

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jul 07, 2018

A hybrid Constraint Programming/Mixed Integer Programming framework for the
preventive signaling maintenance crew scheduling problem

M. Pour, Shahrzad; Drake, John H.; Ejlertsen, Lena Secher; Rasmussen, Kourosh Marjani; Burke,
Edmund K.
Published in:
European Journal of Operational Research

Link to article, DOI:
10.1016/j.ejor.2017.08.033

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pour, S. M., Drake, J. H., Ejlertsen, L. S., Rasmussen, K. M., & Burke, E. K. (2018). A hybrid Constraint
Programming/Mixed Integer Programming framework for the preventive signaling maintenance crew scheduling
problem. European Journal of Operational Research, 269(1), 341-352. DOI: 10.1016/j.ejor.2017.08.033

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/86558788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ejor.2017.08.033
http://orbit.dtu.dk/en/publications/a-hybrid-constraint-programmingmixed-integer-programming-framework-for-the-preventive-signaling-maintenance-crew-scheduling-problem(4c5f0bd8-8185-40fd-8adf-865872ae6dae).html

European Journal of Operational Research 269 (2018) 341–352

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Innovative Applications of O.R.

A hybrid Constraint Programming/Mixed Integer Programming

framework for the preventive signaling maintenance crew scheduling

problem

Shahrzad M. Pour a , ∗, John H. Drake

b , Lena Secher Ejlertsen

c , Kourosh Marjani Rasmussen

a ,
Edmund K. Burke

b

a DTU Management Engineering, Technical University of Denmark, Produktionstorvet, 2800 Kgs. Lyngby, Denmark
b Operational Research Group, Queen Mary University of London, Mile End Road, London E1 4NS, UK
c Banedanmark, Amerika Plads 15 DK-2100 Copenhagen, Denmark

a r t i c l e i n f o

Article history:

Received 28 October 2016

Accepted 16 August 2017

Available online 31 August 2017

Keywords:

Transportation

Scheduling

Constraint programming

Mixed Integer Programming

Hybrid approaches

a b s t r a c t

A railway signaling system is a complex and interdependent system which should ensure the safe oper-

ation of trains. We introduce and address a mixed integer optimisation model for the preventive signal

maintenance crew scheduling problem in the Danish railway system. The problem contains many prac-

tical constraints, such as temporal dependencies between crew schedules, the splitting of tasks across

multiple days, crew competency requirements and several other managerial constraints. We propose a

novel hybrid framework using Constraint Programming to generate initial feasible solutions to feed as

‘warm start’ solutions to a Mixed Integer Programming solver for further improvement. We apply this

hybrid framework to a section of the Danish rail network and benchmark our results against both direct

application of a Mixed Integer Programming solver and modelling the problem as a Constraint Optimisa-

tion Problem. Whereas the current practice of using a general purpose Mixed Integer Programming solver

is only able to solve instances over a two-week planning horizon, the hybrid framework generates good

results for problem instances over an eight-week period. In addition, the use of a Mixed Integer Pro-

gramming solver to improve the initial solutions generated by Constraint Programming is shown to be

significantly superior to addressing the problem as a Constraint Optimisation Problem.

© 2017 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

A railway signaling system is an essential component of a

railway network. It is, responsible for ensuring safe and efficient

train operations. The existing signaling technology within the

Danish railway network is based on the Automatic Train Protection

(ATP) signaling system (Banedanmark. & Trafikministeriet., 2009).

To ensure that signaling equipment is both cost efficient and

safe throughout its service life, effective maintenance planning is

crucial. Generally, railway maintenance planning and scheduling

problems are considered as either strategic, tactical or operational

level problems (Lidén, 2015). Using this terminology, the problem

that we consider here is considered to be a tactical problem, where

the aim is to assign and schedule a set of maintenance tasks to

∗ Corresponding author.

E-mail addresses: shmp@dtu.dk , shahrzad.mpour@gmail.com (S. M. Pour),

j.drake@qmul.ac.uk (J.H. Drake), lsej@bane.dk (L.S. Ejlertsen), kmra@dtu.dk

(K.M. Rasmussen), e.burke@qmul.ac.uk (E.K. Burke).

maintenance crew members over a given planning horizon. Addi-

tionally, there are several aspects which could differ from one rail-

way network to another, such as the competency level required for

fulfilling each task, coordination with train traffic, transportation

related costs, and several hard and soft managerial constraints.

A number of papers exist in the literature that address mainte-

nance crew scheduling, with a variety of formulations and solution

techniques proposed. Cheung, Chow, Hui, and Yong (1999) pre-

sented a Constraint Programming (CP) model for scheduling main-

tenance tasks within the Hong Kong Mass Transit system. The re-

sults showed that the proposed CP method was 10 times more ef-

ficient than the existing manual method used in practice. Gorman

and Kanet (2010) developed a time-space network model and a job

scheduling model to schedule maintenance tasks, showing results

for a small test instance. The first model was solved as a Mixed In-

teger Programming (MIP) problem, with the second model solved

using a hybrid Constraint Programming and Genetic Algorithm ap-

proach. Nemani, Bog, Ahuja, 2010 proposed four different models

for the curfew planning problem, which adds mutual exclusion and

http://dx.doi.org/10.1016/j.ejor.2017.08.033

0377-2217/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

http://dx.doi.org/10.1016/j.ejor.2017.08.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.08.033&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:shmp@dtu.dk
mailto:shahrzad.mpour@gmail.com
mailto:j.drake@qmul.ac.uk
mailto:lsej@bane.dk
mailto:kmra@dtu.dk
mailto:e.burke@qmul.ac.uk
http://dx.doi.org/10.1016/j.ejor.2017.08.033
http://creativecommons.org/licenses/by/4.0/

342 S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352

Fig. 1. Pilot area of the signaling maintenance problem in Denmark.

time window constraints to the core problem of scheduling tasks.

Each model was solved with a commercial MIP solver, using real-

world instances from a large rail company. Bog, Nemani, and Ahuja

(2011) also solved the curfew planning problem. Their method iter-

atively solved sub-problems using a MIP solver, gradually increas-

ing the size of the sub-problem until the entire instance was in-

cluded. This method was applied to the instances used by Nemani,

Bog, Ahuja, 2010 , outperforming three of the four approaches from

their paper. Peng et al. (2011) presented a cluster-first, route-

second approach to minimise the travel cost of maintenance teams.

An initial phase provides an assignment of tasks to maintenance

teams before a local search phase attempts to improve the solution

found. Their results showed a significant improvement over man-

ual planning. A two-phase approach was used by Borraz-Sánchez

and Klabjan (2012) , first applying dynamic programming to gen-

erate an initial schedule, before a second phase of improvement

with a ruin and recreate heuristic (Schrimpf, Schneider, Stamm-

Wilbrandt, & Dueck, 20 0 0) using an ILP model to reinsert tasks

optimally. Their method was able to solve an annual schedul-

ing problem with 10 0 0 tasks within 2.5 hours. Peng and Ouyang

(2014) described a method which combines multiple maintenance

tasks into longer projects as a pre-processing stage before allocat-

ing the tasks to maintenance crew. The proposed model is also

solved by a method performing an initial constructive phase be-

fore a second phase of local improvement, and was adopted in

practice by the company providing the case study. Khalouli, Ben-

mansour, and Hanafi (2016) presented an ant colony method to

address a set of randomly generated instances of the preventive

maintenance scheduling problem. The proposed method was able

to generate optimal solutions to some instances in significantly less

time than that required by a commercial MIP solver. Wen, Li, and

Salling (2016) formulated the problem of determining when to per-

forming ‘tamping’, a track maintenance operation, on different sec-

tions of a railway network as a MIP model. Baldi, Heinicke, Sim-

roth, and Tadei (2016) consider a stochastic variant of the tactical

railway maintenance problem, where the exact maintenance tasks

required to be performed are not known in advance, and schedul-

ing takes place over a long-term rolling planning horizon.

