable data [67].

An IATA can range from the more flexible and less formalized judgement-based approaches to the
more structured and rigid rule-based approaches that leaves little or no room for expert choices
[10,67,72,73]. The choice of IATA depends on the specific decision-making and its context. Overall,
existing and new data are continuously used in a WoE assessment to inform regulatory decisions and
when an acceptable level of information is met, a final regulatory decision can be reached. The IATA

decision procedure integrates gathered information on a chemical’s exposure level/use, ADME

¥ http://aopkb.org
' https://aopwiki.org
% https://effectopedia.org
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(absorption, distribution, metabolism and excretion) and toxicity in a WoE assessment approach to

reach the decision on the endpoint of concern (Figure 6).

The AOP concept can be included in an IATA to provide the biological rationale in the decision
making and to identify MIEs or KEs for which methods and data exist or for which new testing or
non-testing methods are desirable [10,74]. If existing testing, e.g. HTS in vitro assays, or non-testing,
e.g. QSARs, methods are available for an MIE/KE these can be used for generating new data to
inform the IATA. In cases where in vitro assays or QSARs are missing/unavailable for an MIE/KE
assessed to be relevant in the AOP-based IATA, the development of new testing and non-testing

methods may be initiated (Figure 6).
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Figure 6. lllustration of an AOP-based IATA

2.3.5 Registration, Evaluation and Autorisation of CHemicals

The EU chemical legislation, REACH, was put into force in June 2007 [7,75] to ensure the safe use of
chemicals with minimal risk for humans and the environment as well as to promote the
development of alternatives to animal testing and enhance innovation and competiveness in the
industry [7]. One of the key principles in REACH is that the responsibility for demonstrating the safe
use of chemicals lies with the industry/registrants [76]. Multiple deadlines for the registration of
substances under REACH have been set since its implementation in 2007 with the final registration

deadline in June 2018 for the lowest tonnage substances, i.e. less than 10 tonnes per year. The
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registration deadlines have put pressure on the industry/registrant to collect the necessary toxicity
data for the more than 70,000 anticipated registrations [19,77]. While applying a precautionary risk
assessment approach, REACH is also cutting edge in the use of alternative testing and non-testing
methods for regulatory purposes. In Articles 13 and 25 of REACH it is clearly stated that vertebrate
testing should only be performed as a last resort after considering all other options such as gathering
all existing information available on the substance, including information from alternative methods

such as in vitro methods and (Q)SARs [7].

The minimum toxicity testing requirements for a registered substance under REACH depends on the
quantity of the substance manufactured or imported into EU in tonnes per year, with higher
requirements the higher the quantity [7]. The standard information requirements for the different
tonnages are described in Annexes VII to X of REACH [7]. QSARs can potentially be used to meet
standard information requirements at all tonnages levels if they are assessed adequate for the
specific purpose. Overall, (Q)SAR results can be used instead of testing for regulatory purposes when
the following conditions are met: 1) the results are derived from a scientifically valid (Q)SAR model
following the OECD validation principles (see section 2.2.2), 2) the predicted substance falls within
the QSAR model's AD, 3) the predictions are assessed to be adequate for the purpose of
classification and labelling and/or risk assessment, and 4) adequate and reliable documentation on
the applied model is provided [76]. These conditions are best documented in QMRF and QPRF. If
some of the information elements in the conditions are missing or are inadequate, the (Q)SAR
predictions may still be used in a WoE assessment approach in e.g. in an AOP-informed IATA [10,76].
At quantities of 10 or more tonnes per year the chemical substance has to be evaluated for
reproductive toxicity according to the standard information requirements listed in Annex VIl to X
[7]. In 2014, the extended one-generation reproductive toxicity study (EOGRTS) [78] replaced the
two-generation reproductive study in column 1 of point 8.7.3 of Annexes IX and X [7,79] and was
included in the EU test method regulation amendment [80]. DNT testing using e.g. cohort 2A/2B in
EOGRTS is only required in REACH in case of serious concerns [7,18]. Triggers of such concerns are
currently being identified in a close collaboration between the European Chemicals Agency (ECHA),
member states and stakeholders and should result in a guidance document [81]. Suggestion for such
triggers could be evidence from alternative methods on chemical interaction with MIEs or KEs in
AOPs for DNT outcomes [10], for example some of the thyroid-related AOPs under development
[10,82-86].

Endocrine disruption represents another potential gap in REACH requested dossier information (as
well as other EU regulations) [18]. On June 15th 2016, the EC published a draft on its long-waited

and debated criteria for the identification of EDCs in a Communication together with an impact
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assessment report setting out the criteria implications on regulations and their implementations
[87,88]. The criteria have been criticized by politicians, scientists, NGOs and a number of member
states, including Denmark, to be too weak to protect humans and the environment against adverse

effects from EDCs [89,90].
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Abstract

Thyroperoxidase (TPO) is the enzyme that synthesizes thyroid hormones (THs). TPO inhibition by
chemicals can result in decreased TH levels and developmental neurotoxicity, and therefore
identification of TPO inhibition is of high relevance in safety evaluation of chemicals. In the present
study, we developed two global quantitative structure-activity relationship (QSAR) models for TPO
inhibition in vitro. Rigorous cross- and blinded external validations demonstrated that the first
model, QSAR1, built from a training set of 877 ToxCast chemicals, was robust and highly predictive
with balanced accuracies of 80.6% (SD = 4.6%) and 85.3%, respectively. The external validation test
set was subsequently merged with the training set to constitute a larger training set totaling 1,519
ToxCast chemicals for a second model, QSAR2, which underwent robust cross-validation with a
balanced accuracy of 82.7% (SD = 2.2%). An analysis of QSAR2 identified the ten most discriminating
structural features for TPO inhibition and non-inhibition, respectively. Both models were used to
screen 72,524 REACH substances and 32,197 U.S. EPA substances, and QSAR2 with the expanded
training set had approximately 10% larger coverages compared to QSAR1. Of the substances
predicted within QSAR2’s applicability domain, 8,790 (19.3%) REACH substances and 7,166 (19.0%)
U.S. EPA substances, respectively, were predicted to be TPO inhibitors. A case study on butyl
hydroxyanisole (BHA), which is used as an antioxidant, was included to exemplify how predictions
from the developed QSAR2 model may aid in elucidating the modes of action in adverse outcomes of
chemicals. Overall, predictions from QSAR2 can for example be used in priority setting of chemicals

and in read-across cases or weight-of-evidence assessments.
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1. Introduction

Thyroid hormones (THs) participate in multiple biological processes from early development and
throughout adulthood [1-3]. In the fetus and neonate, THs play an essential role in
neurodevelopment [4], where they are involved in neuron differentiation, proliferation and
migration, dendritic branching and synaptogenesis, and myelination [1,5]. In early gestation, the
fetus depends entirely on maternally-derived THs until the fetal thyroid gland becomes functional at
approximately gestational week 12 in humans and gestational day 17-18 in rats [1,6,7]. Maternal THs
continue to contribute to fetal TH levels throughout gestation in both humans and rats [1,6]. Studies
have shown that even a moderate and transient decrease in maternal TH levels during pregnancy is
associated with permanent adverse neurological changes in the offspring [8]. In animal models and
humans altered cognition, socialization, and motor function as well as hearing loss have been
observed following moderate to severe hypothyroidism [6,9-17]. Even low levels of TH insufficiency
during fetal development may result in measurable IQ deficits in children [9,13—18]. In adulthood,
dysregulated TH levels can give reversible clinical symptoms of hypo- or hyperthyroidism [8] and are
correlated with pathological processes involved in adverse outcomes such as cancer, obesity and

type Il diabetes mellitus [19,20].

Humans are exposed to tens of thousands of man-made chemicals through food, drugs, air, water
and consumer products [21-24]. Large data gaps exist for most of these xenobiotics on their
potential thyroid disrupting properties [25]. Xenobiotics can disturb TH homeostasis through many
different mechanisms, including altered TH synthesis, transport, metabolism, and receptor activation
as well as disruption of the HPT axis [10,25-28]. The same xenobiotic may act through more than
one mechanism [25]. Because of the severity of the adverse effects that can be expected from
chemical disruption of thyroid homeostasis, especially during early development, there is a need to
develop a strategy for the identification and testing of thyroid-active compounds. As a step towards
replacing expensive and time-consuming whole animal studies with alternative methods in chemical
risk assessments, the Organisation for Economic Co-operation and Development (OECD) launched a
new program on the development of Adverse Outcome Pathways (AOPs) in 2012 [29]. An AOP
describes the sequential chain of causally linked events at different levels of biological organization
starting from a so-called molecular initiating event (MIE) going through a number of downstream
linked key events (KEs), and ends at an adverse health or ecotoxicological effect [29,30]. According
to the OECD, AOPs are the central element of a toxicological knowledge framework to support
chemical risk assessment based on mechanistic reasoning. AOPs can help industry and regulators use
results from alternative methods, such as in vitro and in silico methods, in chemical risk assessments

[31], e.g. by applying the AOP in OECDs Integrated Approaches to Testing Assessment (IATA) context
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[29,32,33]. Multiple thyroid-related AOPs have been suggested [34,35]. One AOP under
development determined to have a strong overall weight-of-evidence describes a series of linked
events from the MIE, thyroperoxidase (TPO) inhibition, leading to hypothyroxinemia, and resulting in
altered neurodevelopment and neurological dysfunction in the offspring [41, see also 4 and 19]. TPO
is a heme-containing multifunction enzyme essential in TH synthesis [37,38]. Recently, a high-
throughput screening (HTS) in vitro assay for TPO inhibition was developed by the U.S.
Environmental Protection Agency (EPA) National Center for Computational Toxicology (NCCT) [39]
and used to screen 1,126 ToxCast Phase | and Il chemicals including structurally diverse
environmental chemicals and failed drugs [34,40,41). The assay is based on microsomes from rat
thyroid tissue and requires the amount from approximately one rat to assess quantitative TPO
inhibition of 1.5 chemicals [39]. An additional set of 771 ToxCast chemicals (known as the ‘Endocrine
1000’ or ‘E1K’" set) [41,42] was subsequently screened in the same HTS TPO inhibition assay

(Simmons et al., in prep).

The goal of the present study was to use the ToxCast data to develop in silico models, and apply the
models to large inventories of man-made chemicals to predict their potential to inhibit TPO. For this
purpose, we first used experimental TPO inhibition results for 1,126 ToxCast Phase | and Il chemicals,
including replicated samples, to prepare a training set of 877 unique chemicals, which was then used
to train and cross-validate a global binary Quantitative Structure-Activity Relationship (QSAR) model.
QSARs are mathematical models that relate chemical structure descriptors with an experimental
continuous (e.g. ECs) or categorical (e.g. positive/negative) activity. Once established, these in silico
models can be used as a non-testing approach to predict the activities of untested chemical
structures (an introduction to QSAR can e.g. be found in [43] and [44]). The E1K dataset was used to
prepare a test set of 646 chemicals, which was applied to externally validate the QSAR model. Next,
the test set was merged with the training set to form a larger training set of 1,519 unique chemicals,
which was subsequently used for training and cross-validating a second QSAR model. An analysis of
the structural features in the second QSAR model was performed to identify features that best
discriminated TPO inhibitors from non-inhibitors. Both QSAR models were used to screen two large
EU and U.S. chemical inventories containing man-made substances potentially present in e.g. the
environment and consumer products for their possible TPO inhibition activity. The screened EU
inventory consists of 72,524 REACH pre-registered substances (PRS) structures extracted from the
online Danish (Q)SAR Database structure set [45,46]. Briefly, REACH pre-registration concerns
existing substances that companies plan to register under REACH, the EUs chemicals regulation, as
so-called phase-in substances. The U.S. inventory was originally curated by the U.S. EPA as a part of

the CERAPP project [47] and contains 32,464 unique structures to which humans are potentially
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exposed. The structures were curated from sources such as the ACToR CPCat database [21], the
DSSTox database [48], the Canadian Domestic Substances List, the Endocrine Disruption Screening
Program set and EPI Suite training and test sets [41,42,47]. Predictions from these screenings will
inform a tiered approach to prioritize possible thyroid modulating chemicals for further evaluation
and could be used, together with relevant AOP(s), in IATA weight-of evidence (WOoE) risk
assessments [29,33,49]. We also conducted a case study to highlight how the developed QSAR
models for TPO inhibition can support hypotheses regarding the mode of action for chemical-

induced adverse outcomes observed in in vivo studies.

2. Materials and Methods

2.1 Experimental Datasets

We used two datasets provided by U.S. EPA NCCT with chemical structure information and HTS
screening results for TPO inhibition in vitro to train and validate two QSAR models. The chemicals
screened contained diverse chemical structures including environmental and industrial chemicals as
well as some failed drugs [41]. The chemicals in both datasets were not selected specifically for this
project or based on suspected TPO inhibition activity, and the original datasets include internal
replicated samples. The experimental results consisted of data from the HTS Amplex®UltraRed-
thyroperoxidase (AUR-TPO) in vitro assay [39], which had further undergone a selectivity filtering
procedure to identify potentially false positive results due to non-specific activity decrease in the
AUR-TPO assay [34]. Briefly, all chemical structures were initially screened at a single, high
concentration (~87.5uM). The chemicals associated with 20% or greater decreases in maximal TPO
activity were subsequently screened for possible concentration-response. The concentration-
response data were processed as described previously using the ToxCast data pipeline whereby each
chemical was assigned a ‘hit-call’ of 1 if active in AUR-TPO, or a ‘hit-call’ of 0 if inactive in AUR-TPO
[50]. Actives in the AUR-TPO assay were further processed through a selectivity filtering algorithm,
which integrates results from cytotoxicity and luciferase inhibition assays to identify possible non-
specific positive results in the AUR-TPO assay [34]. The chemical structures, assays, data analysis and
selectivity filtering procedure have been described in more details previously [34,39,40,50]. We
classified the chemicals into three categories: 1) chemicals that had a <20% activity decrease in the
single, high concentration screening, or had been assigned a ‘hit-call’ of 0 in the concentration-
response AUR-TPO screening were classified as inactive in this assay; 2) chemicals with a ‘hit-call’ of
1 in AUR-TPO and a selectivity score greater than 1 were classified as active for TPO inhibition; and
3) chemicals with a ‘hit-call’ of 1 in AUR-TPO but with a selectivity score of 1 or less were classified as

inconclusive for TPO inhibition.
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The first dataset provided to the QSAR model developers at the National Food Institute (Food),
Technical University of Denmark (DTU), consisted of structure information and experimental results
for 1,126 ToxCast Phase | and Il chemicals [34,40,41], including replicates, and was used for
preparing a training set referred to as training set 1 (Figure 1). The second E1K dataset of an
additional 771 chemicals from ToxCast [41,42], initially containing only structural information, was
used for preparing a test set for external validation of the selected QSAR model build from training
set 1 (see 2.3) (Figure 1). After determining the external validation statistics, the experimental
results of the test set structures were made available to the model developers at DTU Food. The test
set and training set 1 were then merged to form a second, larger training set referred to as training

set 2 (Figure 1).

1. Data preparation 2.QSAR1 3.QSAR2

Model building and selection
7 modelling approaches:
10 x 2-fold cross-validation in
LPDMs structural domain

¥

Highest predictive performance

Model building and selection
7 modelling approaches:

10 x 2-fold cross-validation in
LPDMs structural domain
Training set 1 '
. e Training set 2
Highest predictive performance

¥ t

- - training set 1 e
Validations 4 Validations 4. Structural features
unblinded Sort features descending on
Blinded test set External validation test sot [05-p|*n
Cross-validation

Top 10 features:

-validati 5 x 2-fold Positive: p > 0.8
Cross-validation Jotey>02

5 x 2-fold

5.Screening

U.S.EPA: 32,197

Applicability domain
QSAR1 vs QSAR2

REACH-PRS: 72,254

60,281 unique

Figure 1. An overview of the datasets, modeling, structural feature sorting and screening. Here u equals X in
the text and is the mean TPO inhibition experimental activity and n is the number of training set structures.

2.2 Structure Preparation

All chemical structures in the two U.S. EPA NCCT provided datasets had previously undergone an
extensive quality control and structure curation procedure as part of the ToxCast program [41,51].
The QSAR software applied in this study handles organic chemical structures with an unambiguous
2D structure. We apply an overall definition of structures acceptable for QSAR processing in all our

in-house QSAR software [45,46], as structures:

e containing at least two C atoms

e containing only the atoms H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and/or |; and,
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e that are not mixtures consisting of two or more organic components

The structures that did not fulfill these criteria were removed from the two datasets. Further
processing of the structural information included stripping off ions and neutralization of the organic

parent structures, i.e. all structures were used in their non-ionized form.

Next, identical QSAR-ready structures within the first dataset were identified and their assigned
experimental results were compared. For identical structures with concordant activities, only one of
the structures was kept. If a group of identical structures had discrepant activities then the whole
group was removed from the dataset. Next, structures with inconclusive experimental results, i.e.
‘hit-call’ of 1 in AUR-TPO and a selectivity score of 1 or less, were removed and the dataset now
constituted training set 1 (Figure 1). The same duplicates removal procedure was performed by U.S.
EPA NCCT scientists on the DTU Food experimentally-blinded E1K set, which then constituted the
test set (Figure 1). Some of the QSAR-ready structures in the test set were identical to structures in
training set 1 and were therefore excluded from the external validation. When the test set
experimental results were made available to DTU Food, and training set 2 was prepared by merging
the test set and training set 1 (Figure 1), the experimental results of the identified structural
duplicates were compared. Again, if they had concordant experimental result only one of the
structures was kept, while all the structures were removed in case of disagreement between the

experimental results.

2.3 QSAR Modeling and Selection

We used the commercial software Leadscope® Predictive Data Miner (LPDM), a component of
Leadscope® Enterprise Server version 3.2.4 [52], to build the QSAR models. Briefly, for each chemical
structure in a training set LPDM automatically performs a systematic sub-structural analysis using a
template library of more than 27,000 pre-defined structural features and calculates nine molecular
descriptors (AlogP, Hydrogen Bond Acceptors and Donors, Lipinski Score, Molecular Weight, Parent
Atom Number, Parent Molecular Weight, Polar Surface Area, Rotatable Bonds) [53]. The structural
features and molecular descriptors are included in a default descriptor set. In addition, the user may
call a functionality in LPDM to generate and add new training set-dependent structural features
(scaffolds) to the descriptor set. The pre-defined structural features, added scaffolds and numeric
molecular descriptors are included in an initial descriptor set. From the initial descriptor set, an
automatic descriptor selection procedure in LPDM selects the top 30% descriptors according to
Yates X’-test for a binary response variable. For the current training set 1 and 2 with binary
response variables, predictive models were built using partial logistic regression (PLR) with further

selection of descriptors in an iterative procedure, and selection of the optimum number of PLR
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factors based on least predictive residual sum of squares. LPDM has the option of building
composite models, a type of ensemble models, for training sets with an imbalanced distribution of
actives and inactives. With this option a number of sub-models are created by specifying the desired
ratio of actives to inactives per sub-model training set, so that each of the sub-models contains the
smaller class and a sample of the bigger class. The positive prediction probability (see 2.4) for a
query chemical from a composite model is defined as the average of the positive prediction
probabilities of all sub-models having the test chemical in the applicability domain (AD) [54].

Multiple modeling approaches were applied in LPDM to build seven predictive models for TPO

inhibition first using training set 1 (Figure 1):

1) single (i.e., non-composite)

2) single with scaffolds

3) single with scaffolds and a reduced set of structural features

4) composite

5) composite with scaffolds

6) composite with scaffolds and a reduced set of structural features

7) composite model combining model 3 and the sub-models from model 6
In 1 and 4, the descriptors were selected among the default descriptors, i.e. the molecular
descriptors and the predefined structural features, and used to build a single model and a composite
model, respectively. Next, scaffolds were generated in LPDM for the training set structures and
added to the initial descriptor set, which subsequently was used for descriptor selection for models
2 and 5. In models 3 and 6, the scaffold-enriched descriptor set was reduced using a built-in function
in LPDM (i.e., ‘Remove most features — (removes less similar features)’) that removed certain similar
structural features before the descriptor selection. This step was employed to achieve a higher-
quality set of fewer structural features, eliminate highly similar or redundant ones, and reduce the

risk of overfitting. In model 7, the single model 3 and the sub-models from composite model 6 were

combined to constitute a new composite model with equal weight of all its sub-models.

During model building all seven models underwent a ten times two-fold cross-validation by the
LPDM algorithm. The algorithm transfers knowledge of the selected descriptor set from the parent
model when building the cross-validation models, and we therefore do not use it for our measures
of absolute predictive performance, but only to guide relative performance-based selection between
the seven preliminary models. Among the seven predictive models built from training set 1, we
selected the model with the highest performance from the LPDM cross-validation for further
validation and screening studies (Figure 1). The selected model, called QSAR1, was then closed for

further development (Figure 1).

72



Part 1l

2.4 Applicability Domain Definition

The definition of the AD applied in this project consists of two components: 1) the definition of a
structural domain in LPDM, and 2) a DTU Food in-house class probability refinement on the output
from LPDM:

1) For a test compound to be within LPDM'’s structural domain it was required that: all molecular
descriptors used in the model could be calculated, it contained at least one structural feature used in
the model, and it had at least 30% Tanimoto similarity with a training set compound [54]. The 30%
Tanimoto similarity was a default cut-off in the LPDM software. For a test compound outside this
structural domain no prediction call (active/inactive) was generated by LPDM. For test compounds
within the LPDM structural domain, a positive prediction probability, p, between 0 and 1, was given
together with the prediction call; actives having a p = 0.5 and inactives having a p < 0.5 [54].

2) To exclude less reliable predictions, i.e. those with a positive prediction probability close to the
cutoff p = 0.5, we required p > 0.7 for active prediction calls and p < 0.3 for inactive prediction calls.
Predictions within the LPDM structural domain but with an associated positive prediction probability
in the interval 0.3 to 0.7 were thus defined as outside of the AD and excluded from the statistical

analyses.

2.5 Validation of the Models

Next, the closed QSAR1 model underwent an external validation blinded to DTU Food using the test
set to evaluate its predictive performance (Figure 1). U.S. EPA NCCT compared the DTU Food
generated test set prediction calls within the AD (see 2.4) with the corresponding experimental
results and calculated sensitivity, specificity, balanced accuracy and coverage. Sensitivity is the
percentage of experimental actives correctly predicted, specificity is the percentage of the
experimental inactives correctly predicted, and balanced accuracy is the average of the sensitivity
and specificity [55]. The coverage is the proportion of test set compounds that had predictions
within the model’s AD.

The assigned experimental activities for the test set were then made available to DTU Food, who
merged the test set with training set 1 to constitute the larger training set 2 (see 2.2). Training set 2
was used to build seven predictive models using the same modeling and LPDM cross-validation
approaches described for training set 1 in 2.3, and of these the best performing model was selected

(Figure 1). The selected model, called QSAR2, was closed for further development.

As described above, the LPDM cross-validation algorithm was, due to the issue with transfer of

knowledge to the cross-validation models, only used to guide the selection of the best performing
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model among the seven models built from training set 1 and 2, respectively. The two selected and
closed models, QSAR1 and QSAR2, were each subsequently subjected to a DTU Food in-house five
times two-fold stratified cross-validation procedure to further estimate their robustness and
predictive performance (Figure 1). This was done by randomly removing 50% of the structures from
the training set, preserving the ratio of actives and inactives. Then a cross-validation model was built
on the reduced training set using the same modeling approach as the full, parent model, but without
transferring any established information such as selected descriptors from the parent model. The
cross-validation model was applied to predict the 50% of the training set that had been removed.
Likewise, a cross-validation model was made using the removed 50% of the training set, and this
model was used to predict the remaining 50%. This procedure was performed five times resulting in
ten cross-validation models. Sensitivity, specificity and balanced accuracy were calculated for the in-
AD predictions for each of the ten cross-validation models, and the mean and standard deviation
(SD) were computed to give overall statistical measures of the predictive performance and
robustness of the parent model based on the full-training set. The coverage, i.e. the mean
percentage of how many of the predicted substances that had predictions within the AD of the ten

cross-validation models, was also calculated.

2.6 Structural Features in QSAR2
To identify structural features in QSAR2 related to TPO inhibition or non-inhibition, respectively, all

features in the model were sorted in descending order by:
[0.5—X|-n

where n is the number of training set 2 structures containing the given feature, and x is the mean

TPO inhibition experimental activity (1 for actives and O for inactives) of the n training set structures.

With this metric the QSAR2 structural features that discriminate well between the two classes, i.e.
actives and inactives, and are contained in the largest number of training set 2 structures are given
the highest ranking. Based on this sorting, the top ten structural features with an x > 0.8, i.e.
structural features associated with activity, and an x < 0.02, i.e. structural features associated with
inactivity, respectively, were identified (Figure 1). The cutoff of x < 0.02 was chosen instead of 0.2,
which would have been symmetric to the x > 0.8 cutoff for activity associated structural features,

due to the larger proportion of inactive structures in the training set.

2.7 Screening Large Chemical Inventories
The structures in the REACH-PRS inventory were originally curated from deliverable 3.4 of the

OpenTox EU project and had previously been processed through the structure preparation steps
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described in 2.2 [56]. The 72,524 QSAR-ready REACH-PRS structures included structural duplicates,
and the REACH-PRS set thus contained a total of 60,281 unique structures (Figure 1). The U.S. EPA
inventory was also previously processed through the structure preparation steps described in 2.2
and 32,197 unique QSAR-ready structures remained. Both the REACH-PRS set and the U.S. EPA set
were screened through the QSAR1 and QSAR2 TPO inhibition models to identify substances with the
potential to inhibit TPO. We applied both QSAR1 and QSAR2 to be able to assess the effect of adding
the test set structures to training set 2 with regard to the coverages of the two inventories and the
prevalences of predicted TPO inhibitors. While QSAR2 is likely to provide better coverages of the
inventories, the lack of an external validation of QSAR2 may for some purposes suggest that QSAR1
is a more appropriate model. The overlaps in substances as well as unique structures between U.S.
EPA and REACH-PRS were identified (Figure 1). The proportion of the QSAR-predicted U.S. EPA and
REACH-PRS substances within the AD of QSAR1 and QSAR2 and the activity distributions of the

predictions were calculated.

