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a b s t r a c t 

A railway signaling system is a complex and interdependent system which should ensure the safe oper- 

ation of trains. We introduce and address a mixed integer optimisation model for the preventive signal 

maintenance crew scheduling problem in the Danish railway system. The problem contains many prac- 

tical constraints, such as temporal dependencies between crew schedules, the splitting of tasks across 

multiple days, crew competency requirements and several other managerial constraints. We propose a 

novel hybrid framework using Constraint Programming to generate initial feasible solutions to feed as 

‘warm start’ solutions to a Mixed Integer Programming solver for further improvement. We apply this 

hybrid framework to a section of the Danish rail network and benchmark our results against both direct 

application of a Mixed Integer Programming solver and modelling the problem as a Constraint Optimisa- 

tion Problem. Whereas the current practice of using a general purpose Mixed Integer Programming solver 

is only able to solve instances over a two-week planning horizon, the hybrid framework generates good 

results for problem instances over an eight-week period. In addition, the use of a Mixed Integer Pro- 

gramming solver to improve the initial solutions generated by Constraint Programming is shown to be 

significantly superior to addressing the problem as a Constraint Optimisation Problem. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

A railway signaling system is an essential component of a 

railway network. It is, responsible for ensuring safe and efficient 

train operations. The existing signaling technology within the 

Danish railway network is based on the Automatic Train Protection 

(ATP) signaling system ( Banedanmark. & Trafikministeriet., 2009 ). 

To ensure that signaling equipment is both cost efficient and 

safe throughout its service life, effective maintenance planning is 

crucial. Generally, railway maintenance planning and scheduling 

problems are considered as either strategic, tactical or operational 

level problems ( Lidén, 2015 ). Using this terminology, the problem 

that we consider here is considered to be a tactical problem, where 

the aim is to assign and schedule a set of maintenance tasks to 
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maintenance crew members over a given planning horizon. Addi- 

tionally, there are several aspects which could differ from one rail- 

way network to another, such as the competency level required for 

fulfilling each task, coordination with train traffic, transportation 

related costs, and several hard and soft managerial constraints. 

A number of papers exist in the literature that address mainte- 

nance crew scheduling, with a variety of formulations and solution 

techniques proposed. Cheung, Chow, Hui, and Yong (1999) pre- 

sented a Constraint Programming (CP) model for scheduling main- 

tenance tasks within the Hong Kong Mass Transit system. The re- 

sults showed that the proposed CP method was 10 times more ef- 

ficient than the existing manual method used in practice. Gorman 

and Kanet (2010) developed a time-space network model and a job 

scheduling model to schedule maintenance tasks, showing results 

for a small test instance. The first model was solved as a Mixed In- 

teger Programming (MIP) problem, with the second model solved 

using a hybrid Constraint Programming and Genetic Algorithm ap- 

proach. Nemani, Bog, Ahuja, 2010 proposed four different models 

for the curfew planning problem, which adds mutual exclusion and 

http://dx.doi.org/10.1016/j.ejor.2017.08.033 
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Fig. 1. Pilot area of the signaling maintenance problem in Denmark. 

time window constraints to the core problem of scheduling tasks. 

Each model was solved with a commercial MIP solver, using real- 

world instances from a large rail company. Bog, Nemani, and Ahuja 

(2011) also solved the curfew planning problem. Their method iter- 

atively solved sub-problems using a MIP solver, gradually increas- 

ing the size of the sub-problem until the entire instance was in- 

cluded. This method was applied to the instances used by Nemani, 

Bog, Ahuja, 2010 , outperforming three of the four approaches from 

their paper. Peng et al. (2011) presented a cluster-first, route- 

second approach to minimise the travel cost of maintenance teams. 

An initial phase provides an assignment of tasks to maintenance 

teams before a local search phase attempts to improve the solution 

found. Their results showed a significant improvement over man- 

ual planning. A two-phase approach was used by Borraz-Sánchez 

and Klabjan (2012) , first applying dynamic programming to gen- 

erate an initial schedule, before a second phase of improvement 

with a ruin and recreate heuristic ( Schrimpf, Schneider, Stamm- 

Wilbrandt, & Dueck, 20 0 0 ) using an ILP model to reinsert tasks 

optimally. Their method was able to solve an annual schedul- 

ing problem with 10 0 0 tasks within 2.5 hours. Peng and Ouyang 

(2014) described a method which combines multiple maintenance 

tasks into longer projects as a pre-processing stage before allocat- 

ing the tasks to maintenance crew. The proposed model is also 

solved by a method performing an initial constructive phase be- 

fore a second phase of local improvement, and was adopted in 

practice by the company providing the case study. Khalouli, Ben- 

mansour, and Hanafi (2016) presented an ant colony method to 

address a set of randomly generated instances of the preventive 

maintenance scheduling problem. The proposed method was able 

to generate optimal solutions to some instances in significantly less 

time than that required by a commercial MIP solver. Wen, Li, and 

Salling (2016) formulated the problem of determining when to per- 

forming ‘tamping’, a track maintenance operation, on different sec- 

tions of a railway network as a MIP model. Baldi, Heinicke, Sim- 

roth, and Tadei (2016) consider a stochastic variant of the tactical 

railway maintenance problem, where the exact maintenance tasks 

required to be performed are not known in advance, and schedul- 

ing takes place over a long-term rolling planning horizon. 

As the infrastructure owner of most of the rail network in 

Denmark, Banedanmark is in charge of the maintenance and traffic 

control of the Danish railway track and signaling system. The 

Danish rail network comprises four maintenance areas: Mainte- 

nance Machines, Maintenance Nationwide, Maintenance East and 

Maintenance West. The East and West divisions are further di- 

vided into Track Maintenance, Signaling Maintenance and Current 

Maintenance. The pilot maintenance region that we consider in 

this paper is part of the signaling section of the West region. It is 

situated between Ejby, Lunderskov and Vejle as shown in Fig. 1 . 

The current practice is to produce plans over a two-week planning 

horizon using a commercial MIP solver. 

The main contribution of this paper is the formulation of the 

preventive signaling maintenance crew scheduling problem for the 

existing signaling system in Denmark as a mixed integer optimisa- 

tion model. The crew start their tasks from a depot location. Three 

characteristics of the problem add to the complexity of the model. 

Firstly, the plan includes temporal dependencies between different 

crew members. That is because some of the tasks require more 

than one crew member, due to crew competency requirements or 

safety rules. Secondly, to handle the considerations that must be 

made for traffic, multiple crew members can fulfil a task together 

to minimise the possession time of the track. Accordingly, there 

is a range in terms of the number of crew members required 

to fulfil a given task per day. Finally, the majority of tasks take 

much longer than a single day, even with multiple crew members 

working on them, requiring a plan to be split over multiple days. 

For the real-world problem, monthly plans are expected for 

operational reasons and currently optimal solutions cannot be 

found for practical sized problem instances. Here, we introduce a 

hybrid framework, using CP to generate initial feasible solutions to 

feed to a MIP solver for further improvement. 

The remainder of the paper is structured as follows: in 

Section 2 , we describe the MIP formulation of the problem and 

explain the real-life constraints within the model. Section 3 ex- 

plains our solution approach. In Section 4 , the details of the 

real-world instances used are given and results for the pro- 

posed hybrid framework are presented. Finally we provide some 

conclusions in Section 5 . 