As the infrastructure owner of most of the rail network in

Denmark, Banedanmark is in charge of the maintenance and traffic

control of the Danish railway track and signaling system. The

Danish rail network comprises four maintenance areas: Mainte-

nance Machines, Maintenance Nationwide, Maintenance East and

Maintenance West. The East and West divisions are further di-

vided into Track Maintenance, Signaling Maintenance and Current

Maintenance. The pilot maintenance region that we consider in

this paper is part of the signaling section of the West region. It is

situated between Ejby, Lunderskov and Vejle as shown in Fig. 1 .

The current practice is to produce plans over a two-week planning

horizon using a commercial MIP solver.

The main contribution of this paper is the formulation of the

preventive signaling maintenance crew scheduling problem for the

existing signaling system in Denmark as a mixed integer optimisa-

tion model. The crew start their tasks from a depot location. Three

characteristics of the problem add to the complexity of the model.

Firstly, the plan includes temporal dependencies between different

crew members. That is because some of the tasks require more

than one crew member, due to crew competency requirements or

safety rules. Secondly, to handle the considerations that must be

made for traffic, multiple crew members can fulfil a task together

to minimise the possession time of the track. Accordingly, there

is a range in terms of the number of crew members required

to fulfil a given task per day. Finally, the majority of tasks take

much longer than a single day, even with multiple crew members

working on them, requiring a plan to be split over multiple days.

For the real-world problem, monthly plans are expected for

operational reasons and currently optimal solutions cannot be

found for practical sized problem instances. Here, we introduce a

hybrid framework, using CP to generate initial feasible solutions to

feed to a MIP solver for further improvement.

The remainder of the paper is structured as follows: in

Section 2 , we describe the MIP formulation of the problem and

explain the real-life constraints within the model. Section 3 ex-

plains our solution approach. In Section 4 , the details of the

real-world instances used are given and results for the pro-

posed hybrid framework are presented. Finally we provide some

conclusions in Section 5 .

2. Mathematical model

The model formulation is provided by Banedanmark and is

based on the practical maintenance crew scheduling problem

S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352 343

encountered by the Banedanmark planning team. The problem

consists of a number of technical places where maintenance tasks

are required to be carried out. A technical place is either a station

or the maintenance area between a station and the next station.

The crew start their tasks from a depot location and return to

the depot at the end of every day. The model covers travelling

distance to and from the depot, transportation costs between

technical places during the working day and the duration of

maintenance tasks, with the hard constraint that the plan does

not exceed the maximum shift length each day. The model also

considers that crew members should have the correct competence

level for a particular task and it defines the minimum and maxi-

mum number of crew members that can work simultaneously on

each task. For longer tasks that are completed over more than one

shift, it is desirable to allocate the same crew members to con-

tinue the task the next day. The model in its entirety is explained

in the following subsections. Within the model, M represents an

arbitrarily large number to help bound some of the constraints.

2.1. Indexes

n crew n ∈ [N]

i task i ∈ [I]
j date j ∈ [J]
k competencies k ∈ [K]

p, (q) technical place p ∈ [P]

2.2. Parameters

a number of hours per shift

f total competence level needed

c i time required to complete task i

d1 i minimum number of crew for task i

d2 i maximum number of crew for task i

e n j whether crew member n is available on planning date j

bo ik whether task i demands competence k

bm nk whether crew n has at least competence level 3 for competence k

bm 2 nk 1 if crew n has less than competence level 3 for competence k

bm 3 nk competence level for crew n for competence k

t p ip if task i is physically located at technical place p

tr pq transport time from technical place p to technical place q

tm p transport time from depot to technical place p

g i 1 if the task must be done inside the planning horizon, 0 if it can

be left out

2.3. Variables

x ni j fraction of task i that crew n completes on date j.

x 3 i j fraction of task i that is completed on date j.

x 2 i j
1 if some of task i is completed on date j

0 else

x 4 i
1 if task i is fully completed within the planning horizon

0 else

x 5 ni j

1 if crew member n is working on task i on date j but not on

date j + 1

0 else

x 6 i j
1 if part of task i is completed on date j but not on date j + 1

0 else

y n j
1 if crew member n will work on date j

0 else

z ni j
1 if crew member n works on task i on date j

0 else

z1 ni
1 if crew n works on task i

0 else

w np j
1 if crew n works on technical place p on date j

0 else

v npq j

1 if crew n needs transport between technical place p and

technical place q on date j

0 else

w 1 np j if crew n needs transport to technical place p from another technical

place on date j

w 2 np j if crew n needs transport from a technical place p to another

technical place on date j

2.4. Objective function

The objective function is primarily composed of three parts.

Firstly, it aims to minimise the number of working days used

to complete the plan. Secondly, it should ensure that as many

tasks as possible are completed inside the planning horizon.

Finally, the model tries to minimise the penalty for assigning

crew members to a particular task on non-consecutive days. In

order to normalise this multi-objective function we have scaled

each term, dividing it by the maximum possible value for that

specific term. The weighted sum method is applied to give relative

coefficients/weights to each term of the objective function. The

sum of the weights are one and are provided by the planning

manager from Banedanmark to reflect the importance of each to

the company. Priority is given in the following order: fulfilling a

greater number of tasks in the planning time horizon, minimising

the total number of working days and finally, generating a high

quality plan from a managerial point of view.

min O =

∑

n

∑

j

y n j · a +

∑

ni j

z ni j +

∑

ni

z1 ni +

∑

ni j

x 5 ni j +

∑

i j

x 6 i j

+

∑

n

∑

j=5

y n j −
∑

n

∑

j=1

y n j +

∑

i

(1 − x 4 i) · c i (1)

2.5. Constraints

2.5.1. Constraints in relation to the tasks

All tasks should either be completed entirely or not completed

at all within the planning horizon:
∑

n

∑

j

x ni j = x 4 i ∀ i (2)

The total number of hours for each shift should not be ex-

ceeded. The first term is the duration of tasks, the second term

is the transportation time to and from the depot, and third term

is the transportation time between technical places during the

shift:
∑

i

x ni j · c i +

∑

p

(w np j · 2 − w 1 np j − w 2 np j) · tm p

+

∑

p

∑

q

v npq j · tr pq ≤ a ∀ j, n (3)

The sum of the fractions of tasks allocated to crew members

cannot exceed the total required to complete the task:

x 2 i j ≥
∑

n

x ni j ∀ i, j (4)

x 3 is defined as the sum of the fractions of a task allocated to

all crew members for a particular task on a given day:

x 3 i j =

∑

n

x ni j ∀ i, j (5)

Some tasks are considered to be critical and must be completed

inside the planning horizon, meaning that they are high priority.

The more tasks that are fulfilled, the better the plan is considered

344 S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352

to be. Accordingly, a task i must be completed within the planning

horizon if parameter g i is set to 1:

x 4 i ≥ g i ∀ i (6)

If a task is completed within the planning horizon, the fraction

of a task that is completed on a given day should not exceed x 4:

x 4 i ≥ x ni j ∀ n, i, j (7)

A crew member cannot be allocated a task on a day that they

are not due to work:

y n j ≥ z ni j ∀ n, i, j (8)

If a crew member is allocated a fraction of a task on a particular

date, Eq. (9) ensures that the variable indicating that a crew mem-

ber is working on this task on this date is set to 1. Eq. (10) ensures

that this variable cannot be set to 1 if the crew member is not

allocated a fraction of this task on a particular date.

z ni j ≥ x ni j ∀ n, i, j (9)

z ni j ≤ x ni j · M ∀ n, i, j (10)

If a crew member is allocated a fraction of a task to complete

on a particular date, the variable indicating if a crew member

works on this task at all should always at least as large as this

value:

z1 ni ≥ z ni j ∀ n, i, j (11)

2.5.2. Managerial constraints

From a managerial point of view, if a given task takes more

than a day to complete, then the following soft constraints will be

desired:

• If some crew members work on a task on date j but do not

continue the following day, then the remaining parts of the task

should preferably be undertaken by the same remaining crew

members who started working on the task:

x 5 ni j ≥ z ni j − z ni j+1 ∀ n, i, j (12)

• If task i is started but not completed on date j and is not con-

tinued the following day, resulting in the task being fulfilled

on non-consecutive days, then a penalty will be given to the

plan:

x 6 i j ≥ x 2 i j − x 2 i j+1 ∀ i, j (13)

2.5.3. Constraints in relation to the crew

According to Banedanmark, the suggested plan should allow for

assigning multiple crew members to one task in order to shorten

the total time that it takes to complete. On the other hand, hav-

ing too many employees working on each task weakens the sense

of responsibility and therefore the quality of the job done by crew

members. As a result, Banedanmark provides a maximum possible

number of crew members which can be assigned to each task. In

addition, due to safety regulations there are some tasks that re-

quire at least two crew members to work on them simultaneously.