3. Results and Discussion
This is to our knowledge the first study to develop global binary QSAR models for TPO inhibition and
apply them to predict two large and structurally diverse chemical inventories containing man-made

substances for their TPO inhibiting potential.

3.1 The Training and Test Sets

The number of QSAR-ready structures and the distribution of active and inactive experimental
results in training set 1, the test set and training set 2 are summarized in Table 1 (will be made
available in a supplementary file for submission). The numbers given in Table 1 reflect the situation
after removing structures that were either unsuited for QSAR processing in the applied software,
structural duplicates or had inconclusive experimental results. In training set 1 this resulted in the
removal of 72 structures due to structural QSAR criteria, i.e. structures inacceptable for QSAR
processing, 21 due to structural duplicates (four of these due to conflicting experimental results),
and 156 due to inconclusive experimental results; in total 249 out of the 1,126 initial structure
entries. In the external validation test set, a total of 125 out of the 771 initial E1K structure entries
were removed; 14 due to structural QSAR criteria, 23 due to overlap with training set 1 structures,
14 due to internal structural duplicates (two of these due to conflicting experimental results), and 74
due to inconclusive experimental results. When merging training set 1 and the test set, which at this
point was un-blinded to DTU Food, the experimental results of the 23 structures removed from the

test set due to overlap with training set 1 structures were compared with their corresponding
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training set 1 experimental results. In four cases the experimental results disagreed, and these

structures were therefore removed from the final training set 2 (Table 1).

Table 1. Number of structures in the QSAR-ready training sets 1 and 2, and test set with the distribution of
active and inactive experimental results for TPO inhibition.

Datasets Total number of unique structures Active (%) Inactive (%)
Training set 1 877 130 (14.8) 747 (85.2)
Test set* 646 100 (15.5) 546 (84.5)
Training set 2** 1519 230 (15.1) 1289 (84.9)

*The experimental results of the test set were masked to DTU Food model developers until after being predicted in QSARL. ** some of the
training set 1 structures were tested again together with the test set structures, and of these four structures had different activities
compared to the training set 1 activity. The four training set 1 structures were removed from training set 2.

The chemical structures in the provided datasets had undergone thorough quality control and
curation [41,51]. In addition, since the datasets originated from the same source, i.e. U.S. EPA NCCT,
and all chemicals had been screened in the same testing protocols and undergone the same data
processing, this has likely contributed to a decrease in the experimental variability. The data in
training set 1 and 2 and the test set where therefore assessed to be of high quality [34,39] and
expected to be a good basis for QSAR model development. The quality of the AUR-TPO assay has
been assessed previously [34,39], which indicated excellent performance and intralaboratory
repeatability (rZ’ from 0.77 to 0.83 and rCV of 3—4%). The AUR-TPO assay measures the fluorescence
intensity from the commercial peroxidase substrate, Amplex®UltraRed (AUR), which is converted to
Amplex UltroxRed by a peroxidase in the presence of hydrogen peroxide. A decrease in fluorescence
intensity in response to a chemical is an indirect measure of TPO inhibition. The reaction chemistry
and oxidation product of AUR is proprietary and the exact reaction(s) inhibited and its reversibility
cannot be identified [34]. Therefore, the AUR-TPO assay read out has multiple potential
confounders, including: non-specific enzyme inhibition; reactive, autofluorescent or fluorescence
guenching chemicals; and other sources of interference with the peroxidase reaction [34,39]. When
comparing results from the AUR-TPO assay with results from the lower throughput orthogonal
guaiacol oxidation assay, the AUR-TPO assay was previously found to have a sensitivity of 86% and a
specificity of 39% [34]. Part of the high sensitivity of AUR-TPO could be due to a higher rate of false
positive results from confounding non-specific activity decrease, a known problem with loss-of signal
assays. Identification and removal of such potentially AUR-TPO false positive TPO inhibitors in the
datasets was attempted by the application of the selectivity score filter [34] and the inconclusive
category, i.e. AUR-TPO positives with a selectivity score less than 1, see section 2.1. However, not all
mechanisms potentially causing non-specific activity decrease, e.g. fluorescence quenching, have
been addressed in the selectivity score [34] and so the presence of false positive TPO inhibitors in
the training and test sets cannot be excluded. Furthermore, the tiered screening approach in AUR-

TPO with a cutoff of 20% activity decrease in the initial single, high-concentration screening [34] may
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have produced some false negatives as it cannot be excluded that a portion of the chemicals causing
an activity decrease below the cutoff would have been positive if screened for concentration-
response. In addition to the potential confounding effects in the raw experimental outputs, the
models applied for the ‘hit-call” assighment and the selectivity score algorithm are also subject to

some degree of uncertainty in their results.

3.2 QSAR Modeling and Selection

Table 2 shows the LPDM cross-validation results for the seven models built from training set 1 and 2,
respectively. As mentioned above, the LPDM cross-validation was used to guide relative
performance-based selection between the seven preliminary models. As can be seen in Table 2, the
composite models 4 to 7 outperformed the single models 1, 2 and 3 in the LPDM cross-validation
with regard to the balanced accuracy (Table 2). This is most likely an effect of the imbalanced
distribution of actives and inactives in both training sets with a ratio of approximately 1:6 (Table 1).
The composite model option in LDPM was implemented to handle such imbalanced training sets to
include also a high proportion of the bigger class and thereby optimize the size of the AD [54].

Table 2. The results from the LPDM cross-validation of the seven built models from training set 1 and 2,
respectively.

Model LPDMs 10 times two-fold cross-validation results \
. . Sensitivit Specificit Balanced * * * *
Training set 1 o S o g i S FP N FN
1 43.0 96.8 69.9 49 21 626 65
2 48.2 96.0 72.1 55 26 621 59
3 50.0 96.3 73.2 57 24 623 57
4 72.9 82.7 77.8 94 105 502 35
5 81.4 78.2 79.8 105 136 498 24
6 84.5 80.3 82.4 109 123 502 20
7 74.6 92.5 83.6 97 55 676 33
Training set 2 Se":‘;')‘"ty Spe(ctg;c'ty acii':'a";eg 7 TP FP N FN
1 46.5 96.9 71.2 99 40 1153 114
2 49.8 96.1 73.0 106 46 1147 107
3 46.5 96.7 71.6 99 39 1154 114
4 79.1 79.9 79.5 182 233 928 48
5 75.7 79.5 77.6 174 240 931 56
6 76.1 78.4 77.3 175 253 918 55
7 71.3 92.6 82.0 164 95 1187 66

*TP: true positives, FP: false positives, TN: true negatives, FN: false negatives. The numbers are averages of the ten iterations as given by
LPDM.

In this work we employed a new approach where a single, unbalanced model (i.e., model 3) was
added as a sub-model, together with the balanced sub-models from a composite model (i.e., model
6), to form a new composite model (i.e., model 7). This addition caused a significant reduction in the

number of false positive (FP) predictions produced in the LPDM cross-validation as compared to
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model 6 alone (see Table 2). For both training set 1 and 2 this resulted in a remarkable increase in
the LPDM cross-validation specificity while causing a smaller reduction in sensitivity (Table 2), and
together this explains why model 7, in both cases, outperformed the other composite models 4, 5
and 6. To conclude, model 7 was the best performing among the seven models for both training set
1 and 2, and therefore selected for both training sets, and these models were named QSAR1 and

QSAR2, respectively (Table 3).

Table 3. Modeling approach applied and the predictive performances for QSAR1 and QSAR2.

Statistical Parameter Cross-Validation*, % External Validation**, %
(SD, %) (actual numbers)

QSAR1 Sensitivity 72.3 (10.1) 79.7 (47/(47 + 12))
Approach 7 Specificity 89.0 (2.8) 90.8 (266/(266 + 27))
Sub-models: 7 Balanced accuracy 80.6 (4.6) 85.3 ((79.7 + 90.8)/2)

Coverage 51.6 (4.7) 54.5 (352/646)
QSAR2 Sensitivity 75.6 (5.0) -
Approach 7 Specificity 89.8 (1.5) -
Sub-models: 7 Balanced accuracy 82.7 (2.2) -

Coverage 57.8 (5.4) -

*A five times two-fold cross-validation, ** A blinded external validation with the experimental results of the test set being masked to the
model developers at DTU Food.

3.3 Predictive Performance of the QSAR Models

The two selected and final models, QSAR1 and QSAR2, underwent a five times two-fold DTU Food in-
house cross-validation procedure to evaluate their predictive performance and robustness. QSAR1
also underwent a DTU Food blinded external validation with the test set. The results from the
validation studies are presented in Table 3 and demonstrate high predictive performance, i.e.
balanced accuracies of 85.3% by external validation for QSAR1 and 82.7% by cross-validation for

QSAR?2, respectively.

Adding the test set to training set 1 to build QSAR2 served multiple purposes. One purpose was to
explore how much the added test set would enlarge the AD of the model and thereby increase the
coverages of the two large chemical screening inventories, U.S. EPA and REACH-PRS. The coverage of
QSAR2 was roughly 6% larger in the cross-validation (Table 3) and 10% larger for both screening
inventories (Table 5) than the respective coverages of QSAR1. A second purpose of adding the test
set in QSAR2 was to explore the possible improvements in predictive performance. To do this, we
first built the smaller QSAR1 model and performed both a rigorous five times two-fold cross-
validation procedure and a large external validation with the test set. As can be seen in Table 3 the
validation procedures show that QSAR1 has high predictive performance and is a robust model, i.e. a
balanced accuracy of 85.3% in external validation and 80.6% with an SD of 4.6% in the cross-
validation. A comparison of the statistical parameters from the two validation methods indicates

that the rigorous cross-validation procedure applied does not overestimate the model’s predictive
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performance, but rather, outputs conservative estimates. This conservative nature of the cross-
validation is likely due to the rigorous procedure of removing 50% of the full training set to build the
cross-validation models. Such a procedure is especially hard on the proportionally few actives in
training set 1, i.e. 130 out of 877 (Table 1), which is also reflected in the relatively high SD of 10% in
the sensitivity of the ten QSAR1 cross-validation models as well as its lower mean value (72.3%)
compared to the sensitivity from the external validation (79.7%) (Table 3). The structures in the test
set used for the DTU-blinded external validation of QSAR1 were not selected due to specific TPO
inhibition concerns or to serve as a representative test set for QSAR1, but instead selected because
they are included in the U.S. EPA regulatory ToxCast universe based on potential for exposure, and

not because of prior concern about endocrine disruptive effects [41,42].

The procedure of performing both independent and robust cross-validation and a large,
representative and prospective external validation is optimal when evaluating a model’s predictive
performance, but external validation has the disadvantage of withholding what may be valuable
data from the model itself. Adding all available data to a training set can, in addition to expanding
the AD, also result in a model with a higher predictive performance, depending on the characteristics
of the added data. The QSAR2 model could not undergo an external validation procedure due to lack
of another external test set. Previous studies have shown that robust cross-validations give reliable
estimates of a model’s predictive performance (e.g. [57,58]). This, together with the results from the
cross-validation vs. external validation results of QSAR1, suggests that the applied cross-validation
procedure can be used for assessing QSAR2’s predictive performance. Due to the conservative
nature of the two-fold cross-validation, we anticipate that QSAR2 will have a similar or higher
predictive performance if it underwent a large external validation with a test set generated using the
same protocol and data processing. As can be seen from Table 3, the cross-validation sensitivity was
slightly increased in QSAR2 (75.6%) compared to QSAR1 (72.3%) and the sensitivity SD was reduced
from 10.1% to 5%. This is most likely the effect of an increase in actives from 130 in training set 1 to
230 in training set 2, which renders the 50% exclusion in the cross-validation procedure less
influential on the sensitivity. As there were already many inactives in training set 1, the addition of
more inactives to training set 2 did, as expected, not have the same high impact on the specificity,

which went from 89.0% (SD = 2.8%) in QSAR 1 to 89.8% (SD = 1.5%) in QSAR2.

3.4 Top Structural Features in QSAR2
The ten most frequent and discriminating predictive structural features associated with actives and
inactives, respectively, in QSAR2 are shown in Figure 2. Among the highest ranking structural

features associated with activity were versions of phenols, anisole and aniline. The most frequent
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structural features associated with inactivity included ethers, esters, aryl halides and a tertiary

amine. To our knowledge structural docking or pharmacophore studies for TPO have not been

performed (Simmons et al., in prep).

13/0 13/2 11/1 9/0 9/2
2] '|2
aH OH
OH °
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benzene, 1,3- Scaffold 288 benzene, 1-alkyl- | benzene, 1,2- Scaffold 297
dihydroxy- ,4-amino(NH2)- dihydroxy-
6/0 7/1 5/0 OH 5/0 6/1
G S ( 0 \Q \
K
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Figure 2. The structural features used in QSAR2 were sorted on |0.5 - X (TPO inhibition activity) |- n, and the ten
most frequent and discriminating structural features alerting for activity(x (TPO inhibition activity) > 0.8) and
inactivity (X (TPO inhibition activity) < 0.02) are shown here. Ak matches saturated carbon and X matches the
halogen atoms Cl, Br, | or F. Numbers in the upper left corners display the ratio of TPO inhibitors/non-
inhibitors in training set 2 for the specific structural feature.

3.5 The Screening Results

We found a total of 27,444 substances present in both the U.S. EPA and the full REACH-PRS

inventories. There were 19,279 unique structures in common in the two inventories (Table 4). To our

knowledge this is the first study that has quantified the overlap between these two inventories, both

with regard to overall substances and unique structures. The high overlap between the U.S. EPA set
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and the REACH-PRS set was not surprising since both inventories represent collections of man-made,

environmental chemicals in the U.S. and EU, respectively.

Table 4. The overlap in substances and unique structures between the U.S. EPA and REACH-PRS inventories.

Overlap ana g ota REACH-PRS  US.EPAin | REACH-

- inUS.EPA  REACH-PRS PRS U.S. EPA
Structure 32,197 72,524 104,721 27,444 19,279 45080 12,918
entries
Unique 32,197 60,281 92,478 19,279 19,279 41,002 12,918
structures

*U.S. EPA: QSAR-ready structures from an U.S. EPA selected inventory of man-made chemical structures to which humans are potentially
exposed, ** REACH-PRS: QSAR-ready structures from the REACH pre-registered substances list

Both the U.S. EPA and REACH-PRS inventories were screened using QSAR1 and QSAR2 for TPO
inhibition. In Table 5 the coverage of the two substance inventories, i.e. the proportion of the full set
predicted within the AD of the model, and the number of active and inactive predictions are
presented for each model. As mentioned earlier, the coverages of QSAR2 was as expected larger
than QSAR1 of both screening sets. The percentage of chemicals in the two inventories with active
predictions in the AD of the two models ranged from 16.5% to 19.3% (Table 5), which was slightly
higher than the percentage of experimentally determined actives of 14.8% to 15.5% in the training
and test sets (Table 1).

Table 5. The coverage (AD) and the number of active/inactive predictions of the U.S. EPA and REACH-PRS
inventories in QSAR1 and QSAR2.

QSAR 1 QSAR2

Total In AD Active Inactive In AD Active Inactive
(%) (%) (%) (%) (%) (%)
16,398 2855 14,043 19,392 3201 16,191
* 7 ’ 7’ 7’
U.S. EPA 32197 1 (525 (16.9) (83.1) (60.2) (16.5) (83.5)
38,661 7128 31,533 | 45,540 8,790 36,750
- ** 7 7 7’ 7’ 7 7’
REACH-PRS 72525 | (533 (18.4) (81.6) (62.8) (19.3) (80.7)
REACH-PRS ooal | 3233 5,879 26,455 37,784 7.166 30,618
unique ' (53.6) (18.2) (81.8) (62.7) (19.0) (81.0)

*U.S. EPA: QSAR-ready structures from an U.S. EPA selected inventory of man-made chemical structures to which humans are potentially
exposed, ** REACH-PRS: QSAR-ready structures from the REACH pre-registered substances list

As mentioned earlier, the chemicals in the experimental datasets were not selected on the basis of
expected TPO inhibition effects. It is not known to what extent these slightly higher percentages of
TPO inhibitors in the two predicted screening sets are due to FP predictions or if they reflect a true
TPO inhibitor prevalence. The validation studies showed that both QSAR1 and QSAR2 have
specificities >10% higher than their respective sensitivities (Table 3), and therefore both models are

expected to, in a balanced universe, make relatively more FN than FP predictions.

3.6 Butylated Hydroxyanisole as a Potential Thyroid Hormone Disruptor
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We searched the two chemical inventories for possible examples of human-relevant chemicals with
known indications for adverse neurodevelopmental outcomes. Included in both the U.S. EPA and the
REACH-PRS set were the two isomers of butylated hydroxyanisole (BHA, CASN 25013-16-5), 2-tert-
Butyl-4-hydroxyanisole (2-BHA, CASN 88-32-4) and 3-tert-Butyl-4-hydroxyanisole (3-BHA, CASN 121-
00-6) (Figure 3).

BHA is manufactured and/or imported to the EU in a total of 100-1,000 tonnes per year and is used
as an antioxidant and preservative in e.g. food, food contact materials, cosmetics, and
pharmaceuticals [59-61]. It is an anticipated human carcinogen [62] and is has been noted to have
published evidence of developmental neurotoxicity (DNT) in mammals [63,64]. Both in vitro and in
vivo published studies indicate that the BHA isomers have endocrine-modulating potential, with
most evidence for estrogenic and androgenic effects [61,65—70]. Based on this, BHA is on both the
EU list of potential endocrine disruptors [71,72] and on the SIN (Substitute It Now!) List [73,74].
However, more data is needed to fully elucidate BHA’s potential as an endocrine disruptor and its

mode of action(s) in DNT [61].

2-tert-Butyl-4-hydroxyanisole (2-BHA) 3-tert-Butyl-4-hydroxyanisole (3-BHA)*
~ -
O O
OH OH
9/2 5/0 3/0
OH e
<:§ o
O\Ak HQ
Scaffold 297 benzene, 1-alkoxy-,4- | benzene, 1-hydroxy-
hydroxy- ,4-methoxy-

Figure 3. The two isomers of BHA and the three predictive structural features alerting for activity in QSAR2
selected based on highest |0.5 — X(TPO inhibition activity)| *n and an x > 0.8. *3-BHA (CASN 121-00-6) was
included in the training set and is the closest analog to 2-BHA (CASN 88-32-4).

Both 2- and 3-BHA were predicted active for TPO inhibition by QSAR2, and 3-BHA was included in
the QSAR?2 training set as a TPO inhibitor. Studies in rats and pigs indicate that exposure to BHA
(mixture of the two isomers) in utero can cause effects such as changed T4 serum levels, altered

thyroid gland function and histology, and altered brain weight and behavior in the offspring

82



Part 1l

[64,65,70]. TPO inhibition is as mentioned above identified to be the MIE in an AOP for thyroid-
related neurodevelopmental adverse effects (under development) [41]. The three common top
activity-associated structural features from QSAR2 in the two isomers were identified as described in
2.6 and are shown in Figure 3. Two of the features, “Scaffold 297” and “benzene, 1-alcoxy-,4-
hydroxy” were among the top ten structural features associated with activity in QSAR2 (Figure 2).
“Scaffold 297" was present in eleven training set 2 structures of which nine were experimentally
active for TPO inhibition. The “benzene, 1-alcoxy-,4-hydroxy” structural feature was present in five

training set 2 structures that were all experimentally active.

The QSAR?2 training set including flags for the test set structures of QSAR1 will be made available in
the supplementary material. Work is underway to make the training sets available from the U.S. EPA
ToxCast website. Furthermore, predictions for around 640,000 structures in QSAR2, including the
72,524 REACH-PRS structures, will be made available from the online Danish (Q)SAR Database [46].
QSAR2 will also be made available for prediction of user-submitted structures in a coming free

online Danish (Q)SAR Models sister-site to the Danish (Q)SAR database at the DTU homepage [46].

4. Conclusions

The present study reports the development, validation, and application of two global, binary
composite QSAR models for TPO inhibition in vitro. The first model, QSAR1, showed high predictive
performance in both cross-and external validation with balanced accuracies of 80.6% (SD = 4.6%)
and 85.3%, respectively. QSAR2, the second model enlarged with the external test set of QSAR1,
showed improved robustness and predictive performance in cross-validation compared to QSAR1,
i.e. a balanced accuracy of 82.7% (SD = 2.2%), and this was largely driven by an increase in sensitivity
from 72.3% (SD = 10.1%) of QSAR1 to 75.6% (SD = 5.0%) of QSAR2. The top-ten structural features in
QSAR2 related to TPO inhibition and non-inhibition, respectively, were identified. The two QSAR
models were used to screen two large chemical inventories from the U.S. and EU containing
structurally diverse man-made chemicals to which humans are potentially exposed. QSAR2 showed
an increase in coverage of around 10% for both inventories relative to QSAR1, and of the substances
predicted within QSAR2’s AD, 8,790 (19.3%) REACH-PRS substances and 7,166 (19.0%) U.S. EPA
substances, respectively, were predicted to be TPO inhibitors. Among the predicted TPO inhibitors
were the two isomers of BHA, which have previously been shown to cause both TH and neurological
effects in animal studies. These QSAR predictions may contribute to elucidating the mode of action
by which BHA results in these altered TH levels and neurological outcomes. Overall, predictions from

the two models can be used to prioritize chemicals for further testing in considerations of possible
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concerns for downstream adverse outcomes (e.g., DNT) [75,76]. They may also be used e.g. in read-

across cases or in IATA WoE assessments.
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The Pregnane X Receptor (PXR) is a key regulator of enzymes, for example the cytochrome P450 isoform
3A4 (CYP3A4), and transporters involved in the metabolism and excretion of xenobiotics and endoge nous
compounds, Activation of PXR by xenobiotics causes altered protein expression leading to enhanced or
decreased turnover of both xenobiotics and endogenous compounds. This can potentially result in pertur-
barions of normal physiology and adverse effects. Identification of PXR activating and CYP3A4 indudng
compounds is included in drug-discove ry programs but we still need similar information for the remain-

ﬁ;’;‘mrﬁ ing rens-of-thousands of man-made compounds to which humans are potentially exposed. In the present
CYPIA4 study, we used high-throughput in vitro assay results for 2816 drugs o develop four quantitative

QSAR structure-activity relationship (QSAR) models with binary outputs for binding to the human PXE ligand
REACH binding domain, full-length human and rat PXR activadon and human CYF3A4 inducton, respectively.
Screening Rigorous cross- and blinded external validations demonstrated four robust and highly predictive models
with balanced accuracies ranging from 75.4% to 92.7%. The models were applied to screen 72,524 sub-
stances pre-registered under the EU chemicals regulatdon, REACH, z2nd the models could predict 52.5%
to 71.9% of the substances within their respective applicability domains. These predictions can, for exam-
ple, be used for priority setting and in weight-of-evidence assessments of chemicals, Statistcal analyses
of the experimental drug dataset and the QSAR-predicted set of REACH substances were performed to
identify similarities and differences in frequencies of overlapping positive results for PXR binding, PXR
activation and CYP3A4 induction between the two datasets.
@ 2017 The Authors, Published by Elsevier BV, This is an open access article under the CC BY-NC-ND
lice nse (hp: || creatvecommons. of glicenses/by- ne-md|4.0/).

1. Introduction in a broad range of biological processes, such as development,

homeostasis and metabolism. The transcriptional activity of NRs

The nuclear receptor (NR) superfamily is a large group of tran-
scription factors that control expression of multiple genes involved
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for Advancing Translational Sciences; NIH, National Institute of Health; N, nuclear
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is primarily regulated through ligand binding [ 1]. The Pregnane X
Receptor (PXR), first descibed by Kliewer and colleagues in
19498, is a member of the NR superfamily [23]. PXR is mainly
expressed in the liver, intestine and kidneys, and plays a key role
in the regulation of genes involved in the metabolism and efflux
of endogenous hormones and xencbiotic molecules [3-5]. The
genes regulated by PXR include genes encoding enzymes, such as
cytochrome P450s (CYPs), glucuronyltransferases and sulfotrans-
ferases, as well as transporters, such as P-glycoprotein and mul-
tidrug resistance proteins [23,6-8]. The ligand-binding domain
(LBD) of PXR is large and flexible, and can change its shape to
accommodate structurally diverse molecules including steroids,
bile acids, antibiotics, statins, and pesticides [9,10]. A considerable
amount of inter-species variation has been observed in the PXR
LBD with human, rabbit and rat sharing roughly 75-80% amino
acid identity [11,12]. There are numerous examples of differences
in ligand binding to PXR and resulting downstream transcrption

This isan open access article under the CC BY-NC-ND license (hitp:/jcreativecommons.orglicenses/by-ne-ndf4 0/)
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of enzymes and transporters between species, which complicates
the extrapolation of results from in vive animal studies to humans
[11,13-15].