2. Mathematical model 

The model formulation is provided by Banedanmark and is 

based on the practical maintenance crew scheduling problem 
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encountered by the Banedanmark planning team. The problem 

consists of a number of technical places where maintenance tasks 

are required to be carried out. A technical place is either a station 

or the maintenance area between a station and the next station. 

The crew start their tasks from a depot location and return to 

the depot at the end of every day. The model covers travelling 

distance to and from the depot, transportation costs between 

technical places during the working day and the duration of 

maintenance tasks, with the hard constraint that the plan does 

not exceed the maximum shift length each day. The model also 

considers that crew members should have the correct competence 

level for a particular task and it defines the minimum and maxi- 

mum number of crew members that can work simultaneously on 

each task. For longer tasks that are completed over more than one 

shift, it is desirable to allocate the same crew members to con- 

tinue the task the next day. The model in its entirety is explained 

in the following subsections. Within the model, M represents an 

arbitrarily large number to help bound some of the constraints. 

2.1. Indexes 

n crew n ∈ [ N] 

i task i ∈ [ I] 
j date j ∈ [ J] 
k competencies k ∈ [ K] 

p, (q ) technical place p ∈ [ P] 

2.2. Parameters 

a number of hours per shift 

f total competence level needed 

c i time required to complete task i 

d1 i minimum number of crew for task i 

d2 i maximum number of crew for task i 

e n j whether crew member n is available on planning date j

bo ik whether task i demands competence k 

bm nk whether crew n has at least competence level 3 for competence k 

bm 2 nk 1 if crew n has less than competence level 3 for competence k 

bm 3 nk competence level for crew n for competence k 

t p ip if task i is physically located at technical place p

tr pq transport time from technical place p to technical place q 

tm p transport time from depot to technical place p

g i 1 if the task must be done inside the planning horizon, 0 if it can 

be left out 

2.3. Variables 

x ni j fraction of task i that crew n completes on date j. 

x 3 i j fraction of task i that is completed on date j. 

x 2 i j 
1 if some of task i is completed on date j 

0 else 

x 4 i 
1 if task i is fully completed within the planning horizon 

0 else 

x 5 ni j 

1 if crew member n is working on task i on date j but not on 

date j + 1 

0 else 

x 6 i j 
1 if part of task i is completed on date j but not on date j + 1 

0 else 

y n j 
1 if crew member n will work on date j 

0 else 

z ni j 
1 if crew member n works on task i on date j 

0 else 

z1 ni 
1 if crew n works on task i 

0 else 

w np j 
1 if crew n works on technical place p on date j 

0 else 

v npq j 

1 if crew n needs transport between technical place p and 

technical place q on date j 

0 else 

w 1 np j if crew n needs transport to technical place p from another technical 

place on date j

w 2 np j if crew n needs transport from a technical place p to another 

technical place on date j

2.4. Objective function 

The objective function is primarily composed of three parts. 

Firstly, it aims to minimise the number of working days used 

to complete the plan. Secondly, it should ensure that as many 

tasks as possible are completed inside the planning horizon. 

Finally, the model tries to minimise the penalty for assigning 

crew members to a particular task on non-consecutive days. In 

order to normalise this multi-objective function we have scaled 

each term, dividing it by the maximum possible value for that 

specific term. The weighted sum method is applied to give relative 

coefficients/weights to each term of the objective function. The 

sum of the weights are one and are provided by the planning 

manager from Banedanmark to reflect the importance of each to 

the company. Priority is given in the following order: fulfilling a 

greater number of tasks in the planning time horizon, minimising 

the total number of working days and finally, generating a high 

quality plan from a managerial point of view. 

min O = 

∑ 

n 

∑ 

j 

y n j · a + 

∑ 

ni j 

z ni j + 

∑ 

ni 

z1 ni + 

∑ 

ni j 

x 5 ni j + 

∑ 

i j 

x 6 i j 

+ 

∑ 

n 

∑ 

j=5 

y n j −
∑ 

n 

∑ 

j=1 

y n j + 

∑ 

i 

(1 − x 4 i ) · c i (1) 

2.5. Constraints 

2.5.1. Constraints in relation to the tasks 

All tasks should either be completed entirely or not completed 

at all within the planning horizon: 
∑ 

n 

∑ 

j 

x ni j = x 4 i ∀ i (2) 

The total number of hours for each shift should not be ex- 

ceeded. The first term is the duration of tasks, the second term 

is the transportation time to and from the depot, and third term 

is the transportation time between technical places during the 

shift: 
∑ 

i 

x ni j · c i + 

∑ 

p 

(w np j · 2 − w 1 np j − w 2 np j ) · tm p 

+ 

∑ 

p 

∑ 

q 

v npq j · tr pq ≤ a ∀ j, n (3) 

The sum of the fractions of tasks allocated to crew members 

cannot exceed the total required to complete the task: 

x 2 i j ≥
∑ 

n 

x ni j ∀ i, j (4) 

x 3 is defined as the sum of the fractions of a task allocated to 

all crew members for a particular task on a given day: 

x 3 i j = 

∑ 

n 

x ni j ∀ i, j (5) 

Some tasks are considered to be critical and must be completed 

inside the planning horizon, meaning that they are high priority. 

The more tasks that are fulfilled, the better the plan is considered 
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to be. Accordingly, a task i must be completed within the planning 

horizon if parameter g i is set to 1: 

x 4 i ≥ g i ∀ i (6) 

If a task is completed within the planning horizon, the fraction 

of a task that is completed on a given day should not exceed x 4: 

x 4 i ≥ x ni j ∀ n, i, j (7) 

A crew member cannot be allocated a task on a day that they 

are not due to work: 

y n j ≥ z ni j ∀ n, i, j (8) 

If a crew member is allocated a fraction of a task on a particular 

date, Eq. (9) ensures that the variable indicating that a crew mem- 

ber is working on this task on this date is set to 1. Eq. (10) ensures 

that this variable cannot be set to 1 if the crew member is not 

allocated a fraction of this task on a particular date. 

z ni j ≥ x ni j ∀ n, i, j (9) 

z ni j ≤ x ni j · M ∀ n, i, j (10) 

If a crew member is allocated a fraction of a task to complete 

on a particular date, the variable indicating if a crew member 

works on this task at all should always at least as large as this 

value: 

z1 ni ≥ z ni j ∀ n, i, j (11) 

2.5.2. Managerial constraints 

From a managerial point of view, if a given task takes more 

than a day to complete, then the following soft constraints will be 

desired: 

• If some crew members work on a task on date j but do not 

continue the following day, then the remaining parts of the task 

should preferably be undertaken by the same remaining crew 

members who started working on the task: 

x 5 ni j ≥ z ni j − z ni j+1 ∀ n, i, j (12) 

• If task i is started but not completed on date j and is not con- 

tinued the following day, resulting in the task being fulfilled 

on non-consecutive days, then a penalty will be given to the 

plan: 

x 6 i j ≥ x 2 i j − x 2 i j+1 ∀ i, j (13) 

2.5.3. Constraints in relation to the crew 

According to Banedanmark, the suggested plan should allow for 

assigning multiple crew members to one task in order to shorten 

the total time that it takes to complete. On the other hand, hav- 

ing too many employees working on each task weakens the sense 

of responsibility and therefore the quality of the job done by crew 

members. As a result, Banedanmark provides a maximum possible 

number of crew members which can be assigned to each task. In 

addition, due to safety regulations there are some tasks that re- 

quire at least two crew members to work on them simultaneously. 