Therefore, there is a minimum and maximum number of crew

members that can work simultaneously on a task on a given date.

The minimum number of crew members that should work

(simultaneously) on a task per date is represented by:
∑

n

z ni j ≥ d1 i · x 2 i j ∀ i, j (14)

Similarly, the maximum number of crew members that should

work (simultaneously) on a task per date is represented by:
∑

n

z ni j ≤ d2 i · x 2 i j ∀ i, j (15)

Each crew member cannot perform more than the fraction of

a task that can be completed by the minimum number of crew

members required. This ensures that at least the minimum number

of crew members required work on each task simultaneously:

x ni j ≤
x 3 i j

d1 i

∀ n, i, j (16)

As crew members will not available for all dates due to working

shift patterns, vacation, training etc., crew members cannot be as-

signed to work on a task on a date that they are not due to work:

z ni j ≤ e n j ∀ n, i, j (17)

2.5.4. Constraints in relation to competencies

The model also considers that crew members must have the

right competence level to complete different tasks. We believe

that satisfying the competencies required for each task is the most

challenging part of the model, since the number of crew working

on each task is not predetermined in advance and can vary within

a possible range. This is further complicated by the fact that tasks

can be split over multiple days. As a result, the number of crew

members needed to satisfy the crew competency requirements can

change based on the number of crew working on a task per day.

In order to satisfy the crew competency requirements for each

task, there are three possible acceptable scenarios defined by

the planners. Fig. 2 shows the scenarios which lead to the crew

competency requirements being met. We suppose that there is

a task called task 1 which demands crew with competency level

3 of A and there are two crew members crew 1 and crew 2 with

competencies level 3 of A and less than level 3 of A , respectively.

• When the minimum number of crew required for fulfilling

task 1 is one person, there are two possible states:

– One crew member is assigned to the task. Crew 1 is assigned

to Task 1 and 100% of the task is undertaken by the same

person (a).

– More than one crew member is assigned to the task. Crew 1

and Crew 2 are assigned to Task 1. Since Crew 2 does not

have the required competency level 3 for undertaking Task 1,

they can only work on the task simultaneously with Crew 1 .

Crew 1 can fulfil the remaining part of the task on his own

due to his level of competency (b). What is crucial is sat-

isfying the level of competency until a task is finished. The

process of accomplishing the task will be shortened by hav-

ing more than one crew member involved.
• If Task 1 needs crew competency A and the minimum number

of crew required is two persons, it necessitates that both crew

members attend simultaneously (c).

To summarise, at least one of the crew members should have

the right competence level for a task and the minimum and

maximum number of crew members that can be allocated to a

task should be respected. For the particular scheduling problem

at hand, each crew member has a competence level ranging from

0 to 4. A crew member is considered as an expert if they have at

least level 3 for a particular competency and at least one expert

crew member should be present at all times when working on

a specific task. The total competence level f of crew members

working simultaneously on a task should be at least 4.

On this basis, the related constraints are defined as follows.

The combined competence level of all crew members should be

sufficient for each task:
∑

n

z ni j · bm 3 nk ≥ x 2 i j · bo ik · f ∀ i, j, k (18)

At least one crew member should have competence level 3 for

the equipment type of task i :
∑

n

z ni j · bm nk ≥ x 2 i j · bo ik ∀ i, j, k (19)

S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352 345

Fig. 2. Different possible scenarios for Crew competency.

The competence level should be maintained during the full

duration of a task. This formulation ensures that at least one crew

member has competence level 3 if multiple crew members work

on the same task simultaneously:

∑

n

x ni j · bm nk ≥
∑

n x ni j · bm 2 nk

d1 i

∀ i, j, k (20)

2.5.5. Constraints in relation to transportation

These constraints ensure that a crew member is transported

between the technical places that he works on during the day, and

that he is transported to and from the depot at the start and the

end of the shift. Each crew member works at the technical places

that each allocated task belongs to:

w np j ≤
∑

i

z ni j · t p ip ∀ n, p, j (21)

w np j · M ≥
∑

i

z ni j · t p ip ∀ n, p, j (22)

A crew member is only transported between the technical

places that the tasks he is allocated are located:
∑

q

v npq j ≤ w np j · M ∀ n, p, j (23)

∑

p

v npq j ≤ w nq j · M ∀ n, q, j (24)

If a crew member works at more than one technical place

during a shift, the technical places he is transported to and from

while going between technical places are maintained by the

following variables:

w 1 nq j =

∑

p

v npq j ∀ n, q, j (25)

w 2 np j =

∑

q

v npq j ∀ n, p, j (26)

Each crew member can only be transported to and from each

technical place once per day:

w 1 np j ≤ 1 ∀ n, p, j (27)

w 2 np j ≤ 1 ∀ n, p, j (28)

If a crew member is working on a given date then he is

transported only once from the depot and once to the depot:
∑

p

w np j · 2 − w 1 np j − w 2 np j = 2 · y n j ∀ n, j (29)

3. Proposed solution approach

The main goal of this work is to find feasible solutions for larger

instances of the maintenance crew scheduling problem presented

in the previous section, as the current practice is only able to solve

problems with a planning horizon of two weeks. We propose a hy-

brid framework consisting of two phases, initial solution construc-

tion and a second phase of solution improvement. Previous work

has shown that CP is an effective method for generating feasible

solutions to highly constrained problems (Bockmayr & Hooker,

2005). Here we use Google’s software suite for combinatorial opti-

misation (Google OR-Tools) Google (2012) to model the problem as

a Constraint Satisfaction Problem (CSP). In the improvement phase,

a MIP solver is used to further improve the initial feasible solution.

Each phase is described in the following sections in more detail.

3.1. Construction phase

As mentioned above, we use CP to generate feasible solutions

by modelling the problem as a CSP (Rossi, Van Beek, & Walsh,

2006). A CSP is a mathematical model described by three sets

of elements: a set of variables, a set of possible values (domain)

for each variable, and a set of constraints on the variables. Each

solution is constructed by assigning values within the defined

domain to the variables of the model such that every constraint

is satisfied. The problem is modelled as a CSP with a customised

global constraint added to deal with the specific crew competency

constraints contained in the model. This process is illustrated in

Fig. 3 , inspired by Baptiste (2001) .

As seen in Fig. 3 , the process of solving a CP problem consists

of four stages: problem definition, decision making, solution

construction and defining the crew competency global constraint.

In the problem definition stage, in order to model the prob-

lem as a CSP, all of the MIP variables are defined over similar

finite domains within a CSP model. All of the constraints except

the constraints related to crew competency (18, 19 and 20 in

Section 2.5.4 above) are defined as primary constraints. Due to

the difficulty of satisfying the crew competency constraints, these

are defined as customised global constraints in the final stage.

Next in the decision making stage, we define the main decision

variable and the way that the search tree is constructed. This is

done by deciding on how we select the main decision variable

and what value(s) are assigned to it at each node of the tree

in order to branch the search tree. In the solution construction

stage, at each node of the decision tree, one element of the main

decision variable is selected and a value is assigned to it. Finally,

346 S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352

Problem defini�on as
Constraint Sa�sfac�on Problem (CSP)

A set of variables

A set of possible values/domain
for each variables

A set of constraints
between the variables

Primary constraints

Crew Competency constraint:

Propagation embedded with
Look Ahead Technique

Solution construction:

Decision making:

If xn,i,j is
bounded

Partial solution Search
strategy

Is
competency
validated?