PXR is located in the cytoplasm and translocated to the nucleus
upon ligand binding, and here the FXR-ligand complex
heterodimerizes with the Retinoid X Receptor alpha (RXRa),
another member of the NR superfamily. The PXR-RXRa heterodi-
mer complexes with co-activators, and this multi-protein complex
binds to the Xenobiotic Response Element (XRE) in the promoter
region of target genes and induces their transciption leading to
altered expression of their encoded proteins [2,3,16]. Because
many of the proteins regulated by PXR are not only involved in
the metabolism and transport of xenobiotics, but also of various
endogenous compounds such as steroid and thyroid hormones,
an altered protein expression upon xenobiotic exposure may inter-
fere with the homeostatic balance of such endogenous compounds
[17,18]. This interference can potentially affect normal physiologi-
cal functions [ 2,19] and may result in adverse health effects. Find-
ings from previous studies indicate that there is an association
between PXR activation by environmental chemicals and adverse
health effects [15,1820,21]. The importance of PXR activation is
also reflected ina number of suggested adverse outcome pathways
(ADPs) available from the online AOP-Wiki [22], for example an
AOP describing how activation of PXR and other related NRs upreg-
ulate thyroid hormone catabolism resulting in hypothyroidism and
subsequent adverse neurodevelopmental outcomes [ 23], The AOPs
are envisioned to promote the industry’'s and regulators’ use of
results from altermative methods such as in vitro tests and compu-
tational models in chemical risk assessments to reduce, refine or
replace traditional animal tests [24-26], for example by applying
the AOP in an Integrated Approaches to Testing Assessment (IATA)
context to support regulatory decisions [27].

PXR is also known to be involved in drug-drug interactions in
which an administered drug affects the metabolism and excretion
of a co-administered drug, leading to decreased efficacy or
increased toxicity [2,2829]. For this reason, attenuation of PXR
activity has become an important focus area in early drug-
discovery programs [30]. Similar to drug-drug interactions, an
altered expression of enzymes and transporters through PXR acti-
vation upon xenobiotic exposure may cause changes in the
response to other xenobiotic compounds,

Among the many PXR target genes is the gene encoding
CYP3A4, an oxidizing enzyme involved in phase | metabolism of
various compounds [431]. CYP3A4 is considered the main drug-
metabolizing CYP isoform in the human liver and is involved in
the metabolism of more than 50% of drugs on the market [2,5].
In most cases, CYP3 A4 causes chemicals to become less biologically
active and promotes their excretion; but in other cases it has the
opposite  effect causing bioactivation by converting them to
metabolites that are more toxic than the parent molecule [32].

Because xenobiotic activation of PXR has the potential to alter
normal physiology and lead to adverse effects, it is of great impaor-
tance to identify chemicals that may act through this mechanism.
In a study from 2011, Shukla and colleagues used four high-
throughput in vitro assays to profile more than 2800 clinically-
used and investigational drugs for their ability to bind to the
human PXR-LBD, activate full-length human and rat PXR, and
induce human CYP3A4 [14], Chemicals in the ToxCast program
[33], which include both drugs and environmental chemicals, have
also been tested for these mechanisms in related assays [34]. How-
ever, we still need similar information for the remaining tens-of-
thousands of xenobiotics to which humans are potentially exposed
[35,36].

In the present study, we used the high-throughput in vitro
data from Shukla et al. [14] to train and validate four Quantitative
Structure-Activity Relationship (QSAR) models for human PXR-
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LBD binding, human and rat PXR activation, and human YP3A4
induction, respectively. QSAR models are computational models
that relate chemical structures to, e.g., a biological activity, and
they can be used to predict the activity of an untested chemical
based on its chemical structure (an introduction to QSAR can
eg, be found in [37,38]). In general, QSARs are rapid and cost-
effective tools for predicting biological activities of chemical
structures and can be used for virtual screening of single sub-
stances as well as large chemical inventories, The four developed
models were applied to screen a structurally diverse library of
72,524 chemicals from the EU chemicals regulation REACH
(Registration, Evaluation, Authorisation and Restriction of Chemi-
cals) list of Pre-Registered Substances (PRS) [39,40], containing
substances potentially present in our food, the environment and
consumer products. These QSAR predictions can, e.g, be used,
possibly together with other relevant data, 1) to identify and pri-
oritize chemical substances for further testing and 2) in an IATA
context, together with relevant AOP{s), to guide further testing
and regulatory decisions in chemical risk assessments
[25,27,41]. Furthermore, statistical analyses of the expenmental
drug dataset and the (QSAR-predicted REACH PRS set were per-
formed in order to elucidate similarities and differences in co-
occurrences of overlapping positive results for PXR binding, PXR
activation and CYP3A4 induction between the two chemical
UNiVErses,

2. Materials and methods
2.1, Experimental datasets

We used four datasets containing chemical structure informa-
tion and in vitro expenmental data for a collection of 2816
clinically-used and investigational drugs to train and validate the
QSAR models. The expenmental data of the 2816 compounds
incdluded results from quantitative high-throughput screening
(gHTS) for binding to the LBD of human PXR at the protein level
(hPXR-LBD); activation of full-length human PXR (hPXR) and full-
length rat PXR (rPXR) at the cellular level; and induction of human
CYP3A4 at the cellular level (CYP3A4), All experimental data were
generated by the Mational Center for Adwvancing Translational
Sciences (MCATS) at the Mational Institute of Health (NIH). The
compound collection, gHTS assays, and the classification of the
qHTS results into actives, inconclusives and inactives have been
described previously [144243], Briefly, actives showed binding
to the hPXR-LBD, activation of hPXR andjor rPXR and/or induced
transcription of CYP3A4 according to the applied assays. Inactives
did not show activity in the given assay, and inconclusives showed
equivocal activity results in the assays. Only the substances ineach
dataset classified as either active or inactive were used, ie. sub-
stances with inconclusive experimental results were excluded.
The experimental results for about one third of the substances in
each of the four main datasets were masked by NIH MCATS and
these compounds were used as external test sets for blinded exter-
nal validations after the model development was finished. The
selection of the test sets was designed and made by NIH NCATS sci-
entists, who clustered all compounds in the dataset on structural
similarity using the Eudidian distance and then, withineach struc-
ture cluster and for each of the four endpoints, approximately one-
third actives and one-third inactives were selected rmndomly, Thus
the training and test sets are structurally comparable and have
similar distributions of actives and inactives, NIH NCATS sent the
training sets containing structure information and expenmental
results and the test sets containing only structure information to
the Mational Food Institute (Food) at the Technical University of
Denmark (DTU), who performed the structure preparations, the
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model development and wvalidations as well as the wvirtual
SCrEenings.

Furthermore, a dataset containing ~4000 additional com-
pounds with experimental data from the gHTS assay for hPXR-
LBD was used for supplementary performance assessment of the
developed hPXR-LBD QSAR model [20,43].

22 Structural preparation of the datasets

The commercial QSAR software applied in this study can handle
organic chemical substances with a known and unambiguous 2D
structure. We apply an overall definition of substances acceptable
for QSAR processing in all our in-house QSAR software [4445], as
substances:

» containing at least two carbon atoms

» containing only H, Li, B, C, N, O, F, Na, Mg, 5i, P, 5, Cl, K, Ca, Br,
and/or |

» that are not mixtures containing two OF MOre Organic
COmMponents

Substances that did not fulfil these critera were removed from
the datasets, Further processing of the structural information
included dissociation simulation and subsequent neutralization
of the structures, ie. all substances were used in their non-
ionized form. An overview of the number of QSAR-ready sub-
stances in the final training and external test sets after structure
preparation can be found in Table 1. These sets are available upon
request,

23. QSAR modeling

We used the commercial software, Leadscope™ Predictive Data
Miner (LPDM), a component of Leadscope™ Enterprise Server ver-
sion 3.2.4 [46], to build the four QSAR models, Briefly, LPDM calcu-
lates nine molecular descriptors (AlogP, Hydrogen Bond Acceptors
and Donors, Lipinski Score, Molecular Weight, Parent Atom Mum-
ber, Parent Molecular Weight, Polar Surface Area, Rotatable Bonds)
for each chemical structure in the training set and performs a sys-
tematic sub-structural analysis using a template library of more
than 27,000 predefined structural features [47]. The molecular
descriptors and structural features are included in a default initial
descriptor set. In addition, the system can generate and add train-
ing set-dependent structural features (scaffolds) to the descriptor
set as well as remove redundant structural features from the
descriptor set. Once a preliminary descriptor set has been created,
an automatic descriptor selection procedure in LPDM selects the
top 30% descriptors according to Yates X*-test for a binary response
variable, A predictive model for a binary response varable is built
using partial logistic regression (PLR) with further selection of
descriptors in an iterative procedure, and selection of the optimum
PLR factors based on least predictive residual sum of squares,

Table 1

LPDM has the option of building composite binary models for
training sets with a skewed distribution between the two activity
classes, i.e. actives and inactives. With this option a number of
sub-models are constructed, taking in each sub-model the entire
smaller class, here the actives, and an equally large sample from
the bigger class, here the inactives. The samples from the bigger
class used in each of the sub-models are selected randomly but
in such a way that their intersection is minimal and their union
is the entire bigger class. The positive prediction probability (see
Section 2.4) for a test chemical from a composite model is defined
as the average of the positive prediction probabilities of all sub-
models where the test chemical is in the structural domain [48].
Each sub-model in a composite model has its own unigue set of
selected descriptors and number of PLR factors.

We used five different modeling approaches in LPDM to build
five predictive models for each of the four training sets: 1) single,
2) single with scaffolds, 3) single with scaffolds and reduced struc-
tural features, 4) composite, and 5) composite with scaffolds, In 1)
and 4), the descriptors were selected among the default initial
descriptor set, ie, containing molecular descrptors and selected
predefined structural features, and used to build a single model
and a compaosite model, respectively, Next, scaffolds were gener-
ated in LPDM from the training set structures and added to the ini-
tial descoptor set, which subsequently was used for descriptor
selection for models 2) and 5). In model 3), the scaffold-enriched
descriptor set was reduced before descriptor selection by removing
most similar structural features using a built-in function in LPDM.
All models underwent a ten times two-fold cross-validation by the
LPDM algorithm, which reuses the selected descriptor set from the
parent model when building the cross-validation models [48]. For
each of the four endpoints, we selected the predictive model with
the highest performance from the LPDM cross-validation for fur-
ther validation and screening studies (Fig. 1). The LPDM cross-
validations were only applied for model selection and not used
for model performance assessments. The four selected models
were ‘closed’ for further development after this selection,

2.4. Applicability domain

Our definition of the applicability domain { AD) consists of two
components: 1) the definition of a structural domain in LPDM,
and 2) an in-house class probability refinement on the output from
LPDM. For a test compound to be within LPDM's structural domain
itis required that: all molecular descriptors used in the model can
be calculated, it contains at least one structural feature used in the
model, and that it has at least 30% Tanimoto similarity (default cut-
off in the LPDM software) with a training set compound [48]. Mo
prediction call {active/inactive) is generated by LPDM for a test
compound outside this structural domain. For test compounds
within the LPDM structural domain, a positive prediction probabil-
ity, p, between 0 and 1, is given together with the prediction call;
actives having a p = 0.5 and inactives having a p< 0.5 [48]. To

Ohwerview of the sizes of the tmining sets and the blinded external test sets used to develop and validate the four QSAR models. An extra dataset for hPXR-LBD hinding was used
for external validation. Substances with inconclusive experimental results were removed from the datasets.

Datasets Training set External test set

Total Active (X) Inactive (%) Total Active (%) Inactive (%)
hP¥R-LED" 1537 143 (9.3) 1394 (90.7) 651 30(4.8) 621 (95.4)
hPER 1644 207 (12.6) 1437 (87.4) T2 59 (84) 643 (91.6)
PN 1671 a7 (58) 1574 (94.2) 730 24(33) 706 (967)
CYPIAL 1676 179 (10.7) 1497 (893) 715 45 (63) 670 (93.7)
Extra hPR-LED - - - 2434 27 (11.5) 2155 (BES5)

* The experimental results of the test set were masked from the model developers at DTU Food by MIH MCATS until the models were developed and the test set had been

predicted.
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1. Data preparation

MNIH MCATS
datasets:
hEXE-LBD
hPXR
rPXR
CYP3A4

Training set

Structure-Activity

2. Model building and selection

S modelling approaches:
10 times 2-fold cross-validation
in Leadscope’s structural

A

Model selection

3. Validations

Cross-validation
5 timies 2-fold

Extra dataset:
hPXR-LBD

External validation
Actiiny unkdindid 1o

DU FOO0

Q5AR-ready REACH PR3 72,524

Unigque Q5AR-ready REACH PRS:
A0,281

. Screening

5. Concordance studies

hPXR-LBD === hPXR
hPXR +—+ CYP3A4
hPYR +=—+ rPXR

Fig. 1. Workflow of the modeling, screening and concordance mte studies.

exclude less reliable predictions, 1.e. those with a positive predic-
tion probability close to p = 0.5, we required p = 0.7 for active pre-
diction calls and p < 0.3 for inactive prediction calls, Predictions
within the LPDM structural domain but with an associated positive
prediction probability in the interval 0.3 to 0.7 were defined as out
of AD and excluded from the statistical analyses.

25, Cross- and external validation of the models

Each of the four selected predictive models was subsequently
subject to a five times twofold stratified cross-validation procedure
to estimate their robustness and predictive performance (Fig. 1),
The applied procedure did not use the LPDM built-in cross-
validation functionality, Instead, this was done by randomly
removing 50% of the structures from the training set, keeping the
ratio of actives and inactives. Then a cross-validation model was
built from the reduced training set using the same modeling
approach as in the parent model but by perfforming novel modeling
where no information, such as selected descriptors, was reused
from the parent model. The cross-validation model was applied
to predict the removed 50%, Likewise, a cross-validation model
was made on the removed 50% of the training set, and this model
was used to predict the other 50%. This procedure was repeated
five times resulting in ten cross-validation models., Sensitivity,
specificity and balanced accuracy [49] were calculated for each of
the ten cross-validation models, and from these the mean and
standard deviation (SD) were computed to give an overall statisti-
cal estimate of the predictive performance and robustness of the
full-training set parent model. Sensitivity is the percentage of
experimental actives correctly predicted, specificity is the percent-
age of the experimental inactives comrectly predicted, and balanced
accuracy is the average of the sensitivity and specificity [49], The
coverage, i.e, the mean percentage of how many of the predicted
substances that had predictions within the AD of the ten cross-
validation models, was also calculated.

In addition, all four models underwent a blinded external vali-
dation using the experimentally masked test sets to further evalu-
ate their predictive pedformance (Fig. 1). The prediction calls
within the AD were compared to the expenmental results, which
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were made available to DTU Food by NIH NCATS after the model
building step was finalized and the test sets predicted. The hPXR-
LBD model underwent an additional external validation with the
extra test set for hPXR-LBD. This external validation was not
blinded, however, the data set was not applied in any of the model
development or selection steps. Coverage, sensitivity, specificity
and balanced accuracy were calculated for each model.

2.6. Screening of the REACH PRS inventory

The four selected and validated QSAR models were used to pre-
dict the activity of 72,524 substances from the REACH PRS list
(Fig. 1). The REACH PRS chemical structures were extracted from
the online Danish (Q)5AR Database structure set [ 44,45], The struc-
tures were onginally curated from deliverable 3.4 of the OpenTox
EU project [39] and had been processed through the same struc-
ture preparation steps as described in Section 2.2 to meet the
structural requirements from the QSAR modeling software, The
proportion of the QSAR-predicted REACH PRS within the AD of
each of the four models as well as the activity distributions of
the predictions was calculated,

2.7 Concordance rates between endpoints

To study the co-occurrences in positive results for PXR binding,
PXR activation and CYP3A4 induction, positive concordance rates
both ways between the following endpoints were estimated:

s hPXR-LBD and hPXR,
» hPXR and PXR, and
+ hPXR and CYP3A4.

This was done for the full expernmental drug datasets, ie. the
training and external test set data (excluding the extra hPXR-LBD
test set) combined, as well as for the 60,281 unigue structures
out of the 72,524 QSAR-ready REACH PRS (Fg. 1)

For any endpoints, A and B, we used the following definition of
the rate of actives in A also active in B, denoted Concordance rate
(A = B):
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Concordance rate(A — B)

B #active inAAND B
~ #active inAAND B + #active inA AND in active in B

We apply the above definition twice for each pair of endpoints,
A and B, to calculate Concordance rate (A — B) and Concordance rate
(B = Al

For example, to assess the rate of hFXR-LBD ligands that acti-
vate hPXR, the following calculation was made:

3.3. Concordance rates between hPXR-LBD binding and Full-Length
hPXR activation

The cell-free hPXR-LBD assay is a LanthaScreen TR-FRET (time
resolved fluorescence resonance energy transfer)-based assay that
identifies binding of a chemical to the LBD of human PXR, whereas
the cell-based hPXR assay identifies compounds that can activate
human full-length FXR either through direct LBD binding or
through other signaling pathways [50,51]. In order to obtain more

Concordance rate(hPXR — LBD — hPXR)

#predicted /tested active in hPXR-LBED AND hPXR

~ Fpredicted, tested active in hPRR-LBD AND hPRR + #predicted tested active in NPXR — LBD AND in active in PXR

Likewise, the concordance rate for hPXR activators that were
also active for binding to hFXR-LBD was calculated as:

information on frequencies of possible mechanisms of PXR activa-
tion for drugs and REACH PRS, we calculated two-way concordance

Concordance rate(hPXR — hPXR — LBD)

#predicted /tested active in hPXR-LED AND hPXR

~ #predicted /tested active in hPXR — LBD AND hPXR + #predicted, tested active in hPXR AND in active in hPXR-LED

Differences and  similarities  between  corresponding
concordance rates in the drug and REACH PRS universes were
identified.

3. Results
3.1 Predictive performance and robustness

For each of the four endpoints the model with the highest per-
formance from the LPDM cross-validation was selected for further
validation and screening studies. The four selected models were all
compaosite models consisting of seven to ten sub-models. Each of
the four selected models underwent both an in-house rigorous five
times leave-50%-out cross-validation and a DTU Food blinded
external validation to assess their robustness and predictive per-
formance within the defined AD. The validation results are pre-
sented in Table 2 together with information about the number of
sub-models in the selected composite model. Overall, the results
presented in Table 2 show that the rigorous leave-50%-out cross-
validations underestimated the models’ predictive performances
compared to the blinded external validations. The models will be
made available for prediction of user-submitted structures in a
coming free online Danish (Q)SAR Models sister-site to the Danish
(Q)SAR database at the DTU homepage [45].

32 Screening of the REACH PRS inventory

A set of 72524 substances from the REACH PRS list was
screened through the four QSAR models, Of the 72524 REACH
PRS, 286% (20,727) were in the common AD of all four models,
and of these, 1.5% corresponding to 320 substances were predicted
active for all four endpoints and 77.1% comesponding to 15979
substances were predicted inactive by all four models, The number
of REACH PRS predicted within the defined AD of each model and
the distribution of active and inactive predictions are given in
Table 3,
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rates between hPXR-LBD binding and full-length hPXR activation
for the experimental results of the full drug datasets and for the
QSAR predictions of the REACH sets, respectively (Fig. 2a). For the
experimental drug data the rate of hPXR-LBD tested binders result-
ing in hPXR activation was 440% (63/(63 + 79)), and the rate of
hPXR activators binding to hPXR-LBD was 37.7% (63/(63 + 104)).
For the predicted REACH substances only compounds in the com-
mon AD of the two models (n = 22 486) were included in the anal-
ysis, and among these 2624 were predicted active by both models
and 16,842 were predicted inactive by both models, Of the remain-
ing 3020 disconcordant predictions, 2408 were predicted active for
hPXR-LBD but inactive for hPXR, while 612 were predicted active
for hPXR but inactive for hPXR-LBD. Based on these predictions,
it was estimated that 52.1% (2624/(2,624 + 2408)) of the predicted
hPXR-LBD actives are also predicted to cause hPXR activation,
whereas 81.1% (2624 /(2,624 + 612)) of the predicted hPXR activa-
tors are also predicted to bind to hPXR-LBD,

3.4. Concordance rates between hPXR activation and CYP3A4
induction

Since PXR is known to induce the transcription of CYP3A4
[4,31], we calculated the concordance rates between hPXR activa-
tion and Cf P3A4 induction for both the tested drugs and the QSAR-
predicted REACH substances set (Fig. 2b), For the experimental
drug data, the rate of hPXR active drugs that result in CYP3A4
induction was 53.6% (113/{113 +98)), and the rate of CYP3A4
inducers also activating hPXR was 66.5% (113/(113 +57)), Of the
24364 REACH PRS predicted within the common AD of the two
models, 2945 were predicted active by both models, whereas
20960 were predicted inactive in both models. Among the 459
substances with discrepant predictions, 385 were predicted active
by hPXR only and 74 were predicted active only by the CYP3A4
model. From these numbers it can be estimated that 88.4%
(2945/( 2945 + 459)) of the REACH substances predicted to cause
hPXR activation were also predicted to induce CYP3A4, and that
97.5% (2945/(2945 + 74)) of the predicted CYP3A4 inducing REACH
substances were also predicted to activate hPXR.
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Table 2

Coverage and predictive perfformance of the four Q5AR models. Only predictions insde the defined AD were included in the statistical analyses.

CSAR mode] Statistical pammeter Cross-validation® (50.%) External validation, % {acual numbers)
5 times 2-fold” Blinded test sets’ Extra hPXR-LED test set
hPXR-LBD Approach 5) 10 sub-models Coverage 660 (3.3) 673 (438651) 606 (1475 [2434)
Sensitivity 687 (1.3) 850 (17/20) 71.9(97/135)
Specificity 845 (2.0) 87 8 (367 [418) 804 (1078 /1340)
Balanced accuracy TE6 (3.2) 864 76.1
hPXR Approach 5) 7 sub-models Coverage 603 (2.9) 50,1 (415/702) -
Sensitivity 715 (ET) 0.0 (24/30) -
Specificity B804 (3.7) 852 (328/385) -
Balanced accuracy 764 (2.9) B26 -
rF¥R Approach 4) 10 sub-models Coverage 740 (3.0) 800 (584/730) -
Sensitivity 589 (11.0) 913 (2123) -
Specificity 920 (2.4) 94.1 (528/561) -
Balanced accuracy 754 (4.7) 97 -
CYP3A4 Approach 5) 9 sub-models Coverage 647 (3.0 63.4 (453/715) -
Sensitivity 716 (7.6) T6.9 (20/26) -
Specificity 807 (2.7 855 (365/427) -
Balanced accuracy 761 (1.3) B2 -

* A five times twofold cross-validation with same active-inactive ratio as the full training set and without reusing selected descriptors from the parent model. Coverage,
sensitivity and specificity are the mean from the ten cross-validation models with the standard deviation (5D in parentheszes.
- The experimental results of the test set structures were made available to DTU Food by MIH NCATS after they had been predicted in the respective models by DTU Food.

Table 3
Prediction and domain results for the 72,524 REACH PRS

0SAR model  Tatal Predicted Active  Predicted Inactive
in AD (%) in AD (%) in AD (%)
hPXR-LED 43,551 (60.1) 11,490 (26.4) 32,061 (736)
hPXR 38,114(525) 6167 (16.2) 31,047 (B3 8)
rPXR 52,144(719) 3141 (60) 49,003 (94.0)
CYP3A4 42861(501)  SET4(13T) IEOET (BE3)

35, Concordance rates between human and rat Full-Length PXR
activation

Species differences in PXR activation by chemicals have previ-
ously been identified [11,1452] and information on these differ-
ences can be of importance when extrapolating data from rat
in vive studies to humans, eg. in chemical risk assessment. In the
experimental drug dataset, the rate of human PXR activating drugs
that also activate the rat PXR was 25.9% (51/(51 + 148)) (Fig. 2c).
Conversely, 56.7% (51/(51 +39)) of the rat PXR activating drugs
also activated human PXR. To estimate the species differences in
human and rat PXR activation with regard to the QSAR-predicted
REACH substances, we compared REACH PRS QSAR-predictions
from the hPXR and PXR models. Among the 25498 REACH PRS
predicted in the common AD, 862 were predicted active in both
models, 2788 were predicted active for hPXR only, and 573 were
predicted active for rPXR only. The remaining 21,275 were pre-
dicted inactive by both models, From this it can be estimated that
236% (BE2[(BE2 + 2788)) of the QSAR-predicted REACH PRS acti-
vating human PXR were also predicted to activate rat PXR, and
60.1% (862((862 + 573)) of the predicted rat PXR activators were
also predicted as human PXR activators.

4. Discussion

In the present study, we developed four global binary QSAR
models for human PXR-LBD binding, human and rat full-length
PXR activation, and human CYP3A4 induction, respectively. The
models were used to screen more than 70,000 REACH substances.
To our knowledge this is the first study to profile a large set of
chemical substances potentially used in industrial processes, food
and consumer products, such as deaning products, paints, clothes,
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and fumniture, by QSAR with respect to both PXR binding/activation
and CYP3A4 induction

4. 1. Predictive performance and robustness

A number of different modeling approaches in LPDM were used
to build models on the four training sets and the best performing
model for each endpoint was selected for further validation studies
and screening of the REACH PRS inventory, It is known that sensi-
tivity and specificity of binary models can, depending on the
applied modeling algorithm, be affected by the distribution of
actives and inactives in the training set. A training set with a
greater number of inactives will often result in a higher specificity
at the expense of sensitivity and vice versa in the case of overrep-
resentation of actives, This is likely the reason why the single mod-
els built with the full, imbalanced training sets were outperformed
by the composite models: all four selected models were composite
models consisting of seven to ten sub-models with balanced sub-
training sets. The composite model feature in LPDM was imple-
mented to handle imbalanced training sets [48], in this case train-
ing sets with only 5.8% to 126% actives,

All four models showed high predictive performances with bal-
anced accuracies in the external validations ranging from 76.1% to
92.7% (Table 2). Both the high quality of the experimental data
originating from robust assays [14,53] as well as the composite
modeling approach in LPDM have undoubtedly contributed to
the high performances of the models. The cross-validation results
were generally pessimistic compared to the extemal validations
(Table 2), especially with regard to the sensitivity. The fact that
the cross-validation results in this study are pessimistic compared
to the external validations is in accordance with the finding in, e.g.
[54], where this issue was systematically studied. The generally
low standard deviations (5Ds) in the cross-validations indicate
robust models, Le. their performances are not drastically altered
in response to perturbations of the training set composition. Both
the remarkably lower cross-validation sensitivities relative to the
external validation sensitivities and their higher 5Ds is likely due
to the rigorous cross-validation procedure of removing 50% of
the few actives in the non-congenenc training sets. The effects of
remaoving 50% is most cleary reflected in the rPXR model (Table 2),
which was also the model with the fewest training set actives, i.e.
97 actives (Table 1). Often k-fold cross-validations of models built
from training sets of similar size as those in this study are
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Fig. Z Owverlap of positive results between two endpoints and two-way concordance rates. a) comparing tested/predicted hFXR-1BD binders with hPXR activators, b)
comparing tested/predicted hPXR activators with OYP3A4 inducers, and ¢) comparing tested /predicted rPaR activators with hPXR activators.

performed by removing 10% or 20% (i.e., k=10 or 5) of the trining
set, leaving more data to train the cross-validation models [52,54].
The cross-validation results indicate that the leave-50%-out cross-
validation performed in the present study was causing too big per-
turbations. Retrospectively, it seems that a 10 or 20%-leave-out
cross-validation would have been more appropriate in this case.