Therefore, there is a minimum and maximum number of crew 

members that can work simultaneously on a task on a given date. 

The minimum number of crew members that should work 

(simultaneously) on a task per date is represented by: 
∑ 

n 

z ni j ≥ d1 i · x 2 i j ∀ i, j (14) 

Similarly, the maximum number of crew members that should 

work (simultaneously) on a task per date is represented by: 
∑ 

n 

z ni j ≤ d2 i · x 2 i j ∀ i, j (15) 

Each crew member cannot perform more than the fraction of 

a task that can be completed by the minimum number of crew 

members required. This ensures that at least the minimum number 

of crew members required work on each task simultaneously: 

x ni j ≤
x 3 i j 

d1 i 

∀ n, i, j (16) 

As crew members will not available for all dates due to working 

shift patterns, vacation, training etc., crew members cannot be as- 

signed to work on a task on a date that they are not due to work: 

z ni j ≤ e n j ∀ n, i, j (17) 

2.5.4. Constraints in relation to competencies 

The model also considers that crew members must have the 

right competence level to complete different tasks. We believe 

that satisfying the competencies required for each task is the most 

challenging part of the model, since the number of crew working 

on each task is not predetermined in advance and can vary within 

a possible range. This is further complicated by the fact that tasks 

can be split over multiple days. As a result, the number of crew 

members needed to satisfy the crew competency requirements can 

change based on the number of crew working on a task per day. 

In order to satisfy the crew competency requirements for each 

task, there are three possible acceptable scenarios defined by 

the planners. Fig. 2 shows the scenarios which lead to the crew 

competency requirements being met. We suppose that there is 

a task called task 1 which demands crew with competency level 

3 of A and there are two crew members crew 1 and crew 2 with 

competencies level 3 of A and less than level 3 of A , respectively. 

• When the minimum number of crew required for fulfilling 

task 1 is one person, there are two possible states: 

– One crew member is assigned to the task. Crew 1 is assigned 

to Task 1 and 100% of the task is undertaken by the same 

person (a). 

– More than one crew member is assigned to the task. Crew 1 

and Crew 2 are assigned to Task 1. Since Crew 2 does not 

have the required competency level 3 for undertaking Task 1, 

they can only work on the task simultaneously with Crew 1 . 

Crew 1 can fulfil the remaining part of the task on his own 

due to his level of competency (b). What is crucial is sat- 

isfying the level of competency until a task is finished. The 

process of accomplishing the task will be shortened by hav- 

ing more than one crew member involved. 
• If Task 1 needs crew competency A and the minimum number 

of crew required is two persons, it necessitates that both crew 

members attend simultaneously (c). 

To summarise, at least one of the crew members should have 

the right competence level for a task and the minimum and 

maximum number of crew members that can be allocated to a 

task should be respected. For the particular scheduling problem 

at hand, each crew member has a competence level ranging from 

0 to 4. A crew member is considered as an expert if they have at 

least level 3 for a particular competency and at least one expert 

crew member should be present at all times when working on 

a specific task. The total competence level f of crew members 

working simultaneously on a task should be at least 4. 

On this basis, the related constraints are defined as follows. 

The combined competence level of all crew members should be 

sufficient for each task: 
∑ 

n 

z ni j · bm 3 nk ≥ x 2 i j · bo ik · f ∀ i, j, k (18) 

At least one crew member should have competence level 3 for 

the equipment type of task i : 
∑ 

n 

z ni j · bm nk ≥ x 2 i j · bo ik ∀ i, j, k (19) 
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Fig. 2. Different possible scenarios for Crew competency. 

The competence level should be maintained during the full 

duration of a task. This formulation ensures that at least one crew 

member has competence level 3 if multiple crew members work 

on the same task simultaneously: 

∑ 

n 

x ni j · bm nk ≥
∑ 

n x ni j · bm 2 nk 

d1 i 

∀ i, j, k (20) 

2.5.5. Constraints in relation to transportation 

These constraints ensure that a crew member is transported 

between the technical places that he works on during the day, and 

that he is transported to and from the depot at the start and the 

end of the shift. Each crew member works at the technical places 

that each allocated task belongs to: 

w np j ≤
∑ 

i 

z ni j · t p ip ∀ n, p, j (21) 

w np j · M ≥
∑ 

i 

z ni j · t p ip ∀ n, p, j (22) 

A crew member is only transported between the technical 

places that the tasks he is allocated are located: 
∑ 

q 

v npq j ≤ w np j · M ∀ n, p, j (23) 

∑ 

p 

v npq j ≤ w nq j · M ∀ n, q, j (24) 

If a crew member works at more than one technical place 

during a shift, the technical places he is transported to and from 

while going between technical places are maintained by the 

following variables: 

w 1 nq j = 

∑ 

p 

v npq j ∀ n, q, j (25) 

w 2 np j = 

∑ 

q 

v npq j ∀ n, p, j (26) 

Each crew member can only be transported to and from each 

technical place once per day: 

w 1 np j ≤ 1 ∀ n, p, j (27) 

w 2 np j ≤ 1 ∀ n, p, j (28) 

If a crew member is working on a given date then he is 

transported only once from the depot and once to the depot: 
∑ 

p 

w np j · 2 − w 1 np j − w 2 np j = 2 · y n j ∀ n, j (29) 

3. Proposed solution approach 

The main goal of this work is to find feasible solutions for larger 

instances of the maintenance crew scheduling problem presented 

in the previous section, as the current practice is only able to solve 

problems with a planning horizon of two weeks. We propose a hy- 

brid framework consisting of two phases, initial solution construc- 

tion and a second phase of solution improvement. Previous work 

has shown that CP is an effective method for generating feasible 

solutions to highly constrained problems ( Bockmayr & Hooker, 

2005 ). Here we use Google’s software suite for combinatorial opti- 

misation (Google OR-Tools) Google (2012) to model the problem as 

a Constraint Satisfaction Problem (CSP). In the improvement phase, 

a MIP solver is used to further improve the initial feasible solution. 

Each phase is described in the following sections in more detail. 

3.1. Construction phase 

As mentioned above, we use CP to generate feasible solutions 

by modelling the problem as a CSP ( Rossi, Van Beek, & Walsh, 

2006 ). A CSP is a mathematical model described by three sets 

of elements: a set of variables, a set of possible values (domain) 

for each variable, and a set of constraints on the variables. Each 

solution is constructed by assigning values within the defined 

domain to the variables of the model such that every constraint 

is satisfied. The problem is modelled as a CSP with a customised 

global constraint added to deal with the specific crew competency 

constraints contained in the model. This process is illustrated in 

Fig. 3 , inspired by Baptiste (2001) . 

As seen in Fig. 3 , the process of solving a CP problem consists 

of four stages: problem definition, decision making, solution 

construction and defining the crew competency global constraint. 

In the problem definition stage, in order to model the prob- 

lem as a CSP, all of the MIP variables are defined over similar 

finite domains within a CSP model. All of the constraints except 

the constraints related to crew competency (18, 19 and 20 in 

Section 2.5.4 above) are defined as primary constraints. Due to 

the difficulty of satisfying the crew competency constraints, these 

are defined as customised global constraints in the final stage. 