Validate
constraints

No:
Backtrack

YesAccept the value

Select decision variable

Assign value to the decision variable

Con�nue search

Fig. 3. Constraint programming framework.

by defining the crew competency constraints as global constraints,

constraint propagation is used to make the given problem easier

to solve. This is done by helping the solver to prune infeasible

regions of the search space which violate the crew competency

constraints. Infeasible areas are identified using a look-ahead

technique embedded in a propagation algorithm.

The individual stages are described in detail in the following

subsections.

3.1.1. Problem definition:

As this stage, all of the variables introduced in our mathe-

matical model are defined as a set of variables in the CSP. The

variables need to be scoped over finite domains. Consequently,

the domain of each variable in our model is determined accord-

ing to the domain of variables in the MIP model introduced in

Section 2 . The constraints can be defined as either initial/primary

constraints or global constraints. Initial constraints can be defined

as a set of C = C 1 , . . . , C K where each constraint comprises several

variables and a list of values that the variables can take. From this

perspective, the initial constraints correspond to what is known

as a constraint in linear programming. In our model, all of the

constraints except the constraints related to crew competency are

defined as initial constraints.

A global constraint is defined as an “expressive and concise

condition involving a non-fixed number of variables” according to

the Global Constraint Catalogue (Beldiceanu, Carlsson, & Rampon,

2012). There are several well-known global constraints introduced

in the literature which have been used in practice in many CP

models (Aggoun & Beldiceanu, 1993; Beldiceanu, 20 0 0; Caseau &

Laburthe, 1997; Régin, 1994). In our approach, we have defined a

customised global constraint composed of all of the related crew

competency constraints in our mathematical model.

3.1.2. Decision making

The core decision variable of the problem is x nij , which rep-

resents the fraction of task i fulfilled on date j by crew member

n . Since most of the tasks are not atomic and need to be split

over multiple days, the model mostly uses a fraction of the whole

duration of each task. At each node of the tree, one variable from

the x vector is selected and is given a value which propagates

over the other variables in the search space. In Google OR-tools

there are 16 strategies for selecting variables and 14 strategies for

assigning values to a decision variable.

• Selecting decision variable: We have chosen the follow-

ing five selection strategies, which all select the variable

with the smallest domain: Min_Size, Min_Size_Lowest_Min,

Min_Size_Highest_Min, Min_Size_Lowest_Max and

Min_Size_Highest_Max. These five strategies only differ in

the case of tie. Min_Size considers the order of variables in the

vector, whilst the remaining four strategies select the variable

with the lowest min value, the highest min value, the lowest

max value and the highest max value, respectively.
• Assigning values to decision variables: After selecting a variable

from x nij , we should assign a value to it. We use two strate-

gies strategies for assigning values: Min_Value and Max_Size.

The former assigns the smallest possible value and the latter

assigns the biggest value that is within the range of the selected

variable in the vector.

We can see that the order of variables in x nij has an effect on

the strategies used to select the variable at each node in the case

of a tie. According to the dimensionality of x n , i , j , there are six

possible orders that we can use: { i , j , n }, { i , n , j }, { j , n , i }, { j , i , n },

{ n , j , i }, { n , i , j }. For instance, i , j , n denotes that the x n , i , j vector is

generated by three inner loops with n being the most inner loop.

In this way, we determine what portion of task i should be done

by each crew member per day until the task is fully allocated i.e.

the priority is on fulfilling tasks one by one per day by all crew

members. As an example if n = 3, i = 2 and j = 2, the vector of x n , i , j
based on i , j , n order would be x 1, 1, 1 , x 2, 1, 1 , x 3, 1, 1 , x 1, 1, 2 , x 2, 1, 2 ,

x 3, 1, 2 , x 1, 2, 1 , x 2, 2, 1 , x 3, 2, 1 , x 1, 2, 2 , x 2, 2, 2 , x 3, 2, 2 .

With five selection strategies, six possible orders for the x

vector, and two strategies for assigning values, we will test all 60

possible combinations of these three factors on a small problem

S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352 347

instance, to find the best combination before applying CP to larger

problem instances.

3.1.3. Solution construction

In our framework, a systematic tree-based search strategy is

used. At each node including the root, one variable from x n , i , j is

selected and a value assigned to the chosen variable. In addition to

the back-track technique embedded within CP, systematic search

can be improved by look-back or look-ahead methods (Bayardo Jr

& Schrag, 1997; Jussien, Debruyne, & Boizumault, 20 0 0). In our

framework, using the crew competency constraint as a customised

global constraint helps the CP solver to prune infeasible regions

of the search space violating this constraint. The infeasible areas

are identified using a new look-ahead technique embedded in

propagation algorithm explained below.

3.1.4. Crew competency global constraint

As mentioned previously, the most challenging part of this

scheduling problem is satisfying all of the crew competency con-

straints. In CP, the solver treats a global constraint similarly to a

primary constraint, in the sense that the class of global constraints

is inherited from the same base class of primary constraints. When

there is a change of variable domain or the bound of variable x nij ,

an event is triggered which propagates its value on all other

variables. The global constraint will register itself to this event and

once the event is triggered the propagation algorithm associated

with the proposed global constraint will be called.

Algorithm 1: Crew competency global constraint (part I - cap-

turing the current state of the solution).

1 Initialise empty lists for bound ed C rew , workingC rew ,

expertCrew , a v ailableExperts

2 Initialise variables for total _ crew _ l e v el , expert _ duration ,

non _ expert _ duration , usable _ expert _ time

3 Other variables are as defined in the MIP model

4 if task i does not require any competencies then return

success ;

5 if task i is not compulsory then return success ;

6 foreach crew ∈ N do

7 if (x crew,i, j is bounded) then

8 add crew to bound ed Crew

9 if (x crew,i, j > 0) then

10 add crew to workingCrew

11 add crew competency level (bm 3 crew,k) to

total _ crew _ le v el
12 end

13 if (crew is expert) then

14 add crew to expertCrew

15 add x crew,i, j to expert _ duration

16 else

17 add x crew,i, j to non _ expert _ duration

18 end

19 end

20 end

The overall process, presented in Algorithms 1 and 2 , validates

the crew competency constraints based on the current state of

the solution and the potential future states that can be reached.

The algorithm returns fail when either the crew competency

constraints are violated, or it is deemed impossible to satisfy the

crew competency constraints of task i , based on the availability of

expert crew members (those who have at least competence level

3 for the competencies required for the task), when looking ahead

at the possible future states of the solution. The algorithm returns

success if the task is not compulsory (i.e. x 4 i is 0), if the task does

Algorithm 2: Crew competency global constraint (part II - val-

idating the crew competency with respect to the change in

X nij).

22 if all crew members are bounded then

23 if no crew member is working on task i then return

success ;

24 if total_crew_level < f then return fail;

25 if expertCrew list is empty then return fail;

26 if expert_duration < non_expert_duration /
∑

n ′ z n ′ ,i, j then

return fail;

27 else

28 if workingCrew is not empty then

29 max _ ad d itional _ crew = d2 i − count(workingCrew) ;

30 if max _ ad d itional _ crew == 0 then

31 if total_crew_level < f then return fail;

32 if expertCrew list is empty then return fail;

33 if expert_duration < non_expert_duration/
∑

n ′ z n ′ ,i, j

then return fail;

34 return success

35 end

36 foreach crew n ′ ∈ N, with competency k required for

task i do

37 if n ′ is not in bound ed Crew then

38 if n ′ has unallocated time remaining on day j

then add n ′ to a v ail abl eExperts ;

39 end

40 end

41 if expertCrew and a v ail abl eExperts are empty then

return fail;

42 Sort a v ail abl eExperts in ascending order of unallocated

time remaining for t = 1 to

Min(count(a v ail abl eExperts), max _ ad d itional _ crew) do

43 usable _ expert _ time += available time of t-th crew

member in a v ail abl eExperts list on day j;

44 end

45 potential _ expert _ duration = Min((c i -

non _ expert _ duration), usable _ expert _ time) +

expert _ duration ;

46 if potential_expert_duration < non_expert_duration then

return fail;

47 end

48 end

49 return success

not require any crew competencies or if it is possible to yield a

feasible solution in future, with respect to the crew competency

constraints, based on the expert crew members available.