The hPXR-LBD model in the present study has a lower cross-
validation sensitivity (687%) compared to a similar hPXR-LBD
model from Dybdahl and colleagues ( 82.3%) [14.20,43]. The differ-
ence in sensitivities is likely due to differences in the composition
of the two training sets, with the Dybdahl model having more than
twice as many actives in its training set, i.e. 299 versus 143 actives
in the current model, leaving more actives for the 50% reduced
cross-validation models. Additionally, the Dybdahl model cross-
validation [20] was performed using LPDMs algorithm, which, we
have experienced in some cases, returns overoptimistic statistics
because of its reuse of parent model descriptors in the cross-
validation models.

The size of the DTU Food masked external test sets with predic-
tions inside the respective model's AD ranged from 415 to 584
structures, with 20-30 structures having active experimental
results( Table 2). In general, external test sets should be sufficienthy
large and representative of the model's AD to ensure that the pre-
dictive performance results are not random. The distributions of
experimentally active and inactive structures in these external test
sets are imbalanced toward more inactives similar to the trining
set distributions. Although the masked test sets in total are quite
large for external validation, the few actives make the calculations
of sensitivity less robust. The supplementary external validation of
the hPXR-LBD model included 135 experimentally active sub-

stances out of the total 1475 test set structures predicted inside
the hPXR-LBD model's AD (Table 2). This larger number of actives
may provide a more accurate estimate of the hPXR-LBD model's
sensitivity compared to the result from the blinded external valida-
tion with only 20 experimentally active compounds. The extra
external validation of the hPXR-LBD model resulted in overall
lower predictive performance estimates compared to the blinded
external validation (Table 2). This can be due to differences in
the chemical universes of the two test set with the blinded test
set likely representing the training set better due to the
chemical-similarity test set selection procedure described in Sec-
tion 2.1 [55,56]. A previous study have shown that this type of
rational test set selection can give optimistic validation results
[57]. Also, although the hPXR-LBD data in the two datasets were
generated using the same assay protocol in the same laboratory,
minor differences in the data analysis of the extra hPXR-LBD data-
set compared to that of the MIH NCATS hPXR-LBD data could have
negatively affected the validation results to some degree. Available
ToxCast datasets [34] with experimental results for human PXR
binding and activation and CYP3A4 induction were not applied in
the validation study due, in our opinion, to large dissimilarities
in the assay protocols and data analysis with the NMIH MCATS train-
ing sets.

42, Screening of the REACH PRS inventory

The four selected models were used to predict 72,524 REACH
PRS in order to give an estimate of the number of PXR activators
and CYP3A4 inducers in this chemical universe (Table 3). A large
overlap in the chemical similarity of small molecule drugs and
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environmental chemicals has been identified, and other QSAR
models trained on drug data have been shown to have a high pre-
dictability of environmental chemicals [52,55,56]. This, together
with the application of a structural AD to avoid extrapolations, jus-
tifies the use of the drug-data trained models to screen the REACH
set, The screening indicates that the predicted REACH PRS set con-
tains nearly the same rate of human and rat PXR full-length activa-
tors as well as CYP3A4 inducers compared to the experimentally
tested drugs in the training sets, i.e. 16% vs, 13%, 6% vs, 5.8%, and
14% vs, 11%, respectively, The hPXR-LBD model, however, pre-
dicted 26% of the REACH PRS inside the model's AD to be hPXR-
LBD ligands, which was remarkably higher than the 9.3% hPXR-
LBD active drugs in the training set. Since the hPXR-LBD model
does not seem to be biased towards producing many false positive
predictions based on the high specificity in the three validations,
i.e804% to 87.8% (Table 2), this is unlikely the only reason for
the high prevalence of predicted hPXR-LBD actives in the REACH
PRS set. The increased focus on attenuation of PXR activity and
the introduction of a filtering procedure in eady drug development
[30] might to some degree explain the nearly three-fold lower rate
of hPXR-LBD ligands among drugs compared to the predicted
REACH substances,

43. Concordance rates between endpoints

The calculated concordance rates between endpoints using
either experimental test results or QSAR predictions can provide
information on the frequencies of the possible mechanisms by
which chemicals act as well as reveal differences and similarities
between the two chemical inventories (Fig. 2). Results from a pre-
vious study indicate that differences in the biological mechanisms
of drugs and environmental chemicals exist [58], When concor-
dance rates are based on QSAR predictions, they can be influenced
by the uncertainty inherent in the predictive models, but since all
four models had high predictive performances in the external val-
idations [ Table 2), we expect this uncertainty to be fairly low. For
the concordance rates based on the experimental data, these can
be affected by the fact that experimental tests may not be 100%
reproducible. In a follow-up study, Shukla and colleagues [14]
retested 72 compounds in the four gHTS assays and the activities
were confirmed for 71 (hPXR-LBD), 66 (hPXR), 72 (rPXR) and 70
(CYP3A4) of the compounds, respectively, with no information of
the activity distribution. This could indicate a slightly higher rate
of false positive and/or false negative test results in the hPXR assay
compared to the other three assays. Inclusion of false positives
andfor negatives in the hFXR experimental data could in this case
have affected the hPXR model development and its performance
measurements as well as the subsequent concordance rate studies
of both the experimental and predicted datasets.

Roughly half of the hPXR-LBD binders were also hPXR activators
for both the tested drugs (44%) and the predicted REACH PRS (52%)
(Fig. 2a). This may reflect that the ~50% active compounds from
the hPXR-LBD cell-free assay that are not active in the cell-based
hPXR activation assay either cannot enter the cell, are biodegraded
in the cellular environment, or act as human PXR antagonists
[14,28]. For the hPXR activators that were also hPXR-LED ligands,
we observed a difference in the concordance rates between the
two universes, with only 38% of the full-length hPXR activators
being hPXR-LBED ligands for the tested drugs as opposed to 81%
for the QSAR-predicted REACH PRS. This difference might be a
reflection of the approximately three-times higher occurrence of
predicted hPXR-LED binders in the QSAR-predicted REACH PRS
universe and thus a higher chance for hPXR activators to also be
predicted active by hPXR-LBD, The part of the hPXR activators that
were not hPXR-LBD ligands likely exert their effect on PXR activa-
tion through other signaling pathways such as protein kinase path-

98

ways [50,51]. They may also be chemicals that are not able to
displace the tracer molecule in the hPXR-LBD assay [14], a known
problem with LanthaScreen TR-FRET-based binding assays,

When comparing hPXR activation and CYP3A4 induction higher
concordance rates were found for the QSAR-predicted REACH PRS
than for the tested drugs (Fg. Zb), Among the REACH PRS predic-
tions, 88.4% of the hPXR activators also induced CYP3A4, while
for the experimentally tested drugs this was only the case for
53.5% of the hPXR activators. Multiple factors can explain the
absence of CYP3A4 induction by hFXR activators, for example, neg-
ative feedback loops repressing CYP3 A4 expression, differences in
recruitment of co-activators resulting in varnations in the promoter
region binding and downstream gene transcription pattems [59],
as well as assay-related biochemical limitations [60]. Of the
CYP3A4 inducers, 97.5% and 66.5% of the predicted REACH PRS
and tested drugs, respectively, were also hPXR activators, An expla-
nation to why some CYP3A4 inducers were not hPXR activators
could be that other transcription factors or signaling pathways in
the cell have led to the CYP3A4 induction. The high concordance
rates of 97.5% and 88.4% between the prediction sets indicate that
the two models have high agreement in their predictions,

Previous studies have reported species differences between
human and rat PXR ligands [14,15,52,61] and this is supported
by a highly divergent inter-species PXR-LBD amino acid sequence
[11] with human and rat PXR-LBD shanng only 78.3% amino acid
sequence similarity according to a calculation made using the
web-based SeqgAPASS software [62]. In the present study, around
25% of the hPXR activators among both the tested drugs and the
predicted REACH PRS were also activating rPXR (Fig. 2c). Among
the rPXR activators 57-60% in both universes were also activating
hPXR. These results support that species differences in chemical
action of drugs and REACH substances on PXR exist, The current
study has identified 3361 (2788 +573) REACH substances for
which extra attention is necessary when extmpolating rat in vivo
data to humans.

Overall, this statistical analysis indicates that QSAR predictions
of larger chemical inventories can be applied to study overlap in
activities between biological endpoints. Such studies can poten-
tially be used in hypotheses generation of new mechanistic
associations,

5. Conclusions

We have developed four QSAR models for human PXR-LBD
binding, human and rat full-length PXR activation, and human
CYP3A4 induction All four models were robust with high predic-
tive performances, The models were used to screen a set of
72,524 REACH PRS and of the QSAR-predicted REACH substances
the number of actives were as follows; hPXR-LED (11,490), hPXR
(6167), rPXR (3141), and CYP3A4 (5874). Furthermore, the experi-
mental data and the predictions of the REACH substances were
analyzed to obtain information on co-occurrences of positive
results for PXR activation and CYP3A4 induction in the two chem-
ical universes. The developed models can in a fast and cost-
efficient way provide information that can be used for prioritiza-
tion purposes as well as in combination with other data in IATAs
including weight-of-evidence assessments of chemical substances.

The models can also help in future design of safer chemicals and
drugs.
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Abbreviations: AD, applicability domain; AhR, aryl hydrocarbon receptor; AOP, Adverse Outcome
Pathway; CYP, cytochrome P450; ER, estrogen receptor; FN, false negative; FP, false positive; HAH,
halogenated aromatic hydrocarbons; HTS, high-throughput screenings; LPDM, Leadscope® Predictive
Data Miner; MIE, molecular initiating event; PAH, polycyclic aromatic hydrocarbons; gHTS,
quantitative HTS; QSAR, quantitative structure-activity relationship; SULT, sulfotransferase; TH,
thyroid hormone; TN, true negative; TP, true negative; UGT, UDP-glucuronosyltransferase

1. Introduction

With the recent advances in in vitro assay technologies, data from high-throughput screenings (HTS)
for molecular and cellular responses are becoming more and more common in public databases such
as the PubChem database?! [1,2]. Such HTS datasets are often large, i.e. they can contain up to
100,000s of samples tested, and tend to be highly imbalanced towards many inactives [2,3].
Previously, data shortage has been one of the main limiting factors for developing robust global
qguantitative structure-activity relationship (QSAR) models. The availability of large but highly
imbalanced HTS datasets for molecular and cellular responses to chemicals has introduced new
challenges when building global QSARs [2,3]. The datasets with 100,000s of entries are generally too
large for most QSAR software to handle in a computer- and time-efficient way, and the very
imbalanced distribution of actives to inactives poses a problem for many training algorithms. One
solution is therefore to select a subset to be used for QSAR training, e.g. with the aim of building
models with good predictive performance and/or high coverage of future prediction sets.
Suggestions on subset sampling and mining of large imbalanced HTS datasets have been published
previously [2-4]. The predictive performance of a QSAR, i.e. how good it is at making correct and
reliable predictions, is strongly influenced by the quality of the underlying experimental data and
structures on which it has been trained [5,6]. For global QSARs, the size and balance of the training
set, the distribution of training set structures in the chemical space as well as the definition of an
applicability domain (AD) also play a role in a model’s estimated predictive performance. Model
coverage, also defined as the AD size, is the proportion of a prediction set for which the QSAR model
can make predictions within the reliability established in the QSAR validation. Addition of structures
to a training set can enhance the model’s coverage and predictive performance, and the degree of
coverage and predictive performance improvement will most likely depend of the number of

structures added as well as their effect on the chemical space covered by the training set.

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that regulates the
expression of genes, whose products are involved in multiple biological processes such as
metabolism of endogenous and exogenous small molecules as well as regulation of organ

development and the immune system [7]. Due to its wide and important biological involvement, AhR

2 https://pubchem.ncbi.nim.nih.gov/
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continues to be a popular research area?. Some of the best-characterized exogenous AhR ligands
include dioxins, halogenated aromatic hydrocarbons (HAHs) and nonhalogenated polycyclic aromatic
hydrocarbons (PAHSs). Further studies have identified a structurally-diverse group of chemicals as
AhR agonists [7]. Some of the genes regulated by AhR encode enzymes involved in phase | and Il
metabolism of exogenous as well as endogenous compounds. The two AhR-regulated cytochrome
P450 (CYP) subtypes, CYP1A1 and CYP1B1, are among other things involved in phase | metabolism of
estrogens [8—-10]. AhR also regulates the expression of sulfotransferase (SULT) and UDP-
glucoronosyltransferase (UGT) isoenzymes that are important in the catabolism of e.g. thyroid
hormones (THs) and estrogens [11-13]. Thus exposure to man-made chemicals that interact with
AhR can through upregulation of enzymes such as CYPs, UGTs and SULTSs result in altered turnover of
endogenous hormones and hereby potentially interfere with normal physiology and lead to adverse
health effects. One example is given in an Adverse Outcome Pathway (AOP) (under development)
that describes how the molecular initiating event (MIE) of chemical interaction with AhR upregulates
TH catabolism and leads to reduced TH levels and can result in adverse neurodevelopmental
outcomes [14]. AhR can also modulate the responsiveness of various hormone receptors [7]. Best
understood is the cross-talk with the estrogen receptors (ERs), whose activity can be repressed by
ligand-activated AhRs through sequestering of common co-activators/factors [7]. Similar types of

cross-talk between AhR and other nuclear receptors and transcription factors are likely [7].

Due to the involvement of AhR in toxic responses to chemicals such as reduced TH levels and
neurodevelopmental adverse outcomes [14], it is of high relevance to be able to identify and
characterize chemical structures that activate AhR. A number of HTS in vitro assays for AhR
interaction have been developed and applied to screen thousands of small molecules [15,16]. Such
data have previously been used in the development of QSAR models for AhR activation, e.g. QSAR
models developed from Tox21 HTS data under the Tox21 challenge in 2014 [15]. In the present
study, a large PubChem dataset with 324,858 chemical structures probing the classical AhR-gene
activation mechanism in a quantitative HTS (qHTS) in vitro assay was curated and used to prepare
training and test sets to build and validate four global QSAR models. Corresponding data on
luciferase interference, a potential artefact in the applied AhR activation assay, was taken into
account to remove potentially false positive experimental results from the AhR activation dataset at
the data curation step. Due to the high ratio of 204,513 AhR activation inactives to 925 actives in the
curated dataset, we used this dataset to explore how a stepwise rational selection of inactives to

expand training set size would affect the coverage and predictive performances of the QSAR models.

2 http://www.sciencedirect.com/science/journal/aip/24682020
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2. Material and Methods

2.1 Experimental datasets

A dataset consisting of structure information and gHTS in vitro data for human AhR activation and
luciferase interference was used when constructing training and test sets. All data were downloaded
from PubChem. In total, 324,858 chemicals had been tested in a primary singlicate screening for AhR
activation, i.e. AID 2796, and given a PubChem activity score of 0-100 as described elsewhere [16].
Of the 7,990 substances originally tested active in AID 2796, 2,281 had been retested in triplicate for
AhR activation, i.e. AID 2845 [17], and of these, 1,982 were confirmed AhR activators, i.e. PubChem
activity score of 10-100 [17]. The AhR activation gHTS in vitro assay applied in AID 2796 and AID
2845 is a luminescence-based assay using HepG2 cells stably transfected with AhR-dependent
pGudLuc6.1-DRE plasmids [17]. Substances that activate AhR result in expression of the luciferase
reporter gene, and the level of luciferase activity is an indirect measure of AhR activation [17]. Some
substances can stabilize luciferase and increase its half-life resulting in its accumulation and a
measured increase in luminescence signal [18], and such substances may be incorrectly interpreted
as AhR activators in the applied AhR activation gHTS assay. We used experimental PubChem data
from the luciferase inhibition/activation gHTS assay AID 5888342 [19] as a counterscreen to identify
any such substances among the 1,982 confirmed AhR activators from AID 2845. We classified
substances in AID 2845 with a PubChem activity score from 10 to 100 and a PubChem activity score
of 0 in AID 588342 as active for AhR activation. Substances with a PubChem score of 0 in AID 2796
were classified as inactive for AhR activation. The remaining substances were classified as

inconclusive for AhR activiation.

2.2 Structure preparation and dataset splitting

The QSAR software applied in this study, Leadscope® Predictive Data Miner (LPDM), a component of
Leadscope® Enterprise Server version 3.2.4, can handle organic chemical substances with a known
and unambiguous 2D structure [20]. Briefly, we prepared calculation structures by first breaking
ionic bonds and neutralizing the structures. Then we removed substances containing two or more
organic components and structures with less than two carbon atoms from the dataset. Also,
structures containing atoms not on the following list were removed: H, Li, B, C, N, O, F, Na, Mg, Si, P,
S, Cl, K, Ca, Br, and I. Finally, structures with charges in their calculation structures were removed
from the dataset. Canonized SMILES were generated for the remaining calculation structures in the
dataset so that they were described following the same algorithm (Figure 1, pink box) and these

constituted the QSAR-ready structures that were used for further processing.
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In the next step, identical QSAR-ready structures in the dataset were identified and their
experimental results, as classified above, were compared. For identical structures with concordant
activities, only one of the structures was kept in the dataset, while if a group of identical structures
had discrepant activities then the whole group was removed from the dataset (Figure 1, pink box).
After structure preparation and duplicates removal, the dataset was split as follows. Among the 925
AhR activation actives in the dataset, 10% were randomly selected to be used in a test set. This
resulted in 93 test set actives and 832 training set actives. From the 204,513 QSAR-ready inactives in
the dataset, we randomly selected 50.000 of the structures (to be called the ‘50K set’ below) to be
used in the model development steps as explained below, while the remaining 154,513 structures

were included in the test set (Figure 1, pink box).

Initial dataset Structure preparation QSAR-ready Dataset splitting Tralning sets and QSAR models
N and Two-step rational selection of inactives Reference QSAR model
duplicates removal
QSAR2:1 QSAR3:1 QSAR4:1 QSAR4:1-R
Inactives Inacti\.res for
Inactives selection 1664 2496
J -2
209,118
204,513 154,513 50,000
Actives i 2:1 training set |[g32 L 3:1 training set [[832[L 4:1 training set 4:1-R training set
Actives SRR o 1564'”.‘3“‘\’95 ...... 2496 inactives | T | 3,328 inactives | vl 3,328 inactives
025 [Actives:] 3| 832 actives ——> 832 actives 832 actives 832 actives
932 Les2 | T —
93|
I w— — = — "
External validation|
Test set:
93 actives

154,513 inactives

REACH-PRS
prediction set:

72,524

i

Inter-model comparisons of coverages and predictive performance

Figure 1. An overview of the workflow. Pink box: the steps of data curation and preparation of a test set and a
dataset for training set construction. Light blue box: the steps of training set inactives selections and model
building. Dark blue box: predicting the test set for external validation and the REACH-PRS set in the four
models. Green box: inter-model comparisons of the predictive performances from the external validations and
the coverages of the REACH-PRS set.

2.3 Applicability domain definition
The definition of the AD applied in this study consists of two components: 1) the definition of a
structural domain in LPDM, and 2) a DTU Food in-house class probability refinement on the output

from LPDM:

1) For a query compound to be within LPDM'’s structural domain it is required that: it has at least
30% Tanimoto similarity with a training set compound, all molecular descriptors used in the model

can be calculated and it contains at least one structural feature used in the model [21]. The 30%
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Tanimoto similarity was a default cut-off in the LPDM software. For a test compound outside this
structural domain no prediction call, i.e. active/inactive, is generated by LPDM. For test compounds
within the LPDM structural domain, a positive prediction probability, p, between 0 and 1, is given

together with the prediction call; actives having a p 2 0.5 and inactives having a p < 0.5 [21].

2) The DTU Food class probability refinement served to exclude the likely less reliable predictions,
i.e. those with a positive prediction probability close to the cutoff p = 0.5. For predictions to be
within the AD we required a p = 0.7 for active prediction calls (POS_IN) and a p < 0.3 for inactive
prediction calls (NEG_IN). Predictions within the LPDM structural domain but with an associated
positive prediction probability in the interval 0.3 < p < 0.5 (NEG_OUT) and 0.5 < p < 0.7 (POS_OUT)

are defined as out of AD.

2.4 QSAR Modeling

In this study, we used the commercial software LPDM to build QSAR models. Briefly, upon dataset
import LPDM calculates nine molecular descriptors (AlogP, Hydrogen Bond Acceptors and Donors,
Lipinski Score, Molecular Weight, Parent Atom Number, Parent Molecular Weight, Polar Surface
Area, Rotatable Bonds) and performs a systematic sub-structural analysis using a template library of
more than 27,000 pre-defined structural keys for each chemical structure in the dataset [22]. For
QSAR modeling in LPDM, the molecular descriptors and structural features are included in a default
preliminary descriptor set. From the preliminary descriptor set, an automatic descriptor pre-
selection procedure in LPDM selects the top 30% descriptors according to Yates X*-test for a binary
response variable. For training sets with a binary response variable, a predictive model is built using
the pre-selected descriptors in a partial logistic regression (PLR) with further selection of descriptors
in an iterative procedure, and selection of the optimum number of PLR factors based on minimizing
the predictive residual sum of squares. LPDM has the option of building composite models, a type of
ensemble models, for training sets with an imbalanced distribution of actives and inactives [23].
With this option a number of sub-models are created by specifying the desired ratio of actives to
inactives per sub-model training set. The positive prediction probability (see 2.3) for a query
chemical from a composite model is defined as the average of the positive prediction probabilities

from all sub-models having the test chemical in their structural domain [21].

To first find the maximal modeling capacity in LPDM of the present dataset, we did a series of
modeling experiments using training sets with different ratios of the 832 actives and randomly
selected inactives from the 50K set. The training set with a ratio of 4:1, i.e. consisting 3,328 inactives

randomly selected and the 832 actives, was the largest imbalanced training set that LPDM could
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efficiently model. This 4:1 training set was later used for building a reference model for evaluating

the effect of the rational selection steps described below.

After determining the maximum training set inactive:active ratio we started to construct a 4:1
training set using a two-step rational selection procedure. We first created a training set with an
inactive:active ratio of 2:1 that consisted of the 832 actives and 1,664 (i.e., twice the 832 actives)
inactives selected randomly from the 50K set of inactives (Figure 1, light blue box). The 2:1 training
set was modeled in LPDM using three QSAR modeling approaches, which all underwent a 10 times

20%-out LPDM cross-validation:

1) Asingle model, i.e. a non-composite model using the full training set

2) A composite model, with sub-models from balanced sub training sets and equal weight

3) A composite ‘cocktail’ model, combining the single model from 1) with the sub-models of
the composite model from 2)

Since the main purpose in this study was to compare the predictive performances and coverages
between models built from training sets constructed using two different selection approaches, we
decided that all models should be built using the same modeling approach. Based on the LPDM
cross-validation results the best performing modeling approach was selected and the selected model
was closed and named QSAR2:1. Then the 50K set minus the inactive structures in the 2:1 training
set, i.e. 48,336 inactive structures, were predicted in QSAR2:1 (Figure 1, light blue box). From these
predictions, 832 new inactives were selected and added to the 2:1 training to constitute a 3:1
training set as follows. The rational selection was done by selecting one fourth, corresponding to 208

structures, randomly from each of the four prediction outcome areas (defined in 2.3):

1. out of LPDM structural domain
2. POS_OUT

3. NEG_OUT

4,

POS_IN, i.e. here false positive (FP) predictions

The addition of structures from 1. through 3. mainly served to increase chemical space of the
subsequent training set with the purpose of increasing the AD and model coverage. The structures
with POS_IN predictions, i.e. 4., were added with the purpose to improve the ability of the model
algorithm to avoid deriving false activity features and thereby reduce its tendency to make FP
predictions. A similar but smaller effect on performance was expected from addition of the

POS_OUT (2.) and NEG_OUT (3.) selected structures.
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The 3:1 training set was used for building a QSAR model using the selected modeling approach, and
the model was closed and named QSAR3:1. The 50K minus the 3:1 training set inactive structures,
i.e. 47,504 inactive structures, were then predicted in QSAR3:1 and from the predictions, 832
inactives were selected as described above and added to the 3:1 training set to constitute a 4:1
training set (Figure 1, light blue box). Again, the 4:1 training set was used for building a QSAR model
using the selected modeling approach and the model was closed and named QSAR4:1. To have a
reference model to evaluate the effect of the rational selection steps against, the 4:1 training set
with the inactives randomly selected from the 50K set were used for building a model using the

selected modeling approach. This model was closed and named QSAR4:1-R.