Next in the decision making stage, we define the main decision 

variable and the way that the search tree is constructed. This is 

done by deciding on how we select the main decision variable 

and what value(s) are assigned to it at each node of the tree 

in order to branch the search tree. In the solution construction 

stage, at each node of the decision tree, one element of the main 

decision variable is selected and a value is assigned to it. Finally, 
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Problem defini�on as 
Constraint Sa�sfac�on Problem (CSP)

A set of variables

A set of possible values/domain
for each variables

A set of constraints 
between the variables

Primary constraints

Crew Competency constraint:

Propagation embedded with
Look Ahead Technique

Solution construction:

Decision making:

If xn,i,j is
bounded   

Partial solution Search 
strategy

Is  
competency
validated?

Validate
constraints

No:
Backtrack

YesAccept the value

Select decision variable
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Fig. 3. Constraint programming framework. 

by defining the crew competency constraints as global constraints, 

constraint propagation is used to make the given problem easier 

to solve. This is done by helping the solver to prune infeasible 

regions of the search space which violate the crew competency 

constraints. Infeasible areas are identified using a look-ahead 

technique embedded in a propagation algorithm. 

The individual stages are described in detail in the following 

subsections. 

3.1.1. Problem definition: 

As this stage, all of the variables introduced in our mathe- 

matical model are defined as a set of variables in the CSP. The 

variables need to be scoped over finite domains. Consequently, 

the domain of each variable in our model is determined accord- 

ing to the domain of variables in the MIP model introduced in 

Section 2 . The constraints can be defined as either initial/primary 

constraints or global constraints. Initial constraints can be defined 

as a set of C = C 1 , . . . , C K where each constraint comprises several 

variables and a list of values that the variables can take. From this 

perspective, the initial constraints correspond to what is known 

as a constraint in linear programming. In our model, all of the 

constraints except the constraints related to crew competency are 

defined as initial constraints. 

A global constraint is defined as an “expressive and concise 

condition involving a non-fixed number of variables” according to 

the Global Constraint Catalogue ( Beldiceanu, Carlsson, & Rampon, 

2012 ). There are several well-known global constraints introduced 

in the literature which have been used in practice in many CP 

models ( Aggoun & Beldiceanu, 1993; Beldiceanu, 20 0 0; Caseau & 

Laburthe, 1997; Régin, 1994 ). In our approach, we have defined a 

customised global constraint composed of all of the related crew 

competency constraints in our mathematical model. 

3.1.2. Decision making 

The core decision variable of the problem is x nij , which rep- 

resents the fraction of task i fulfilled on date j by crew member 

n . Since most of the tasks are not atomic and need to be split 

over multiple days, the model mostly uses a fraction of the whole 

duration of each task. At each node of the tree, one variable from 

the x vector is selected and is given a value which propagates 

over the other variables in the search space. In Google OR-tools 

there are 16 strategies for selecting variables and 14 strategies for 

assigning values to a decision variable. 

• Selecting decision variable: We have chosen the follow- 

ing five selection strategies, which all select the variable 

with the smallest domain: Min_Size, Min_Size_Lowest_Min, 

Min_Size_Highest_Min, Min_Size_Lowest_Max and 

Min_Size_Highest_Max. These five strategies only differ in 

the case of tie. Min_Size considers the order of variables in the 

vector, whilst the remaining four strategies select the variable 

with the lowest min value, the highest min value, the lowest 

max value and the highest max value, respectively. 
• Assigning values to decision variables: After selecting a variable 

from x nij , we should assign a value to it. We use two strate- 

gies strategies for assigning values: Min_Value and Max_Size. 

The former assigns the smallest possible value and the latter 

assigns the biggest value that is within the range of the selected 

variable in the vector. 

We can see that the order of variables in x nij has an effect on 

the strategies used to select the variable at each node in the case 

of a tie. According to the dimensionality of x n , i , j , there are six 

possible orders that we can use: { i , j , n }, { i , n , j }, { j , n , i }, { j , i , n }, 

{ n , j , i }, { n , i , j }. For instance, i , j , n denotes that the x n , i , j vector is 

generated by three inner loops with n being the most inner loop. 

In this way, we determine what portion of task i should be done 

by each crew member per day until the task is fully allocated i.e. 

the priority is on fulfilling tasks one by one per day by all crew 

members. As an example if n = 3, i = 2 and j = 2, the vector of x n , i , j 
based on i , j , n order would be x 1, 1, 1 , x 2, 1, 1 , x 3, 1, 1 , x 1, 1, 2 , x 2, 1, 2 , 

x 3, 1, 2 , x 1, 2, 1 , x 2, 2, 1 , x 3, 2, 1 , x 1, 2, 2 , x 2, 2, 2 , x 3, 2, 2 . 

With five selection strategies, six possible orders for the x 

vector, and two strategies for assigning values, we will test all 60 

possible combinations of these three factors on a small problem 
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instance, to find the best combination before applying CP to larger 

problem instances. 

3.1.3. Solution construction 

In our framework, a systematic tree-based search strategy is 

used. At each node including the root, one variable from x n , i , j is 

selected and a value assigned to the chosen variable. In addition to 

the back-track technique embedded within CP, systematic search 

can be improved by look-back or look-ahead methods ( Bayardo Jr 

& Schrag, 1997; Jussien, Debruyne, & Boizumault, 20 0 0 ). In our 

framework, using the crew competency constraint as a customised 

global constraint helps the CP solver to prune infeasible regions 

of the search space violating this constraint. The infeasible areas 

are identified using a new look-ahead technique embedded in 

propagation algorithm explained below. 

3.1.4. Crew competency global constraint 

As mentioned previously, the most challenging part of this 

scheduling problem is satisfying all of the crew competency con- 

straints. In CP, the solver treats a global constraint similarly to a 

primary constraint, in the sense that the class of global constraints 

is inherited from the same base class of primary constraints. When 

there is a change of variable domain or the bound of variable x nij , 

an event is triggered which propagates its value on all other 

variables. The global constraint will register itself to this event and 

once the event is triggered the propagation algorithm associated 

with the proposed global constraint will be called. 

Algorithm 1: Crew competency global constraint (part I - cap- 

turing the current state of the solution). 

1 Initialise empty lists for bound ed C rew , workingC rew , 

expertCrew , a v ailableExperts 

2 Initialise variables for total _ crew _ l e v el , expert _ duration , 

non _ expert _ duration , usable _ expert _ time 

3 Other variables are as defined in the MIP model 

4 if task i does not require any competencies then return 

success ; 

5 if task i is not compulsory then return success ; 

6 foreach crew ∈ N do 

7 if (x crew,i, j is bounded) then 

8 add crew to bound ed Crew 

9 if (x crew,i, j > 0 ) then 

10 add crew to workingCrew 

11 add crew competency level ( bm 3 crew,k ) to 

total _ crew _ le v el 
12 end 

13 if ( crew is expert) then 

14 add crew to expertCrew 

15 add x crew,i, j to expert _ duration 

16 else 

17 add x crew,i, j to non _ expert _ duration 

18 end 

19 end 

20 end 

The overall process, presented in Algorithms 1 and 2 , validates 

the crew competency constraints based on the current state of 

the solution and the potential future states that can be reached. 