As mentioned above, whenever x nij is bounded or its domain

is changed, the propagation algorithm will be called. It will first

check if task i requires any competencies and whether or not it is

compulsory to be completed (lines 4 and 5 in Algorithm 1). If not,

it will return success and the solver can continue with the current

state of x nij . In both situations, as the solver does not need to val-

idate crew competency constraints, these constraints are ignored.

When the algorithm does not return from either of the two

situations above, it means that there is a need to validate the crew

competency constraints when x nij is changed. This is what the rest

of the algorithm deals with, and is composed of the following two

steps:

1. Capture the current state of the solution in terms of the re-

sources required to validate the crew competency constraints

(constraints 18, 19 and 20 in the MIP model). This part is pre-

sented in Algorithm 1 (lines 6-20).

348 S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352

2. Validate the crew competency constraints with respect to the

change in x nij . The pseudo-code of this part of the propagation

algorithm is presented in Algorithm 2 .

The current state of the solution is captured from lines 6 to

20. For each crew member, if the solver has decided whether

crew member works on task i at date j or not (line 7), the crew

member will be added to the bound ed Crew list (line 8). If the crew

member is working on the task (line 9), the crew member will

also be added to the workingCrew list and their competency level

(bm 3 crew,k) is added to the total _ crew _ l e v el variable (lines 10 and

11). Next, if the crew member is an expert in the competency re-

quired for the task (line 13), they will be added to the expertCrew

list (line 14) and the time that the crew member spends on task

i will be added to the expert _ duration list (line 15). Otherwise the

working time will be added to the non _ expert _ duration (line 17)

as the crew member is not an expert in the competency required

for this task.

Once the algorithm knows the current state of the solution

being constructed, it can start validating the crew competency

constraints with respect to the change in x nij , as presented in

Algorithm 2 . At this point, there are two possible states that the

solver can be in. Either the solver has already bounded all of the

crew members for task i at date j (lines 22–26) or some crew

members remain unbounded (lines 27–49).

If all crew members are bounded, the algorithm only needs to

check the validity of the crew competency based on the current

state as it is not possible to assign extra crew members to the

task i on date j in future exploration of the search space. If no

crew member is working on the task i (line 23), the algorithm

will return success . Otherwise, it will check the crew competency

constraints based on the current state of the solution, and will

return fail in lines 24 –26 if any of the constraints are violated

(constraints 18, 19 and 20 from Section 2.5.4). If none of these

constraints are violated, the algorithm will return success (line 50).

If the solver has not bounded all crew members for task i on

date j , it means that it is possible at a future point in the search

process to assign other crew members to complete the rest of the

task. Consequently, a look-ahead technique can be used to moni-

tor the feasibility of future assignments with respect to the crew

competency constraints, by checking if the remaining expert crew

members have enough free time to satisfy those constraints for

this task. This allows us to prune infeasible areas of the search

space in the case that the crew competency constraints cannot be

met.

If there are any crew members working on the task i (line

28), the algorithm will calculate the maximum number of extra

crew members who can be added to work on the task later

(line 29). The number of additional possible crew members that

can work on task i at date j , max _ ad d itional _ crew, is calculated

by subtracting the number of crew members who are currently

working on the task from the maximum possible number of crew

members that can work on the task together (d 2 i). If this value is

zero, it means that although there are crew members who are still

unbounded, we have already assigned the maximum number of

crew members for this particular task. In this case (line 30), the

algorithm only needs to check the crew competency constraints

(lines 31-33), without needing to look ahead to the future state

of the solution. If none of these constraints are violated, the

algorithm return success (line 34).

If it is possible to assign extra crew members to the task i on

date j , the algorithm will use a look-ahead technique to consider

the current and future state of the solution, based on the current

value of x nij in order to validate the crew competency constraints.

The proposed technique guarantees that the feasibility of the

solution is maintained from a crew competency point of view,

following the change made to variable x nij .

To provide the constraint solver with a better view of the avail-

ability of the other expert crew members to fulfil the rest of the

task in future stages of the search, while satisfying the crew com-

petency constraints, we first need to find the crew members who

are expert in the competency required for task i who have free

time available free time on date j (line 36 to 40). These crew mem-

bers are added sequentially to a list of a v ail abl eExperts (line 38).

If there are no crew members working on the task who are

expert and no other crew members with the required expertise

are available on date j , the algorithm will return fail as it is

not possible to meet the crew competency constraints (line 41).

This is effectively a look ahead technique for validating the crew

competency constraints 18 and 19 in the MIP model. Otherwise,

the algorithm sorts the list of a v ail abl eExperts in ascending order

of available time remaining on day j (line 42). Although we

capture all of the free time of the expert crew members through

a v ail abl eExperts list, as there is a maximum number of crew

members who can work on a task at one time (d 2 i), we calculate

the amount of expert time that can actually be added to the

task (usable _ expert _ time). This is accumulated by looping over the

minimum number between the count of a v ail abl eExperts, and the

number of crew members that can be added before exceeding

the maximum crew capacity (max _ ad d itional _ crew, calculated

previously in line 29).

After calculating usable _ expert _ time, the algorithm checks how

much of the task i can be undertaken by expert crew members

in future, considering the actual time that task i requires to

be completed (potential _ expert _ duration) (line 46). This is the

minimum of the actual amount of the task which has been left

undone by non-experts (c [i] - non _ expert _ duration) and the free

time of experts to undertake the task (usable _ expert _ time) added

to the original amount of work undertaken on the task by experts

(expert _ duration). If the potential _ expert _ duration is less than

the duration of non-experts (non _ expert _ duration), the algorithm

returns fail . This is the last part of the look ahead technique which

validates the final crew competency constraint 20 in the MIP

model. If no constraint violations are identified by the previous

validation checks, the algorithm will return success (line 50).

3.2. Improvement phase

Once a feasible solution has been found in the construction

phase, a MIP solver starts searching in the branch and bound tree

from that point and tries to improve the solution. Here we use

CPLEX 12.4 to solve the MIP model as defined in Section 2 . This

process is known as a warm start (Gondzio, 1998). Feeding the

MIP solver with a feasible starting solution helps the solver enor-

mously by allowing for efficient cuts in the branch and bound tree,

effectively reducing the size of the problem to such an extent that

further search in the branch and bound tree becomes possible.

4. Results and discussion

In this section, we first introduce the four instances and then

present the results of solving the problems by using the hybrid

CP/MIP approach introduced above. We compare to both using a

commercial MIP solver directly and modelling the problem as a

Constraint Optimisation Problem (COP).

4.1. Dataset

The four instances used are based on real-world data provided

by the Banedanmark planning department. In all four instances,

there are the same 23 technical places and 8 crew members with

S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352 349

Table 1

Characteristics of the data instances used.

Instance Name D2 D4 D6 D8

Horizon days 10 20 30 40

Working days 24 58 74 108

Number of tasks 11 39 47 59

Compulsory tasks 8 16 16 16

Tasks requiring competencies 10 34 41 53

Tasks > 1 day long 6 15 20 26

Total duration (hours) 198.6 474.5 597.6 839.8

Minimum task duration (hours) 1.6 1.6 1.6 1.6

Maximum task duration (hours) 63.4 63.4 63.4 81.2

12 different crew competencies. Each task requires at most one

competency. The closest task to the depot is 0.00 hours travel time

(i.e. it is next to the depot), the furthest is 0.66 hours, and the

average travel time is 0.28 hours from the depot. Table 1 presents

the four different problem instances and their characteristics.