2.5 Validation of the QSAR models

All four selected and closed models, QSAR2:1, QSAR3:1, QSAR4:1 and QSAR4:1-R, had during their
development undergone a 10 times 20%-out cross-validation procedure in LPDM. The LPDM cross-
validation applies the LPDM structural domain only and is not a true cross-validation as the
algorithm transfers knowledge from the full training set model to the smaller cross-validation
models. Therefore, the LPDM cross-validation results were only used in a relative manner to guide
the selection of the modeling approach (see 2.4) and not to estimate absolute predictive
performance. To assess the models predictive performances, the four closed models were subjected
to an external validation using the test set of 93 AhR actives and 154,513 inactives (Figure 1, dark
blue box). Sensitivity, specificity and balanced accuracy were calculated for the test set predictions
within the defined AD. Sensitivity is the percentage of experimental actives correctly predicted,
specificity is the percentage of the experimental inactives correctly predicted, and balanced accuracy
is the average of the sensitivity and specificity. The coverage of the test set, i.e. the percentage of
how many of the predicted test set structures that had predictions within the defined AD, was also

calculated for all four QSAR models.

2.6 Screening of 72,524 REACH substances for AhR activation

An EU collection of 72,524 substances from the REACH pre-registered substances (PRS) list extracted
from the online Danish (Q)SAR Database structure set [24,25] was screened through the four AhR
activation QSAR models (Figure 1, dark blue box). The 72,524 QSAR-ready structures were originally
curated from deliverable 3.4 of the OpenTox EU project [26] and had previously been processed
through the structure preparation steps described in 2.2. The proportion of the 72,524 QSAR-ready
REACH-PRS structures predicted within the defined AD of each of the four QSAR models,

respectively, as well as the activity distributions of the predictions were calculated.
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2.7 Comparison of model coverages and predictive performances

To uncover the effect of the two-step rational selection of inactives for the QSAR4:1 training set, an
analysis of the coverages of the REACH-PRS set and the test set in the four models was performed.
The results from the external validation of the four models using the test set were also compared to
assess the effect of the stepwise rational selection procedure with regard to predictive performance.
The analyses and comparisons were focusing on QSAR4:1 versus QSAR4:1-R as well as between the

intermediate models QSAR2:1 and QSAR3:1 versus QSAR4:1 (Figure 1, green box).

3. Results and Discussion
Here we describe a pilot study to explore how a large and highly inactive-imbalanced dataset could

be used for developing global QSAR models with optimized coverages and predictive performances.

3.1 The datasets

According to our classification of AhR actives and inactives described in 2.1 the initial dataset
contained 932 actives and 209,118 inactives. During the structure preparation and duplicates
handling in 2.2, a total of 4,612 structures were removed from the dataset, 2,909 due to the
structural QSAR criteria and 1,703 due to structural duplicates, none of which due to conflicting
experimental results (Figure 1, pink box). The number of QSAR-ready structures and the distribution
of active and inactive experimental results in the full curated dataset, the test set, the 50K set for

training set selection of inactives as well as the four training sets are summarized in Table 1.

Table 1. Overview of the datasets and their distributions of active and inactive experimental results.

Dataset overview Actives Inactives Total
Full dataset 925 204,513 205,438
Test set 93 154,513 154,606
50K set 0 50,000 50,000
2:1 training set 832 1,664 2,496
3:1 training set 832 2,496 3,328
4:1 training set 832 3,328 4,160
4:1-R training set 832 3,328 4,160

3.2 Selection of model building approach

The 2:1 training set was used for building three QSAR models applying three different modeling
approaches in LPDM. Their LPDM cross-validation results are given in Table 2. These results were
used for selecting the modeling approach and not for estimating model predictive performance. As
can be seen from Table 2, all three modeling approaches showed similar balanced accuracies from
81.3% to 83.7% in the 10 times 20%-out LPDM cross-validation. The lower LPDM sensitivity of the
single model was expected due to the imbalance of the training set. The 2:1 training set composite

‘cocktail’ model 3) was the modeling approach that produced the highest number of both true
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positive (TP) and true negative (TN) predictions and it resulted in more moderate numbers of FP and
false negative (FN) predictions compared to the two other approaches. Based on these numbers,
and on the fact that the composite modeling approach in LPDM is designed to handle imbalanced
training sets, we selected the composite modeling approach 3) for future modeling of the remaining

training sets, 3:1, 4:1 and 4:1-R.

Table 2. The results from the 10 times 20%-out LPDM cross-validations of the three modeling approaches
applied on the 2:1 training set.

2:1 training set Predictions in LPDM structural domain Statistical parameters

Modeling Sensitivity, Specificity, Balanced
TP TN FP FN

approach % % accuracy, %

1) Single 587 1423 154 224 72.4 90.2 81.3

2) Composite 666 1266 262 122 84.5 82.9 83.7

3) ‘Cocktail’ 670 1427 224 162 80.5 86.4 83.5

TP = true positive, TN = true negative, FP = false positive, FN = false negative

3.3 Predictive performance assessment by external validation

After building the four models as described in 2.4, they were all subjected to external validation with
the test set. In Table 3, the external validation results from the four QSAR models are given. An
overall increase was seen when comparing the predictive performances from the external
validations of QSAR2:1, QSAR3:1 and QSAR4:1. The stepwise rational selection with addition of
inactives to the 2:1 and 3:1 training sets gave a total increase in specificity of 7%, i.e. from 90.2% in
QSAR2:1to 97.2% in QSAR4:1. The sensitivity was more or less unaffected and ranged from 83.6% to
85.7% without a trend between the models, and these small differences in the sensitivities are likely

mainly due to noise.

Table 3. The results from the external validation of the four models including model coverage of the test set.

External validation QSAR2:1 QSAR3:1 QSAR4:1 QSAR4:1-R
L. Sensitivity (TP/(TP+FN)) 85.7 83.6 85.1 89.8
Statistical .
o Specificity (TN/(TN+FP)) 90.2 95.3 97.2 91.6
parameters, %
Balanced accuracy 88.0 89.5 91.2 90.7
TP 60 46 40 53
POS_IN
FP 11,605 5,652 3,320 10,017
TN 107,377 114,165 115,045 109,320
NEG_IN
FN 10 9 7 6
Of 93 actives 70 55 47 59
(%) (75.3) (59.1) (50.5) (63.4)
Coverage Of 154,513 inactives 118,982 119,817 118,365 119,337
(%) (77.0) (77.5) (76.6) (77.2)
In total 119,052 199,872 118,412 119,396
(%) (77.0) (77.5) (76.6) (77.2)

The test set consisted of 93 actives and 154,513 inactives. TP = true positive, TN = true negative, FP = false positive, FN = false negative

A comparison of the external validation statistical parameters from QSAR4:1 and QSAR4:1-R showed
that the QSAR4:1 model had a higher specificity, i.e. 97.2% versus 91.6%, but a lower sensitivity, i.e.
85.1% versus 89.8%, than the QSAR4:1-R (Table 3). The positive effect on the specificity was an
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expected result from the procedure of rational addition of inactives selected among the POS_IN and
POS_OUT predictions produced by the preceding models. Inclusion of these structures with false
positive predictions in the training set can help the subsequent model train on a more

representative chemical space and thereby make more correct predictions.

3.3 Model coverages

Another focus of this study was to explore how the selection of inactives for the training sets would
affect future model coverages. In Table 3, the coverages of the test set in the four models are given
and as can be seen all models showed test set coverages of 76.6% to 77.5%. Thus, no effect on
overall test set coverage was seen from the two-step rational versus the random selection. Although
the inter-model total coverages are similar, there are clear differences in the absolute number of TP,
TN, FP and FNs, respectively, produced from the four models (see Table 3). The QSAR4:1 and
QSAR4:1-R coverages of the small number of 93 test set actives were 50.5% (47/93) and 63.4%
(59/93), respectively. Due to the low active-to-inactive ratio in the test set, i.e. 93 actives to 154,513
inactives, the differences in the coverages of actives between the models are blurred in the total

coverage measures (Table 3).

Besides screening the test set structures in the four models, the REACH-RS inventory of 72,524 man-
made chemicals was also predicted by the models. The prediction and coverage results from the
REACH-PRS screening can be found in Table 4. In Figure 2, the coverages of the REACH-PRS are

shown.

Table 4. Overview of the screening results from the REACH-PRS set

REACH-PRS screening QSAR2:1 QSAR3:1 QSAR4:1 QSAR4:1-R
Coverage 31,611 40,418 46,261 39,698
(%) (43.6) (55.7) (63.8) (54.7)
POS_IN 2,744 1,483 1,269 2,148
NEG_IN 28,867 38,935 44,992 37,550

When comparing the coverages of the REACH-PRS set in the two intermediate models QSAR2:1 and
QSAR3:1 to QSAR4:1, a total increase in coverage of 20% can be observed (Figure 2 and Table 4).
This increase was an expected effect of the gradual increase in training set size, and was especially
an effect of the large increase in NEG_IN predictions relative to the fall in POS_IN predictions (Table
4). Despite the same number of actives and inactives in the QSAR4:1 and QSAR4:1-R training sets,
the coverage of REACH-PRS was almost 10% larger in QSAR4:1, which is most likely an effect of the
rational selection steps. Also here, QSAR4:1 produced more NEG_IN predictions, i.e. 44,992 versus
37,550, with a smaller absolute decrease in its number of POS_IN outputs, i.e. 1,269 versus 2,148,

relative to QSAR4:1-R.
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Figure 2. Coverage of the REACH-PRS set in the four QSAR models.

The more NEG_IN predictions produced by QSAR4:1 are likely a result of an increased structural
diversity of inactives in the rational selected training set. This increase in structural diversity and the
AD is mainly driven by the addition of structures with predictions out of LPDM structural domain (1.)
in the preceding model as well as adding structures with NEG_OUT predictions that may have helped
the subsequent model make more clear predictions, i.e. NEG_IN, for these types of structures. The
addition of 50K inactive structures with false POS_IN and POS_OUT predictions in the intermediate
models has likely helped the QSAR4:1 model reduce its rate of FP predictions, and is part of the
reason for the smaller number of POS_IN REACH-PRS predictions generated from QSAR4:1.
However, since the rational addition of structures was only aimed at increasing the number and
diversity of inactive structures in the training set without a corresponding increase in training set
actives, the addition of structures in the POS_IN and POS_OUT prediction areas has also resulted in a
sacrifice of the number of TP predictions produced by QSAR4:1. This can also be seen in the results
from the test set, where QSAR4:1 resulted in 40 TP predictions out of the 93 test set actives as
opposed to the 53 TP predictions from QSAR4:1-R (Table 3).

Overall, these results indicate that the rational selection procedure of training set inactives for
QSAR4:1 has produced a model with enlarged coverage of the large REACH-PRS prediction set (from
54.7% to 63.8%). The same effect was for unknown reasons not seen for the test set, instead a
reduction in the coverage of the 93 actives (from 63% to 51%) was observed. The QSAR4:1 model
according to the external validations produced the highest number of TNs but also the fewest TPs.

Depending on the purpose of the QSAR screening, the four models may serve different aims. If the
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QSAR screening is for example aiming at finding as many TPs as possible at the expense of a higher

number of FPs, then the external validation indicates that QSAR2:1 is the best model.

4. Conclusions

Overall, the external validations showed that all four models had high predictive performances with
balanced accuracies of 88.0% to 91.2%. From this pilot study, we can conclude that the stepwise
rational selection of training set inactive structures from a very large and imbalanced datasets
improved model specificity, i.e. ability to correctly predict the inactives, from 91.6% to 97.2%
compared to random selection. The coverage improvement effect of the rational selection
depended on the constitution of the prediction set, and here we saw an approximately 10%

coverage increase of the REACH-PRS set but no improvement in test set coverage.
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3.4 The Collaborative Estrogen Receptor Activity Prediction Project

3.4.1 Introduction

The Collaborative Estrogen Receptor Activity Prediction Project, abbreviated CERAPP, was initiated
in 2013 by the U.S. EPA NCCT under the Endocrine Disruptor Screening Program (EDSP) laid out in
1998 [1-3]. In EDSP, a two-tiered approach is applied to screen a universe of around 10,000
chemicals for their potential to be endocrine disruptors. The Tier 1 screening consists of a battery of
11 endocrine-related in vitro and in vivo assays [4] that would cost around 1,000,000 USD/chemical,
use a minimum of 520 animals/chemical and have a throughput of approximately 50 chemicals/year
[3,5]. This challenge initiated the idea of a pre-tier 1 filter [6]. The aim of CERAPP was to use
structure-based computer models to predict the full EDSP universe for estrogen receptor (ER)
activity to aid in prioritizing EDSP chemicals for further Tier 1 testing. Due to the ease and low cost of
running such models, the chemical universe for ER activity prediction was expanded to cover most of
the man-made chemicals with potential human exposure in the United States [3,7]. The U.S. EPA
NCCT contacted relevant research groups, including the QSAR team at DTU Food, to request them
for participation in CERAPP, which in January 2016 resulted in a scientific publication [7], describing

the methods and main results from the project.

Briefly, the CERAPP project is focused on the ER signaling pathway activation, an important
mechanism of another area of the endocrine system and not directly considered a mechanism of
thyroid hormone disruption. However, some common links between the ER signaling pathway and
the thyroid system do exist, for example are some of the enzymes regulated by e.g. AhR and PXR
involved in the synthesis and/or metabolism of both estrogens and THs [8,9]. Furthermore, cross-
talk between ER and e.g. AhR may indirectly affect ER signaling and/or TH catabolism [10,11]. Also,
estrogens have an effect on TH economy and function [12] and vice versa [13]. Thus, the thyroid and
estrogen systems do interact [14] and together affect e.g. brain development and regulation of

behavior [15].

3.4.2 My Contributions to CERAPP

My contributions to the CERAPP project consisted of building a binary global QSAR model in LDPM
using the U.S. EPA NCCT provided ToxCast training set of 80 actives and 1,342 inactives for ER
agonism and documenting the developed QSAR model in the QMRF format (Appendix). The QSAR
team at DTU Food then predicted the U.S. EPA NCCT provided prediction set in the ER agonist QSAR
model as well as in two previously built QSAR models for human ERa binding [16]. The predictions
inside the defined AD (see AD definition in the QMRF, Appendix) of the ER agonism QSAR model as

well as the QMRF were sent to U.S. EPA NCCT, who evaluated the model based on the predicted
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evaluation set as described in the paper. Besides the work made for CERAPP, the model underwent a
robust cross-validation (Appendix) and was applied for screening the REACH-PRS inventory of 72,524
chemical structures pre-registered under REACH [17]. The result from the cross-validation revealed a
highly predictive model with a specificity of 94.4% and a sensitivity of 80.6%. Of the screened
REACH-PRS set, 53,433 (73.7%) structures had predictions within the defined AD, and of these 4,918

were predicted ER agonists.
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3.4.3 Published paper

A Section 508-conformant HTML version of this article
is available at http:/dx.doi.org/10.1289/hp. 1510267,
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Introduction
There are tens of thousands of natural and

et al. 2009: Mahoney and Padmanabhan
2010: UNEP and WHO 2013). Endocrine-

synthetic chemical substances to which
humans and wildlife are exposed (Dionisio
et al. 2015; Egeghy et al. 2012; Judson et al.
2009). A subset of these compounds may
disrupt normal functioning of the endocrine
system and cause health hazards to both
humans and ecological species (Birnbaum
and Fenton 2003; Diamanti-Kandarakis

disrupting chemicals (EDCs) can mimic or
interfere with natural hormones and alter
their mechanisms of action at the receptor
level, as well as interfere with the synthesis,
transport, and metabolism of endogenous
hormones (Diamanti-Kandarakis et al. 2009).
Exposure to EDCs can lead to adverse health
effects involving developmental, neurological,
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reproductive, metabolic. cardiovascular, and
immune systems in humans and wildlife
(Colborn et al. 1993; Davis et al. 1993;
Diamanti-Kandarakis et al. 2009).

The estrogen receptor (ER) is one of the
most extensively studied targets related to the
effects of EDCs (Mueller and Korach 2001;
Shanle and Xu 2011). This concern about
estrogen-like activity of man-made chemicals
is because of their potential for negatively
affecting reproductive function (Hileman
1994; Kavlock et al. 1996). The emergence of
concerns about EDCs has resulted in regula-
tions requiring assessment of chemicals for
estrogenic activity [Adler et al. 2011; U.S.
Environmental Protection Agency (EPA)
1996; U.S. Food and Drug Administration
(FDA) 1996]. There are numerous in vitre
and in vive protocols to identify potential
endocrine pathway-mediated effects of chem-
icals, including interactions with hormone
receptors (Jacobs et al. 2008: Rotroff et al.
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2013; Shanle and Xu 2011; Sung et al. 2012).
However, experimental testing of chemicals is
expensive and time-consuming and currently
impractical for application to the vast number
of synthetic chemicals in use. Consequently,
toxicological data and especially estrogenic
activity data are available only for a limited
number of compounds (Cohen Hubal et al.
2010; Egeghy et al. 2012; Judson er al. 2009).

The use of in silico approaches, such as
quantitative structure—activity relationships
(QYSARs), is an alternative to bridge the lack
of knowledge about chemicals when little
or no experimental data are available. These
structure-based methods are particularly
appealing for their ability to predict toxi-
cologically relevant end points quickly and
at low cost (Muster et al. 2008; Vedani and
Smiesko 2009). QSARs have been promoted
and their use recognized since the pioneering
work of Hansch in the 1960s (Fujita et al.
1964; Hansch er al. 1962; Hansch and
Deutsch 1966). The conceptual basis of
(JSARs is that chemicals with similar struc-
tures are hypothesized to exhibit similar
behavior in living orpanisms. Thus, it should
be possible to predict biological activity of
new chemicals based on published experi-
mental data. Several guidance documents to
develop these modeling techniques are avail-
able in the literature (Dearden et al. 2009;
Worth et al. 2005).

Recently, in wiero high-throughput
screening (HTS) assays have emerged and
become a viable tool for large-scale chemical
testing (Judson et al. 2011; Kavlock and Dix
2010; Wetmore et al. 2012). HTS generates
substantial amounts of data that can be used as
a knowledge base to correlate chemical struc-
tures to their biological activities. Thus, QSARs
can identify key structural characteristics in
active chemicals and can use them to virmally
screen larpe chemical libraries. Although there is
concern about the overall accuracy of a QSAR
madel to predict the true activity of a particular
chemical, accuracy can be high enough to use
the results for prioritizing chemicals that are
worth subjecting to experimental testing.

With the increasing number of new
substances submitted to the U.5. EPA and the
European Chemicals Agency for registration
{~ 1,500 chemicals every year), there is a need
to prioritize chemicals to speed up the process
and lower the overall costs of testing (U.5.
EPA 2015). The Toxicology Testing in the
21st Century (Tox21) collaboration and the
U.S. EPA's Toxicity ForeCaster (ToxCast™)
projects are screening thousands of chemicals
in HTS in piero assays for a broad range of
targets (Dix et al. 2007; Judson et al. 20105
Martin et al. 2010). Relevant to this paper,
these two projects have in commeon - 1,800
chemicals tested in a battery of 18 ER-related
assays (Huang et al. 2014; Judson et al. 2015).

1024

This paper describes the results of the
Caollaborative Estrogen Receptor Activity
Prediction Project (CERAPP), which was
organized by the MNartional Center for
Computational Toxicology at the U.S. EPA.
The aim of the project was to use ToxCast™/
Tox21 ER HTS assay data to develop and
optimize predictive compurtational models, and
to use their predictions to prioritize a large
chemical universe of 32,464 unique chemical
structures for further testing. Seventeen
research groups from the United States and
Europe participated in this project. These
groups submitted 40 cateporical models and 8
continuous models using different QSAR and
structure-based approaches. Most of the newly
developed models used a training set consisting
of 1,677 chemicals, each assipned a potency
score quantifying their ER agonist, antago-
nist, and binding activities, obtained from a
computational network model that integrates
dara from 18 diverse ER HTS assays (Judson
et al. 2015). All models were evaluated and
weighted based on their prediction accuracy
scores (including sensitivity and specificity)
using ToxCast™Tox21 HTS data, as well as
an evaluation data set collected from different
literature sources. To overcome the limita-
tions of single models, all predictions were
combined into a consensus model that classi-
fied the chemicals into active/inactive binders,
agonists, and antagonists and provided esti-
mates of their potency level relative to known
reference chemicals.

Materials and Methods
Participants and Project Planning

The 17 international research groups that
participated in this project are listed in alpha-
betic order in Table S1. The poals of the
project, outlined in Table 52, were achieved
in multiple steps, including chemical struc-
ture curation, experimental data preparation
from the literature, modeling and predic-
tion, model evaluation, consensus strategy
development, and consensus modeling. Fach
step was assigned to a subgroup of partici-
pants according to their interests and areas
of expertise.

Data Sets

Provided training set. The data that were
suggested to be used by the participants as
a training set to develop and optimize
their models was derived from ToxCast™
and Tox2] programs (Dix et al. 2007;
Huang et al. 2014; Judson et al. 2010).
Concentration-response data from a collec-
tion of 18 im viers HTS assays exploring
multiple sites in the mammalian ER pathway
were penerated for 1,812 chemicals (Judson
et al. 2015; U.S. EPA 2014¢). This chemical
library induded 45 reference ER aponists and

antagonists (including nepatives), as well as

a wide array of commercial chemicals with

known estrogen-like activity (Judson et al.

2015). A mathematical model was developed

to integrate the in viero data and calculate an

area under the curve (AUC) score, ranging
from 0 to 1, which is roughly proportional
to the consensus AC50 value across the active
assays (Judson et al. 2015). A given chemical
was considered active if its agonist or antago-
nist score was higher than 0.01. In order to
reduce the number of potential false positives

this threshold can be increased to 0.1.

Prediction set. We identified = 50,000
chemicals [at the level of Chemical Abstracts
Service Registry Number (CASRN)] for use in
this project as a virtual screening library to be
prioritized for further testing and regulatory
purposes. This set was intended to include a
large fraction of all man-made chemicals to
which humans may be exposed. These chemi-
cals were collected from different sources
with significant overlap and cover a variety of
classes, including consumer products, food
additives, and human and veterinary drugs.
The following list includes the sources used in
this project
» Chemicals with documented use, and there-

fore, with exposure potential (- 43.000).
Available in the U.S. EPA chemical product
categories database (CPCat), which is part of
the Aggregated Compurational Toxicology
Resource (ACToR) system (Dionisio et al.
2015; Judson et al. 2008, 2012; U.5.
EPA 2014a).

» The Distributed Structure-Searchable
Toxicity (DS§5Tox) (U.S. EPA 2014b). A
list of - 15,000 curated chemical structures
from multiple inventories of environmental
interest. In particular, structures for all of the
ToxCast™ and Tox21 chemicals are included.

* The Canadian Domestic Substances list
(DSL) (Environment Canada 2012). A
compiled list of all substances thought to
be in commercial use in Canada (- 24,000
chemicals). Thus, it includes chemicals with
potential human or ecological exposure.

*» The Endocrine Disruption Screening
Program (EDSP) universe of - 10,000
chemicals. The U.S. EFA’s EDSP is required
to test certain chemicals for their potential
for endocrine disruption (U.5. EPA 2014d).

» A list of - 15,000 chemicals used as
training and test sets for the different
models implemented in the U.5. EPA’s
Estimation Program Interface (EPI Suite™)
to predict physico-chemical propernties (LS.
EPA 2014e).

This virtual chemical library has
undergone stringent chemical structure
processing and normalization for use in
the QSAR modeling study (see “Chemical
Structure Curation”) and made available
for download on ToxCast™ Data web site
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under CERAPT data (https://www3.epa.
gov/research/  COMPTOX/CERAPP_files.
himl, PredictionSet.zip) (U.S. EPA 2016), is
intended to be employed for a large number of
other QSAR modeling projects, not just those
focused on endocrine-related tarpets.
Experimental evaluation set. A large
volume of estrogen-related experimental data
has accumulated in the literature over the past
two decades. The information on the estrogenic
activity of chemicals was mined and curated
to serve as a validation set for predictions of
the different models. For this purpose, in vitro
experimental data were collected from different
overlapping sources, including the U.S. EPA’s

HTS assays, online databases, and other data

sets used by participants to train models:

s HTS dara from Tox21 project consisting of
~ 8,000 chemicals evaluated in four assays
{Artene-Ramaos et al. 2013; Collins et al.
2008; Huang et al. 2014; Shulkla et al. 2010;
Tice et al. 2013), extending beyond the
1,677 used in the training set.

« The U.5. FDA Estrogenic Activity Database
{(EADB), which consists of literature derived
ER data for - 8,000 chemicals {Shen
etal. 2013).

= Estrogenic data for - 2,000 chemicals from
the METI (Ministry of Economy, Trade and
Industry, Japan) database (METT 2002).

» Estrogenic data for - 2,000 chemicals from
ChEMBL database (Gaulton et al. 2012).

The full data set consisted of > 60,000
entries, including binding, aponist, and
antagonist information for - 15,000 unique
chemical structures. For the purpose of this
project, this data set was cleaned and made
more consistent by removing in vive dara,
cytotoxicity information, and all ambiguous
entries (missing values, undefined/nonstandard

end points, and unclear units). Only 7,547

chemical structures from the experimental eval-

uation set that overlapped with the CERAPP
prediction set, for a total of 44,641 entries,
were kept and made available for download
on the U.5. EPA ToxCast™ Darta web site

{https:/fwww3.epa.goviresearch/ COMPTOX/

CERAPP_files.html, EvaluationSet.zip) (U.S.