The algorithm returns fail when either the crew competency 

constraints are violated, or it is deemed impossible to satisfy the 

crew competency constraints of task i , based on the availability of 

expert crew members (those who have at least competence level 

3 for the competencies required for the task), when looking ahead 

at the possible future states of the solution. The algorithm returns 

success if the task is not compulsory (i.e. x 4 i is 0), if the task does 

Algorithm 2: Crew competency global constraint (part II - val- 

idating the crew competency with respect to the change in 

X nij ). 

22 if all crew members are bounded then 

23 if no crew member is working on task i then return 

success ; 

24 if total_crew_level < f then return fail; 

25 if expertCrew list is empty then return fail; 

26 if expert_duration < non_expert_duration / 
∑ 

n ′ z n ′ ,i, j then 

return fail; 

27 else 

28 if workingCrew is not empty then 

29 max _ ad d itional _ crew = d2 i − count(workingCrew ) ; 

30 if max _ ad d itional _ crew == 0 then 

31 if total_crew_level < f then return fail; 

32 if expertCrew list is empty then return fail; 

33 if expert_duration < non_expert_duration/ 
∑ 

n ′ z n ′ ,i, j 

then return fail; 

34 return success 

35 end 

36 foreach crew n ′ ∈ N, with competency k required for 

task i do 

37 if n ′ is not in bound ed Crew then 

38 if n ′ has unallocated time remaining on day j 

then add n ′ to a v ail abl eExperts ; 

39 end 

40 end 

41 if expertCrew and a v ail abl eExperts are empty then 

return fail; 

42 Sort a v ail abl eExperts in ascending order of unallocated 

time remaining for t = 1 to 

Min(count( a v ail abl eExperts ), max _ ad d itional _ crew ) do 

43 usable _ expert _ time += available time of t-th crew 

member in a v ail abl eExperts list on day j; 

44 end 

45 potential _ expert _ duration = Min(( c i - 

non _ expert _ duration ), usable _ expert _ time ) + 

expert _ duration ; 

46 if potential_expert_duration < non_expert_duration then 

return fail; 

47 end 

48 end 

49 return success 

not require any crew competencies or if it is possible to yield a 

feasible solution in future, with respect to the crew competency 

constraints, based on the expert crew members available. 

As mentioned above, whenever x nij is bounded or its domain 

is changed, the propagation algorithm will be called. It will first 

check if task i requires any competencies and whether or not it is 

compulsory to be completed (lines 4 and 5 in Algorithm 1 ). If not, 

it will return success and the solver can continue with the current 

state of x nij . In both situations, as the solver does not need to val- 

idate crew competency constraints, these constraints are ignored. 

When the algorithm does not return from either of the two 

situations above, it means that there is a need to validate the crew 

competency constraints when x nij is changed. This is what the rest 

of the algorithm deals with, and is composed of the following two 

steps: 

1. Capture the current state of the solution in terms of the re- 

sources required to validate the crew competency constraints 

(constraints 18, 19 and 20 in the MIP model). This part is pre- 

sented in Algorithm 1 (lines 6-20). 
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2. Validate the crew competency constraints with respect to the 

change in x nij . The pseudo-code of this part of the propagation 

algorithm is presented in Algorithm 2 . 

The current state of the solution is captured from lines 6 to 

20. For each crew member, if the solver has decided whether 

crew member works on task i at date j or not (line 7), the crew 

member will be added to the bound ed Crew list (line 8). If the crew 

member is working on the task (line 9), the crew member will 

also be added to the workingCrew list and their competency level 

( bm 3 crew,k ) is added to the total _ crew _ l e v el variable (lines 10 and 

11). Next, if the crew member is an expert in the competency re- 

quired for the task (line 13), they will be added to the expertCrew 

list (line 14) and the time that the crew member spends on task 

i will be added to the expert _ duration list (line 15). Otherwise the 

working time will be added to the non _ expert _ duration (line 17) 

as the crew member is not an expert in the competency required 

for this task. 

Once the algorithm knows the current state of the solution 

being constructed, it can start validating the crew competency 

constraints with respect to the change in x nij , as presented in 

Algorithm 2 . At this point, there are two possible states that the 

solver can be in. Either the solver has already bounded all of the 

crew members for task i at date j (lines 22–26) or some crew 

members remain unbounded (lines 27–49). 

If all crew members are bounded, the algorithm only needs to 

check the validity of the crew competency based on the current 

state as it is not possible to assign extra crew members to the 

task i on date j in future exploration of the search space. If no 

crew member is working on the task i (line 23), the algorithm 

will return success . Otherwise, it will check the crew competency 

constraints based on the current state of the solution, and will 

return fail in lines 24 –26 if any of the constraints are violated 

(constraints 18, 19 and 20 from Section 2.5.4 ). If none of these 

constraints are violated, the algorithm will return success (line 50). 

If the solver has not bounded all crew members for task i on 

date j , it means that it is possible at a future point in the search 

process to assign other crew members to complete the rest of the 

task. Consequently, a look-ahead technique can be used to moni- 

tor the feasibility of future assignments with respect to the crew 

competency constraints, by checking if the remaining expert crew 

members have enough free time to satisfy those constraints for 

this task. This allows us to prune infeasible areas of the search 

space in the case that the crew competency constraints cannot be 

met. 

If there are any crew members working on the task i (line 

28), the algorithm will calculate the maximum number of extra 

crew members who can be added to work on the task later 

(line 29). The number of additional possible crew members that 

can work on task i at date j , max _ ad d itional _ crew, is calculated 

by subtracting the number of crew members who are currently 

working on the task from the maximum possible number of crew 

members that can work on the task together ( d 2 i ). If this value is 

zero, it means that although there are crew members who are still 

unbounded, we have already assigned the maximum number of 

crew members for this particular task. In this case (line 30), the 

algorithm only needs to check the crew competency constraints 

(lines 31-33), without needing to look ahead to the future state 

of the solution. If none of these constraints are violated, the 

algorithm return success (line 34). 

If it is possible to assign extra crew members to the task i on 

date j , the algorithm will use a look-ahead technique to consider 

the current and future state of the solution, based on the current 

value of x nij in order to validate the crew competency constraints. 

The proposed technique guarantees that the feasibility of the 

solution is maintained from a crew competency point of view, 

following the change made to variable x nij . 

To provide the constraint solver with a better view of the avail- 

ability of the other expert crew members to fulfil the rest of the 

task in future stages of the search, while satisfying the crew com- 

petency constraints, we first need to find the crew members who 

are expert in the competency required for task i who have free 

time available free time on date j (line 36 to 40). These crew mem- 

bers are added sequentially to a list of a v ail abl eExperts (line 38). 

If there are no crew members working on the task who are 

expert and no other crew members with the required expertise 

are available on date j , the algorithm will return fail as it is 

not possible to meet the crew competency constraints (line 41). 