The instances are named based on their planning time horizon,

since they differ from one another with respect to the number

of planning days (J), where each day is 6.90 hours long. The four

problem instances, D2, D4, D6 and D8 have 2, 4, 6 and 8 week

planning horizons, respectively. With eight crew members, each

plan should have J × 8 planning days in total, however, as not

all crew members are available every day, the total number of

available planning days for each instance is slightly less than this.

There are different numbers of tasks in each instance, with the

number of compulsory tasks to be scheduled in the plan, the

number of tasks which last more than one working day and the

number of tasks that require competencies also given. The total

duration of tasks, and the minimum and maximum duration of a

single task in each data instance are given in hours.

As seen in Table 1 , the vast majority of tasks cannot be un-

dertaken without an expert for a particular competency, adding to

the complexity when scheduling crew members. Table 2 presents

the number of tasks which require a specific competency and the

number of crew members who have the required competency for

each data instance. For instance, D 2 includes tasks which require

competency A 2 (1 task), B 2 (2 tasks), B 7 (1 task), B 12 (5 tasks)

and C 11 (1 task), with 5, 5, 4, 5 and 3 crew members having each

of these competencies, respectively.

4.2. Tuning search in the decision making phase

In the decision making phase, we need to decide how to select

the main decision variable and what value(s) are assigned to it at

each node of the tree in order to branch the search tree. The first

set of experiments investigates the performance of all possible

combinations of the factors introduced in Section 3.1 on instance

D 2. Consequently, we can use the best tuning found to solve

the larger problem instances. With five selection strategies, six

possible orderings for the x vector, and two strategies for assigning

values, we have tested all 60 possible combinations. Each combi-

nation is allowed to run for a maximum of 1 hour CPU time on a

2.1 gigahertz Intel Core i7-4600U CPU with 8.00 gigabytes RAM.

Assigning values using the Max_Size strategy does not generate

any feasible solutions with any selection strategy and any ordering

of the x vector within the time limit. This accounts for 30 of

the 60 possible combinations tested. Considering the complexity

of the model, the dependencies that exist, and the number of

the variables we have, this is not a surprise since the Max_Size

strategy leaves less room for assigning values to other variables.

We also ran additional overnight experiments on a small number

of combinations using the Max_Size strategy. However, in all cases

no feasible solution was found for D2.

Moreover when using the Min_Size strategy, only three of the

six orderings of the x vector are able to generate feasible solutions

within the time limit: { i , j , n }, { i , n , j }, and { j , i , n }, ruling out

another 15 of the combinations tested. We observe that these

three orderings branch the search tree, prioritising finishing each

task i over fully using the availability of each crew member n . As a

feasible solution is found, more constraints have been propagated

on the partial solution at each assignment by prioritising in this

manner. This is likely to be due to the fact that there are more con-

straints on the tasks than the crew members. As x can propagate

its value faster over a larger number of variables, the partial solu-

tion is constrained more quickly. Consequently, we are able to ac-

cept or refuse the partial solution at an earlier stage of the search.

This leaves 15 combinations of selection strategy, ordering and

value assignment strategy which are able to produce feasible solu-

tions. Table 3 shows the results of these combinations on instance

D2, obtained using orderings { i , j , n }, { i , n , j }, and { j , i , n } with five

different selection strategies and Min_Size assignment strategy.

From this table, we can clearly see that the objective values

obtained using different selection strategies are not significantly

different from each other. Specifically, using { i , j , n } and { j , i , n } or-

dering, the objective values have the same values for all five selec-

tion strategies. For { i , n , j } ordering, the objective values are 0.3714

for the Min _ Size, Min _ Size _ Highest _ Min and Min _ Size _ Highest _ Max

and 0.3655 for Min _ Size _ Lowest _ Max and Min _ Size _ Lowest _ Max

strategies. Comparing the time taken to generate the first solution,

{ i , j , n } is far quicker than the other two orderings, generating fea-

sible solutions within 5 seconds for all five selection strategies. { j , i ,

n } and { i , n , j } take much longer to generate initial solutions, need-

ing between 103 and 207 seconds and between 15 and 70 seconds,

respectively. In addition, the number of failures (backtracks) and

branches required to generate the feasible solutions for { j , i , n } and

{ i , n , j } is much larger than { i , j , n }. The large number of failures

and branches indicates that when applied to larger instances, these

two orderings may struggle to find a first feasible solution as they

will not identify infeasible regions of the search space as quickly as

{ i , j , n }. As the primary goal of the constructive CP phase is to find

a feasible solution, using a combination of strategies that minimise

the time to find an initial solution is preferable. Hence we will use

ordering { i , j , n } with selection strategy Min_Size_Lowest_Min in

the experiments on the larger instances in the next section.

4.3. Results and comparison

The hybrid framework we propose uses initial feasible solutions

generated using CP as warm start solutions for an MIP solver. The

MIP solver used is CPLEX 12.4 with default parameter settings.

All experiments are performed on the same machine as above.

We compare the quality of the solutions obtained by the hybrid

CP/MIP framework to both solving the MIP model directly, and to

improving the initial solutions obtained by CP by considering the

problem as a Constraint Optimisation Problem (COP). Modelling

the problem as a COP requires adding an extra constraint to

find a solution with a better objective value than the previously

found feasible solution (Rossi et al., 2006). For the hybrid CP/MIP

and COP, the solvers are given 3 hours to improve the initial CP

solution for each instance. In the case of the MIP solver only, it is

allowed 3 hours CPU time.

Table 4 shows the objective function values and relative gaps

of the solutions found by the CP/MIP hybrid, COP, and only the

MIP solver for the four instances introduced in Section 4.1 . In the

results presented for the CP/MIP approach, the value of the initial

feasible solution obtained by CP is given along with the value and

relative gaps of the first, second and final solutions obtained by

the MIP improvement phase. For COP the value of the improved

solution after 3 hours is given, with the value obtained by feeding

this instance to the MIP solver given in brackets for reference.

Here we note that no optimisation is done by the MIP solver

350 S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352

Table 2

Competency-related attributes of the data instances.

Dataset Competencies

A2 A3 B2 B4 B7 B9 B10 B12 C3 C4 C5 C11

D2 Crew 5 5 4 5 3

Tasks 1 2 1 5 1

D4 Crew 5 5 5 4 5 5 5 5 5 3

Tasks 3 4 1 1 1 3 8 6 3 4

D6 Crew 5 5 5 4 5 5 5 5 5 5 3

Tasks 4 5 2 1 1 3 8 9 3 1 4

D8 Crew 5 5 5 5 4 5 5 5 5 5 5 3

Tasks 7 1 6 2 1 1 3 8 15 3 2 4

Table 3

Results of feasible solutions found for instance D2, using three different orderings,

five different selection strategies and Min_Size assignment strategy.

Selection variable strategy Obj Time_S Failures Branches

Order: i,j,n

Min_Size 0.3753 2.71 95 304

Min_Size_Lowest_Max 0.3753 4.44 96 305

Min_Size_Lowest_Min 0.3753 1.98 96 305

Min_Size_Highest_Min 0.3753 2.20 95 304

Min_Size_Highest_Max 0.3753 3.25 95 304

Order: i,n,j

Min_Size 0.3714 207.97 490515 981154

Min_Size_Lowest_Max 0.3655 142.09 496938 993999

Min_Size_Lowest_Min 0.3655 156.30 496938 993999

Min_Size_Highest_Min 0.3714 135.36 513396 1026916

Min_Size_Highest_Max 0.3714 103.45 513396 1026916

Order: j,i,n

Min_Size 0.3711 29.12 114014 228142

Min_Size_Lowest_Max 0.3711 15.79 56820 113753

Min_Size_Lowest_Min 0.3711 70.05 56820 113753

Min_Size_Highest_Min 0.3711 29.08 114014 228142

Min_Size_Highest_Max 0.3711 22.61 114014 228142

for this result, the value is obtained by the pre-processing phase

converting the COP result into a MIP model only.