EPA 2016). The non-CERAPP chemicals

were excluded from the evaluation set (see

“Chemical Structure Curation™ section).

Then, all data entries were categorized into

three assay classes: () binding, () reporter

geneltransactivation, or (c) cell proliferation.

The training set end point to model is the ER

model AUC that parallels the corresponding

individual assay ACsq values, and therefore all
units for activities in the experimental data set
were converted to pM to have approximately
equivalent concentration—response values
for the evaluation set. Chemicals with cell
proliferation assays were considered as actives
if they exceeded an arbitrary threshold of
125% proliferation. For entries where testing

concentrations were reported in the assay name
field. those values were converted to pM and
considered as the ACsp value if the compound
was reported as active. All inactive compounds
were arbitrarily assigned an ACs; value of 1 M.

Chemical Structure Curation

Chemical structures collected from different
public sources contained many duplicates,
and inconsistencies in the molecular struc-
tures. Hence, a structure curation process was
carried out to derive a unique set of QSAR-
ready structures. All participating groups
then used this consistent set of structures for
both training and prediction steps. It should
be noted that each group likely employed
different descriptor calculation software,
which could effectively alter structures in some
cases. Several different curation approaches
were combined into a unique procedure
used for this project (Fourches et al. 2010;
Wedebye et al. 2013). The free and open-
source data-mining environment KNIME
(Konstanz Information Miner) was selected
to design a curation workflow to process all
structures and provide consistent training and
prediction sets (Berthold et al. 2007). The
workflow performed a series of curation steps:
1) ‘The original files containing structures in
different formats were parsed, checked
for valences, and for the integrity of the
required structural information to render
the molecules. Invalid entries were
corrected by retrieving a new structure
from online databases using web services
[PubChem (NIH 2015), ChemSpider
(Royal Society of Chemistry 2015)] or
removed if ambiguous.

The first filter was applied to check for
the presence of carbon atoms and remove
inorganic compounds.

The structures were desalted, and inor-
ganic counterions were removed.

The second filter, based on molecular
weight, was applied and chemicals
exceeding a threshold of 1,000 g/mol were
removed to speed up molecular descriptor
calculations and model calibration.

Valid QSAR modeling practice requires
all chemicals to be structurally consis-
tent by converting tautomers to unique
representations. Thus, a series of trans-
formations was applied on the structures
to standardize nitro and azide mesomers,
keto-enol tautomers, enamine-imine
tautomers, ynol-ketene, and other conver-
sions (ChemAxon 2014; Reusch 2013;
Sitzmann et al. 2010).

These transformations were followed
by neutralizing the charged strucrures,
when possible, and removing the stereo-
chemistry information.

Explicit hydrogen atoms were added. and
structures were aromatized according to
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Hiickel's rules implemented in KNIME

(Berthold et al. 2007).

8) The duplicates were removed using the
IUPAC (International Union of Pure and
Applied Chemistry) InChlI (International
Chemical Identifier) codes because these
are unequivocal identifiers.

9) The final filter was applied to remove
chemicals containing metals that often
cause problems in molecular descriptor
calculations.

Both training and prediction sets were
processed by the same structure curation
workflow. At the end of this procedure.
32,464 unique structures—the 32 K set—
remained in the prediction set and 1,677 in
the training set. These two data sets are made
available for download in structure dara file
(SDF) formart on the U.S. EPA ToxCast™
Data web site (hreps:/fwww3.epa.gov/
research/ COMPTOX/CERAPP_files.html,
TrainingSet.zip and PredictionSet.zip) (U.S.
EPA 2016). The identity of these chemicals
(name, CASRN) was not provided to the
participating modeling groups during the
modeling process.

Modeling Approaches

The participant groups adopted different
approaches and used several software programs
{proprietary or open-source [commercial
or free]) to calibrate cateporical and contin-
uous models to the training data (Table 1).
A cateporical model is one that provides an
active/inactive call for each chemical, whereas
a continuous model provides a prediction of
the potency (in pM) for each active chemical.
Models were developed using both well-
known and innovative methods including
partial least-squares (PLS) (Stihle and Wold
1987; Wold et al. 2001}, partial least-squares
discriminant analysis (PLS-DA) (Frank and
Friedman 1993; Nouwen et al. 1997), decision
forest (DF) (Hong et al. 20035, 2004; Tong
et al. 2003; Xie et al. 2005), three-dimensional
(3D) quantitative spectral data—activity
relationship (QSDAR) (Beger et al. 2001;
Beger and Wilkes 2001; Slavov et al. 2013),
support vector machines (SWM) (Cristianini
and Shawe-Taylor 2000), # nearest neighbors
(KNN) (Cover and Hart 1967; Kowalski and
Bender 1972), associative artificial neural
networks (ASNN) (Tetko 2002a, 2002b),
PASS algorithm derived from Naive Bayes
classifier (Poroikov et al. 2000), self-consistent
regression with radial basis function interpo-
lation (RBF-SCR) (Zakharov et al. 2014),
OCHEM machine learning methods (Tetko
et al. 2014), docking and consensus of different
approaches (Horvath et al. 2014; Ng et al.
2014; Sushko er al. 2011). The set of 1,677
chemicals provided by the U.S. EPA was used
by more than 90% of the participating proups
as a training set to fit their models (Judson
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etal. 2015), bur some pre-existing models were
also used thar had been trained using other
data sets from the literature such as METI
(2002). In addition, each group performed its
own analysis to select the appropriate chemi-
cals to be considered as a training set according
to their particular modeling procedure. For
descriptor calculation and docking procedures,
some of the programs used were LeadScope
(Roberts et al. 2000), PaDEL-Descriptor
(Yap 2011), QikProp (version 3.4, htp!/
www.schrodinger.com/QikProp/), multilevel
and quantitative neighborhoods of atoms
(MNA, QNA) used by GUSAR and PASS
(Filimonov et al. 2009: Poroikov et al. 2000),
DRAGON (Talete stl 2012), Mold2 (Hong
etal. 2008, 2012), GLIDE (version 6.5, hip://
www.schrodinger.com/Glide), AutoDock
(Goodsell et al. 1996), ISIDA (Varnek e al.
2008}, and other fingerprint generators. Some
of the participants applied feature selection
techniques, such as penetic algorithms (GAs)
(Davi 1991) and random forest (RF) (Breiman
2001). These techniques were applied after
calculating descriptors to reduce collinearity
and variable dimensionality to keep only the
most informative descriptors in the models.

Evaluation Procedure for the
Categorical and Continuous Models

All molecular structures of chemicals collected
for the evaluation set from the different
sources were curated and standardized using
the previously described KNIME workflow
(Table 52, step 2). All data used as the
evaluation set for categorical and contin-
uous models are available on the U.S. EPA
ToxCast™ web site (https://www3.epa.gov/
research/ COMPTOX/CERAPP_files.heml,
EvaluationSer.zip) {U.S. EPA 2016).

Standard InChl codes were generated in
KNIME and used to identify the chemicals.
Data-mining tools available in the KNIME
environment were used to concatenate and
unify the different information fields from the
different sources (CASRN, chemical name,
original structure, standardized structure,
InChI code, assay name, assay class, protein
subtype, species, end point name, end point
value, end point unit, and literature reference).
Although ToxCast™ chemicals were used in
the training sets of many models, they were
not removed from the evaluation set to inves-
tigate how the predictions will perform on the
literature data because there are differences
between the AUC values and the literature
data and because the sources from which the
evaluation set was collected were not fully
verified (we cannot assume that all cytotoxicity
information was already fully cleaned).

Evaluation set for categorical models. An
important issue with the literature-derived
evaluation set was the inconsistency of the
results from different sources. To minimize
this, the available entries for each chemical
structure were grouped into binders, aponists,
and antagonists. The results were then care-
gorized into active and inactive classes using
all available literature sources by applying
three rules:

1) If, for a specific chemical within one of
the three classes (binding, agonist. and
antagonist), the disagreement among the
different sources exceeded 20% (e.g.. two
sources indicating active agonist and three
indicating inactive agonist), that chemical
was removed from the evaluation data set
of that specific class.

If a chemical was an active agonist
or antagonist, it also was considered as

2)

Table 1. Methods adopted by the participant groups (alphabetic order] in the medeling procedure.

an active binder if the information was
not available.
If a chemical was an inactive agonist and
inactive antagonist, it was considered
also as nonbinder if the information was
not available.
This procedure resulted in a total of
7,522 unique chemical structures with
activity data to be used for evaluation of
the categorical models (Table 2). It is also
available for download on the U.5. EPA
ToxCast™ web site (hteps:/fwww3.epa.gov/
research/COMPTOX/CERAPP_files.html,
EvaluationSet.zip) (U.S. EPA 2016).
Fvaluation set for continuons models. For
active chemicals with available quantitative
information from concentration-response
assays, the log)g-median of the literature
values was calculated. Only entries with
equivalent end points were considered (e.g..
PC50 and EC30). This resulted in 7,253
unigue chemicals with guantitative infor-
mation (Table 3 and hreps://fwww3.epa.
goviresearch/ COMPTOX/CERAPP_files.
html, EvaluationSet.zip) (U.S. EPA 2016).
To reduce the variability that increased with
the disparate literature sources, the chemicals
with quantitative information were catego-
rized into five potency activity classes: inactive,
very weak, weak, moderate, and strong. These
five classes were used to evaluate the quanti-
tative predictions. A list of 36 known active
and inactive reference chemicals was used for
calibrating the mapping from quantirative
potency values to the activity potency classes
(Judson et al. 2015). These same chemicals
were used to validate the mathematical model
used to generate the AUC values for the
training set. The following thresholds were
applied to the concentration—response values:

3

Modal name Calibration method Descriptors software/type Training set (No. of chemicals] Prodictions typa
DTy PLS/fragments Leadscopa METI (555,481} ToxCast™ (1,427) Catogaorical
EPA_NCCT GA + FLEDA PADEL ToxCast™[1,529) Categorical
FDA_NCTR_DBB (Ng et al. 2014) OF Maldz ToxCast™ [1,677) Categorical
FDA_NCTR_DSB PLS 30-SDAR ToxCast™ (1019) Categorical
ILS_EPA {Zang at al. 7M13) SVM + RF ilprop ToxCast™ [1.677) Categorical
IRCCS_CART [Roncaglioni et al. 2008) CART-VEGA 20 descriptors METI (BB} Categorical
IRCCS_Ruleset Rulesat SMARTS ToxCast™[1.529) Categorical
JRC_lspra (Poroikov et al. 2000) PASS MNA — Categorical
Lockhead Martin leNM Fingerprints ToxCast™ [1.677) Categorical + continuous
MNIH_NCATS Docking AutoDock scone — Categoncal
NIH_NCI_GUSAR [Filimonov at al. 2009) REF-SCR ToxCast™[1677) Categorical
NIH_NCI_PASS {Poroikov et al. 2000) PASS MNA ToxCast™ [1.677) Categorical
OCHEM [2015] Consansus 11 Descnptor types ToxCast™ 1.660) Categorical + continuous
RIFM SV Fingerprints ToxCast™ [1.677) Categorical

Ume? (Rybacka et al. 2015) ASNN DRAGON METI + (Kuiper gt al. 1997; Taha at al. 2010) Categorical
UNC_MML SWMLRF DRAGON ToxCast™ [120] Categonical
UMIBA (Trisciuzzi et al. 2015) Docking GLIDE scora ToxCast™ [1.677) Categarical
UNIMIEB kNN DAAGON + fingerprints ToxCast™ (1.677) Categarical
UMNISTRA (Horvath ot al. 2014) SV ISIDA ToxCast™[1,529) [ategonical + continuous

Predictions typa: A categornical model is ona that provides an activalinactiva call for each chemicel, wheraas a continuows model provides & prediction of the potancy (i pM) for
agch active chemical. Calibration mathods: PLS (partial least-squares), PLS-DA (partial least-sguares discriminant analysis), SYM |support vector machines), RF irandom forest), DF
{Decision forast], kNN {k nearest neighbors), ASNN (associative artificial neural netwarks|, PASS {algorithm darved from Naiva Bayes classifier), RBF-5CR (self-consistant ragrassion

with radial bazis function intarpalation).
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* Strong: Activity concentration below
0.09 pM.

» Moderate: Activity concentration between
0.09 and 0.18 pM.

» Weak: Activity concentration between 0.18
and 20 pM.

» Very Weak: Activity concentration between
20 and 800 pM.

» Inactive: Activity concentration higher than
800 pM.

The five classes were assigned scores from
0 (inactive) to 1 (strong) with 0.25 incre-
ments. Then, for each chemical, the arithmetic
mean of the scores of the merged entries from
different literature sources was calculated. A
new class was assigned to the merged entries
according to the following thresholds.
 Strong: Average score > 0.75
» Moderate: 0.5 < Average score between

<0.75

* Weale: (.25 < Average score < 0.5

» Very weak: 0 < Average score < (.25

*# Inactive: Average score = 0

The number of entries in each class
for binding, agonist, and antagonist are
summarized in Table 3.

Evaluation procedure. This section is
focused on the categorical models for their
high number compared to the continuous
models. The procedure used to evaluate the
predictions of the participant groups was based
on the categorical and continuous experi-
mental data from ToxCast™ and the evalua-
tion set from the literature. All continuous and
categorical models for binding, agonist, and
antagonist were evaluated separately on the
overlap between their predicted chemicals and
the following sets of chemicals (Table §3).

» Chemicals in the U.S. EPA’s ToxCast™ data
set (n = 1,529 chemicals after excluding those
in the ambiguous AUC range of 0.01-0.1).

» All chemicals in the full literature data (all
literature sources combined).

» All chemicals with at least rwo litera-
fure sOUrCes.

» All chemicals from the literature data
excluding the very weak actives.

» Chemicals within the applicability domain
(AD) of each model (if provided).

» Chemicals remaining after applying the
previous three filters in steps 3, 4, and 5
to reduce ambiguous predictions (single

Table 2. Evaluation set for binary categorical
modals. Distribution of the number of active and
inactive chemicals within the three differant
classos: binding, aponists and antagonists.

Clazs/activity Active Inactive Total
Binding 1,982 5301 1.263
Agonist 350 5969 5318
Antaganist 78 6,255 6,539
Total 2m7 1024 1522

The clessification into actives and inactives is based on
a consensus between the literature data sources that
wiara in agresment.

literature source, very weak actives, and
predictions outside the AD).

To evaluate the models on different
criteria, we first determined the sensitivity
{fraction of accurately predicted actives out of
all actives), specificity (fraction of accurately
predicted inactives out of all inactives), and
balanced accuracy (BA; average of sensitivity
and specificity) for each subgroup of chemi-
cals according to each model. We then used
BA values to derive two summary scores for
each model, as described below.

Score_J. Evaluation includes BA of each
of the six steps weighted by the fraction of
predicted chemicals of the same step, as well as
the fraction of the predicted chemicals our of
the full prediction set. This score (Equation 1)
favors models with a wider AD and those
predicting a maximum number of chemicals.

seare 1 =

Y BA Yot X N_pred i | N_pred
3 T N_total

N flrers
+ Vope, & DX TRy
[ filkers = N_roval;

where BA is balanced accuracy, V_pred is the
number of predicted chemicals by a specific
model, N_roeal is the total number of chemi-
cals in the prediction set, Ng,,, represents the
number of five filters applied to the evaluation
set chemicals and 7 the steps 2, 3. 4, 5, and 6.

Score_2. Evaluation includes the BA of
the model on the ToxCast™ data and the
BA on the unambiguous chemicals (i.e.,
the subgroup of chemicals from the litera-
ture that remained after excluding chemicals
with only one literature source, very weak
chemicals, and chemicals outside of the AD,
if provided). It favors models that focused
on predicting more accurately but potentially
with a narrower AD (Equation 2).

score_2 = Y0 (BATouge + Blargier) 2]

The quantitative predictions were evalu-
ated as categorical models (using the BA) of
the five classes after converting the numerical
predictions to potency classes as defined
earlier (see “Evaluarion set for continuous
models™ section). Scores of the continuous
models were calculated using Equation 2.

CERAFFP -

Consensus Modeling

The consensus predictions were pener-
ated for binders, agonists. and antagonists
separately. For each chemical, we derived
the average Score 2 value for all categorical
models that predicted the chemical as active,
and the average Score 2 value for all care-
porical models that predicted the chemical
as inactive; we used the higher of the two
averages to classify the chemical as active
or inactive. Models that did not provide a
prediction for the chemical in question were
not included when deriving the average
scores. We used Score 2 to derive the
consensus classifications because its value
for individual models is not penalized for
the number of chemicals not predicted by
the model. Also, the concordance among
models on both active and inactive classes
was calculated for each chemical as the
fraction of models with positive and nepative
prediction, respectively.

Considering only the models that
provided predictions, the sum of the concor-
dance among models for actives and inac-
tives is equal to 1. Because most models were
associated with comparable scores, the average
score used to classify chemicals was mostly
in agreement with model concordance (i.e.,
the average score for actives is high when the
concordance among the models with active
predictions is high and vice versa). The few
exceptions were noticed when model concor-
dance was around 0.5, which means only one
or two models were driving the dlassification.

For continuous predictions, the weight
() for each chemical i was calculated from

the scores (Equation 3):

w; = scove; [ score ; [3]
j=1
where n is the total number of models that
provided predictions for the chemical 7, and
score; is the score of the jth model predicting
chemical i.

Next, the comsensus potency level C; of
each chemical was determined using the
predicted potency classes P of the n available
models and their corresponding weights w as
follows (Equation 4):

Ci= 2 w;x P [4]
j=1

Tahble 3. Evaluation set for quantitativa models. Distribution of the number of chemicals in tha five
potency lavals within the three differant classes (binding, agonists, and antagonists), classifications

basad on average scores.

Class/activity Inactive Very woak Waak Moderata Strong Total
Binding 5,042 B35 834 iz i7 B.770
Agonist 5892 19 179 A 42 E.163
Antagonist B.Z1 76 188 10 10 6,505
Total B.892 02 916 Bl 93 1753

The classification of tha chemicals in the five potency levals is bazed on the concentration responses from the Iteratre

sources that were in agreamant.
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Results and Discussion
Models and Evaluation

A total of 48 models were received from the
17 participant groups. Each proup provided
at least 1 categorical model for binding.
Only 8 groups built models for agonists, and
6 groups built models for antagonists. The
limited number of models for aponists and
antaponists was the result of the low number
of actives, which caused the training set o
be highly unbalanced. The total number
of models in each class (Table 1; see also
Tables 53 and 55) was a) binding models:
21 categorical and 3 continuous, ) agonist
models: 11 categorical and 3 continuous,
and ¢) antagonist models: 8 categorical and
2 continuous.

The participating groups provided predic-
tions for uneven fractions of the 32 k ser.
AD information on model predictions was
provided by only six groups. All predictions
for the individual models are provided on the
U.S. EPA ToxCast™ web site (hteps:/fwww3.
epa.gov/research/ COMPTOX/CERAPP_
files.html, Models.zip) (U.S. EPA 2016).

The same evaluation procedure was
applied to all models following the previously
described steps. Note that some models were
built using training sets other than what was
provided in CERAPP and that these alter-
native training sets were not all publicly
available. Hence, none of the training set
chemicals were excluded from the evaluation
sets (Table 1). Fach model was evaluated on
the overlap between the predicted chemi-
cals and the two previously mentioned dara
sets: ToxCast™ data and the evaluation set
collected from the literature. The evaluation
results for cateporical models are summarized
in Table 53. The detailed statistics, including
sensitivity and specificity, are provided
in Table S4.

Most compounds were predicted as
inactives and the models seemed to be more
in agreement in predicting inactives than
active compounds. Only 757 chemicals
(2.33%) are predicted as actives by more
than 75% of binding models. The agreement
among the binding models for the 32 k set of
the prediction set is illustrated in Figure S1.

Most categorical models (binding,
agonist, and antagonist) are associated with
high balanced accuracies on the ToxCast™
data (> 0.8), with no clear difference between
models that used it as a training set and those
that did not (see Table S3). However, for
the evaluation set from the literature, the
BA is clearly lower for all models (< 0.7).
Monetheless, the BA increased after removing
chemicals with only one source from the
literature data. This result could mean that
this first filter (i.e., removing chemicals with
limited information in the literature for

1028

being either positive or negative) reduced the
uncertainty in the experimental data from
the literature. This is in agreement with
related studies showing that the results of
(JSAR models may change depending on
the robustness of the experimental values
(Steinmetz et al. 2014). The second filter (i.e.,
removing very weak actives) also increased
the BA, which suggests that the literarure
data may contain a number of false posi-
tives. Alternatively, the in virro assays used
by ToxCast™/Tox21 only test chemicals up
to 100 pM, so very weak chemicals may not
be picked up by these assays and some of the
literature reports may have tested chemicals
up to much higher concentrations.

Finally, removing predictions outside
the AD did not show improvement of the
BA of the cateporical models (see Table 53).
This is in agreement with literature sources
showing that predictions outside the AD are
not always less accurate than those within its
limits (Sahigara et al. 2012). The performance
of most models showed a clear improvement
of 0.05 to 0.1 on the BA after applying all
the filters on the literature data to keep only
the unambiguous chemicals. We believe
that this effectively reduced the uncertainty
of the literature sources. This step also high-
lighted differences between ToxCast™ and the
literature data and confirmed the existence of
uncertainty in the literature data. Uncertainty
and data discordance was also reported in
literature review of in vive uterotrophic
bioassays (Kleinstreuer et al. 2015).

The calculated scores for categorical
maodels (see Table 53) take into consid-
eration the whole prediction set (Score_1)
and the accuracy of the model on its most
reliable predictions (Score_2). The models
that provided predictions for the whole or
maost of the 32 k set of chemicals, and had
wide ADs, showed high Score_1 values
(Umeid 0.82, OCHEM 0.83). Whereas
models with predictions for smaller fractions
of the prediction set and narrow AD showed
better Score_2 values (UNIMIB_2 0.85,
UNIBA 0.80). NIH_NCI_GUSAR (0.87

and 0.84) and FDA_NCTR_DBB (0.88
and 0.84) showed the highest values for both
Score_] and Score_2. Part of the differences
among model scores could result from the
uncertainty in the literature data.

The BAs of all antagonist models was low
compared with binding and agonist models
(see Table §3). This may be due to the highly
unbalanced training set with a low number
of active antagonist chemicals. Additionally,
antagonism activity (in either ToxCast™ or
the literature) can be confounded with cyto-
toxicity because antagonist transactivation
assays are loss-of-signal assays.

The predictions of all continuous models
were first converted to five classes using the
list of reference chemicals as described in the
evaluation set section (see “Evaluation set for
continuous models” section). The predic-
tions were then evaluated on the ToxCast™
data and the literature data to calculate the
average of BA of the different evaluation steps
as the score of each model (see Table 55). All
models showed high BA on ToxCast™ data
and relatively good BA on the evaluation set.

Consensus Model

The consensus predictions were first evalu-
ated on the ToxCast™ data and then on the
evaluation set from the literature. The total
number of predicted active binders was 2,661
out of the 32 k set of chemicals (8.2%) based
on the method described in the “Materials
and Methods™ section *“Consenss Modeling.”
Confusion matrices (Table 4) and predic-
tion statistics (Table 5) revealed a clear
accuracy difference between the cateporical
consensus for binding on the ToxCast™ data
and on the evaluation set. This difference
could result from the fact that the ToxCast™
data, based on a model with inputs from 18
different assays, were used by most of the
models as a training set, which we presume
reduces the uncertainty. This is in contrast
to the literature data, where the number of
sources per chemical varied from one to a few
hundreds. When only the subset of the evalu-

ation set with more than six literature sources

Table 4. Confusion matnces of categorical consensus predictions for binding.

Literature avaluation sat  Litaratura evaluation sat

ToxCast™data  TowCast™ data lall: 7.283) [all: 7.283)
(Observed/predicted  predicted actives predicted inactives predicted actives predicted inactives
Observed actives 76 13 [ 1515
Observed inactivas pa 1.415 i) 5033

Table 5. Statistics of categorical consensus predictions for binding on ToxCast™ and literatura data.

Literature avaluation sat

Litaraturs evaluation sat

Statistics/used data TonCast™ data |all: 7.283) [ 6 sources: 1,257)
Sansitivity 0.85 023 0.85
Spacificity 0,38 095 047
Halanced accuracy 04z 059 091

The literature data with mars than six sources represants the most consistant part of the evaluation sat.
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per chemical was considered, a larpe increase
in the sensitivity was noticed (0.23 to 0.85).

To better understand the effect of
the number of sources on the classification
accuracy, ROC (receiver operating charac-
teristic) curves were made using the fraction
of the binding models in each class as a
threshold for the classification predictions and
increasing the number of literature sources of
the evaluation set. The ROC plot shows an
improvement of the dassification accuracy of
the consensus model as the number of sources
increases (Figure 1). Note that the same level
of consistency (i.e., 80%) was required to
merge the sources repardless of the number
of sources (see rule 1 in the “Evaluation set
for categorical models™ section). This could
lead to the condlusion that the low dassifica-
tion accuracy on the full literature data is not
because of a lack of accuracy of the consensus
predictions, but rather to noise and experi-
mental uncertainty in the literature data. We
assume that the high number of false negatives
in the confusion matrix of Table 4 is caused
by false positives in the full literature data for
chemicals tested only a small number of times.
Thus, by considering a higher number of
sources (ie., six), the number of false positives
is reduced from the evaluation set and so the
number of predicted false negatives decreased.
This is in agreement with what was observed
in the literature {Steinmetz et al. 2014).