This is effectively a look ahead technique for validating the crew 

competency constraints 18 and 19 in the MIP model. Otherwise, 

the algorithm sorts the list of a v ail abl eExperts in ascending order 

of available time remaining on day j (line 42). Although we 

capture all of the free time of the expert crew members through 

a v ail abl eExperts list, as there is a maximum number of crew 

members who can work on a task at one time ( d 2 i ), we calculate 

the amount of expert time that can actually be added to the 

task ( usable _ expert _ time ). This is accumulated by looping over the 

minimum number between the count of a v ail abl eExperts, and the 

number of crew members that can be added before exceeding 

the maximum crew capacity ( max _ ad d itional _ crew, calculated 

previously in line 29). 

After calculating usable _ expert _ time, the algorithm checks how 

much of the task i can be undertaken by expert crew members 

in future, considering the actual time that task i requires to 

be completed ( potential _ expert _ duration ) (line 46). This is the 

minimum of the actual amount of the task which has been left 

undone by non-experts ( c [ i ] - non _ expert _ duration ) and the free 

time of experts to undertake the task ( usable _ expert _ time ) added 

to the original amount of work undertaken on the task by experts 

( expert _ duration ). If the potential _ expert _ duration is less than 

the duration of non-experts ( non _ expert _ duration ), the algorithm 

returns fail . This is the last part of the look ahead technique which 

validates the final crew competency constraint 20 in the MIP 

model. If no constraint violations are identified by the previous 

validation checks, the algorithm will return success (line 50). 

3.2. Improvement phase 

Once a feasible solution has been found in the construction 

phase, a MIP solver starts searching in the branch and bound tree 

from that point and tries to improve the solution. Here we use 

CPLEX 12.4 to solve the MIP model as defined in Section 2 . This 

process is known as a warm start ( Gondzio, 1998 ). Feeding the 

MIP solver with a feasible starting solution helps the solver enor- 

mously by allowing for efficient cuts in the branch and bound tree, 

effectively reducing the size of the problem to such an extent that 

further search in the branch and bound tree becomes possible. 

4. Results and discussion 

In this section, we first introduce the four instances and then 

present the results of solving the problems by using the hybrid 

CP/MIP approach introduced above. We compare to both using a 

commercial MIP solver directly and modelling the problem as a 

Constraint Optimisation Problem (COP). 

4.1. Dataset 

The four instances used are based on real-world data provided 

by the Banedanmark planning department. In all four instances, 

there are the same 23 technical places and 8 crew members with 
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Table 1 

Characteristics of the data instances used. 

Instance Name D2 D4 D6 D8 

Horizon days 10 20 30 40 

Working days 24 58 74 108 

Number of tasks 11 39 47 59 

Compulsory tasks 8 16 16 16 

Tasks requiring competencies 10 34 41 53 

Tasks > 1 day long 6 15 20 26 

Total duration (hours) 198.6 474.5 597.6 839.8 

Minimum task duration (hours) 1.6 1.6 1.6 1.6 

Maximum task duration (hours) 63.4 63.4 63.4 81.2 

12 different crew competencies. Each task requires at most one 

competency. The closest task to the depot is 0.00 hours travel time 

(i.e. it is next to the depot), the furthest is 0.66 hours, and the 

average travel time is 0.28 hours from the depot. Table 1 presents 

the four different problem instances and their characteristics. 

The instances are named based on their planning time horizon, 

since they differ from one another with respect to the number 

of planning days ( J ), where each day is 6.90 hours long. The four 

problem instances, D2, D4, D6 and D8 have 2, 4, 6 and 8 week 

planning horizons, respectively. With eight crew members, each 

plan should have J × 8 planning days in total, however, as not 

all crew members are available every day, the total number of 

available planning days for each instance is slightly less than this. 

There are different numbers of tasks in each instance, with the 

number of compulsory tasks to be scheduled in the plan, the 

number of tasks which last more than one working day and the 

number of tasks that require competencies also given. The total 

duration of tasks, and the minimum and maximum duration of a 

single task in each data instance are given in hours. 

As seen in Table 1 , the vast majority of tasks cannot be un- 

dertaken without an expert for a particular competency, adding to 

the complexity when scheduling crew members. Table 2 presents 

the number of tasks which require a specific competency and the 

number of crew members who have the required competency for 

each data instance. For instance, D 2 includes tasks which require 

competency A 2 (1 task), B 2 (2 tasks), B 7 (1 task), B 12 (5 tasks) 

and C 11 (1 task), with 5, 5, 4, 5 and 3 crew members having each 

of these competencies, respectively. 

4.2. Tuning search in the decision making phase 

In the decision making phase, we need to decide how to select 

the main decision variable and what value(s) are assigned to it at 

each node of the tree in order to branch the search tree. The first 

set of experiments investigates the performance of all possible 

combinations of the factors introduced in Section 3.1 on instance 

D 2. Consequently, we can use the best tuning found to solve 

the larger problem instances. With five selection strategies, six 

possible orderings for the x vector, and two strategies for assigning 

values, we have tested all 60 possible combinations. Each combi- 

nation is allowed to run for a maximum of 1 hour CPU time on a 

2.1 gigahertz Intel Core i7-4600U CPU with 8.00 gigabytes RAM. 

Assigning values using the Max_Size strategy does not generate 

any feasible solutions with any selection strategy and any ordering 

of the x vector within the time limit. This accounts for 30 of 

the 60 possible combinations tested. Considering the complexity 

of the model, the dependencies that exist, and the number of 

the variables we have, this is not a surprise since the Max_Size 

strategy leaves less room for assigning values to other variables. 

We also ran additional overnight experiments on a small number 

of combinations using the Max_Size strategy. However, in all cases 

no feasible solution was found for D2. 

Moreover when using the Min_Size strategy, only three of the 

six orderings of the x vector are able to generate feasible solutions 

within the time limit: { i , j , n }, { i , n , j }, and { j , i , n }, ruling out 

another 15 of the combinations tested. We observe that these 

three orderings branch the search tree, prioritising finishing each 

task i over fully using the availability of each crew member n . As a 

feasible solution is found, more constraints have been propagated 

on the partial solution at each assignment by prioritising in this 

manner. This is likely to be due to the fact that there are more con- 

straints on the tasks than the crew members. As x can propagate 

its value faster over a larger number of variables, the partial solu- 

tion is constrained more quickly. Consequently, we are able to ac- 

cept or refuse the partial solution at an earlier stage of the search. 

This leaves 15 combinations of selection strategy, ordering and 

value assignment strategy which are able to produce feasible solu- 

tions. Table 3 shows the results of these combinations on instance 

D2, obtained using orderings { i , j , n }, { i , n , j }, and { j , i , n } with five 

different selection strategies and Min_Size assignment strategy. 

From this table, we can clearly see that the objective values 

obtained using different selection strategies are not significantly 

different from each other. Specifically, using { i , j , n } and { j , i , n } or- 

dering, the objective values have the same values for all five selec- 

tion strategies. For { i , n , j } ordering, the objective values are 0.3714 

for the Min _ Size, Min _ Size _ Highest _ Min and Min _ Size _ Highest _ Max 

and 0.3655 for Min _ Size _ Lowest _ Max and Min _ Size _ Lowest _ Max 

strategies. Comparing the time taken to generate the first solution, 

{ i , j , n } is far quicker than the other two orderings, generating fea- 

sible solutions within 5 seconds for all five selection strategies. { j , i , 

n } and { i , n , j } take much longer to generate initial solutions, need- 

ing between 103 and 207 seconds and between 15 and 70 seconds, 

respectively. In addition, the number of failures (backtracks) and 

branches required to generate the feasible solutions for { j , i , n } and 

{ i , n , j } is much larger than { i , j , n }. The large number of failures 

and branches indicates that when applied to larger instances, these 

two orderings may struggle to find a first feasible solution as they 

will not identify infeasible regions of the search space as quickly as 

{ i , j , n }. As the primary goal of the constructive CP phase is to find 

a feasible solution, using a combination of strategies that minimise 

the time to find an initial solution is preferable. Hence we will use 

ordering { i , j , n } with selection strategy Min_Size_Lowest_Min in 

the experiments on the larger instances in the next section. 