A number of observations are worthy of mentioning here. On

feeding the starting solutions provided by CP into the MIP solver,

it can easily generate an initial feasible solution based on the CSP

solution, improving that solution immediately. Additionally, in all

four instances the relative gap to the lower bound is decreased

considerably by the MIP solver. This is still true when the quality

of the solution found is not improved, suggesting that the quality

of the initial CSP solutions are good in these cases.

The only problem instance solved within the time limit using

the MIP solver alone is the two-week problem (D2). It is interest-

ing to note that in D2, where both the hybridised CP/MIP and MIP

solver only methods end up with approximately the same result

(0.3175 and 0.3173 respectively), the initial solution obtained by

CSP is restricting the performance of the MIP solver in the hybrid

CP/MIP approach to some extent.

For the 4, 6 and 8 week plans (D4, D6 and D8) the hybrid

CP/MIP and COP approaches have feasible solutions generated

in the construction phase. Comparing the quality of the best

solutions obtained by COP and the CP/MIP hybrid, we see that the

hybridised framework generates significantly better results, high-

lighted as bold in Table 4 . In addition, the quality and the relative

gap of the first solutions found by the cutting algorithms of the

MIP solver, from both the CP and COP solutions, shows that using

COP leads to limited improvement in objective value and relative

gap compared to the original CP solution, despite the 3 hours

computational time used by COP. For instance in D4, the objective

value and the relative gap obtained on CSP and COP solutions are

0.3361 and 73.09%, and 0.3308 and 72.66%, respectively.

Table 5 reveals the computational time spent generating solu-

tions for each of the three approaches tested. The computational

time of the hybrid CP/MIP framework is the time spent generating

the first feasible solution by CP added to the three hours time

given to the MIP solver to optimise the solution. To evaluate how

much time has been spent on the node relaxation and branching

separately, we have distinguished between the time spent on each

part in the table. Similarly, for the results using the MIP solver

only, the time for both parts has also been included. For the COP

solutions, the table shows the amount of time taken to generate

the best solution within the time limit.

The time taken to generate the first feasible solution by CP is

striking, where it takes approximately 2 seconds for D2 and 4.5,

12 and 52 minutes for D4, D6 and D8, respectively. It was not pos-

Table 4

Results of the hybrid CP/MIP framework, Only MIP solver, and COP (result fed to MIP) over all instances.

Instance CSP + MIP Only MIP COP

Best integer Rlt_Gap(%) Best integer Rlt_Gap(%) Best integer Rlt_Gap(%)

D2 0.3753(CSP) 0.3674(COP)

0.3688 60.67% 0.3571 17.90% (0.3629 60.03%)

2nd 0.3688 21.70% 0.3571 17.90%

Best 0.3175 3.42% 0.3173 3.89%

D4 0.3663(CSP) NA 0.3610(COP)

0.3361 73.09% (0.3308 72.66%)

0.3361 24.77%

Best 0.3162 16.45%

D6 0.3392(CSP) NA 0.3389(COP)

0.3166 74.89% (0.3163 74.87%)

0.3166 21.29%

Best 0.3138 18.42%

D8 0.3290(CSP) NA 0.3270(COP)

0.3130 79.31% (0.3110 79.18%)

0.3130 25.64%

Best 0.3130 22.76%

S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352 351

Table 5

Time spent to generate solutions within the time limit by all three approaches: hybridised approach (CP/MIP), Only the MIP solver, and COP.

Instance CSP + MIP Only MIP COP (within 3 hours)

D2 1.98 ≈ 2 seconds Root_T: 2.57 3.87 284.908 ≈ 4.5 minutes

B&C_T: 10579.8 10273.95

Total MIP: 10582.37 ≈ 3 hours 10277.81 ≈ 3 hours

D4 256.318 ≈ 4.5 minutes Root_T: 327.32 432.86 ≈ 7.2 minutes

B&C_T: 10469.27

Total: 10796.6 ≈ 3 hours

D6 724.776 ≈ 12 minutes Root_T: 947.49 2599.574 ≈ 43.32 minutes

B&C_T: 9850.2

Total MIP: 10797.69 ≈ 3 hours

D8 3157.474 ≈ 52 minutes Root_T: 8416.66 3524.647 ≈ 58.74 minutes

B&C_T: 2380.89

Total MIP: 10797.55 ≈ 3 hours

Table 6

Improvements made by COP to the original CP solution for each instance.

Instance Obj Time_S Failures Branches

D2 0.3753 1.98 96 305

0.3741 7.82 32126 64367

0.3713 27.79 165483 331084

0.3674 284.91 1268374 2536 86 8

D4 0.3663 256.32 110137 220992

0.3646 258.80 110170 221059

0.3636 261.31 110220 221159

0.3631 263.85 110418 221558

0.3615 266.66 110463 221650

0.3612 269.60 111675 224075

0.3611 425.62 500941 1002610

0.3610 432.86 502184 1005093

D6 0.3392 724.78 724070 144 94 83

0.3391 776.89 725395 1452134

0.3389 2599.57 4662224 9325790

D8 0.3290 3157.47 372812 748162

0.3280 3350.27 372857 748253

0.3270 3524.65 373031 748602

sible for the MIP solver to find feasible solutions for data instances

bigger than D2 at all. Note that, for the only data instance that MIP

was able to generate solution (D2), we can see that feeding the

MIP solver with the CSP solution leads to less root node processing

compared to using the MIP solver alone. This indicates that starting

with a feasible solution helps to reduce the time taken resolving

the LP relaxation. Looking into the node processing time for all

data sets, the increasing pattern is not a surprise when dealing

with bigger data instances. Despite this reduction, continuous root

relaxation still takes up a considerable proportion of running time

in our model. For the D8 instance, it is worth highlighting that

the node processing time has grown significantly. It is also notable

that the MIP solver spends one fifth of its total execution time

on the branching and cutting on such a big data instance. As this

ratio is particularly high, it suggests that for this instance and any

larger instances a longer running time might be more appropriate.

Looking at the time taken to find the best COP solutions for

each data instance, we see that CP could not improve the CSP

solution for the D2, D4 and D8 after a couple of minutes and

for D6 after half an hour. This suggests that COP gets stuck in a

local optimum quickly, long before reaching the time limit. Table 6

gives the details of the improvements made to the original CSP

solution by COP during the 3 hour run for each instance. In this

table, each row is representative of a feasible solution with the

first solution corresponding to the original feasible CSP solution.

Each subsequent row shows any improved solutions found by COP

within the time limit.

Here we see that the first solutions (CSP solution) for all in-

stances were yielded in 1.98, 256.32, 724.78 and 3157.47 seconds,

respectively, for each instance. However, no solutions are improved

further after 284.91, 432.86, 2599.57 and 3524.65 seconds by

COP on D2, D4, D6 and D8, respectively showing that a large

proportion of CPU time is spent without any improvement in

quality observed. Comparing the number of failures and branches

on the final solutions obtained by COP for D4 and D6 with those

on earlier solutions we see that COP seems to get stuck in a local

optimum. Moreover, comparing the quality of the first feasible

solution with the quality of the best solution found over all

instances shows a very small improvement has been made. Even

though CP generates the first solution quickly, COP is not a good

candidate approach to be used for the improvement phase.

Considering COP both quality-wise and time-wise, we found

COP to be inferior to a commercial MIP solver when improving

the initial solutions found by CP. Enhancing the initial solutions

through COP demands more problem-specific customisation,

consequently more implementation and development effort code-

wise. For instance, employing local search instead of systematic

search might improve the solutions, however this would require

defining several neighbourhoods, due to the number of dimensions

of the objective function. Additional effort would also be required

for proper tuning within a framework such as a meta-heuristic or

hyper-heuristic. The hybrid CP/MIP method takes advantage of the

initial feasible solutions found by CP, eliminating large portions

of the search space and resulting in smaller branch-and-cut trees.