Corrections to the Consensus
Model

The first step of consensus modeling was
conducted in an independent way for the
cateporical and continuous models on binding,
agonist, and antagonist predictions. This led
to 2 number of inconsistencies because some
chemicals were predicted as active in categorical
predictions but inactive in quantitative and
vice versa. In addition, some chemicals were
predicted as active agonists or antagonists but
non-binders. To make all predictions more
consistent, a number of corrections were
applied on the first consensus predictions.
Because the poal of this project was o help in
a regulatory prioritization procedure, the modi-
fications aimed to reduce the number of false
negatives but without adding an excess of false
positives. The rules that were followed to obtain
the final consemsns predictions are as follows:

1) If a chemical 7 is active in the cateporical
consensus, then it is also considered active
in the quantitative consensis.

2) If a chemical i is active in the quantita-
tive consensus and predicted as active
by at least three categorical models, then
it is also considered active in the cate-
gorical consensus.

3) If a chemical i is predicted active by less
than three categorical models, then it is
considered inactive also in quantitative
CORSENSHS.

True positive rate

= All sources (T253)
— 1 sources [B217)
= 23 sources (5714}
= =4 sources (5401]
— =5 sources (1311}
=6 sources (1257]
=7 sources (1208
=& sources (1173
29 sources (340)
= 10 sources (3271

o al 0z 03 04

05 0& 07 ] L] 1

Falsa positive rata

Figure 1. ROC curves of the categorical corrected consensus pradictions for binding evaluatad against
different sets of the evaluation sat with variable numbers of literature sources. The number of available
chemicals in the evaluation set (betwean brackets) decreased with higher numbers of literature sources.
The trua and false positiva rates are determined based on the number of actives in the diffarent sets of the

evaluation set.
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These three rules were applied on the
agonist and antagonist consensus models first,
then on the binding consensus. A fourth rule
was added to establish consistency between
agonist and antagonist consensus models and
the binding consensies model.

4) If a chemical 7 is an active agonist or
active antagonist, then it is considered
as active in categorical binding consensus,
and its potency level in the quantitative
binding consensus is made equal to its
potency level as agonist/antagonist.

An analysis of variance in concordance
in each potency level of the active chemicals
in the continuous models (very weak, weak,
moderate, and strong) is presented as a
box-plot in Figure 2. Based on this figure, we
noticed a correlation between the concordance
of the categorical models and the potency level
of active chemicals. This implies that models
are more in agreement for strong actives
and that the weaker a chemical is the more
difficult it is to accurately predict. Therefore,
the very weak chemicals are the main source
of discordance among the different in silico
models and also are the most uncertain
experimentally. This relationship between
positive concordance (agreement between
models on predictions for active chemicals)
and potency level for active chemicals can be
used to set a quantitative prediction to the
newly reclassified active chemicals using the
previously mentioned rule 1 of the correc-
tions applied to the consensus predictions. The
following thresholds were considered for each
potency level:

» Strong: Concordance among models = 0.9

» Moderate: 0.75 < Concordance among

models < 0.9

» Weal: (.6 < Concordance among models

<0.75

*» Very weak: Concordance among models

<06

0z
0z
or
g

::Ei?i :

]
03 : ;
] 3
0z 1 - ]

1 H ]
pa -

== 1 4
I 1 |
I ]
1
]

Concordance batween modals

Very waak Wealk Moderate Saang
Paotency of active chemicals

Figure 2. Box-plot of the positive class potancy
levals in the corrected guantitative consensus
predictions for binding. The concordance betwaen
modals iz the fraction of tha number of models that
agrees on the prediction of a certain chemical.
Boxes extend from the 25th to the 75th parcentile,
horizontal bars represant the median, whiskars
indicata the 10th and 90th percantiles, and outliers
are represented as points.
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After applying the four correction rules
on consensus predictions, the total number
of chemicals predicted as actives increased
from 2,661 to 4,001, which corresponds tw
12.3% of the total number of the predic-
tion set (32,464). Table 6 shows the number
of reclassified chemicals based on each one
of the four correction rules applied to the
consensus predictions. After this step, the
predicted activity of several chemicals has
changed. The structural information of
chemicals and the predictions of the consensus
model for the whole 32 k set are provided
on the U.5. EPA ToxCast™ web site (see
hutps:/ fwww3.epa.govitesearch/ COMPTOX/
CERAPP_files.heml, PredictionSet.zip)
(U.5. EPA 2016).

The confusion matrices and startistics
for the binding cateporical consensus model
after modifications evaluated on ToxCast™
data and the literature data are presented
in Table 7 and Table 8, respectively. The
effect of the number of sources on the clas-
sification accuracy of the consensus model is
illustrated by a bar plot in Figure $2. This
figure shows an improvement of sensitivity
with the increase in the number of literature
sources in the evaluation set (from - 0.3 with
at least one source to > 0.6 with six sources
and more). This is translated into an increase
in BA, whereas specificity is almost constant
(~ 0.9) because of the high number of

inactives compared to active compounds.

The results of this project and the
ToxCast™ data used as the training set are
published online in the EDSP21 dashboard,
together with other structural and experi-
mental assay information (see *Consensus
CERAPP QSAR ER Model Predictions”
under “Chemical Summary™ tab on heepe//
actor.epa.goviedsp21) (U.S. EPA 2014c).
A comparison of the single classification
models to the consensus predictions for the
whole 32 k set of chemicals is provided in
Table S6. The calculations are done using
the categorical consensus predictions as the
“observed response.”

For regulatory or prioritization purposes,
one could use a looser definition of active
(i.e., allow more disagreement among models)
in order to further reduce the chance of
false negatives. Figure 3 shows the number
of chemicals that can be predicted as poten-
tial actives by the categorical consensus for
binding using various positive concordance
(agreement on actives between the included
models) thresholds. When this threshold is
set to 0.2, an additional 6,742 more chemi-
cals can be added to the potential positives
(this refers to the available binding models).
This figure also shows the BA variations at
different numbers of literature sources in the
literature. Balanced accuracy increases as the
concordance threshold increases from 0 to 0.2
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because sensitivity increases (false negatives
decrease) as the number of chemicals classi-
fied as active increases. For chemicals with the
highest data quality (seven or more sources).
the BA curve reaches a plateau at concor-
dance thresholds of 0.4-0.5, and the number
of chemicals classified as active is consistent
with the number of active chemicals predicted
from our consensus model (n = 4,001.)
However, higher concordance thresholds
result in declining BA due to increasing
numbers of false positive predictions {i.e..
decreasing specificity).

Conclusion

The collaborative efforts of the CERAPP
participants resulted in consensus predictions
of the ability of chemicals to interact with
ER. Up to 48 separately developed cateporical
and continuous models were received from
17 research proups from the United States
and Europe. Separate models were built for
agonist, antagonist, and binding activity. The
models were applied to a large collection of
32,464 chemical structures that approximare
the human exposure universe {chemicals
with potential human exposure). A KNIME

Table 6. Number of chemicals reclassified aftar applying aach one of tha four pradiction corraction rules.

Aule usad for Aube 1 Aule 2 Fule 3 Rule 4
pachclass  Aponist Antagonist Binding Agonist Antagonist Binding Agonist Antagonist Binding Binding
Numbar of 1,288 2,760 1587 A7 14 344 145 161 3B 966
chemicals

Rule 1: Chemicals that changed from inactiva to active in tha quantitative consensus based on the catagonical
consensus. Aula 2: Chemicals that changed from inactive o active in the categonical consansus basad on the guantite-
tive consensus. Rule 3: Chamicals that changad from active to inactive in the quantitstive consensus basad on tha
pradictions of the categorical consensus. Rule 4: Chemicals that changed from mactive to active in the categorical
binding consensus based on their agonist and antagonist activity in the catagoncal consansus.

Table 7. Confusion matrices of the modified categorical consensus predictions for binding.

Literature evaluation set  Literature evaluation sat

ToxCast™ data ToxCast™ data [All: 7.283) |All- 7.283)
Observed/pradicted  predicted actives  predicted inactives predicted actives predicted inactives
(hserved activas <] [ 547 1,365
Observed inactives 40 1,400 483 4,838

Table 8. Statistics of the modified categorical consensus for binding predictions on ToxCast™ and

itarature data.

ToxCast™ Literatura evaluation sat Litoratura svaluation sat
Statistics/used data data (Al 7.783) {> B Sources: 1.775)
Sansitivity 0493 0.30 0BT
Spacificity 0.ar L] 094
HBalanced accuracy 0.9 061 081
085 T T T T T T T T T
s
[X]8 | | | E
| | |
nas| I | 1 i
AL I I (R
0| f (i - .
g | | | |
£ o | | [ -
g omp ! | | | . =
= | | i | ——— Ml sources (7283
B ol | | I I =2 saurces (G217} ||
E i : | 1 =3 sources (5714}
@ | | 24 5ources (5401} i
i : : : =5 saurces (1311} |2
| | | =B sources [1257)
e l HLH;EE I p— : : =7 sources (1208}
assl I : activas l I — = B BOUrCES IImIk_l-\
I | | 1| actives _\xﬁ
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Figure 3. Variation of the balanced accuracy of the corrected categorical consensus predictions for
binding with positive concordance (agreement between models on predictions for active chemicals)
threshold at diffarent numbers of litarature sources.
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workflow was developed to carefully curate
the large collection of chemical structures to
ensure consistency in model development
and evaluation. Most of the models were
trained using activities derived from a data set
combining 18 in virro assays from ToxCast™
probing various points of the ER pathway.
Models were then evaluated using the
ToxCast™ data plus a collection of ER. in vitre
data from the literature. After this process,
categorical predictions were combined into a
consensus to dassify the chemicals into actives
and inactives, while continuous predictions
were combined to classify the actives into 4
different potency classes: very weak, weak,
moderate, and strong,

One major observation was that most
models had comparable performances, inde-
pendent of the methods used, with a slight
improvement for models with narrow ADs. A
second and, perhaps, more important observa-
tion is that the most concordant predictions
come from comparing the consensus of many
models with a consensus of many literature
sources. For instance, when comparing the
consensus of the categorical binding models
with the evaluation set from the literature
for chemicals with seven or more sources,
we achieve a balanced accuracy of about
90% (Table 8).

We propose several important conclu-
sions from our results. First, there does not
appear to be an optimal modeling approach
(combination of descriptor set, feature selec-
tion, or machine learning algorithm) that
will solve the QSAR/docking problem and
achieve perfect prediction accuracies. Second,
there are inherent limitations to the accuracy
of the data being used to train QSAR and
docking models. Our analysis of the literature
data showed a disagreement in the reported
activity of many chemicals. The sources of
discrepancy include limits to the concentra-
tion ranges tested, true differential activity
among tissue sources [e.g.. the presence of
selective ER modulators, SERMs (selective
estrogen receptor modulators)], and a variety
of experimental artifacts and errors. Figure 2
shows that the most consistent predictions
are achieved for the most potent compounds,
whereas weaker compounds are called
inactive by some laboratories because these
compounds were not tested at a high enough
concentration. So chemicals with very weak
activity would be more likely to be incorrecty
classified as inactive than more potent chemi-
cals. Therefore, 100% accuracy cannot be
achieved due to these limitations in the exper-
imental data used for training and evaluation.
Figures 1 and 3 help to illustrate this point by
showing that higher consistency in the experi-
mental data is associated with an increase in
the concordance among model predictions.
But this comes at the cost of excluding parts

of the experimental data. So, just as every
model has limitations, every in viero assay also
has inherent variability in its results.

The major purpose of this study was
to identify potential ER actives out of the
larpe universe of chemicals to which humans
potentially are exposed using a consensus of
in silico models to overcome the limitations
of single models. Most of the chemicals in
this collection were predicted to be nepatives,
with a high agreement among the individual
models. The disagreement was the highest
for chemicals with weak activity (Figure 2).
This disagreement is driven by the difficul-
ties in experimentally assessing the activity of
these weak chemicals. In total, the consensus
predicted 4,001 chemicals as actives. The
testing of these active chemicals will be
prioritized from the most potent to the least
according to the continuous model consernsus
predictions. There are 6,742 more chemi-
cals that 20-50% of the models predicted
to be positive, which could also be candi-
dates for follow-up analyses. Although this
large number of chemicals (- 10,000 in
total) appears to be a daunting set to evaluate
experimentally, this is equivalent in size to the
current Tox21 library already being tested for
activity in ER and many other targets.

In summary, this project demonstrates the
feasibility of screening a larpe and toxicologi-
cally relevant library of chemical structures
in an extensive battery of QSAR and docking
models to meet important goals in human
and environmental health. ER provides a
good initial case because of the ready avail-
ability of experimental data and pre-existing
models. However, through the ToxCast™ and
Tox21 programs, and through other large
scale data-integration projects, equivalently
large data sets will become available for other
multiple targets of environmental importance.
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3.4.4 My Further Remarks to CERAPP

The approach applied in CERAPP has its limitations both with regard to the biological endpoint and
the methods for evaluating the individual models and constructing the consensus model. First, the
U.S. EPA NCCT provided ToxCast training sets was derived from a network model that integrates
results from 18 in vitro assays [18]. These 18 assays covers the steps of the classical ER signaling
pathway starting from ligand binding to the ER ligand binding domain, dimerization, co-factor
recruitment and DNA binding as well as protein production and ER-induced proliferation for the ER
agonists [18]. EDCs can affect estrogen signaling through other estrogen signaling pathways and
indirect mechanisms [19-22]. Therefore the negative predictions from CERAPP should not be used

for acquitting chemicals as having estrogen modulating potential.

The evaluation method used in CERAPP does not constitute a proper external validation of the
models (section 2.3.1) as the evaluation set contains both U.S. EPA NCCT ToxCast training set
structures and structures applied in other training sets. Thus, depending on the degree to which the
evaluation set structures were also included in the training set of the models, the performance
results are likely to be affected. The models with a high overlap of training and evaluation set
structures have most likely also performed better in the evaluation. As described in the paper, the
results from the evaluations were included in the assignment of the two model scores. These scores
were subsequently used when constructing the consensus model. The potential bias introduced to
these scores evaluations could hereby have influenced the constructed consensus model and its
predictions. However, the reason for making the consensus model was to overcome the limitations
of the single models in terms of their coverage and applied algorithms, and this was not
compromised by the evaluation procedure. Also, the main goal of CERAPP was to use the consensus
model predictions for prioritizing chemicals for further testing in EDSP and not to develop a high
performance consensus model [3]. Performing true robust external validations of the many models

included in CERAPP would have been both impractical and very time-consuming.

3.4.5 Conclusions
To conclude, the approach and predictions from CERAPP serve as useful prioritization tools for

further testing of e.g. the EDSP universe, but the negative predictions cannot be used for classifying
chemicals as non-EDCs just as the model evaluation results should not be interpreted as external
validations. To conclude on the additional work made, the ER agonist model developed for CERAPP
showed high predictive performance in an in-house robust cross-validation with balanced accuracy
of 87.5%. In the screening of the REACH-PRS set the model could predict 73.7% of the substances

and of these 4,198 chemicals were predicted as potential ER agonists.
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4.1 Overview
To recapitulate on the four projects in this thesis, a brief summary of each project and its main
results is given below. The predictive performances of the QSAR models from each project as well as

their coverages of the REACH-PRS set of 72,524 structure entries are summarized in Table 1.

Table 1. Overview of the predictive performances and coverage of the REACH-PRS set for the QSAR models
developed in this thesis.

Overview Cross-validation External validation REACH-PRS screening
. QSAR Coverage
Project models Sens Spec BA Sens Spec BA (%) POS_IN  NEG_IN
38,661
QSAR1 721 89.0 809 | 79.7 90.8 853 (53.3) 7,128 31,533
TPO -
45,540
QSAR2 75.6 89.8 827 - - - 8,790 36,750
(62.8)
43,551
hPXR-LBD 68.7 845 76.6 | 85.0 87.8 86.4 (60.1) 11,490 32,061
PXR hPXR 725 804 76.4 | 80.0 852 826 3?’2124 6,167 31,947
and (52.5)
CYP3A4 52,144
rPXR 589 92.0 754 | 913 941 927 (71.9) 3,141 49,003
CYP3A4 716 80.7 761 | 769 855 81.2 Aggsi)l 5,874 36,987
QSAR4:1 - - - 85.1 97.2 912 l:g,?’zg)l 1,269 44,992
AhR 39 6;98
QSAR4:1-R - - - 89.8 91.6 90.7 ’ 2,148 37,550
(54.7)
CERAPP ER . 80.6 944 875 - - - >3,433 4,198 49,235
agonism (73.7)

Sens = sensitivity, Spec = specificity, BA = balanced accuracy, AD = applicability domain, POS_IN = positive prediction in the defined AD,
NEG_IN = negative predictions in the defined AD

Chapter 3.1: QSAR Models for TPO Inhibition In Vitro
The main aim of this project was to develop and apply global binary QSAR models for TPO inhibition,

an important mechanism for thyroid disruption and an MIE in a thyroid-related AOP for DNT.

Main methods and results: Two QSAR models were built and validated:

e (QSAR1: the training set consisted of 877 ToxCast phase | and Il chemicals. The QSAR model
underwent robust cross-validation as well as external validation with a large test set of 646 E1K
ToxCast chemicals.

e (QSAR2: the test set and training set for QSAR1 were merged to constitute a training set of 1,519
ToxCast chemicals, and a new larger QSAR model was built and cross-validated.

The cross-validation procedure was conservative compared to the external validation of QSAR1

(Table 1). Overall, both QSAR1 and QSAR2 showed high predictive performances according to their

respective validations, i.e. balanced accuracies from 80.6% to 85.3% (Table 1). The top ten structural

features in QSAR2 associated with TPO inhibition and non-inhibition, respectively, were identified,
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and among structural features associated with TPO inhibition were versions of phenols, aniline and
anisole. The EU REACH-PRS inventory and a US-EPA inventory of 32,197 unique structures were
screened through QSAR1 and QSAR2. QSAR2 had approximately 10% larger coverages of REACH-PRS
and US-EPA, which was an expected effect of expanding the training set (Table 1). The two isomers
of BHA, both included in the inventories and used as e.g. food antioxidants, were used in a case
study to exemplify one use of QSAR predictions, i.e. how QSAR predictions can aid in elucidating a
chemical’s mode-of-action(s) in AOs and support results from in vivo studies. The project has been

described in a manuscript ready for submission.

Chapter 3.2: QSAR Models for PXR Interaction and CYP3A4 Induction In Vitro

The main aim of this project was to develop global binary QSAR models for PXR binding and
activation as well as CYP3A4 induction. PXR regulates the expression of metabolizing enzymes,
including CYP3A4, and some of these enzymes are involved in thyroid and estrogen hormone
catabolism. PXR also regulates expression of proteins important for thyroid hormone membrane
transport. Activation of PXR by xenobiotics can therefore induce thyroid disruption and is included as

an MIE in an AOP for thyroid-related DNT.

Main methods and results: Four global binary QSAR models for hPXR-LBD binding, hPXR activation,
rPXR activation and CYP3A4 induction, respectively, were built and underwent robust cross- and
external validations. They were all robust and predictive with balanced accuracies of 75.4% to 76.6%
in cross-validations and 82.6% to 92.7% in external validations (Table 1). The models were
subsequently used for screening the REACH-PRS inventory, and could produce reliable predictions
for 52.5% (hPXR) to 71.9% (rPXR) of the structures (Table 1). Concordance rates between relevant
model endpoints were calculated on both the REACH-PRS predictions and the experimental data.
From this, we saw a high overlap of 81% between predicted hPXR activators that were also predicted
hPXR-LBD binders as well as between predicted hPXR activators being CYP3A4 inducers (88.4%) and
vice versa (97.5%). We did not see any positive correlations between hPXR and rPXR activators, and
these results emphasize the need to be careful when extrapolating rat toxicity data to humans. The

project results have been published in [1] as an open access paper.

Chapter 3.3: QSAR Models for AhR Activation In Vitro

The main aim of this project was to use a large and highly imbalanced PubChem dataset for AhR
activation to explore how a rational two-step selection of inactives for training set expansion would
affect QSAR coverage and predictive performance. AhR, like PXR, regulates the expression of
enzymes involved in estrogen and thyroid hormone catabolism, and AhR interaction is an MIE in a

thyroid-related AOP for DNT.
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Main methods and results: The large and imbalanced curated dataset was randomly split into a test

set (93 actives and 154,513 inactives) and a dataset (832 actives and 50,000 inactives) for training

set construction. The 832 training set actives were used in all training sets and different proportions

of inactives were selected from the 50K set of inactives using two different approaches: random vs

two-step rational selection. Two final QSAR models with an inactive to active ratio of 4:1 were made:

e (QSAR4:1-R: consisted of the 832 actives and 3,328 inactives selected randomly from the 50K
inactives.

e (QSAR4:1: consisted of the 832 actives and 3,328 inactives selected in one random and two
rational selection steps using predictions of the remaining 50K set structures in two
intermediate models. This rational selection aimed at identifying and adding structures that
could help expand the chemical space covered by the training set and improve the model’s
ability to correctly discriminate between actives and inactives.

The models were externally validated with the test set, and QSAR4:1 produced a higher number of

true negative predictions and a smaller number of both false and true positive predictions compared

to QSAR4:1-R. Thus, QSAR4:1 had a higher specificity (97.2% versus 91.6%) than QSAR4:1-R but a

lower sensitivity (85.1% versus 89.8%) (Table 1). These results indicate that the two-step rational

selection of inactives for QSAR4:1 has resulted in a model with an optimized ability to produce more
reliable predictions of inactives at the expense of both correct and wrong active predictions. Then
the models were used for screening of the REACH-PRS inventory. QSAR4:1 had around 9% larger
coverage of the REACH-PRS set than QSAR4:1-R, i.e. 63.8% versus 54.7% (Table 1). For unknown

reasons the same effect in coverages of the test set was not observed.

The projects in chapter 3.1, 3.2 and 3.3 cover relevant thyroid-related mechanisms and were all part

of a project partly supported by a grant from the Danish 3R Center?.

Chapter 3.4: The Collaborative Estrogen Receptor Activity Prediction Project

This project was part of the large international collaboration, CERAPP, organized by the U.S. EPA
NCCT on building QSARs for the classical ER signaling pathway and using them to make consensus
predictions for a CERAPP prediction set of around 32,500 U.S. EPA curated environmental chemicals.
The output from CERAPP has been published in [2]. Activation of ER is an important mechanism in
the endocrine system and is one of the best-studied effects of ECDs. It is indirectly related to thyroid

hormone disruption due to e.g. ER cross-talk with thyroid-related mechanisms such as the AhR.

 http://en.3rcenter.dk/research/projects/projects-2016/development-of-mechanism-based-computer-
models-for-hazard-assessment-of-thyroid-hormone-disruption/
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Main methods and results: My contributions to CERAPP consisted of the development of a binary
global QSAR model for ER agonism using a U.S. EPA provided training set. The model was rigorously
cross-validated and showed high predictive performance in the cross-validation with a balanced
accuracy of 87.5% (Table 1). The model and cross-validation were described in the QMRF format
(Appendix), which was sent to U.S. EPA together with predictions of the CERAPP prediction set
generated by the DTU Food QSAR team. U.S. EPA NCCT scientists performed evaluations of the
individual models using an evaluation set included in the prediction set and used these results when
they combined the corresponding model predictions provided by all the collaborators to reach
consensus predictions on the CERAPP prediction set. The U.S. EPA evaluation set was not screened
for training set overlap and could therefore not be used for external validation but only to weigh the
single model predictions in the CERAPP consensus prediction. Besides the work made for CERAPP, |
also applied the ER agonism QSAR model to screen the REACH-PRS set, and the model could make
reliable predictions for 53,433 (73.7%) of the structures, and of these 4,198 were predicted ER

agonists (Table 1).

Each project has been discussed in the respective project chapters. The next chapter contains a
more general discussion of all four projects in relation to the background chapters followed by some

concluding remarks and a short reflection on future research perspectives.

4.2 Discussion

The thyroid-relevant mechanisms covered in the projects of the PhD thesis include inhibition of TPO
and interaction with the two NRs, PXR and AhR. The selection of these mechanisms for global binary
QSAR development was primarily based on the availability of large and structurally diverse datasets
with high quality experimental results as well as their relevance in established thyroid-related AOPs
for DNT. Also, the selected datasets had to be useful for QSAR modeling, i.e. they should have
contained sufficient data for both activity classes. The inclusion of the CERAPP project (3.4) on ER
agonism in the PhD project was mainly due to the invitation from the U.S. EPA NCCT to participate.
Such participation was a great opportunity to strengthen the collaboration with the U.S. EPA NCCT

for future QSAR development projects.

4.2.1 Collection, Curation and Preparation of the Applied Datasets

The training and validation sets in each project were collected from the same sources, respectively,
and the experimental data had undergone the same testing protocol(s) and data analysis.
Furthermore, in project 3.1 and 3.2 the models were developed in close collaboration with the data
providers. In all the projects, the chemical structures underwent a structure curation procedure to

remove structures inacceptable for QSAR processing. Most assays are associated with artefacts
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related to the applied technology, e.g. luciferase or fluorescence interference, or protocol, e.g.
cytotoxicity in cell cultures. Such artefacts can result in false positive or negative experimental
results [3]. In the curation procedure of the datasets for 3.1, 3.3 and 3.4, different steps were taken
to identify such potentially false experimental results. In 3.1 and 3.4, the U.S. EPA NCCT provided
data had previously undergone different curation procedures using information from related assays
to flag potentially false experimental results. For the AhR project, available PubChem data for
luciferase interference were used as a counterscreen to flag potential false active results. Based on
the flags for potential assay interference, we classified portions of the data entries as inconclusive
for the given endpoint and excluded them from the subsequent model development. The structure
curation and exclusion of inconclusive and potentially false experimental results have contributed to

reducing the noise in the datasets.