4.3. Results and comparison 

The hybrid framework we propose uses initial feasible solutions 

generated using CP as warm start solutions for an MIP solver. The 

MIP solver used is CPLEX 12.4 with default parameter settings. 

All experiments are performed on the same machine as above. 

We compare the quality of the solutions obtained by the hybrid 

CP/MIP framework to both solving the MIP model directly, and to 

improving the initial solutions obtained by CP by considering the 

problem as a Constraint Optimisation Problem (COP). Modelling 

the problem as a COP requires adding an extra constraint to 

find a solution with a better objective value than the previously 

found feasible solution ( Rossi et al., 2006 ). For the hybrid CP/MIP 

and COP, the solvers are given 3 hours to improve the initial CP 

solution for each instance. In the case of the MIP solver only, it is 

allowed 3 hours CPU time. 

Table 4 shows the objective function values and relative gaps 

of the solutions found by the CP/MIP hybrid, COP, and only the 

MIP solver for the four instances introduced in Section 4.1 . In the 

results presented for the CP/MIP approach, the value of the initial 

feasible solution obtained by CP is given along with the value and 

relative gaps of the first, second and final solutions obtained by 

the MIP improvement phase. For COP the value of the improved 

solution after 3 hours is given, with the value obtained by feeding 

this instance to the MIP solver given in brackets for reference. 

Here we note that no optimisation is done by the MIP solver 
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Table 2 

Competency-related attributes of the data instances. 

Dataset Competencies 

A2 A3 B2 B4 B7 B9 B10 B12 C3 C4 C5 C11 

D2 Crew 5 5 4 5 3 

Tasks 1 2 1 5 1 

D4 Crew 5 5 5 4 5 5 5 5 5 3 

Tasks 3 4 1 1 1 3 8 6 3 4 

D6 Crew 5 5 5 4 5 5 5 5 5 5 3 

Tasks 4 5 2 1 1 3 8 9 3 1 4 

D8 Crew 5 5 5 5 4 5 5 5 5 5 5 3 

Tasks 7 1 6 2 1 1 3 8 15 3 2 4 

Table 3 

Results of feasible solutions found for instance D2, using three different orderings, 

five different selection strategies and Min_Size assignment strategy. 

Selection variable strategy Obj Time_S Failures Branches 

Order: i,j,n 

Min_Size 0.3753 2.71 95 304 

Min_Size_Lowest_Max 0.3753 4.44 96 305 

Min_Size_Lowest_Min 0.3753 1.98 96 305 

Min_Size_Highest_Min 0.3753 2.20 95 304 

Min_Size_Highest_Max 0.3753 3.25 95 304 

Order: i,n,j 

Min_Size 0.3714 207.97 490515 981154 

Min_Size_Lowest_Max 0.3655 142.09 496938 993999 

Min_Size_Lowest_Min 0.3655 156.30 496938 993999 

Min_Size_Highest_Min 0.3714 135.36 513396 1026916 

Min_Size_Highest_Max 0.3714 103.45 513396 1026916 

Order: j,i,n 

Min_Size 0.3711 29.12 114014 228142 

Min_Size_Lowest_Max 0.3711 15.79 56820 113753 

Min_Size_Lowest_Min 0.3711 70.05 56820 113753 

Min_Size_Highest_Min 0.3711 29.08 114014 228142 

Min_Size_Highest_Max 0.3711 22.61 114014 228142 

for this result, the value is obtained by the pre-processing phase 

converting the COP result into a MIP model only. 

A number of observations are worthy of mentioning here. On 

feeding the starting solutions provided by CP into the MIP solver, 

it can easily generate an initial feasible solution based on the CSP 

solution, improving that solution immediately. Additionally, in all 

four instances the relative gap to the lower bound is decreased 

considerably by the MIP solver. This is still true when the quality 

of the solution found is not improved, suggesting that the quality 

of the initial CSP solutions are good in these cases. 

The only problem instance solved within the time limit using 

the MIP solver alone is the two-week problem (D2). It is interest- 

ing to note that in D2, where both the hybridised CP/MIP and MIP 

solver only methods end up with approximately the same result 

(0.3175 and 0.3173 respectively), the initial solution obtained by 

CSP is restricting the performance of the MIP solver in the hybrid 

CP/MIP approach to some extent. 

For the 4, 6 and 8 week plans (D4, D6 and D8) the hybrid 

CP/MIP and COP approaches have feasible solutions generated 

in the construction phase. Comparing the quality of the best 

solutions obtained by COP and the CP/MIP hybrid, we see that the 

hybridised framework generates significantly better results, high- 

lighted as bold in Table 4 . In addition, the quality and the relative 

gap of the first solutions found by the cutting algorithms of the 

MIP solver, from both the CP and COP solutions, shows that using 

COP leads to limited improvement in objective value and relative 

gap compared to the original CP solution, despite the 3 hours 

computational time used by COP. For instance in D4, the objective 

value and the relative gap obtained on CSP and COP solutions are 

0.3361 and 73.09%, and 0.3308 and 72.66%, respectively. 

Table 5 reveals the computational time spent generating solu- 

tions for each of the three approaches tested. The computational 

time of the hybrid CP/MIP framework is the time spent generating 

the first feasible solution by CP added to the three hours time 

given to the MIP solver to optimise the solution. To evaluate how 

much time has been spent on the node relaxation and branching 

separately, we have distinguished between the time spent on each 

part in the table. Similarly, for the results using the MIP solver 

only, the time for both parts has also been included. For the COP 

solutions, the table shows the amount of time taken to generate 

the best solution within the time limit. 

The time taken to generate the first feasible solution by CP is 

striking, where it takes approximately 2 seconds for D2 and 4.5, 

12 and 52 minutes for D4, D6 and D8, respectively. It was not pos- 

Table 4 

Results of the hybrid CP/MIP framework, Only MIP solver, and COP (result fed to MIP) over all instances. 

Instance CSP + MIP Only MIP COP 

Best integer Rlt_Gap(%) Best integer Rlt_Gap(%) Best integer Rlt_Gap(%) 

D2 0.3753(CSP) 0.3674(COP) 

0.3688 60.67% 0.3571 17.90% (0.3629 60.03%) 

2nd 0.3688 21.70% 0.3571 17.90% 

Best 0.3175 3.42% 0.3173 3.89% 

D4 0.3663(CSP) NA 0.3610(COP) 

0.3361 73.09% (0.3308 72.66%) 

0.3361 24.77% 

Best 0.3162 16.45% 

D6 0.3392(CSP) NA 0.3389(COP) 

0.3166 74.89% (0.3163 74.87%) 

0.3166 21.29% 

Best 0.3138 18.42% 

D8 0.3290(CSP) NA 0.3270(COP) 

0.3130 79.31% (0.3110 79.18%) 

0.3130 25.64% 

Best 0.3130 22.76% 
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Table 5 

Time spent to generate solutions within the time limit by all three approaches: hybridised approach (CP/MIP), Only the MIP solver, and COP. 