Passing the first found feasible solution as a starting solution to a

MIP solver we are able to validate the quality of the initial solution

and attempt to improve it using a MIP solver without having to

tailor advanced, difficult to maintain heuristics to the problem.

5. Conclusion

In this paper, we have introduced a hybrid CP/MIP framework

for solving a large scale maintenance crew scheduling problem

for the Danish railway system. The model is based on a practical

MIP formulation provided by Banedanmark, who are responsible

for most of the railway infrastructure in Denmark. The problem

involves a large number of real-life attributes and constraints, so

the current practice of trying to solve the model directly using

a standard MIP solver does not return any feasible solutions for

planning horizons longer than two weeks. We have proposed

a customised global constraint, embedded with a look-ahead

technique in a CSP-based model, to construct initial solutions and

attempt to improve them by warm-starting the MIP solver. The

framework examines an exploration of variable/value ordering

heuristics. Results have been presented using four real-world in-

stances. The proposed hybrid CP/MIP framework has been shown

to outperform both solving the problem as a MIP problem directly

and using COP to improve the initial feasible solution found by CP.

The hybridised framework is a contribution to the development

of integration between MIP and CP, where CP greatly reduces

352 S. M. Pour et al. / European Journal of Operational Research 269 (2018) 341–352

the time required by the MIP to produce a solution. From a

programming perspective, the framework is easy to maintain since

the proposed propagation algorithm is logically and conceptually

independent. This maintains the generality of the framework by

focusing on feasibility checking, pruning infeasible areas from

the perspective of crew competency constraints. If any other

constraints need to be added to the model in future, it can be

implemented as an independent constraint in the framework. Any

new constraint simply needs to be added to the MIP model in the

improvement phase.

In terms of future work, one limitation of the method proposed

here is the transformation of a multi-objective problem to a single

objective function. The weighted sum method used is based on

expert opinion to reflect the importance of each component of

the objective function. Future work will formulate this problem

as a multi-objective problem directly, presenting and highlighting

the different trade-offs that exist between multiple objectives.

Our work here has also used a single MIP solver, under default

parameter settings. As a wide range of commercial MIP solvers,

with a large number of tunable parameters exist, another potential

future research direction is the investigation of the ability of dif-

ferent solvers, using different parameter settings, to solve different

instances of this problem.

References

Aggoun, A. , & Beldiceanu, N. (1993). Extending chip in order to solve complex

scheduling and placement problems. Mathematical and Computer Modelling,
17 (7), 57–73 .

Baldi, M. M. , Heinicke, F. , Simroth, A. , & Tadei, R. (2016). New heuristics for the
stochastic tactical railway maintenance problem. Omega, 63 , 94–102 .

Banedanmark. , & Trafikministeriet. (2009). The signalling programme : a total renewal
of the Danish signalling infrastructure p. 4. Banedanmark .

Baptiste, P. (2001). Combining operations research and constraint programming to

solve real-life scheduling problems. [Online] www.ercim.eu/publication/Ercim _
News/enw44/baptiste.html .

Bayardo Jr, R. J. , & Schrag, R. (1997). Using csp look-back techniques to solve real–
world sat instances. In Proceedings of the AAAI/IAAI (pp. 203–208) .

Beldiceanu, N. (20 0 0). Global constraints as graph properties on a structured
network of elementary constraints of the same type. In Proceedings of the

international conference on principles and practice of constraint programming

(pp. 52–66). Springer .

Beldiceanu, N. , Carlsson, M. , & Rampon, J.-X. (2012). Global constraint catalog, (revi-
sion a) . Swedish Institute of Computer Science .

Bockmayr, A. , & Hooker, J. N. (2005). Constraint programming. Handbooks in Opera-
tions Research and Management Science, 12 (C), 559–600 .

Bog, S. , Nemani, A. K. , & Ahuja, R. K. (2011). Iterative algorithms for the cur-
few planning problem. Journal of the Operational Research Society, 62 (4),

593–607 .
Borraz-Sánchez, C. , & Klabjan, D. (2012). Strategic gang scheduling for railroad main-

tenance . Center for the Commercialization of Innovative Transportation Technol-

ogy, Northwestern University .
Caseau, Y. , & Laburthe, F. (1997). Solving small TSPS with constraints. In Proceed-

ings of the 14th international conference on logic programming (pp. 316–330). MIT
PRESS .

Cheung, B. S. , Chow, K. , Hui, L. C. , & Yong, A. M. (1999). Railway track possession
assignment using constraint satisfaction. Engineering Applications of Artificial In-

telligence, 12 (5), 599–611 .

Gondzio, J. (1998). Warm start of the primal-dual method applied in the cutting–
plane scheme. Mathematical Programming, 83 (1–3), 125–143 .

Google (2012). Google Optimization Tools. [Online] http://developers.google.com/
optimization/ .

Gorman, M. F. , & Kanet, J. J. (2010). Formulation and solution approaches to the
rail maintenance production gang scheduling problem. Journal of Transportation

Engineering, 136 (8), 701–708 .

Jussien, N. , Debruyne, R. , & Boizumault, P. (20 0 0). Maintaining arc-consistency
within dynamic backtracking. In Proceedings of the international conference on

principles and practice of constraint programming (pp. 249–261). Springer .
Khalouli, S. , Benmansour, R. , & Hanafi, S. (2016). An ant colony algorithm based on

opportunities for scheduling the preventive railway maintenance. In Proceedings
of the 2016 international conference on control, decision and information technolo-

gies (CODIT) (pp. 594–599). IEEE .

Lidén, T. (2015). Railway infrastructure maintenance-a survey of planning problems
and conducted research. Transportation Research Procedia, 10 , 574–583 .

Nemani, A. K. , Bog, S. , & Ahuja, R. K. (2010). Solving the curfew planning problem.
Transportation Science, 44 (4), 506–523 .

Peng, F. , Kang, S. , Li, X. , Ouyang, Y. , Somani, K. , & Acharya, D. (2011). A heuristic
approach to the railroad track maintenance scheduling problem. Computer-Aided

Civil and Infrastructure Engineering, 26 (2), 129–145 .

Peng, F. , & Ouyang, Y. (2014). Optimal clustering of railroad track maintenance jobs.
Computer-Aided Civil and Infrastructure Engineering, 29 (4), 235–247 .

Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPS. In Pro-
ceedings of the AAAI: 94 (pp. 362–367) .

Rossi, F. , Van Beek, P. , & Walsh, T. (2006). Handbook of constraint programming . El-
sevier .

Schrimpf, G. , Schneider, J. , Stamm-Wilbrandt, H. , & Dueck, G. (20 0 0). Record break-

ing optimization results using the ruin and recreate principle. Journal of Compu-
tational Physics, 159 (2), 139–171 .

Wen, M. , Li, R. , & Salling, K. B. (2016). Optimization of preventive condition-based
tamping for railway tracks. European Journal of Operational Research, 252 (2),

455–465 .

http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0003
http://www.ercim.eu/publication/Ercim_News/enw44/baptiste.html
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0008a
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0008a
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0008a
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0008a
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0008a
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0011
http://developers.google.com/optimization/
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30764-6/sbref0022

	A hybrid Constraint Programming/Mixed Integer Programming framework for the preventive signaling maintenance crew scheduling problem
	1 Introduction
	2 Mathematical model
	2.1 Indexes
	2.2 Parameters
	2.3 Variables
	2.4 Objective function
	2.5 Constraints
	2.5.1 Constraints in relation to the tasks
	2.5.2 Managerial constraints
	2.5.3 Constraints in relation to the crew
	2.5.4 Constraints in relation to competencies
	2.5.5 Constraints in relation to transportation

	3 Proposed solution approach
	3.1 Construction phase
	3.1.1 Problem definition:
	3.1.2 Decision making
	3.1.3 Solution construction
	3.1.4 Crew competency global constraint

	3.2 Improvement phase

	4 Results and discussion
	4.1 Dataset
	4.2 Tuning search in the decision making phase
	4.3 Results and comparison

	5 Conclusion
	 References