4.2.2 QSAR Development

All the training and test sets were large and diverse enough to build global QSAR models and
perform large external validations, respectively. Only QSAR models with binary, i.e. active versus
inactive, response variables were made in this PhD project. This was done mainly due to the nature
of the provided data. None of the models have had any outliers removed, and thus all available
information to the extent possible was used in the model development. Wherever possible, the built
QSAR models underwent both large external validation and rigorous five times two-fold cross-
validation to assess their predictive performances in the defined AD (Table 1). The experience from
project 3.1 and 3.2 was that the applied cross-validation procedure underestimates the predictive
performance compared to applied large external validations. Goodness-of fit tests have not been

performed in the projects but have been made subsequently, and the results are available in Table 2.

Table 2. Goodness-of-fit results of the QSAR models developed in this thesis.

Goodness-of-fit Predictions in AD Statistical parameters

Project Models TP FP TN FN Sensitivity  Specificity Balanced
accuracy

TP0 QSAR1 84 37 491 2 97.7 93.0 95.4

QSAR2 147 53 846 13 91.3 94.1 92.7

hPXR-LBD 111 117 892 6 94.9 88.4 91.7

PXRand hPXR 133 120 757 11 92.4 86.3 89.4

CYP3A4 rPXR 81 65 1214 3 96.4 94.9 95.7

CYP3A4 127 173 865 11 92.0 83.3 87.7

AhR QSAR4:1 466 140 1965 37 92.6 93.3 93.0

QSAR4:1-R 591 157 2475 42 93.4 94.0 93.7

CERAPP ER agonism 64 52 1090 5 92.8 95.4 94.1

TP = true positive, FP = false positive, TN = true negative, FN = false negative, AD = applicability domain
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As expected, when comparing the balanced accuracies from the external and/or cross-validations
(Table 1) with the corresponding goodness-of-fit balanced accuracies (Table 2), the goodness-of-fit
results were better in all cases. Since all models showed good predictive performances with
balanced accuracies over 75% in the cross-validations and 82% in the external validations (Table 1)
this indicates that the models are able to generalize and have not been overfitted to their training

sets.

The good predictive performances of the models are likely a result of a combination of the following:

e An overall high quality of the experimental datasets including the fact that all data in the
respective datasets originated from the same source with experimental results from the same
test protocol(s)

e The structure and data curation steps to reduce noise in the datasets

e The use of the composite model function in LPDM to increase performance of the smaller class
in the imbalances training sets, i.e. sensitivity in these cases

e The chemical descriptors and modeling method were adequate for the modeled endpoints

e The application of a ‘strict’ AD to exclude the likely less reliable predictions from the statistical

analyses

4.2.3 Limitations of the Developed QSAR Models

QSARs are, like other in silico, in vitro or in vivo studies, models that serve to estimate the true
values, and false predictions are in general an unavoidable attribute of any (QSAR) model [4].
Validation of a model can provide measures of how good the model is at making correct estimates
and information about the uncertainty in these estimates. As QSAR models are trained on
experimental data from in vitro or in vivo models their predictive performance depend on the
performance of the underlying experimental data. In theory a model can be more precise than the
experimental results, but this is rare and difficult to prove. False predictions produced from the
QSAR models can be a result of wrong information included in the model, e.g. due to unforeseen
artefacts in the experimental data model or unknown chemical impurities causing the activity. They
may also be due to the more rare cases where the QSAR, with help from its knowledge from training
set structural analogs, have identified a wrong experimental result. Furthermore, a false QSAR
prediction may reflect that the underlying similarity hypothesis is not bullet-proof, for example due
to ‘activity cliffs’, i.e. areas in the chemical space where a small change in the chemical structure can
have a dramatic effect on its activity [5—7]. If such information have not been included in the training

of the model, then the model is unlikely to be able to identify such ‘activity cliffs’ when applied on
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new structures. Finally, wrong predictions may be due to inappropriateness of the used modeling

method or descriptors, as well as other reasons.

The results from the robust cross- and external validation studies of the QSAR models described in
this thesis gives useful information to the model user. The sensitivity and specificity measures
quantify how good a model is at avoiding false negative and false positive predictions, respectively.
For any test there is usually a trade-off between these two measures and whether a high specificity
or a high sensitivity is preferred depends on the purpose of the model. If the purpose is to identify as
many positives as possible and avoid false negative predictions then a model with a high sensitivity is
preferable, however at the expense of risking a high rate of false positives. If the purpose is to be
quite certain that a positive prediction is correct then a model with high specificity would be
preferred. All models in this thesis had higher specificity than sensitivity in their validation(s) (Table
1). This was mainly an effect of the higher ratio of inactives in the training sets but also partly driven

by a deliberate choice in the modeling procedures

4.2.4 Using the Developed QSAR Models
The QSAR models developed in the PhD project can serve multiple uses and some have already been
mentioned in the project chapters. Here a few examples are given and discussed in terms of their

use limitations.

For Screening and Prioritization
Global QSAR models are useful tools for virtual screening of large chemical libraries. In the present

PhD project, the developed global QSAR models were among other things applied to screen the large
chemical inventory of 72,524 REACH-PRS substances. The models could predict between 38,114
(52.5%) to 53,433 (73.7%) of the REACH-PRS structures in their respective ADs (Table 1). In this way
the developed global QSAR models succeeded to substantially expand the experimental knowledge
from the 1,000s of chemical structures they were trained on, and the QSAR-derived information on
10,000s of chemicals can contribute to the identification and prioritization of potential EDCs, mainly
TDCs, for further evaluations. As the models have high specificities we expect a fairly high rate of
true positives among the positive predictions from the screenings but also a relatively high risk of
not catching some positives due to many false negative predictions. Corresponding predictions from
the developed models, as well as previously built QSARs, can also be used in combination to identify
chemicals that are both inhibiting TH synthesis, i.e. are TPO inhibitors, and increasing TH catabolism,
e.g. through PXR and/or AhR activation. Chemicals that affect both TH synthesis and catabolism are
likely to have a more pronounced effect on TH levels and could be ranked as the highest priority

chemicals. As all of the models have been trained to predict binary endpoints they cannot output
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information of the chemicals potencies for the given mechanism. Such information could also have

been useful in a ranking.

In Research
The QSAR models may aid in the development, optimization or repurposing of chemicals and drugs,

for example drugs for treatment of thyroid-related diseases. They may also be used for generating
new hypotheses on molecular mechanisms in AOs by searching for statistical correlations between
chemicals predicted active for e.g. TPO inhibition and having data for an AO. Such data-driven
associations will have to be investigated further in animal models to be confirmed or rejected.
Finally, predictions from the present models can aid in the design of in vivo toxicity studies of
chemicals by providing information on the chemical’s possible mode-of actions and potential AOs

that could be investigated.

In Regulatory Contexts

Whether the developed models are applicable for regulatory use does not only depend on their
ability to provide reliable predictions, but also of their regulatory relevance [8]. The developed
models from the present project are of regulatory relevance and may serve multiple applications in
regulatory contexts. They can for example provide information to fill datagaps or aid in groupings
and read-across cases (see e.g. [9]). While predictions from the developed QSARs can be used to
raise suspicion that a chemical may cause an AO, they are not on their own sufficient to definitively
assess this. For this purpose, they should be used e.g. in combination with relevant AOPs, and
together this information can feed into an IATA on chemical assessment. The QSAR models are all
based on data from in vitro studies and it is therefore important to also include information of a
chemical’s toxicokinetics in the assessment [10]. The guidance document for triggers of the EOGRTS
DNT cohort inclusion under REACH is still under development [11], and, depending on its outcome, it
is likely that the QSAR models in combination with relevant DNT AOP(s) can be included in future

triggers for DNT testing in EOGRTS.

4.3 Concluding Remarks

The validation studies show that the developed global QSAR models for the selected MIEs of thyroid-
related AOPs and the ER agonism model are robust and highly predictive. The application of the
models to predict large inventories containing 10,000s of man-made chemicals showed that these
global models are able to generate reliable predictions for more than half of the chemicals in the
inventories. In this way, the models were able to greatly expand the knowledge derived from

experimental data on thousands of chemicals to provide prediction information on tens of
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thousands of untested chemical structures for their potential interaction with MIEs in relevant AOPs.

The QSAR models of this thesis can in this way aid in the human safety evaluation of chemicals.

4.4 Perspectives

All the models developed in this PhD projects will be used for screening a structure set of more than
640,000 structures, and the predictions will be made freely available in the online Danish (Q)SAR
Database [12]. Furthermore, the models will also been made available in a free, online QSAR model
website (under construction), where they can be applied to predict the activity of user-submitted
structures. If additional and adequate experimental data for the modeled MIEs become available,
this can possibly in the future be used for further validation studies of the models and/or merged
with the existing training sets to build larger QSARs with enhanced ADs that possibly can predict

larger portions of the chemical universe.

The QSAR models in this PhD project only cover a few of the mechanisms in the thyroid system and
other mechanisms not covered in the present PhD project include inhibition of NIS or deiodinases,
interaction with TTR, TBG, TRs or TSH receptor as well as interaction with membrane transport
proteins [10]. For most of these mechanisms there were either not (enough) experimental data
available during the course of the PhD, e.g. NIS inhibition, or the available datasets were assessed
sub-optimal for global QSAR development, for example due to too few known actives, e.g. for TR
binding [10]. Time was of course also a limiting factor for not including more mechanisms in the
project. Efforts to develop and apply HTS assay for other relevant mechanisms in thyroid/endocrine
disruption is ongoing [10,13,14]. Examples on thyroid-relevant HTS data underway include data for
NIS [15] and deiodinase inhibition [16], and the data could be used for future QSAR modeling
studies. A battery of global QSAR models for a range of relevant thyroid/endocrine mechanisms
including those developed in this PhD and new QSARs will be of high value. In the (far) future such a
battery of QSARs for MIEs and KEs together with relevant AOPs might replace traditional animal

studies in regulatory toxicology.
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QMRF: Model for mammalian Estrogen Receptor agonism in vitro (CERAPP)

1. QSAR identifier
1.1 QSAR identifier (title)

Leadscope Enterprise model for the U.S. EPA overall conclusion regarding mammalian Estrogen
Receptor agonism in vitro (CERAPP), model made by the Danish QSAR Group at DTU Food.

1.2 Other related models
No

2. General information
2.1 Date of QMRF
June 2014.

2.2 QMRF author(s) and contact details

QSAR Group at DTU Food,;

Danish National Food Institute at the Technical University of Denmark;
http://gsar.food.dtu.dk/;

gsar@food.dtu.dk

Sine Abildgaard Rosenberg;
National Food Institute at the Technical University of Denmark;

siro@food.dtu.dk

Eva Bay Wedebye;
National Food Institute at the Technical University of Denmark;

ebawe@food.dtu.dk

Nikolai Georgiev Nikolov;
National Food Institute at the Technical University of Denmark;

nign@food.dtu.dk

Marianne Dybdahl;
National Food Institute at the Technical University of Denmark;

mdyb@food.dtu.dk

2.3 Date of QMRF update(s)
April 2017.
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2.4 QMRF update(s)
1
2.5 Model developer(s) and contact details

Sine Abildgaard Rosenberg;
National Food Institute at the Technical University of Denmark;

siro@food.dtu.dk

Eva Bay Wedebye;
National Food Institute at the Technical University of Denmark;

ebawe@food.dtu.dk

Nikolai Georgiev Nikolov;
National Food Institute at the Technical University of Denmark;

nign@food.dtu.dk

Marianne Dybdahl;
National Food Institute at the Technical University of Denmark;

mdyb@food.dtu.dk

Danish QSAR Group at DTU Food,;

National Food Institute at the Technical University of Denmark;
http://qgsar.food.dtu.dk/;

gsar@food.dtu.dk

2.6 Date of model development and/or publication

June 2014.
2.7 Reference(s) to main scientific papers and/or software package

Roberts, G., Myatt, G. J., Johnson, W. P., Cross, K. P., and Blower, P. E. J. (2000) LeadScope: Software
for Exploring Large Sets of Screening Data. Chem. Inf. Comput. Sci., 40, 1302-1314. doi:
10.1021/ci0000631

Cross, K.P., Myatt, G., Yang, C., Fligner, M.A., Verducci, J.S., and Blower, P.E. Jr. (2003) Finding
Discriminating Structural Features by Reassembling Common Building Blocks. J. Med. Chem., 46,
4770-4775. doi:10.1021/jm0302703

Valerio, L. G., Yang, C., Arvidson, K. B., and Kruhlak, N. L. (2010) A structural feature-based
computational approach for toxicology predictions. Expert Opin. Drug Metab. Toxicol., 6:4, 505-518.
doi: 10.1517/17425250903499286

2.8 Availability of information about the model
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The training set was kindly provided by the U.S. Environmental Protection Agency (EPA) and is non-
proprietary. The model algorithm is proprietary from commercial software. This model was made for
the U.S. EPA CERAPP project.

3. Defining the endpoint
3.1 Species

Bovine, mouse and human cell lines (18 biochemical and cell-based in vitro assays).

3.2 Endpoint

QMRF 4. Human Health Effects

QMREF 4.18.b. Receptor binding and gene expression (Estrogen Receptor)
3.3 Comment on endpoint

There is increasing evidence that a variety of environmental chemicals have the potential to disrupt
the endocrine system by mimicking or inhibiting endogenous hormones such as estrogens and
androgens. These endocrine disrupting chemicals (EDCs) may adversely affect development and/or
reproductive function.

Natural estrogens are involved in the development and adult function of organs of the female
genital tract, neuroendocrine tissues and the mammary glands; their role in reproduction spans from
maintenance of the menstrual cycle to pregnancy and lactation. These effects are primarily
mediated through the estrogen receptors (ERs), members of the nuclear receptor superfamily.
When estrogen binds to the ER in the cytoplasm a receptor-hormone complex dimer is formed. This
dimer translocates to the nucleus, where it recruits co-factors to form the active transcription factor
(TF) complex. The active TF binds to the estrogen response element upstream to the target gene.
This binding activates transcription of mMRNA and subsequent translation to proteins that exert the
hormone effects. Two isoforms of the ER exists in humans, alpha and beta, and both are widely
expressed in different tissue types although there are some differences in their expression pattern.
Exogenous compounds able to bind to and activate the ERs (i.e. ER agonists) have the ability mimic
natural estrogens and cause adverse effects to the reproductive system. Likewise, exogenous
compounds that bind to the ERs without subsequent activation (i.e. ER antagonists) can potentially
disturb the effect of the natural estrogens by blocking the receptors.

Results from 18 in vitro high-throughput screening assays that probe the ER signalling pathway in a
mammalian system were integrated in a computational network model (Judson et al. 2014). The
assays were a combination of biochemical and cell-based in vitro assays and probe perturbations of
the ER pathway at multiple sites: receptor binding, receptor dimerization, DNA binding of the active
transcription factor, gene transcription and changes in ER-induced cell growth kinetics. The network
model uses activity patterns across the 18 in vitro assays to predict whether the chemical is an ER
agonist, an ER antagonist, or instead is causing activity through narrow (technology-specific) or
broad assay interference. For example, if a chemical is active in all of the assays in the ER agonism
pathway of the network model a score for agonism is calculated as the AUC for the accumulated Hill
model (based on the AC50 from the assays). If none or only parts of the assays in the ER agonist
pathway are active, the chemical is a clear negative or is causing some form of assay interference
(narrow or broad depending on which assays in the pathway that are active), respectively. These
chemicals have an ER agonist score of 0 and are all assumed to be negative (Judson et al. 2014).
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In order to make a classification model, compounds with an ER agonist score of 0 were defined as
inactives and compounds with an AUC score of 0.1 or above were defined as an ER agonist.

3.4 Endpoint units

No units, 1 for positives and 0 for negatives.
3.5 Dependent variable
Mammalian Estrogen Receptor agonist: positive or negative.

3.6 Experimental protocol
See S1, Appendix 1 in Judson et al. 2015.
3.7 Endpoint data quality and variability

The data is expected to be of high quality because of the integration of several assays to exclude
false positives caused by narrow (technology-specific) or broad assay interference. Also, the
variability in the data is expected to be low as for each assay all chemicals have been tested in the
same laboratory and the process of assigning an ER agonist score using the network model (see 3.2)
has been equal for all chemicals.

4. Defining the algorithm
4.1 Type of model

A categorical QSAR model based on structural features and numeric molecular descriptors.

4.2 Explicit algorithm

This is a categorical QSAR model made by use of partial logistic regression (PLR). Because of the
imbalanced training set the “mother model” is a composite model consisting of ten submodels, using
all the positives (80 chemicals) in each of these and different sub-sets of the negatives (see 4.5). The
specific implementation is proprietary within the Leadscope software.

4.3 Descriptors in the model
structural features,

alogP,

polar surface area,

number of hydrogen bond donors,
Lipinski score,

number of rotational bonds,
parent atom count,

parent molecular weight,

number of hydrogen bond acceptors
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4.4 Descriptor selection

Leadscope Predictive Data Miner (LPDM) is a commercial software program for systematic sub-
structural analysis of a compound using predefined structural features stored in a template library.
The feature library contains approximately 27,000 structural features and the structural features
chosen for the library are motivated by those typically found in small molecules: aromatics,
heterocycles, spacer groups, simple substituents. Additionally, LPDM also calculates eight molecular
descriptors for each structure: the octanol/water partition coefficient (alogP), hydrogen bond
acceptors, hydrogen bond donors, Lipinski score, atom count, parent compound molecular weight,
polar surface area and rotatable bonds. It is further possible to generate training set-dependent
structural features (scaffold generation) and use these features in the model building process.
Redundant features are removed and the remaining features are used in the model building. The
default automatic feature selection process in LPDM selects the top 30% of the features according to
X’-test for a binary variable, or the top and bottom 15% according to t-test for a continuous variable.
LPDM treats numeric property data as ordinal categorical data. If the input data is continuous such
as ICso or cLogP data, the user can determine how values are assigned to categories: the number of
categories and the cutoff values between categories. (Roberts et al. 2000).

4.5 Algorithm and descriptor generation

For descriptor generation see 4.4.

After selection of features the LPDM program performs partial least squares (PLS) regression for a
continuous response variable, or partial logistic regression (PLR) for a binary response variable, to
build a predictive model. By default LPDM performs leave-one-out or leave-groups-out (in the latter
case, the user can specify any number of repetitions and percentage of structures left out) cross
validation on the training set depending on the size of the training set.

In this model because of the categorical outcome in the response variable PLR was used to build the
predictive model. Because of the unbalanced training set (i.e. 80 positives vs. 1342 negatives) ten
submodels for smaller individual training sets consisting of the 80 positives and an equal number of
negatives selected by random among the 1342 negatives were made. The descriptors for each of the
ten submodels were automatically selected from the LPDM feature library based solely on the
training set compounds used to build the individual submodel and was not affected by the training
set chemicals in the composite “mother model”. Therefore, a different number of descriptors
(structural features and molecular descriptors) were selected and distributed on varying number of
PLS factors for each submodel.

4.6 Software name and version for descriptor generation

Leadscope Predictive Data Miner, a component of Leadscope Enterprise version 3.1.1-10.

4.7 Descriptors/chemicals ratio

The model system uses molecular descriptors and structural features specific to a group of
structurally related chemicals from the global training set. Therefore estimations of the number of
used descriptors may be difficult. In general, we estimate that the models effectively use an order of
magnitude less descriptors than numbers of chemicals in the training set when we set our domain
definition where we weed out low probability active and inactive predictions (see 5.1).

5. Defining Applicability Domain
5.1 Description of the applicability domain of the model
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For assessing if a test compound is within the applicability domain of a given model LPDM examines
whether the test compound bears enough resemblance to the training set compounds used for
building the model (i.e. structural domain analysis). This is done by calculating the distance between
the test compound and all compounds in the training set (distance equals 1 - similarity). The
similarity score is based on the Tanimoto method. The numbers of neighbors is defined as the
numbers of compounds in the training set that have a distance < 0.7 with respect to the test
compound. The higher the number of neighbors the more reliable the prediction for the test
compound. Statistics of the distances are also calculated. Effectively no predictions are made for test
compounds which are not within the structural domain of the model or for which the molecular
descriptors could not be generated.

In addition to the general LPDM structural domain definition the Danish QSAR group has applied a
further requirement to the applicability domain of the model. Only predictions with probability (p)
equal to or greater than 0.7 were accepted for actives. Predictions with p equal to or less than 0.3
were accepted for inactives. Predictions within the structural domain but with p = [0.5;0.7[ and p =
]0.3;0.5[ where defined as positives out of applicability domain and negatives out of applicability
domain, respectively. When these predictions were wed out the performance increased at the
expense of a reduced coverage.

5.2 Method used to assess the applicability domain

The system does not generate predictions for test compounds which are not in the structural
domain or for which the molecular descriptors could not be generated.

Only predictions with probability equal to or greater than 0.7 were accepted for actives and
predictions with probability equal to or less than 0.3 were accepted for inactives.

5.3 Software name and version for applicability domain assessment
Leadscope Predictive Data Miner (LPDM), a component of Leadscope Enterprise version 3.1.1-10.
5.4 Limits of applicability

The Danish QSAR group applies an overall definition of structures acceptable for QSAR processing
which is applicable for all the in-house QSAR software, i.e. not only LPDM. According to this
definition accepted structures are organic substances with an unambiguous structure, i.e. so-called
discrete organics defined as: organic compounds with a defined two dimensional (2D) structure
containing at least two carbon atoms, only certain atoms (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K,
Ca, Br, and I), and not mixtures with two or more ‘big components’ when analyzed for ionic bonds
(for a number of small known organic ions assumed not to affect toxicity the ‘parent molecule’ is
accepted). Calculation 2D structures (SMILES and/or SDF) are generated by stripping off ions (of the
accepted list given above). Thus, all the training set chemicals are used in their non-ionized form. See
5.1 for further applicability domain definition.

6. Internal validation

6.1 Availability of the training set

Yes

6.2 Available information for the training set

SMILES
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6.3 Data for each descriptor variable for the training set

No

6.4 Data for the dependent variable for the training set

All

6.5 Other information about the training set

1422 compounds are in the training set: 80 positives and 1342 negatives.

6.6 Pre-processing of data before modeling

The results from the 18 ER in vitro assays were integrated using a network model and scores for ER
agonism and ER antagonism were assigned to each chemical by US EPA (Judson et al. 2014). The ER
agonist scores were categorized in order to make a categorical QSAR model. A cut off of 0.1 and
above were set and chemicals in this category were defined as being ER agonists (80 chemicals).
Chemicals with an ER agonist score of 0 were defined as not being ER agonists (1342 chemicals). The
chemicals with an ER agonist score between 0 and 0.1 were excluded from the training set.

6.7 Statistics for goodness-of-fit

Not performed.

6.8 Robustness — Statistics obtained by leave-one-out cross-validation

Not performed. (It is not a preferred measurement for evaluating large models).

6.9 Robustness — Statistics obtained by leave-many-out cross-validation

A five times two-fold cross-validation was performed. This was done by randomly removing 50% of
the full training set used to make the “mother model”, where the 50% contains the same ratio of
positive and negatives as the full training set. A new model (validation submodel) was created on the
remaining 50% using the same settings in LPDM but with no information from the “mother model”
regarding descriptor selection etc. The validation submodel was applied to predict the removed 50%
(within the defined applicability domain). Likewise, a validation submodel was made on the removed
50% of the training set and this model was used to predict the other 50% (within the defined
applicability domain). This was repeated five times.

Predictions from the ten submodels were pooled and Coopers statistics for the composite “mother
model” were calculated. This gave the following results for the 74,0% (5263*100%/(5*1422) of the
predictions which were within the applicability domains of the respective sub-models:

— Sensitivity (true positives / (true positives + false negatives)): 270/(270+65) = 80.60%

— Specificity (true negatives / (true negatives + false positives)): 4650/(4650+278) = 94.36%

— Concordance ((true positives + true negatives) / (true positives + true negatives + false
positives + false negatives)): 4920/5263 = 93.48%

— Balanced accuracy ((Sensitivity + specificity)/2): (80.6% + 94.36%)/2 = 87.5%

6.10 Robustness - Statistics obtained by Y-scrambling
Not performed.

6.11 Robustness - Statistics obtained by bootstrap

Not performed.
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6.12 Robustness - Statistics obtained by other methods

Not performed.

7. External validation

7.1 Availability of the external training set

7.2 Available information for the external training set

7.3 Data for each descriptor variable for the external training set
7.4 Data for the dependent variable for the external training set
7.5 Other information about the training set

7.6 Experimental design of test set

7.7 Predictivity — Statistics obtained by external validation

7.8 Predictivity — Assessment of the external validation set

7.9 Comments on the external validation of the model

External validation was not performed.

8. Mechanistic interpretation

8.1 Mechanistic basis of the model

The global model identifies structural features and molecular descriptors which in the model
development was found to be statistically significant associated with effect. Many predictions may
indicate modes of action that are obvious for persons with expert knowledge for the endpoint.

8.2 A priori or posteriori mechanistic interpretation

The identified structural features and molecular descriptors may provide basis for mechanistic

interpretation.

8.3 Other information about the mechanistic interpretation

9. Miscellaneous information

9.1 Comments

The model can be used to predict if a chemical is an ER agonist (i.e. has an ER agonist score equal to
or above 0.1) according to the network model based on the 18 ER pathway in vitro assays.

9.2 Bibliography
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Rotroff, D.M., Filer, D.L., Houck, K.A., Martin, M.T., Sipes, N., Richard, A.M., Mansouri, K., Setzer,
R.W., Knudsen, T.B., Crofton, K.M., and Thomas, R.S. (2015) Integrated Model of Chemical
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Perturbations of a Biological Pathway Using 18 In Vitro Thigh-Throughput Screening Assays for the
Estrogen Receptor. Toxicol.Sci., 148, 137-154. doi:10.1093/toxsci/kfv168
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