Instance CSP + MIP Only MIP COP (within 3 hours) 

D2 1.98 ≈ 2 seconds Root_T: 2.57 3.87 284.908 ≈ 4.5 minutes 

B&C_T: 10579.8 10273.95 

Total MIP: 10582.37 ≈ 3 hours 10277.81 ≈ 3 hours 

D4 256.318 ≈ 4.5 minutes Root_T: 327.32 432.86 ≈ 7.2 minutes 

B&C_T: 10469.27 

Total: 10796.6 ≈ 3 hours 

D6 724.776 ≈ 12 minutes Root_T: 947.49 2599.574 ≈ 43.32 minutes 

B&C_T: 9850.2 

Total MIP: 10797.69 ≈ 3 hours 

D8 3157.474 ≈ 52 minutes Root_T: 8416.66 3524.647 ≈ 58.74 minutes 

B&C_T: 2380.89 

Total MIP: 10797.55 ≈ 3 hours 

Table 6 

Improvements made by COP to the original CP solution for each instance. 

Instance Obj Time_S Failures Branches 

D2 0.3753 1.98 96 305 

0.3741 7.82 32126 64367 

0.3713 27.79 165483 331084 

0.3674 284.91 1268374 2536 86 8 

D4 0.3663 256.32 110137 220992 

0.3646 258.80 110170 221059 

0.3636 261.31 110220 221159 

0.3631 263.85 110418 221558 

0.3615 266.66 110463 221650 

0.3612 269.60 111675 224075 

0.3611 425.62 500941 1002610 

0.3610 432.86 502184 1005093 

D6 0.3392 724.78 724070 144 94 83 

0.3391 776.89 725395 1452134 

0.3389 2599.57 4662224 9325790 

D8 0.3290 3157.47 372812 748162 

0.3280 3350.27 372857 748253 

0.3270 3524.65 373031 748602 

sible for the MIP solver to find feasible solutions for data instances 

bigger than D2 at all. Note that, for the only data instance that MIP 

was able to generate solution (D2), we can see that feeding the 

MIP solver with the CSP solution leads to less root node processing 

compared to using the MIP solver alone. This indicates that starting 

with a feasible solution helps to reduce the time taken resolving 

the LP relaxation. Looking into the node processing time for all 

data sets, the increasing pattern is not a surprise when dealing 

with bigger data instances. Despite this reduction, continuous root 

relaxation still takes up a considerable proportion of running time 

in our model. For the D8 instance, it is worth highlighting that 

the node processing time has grown significantly. It is also notable 

that the MIP solver spends one fifth of its total execution time 

on the branching and cutting on such a big data instance. As this 

ratio is particularly high, it suggests that for this instance and any 

larger instances a longer running time might be more appropriate. 

Looking at the time taken to find the best COP solutions for 

each data instance, we see that CP could not improve the CSP 

solution for the D2, D4 and D8 after a couple of minutes and 

for D6 after half an hour. This suggests that COP gets stuck in a 

local optimum quickly, long before reaching the time limit. Table 6 

gives the details of the improvements made to the original CSP 

solution by COP during the 3 hour run for each instance. In this 

table, each row is representative of a feasible solution with the 

first solution corresponding to the original feasible CSP solution. 

Each subsequent row shows any improved solutions found by COP 

within the time limit. 

Here we see that the first solutions (CSP solution) for all in- 

stances were yielded in 1.98, 256.32, 724.78 and 3157.47 seconds, 

respectively, for each instance. However, no solutions are improved 

further after 284.91, 432.86, 2599.57 and 3524.65 seconds by 

COP on D2, D4, D6 and D8, respectively showing that a large 

proportion of CPU time is spent without any improvement in 

quality observed. Comparing the number of failures and branches 

on the final solutions obtained by COP for D4 and D6 with those 

on earlier solutions we see that COP seems to get stuck in a local 

optimum. Moreover, comparing the quality of the first feasible 

solution with the quality of the best solution found over all 

instances shows a very small improvement has been made. Even 

though CP generates the first solution quickly, COP is not a good 

candidate approach to be used for the improvement phase. 

Considering COP both quality-wise and time-wise, we found 

COP to be inferior to a commercial MIP solver when improving 

the initial solutions found by CP. Enhancing the initial solutions 

through COP demands more problem-specific customisation, 

consequently more implementation and development effort code- 

wise. For instance, employing local search instead of systematic 

search might improve the solutions, however this would require 

defining several neighbourhoods, due to the number of dimensions 

of the objective function. Additional effort would also be required 

for proper tuning within a framework such as a meta-heuristic or 

hyper-heuristic. The hybrid CP/MIP method takes advantage of the 

initial feasible solutions found by CP, eliminating large portions 

of the search space and resulting in smaller branch-and-cut trees. 

Passing the first found feasible solution as a starting solution to a 

MIP solver we are able to validate the quality of the initial solution 

and attempt to improve it using a MIP solver without having to 

tailor advanced, difficult to maintain heuristics to the problem. 

5. Conclusion 

In this paper, we have introduced a hybrid CP/MIP framework 

for solving a large scale maintenance crew scheduling problem 

for the Danish railway system. The model is based on a practical 

MIP formulation provided by Banedanmark, who are responsible 

for most of the railway infrastructure in Denmark. The problem 

involves a large number of real-life attributes and constraints, so 

the current practice of trying to solve the model directly using 

a standard MIP solver does not return any feasible solutions for 

planning horizons longer than two weeks. We have proposed 

a customised global constraint, embedded with a look-ahead 

technique in a CSP-based model, to construct initial solutions and 

attempt to improve them by warm-starting the MIP solver. The 

framework examines an exploration of variable/value ordering 

heuristics. Results have been presented using four real-world in- 

stances. The proposed hybrid CP/MIP framework has been shown 

to outperform both solving the problem as a MIP problem directly 

and using COP to improve the initial feasible solution found by CP. 

The hybridised framework is a contribution to the development 

of integration between MIP and CP, where CP greatly reduces 
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the time required by the MIP to produce a solution. From a 

programming perspective, the framework is easy to maintain since 

the proposed propagation algorithm is logically and conceptually 

independent. This maintains the generality of the framework by 

focusing on feasibility checking, pruning infeasible areas from 

the perspective of crew competency constraints. If any other 

constraints need to be added to the model in future, it can be 

implemented as an independent constraint in the framework. Any 

new constraint simply needs to be added to the MIP model in the 

improvement phase. 

In terms of future work, one limitation of the method proposed 

here is the transformation of a multi-objective problem to a single 

objective function. The weighted sum method used is based on 

expert opinion to reflect the importance of each component of 

the objective function. Future work will formulate this problem 

as a multi-objective problem directly, presenting and highlighting 

the different trade-offs that exist between multiple objectives. 

Our work here has also used a single MIP solver, under default 

parameter settings. As a wide range of commercial MIP solvers, 

with a large number of tunable parameters exist, another potential 

future research direction is the investigation of the ability of dif- 

ferent solvers, using different parameter settings, to solve different 

instances of this problem. 
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